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CHAPTER 1
GENERAL INTRODUCTION: CFD MODELS FOR AOR-
TIC VALVE ANALYSIS





GENERAL INTRODUCTION

1.1 AORTIC VALVE ANATOMY AND FUNCTION

THE heart is the central organ in the cardiovascular system. The heart functions as
a pulsating pump, contracting about 60 times per minute to consistently provide
all organs with sufficient oxygenated blood. The heart contains four heart valves:

the tricuspid valve, the pulmonary valve, the mitral valve, and the aortic valve (Figure 1.1).
Within the right side of the heart, the tricuspid valve ensures unidirectional blood flow
from the right atrium into the right ventricle. Consequently, the pulmonary valve ensures
that blood flows from the right ventricle into the pulmonary circulation. Similarly, within
the left part of the heart, the mitral valve ensures unidirectional flow from the left atrium
into the left ventricle. Finally, the aortic valve ensures that blood flows from the left
ventricle into the systemic circulation. Proper opening and closing of each of these valves
ensures unidirectional blood flow and that the heart remains an efficient pump. Healthy
heart valves are flexible and open and close completely, resulting in minimal obstruction
of blood flow. Hence, healthy heart valves exert no additional load on the heart muscle.

Direction of flow 
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Figure 1.1 Schematic representation of the left and right heart and its heart valves. Pressure is almost completely
recovered in healthy aortic valves. Diseased, stenotic heart valves are characterized by a narrow open-
ing, high blood velocity, and large (irreversible) pressure-drop. Note that the pulmonary valve is out
of plane, but would be situated between the tricuspid and aortic valves.

It is estimated that 2.5% of the population suffers from some form of heart valve disease
(Nkomo et al. 2006). Prevalence increases with age, and studies indicate that heart valve
disease is present in about 13% of the population older than 75 years (Nkomo et al. 2006).
Various forms of valvular disease exist; but studies suggest that aortic valve stenosis —

3



CHAPTER 1

the narrowing of the aortic valve opening in systole — is most common and occurs in 43%
of patients with a valvular disease (Iung et al. 2003). Aortic valve stenosis is characterized
by anatomical alterations of the aortic valve apparatus by the formation of calcifications
in, on, and around the valve tissue. This leads to stiffening and reduced flexibility of
the leaflets (Leopold 2012). This results in a dysfunctional valve: in systole the valve
does not open completely anymore, obstructing blood flow. As a consequence, a large
pressure difference is required to maintain blood flow (Figure 1.1), and increases the load
on the heart muscle. The increased load on the heart muscle provokes a hypertrophic
response that may eventually lead to heart failure. Aortic valve stenosis generally has a
long asymptomatic latent period, but once severe symptoms develop, untreated patients
have a poor prognosis (Ross and Braunwald 1968).

1.2 CLINICAL DIAGNOSIS OF AORTIC VALVE STENOSIS

The drop in pressure between the left ventricle and the ascending aorta is a key indicator
for the severity of aortic valve stenosis (Saikrishnan et al. 2014; Nishimura et al. 2014;
Vahanian et al. 2006). In the past, assessment of the pressure-drop was routinely done
by cardiac catheterization, an invasive technique that introduces a pressure-wire into
the left ventricle and ascending aorta (Nishimura and Carabello 2012). Later, Doppler
echocardiography allowed for non-invasive assessment of the pressure-drop (Nishimura
and Tajik 1994). This is currently the methodology of choice to determine aortic stenosis
severity in clinical practice (Saikrishnan et al. 2014; Nishimura et al. 2014; Falk et al.
2017). Doppler echocardiography is capable of measuring the transvalvular jet velocity
through the stenotic heart valve. Consequently, the transvalvular pressure-drop can
be estimated from the transvalvular jet velocity (Chambers 2016; Baumgartner et al.
2009; Baumgartner et al. 2016). The transvalvular pressure-drop (in mmHg) is computed
based on the principles of the Bernoulli equation, and clinically simplified to 4v2, with
v the jet velocity in m·s-1 (Hatle et al. 1980). This method assumes that when blood is
accelerated into the narrowed valve opening, pressure is irreversibly converted to kinetic
energy. However, downstream of the valve, flow is decelerated, and pressure may be
partially recovered (Figure 1.1). Energy is lost through vortex formation, viscous losses,
and losses from turbulence. Pressure recovery can cause significant differences between
the Doppler derived transvalvular pressure-drop and the pressure-drop measured by
catheterization. In fact, it was shown that the Doppler derived pressure-drops can
substantially overestimate stenosis severity for mild to moderately stenotic aortic valves
(Niederberger et al. 1996; Voelker et al. 1992; Bahlmann et al. 2010; Laskey and Kussmaul
1994) and valve prostheses (Bach et al. 2012; Vandervoort et al. 1995). Besides the
transvalvular pressure-drop, Doppler echocardiography may also be used to estimate the
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GENERAL INTRODUCTION

aortic valve opening area by means of the continuity equation (Chambers 2016). That is:

AAV =
vLVOT ·ALVOT

vAV
(1.1)

In Equation 1.1 vLVOT is the left ventricular outflow tract velocity; vAV the velocity at the
vena contracta; and AAV the the cross-sectional area of the left ventricular outflow tract.
These additional parameters can be obtained by Doppler ultrasound, and be used to
obtain the effective orifice area of the valve (AAV). AAV is an estimate of the (effective)
cross-sectional area at the vena-contracta, which is slightly smaller than the anatomic
orifice area. The ratio between both areas is generally referred to as the contraction
coefficient, and may be as low as 0.63 for severely stenotic cases (Migliore et al. 2017).

Clinical classification of aortic valve stenosis is for a large part based on measured
values of the transvalvular jet velocity, transvalvular pressure-drop, and aortic valve area
(Table 1.1). Severe aortic valve stenosis is classified as: a jet velocity >4.0 m·s-1, a mean
transvalvular pressure-drop >40 mmHg and a valve orifice area <100 mm2. Moderate
aortic valve stenosis is classified as: a jet velocity 3.0 – 4.0 m·s-1, a mean transvalvular
pressure-drop 20 – 40 mmHg, and a valve area of 100 – 150 mm2. Mild aortic valve
stenosis: a jet velocity 2.6 – 2.9 m·s-1, mean transvalvular pressure-drop of <20 mmHg,
and a valve area of >150 mm2. However, discordant grading based on these metrics is
common, with some studies estimating that this occurs in 26-30% of aortic valve stenosis
patients with a normal ejection fraction (Berthelot-Richer et al. 2016). This demonstrates
that complementary metrics for determining aortic valve disease severity are desirable.

Table 1.1 Grading of aortic valve stenosis severity

Mild Moderate Severe

Transvalvular vmax [m·s-1] 2.6 – 2.9 3.0 – 4.0 >4.0

Transvalvular ∆P peak systole [mmHg] <40 40 – 65 >65

Transvalvular ∆P mean [mmHg] <20 20 – 40 >40

Effective orifice area [mm2] >150 100 – 150 <100

Grading adopted from Chambers (2016)

Comprehensive patient-specific models of the heart and aortic valve have the potential
to yield these complementary diagnostic metrics for aortic valve stenosis. For example,
by detailed in-silico modeling of blood flow around, and through the aortic valve. The
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CHAPTER 1

focus of this thesis is to develop such patient-specific computational models. Moreover,
model simplifications were systematically investigated, with the ultimate goal of making
computational models of blood flow feasible for day-to-day clinical practice.

1.3 IMAGE-BASED COMPUTATIONAL MODELS

Echocardiography is inexpensive, readily available and easy to perform. When echocar-
diography results are inconclusive, Computed Tomography (CT) or cardiac Magnetic
Resonance Imaging (MRI) can be used to derive complementary diagnostic indicators,
e.g, the aortic diameter or amount of calcification (Chun et al. 2008; Clavel et al. 2013).
Furthermore, both CT and MRI enable detailed three-dimensional segmentations of
the full-heart anatomy. Segmentation methods have improved considerably over the
past years (Ecabert et al. 2008; Ecabert et al. 2011; Grbic et al. 2012; Ionasec et al. 2010),
and have resulted in a tremendous increase in the use of complex three-dimensional
patient-specific simulations (Neal and Kerckhoffs 2009). Image-based patient-specific
computational models are now widely adopted throughout the cardiovascular research
community. For instance, patient-specific computational fluid dynamics (CFD) models
are used to assess hemodynamic quantities such as stress, wall shear stress, or pressure
drops (Min et al. 2015; Kimura et al. 2017; Morris et al. 2013; Traeger et al. 2015; Cibis
et al. 2014; Lantz et al. 2016). These quantities are difficult, or sometimes impossible to
assess with imaging techniques alone. Patient-specific CFD models are already applied
in order to non-invasively detect coronary artery disease in the clinic (Min et al. 2015;
Morris et al. 2013). However, in the field of heart-valve disease, CFD is not yet accepted
for clinical diagnostics. Instead, three-dimensional CFD simulations are primarily used to
understand the fundamental principles of valve dynamics (Nobili et al. 2008), left ventric-
ular hemodynamics (Doost et al. 2016), or for valve design (Xu et al. 2018). Nevertheless,
work by Kelm et al. (2017) and Luraghi et al. (2019) demonstrate that image-based CFD
has clinical potential, e.g., for CFD-based virtual treatment. However, patient-specific
computational modeling of aortic valve behavior has not yet matured to the point that
clinical implementation is viable.

The thin and flexible nature of the aortic valve makes imaging, segmentation, and
modeling the patient-specific aortic valve extremely difficult. For instance, the aortic
valve is between 0.35 and 3.5 mm thick (Sahasakul et al. 1988). Voxel size of a typical
cardiac CT image is 0.5×0.5×0.5 mm (Ghekiere et al. 2017), and thus of the same order
as valve thickness. Additionally, temporal resolution of CT is limited by gantry speed,
and is around 100 ms (Flohr et al. 2009), and may therefore not be adequate to properly
capture the rapid opening (<50 ms), and closing (< 60ms) of the aortic valve in systole
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(Leyh et al. 1999). However, the valve stays open sufficiently long (around 250 ms)
to capture its open state with Electrocardiography-gated CT. Poor image quality and
temporal resolution make it challenging to segment the aortic valve. Nevertheless, by
making use of the intrinsic shape of the valve, model-based segmentation methods are
able to (semi-)automatically generate high quality valve models that are suitable for
computational fluid dynamics (Weese et al. 2017; Grbic et al. 2012; Ionasec et al. 2010).

Extracting the valvular shape from imaging seems feasible. However, consequent model-
ing of valvular dynamics is demanding from a computational point of view. Structural
behavior of the aortic valve is strongly coupled to fluid flow, and ideally needs to be
treated as such in numerical schemes. Large deformation of the leaflets make the tra-
ditional Arbitrary-Euler-Lagrange approach less robust and efficient, e.g., due to mesh
distortion and frequent remeshing. Hence, efficient numerical schemes were proposed,
such as the immersed-boundary (Gilmanov et al. 2019) and fictitious domain (De Hart
et al. 2003) method. Generally, such methods are more efficient, but at the expense of
solution accuracy at the solid-fluid interface. Despite such improvements in efficiency,
fluid-structure interaction simulations generally require days or weeks to complete for 3-
dimensional (3D) geometries, making their use intractable for day-to-day clinical practice.
Additionally, valvular dynamics strongly depend on material properties, and are difficult
or impossible to reliably obtain from imaging data. Instead, valvular dynamics are often
neglected by fixing the aortic valve in its most open position (Weese et al. 2017; Traeger
et al. 2015; Bruening et al. 2018; Dwyer et al. 2009), or by deriving patient-specific velocity
profiles from phase-contrast MRI (Vergara et al. 2011; Youssefi et al. 2017; Wendell et al.
2013). Neglecting valvular dynamics makes computational models much more efficient,
and it was shown that a two-state (open/closed) representation of the aortic valve yielded
similar results as a full fluid-structure interaction (fictitious domain) simulation of the
aortic valve (Astorino et al. 2012). Omitting the strong fluid-structure coupling substan-
tially reduces numerical complexity. However, computational requirements can still be
considerable, but would then mainly be determined by the type of fluid (e.g., constant
viscosity and density) and the type of flow: steady or unsteady flow; laminar, transitional
or turbulent flow.

1.4 TURBULENCE MODELS

Early in-vivo (Stein and Sabbah 1976; Walburn et al. 1983; Nygaard et al. 1994; Ha et al.
2018; Yamaguchi et al. 1983) and in-vitro (Bluestein and Einav 1995; Yoganathan et al.
1979; Clark 1976) studies have demonstrated that significant random fluctuations in blood
velocity — associated with turbulence — can be expected downstream of healthy and
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diseased heart valves. Furthermore, it was demonstrated that patients with stenotic heart
valves may exhibit higher levels of turbulence compared to healthy individuals. Previous
studies have associated high levels of turbulence to hemolysis (Sallam and Hwang 1984;
Kameneva et al. 2004) and thrombus formation (Stein and Sabbah 1974; Dangas et al.
2016), suggesting that prediction of turbulence production through modeling is beneficial.

Flow downstream of a (stenotic) heart valve is pulsatile in nature, and is characterized
by intermittent (low Reynolds) turbulence (Bluestein and Einav 1995). That is, turbulent
structures are generated in systole, but quickly decay in diastole due to viscosity and the
lack of flow (energy source). Turbulent flows are characterized by a wide range of spatial
and temporal scales in the velocity field, which makes Direct Numerical Simulation
(DNS) particularly demanding from a computational point of view. Due to the extensive
computational cost of DNS, two modeling strategies are popular: 1) just the largest scales
are resolved, e.g., by Large Eddy Simulation (LES), or 2) the time-averaged (turbulent)
flow field is solved by making use of the Reynolds Averaged Navier-Stokes (RANS)
equations. The LES approach resolves the largest structures in the flow by making use of
the filtered Navier-Stokes equations. The main idea is that the largest scales contain most
of the energy, and modeling the contribution of the smallest (isotropic) scales is easier.
The smallest scales are related to the larger scales through sub-grid models (Lilly 1992),
and do not need to be resolved directly, greatly reducing the required computational
resources with respect to DNS. In contrast, the RANS approach assumes that the flow
can be decomposed into a mean part and a fluctuating part. Through closure models,
and a "turbulent viscosity", only the mean turbulent flow is then characterized. Popular
models include the k − ε (Launder and Spalding 1974) and Shear-Stress Transport k − ω
models (Menter 1994). RANS models are computationally efficient, but may not always
be appropriate for the transitional and intermittent nature of turbulence encountered in
cardiovascular flows (Yoganathan et al. 2005). Hence, the applicability of RANS models
should be carefully scrutinized, and preferably be compared to a computationally more
demanding scale-resolving method, such as DNS or LES. The scale-resolving simulations
should give an indication whether the assumptions made under RANS are reasonable
for a particular cardiovascular flow configuration.

1.5 META-MODELS

Sections 1.3 and 1.4 provide some suggestions for reducing the computational cost of
image-based computational models. However, time-till-outcome for a 3D CFD model
can still be considerable. A viable alternative could be to train meta-models (also known
as surrogate models) with simulation data. Once a meta-model is trained with suffi-
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cient simulation data it can function as an effective surrogate. For instance, Kriging
meta-models have been used successfully in optimizing stents, stenoses, bifurcations, or
anastomoses (Marsden et al. 2008; Pant et al. 2011; Li et al. 2017). Furthermore, neural
network-based meta-models have been trained with simulation data in order to obtain
real-time stress distributions on the aortic wall (Liang et al. 2018), aortic flow patterns
(Liang et al. 2020), and left ventricular mechanical behavior (Dabiri et al. 2019). However,
small uncertainties in shape, e.g., due to segmentation errors, may lead to substantial
uncertainty in the result of such hemodynamic simulations (Sen et al. 2014; Sankaran et al.
2015; Sankaran et al. 2016; Sturdy et al. 2019; Venugopal et al. 2018). This uncertainty
in simulation results can be quantified by sensitivity analysis and uncertainty quantifi-
cation, and can help to strengthen confidence in the computational model or for model
improvement. The efficient nature of meta-models make them suitable for sensitivity
analysis and uncertainty quantification (Quicken et al. 2016), which will — with the shift
towards patient-specific models — become increasingly important (Eck et al. 2015).

1.6 STATISTICAL SHAPE MODELING

For the meta-model approach to be clinically applicable, it is key to account for geo-
metrical variation of shape within the population. A popular method to capture shape
variation is by a statistical shape model (SSM), which is often obtained through Principal
Component Analysis (PCA) (Heimann and Meinzer 2009). PCA decomposes a multivari-
ate data set into a mean and covariance matrix. The sorted eigenvectors (shape modes)
and eigenvalues (shape mode coefficients) of the covariance matrix then describe the
main directions of shape variance and its relative importance in the population. Applica-
tions of SSM’s are numerous and some examples include: organ segmentation (Yates and
Untaroiu 2018; Spinczyk and Krasoń 2018; Woo et al. 2016), extracting morphological
bio-markers of (diseased) organs (Suinesiaputra et al. 2018; Uetani et al. 2014; Bruse et al.
2016), or for relating injuries to morphological changes (Nelson et al. 2017).

In combination with simulation tools such as CFD, the shape modes and corresponding
shape mode coefficients can be used to: relate variations in ventricular shape to variations
in ventricular blood flow (Khalafvand et al. 2018); correlating aortic aneurysm shape to
CFD-derived biomechanical descriptors (Cosentino et al. 2020); or to relate aortic shape
variation to numerically computed stress distributions (Liang et al. 2018). The study
by Liang et al. (2018) demonstrates that a fast and accurate meta-model can be trained
that relates shape coefficients to the expected outcome of the simulation. Well-trained
meta-models can produce near real-time results with clinically acceptable accuracy, and
may be the right strategy to accelerate acceptance of compute-intensive computational
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models in day-to-day clinical practice.

1.7 VERIFICATION & VALIDATION OF CFD MODELS

Previous sections have shown that the use of CFD in the field of cardiovascular research
is widely accepted. Nevertheless, CFD remains an intricate tool and models need to be
extensively verified and validated. Verification and validation are the primary methods
to build and quantify confidence in computational simulations (Oberkampf and Trucano
2002; V&V40 2018). Verification is aimed at the assessment of the accuracy of a computa-
tional model with respect to known (analytic) solutions and mainly a mathematical issue.
Validation is the assessment of the accuracy of a computational model by comparison to
experimental data and is mainly a physics issue (Oberkampf and Trucano 2002). Verifi-
cation and validation is crucial for establishing model credibility. For instance, results
may strongly depend on discretization schemes and model simplifications, which are
often a necessity to keep computational cost reasonable. Some typical simplifications for
modeling aortic valve blood flow include: 1) neglecting valvular dynamics (section 1.3);
2) assuming fully developed turbulence (section 1.4); 3) neglecting flow pulsatility; and
4) neglecting non-Newtonian behavior. Hence, modeling work should ideally be closely
integrated with and guided by in-vitro and in-vivo experimental data.

1.8 THESIS AIM AND OUTLINE

Patient-specific CFD modeling of blood flow over the aortic valve has the potential to
provide complementary diagnostic metrics for aortic valve stenosis. Therefore, the aim of
this thesis was two-fold. First, to develop a simulation framework that allows patient-
specific simulation of flow through the aortic valve. Second, we aim to drastically reduce
computational cost by investigating under what conditions model simplifications hold.

In Chapter 2 imaging data of the aortic valve and contracting left ventricle is used
in combination with a CFD model. Simplifications of the computational framework
are systematically analyzed and presented. Additionally, from the CFD data, a valve
resistance index is proposed that should more accurately reflect the significance of aortic
valve stenosis.

Chapter 3 attempts to relate variations in valvular shape to variations in the CFD-
computed pressure-drop. For this we make use of a combination of statistical shape
modeling, CFD, and meta-modeling. It is demonstrated, that with this combination, the
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computational cost of time-consuming CFD-simulations can be reduced to near real-time.

Chapter 4 uses the meta-model that is presented in Chapter 3 for sensitivity analysis and
uncertainty quantification. Geometrical uncertainty is introduced through the statistical
shape model, and is related to uncertainties in the patient-specific transvalvular pressure-
drop vs. flow relationship.

In Chapter 5, high-fidelity scale-resolving CFD simulations are used to analyze the turbu-
lent flow downstream of a healthy and stenotic heart valve. Similarities and differences
between steady and pulsatile flow conditions are presented.

In Chapter 6, results of an experimental validation study are presented. 3D printing was
used to create physical aortic valve models that were similar to the virtual models used
in Chapters 2 – 5. The transvalvular pressure-drop of these physical models was experi-
mentally determined in a flow-circuit. Measured pressure-drops were then compared to
the numerically computed pressure-drop.

Finally, Chapter 7 puts the findings of Chapters 2 – 6 into academic and clinical perspec-
tive by addressing relevant literature.
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ABSTRACT

Aortic valve stenosis is associated with an elevated left ventricular pressure and transaor-
tic pressure drop. Clinicians routinely use Doppler ultrasound to quantify aortic valve
stenosis severity by estimating this pressure drop from blood velocity. However, this
method approximates the peak pressure drop, and is unable to quantify the partial
pressure recovery distal to the valve. As pressure drops are flow dependent, it remains
difficult to assess the true significance of a stenosis for low-flow low-gradient patients.
Recent advances in segmentation techniques enable patient-specific Computational Fluid
Dynamics (CFD) simulations of flow through the aortic valve. In this work a simulation
framework is presented and used to analyze data of 18 patients. The ventricle and valve
were reconstructed from 4D Computed Tomography imaging data. Ventricular motion
was extracted from the medical images and used to model ventricular contraction and
corresponding blood flow through the valve. Simplifications of the framework are as-
sessed by introducing two simplified CFD models: a truncated time-dependent and a
steady-state model. Model simplifications were justified for cases where the simulated
pressure drop was above 10 mmHg. Furthermore, we proposed a valve resistance in-
dex to quantify stenosis severity from simulation results. This index was compared to
established metrics for clinical decision making, i.e., blood velocity and valve area. It
was found that velocity measurements alone do not adequately reflect stenosis severity.
This work demonstrated that combining 4D imaging data and CFD has the potential
to provide a physiologically relevant diagnostic metric to quantify aortic valve stenosis
severity.
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2.1 INTRODUCTION

AORTIC valve stenosis (AS) is the narrowing of the aortic valve and disturbs blood
flow into the systemic circulation. Once developed, AS consistently increases
with age, and it is estimated that 2.8–3.9% of the population older than 70 years

of age suffer from some form of AS (Eveborn et al. 2012; Nkomo et al. 2006). AS is often
caused by calcification of the Aortic Valve (AV) leaflets, resulting in a stiffer valve that
impedes the opening and closing function of the valve. Hence, in systole, the valve may
not open completely, and a large pressure difference is required to maintain flow. If left
untreated, AS may eventually lead to heart failure.

AS disturbs flow from the ventricle into the aorta, and a large effective pressure dif-
ference is required to maintain cardiac output. The drop in pressure is an indicator
for the severity of AS. However, non-invasive diagnostic quantitative evaluation of the
pressure drop is challenging. Hence, in current clinical practice other indirect metrics
are used. At present, the main criteria to judge AS severity are: the mean transaortic
pressure drop; maximum velocity of the jet (vmax), and the Aortic Valve Area (AVA) by
continuity equation (Chambers 2016; Nishimura et al. 2014; Baumgartner et al. 2016).
All these metrics are routinely obtained by echocardiography. However, vmax and the
mean pressure drop are both flow-dependent, and may conflict with AVA measurements
for approximately 20–30% of patients with severe AS (Eleid et al. 2013). For this patient
group it remains difficult to assess whether AS is significantly present (Vogelgesang et al.
2017).

Echocardiography is inexpensive, readily available and easy to perform, and an estab-
lished method to derive metrics indicative of stenosis severity. When echocardiography
results are inconclusive, Computed Tomography (CT) or cardiac Magnetic Resonance
Imaging (MRI) can be used to derive additional indicators, e.g the aortic diameter or
amount of calcification (Chun et al. 2008). Furthermore, CT and cardiac MRI enable
detailed three-dimensional reconstructions of the full-heart anatomy. Moreover, segmen-
tation methods from cardiac CT and MRI images have improved considerably over the
past years (Ecabert et al. 2008; Ecabert et al. 2011; Grbic et al. 2012; Ionasec et al. 2010).
Furthermore, recent developments see high-quality valve models incorporated into exist-
ing segmentation frameworks (Weese et al. 2017). These detailed 3D models of the AV
can be used in combination with 3D Computational Fluid Dynamics (CFD) to evaluate
the hemodynamic performance of the patient-specific valve (Weese et al. 2017). However,
in order to quantify the load on the ventricle, extending the CFD model to include the
(contracting) Left Ventricle (LV) may yield information on the true significance of the
stenotic valve.
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In systole, a healthy valve opens completely, and imposes little to no resistance to blood
flow. However, flow through the diseased valve is similar to flow through an orifice.
Blood is accelerated into the orifice, and pressure is converted to kinetic energy. When
blood enters the Ascending Aorta (AA), it is decelerated, and pressure is partly recovered.
(Figure 2.1). Pressure is not completely recovered due to viscous losses, including those
from turbulence. This results in an effective pressure drop between the LV and AA. To
quantify the relative contribution of the valve to the effective pressure drop, a valve
resistance index is proposed:

IVR =
∆PV

∆PE
(2.1)

This index quantifies the pressure loss due to the presence of the valve (∆PV) with respect
to the total effective pressure loss between the LV and AA (∆PE). For healthy valves,
pressure is expected to recover approximately to the same pressure level as in the Left
Ventricular Outflow Tract (LVOT). When the cross-sectional area of the AA exceeds that
of the LVOT, blood velocity (and kinetic energy) in the AA decrease. Consequently,
(static) pressure may recover beyond LVOT pressure. However, for diseased valves, it
is expected that only a (small) part of pressure is recovered, and excessive viscous and
turbulent losses dominate.

The main aim of this work is to evaluate the valve resistance index proposed in Equa-
tion 2.1 with clinically accepted measures, such as, vmax and the AVA. Additionally,
the CFD model with the contracting left ventricle is used to evaluate the accuracy of
simplified valve-only CFD models and Bernoulli approximations. For this purpose,
the workflow described by Weese et al. (2017) is extended to include both the AV and
contracting ventricle.

2.2 MATERIALS AND METHODS

2.2.1 AORTIC VALVE ANATOMIES

Cardiac CT segmentation data was obtained from an anonymized dataset used in a pre-
vious study (Weese et al. 2017). Original images were acquired using electrocardiogram-
gated CT angiography with 10% intervals of the electrocardiographic R-R interval. CT
images had an in-plane resolution of 0.31–0.68 mm and slice thickness of 0.34–0.70 mm.
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Figure 2.1 Top: schematic of the Left Ventricle (LV), Left Ventricular Outflow Tract (LVOT), Aortic Valve (AV),
Vena Contracta (VC) and Ascending Aorta (AA). Bottom: typical pressure along the centreline. ∆PV:
net pressure drop across the AV. ∆PE: effective pressure drop between the LV and AA. ∆PB: Bernoulli
estimate, i.e., the maximum pressure drop across the valve, ∆PSB: simplified Bernoulli estimate from
VC velocity. Mitral Valve (MV) and Left Atrium (LA) are added for anatomical reference.

Segmented anatomical structures include the LV, LVOT and AV. Figure 2.2b shows a
typical segmented anatomy at different phases of the cardiac cycle.

Surface models of the LV and AV throughout systole were generated for each patient
with a Shape Constrained Deformable Model (SCDM). The authors would like to refer to
Ecabert et al. (2008), Ecabert et al. (2011), or Weese et al. (2017) for a detailed description
of the SCDM. The surface model at mid-systole was selected, and developed into the
CFD model. This model had the valve in the most open position, typically at 20% or 30%
of the electrocardiographic R-R interval. The surface model consisted of 3094 vertices
and 6169 triangles with an average edge length of 2.6 mm (Figure 2.2b). The geometric
AVA was estimated from the structured surface model by a projection method (Weese
et al. 2017). All segmentation surface models throughout the cardiac cycle were then
converted into binary masks, covering the LV and LVOT, to facilitate registration.

2.2.2 IMAGE REGISTRATION

Each consecutive binarized image pair was registered using The Sheffield Image Registra-
tion Toolkit (Barber and Hose 2005). The resulting 3D discrete mapping fields morphed
one image onto the next. The Sheffield Image Registration Toolkit produced smooth,
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Figure 2.2 Illustration of the workflow from (a) the Shape Constrained Deformable Model framework (Ecabert
et al. 2011; Weese et al. 2017); (b) Segmented aortic valve and left ventricle and corresponding sur-
face model; (c) image registration and mesh truncation; (d) 4D CFD Model of the AV and contracting
ventricle, 3D truncated transient model, and 3D truncated steady-state model.

non-linear registration maps with sub-pixel accuracy. To compute the 3D mappings
between the images, the Sheffield Image Registration Toolkit uses an intensity-based
linear least-squares algorithm, iteratively applied to handle large displacements. The
3D registration map was spatially interpolated to the vertices of the surface model at
mid-systole. This yielded a set of surface models in the R-R interval with the same
topology as the surface model at mid-systole. Registration was done on the binarized
images, hence no information on the motion of the AV and AA was available. For this
reason, and for CFD stability the mean rigid motion of the model was removed from the
overall model motion. Velocity vectors ~v for each vertex n of the surface model were a
function of time and computed from the consecutive iso-topological surface models by:
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~vn(t) =
~xn(t+ ∆t)− ~xn(t)

∆t
(2.2)

With ~x the position of vertex n at time t in the cardiac cycle. Vertex positions were sparse
in time, and were interpolated using cubic splines.

2.2.3 MESH GENERATION

Volumetric meshing was performed with ANSYS Fluent Meshing R17.2 (ANSYS Inc,
Canonsburg, Pennsylvania, United States). Structured surface models were truncated at
the LVOT by a manually defined plane two to five mm proximal to the valve annulus
and orthogonal to the valve axis (Figure 2.2c). The outflow boundary was extended by
3.5 times the diameter of the AA. The inflow boundaries of the truncated models were
extended by 1.5 times the LVOT diameter. The volume was filled with tetrahedra in the
core, and ten layers of pentahedra elements inflated from the wall. Element sizes were
chosen based on a mesh sensitivity study, and ranged between 0.5–2.5 mm. Maximum
element edge length in the LV was constrained to 2.5 mm. Edge lengths in the proximity
of the AV were constrained to 0.5 mm to capture valve features.

2.2.4 COMPUTATIONAL METHODS

Fluid flow is governed by the Navier-Stokes equations. For moving grids, the integral
form of the continuity equation for a control volume Ω with surface Γ can be written as.

∂

∂t

∫
Ω

ρdV +

∫
Γ

ρ(~v − ~vg) · ~ndA = 0 (2.3)

With ρ the density of blood, ~v the velocity vector, ~vg the velocity of the (boundary) grid,
and ~n the normal vector to the surface Γ. Similarly, the momentum equation can be
written as:

∂

∂t

∫
Ω

(ρ~v)dV +

∫
Γ

ρ~v(~v − ~vg) · ~ndA = −
∫

Γ

pI · ~ndA+

∫
Γ

τ · ~ndA (2.4)
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Where p is the pressure, I the identity tensor, and τ the viscous stress tensor. A diffusion
based smoothing method was applied for grid motion.

∇ · (γ∇~vg) = 0 (2.5)

γ =
1

dα
(2.6)

With ~vg the grid velocity, γ the diffusion coefficient and d the normalized distance to the
boundary. For all simulations α = 1 and resulted in skewed grid motion towards the
interior, i.e., elements in the interior deformed more. The boundary conditions (Figure 2.3)
for the diffusion equation were:

ΓAA,ΓSinus,ΓAV : ~vg = 0

ΓLV OT : ~vg = f(s)~vn(t)

ΓLV : ~vg = ~vn(t)

f(s) is a ramp function that linearly scaled boundary velocity to zero in the LVOT as a
function of the position s in the LVOT, i.e., f(s) = 1 at the side of the LV, and f(s) = 0

towards the valve.

Blood was modeled as an in-compressible fluid with a density of 1050 kg·m-3 and dynamic
viscosity of 0.004 Pa· s. No-slip boundary conditions were assumed at the walls, and at
boundary Γout pressure is set to zero. The governing equations were solved with ANSYS
Fluent R17.2 (ANSYS Inc, Canonsburg, Pennsylvania, United States). Simulations were
executed on the ACC Cyfronet AGH Prometheus Supercomputer (Academic Computer
Centre Cyfronet, AGH University of Science and Technology, Kraków, Poland). Each
simulation was assigned one compute node with 24 CPU’s.

2.2.4.1 TRANSIENT MODELS

For the transient models a (bounded) central difference scheme was used for the advection
and diffusion terms. The transient term was integrated with a second order backward
difference approximation. Convergence criteria at each time-step were set at 0.05 for
locally scaled residuals of x-, y-, z-velocity, and continuity. Sub-grid turbulent dissipation
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Figure 2.3 Boundary and domain definitions. Boundaries ΓLV (light gray line) and ΓLV OT (dark gray line) are
deforming. ΓAV , ΓSinus, ΓAA (black lines) and Γout (dashed line) are static boundaries, i.e., ~vg is
zero. Boundary motion is scaled to zero in the LVOT by a ramp function f(s), with s the position in
the LVOT

was modeled with Large Eddy Simulation and the Wall Adapting Local Eddy-Viscosity
model (Nicoud and Ducros 1999). Time steps were defined as 1/10000th of the cardiac
cycle. Vertex velocities were spatially interpolated from the structured surface model
onto the re-meshed surface of the computational domain by an inverse distance-weighted
interpolation using eight nearest neighbors of the structured model. Stroke volume
was pre-computed with a discrete form of Gauss’s theorem (Hughes et al. 1996) for
the structured and re-meshed surfaces. Vertex velocities of the refined computational
mesh were scaled to match the stroke volume of the structured surface model. The
time-dependent grid velocity was applied to the boundary of the LV and LVOT. For
the truncated model, the pre-computed flow waveform was used as a time-dependent
plug-flow boundary condition. To test whether diastolic filling of the ventricle had to be
simulated, five cardiac cycles were simulated for case 11. Results in Table 2.1 demonstrate
that diastolic filling had a negligible (< 1%) effect on the observed peak-systolic pressure
drop and valve resistance index. Hence, diastolic filling was neglected, and only a single
systolic cycle was simulated to restrict the computational burden.

2.2.4.2 STEADY-STATE MODEL

Peak flow-rate was obtained from the pre-computed flow waveform, and prescribed as a
boundary condition for the truncated steady-state model. Turbulence was modeled with
the Shear Stress Transport k − ω model (Menter 1994).

25



CHAPTER 2

Table 2.1 Pressure drop results over multiple cardiac cycles for case 11

Cycle 1 Cycle 2 Cycle 3 Cycle Cycle 5

PLV [mmHg] 6.86 6.90 6.89 6.88 6.94

PLVOT [mmHg] 3.42 3.44 3.43 3.43 3.49

IVR [-] 0.499 0.499 0.498 0.498 0.503

Note: simulations performed with a time-step of 1 · 10−3s to limit simulation times.

Figure 2.4 Axial view of the segmented AV for all cases. Cases 1–9 have a IVR < 0.25, cases 10 and 11 0.25 < IVR <
0.75, and cases 12–18 a IVR > 0.75. Case numbering corresponds to Table 2.2.

2.2.5 POST-PROCESSING

A centreline with equally spaced points (0.1mm intervals) was defined for each surface
model with the Vascular Modelling Toolkit (Antiga et al. 2008). Pressure was evaluated
on the centreline, and the effective (∆PE) and valve (∆PV) pressure-drops were computed.
These pressure drops were used to compute the valve resistance index IVR (Equation 2.1).
Furthermore, Bernoulli estimates (∆PB = PLVOT−PVC) and simplified Bernoulli estimates
(∆PSB = 4v2

VC) were computed from the simulation results. Note that vVC is the velocity
at the vena contracta, and corresponds to vmax. The point on the centreline closest to
the truncation plane was used to evaluate PLVOT. The vena contracta was identified by
inspecting the centreline, i.e., where pressure was lowest.
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2.3 RESULTS

The workflow described in Figure 2.2 was used on retrospective CT datasets of 18 patients
with non-calcified and (partially) severely calcified tricuspid AV’s (Figure 2.4). Projected
AVA ranged between 0.9 and 4.3 cm2 (Table 2.2). Image derived maximum flow rate
at peak systole ranged between 178 and 635 ml/s, and simulated velocities in the vena
contracta range between 0.88 and 5.36 m/s. The effective pressure drop ∆PCLV

E ranges
between 2.5 and 102.5 mmHg. Net pressure drops across the aortic valve range between:
-2.3 mmHg and 91.5 mmHg for the full model; -1.4 mmHg and 89.5 mmHg for the
truncated transient model; 0.4 mmHg and 89.8 mmHg for the steady-state model. ∆PCLV

B

and ∆PCLV
SB range between 1.0–103.2 mmHg and 3.1–115.1 mmHg. The valve resistance

index lies between -0.40 and 0.96. The local pressure gradient in the LVOT was between
-0.77 and -0.07 mmHg/mm.

Figure 2.5 Volume renders of velocity (a) and contour plots of pressure (b) at peak systole for a healthy valve (left:
case 8) and a stenotic valve (right: case 17).

Figure 2.5 illustrates the CFD results of a healthy (case 8) and a stenotic valve (case 17).
The healthy case exhibits a lower jet velocity through the AV than the stenotic case. For
the stenotic valve a distinct jet is formed, and turbulent structures develop. The jet is
wider and not as pronounced for the healthy valve. Pressure contours demonstrate that
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Figure 2.6 Left: CFD derived vmax vs. valve resistance index. Severity classifications are based on guidelines
(Nishimura et al. 2014). Healthy: vmax < 2.6 m/s. Mild: 2.6 m/s < vmax < 2.9 m/s, moderate: 3.0
m/s < vmax < 4.0 m/s, severe: vmax > 4.0 m/s. Right: Geometric AVA vs. valve resistance index.
Healthy/Mild: AVA > 1.5 cm2, moderate: 1.0 cm2 < AVA < 1.5 cm2, severe AVA < 1.0 cm2. Furthermore,
cases are separated in groups, IVR < 0.25 (◦), 0.25 < IVR < 0.75 (×) and IVR > 0.75 (4). Note that the
reported AVA is the geometric projected AVA, and not the effective orifice area (by echocardiography)
as reported in the guidelines (Nishimura et al. 2014).

Figure 2.7 Volume render of velocity magnitude (a) and pressure contours (b) for each of the CFD models.
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the the effective pressure drop between the LV and AA is about 9 mmHg for the healthy
case and approximately 110 mmHg for the stenotic case.

Figure 2.6 visualizes the relationship between vmax and the proposed valve resistance
index. When assessing AS severity by vmax, 12 cases would be considered healthy, one
case as having a mild stenosis, and three as having a moderate stenosis. Two cases would
be classified as having a severe stenosis. Cases 15 and 16 would be classified as having no
or a mild stenosis. However, both exhibit large valve resistance indices of 0.84 and 0.86
respectively, of similar magnitude as the clearly stenotic cases 13 and 17. Furthermore, it
is observed that case 18 actually has the largest valve resistance index, but would have
been classified as moderate with vmax as criteria. Healthy valves exhibit valve resistance
indices close to or below zero. Furthermore, an inverse linear relationship between the
geometric AVA and valve resistance index may be observed; when AVA decreases, the
valve resistance index increases. (Figure 2.6).

Figure 2.7a and Figure 2.7b qualitatively demonstrate the differences between each of the
CFD models. Unsteady flow phenomena distal to the AV are observed. Flow patterns
for the transient models are similar, but local discrepancies in the velocity field can be
noticed. Unsteady flow patterns propagate far into the AA for this particular stenotic
case.

Qualitatively the shape of the jet and the pressure contours are similar proximal to and in
the immediate vicinity of the valve for the steady-state and transient models (Figure 2.7).
However, flow structures distal to the valve are less well-matched. This is expected
because the jet has had no time to develop fully in space for the transient models. Despite
the loss of fidelity in the flow field, the steady-state model captures the overall pressure
drop adequately. Pressures proximal to the AV, in the vena contracta and distal to the AV
are approximately the same for all models.

Differences in ∆PV of 0.3±1.33 and 0.9±1.63 are found between the transients models,
and truncated steady and full model respectively (Figure 2.8a and b). A bias of 0.7±1.07
mmHg is observed between both truncated models (Figure 2.8c). The simplified Bernoulli
and full 4D CFD model are in poor agreement: a bias of 11.3±6.6 mmHg (Figure 2.9b). At
low-flow the simplified Bernoulli equation provides a poor estimate of the peak-systolic
effective pressure-drop. Bernoulli estimates demonstrate a bias of 6.6±3.27 mmHg
compared to the full model. In general, discrepancies from the full model predominantly
occur at low pressure pressure drops (Figure 2.8 and Figure 2.9). E.g., the relative
difference between ∆PCLV

V and ∆PTT
V for case 6 is 140%. In contrast, a relative difference

of only 2% is found for case 17.
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Figure 2.8 Comparison between CFD models and their respective ∆PV. Top row: scatter plot with linear regres-
sion results and line of equality. Bottom row: Bland-Altman of the difference. (a) Transient truncated
model vs. full model (R2 = 0.998); (b) Truncated steady-state vs. full model (R2 = 0.998); (c)
Truncated steady-State vs. truncated transient model (R2 = 0.999).

Figure 2.9 Comparison between the Bernoulli estimates and pressure drops computed with the full CFD model.
(a) Bernoulli estimate vs. full model (R2 = 0.995); (b) Simplifed Bernoulli (4v2) estimate vs. full
model (R2 = 0.973); (c) Simplified Bernoulli estimate vs. Bernoulli estimate (R2 = 0.991).

2.4 DISCUSSION

This chapter presents a medical image-based CFD framework to simulate flow across
a patient-specific AV. A valve resistance index is defined and compared to measures
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typically used in the clinic to demonstrate the frameworks potential value. Additionally,
the effect of model simplifications on pressure-drop computations is presented.

2.4.1 SAMPLE CHARACTERISTICS

Computed geometric AVA’s (Table 2.2) suggest that the current sample contains 11 healthy
or mildly stenosed cases, six moderate cases, and one severe case (Nishimura et al. 2014).
When considering vmax as severity index, it is found that 12 cases can be classified as
healthy, one as mild, three as moderate, and two as having a severely stenotic valve.
Unfortunately, no echocardiography or cardiac catheterization data was available to
clinically classify the patients. Nevertheless, computed velocities, pressure-drops and
AVA correspond well to values reported in literature (Chambers 2016; Baumgartner et al.
1999). For example, cardiac catheterization and echocardiography measurements in AS
patients by Yang et al. (2015) show systolic pressure drops between the LV and AA up to
129 mmHg for patients with (echocardiography derived) AVA’s of 0.4 cm2. Furthermore,
the same study reports echocardiography based peak-systolic vmax measurements of
2.3–5.2 m/s. The reported upper limits for ∆PE and vmax in this study are 103 mmHg and
5.4 m/s, and thus respect the limits typically reported in literature.

2.4.2 VALVE RESISTANCE INDEX

The valve resistance index is a measure of how much pressure is lost due to the presence
of the AV. This index can be interpreted as a percentage, e.g., an index of 0.60 means that
60% of pressure loss can be attributed to the AV. Figure 2.6 demonstrates that healthy
valves (cases 1–9) have valve resistance indices of around zero, i.e., any pressure lost
around the AV is fully recovered in the AA. For some cases, recovered pressure even
exceeds pressure in the LVOT (cases 1–3). This can be explained by the fact that the cross-
sectional area of the AA is typically two to three times larger than the cross-sectional
area of the LVOT (see Table 2.2). Due to the larger cross-sectional area, velocity in the
AA will be lower, and more kinetic energy is converted back into static pressure. Hence,
pressure may recover beyond that of the LVOT, leading to a negative valve resistance
index. Therefore, a healthy valve, in its open position, exerts no additional load on
the left ventricle at peak systole. For severely stenotic valves, the valve dominates the
effective pressure drop (cases 17 and 18), i.e., approximately 90% of the effective pressure
drop is attributed to the AV. This is in line with numerical results presented by Traeger
et al. (2015). Although not the main aim of their work, their illustrations suggest that a
valve with an area of 0.9 cm2 (Gorlin derived) may exhibit a valve resistance index of
approximately 0.9 at flow rates of 200 and 400 ml/s.
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Figure 2.6 clearly demonstrates the inability of vmax to identify a stenosis consistently.
Due to low-flow, cases 15 and 16 demonstrate a vmax that would be considered normal, or
mildly stenotic in clinical practice. However, the valve resistance index for these cases
reveals that — similar to other stenotic valves — the effective pressure drop is dominated
by the AV. A disproportional amount of the pressure loss is due to the presence of the
valve. Such a conclusion can not be drawn from vmax (Figure 2.6) and ∆PE measurements
alone. Hence, for cases where AVA and vmax conflict, the valve resistance index may
provide relevant information on stenosis severity.

2.4.3 COMPARISON CFD MODELS

Qualitatively, no major differences are observed between the transient models (Figure 2.7).
Similar (turbulent) structures are formed distal to the AV where the jet breaks down,
and pressure is recovered. Steady-state simulations demonstrate averaged velocity and
pressure distributions, and do not capture local flow disturbances in detail. Nevertheless,
steady-state simulations capture the global pressure drop across the AV within reasonable
limits. Both truncated models provide acceptable estimates for the pressure drop across
the AV. At low pressure drops (<10 mmHg) the truncated models overestimate the
pressure drop considerably in the relative sense. An artificial plug-flow assumption
at the inflow boundary may not be appropriate for the low-gradient cases. Indeed,
velocity profiles in the LVOT are not plug-like (Garcia et al. 2011). Work by Bruening and
colleagues shows that significant overestimation of the pressure drop can occur when
assuming a plug-flow velocity profile opposed to a patient-specific flow profile from
4D velocity-encoded MRI (Bruening et al. 2018). However, differences between the full
and truncated transient model are small in this study, and the added accuracy of the full
model may therefore not outweigh the additional computational cost.

The simplified Bernoulli equation — normally derived from echocardiography measure-
ments — overestimates the pressure drop substantially. Overestimation of the pressure
drop is a well known problem with the Simplified Bernoulli equation. Both numerical
(Casas et al. 2015; Donati et al. 2017) and patient studies (Baumgartner et al. 1999) have
demonstrated this overestimation. It should be noted that vmax is directly obtained from
the simulated velocity field. Clinically, measurements are done with echocardiography,
and additional sources of errors are likely, such as: poor spatial resolution, misalignment
of the probe, or probe settings (Lui et al. 2005).
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2.4.4 LIMITATIONS IMAGING AND GEOMETRY

Segmentation with the SCDM is only possible for tri-cuspid AV’s. Substantial segmenta-
tion errors are expected for bicuspid valves. Weese et al. (2017) showed that segmentation
works in presence of calcifications. However, strong calcifications are likely to influence
segmentation accuracy and blood flow. Hence, a thorough evaluation of segmentation ac-
curacy is required. For example, it may be necessary to map patient-specific calcifications
onto the SCDM.

Segmentation is performed on electrocardiography triggered CT images at 10% intervals
of the R-R curve. It is assumed that the temporal resolution is sufficient to capture the
(fully) open state of the AV. Poor temporal resolution may also cause over- or underes-
timation of flow-rate. mitral regurgitation is not quantified, and patient flow-rates are
likely overestimated. For example, patients with severe mitral valve regurgitation may
see a regurgitant fraction of more than 50% (Zoghbi et al. 2017).

2.4.5 LIMITATIONS CFD

No valvular fluid-solid interaction is considered in this study due to the numerical
challenges and lack of patient-specific material properties. It is expected that only local
intraventricular and aortic flow fields are influenced. It is not expected that peak-systolic
pressure drops and vmax are affected. Work by Astorino et al. (2012) supports this
choice. Their work suggests that modeling the valve in the fixed open position yields
an acceptable approximation for flow at peak systole, opposed to simulating the fully
coupled fluid-solid interaction.

The multi-cycle simulations that were performed on case 11 lacked the patient-specific
mitral valve. As such, end-diastolic flow patterns may not be physiologically correct. For
example, it has been shown that mitral valve opening dynamics and shape substantially
influence end-diastolic vortex formation (Vasudevan et al. 2019). Whether the single-cycle
approach is still acceptable in the presence of the segmented mitral valve has not been
investigated.

2.5 CONCLUSION

An image-based CFD workflow of the AV and heart anatomy is presented. This workflow
allows for the computation of a valve resistance index, that quantifies the contribution
of the AV to the effective pressure drop from the LV to the AA. It is demonstrated that
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this index has the potential to complement existing measures, such as, vmax and the
geometric AVA for patients that demonstrate discordant grading. Furthermore, it is
shown that simplified CFD models provide a reasonable estimate of the aortic valve
pressure drop at a given flow rate. However, at low-flow conditions simplifications to
boundary conditions may not be justified, and more physiologically accurate inflow
boundary conditions should be considered.
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ABSTRACT

Advances in medical imaging, segmentation techniques, and high performance comput-
ing have stimulated the use of complex, patient-specific, three-dimensional Computa-
tional Fluid Dynamics (CFD) simulations. Patient-specific, CFD-compatible geometries
of the aortic valve are readily obtained. CFD can then be used to obtain the patient-
specific pressure-flow relationship of the aortic valve. However, such CFD simulations
are computationally expensive, and real-time alternatives are desired. Aim The aim of
this work is to evaluate the performance of a meta-model with respect to high-fidelity,
three-dimensional CFD simulations of the aortic valve. Methods Principal component
analysis was used to build a statistical shape model (SSM) from a population of 74 iso-
topological meshes of the aortic valve. Synthetic meshes were created with the SSM, and
steady-state CFD simulations at flow-rates between 50 and 650 ml/s were performed to
build a meta-model. The meta-model related the statistical shape variance, and flow-rate
to the pressure-drop. Results Even though the first three shape modes account for only
46% of shape variance, the features relevant for the pressure-drop seem to be captured.
The three-mode shape-model approximates the pressure-drop with an average error of
8.8–10.6% for aortic valves with a geometric orifice area below 150 mm2. The proposed
methodology was least accurate for aortic valve areas above 150 mm2. Further reduction
to a meta-model introduces an additional 3% error. Conclusions Statistical shape model-
ing can be used to capture shape variation of the aortic valve. Meta-models trained by
SSM-based CFD simulations can provide an estimate of the pressure-flow relationship in
real-time.
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3.1 INTRODUCTION

ADVANCES in medical imaging and image segmentation techniques have resulted
in a tremendous increase in the use of complex three-dimensional patient-
specific simulations over the last two decades (Neal and Kerckhoffs 2009). The

availability and applicability of complex three-dimensional computational models for
clinical applications is further stimulated by high performance computing and develop-
ment of more robust and efficient codes to solve the governing equations. Computational
models are now widely adapted throughout the cardiovascular research community.
Models are used, for example, to assess mechanical (K. Li and Sun 2016; Disseldorp et al.
2016) or hemodynamic (Min et al. 2015; Kimura et al. 2017; Morris et al. 2013; Traeger
et al. 2015; Cibis et al. 2014) quantities such as stress, wall shear stress, or pressure drops.

Imaging modalities such as Computed Tomography, Magnetic Resonance Imaging, and
ultrasound are used on a daily basis in the clinic. With segmentation tools, patient-specific
geometries are readily obtained from the acquired imaging data. These geometries can
then be used as input to computational fluid dynamics (CFD) simulations to provide
detailed pressure and velocity fields in the blood vessel. These hemodynamic quantities
are difficult, or sometimes impossible to assess with imaging techniques alone. Patient-
specific CFD simulations have already proven their diagnostic value for coronary disease
(Min et al. 2015; Morris et al. 2013). However, in the field of heart-valve disease, CFD is
not yet accepted for clinical diagnostics. Instead, three-dimensional CFD simulations are
primarily used to understand the fundamental principles of valve dynamics (Nobili et al.
2008), left ventricular hemodynamics (Doost et al. 2016), or for valve design (Xu et al.
2018).

It is not without reason that heart valve CFD simulations are not yet used for clinical
decision making or diagnostics. Valve simulations are particularly challenging from a
numerical and imaging perspective. To adequately model valve hemodynamics through-
out the entire cardiac cycle, coupled fluid-structure interaction simulations are required.
These simulations are difficult due to the large deformations of the valve leaflets, and
consequently of the computational grid. Large grid deformations make traditional Ar-
bitrary Euler-Lagrange less robust (convergence and mesh deformation) and efficient
(re-meshing). To address these difficulties, other numerical schemes, such as immersed-
boundary or adaptive cut-cell methods are generally used. These numerical methods are
more efficient, at the expense of solution accuracy at the fluid-solid interface. However,
even with these methods, the computational cost for such simulations is in the range
of days to weeks (Bavo et al. 2017). Hence, fluid-structure interaction simulations be-
come intractable for day-to-day clinical practice. Alternatively, simplified fixed-grid CFD
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models can be used to obtain a reasonable approximation of fluid flow through, and
around the aortic valve (Chapter 2). Indeed, the valve opens and closes very rapidly,
and may not substantially influence flow patterns at peak systole. This is supported by
Astorino et al. (2012), who showed that a simplified fixed grid 3-D CFD model of the
aortic valve yields similar results at peak-systole as those obtained from fluid-structure
interaction simulations. Even though simplified, such models may already provide
valuable spatial and/or temporal hemodynamic information to clinicians. Moreover,
these models are computationally cheap, more robust, and enable the development of
automated simulation frameworks that are suitable for clinical practice.

Besides the numerical challenges, patient-specific three-dimensional geometrical mod-
els of the valves are difficult to obtain from imaging data. Automatic segmentation
frameworks often struggle with the complex, three-dimensional, and thin nature of the
leaflets. Many authors rely on semi-automatic or manual segmentation to obtain the
three-dimensional geometry of the valve (Traeger et al. 2015). A small number of authors
developed automated segmentation frameworks that enable (aortic) valve segmentation
(Weese et al. 2017; Ecabert et al. 2011; Ionasec et al. 2010). These segmentation frameworks
make use of parameterized geometries (Ionasec et al. 2010) or deformable models (Weese
et al. 2017; Ecabert et al. 2011; Pouch et al. 2013) that are adapted to the patient’s imaging
data.

The deformable-model-based segmentation approach proposed by Weese et al. (2017)
yields a structured surface mesh with consistent inter-patient topology, i.e., a triangulated
surface with a consistent number of faces and vertices. Consistent inter-patient topology
of the segmentation mesh enables Statistical Shape Modeling (SSM) (Heimann and
Meinzer 2009; Davies et al. 2008). SSM utilizes Principal Component Analysis to extract
the main directions of (geometrical) variance, interpreted as shape modes. Any patient-
specific mesh can then be reconstructed by the mean mesh, and a weighted combination
of a small number of shape modes. The weights can be regarded as parameters that define
the geometry. This parametric description can then be used to obtain an approximate
reconstruction of any mesh, within or outside of the training set. Alternatively, the SSM
can be used to generate synthetic meshes that are representative of the training set.

The SSM describes the variation of shape with just a few parameters. This feature
can be combined with CFD simulations to explore the relationship between shape and
simulation outcome. Moreover, such a simulation framework can generate enough data
to train meta-models. Meta-models typically rely on regression and/or interpolation
of a set of learning points to find a relationship between model input parameters and
output parameters. The continuous function describing this relationship can be an
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efficient surrogate for the high fidelity, but computationally costly, simulations. Meta-
models are widely used for design optimization (Forrester and Keane 2009), uncertainty
quantification, and sensitivity analysis (Quicken et al. 2016). These meta-models can be
constructed with various methods, such as: polynomials (Box and Draper 1987), radial
basis functions (Broomhead and Lowe 1988), and Kriging (Sacks et al. 1989). Since meta-
model selection is often difficult, weighted meta-model ensembles — and the automatic
selection thereof — were developed (Acar 2010; Ben Salem and Tomaso 2018).

The aim of this paper is to evaluate the performance of a meta-model with respect to high-
fidelity CFD simulations. To achieve this, the aortic valve was parameterized by making
use of a SSM. With the resulting parametric model of the aortic valve, a large number of
training samples were generated. Consequently, CFD simulations were launched, and
the meta-model was trained on the SSM parameters, and the CFD results. Finally, the
meta-model and CFD simulations of the reconstructed geometries are compared to the
output of the CFD simulations of the segmented mesh to evaluate the quality of both the
SSM and meta-model.

3.2 MATERIALS AND METHODS

3.2.1 IMAGING DATA

In this manuscript, Computed Tomography imaging datasets of 74 patients were available.
From these 74 datasets, 12 were provided by three clinical centers: the Sheffield Teaching
Hospital NHS Foundation Trust; the Catharina Hospital in Eindhoven; and Deutsches
Herzzentrum as part of the EurValve research project. Furthermore, a retrospective
data-set of 62 Computed Tomography images was available (Weese et al. 2017; Ecabert
et al. 2011; Ecabert et al. 2008). Images were acquired with an in-plane spatial resolution
of 0.31–0.68 mm, and slice thickness of 0.34–0.70 mm. Images were acquired with
Electrocardiography gated Computed Tomography, and segmentations represent the
peak-systolic state of the aortic valve.

3.2.2 AORTIC VALVE SEGMENTATION

Segmentation of the aortic valve was performed with a Shape Constrained Deformable
model framework, presented in earlier work (Weese et al. 2017; Ecabert et al. 2011; Ecabert
et al. 2008). In the segmentation framework, a template mesh model is iteratively adapted
to an image. From the resulting segmentation mesh, a submesh (M) was extracted for this
study (Figure 3.1). The submeshM contains the left ventricular outflow tract, the aortic
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valve, and (part of) the aortic root (Figure 3.1).M had a consistent number of vertices k,
and consistent topology (T ), resulting in mesh correspondence between patients. Each
surface mesh was defined by k = 1808 vertices, and 4223 triangular faces.

Left Ventricular Outflow Tract
Aortic Valve
Ascending Aorta

Figure 3.1 Typical example of a segmentation mesh of the aortic valve region, the output of the Shape Constrained
Deformable Model framework (Ecabert et al. 2011; Weese et al. 2017). In blue: the left ventricular
outflow tract. In red: the aortic valve. In gray: the aortic root.

3.2.3 STATISTICAL SHAPE MODELING

The SSM describes the training set by a mean shape and the main modes of (shape)
variation. SSM’s are widely described and applied in literature, and for a comprehensive
overview of its applications the authors refer to a review by Heimann and Meinzer (2009)
— or more recently — Biglino et al. (2016). Following segmentation, a structured surface
meshM, representing the aortic valve, is available for each patient.

M =M(x, T ) (3.1)

With x the coordinate vector of the vertices and T the topology of the mesh. For the SSM,
segmentation meshes were aligned by a generalized Procrustes analysis (Bookstein 1992),
which optimally translated, rotated, and scaled each of the meshes by minimizing the
sum of squared errors. Following alignment, the coordinates of k = 1808 vertices were
concatenated into a single vector (column) of length 3k for each segmentation i:
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xi = [x1, y1, z1, x2, y2, z2, ...xk, yk, zk]T (3.2)

Averaging over Ns segmentations, the mean shape was obtained:

x̄ =
1

Ns

Ns∑
i=1

xi (3.3)

Using xi and x̄ the covariance matrix S with size 3k × 3k was computed by:

S =
1

Ns − 1

Ns∑
i=1

(xi − x̄)(xi − x̄)T (3.4)

Consequently, the eigendecomposition of S yielded the principal modes of variation,
i.e., the eigenvectors φm, and corresponding eigenvalues (λm). λm and φm were ordered
from high to low explained variance. In the three-dimensional case the eigenvectors
φm also have length 3k. The eigenvectors represent the principal directions of variation,
and are referred to as shape modes in the context of shape modeling. Any shape xi

can then be reconstructed (x̂i) by a linear combination of Nm shape modes weighted by
coefficients αi,m.

x̂i = x̄ +

Nm∑
m=1

αi,mφm i ∈ {1, 2, ...Ns} (3.5)

Note that x̂i in Equation 3.5 is an approximation of xi. The shape coefficients αm are
patient-specific, and were obtained by the dot product of the centered data and the
eigenvectors:
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αi,m = φTm · (xi − x̄) (3.6)

Where αi,m is contained in the coefficient vector αi:

αi = {αi,m : m = 1, ..., Nm} (3.7)

In fact, Equation 3.6 is equal to minimizing the `2 norm of the difference between the
reconstruction and the original:

min
αi∈RNm

(||x̂i(αi)− xi||2) (3.8)

The minimization of Equation 3.8 was manipulated with a weight vector w (1× 3k) to
increase the weight of regions that are physically more relevant:

min
αi∈RNm

(||(x̂i(αi)− xi) ·w||2) (3.9)

The introduction of w allowed to control the weight of each vertex to the minimization
problem. When computing pressure drops, the opening area of the valve is physically
most relevant. Consequently, a low reconstruction error for the vertices that were part
of and adjacent to the free cusp edges of the valve was desirable. w was empirically
established, and in this study weighting the 216 vertices that were part of or adjacent to
the free cusp edges (Figure 3.2) five times stronger than other vertices gave good results.
Note that Equation 3.9 is the same as Equation 3.6 when w = ~1. For each segmentation
sample, coefficients of α were found by minimizing Equation 3.9.

Subsequently, the original vertices x from any segmented meshM (see Equation 3.1)
were replaced by x̂ to yield an approximate reconstructionMr of the segmentation:
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Figure 3.2 Vertices part of and adjacent to the free cusp edge are highlighted. Highlighted vertices were assigned
a weighting factor of five. All other vertices were given a weight factor of 1.

M(x, T ) ≈Mr(x̂, T ). (3.10)

3.2.3.1 STATISTICAL SHAPE MODEL PERFORMANCE

In literature, SSM performance is typically evaluated with compactness and generaliz-
ability metrics (C. Taylor and Noble 2003). Compactness is a function of the number of
modes, and defined as the sum of variances, normalized by the cumulative variance:

C(Nm) =

∑Nm
m=1 λm∑Nt−1
m=1 λm

(3.11)

Where Nt is the number of samples used to train the SSM.

To test how well the model generalizes to unseen data (generalization ability), the average
sum of squared errors of a leave-one-out procedure was computed:

G(Nm) =
1

Nt

Nt∑
i=1

||xi − x̂i(Nm)||2 (3.12)

Where xi is the left-out shape, and x̂i(Nm) the approximated shape. The approximated
shape was obtained by using Nm number of shape modes from a SSM that was trained
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on all samples, but excluding the sample to be approximated.

In addition, three physically relevant areas were quantified from the mesh to judge
reconstruction performance, the area of the left ventricular outflow tract, aortic valve,
and ascending aorta. In this manuscript, the aortic valve area refers to the geometric
orifice area, and is not to be confused with the effective orifice area, the metric used in
the clinic.

3.2.4 COMPUTATIONAL FLUID DYNAMICS

Sections 3.2.2 and 3.2.3 describe how the segmentation meshesM and the reconstructed
meshes Mr were obtained. The volume enclosed by these surface meshes were dis-
cretized (meshed) to enable CFD simulations. To achieve this, first the outflow boundary
ofM andMr were extruded by ten times the radius of the sinotubular junction. The in-
flow boundary normal was defined by three vertices at the valve annulus. This plane was
moved proximal such that it was in the most proximal position, while still maintaining
an enclosed surface. Finally, the shrink-wrapping option in ANSYS Fluent Meshing 18.2
(ANSYS Inc., Canonsburg, PA, USA) was used to automatically generate a volumetric
mesh with approximately 2 · 105 to 3 · 105 polyhedral elements (Figure 3.3). Edge lengths
of the polyhedrals were chosen based on a mesh-sensitivity study, and ranged between
0.15 and 2.0 mm. As part of a mesh refinement study, maximum element sizes were
reduced to 1.0, and 0.5 mm respectively, which typically improved the results by less
than 1%. Hence, a maximum size of 2.0 mm provided a good trade-off between accuracy
and computational load.

Blood was modeled as an incompressible Newtonian fluid with a density of 1060 kg/m3

and dynamic viscosity of 0.004 Pa·s. For the segmentation and reconstructed meshes,
steady-state simulations were performed at flow rates of 200, 300, 400, 500, and 600 ml/s ,
and were used to approximate the pressure-drop flow relationship for each patient. At
the inflow boundary a plug-velocity profile was prescribed. Pressure at the outlet was set
to zero, and no-slip boundary conditions were assumed at the walls.

Areas of the left ventricular outflow tract (the inflow-boundary) were between 2.4 and
6.4 cm2. With blood-like fluid properties, flow-rates, and geometric dimensions, inlet
Reynolds numbers for the CFD simulations were estimated to be between 2400 and
12000. Hence, a Shear Stress Transport k − ω model, with 5% turbulence intensity at the
inlet, was used to model turbulence (Menter 1994). The output variable of interest is
the net pressure-drop across the aortic valve, and defined as the pressure at the inflow
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Figure 3.3 Graphical representation of the workflow from segmented and reconstructed surface meshes (a). From
these surface meshes a volumetric mesh was created (b), that was used as input to the CFD simulations
(c). Consequently. the recovered pressure-drop is extracted from the CFD simulations (d).

boundary minus the downstream recovered pressure (Figure 3.3d). For convenience,
the downstream pressure was taken at the outflow boundary, which is a reasonable
assumption when pressure-loss in the straight extended section is negligible with respect
to pressure-loss due to the presence of the valve. Convergence was assumed when the
pressure drop did not change anymore. Small oscillations in the solution were observed.
Hence, an average pressure residual Rp was defined to monitor convergence.

Rp(j) =
|p̄j − p̄j−200|

p̄j
≤ 0.001 (3.13)

Here p̄j is the area-weighted pressure at the inlet boundary at iteration j, averaged over
the last 200 iterations. p̄j−200 is then the area-weighted pressure at the inlet, averaged
over the range [i− 400, i− 200].

Out of the total of 2960 simulations that were performed (74 segmentations, 8 meshes, i.e.,
7 reconstructions and 1 segmentation, and 5 flow rates), 81% exhibited maximum relative
deviations of <1% with respect to the iteration-averaged mean (p̄j), and 99% exhibited
maximum relative deviations below 5%. Only 11 (0.4%) simulations experienced relative
deviations from the mean larger than 10%, but all of these yielded negligible iteration-
averaged pressure-drops (<0.5 mmHg).
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Table 3.1 Input parameters and their respective limits

Description Symbol Unit Minimum Maximum

Valve opening α1 - −3
√
λ1 3

√
λ1

- α2 - −3
√
λ2 3

√
λ2

- α3 - −3
√
λ3 3

√
λ3

Global Mesh Scaling s - 0.8 1.25

Flow-rate Q ml/s 50 650

The governing equations were solved with ANSYS Fluent 18.2 (ANSYS Inc., Canonsburg,
PA, USA), a finite volume based CFD solver. Simulations were performed on the ACC
Cyfronet AGH Prometheus supercomputer (Academic Computer Centre Cyfronet, AGH
University of Science and Technology, Kraków, Poland). Each CFD simulation was
assigned four CPU’s and took between 10 and 30 minutes to complete.

3.2.5 META-MODEL TRAINING

3.2.5.1 DESIGN OF EXPERIMENTS

Statistical shape modeling allowed us to describe geometrical changes with a limited
number of parameters. These parameters were used to build a meta-model in parameter
space. The parameter space was restricted to five parameters: the first three shape
coefficients (α1, α2, α3) of the SSM trained on all available segmentations, a global scaling
parameter s, and flow rate Q (Table 3.1). The three shape coefficients were used to
generate synthetic meshes throughout the input space, and were constrained to lie within
[−3
√
λm, 3

√
λm]. Feasible limits for the global mesh scaling parameter were determined

from the reconstruction procedure. Flow-rates between 50 and 650 ml/s were considered.
Upper and lower limits of the individual parameters are described in Table 3.1. The
input-space was sampled with Latin Hypercube designs of 25, 50, 100, 200, 400, 800, and
1600 samples. Learning points were excluded from meta-model training when the aortic
valve opening was less than 20 mm2, when the pressure drop exceeded 300 mmHg, or
when the simulations diverged.

3.2.5.2 META-MODEL METHODOLOGY

Selecting the most suitable meta-model, and meta-model settings is often difficult since
no universal meta-model exists that performs well for all problems. Hence, several
authors worked on ensemble approaches, where a weighted sum of meta-models is
considered (Ben Salem and Tomaso 2018; Acar 2010). One such algorithm is the Genetic-
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Aggregation meta-model, available in the commercial package ANSYS DesignXplorer
(ANSYS Inc., Canonsburg, PA, USA). In this algorithm meta-model selection is automated
by minimizing a penalized predictive score (Ben Salem and Tomaso 2018). In this study,
the Genetic-Aggregation meta-model was trained with the available simulation data. A
comprehensive overview of the advantages and shortcomings of such a ensemble-type
meta-model approach is beyond the scope of this work. But to give the reader a basic
understanding of the working principle, a short summary follows.

The goal of a ensemble-type meta-model is to obtain the best weighted-average of a
selection of meta-models:

ŷens(x) =

Ne∑
i=1

βi · ŷi(x) (3.14)

Where ŷens is the prediction at x of the final meta-model, i.e., the weighted ensemble of
various meta-models and their settings. ŷi is the prediction at x of the ith meta-model,
weighted by βi. And Ne is the number of meta-models used. The idea is that appropriate
weighting of the individual meta-models will cancel out errors in the prediction of
the individual meta-model. The trick is then to find the weights that gives the best
quality ensemble prediction ŷens. However, assessing optimal quality objectively is not
straightforward. In the Genetic-Aggregation algorithm, a penalized predictive score
L is introduced (Ben Salem and Tomaso 2018). This score combines three components
(Equation 3.15): (a) optimizing the internal accuracy by evaluating the mean square
error on training samples/points; (b) use a 10-fold cross-validation to evaluate predictive
capability on unseen samples; and (c) minimize over-fitting of the meta-model by a
thin-plate spline Bending Energy Functional (Ben Salem and Tomaso 2018; Duchon 1977).
The penalized predictive score is then constructed by weighting the contribution of each
of these components:

L(ŷens) = γ1R(ŷens)︸ ︷︷ ︸
a

+ γ2R10CV (ŷens)︸ ︷︷ ︸
b

+ γ3E(ŷens)︸ ︷︷ ︸
c

(3.15)

This loss function L is defined for the aggregate meta-model ŷens on the set of training
points. γ1, γ2, and γ3 are constants, and kept at 1, 0.5, and 0.25 respectively. The optimal
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aggregation of meta-models is then obtained by minimizing L under the condition that

Ne∑
i=1

βi = 1 (3.16)

This problem was shown to be quadratic and has an analytic solution (Ben Salem and
Tomaso 2018). In this work, we used the algorithm PPS-OS described in Ben Salem and
Tomaso (2018) where 32 meta-model candidates of four types are considered: 24 Kriging,
3 polynomial regression, 2 support vector machine, and 3 moving least squares.

For a more comprehensive overview of such ensemble-type meta-models, or the Genetic-
Aggregation methodology specifically, the reader is encouraged to consult the work by
Viana et al. (2009), Acar (2010), or Ben Salem and Tomaso (2018).

3.2.5.3 EVALUATING APPROXIMATION ERROR

Approximate reconstruction of the segmentation mesh (Equation 3.5) inherently intro-
duces geometrical errors which will affect the computed pressure-drop. Moreover, the
meta-model is a further simplification that approximates the simulated pressure-drop.
To evaluate the influence of both approximations on the pressure-drop, differences in the
pressure-drop results were expressed as the root mean square error (RMSE: Equation 3.17
), relative RMSE (Equation 3.18), and mean absolute percent error (MAPE: Equation 3.19):

εRMS =

√√√√ 1

N

N∑
i=1

(∆p̂i −∆pi)2 (3.17)

εrRMS =

√√√√ 1

N

N∑
i=1

(∆p̂i −∆pi
∆pi

)2

(3.18)

εMAP =
1

N

N∑
i=1

∣∣∣∆p̂i −∆pi
∆pi

∣∣∣ (3.19)

Here, ∆p̂i is the approximated pressure-drop from the reconstructed mesh or meta-
model, and ∆pi the pressure-drop computed from the CFD model. N represents the total
number of available samples. The total number of available samples for a comparison
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between the segmented model and the reconstructed model is 370 (74 segmentations
times 5 flow rates).

3.3 RESULTS

3.3.1 TRAINING-SET CHARACTERISTICS

Aortic valve segmentations were split into three groups based on their projected geometric
aortic valve orifice area and the recommendations from the European Association of
Cardiovascular Imaging and the American Society of Echocardiography (Baumgartner
et al. 2016). Threshold criteria for these groups were: severe — subgroup A: valve area
below 100 mm2; intermediate — subgroup B: valve area between 100 and 150 mm2, and
mild/healthy — subgroup C: valve area larger than 150 mm2. Of all 74 aortic valve
segmentations, 14 were in subgroup A (severe), 30 in subgroup B (intermediate), and
30 in subgroup C (mild/healthy). Figure 3.4 demonstrates how the aortic valve areas
were distributed over the 74 segmentations, with a median of 143 mm2, and mean of 166
mm2. Cases with a valve area over 150 mm2 were distributed over a wide range with a
maximum of 440 mm2. The smallest valve area in subgroup A was 46 mm2.
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Figure 3.4 Distribution of the aortic valve area in the complete training set of all 74 segmentations. Dark gray:
subgroup A — cases with a geometric valve area below 100 mm2. Light gray: subgroup B — cases
with a valve area between 100 and 150 mm2. White: subgroup C — valve area is larger than 150 mm2.
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3.3.2 STATISTICAL AND GEOMETRICAL PERFORMANCE OF THE

SHAPE MODEL

Segmentations were reconstructed with seven models, each using more shape modes for
reconstruction (Nm = {0, 1, 2, 3, 4, 5, 20}). Shape coefficients for each respective model
were found by Equation 3.9. The following section demonstrates how the number of
shape modes affect geometrical performance of the SSM.

In Figure 3.5 the mean mesh and the first three shape modes of the aortic valve are
visualized. The first shape mode accounts for most of the variance (21%) and represents
the opening and closure of the aortic valve. The valve is completely open at −3

√
λ1, and

completely closed at 3
√
λ1. The mean mesh (x̄) features an aortic valve area of 170 mm2.

The first shape mode reduces the reconstruction error of the aortic valve considerably
(Figure 3.6 and 3.7). The second shape mode accounts for 14% of the variance, and
seems to predominantly represent the size of the sinus/annulus region. This shape
mode noticeably decreases the reconstruction error for vertices in the left ventricular
outflow tract (Figure 3.7). The third mode accounts for 11% of the variance, and seems
to mainly affect skewness of the sinus region. Improvements are mainly observed in
the region where the valve is attached to the wall. Finally, Figure 3.7 also illustrates that
with 20 shape modes, the mean vertex-to-vertex reconstruction error drops to below 1
mm. Furthermore, Figure 3.6 demonstrates that the error of the left ventricular outflow
tract and ascending aorta areas gradually improve between 5 and 15 shape modes. No
substantial improvement for these areas is observed beyond 15 modes.

Figure 3.14 illustrates the compactness and generalizability of each model. The first three
modes account for 46% of the variance. 80, 90 and 95% of the variance in the training set
is captured by 11, 19 and 29 modes respectively. Generalizability of the model levels out
at 15 modes, meaning that the model is unlikely to generalize to unseen data with more
than 15 shape modes.

3.3.3 CFD PERFORMANCE OF THE SHAPE MODEL

To assess how many modes were required to build an accurate meta-model, 2590 CFD
simulations were performed, 74 meshes times five flow rates per mesh, times seven
reconstructions (Nm = {0, 1, 2, 3, 4, 5, 20}). The computed pressure-drop of each recon-
struction was compared with the pressure-drop that was computed on its segmentation
counterpart at five flowrates (another 370 simulations), resulting in a pressure-drop error.
Pressure-drop errors are expressed in RMSE, relative RMSE, and mean absolute percent
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Figure 3.5 Visualization of the first three shape modes. The first shape mode represents the opening and closing
of the aortic valve. The second shape mode seems to represent dilation of the base of the valve and the
sinuses, the third mode seems to contain skewness/stretching in the sinuses.
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Figure 3.6 Mean absolute percent error of the LVOT, AV and AA areas as function of the number of modes. Error
bars represent the mean absolute percent deviation. Steady improvements in left ventricular outflow
tract area is observed between modes 7 to 11. Improvement in aortic valve area reconstruction is largest
for the first mode. Improvement in ascending aorta area occurs gradually between modes 5 and 14.

errors (MAPE). (Equation 3.17–3.19).

Table 3.2 and Figure 3.8 demonstrate that the first shape mode — representing aortic valve
opening/closing — substantially reduces the pressure-drop error in all subgroups. RMSE
values drop from 135.5 (subgroup A), 26.0 (subgroup B), and 15.2 mmHg (subgroup C), to
36.8, 6.3, and 2.3 mmHg respectively. These reductions may also be expressed in relative
metrics. Relative RMSE values drop to 24.4, 13.0, and 119.9%. Mean absolute percent
error values drop to 21.4, 9.6, and 44.1%. Although, RMSE, relative RMSE, and MAPE,
still decrease when including more shape modes, improvements are more gradual. With
a relative RMSE of 13.6 and 10.9%, and MAPE of 10.6, and 8.8%, improvements level
out at three shape modes for subgroups A and B. Furthermore, it is shown that when
segmentations are reconstructed with an excesssive number of modes (Nm = 20) the
RMSE can drop to 11.1, 2.9, and 0.6 mmHg. Relative errors of 4.8, and 4.6% can be
expected. Interestingly, subgroup C exhibits an increase in relative errors with respect to
the model that is reconstructed with five shape modes, indicating that more shape modes
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Mean Vertex-to-Vertex Error [mm]

0 Modes 1 Mode 2 Modes 3 Modes 20 Modes....

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3.7 Mean vertex-to-vertex reconstruction error mapped onto the mean mesh (M(x̄, T )). Top row: axial
view, bottom row: side view. Mean vertex-to-vertex errors reduce with an increase in the number of
modes. Main improvements with each added mode are highlighted with arrows. Vertices around the
ascending aorta are poorly approximated with a low number of modes.

do not necessarily improve pressure-drop errors in the relative sense.

Figure 3.8 demonstrates that leave-one-out results do not deviate much from the recon-
structions with the full model, RMSE, relative RMSE, and MAPE follow the same trend
as those of the full-SSM.

Typical pressure-flow relationships for each subgroup and for segmentations and re-
constructions (Nm = 3) are illustrated in Figure 3.9. Furthermore, results for all cases
and subgroups can be found in Figure 3.11–3.13. These figures support the observation
that reconstruction seems to yield a fair approximation of the pressure-flow relationship
for subgroups A (Figure 3.11) and B (Figure 3.12). The pressure-flow relationship is
poorly approximated for several cases in subgroup C (Figure 3.13 — cases: 15, 46, 47, and
51). The pressure-drop errors do not seem to improve much beyond three shape modes.
Therefore, a single meta-model that takes into account the first three shape modes was
generated.

3.3.4 META-MODEL PERFORMANCE

Seven meta-models were build with a Genetic-Aggregation response surface (Ben Salem
and Tomaso 2018). Meta-models were trained with 25, 50, 100, 200, 400, 800 and 1600
synthetic points/samples. Quality of the meta-model depends on the number of available
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Table 3.2 RMSE, relative RMSE, and mean absolute percent error byNm and subgroup

RMSE [mmHg] Relative RMSE [%] MAPE [%]

Nm A B C A B C A B C

0 135.5 26.0 15.2 73.4 50.8 3474.2 72.0 48.3 905.3

1 36.8 6.3 2.3 24.4 13.0 119.9 21.4 9.6 44.1

2 41.5 5.6 2.0 19.8 12.4 89.1 15.4 9.5 36.2

3 26.9 5.2 1.9 13.6 10.9 87.2 10.6 8.8 35.0

4 23.8 5.1 1.9 13.3 10.8 47.5 10.5 8.6 26.5

5 22.1 5.0 1.9 13.1 10.5 53.3 10.2 8.1 26.4

20 11.1 2.9 0.6 7.1 5.7 160.9 4.8 4.6 31.7

† Results are based on reconstructions that were performed with the SSM that was trained on all
segmentations, and correspond to the black symbols in Figure 3.8.

‡ Reference pressure-drop: CFD on segmentation.
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Figure 3.8 RMSE, relative RMSE, and mean absolute percent error (MAPE) of the pressure-drop for subgroups
A (:), B (s), and C (l ). Segmentation meshes were reconstructed with Nm = {1, 2, ...5, 20}.
Substantial improvements are observed when including the first shape mode. Black: reconstruction
performed with the SSM that is trained on all available segmentations. Gray: reconstruction based
on a leave-one-out procedure: the segmented mesh is reconstructed with a SSM that is trained on all
segmentations but the reconstructed segmentation.

training samples (Figure 3.10). Relative RMSE and mean absolute percent errors of
the verification points do not improve beyond 600 training points, and level out at
approximately 11% and 3% respectively. The RMSE decreases to a value of 1.7 mmHg.

Moreover, Figure 3.10 demonstrates that two meta-models exhibit RMSE, relative RMSE,
and mean absolute percent errors of 0. That is, a perfect fit through all training points
is obtained, suggesting that these models may have overfit the data. All other models
show a non-zero error. In general, the meta-models with a low number of training points
showed large errors on the verification points. However, errors on verification points
substantially reduce when more training points (>300) were considered. This indicates
that with a low number of training points, the (non-linear) behavior of the pressure-drop
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Figure 3.9 Pressure-flow relationship for three typical cases in subgroups A, B, and C (from left to right).©: CFD
on segmentation mesh; +: CFD results for 3-mode reconstruction without leave-one-out procedure;×:
CFD results for 3-mode reconstruction with leave-one-out procedure; N: meta-model. Pressure-flow
relationships for all cases are illustrated in Figure 3.11–3.13.

with respect to the shape coefficients is not adequately captured, i.e., the meta-model is
of poor quality. Quality improves drastically beyond 300 training points, and yields an
acceptable meta-model that captures behavior of the pressure-drop with respect to the
shape coefficients well.
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Figure 3.10 Meta-model quality as function of the number of (successfully simulated) training points. Pressure-
drop errors follow from Equation 3.17-3.19 with ∆p̂i the meta-model approximation. CFD com-
puted Pressure-drops on the reconstructed meshes were used as the reference (∆pi). Note: reference
pressure-drops were not used for training of the meta-model.

3.4 DISCUSSION

The pressure-drop across the aortic valve is a key hemodynamic metric to evaluate the
severity of aortic valve stenosis. The main aim of this work was to investigate whether
a meta-model can replace CFD simulations to find this pressure-drop from segmented
aortic valves. To achieve this, segmentation meshes of the aortic valve were param-
eterized by means of statistical shape modeling. Using a SSM, segmentation meshes
were reconstructed by a limited number of shape modes and their corresponding coeffi-
cients. With the SSM a set of synthetic training meshes were generated. Consequently,
CFD-computed pressure-drops of the synthetic meshes were used to train a meta-model.
The meta-model replaces the compute-intensive three-dimensional CFD simulations by
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analytically relating three SSM shape modes, scaling, and flow rate, to the pressure-drop.
This meta-model provides an estimate of the pressure-flow relationship of a segmented
aortic valve in real-time.

The findings of this study illustrate that relevant geometrical variation of the aortic
valve can be adequately captured by the SSM. The SSM captures the range of possible
open/closed configurations of the valve. In particular, for subgroups A and B, the
reconstruction and meta-model results are close to the CFD results of the segmented
mesh. On average, reconstruction introduces an error in pressure-drop computations
of only 10%, and further simplification to a meta-model introduces an additional 3%
error on average. Even though the first three shape modes account for only 46% of the
variance, the essential geometrical features — relevant for pressure-drop computations —
seem to be adequately captured. One major cause of pressure-drop errors for subgroups
A and B is poor approximation of the AVA (Figure 3.15). This observation supports
favoring physically relevant vertices through weighting of the minimization problem
(Equation 3.9). Weighting lowers the reconstruction error for the vertices part of, or
adjacent to the free cusp edge, and consequently it is more likely that an accurate estimate
of the aortic valve orifice area is obtained. The aortic valve is more open for subgroup C,
and the effect on the pressure-drop is less pronounced. Hence, reconstruction errors in
other regions will start to influence the pressure-drop as well. For example, reconstruction
errors for the sinus, left ventricular outflow tract, and aorta will become more important.
Nevertheless, RMSE values indicate that the error is limited, and errors of 1.9 mmHg are
expected for subgroup C.

For this study, a Genetic-Aggregation meta-model (Ben Salem and Tomaso 2018) was
trained that took into account just three shape modes. However, Table 3.2 suggests
that with 20 modes, errors for subgroups A and B may further decrease to 4.8 and 4.6%
respectively. Although not unfeasible, extensive computational costs are expected when
the meta-model is trained on such a high-dimensional input space. We suggest that for
such high-dimensional models additional training points are sequentially added until
the meta-model is of sufficient quality.

The large number of publications in various bio-medical fields proves that statistical
shape modeling is a versatile and widely accepted technique to capture anatomic varia-
tion in the population. For example, it is extensively used for organ segmentation (Yates
and Untaroiu 2018; Spinczyk and Krasoń 2018; Woo et al. 2016), to extract morphological
bio-markers of (diseased) organs (Suinesiaputra et al. 2018; Uetani et al. 2014; Bruse
et al. 2016), or for numerous orthopedic applications (Baumbach et al. 2017; IJsseldijk
et al. 2016; Z. Li et al. 2018; Nelson et al. 2017; Wang and C. Shi 2017; Fuessinger et al.
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2017). Although few, several studies — mainly in the field of orthopedics — attempted to
relate SSM parameterized anatomical shape variation with Finite Element Analysis (FEA).
These studies used SSM and FEA to: investigate the relationship between patellofemoral
shape and function (Fitzpatrick et al. 2011); force-displacement behaviour of proximal
femurs (Nicolella and Bredbenner 2012); to investigate cervical spine loading (Bredbenner
et al. 2014), or for real-time prediction of joint-mechanics (Gibbons et al. 2019). Literature
that combines SSM with FEA/CFD simulations is more scarce in the field of cardiovas-
cular biomechanics. To our knowledge, only Khalafvand and colleagues used a SSM in
combination with CFD simulations. They utilized a SSM-driven simulation framework to
systematically analyze blood flow in the left ventricle (Khalafvand et al. 2018). However,
they limited their simulations to five characteristic shapes, and did not attempt to build a
cheap-to-evaluate meta-model that approximates the simulation results over the entire
shape space. Nevertheless, the work of Khalafvand et al., and our work demonstrate that
the properties of SSM’s can be exploited to yield simulation-derived, physically relevant,
hemodynamic metrics.

Although the aortic valve has a complex shape and function, various authors proposed
simplified parametric models (K. Li and Sun 2016; Haj-Ali et al. 2012; Loerakker et al. 2016;
De Hart et al. 2003). These parametric models facilitate parametric numerical simulations.
For example, to study: collagen remodeling (Loerakker et al. 2016); the effect of aortic
valve geometry on peak-stress (K. Li and Sun 2016), or bi-cuspid geometry on ascending
aorta hemodynamics (Vergara et al. 2011). Such parametric models are particularly
powerful for obtaining fundamental understanding of the involved physics, and for
determining the most relevant physical parameters. However, the relationships that are
found may not hold for each patient specifically. Therefore, there seems to be a shift
towards using patient-specific geometries as input for computational models (Morris et al.
2015; C. A. Taylor and Figueroa 2009). In this study, an attempt was made to parameterize
the patient-specific geometries with a SSM. Fundamentally, the shape modes and shape
coefficients have no physical meaning, which makes interpretation difficult. To aid
interpretation, shape modes can be related to physical measures (Campbell and Petrella
2016). In this study, the first shape mode seems to be both statistically and physically the
most relevant. However, this may not always be the case. Hence, future work could use
sensitivity analysis to select the most physically relevant shape modes.

3.4.1 CLINICAL APPLICATIONS

Pressure-drops are indicative of aortic valve stenosis severity, and are particularly useful
to determine the stenosis-induced hemodynamic burden on the patient. Hence, the
methodology that was proposed may be used to augment geometrical information from
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imaging systems with physiological, simulation-derived metrics that are indicative of
disease severity. For routine clinical use, such decision support systems need to be robust,
easy to use, and computationally cheap. The meta-model approach that is proposed
would be particularly suitable for such a system.

The methodology that is proposed is also suitable for personalizing specific compo-
nents of lumped-parameter models. Lumped-parameter models are popular in the
cardiovascular research community to model the full-body circulation. Heart-valves in
these lumped-parameter models are generally described by orifice models that relate
the pressure-drop to the flow-rate (Korakianitis and Y. Shi 2006a; Korakianitis and Y. Shi
2006b). The meta-model that is proposed finds this relationship from imaging data, in
real-time. Aortic valve segmentation, in combination with the meta-model, may there-
fore be used to further personalize these lumped-parameter models to more adequately
predict the full-system hemodynamics.

Moreover, it is noted that — clinically — subgroup B is the most interesting group. The
aortic valve area is between 100 and 150 mm2, and the potential impact of the stenotic
valve is not obvious. Subgroup C is clinically the least interesting, and the larger (relative)
errors would not be problematic.

Finally, the authors would like to note that this is a purely numerical study, and clini-
cal studies would be necessary to establish whether this approach yields complemen-
tary value in the clinic. Clinically, 4v2 is used to estimate the pressure-drop over the
valve (Baumgartner et al. 2016). However, 4v2 represents the maximum pressure-drop,
and neglects pressure-recovery, which may lead to overestimation of stenosis severity
(Bahlmann et al. 2010). Hence, this study aimed to predict the recovered pressure-drop
instead. Nevertheless, the same methodology could be used to predict the maximum
pressure-drop, and would be useful when moving towards clinical validation of the
proposed methodology. Unfortunately, patient-specific flow measurements were not
available to the authors, and the methodology is patient-specific with respect to geometry
only.

3.4.2 LIMITATIONS

It was shown that the methodology that is proposed could help make CFD simulations
more clinically accessible. Specific components of the methodology, such as establishing
the required number of shape modes, and meta-model training were validated. Other
components of the methodology are less well validated. For example, (automatic) valve
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segmentation currently lacks a thorough and systematic validation. An idealized tri-
cuspid deformable template of the valve was used, which captured the overall feature of
the valve, but details such as calcific deposits were not included. Nevertheless, Weese
et al. (2017) approximated the mean segmentation error on the valve leaflets to be around
0.47mm, which is in the order of image resolution. Furthermore, the results in this study
show, that accurate segmentation in the proximity of the cusp’s free edges is desirable. A
more thorough understanding of segmentation error may be obtained by having (clinical)
experts manually create or edit "ground-truth" valve segmentations as a reference, e.g.,
see the work by Ecabert et al. (2011) and Pouch et al. (2013) for examples. In addition, the
authors would like to note that, although accurate segmentation is necessary, the meta-
model approach allows the propagation of segmentation uncertainties to uncertainties
in output parameters. That is, uncertainties in valve segmentations could be related
to uncertainties in shape mode coefficients. In turn, uncertainties in the shape mode
coefficients could be used to obtain an estimate of the pressure-drop, augmented with its
respective confidence interval.

As a consequence of the idealized template mesh, calcifications and bi-cuspid valves
were not represented in the SSM. SSM worked well with Computed Tomography images,
but images from 3D transesophageal echocardiograpghy lack the spatial resolution for
adequate automatic segmentations, and often need manual corrections. These manual
corrections would add additional variation in a SSM training set, yielding a less compact
and general SSM. Moreover, the SSM requires segmentation models with consistent
topology, which may not always be available.

The CFD models in this study represent a time-averaged, fully developed, (turbulent)
flow. However, flow through the aortic valve is pulsatile in nature, and may not reach
the fully developed turbulent state. However, it has been shown that for pressure-
drops above 10 mmHg, the steady-state assumption gives a reasonable estimate for
the peak-systolic pressure-drop (Chapter 2). Furthermore, it is noted that the proposed
methodology is not limited to steady-state simulations, and simulation results of more
realistic, time-dependent, and/or fluid-structure interaction simulations could be used in
future studies.

3.4.3 CONCLUSION

This study evaluated the performance of a SSM-based meta-model. SSM is shown to
adequately capture aortic valve shape variation. The shape coefficients of the SSM are
successfully used to train a meta-model that analytically relates the shape coefficients to
the pressure-flow relationship. Moreover, it is shown that the SSM-based meta-model
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provides an acceptable assumption of the pressure-flow relationship, and given adequate
training data, is a viable real-time alternative to 3D CFD simulations of the aortic valve.

ACKNOWLEDGEMENTS

This work was supported in part by the European Research Council (Grant number:
689617) and by the PLGrid Infrastructure. The authors would like to thank M. Ben Salem
for his valuable suggestions and insights with respect to meta-modeling.

63



CHAPTER 3

APPENDIX

segmentation

reconstruction
reconstruction1

meta-model

Flow-rate [ml/s]

Δ
P 

[m
m

H
g
]

Δ
P 

[m
m

H
g
]

Δ
P 

[m
m

H
g
]

Flow-rate [ml/s] Flow-rate [ml/s] Flow-rate [ml/s]

Flow-rate [ml/s]

0 200 400 600
0

200

400

600

800
Case: 07

0 200 400 600
0

50

100

150

200
Case: 08

0 200 400 600
0

50

100

150
Case: 11

0 200 400 600
0

50

100

150

200
Case: 24

0 200 400 600
0

100

200

300

Case: 29

0 200 400 600
0

50

100

150
Case: 36

0 200 400 600
0

50

100

150

200
Case: 39

0 200 400 600
0

100

200

300

400
Case: 40

0 200 400 600
0

50

100

150

200
Case: 43

0 200 400 600
0

100

200

300
Case: 44

0 200 400 600
0

50

100

150
Case: 59

0 200 400 600
0

50

100

150

200
Case: 69

0 200 400 600
0

50

100

150

200

250
Case: 71

0 200 400 600
0

50

100

150

200
Case: 73

Figure 3.11 Subgroup A: cases with AVA≤ 1.0 cm2.©: CFD segmentation mesh; +: CFD 3-mode reconstruction
without leave-one-out procedure; ×1: CFD 3-mode reconstruction with leave-one-out procedure; N:
Meta-model
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Figure 3.12 Subgroup B: cases with 1.0 < AVA ≤ 1.5 cm2. ©: CFD segmentation mesh; +: CFD 3-mode re-
construction without leave-one-out procedure; ×: CFD 3-mode reconstruction with leave-one-out
procedure; N: Meta-model
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Figure 3.13 Subgroup C: cases with AVA> 1.5 cm2.©: CFD segmentation mesh; +: CFD 3-mode reconstruction
without leave-one-out procedure; ×: CFD 3-mode reconstruction with leave-one-out procedure; N:
Meta-model
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Figure 3.14 Compactness (left) and generalization ability (right) as function of the number of modes. The first
three shape modes capture 46% of the variance.
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CHAPTER 4

ABSTRACT

Background Patient-specific image-based computational fluid dynamics (CFD) is widely
adopted in the cardiovascular research community to study hemodynamics, and will
become increasingly important when moving to personalized medicine. However, these
computational models rely on uncertain input data. The flow domain of interest is
typically reconstructed (segmented) from magnetic resonance, computed tomography
(CT), or echocardiography images. Segmentation of the flow domain is, however, not
exact, and some geometric uncertainty in the order of image resolution (0.5–1.0 mm)
can be expected. This uncertainty propagates through the computational model, yield-
ing uncertainty in the output parameter of interest. Aim In this work we aimed to
quantify how geometric uncertainty of the aortic valve may influence the uncertainty
in transvalvular pressure-drop computations. Methods Electrocardiogram-gated CT
images of 74 aortic valves were segmented with a shape-constrained deformable model
at peak systole. Statistical shape modeling was used to obtain an approximate param-
eterization (5 shape modes) of the original segmentations. This parameterization was
used to train a meta-model that related the first five shape mode coefficients and flowrate
to the transvalvular pressure-drop. Consequently, shape uncertainty in the order of 0.5
and 1.0 mm was emulated by manipulating the patient-specific shape mode coefficients.
A global variance-based sensitivity analysis was performed for each of the 74 cases to
quantify output uncertainty and to determine relative importance of each of the shape
modes. Results The first shape mode captured the opening/closing behavior of the valve.
Consequently, uncertainty in the first shape mode coefficient accounted for more than
90% of the output variance. However, sensitivity to shape uncertainty is patient-specific
as well, and the relative importance of the fourth shape mode coefficient tends to in-
crease with increases in valvular area. Conclusion These results show that transvalvular
pressure-drop computations by CFD strongly depend on geometry. Uncertainty in the
order of voxel size may lead to substantial uncertainty in CFD computed transvalvular
pressure-drops. We therefore recommend that the influence of geometric uncertainty is
quantified for applications that use image-based CFD models.
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4.1 INTRODUCTION

Imaging modalities such as Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), and ultrasound are used on a daily basis in the clinic. These imaging modalities
are traditionally used to extract diagnostic information directly, e.g., jet-velocity or aortic
valve area for patients with suspected aortic valve stenosis (Falk et al. 2017; Baumgartner
et al. 2016; Feuchtner et al. 2006). In addition to deriving diagnostic metrics directly, these
images may be used to inform image-based computational models, an approach that has
become increasingly popular over recent years. With segmentation tools, the complex
three-dimensional (3D) patient-specific geometries are readily obtained from these images.
Such patient-specific geometries have been extensively used as input to computational
fluid dynamics (CFD) models, and can provide detailed pressure and velocity fields in
the blood vessel. Applications of image-based CFD models include, amongst others: the
estimation of the transvalvular pressure-drop (Hoeijmakers et al. 2020; Traeger et al. 2015);
estimation of the significance of coronary lesions (Min et al. 2015; P. D. Morris et al. 2013);
quantification of wall shear stresses in carotid arteries (Cibis et al. 2014); hemodynamic
evaluation of arteriovenous dialysis grafts (Quicken et al. 2019); or estimating energy
losses in intracranial aneurysms (Sen et al. 2014). However, segmentation of the patient-
specific geometry is not exact, and uncertainty in the segmented shape is inevitable.
Previous CFD studies have demonstrated that uncertainty in shape may substantially
affect the outcome of any subsequent modeling (Cherobin et al. 2018; Sankaran et al.
2016; Sen et al. 2014). Segmentation quality is largely determined by image quality, but
may also be a consequence of the segmentation method itself. The general procedure to
evaluate the performance of a (semi) automatic segmentation method is to compare it to
a ground-truth segmentation; i.e., a segmentation that is performed or corrected manually
by a (clinical) expert. Though these uncertainties in shape will propagate to the output
of the CFD model and can have an enormous impact on model-based decisions, output
uncertainties are rarely considered, let alone quantified.

Previous studies have demonstrated that differences between automatic and manual
segmentation depend on image quality and the geometry of interest. For instance,
Ecabert et al. (2011) demonstrated that segmentation from CT images of the heart and
surrounding vessels with a shape-constrained deformable model may introduce errors
of 0.50–0.82 mm for the heart chambers, and 0.60–1.32 mm for part of the great vessels
when compared to manual segmentations. With a similar approach for aortic valve
tract segmentation from MRI images, Queirós et al. (2019) observed average errors of
0.54±0.08 mm. The thin and flexible nature of heart valve leaflets arguably makes
segmentation of these constructs more difficult. Nevertheless, various authors have
proposed algorithms for segmenting heart valves from CT or echocardiography images.
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Pouch et al. (2013) used a deformable model to semi-automatically segment the aortic
valve from 3D transesophageal echocardiography data, and reported mean and 95th

percentile errors of 0.5±0.1 mm and 1.0±0.2 mm compared to manual segmentations.
Similarly, Ionasec et al. (2010) performed a validation study of a valve segmentation tool
on a data set consisting of 1516 4-D transesophageal and 690 cardiac 4-D CT images.
Segmentation errors of 1.54±1.17 and 1.36±0.93 mm were reported for the aortic and
mitral valves when using transesophageal electrocardiograms and CT images respectively.
Using machine learning, Liang et al. (2016) reported mean discrepancies of 0.69±0.13
mm between automatic and manual aortic valve segmentation from CT images. These
contributions demonstrate that segmentation errors are typically in the order of image
resolution, i.e., roughly between 0.5 and 1.0 mm with the current state-of-the-art hard-
and software. Although seemingly small, this inherent geometric uncertainty may
substantially affect any subsequent modeling of the detailed flow field.

A small number of studies have demonstrated that uncertainty in shape may substan-
tially affect model output. Sen and colleagues compared three segmentation methods
with ground-truth segmentations of 45 intracranial aneurysms, and found that, on av-
erage, CFD-computed energy losses and wall shear stresses differed by 23.2±8.7% and
24±8.5% respectively (Sen et al. 2014). Likewise, studies that aimed to assess coronary
stenosis severity identified that geometric uncertainty (lumen diameter) may contribute
substantially to uncertainty in hemodynamic simulations (Sankaran et al. 2015; Sankaran
et al. 2016; Sturdy et al. 2019; Venugopal et al. 2018). In addition, the work by Sankaran
et al. (2015) recognized the value of coronary lumen uncertainty, highlighting regions in
the coronary tree where simulation output was sensitive to lumen uncertainty. These
studies demonstrate that shape uncertainty may be a major source of error in image-based
patient-specific computational models, and should be included in order to strengthen
confidence in computational modeling.

In Chapter 2 we developed a computational framework to compute the transvalvular
pressure-drop from CT images by making use of CFD. In addition, we combined statis-
tical shape modeling, meta-modeling, and CFD in order to obtain a cheap-to-evaluate
meta-model, which related changes in shape to changes in the transvalvular pressure-
drop vs. flow relationship (Chapter 3). It was shown, that with a limited number of
shape modes, physically relevant geometric variation in the population was captured.
However, uncertainties in valvular shape, and consequently in simulation output, were
not considered. In this study, we build upon the work of Chapter 3, and quantified
uncertainty of the transvalvular pressure-drop vs. flow relation to uncertainty in valvular
shape. Uncertainty in valvular shape was imposed by assuming uncertainty in the shape
mode coefficients. In addition, we performed a variance-based sensitivity analysis to
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apportion the output uncertainty to uncertainties in the input (Saltelli et al. 2007).

This chapter is outlined as follows: first a brief introduction to variance-based sensitivity
analysis and uncertainty quantification is presented. Second, the available data, statistical
shape model, simulation framework, and meta-model are discussed. Third, specific de-
tails on how sensitivity analysis and uncertainty quantification was applied is presented.
The results of the sensitivity analysis and uncertainty quantification are summarized in
the results section. Finally, the discussion puts the findings in an academic and clinical
perspective.

4.2 MATERIALS AND METHODS

When reducing output uncertainty of a computational model, sensitivity analysis and
uncertainty quantification can be used to assess which parameters contribute most to
output uncertainty, and are thus most rewarding to measure or estimate accurately
(Saltelli et al. 2007). More specifically, a computational model with p stochastic input
factors Z = [Z1, Z2, ..., Zp] can be represented by an arbitrary function f , which yields
an uncertain output Y , i.e.:

Y = f(Z). (4.1)

Typically uncertainty in the input parameters Z are non-negligible, and can considerably
affect the uncertainty in model output Y (Eck et al. 2015). Here, a single output variable
is considered, but in a similar way, a multivariable output Y can be analyzed. Sensitivity
analysis and uncertainty quantification can be used to quantify the effect of input uncer-
tainties on model output. For instance, by using the variance in Y as a measure for output
uncertainty (Saltelli et al. 2007). Global variance-based sensitivity analysis can separate
direct contributions of each individual uncertain input Zi from interactions between
different model inputs, e.g., interactions between Zi and Z−i, where Z−i represents all
parameters except Zi. In variance based sensitivity analysis, the contribution of the
uncertain parameters Z to the variance of Y can be expressed as the main (Si) and total
(ST,i) Soboĺ sensitivity indices (Soboĺ 2001):
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Si =
V[E[Y |Zi]]
V[Y ]

, (4.2)

ST,i = 1− V[E[Y |Z−i]]
V[Y ]

, (4.3)

whereV[·] and E[·] are operators for the variance, and expected value respectively. The
main indices Si are measures for the expected reduction in variance when Zi would
be known without uncertainty. Besides the main effects, the total sensitivity index ST,i
includes interaction as well, and reflects the contribution of all terms which include
Zi. A low total sensitivity index indicates that this parameter may be fixed within its
uncertainty domain. Sensitivity indices may be computed by methods such as Monte
Carlo or adaptive sparse generalized Polynomial Chaos Expansion (agPCE) (Blatman
and Sudret 2010b; Blatman and Sudret 2010a).

Uncertainties in boundary conditions and shape can have a substantial influence on
the output uncertainty of a three-dimensional computational model (Equation 4.1), e.g.,
due to segmentation errors. In traditional "forward-engineering" CAD models, shape
variations are easily introduced by changing the shape-defining parameters, such as
angles, diameters, ratios, or thickness (Quicken et al. 2016). However, 3D patient-specific
computational models are generally of complex shape, difficult to parameterize, and the
influence of shape variation is therefore mostly neglected. Instead of using physically
meaningful parameters, this work used statistical shape modeling to parameterize the
shape of the valve (Chapter 3). The statistical shape modes provided a parameterization
of the geometry, and facilitated the training of a meta-model (Figure 4.1a). The meta-
model was trained on the output of CFD simulations, and related variations in shape to
variations in simulation output. Consequently, this cheap-to-evaluate meta-model was
used in a sensitivity analysis and uncertainty quantification framework (Figure 4.1b) for
two purposes: 1) to evaluate the importance of shape variation on a population level,
and 2) to evaluate the importance of shape variation on the level of an individual patient,
and how shape uncertainty affects model output uncertainty for that patient. Sensitivity
analysis and uncertainty quantification was applied to aortic valve pressure-drop vs.
flow relations, computed with a CFD model. The following sections elaborate on the
individual components presented in Figure 4.1.
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Figure 4.1 Schematic of the procedure for meta-model training (a). An inner meta-model is trained with simula-
tion data, and yields a surrogate function f̂(z) that relates the simulation input (without uncertainties)
z to simulation output y. Note that the meta-model function f̂(z) is an approximation of the original
function f(z). (b) the cheap-to-evaluate surrogate function f̂(z) can be used for sensitivity analysis
and uncertainty quantification to determine how uncertain inputs Z propagate to output uncertainty.

4.2.1 INNER META-MODEL TRAINING

4.2.1.1 DATA ACQUISITION AND VALVE SEGMENTATION

Computed Tomography imaging datasets of 74 patients were available, and corresponded
to the dataset that was used in Chapter 3. Images were acquired with an in-plane
spatial resolution of 0.31–0.68 mm, and slice thickness of 0.34–0.70 mm. Images were
acquired with Electrocardiography gated CT, and segmentations represented the peak-
systolic state of the aortic valve. Consequently, aortic valve segmentation was performed
with a Shape Constrained Deformable model framework, see e.g., previous work by
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Ecabert et al. (2008), Ecabert et al. (2011), or Weese et al. (2017). In the segmentation
framework, a template mesh model was iteratively adapted to an image. From the
resulting segmentation mesh, a submesh (M) was extracted that consisted of the left
ventricular outflow tract, aortic valve, sinuses, and part of the ascending aorta (Figure 4.2).
The submeshM consisted of k = 1808 vertices and 4223 triangular faces, and had a
consistent topology (T ). This resulted in mesh correspondence between patients. Hence,
any surface meshMwas completely described by the coordinate vector x:

M =M(x, T )

with: (4.4)

x = [x1, y1,z1, x2, y2, z2, ..., xk, yk, zk]T .

4.2.1.2 STATISTICAL SHAPE MODEL

Segmented aortic valves were aligned by a generalized Procrustes analysis (Bookstein
1992), which optimally translated, rotated, and scaled each of the meshes by minimizing
the sum of squared errors between the mean and the target mesh. Consequently, statistical
shape modeling was used to extract the main directions of shape variance from the 74
segmented aortic valves by performing an eigen-decomposition of the co-variance matrix
(principal component analysis), see also Chapter 3. The eigenvectors of the co-variance
matrix, typically referred to as shape modes, describe the main directions of shape
variance. The eigenvalues λ of this eigen-decomposition describe the amount of shape
variance that was captured with the corresponding eigenvector.

Using the statistical shape model, any shape in the training set xp was then approximated
by the mean shape of the training set (x̄) plus a linear combination of a small number of
shape modes (Φm), which were weighted by αp,m. That is:

xp ≈ x̂p = x̄ +

Nm∑
m=1

αp,mΦm p ∈ {1, 2, ...Ns}, (4.5)

with Ns the number of shapes that were available in the training set, and Nm the number
of shape modes used for the approximation. The optimal set of weights (αp) for each
patient’s aortic valve was found by minimizing the difference between the original
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segmentation xp and the approximation x̂p:

min
αp∈RNm

(||(x̂p(αp)− xp) ·w||2). (4.6)

The introduction of w allowed to control the weight of each vertex to the minimization
problem, and was chosen such that the 216 vertices that were part of, or adjacent to the
free cusp edges weighted five times stronger than all other vertices. This weighting factor
was empirically established, and helped to reduce the approximation error of vertices
that were part of, or close to the free cusp edges. For a more elaborate explanation the
authors would like to refer to the work in Chapter 3.

The shape coefficients αp,m can be regarded as a patient-specific parameterization of the
aortic valve and surrounding structures, and values for the 74 original valve segmen-
tations were found by Equation 4.6. Besides approximating the surface meshes in the
training set, Equation 4.5 was used to generate a population of "virtual" aortic valve ge-
ometries that were within three times the square root of the eigenvalue ([−3

√
λm, 3

√
λm])

of its respective shape mode, also see Chapter 3 or Heimann and Meinzer (2009). Fig-
ure 4.2 illustrates the shape variation that was contained in the first five shape modes,
and showed that the first shape mode (Φ1), weighted by α1, controlled the opening and
closing behavior of the aortic valve. The second shape mode (Φ2) stretches the aortic
valve construct in axial direction. The third shape mode (Φ3) seemed to skew/shear
the valve orthogonal to the centerline. The fourth shape mode (Φ4) mainly changed the
diameter of the sinotubular junction. Finally, the fifth shape mode (Φ5) mainly affected
the size of the sinuses, and the angle between the left ventricular outflow tract and
ascending aorta. Shape variation was extracted by principal component analysis, and
as such, the shape modes were ordered from high to low explained shape variance, i.e.,
ordered with respect to statistical relevance. The first five shape modes captured 61% of
the shape variance. However, statistical relevant shape variation may not correspond to
physically meaningful shape variation. Hence, a computational fluid dynamics workflow
was developed that allowed the computation of the transvalvular pressure-drop, given
the boundary conditions (e.g., flow-rate) and valvular shape (any valve realization of
Equation 4.5).

4.2.1.3 SIMULATION WORKFLOW

An automated CFD workflow was developed for computing the transvalvular pressure-
drop at specified flowrates. To facilitate CFD modeling, the outflow boundary was
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Figure 4.2 Visualization of the first five shape modes. Note that the mean mesh is the same for each realization.
Φ1 captures variations in the open/closed state of the aortic valve. Φ2 elongates the entire valve
and its surrounding structures. Φ3 seems to skew the geometry orthogonal to the centerline. Φ4

mainly affects the diameter of the sinotubular junction. Φ5 affects sinus size, and angle between left
ventricular outflow tract and the ascending aorta.

extended by 10 diameters. Additionally, the volume enclosed by the surface mesh
(Figure 4.2) was discretized by approximately 2 ·105−3 ·105 polyhedral elements (ANSYS
Fluent R18.2, ANSYS Inc., Canonsburg, PA, USA). Edge lengths of the polyhedrals were
chosen based on a mesh-sensitivity study, and ranged between 0.15 and 2.0 mm. Blood
was modeled as an incompressible Newtonian fluid with a density of 1060 kg/m3 and
dynamic viscosity of 4 mPa·s. At the inflow-boundary (left ventricular outflow tract), a
plug-velocity profile was prescribed that corresponded to steady-state volumetric flow-
rates between 50 and 650 ml/s. Pressure at the ascending aorta was set to zero, and
no-slip boundary conditions were assumed at the walls. Reynolds numbers at the inflow
boundary depended on flowrate/shape combination, but were estimated to be between
600 and 13000, hence a Shear Stress Transport k − ω model (5% turbulent intensity at
the inflow boundary) was used to model turbulence (Menter 1994). The governing
equations were solved with ANSYS Fluent R18.2 (ANSYS Inc., Canonsburg, PA, USA) by

82



SENSITIVITY ANALYSIS & UNCERTAINTY QUANTIFICATION

making use of the Semi-Implicit Method for Pressure Linked Equations. The (recovered)
transvalvular pressure-drop was extracted from the simulation results.

4.2.1.4 INNER META-MODEL

A meta-model was trained on the simulation input parameters z = [α1, α2, α3, α4, α5, s, Q]

(without uncertainty) and the corresponding output parameter y (the transvalvular
pressure-drop). Selecting the most suitable meta-model, and meta-model settings is often
difficult since no universal meta-model exists that performs well for all problems. How-
ever, it has been shown that ensemble approaches, where a weighted sum of meta-models
is considered, can yield a good approximation (Ben Salem and Tomaso 2018; Acar 2010).
That is, the goal of an ensemble-type meta-model is to obtain the best weighted-average
of a selection of meta-models:

ŷens(z) =

Ne∑
i=1

βi · ŷi(z), (4.7)

where ŷens is the prediction at z of the final meta-model, i.e., the weighted ensemble
of various meta-models and their settings. To find the optimal combination of meta-
models a penalized predictive score was proposed by Ben Salem and Tomaso (2018). This
score combined three components (Equation 4.8): (a) optimizing the internal accuracy
by evaluating the mean square error on training samples/points (R); (b) use a 10-fold
cross-validation to evaluate predictive capability on unseen samples (R10CV ) ; and (c)
minimize over-fitting of the meta-model by a thin-plate spline Bending Energy Functional
(E) (Ben Salem and Tomaso 2018; Duchon 1977). The penalized predictive score was then
constructed by weighting the contribution of each of these components:

L(ŷens) = γ1R(ŷens)︸ ︷︷ ︸
a

+ γ2R10CV (ŷens)︸ ︷︷ ︸
b

+ γ3E(ŷens)︸ ︷︷ ︸
c

. (4.8)

In this work the Genetic-Aggregation meta-model of Ben Salem and Tomaso (2018) was
used to relate the shape mode coefficients (α1, α2,α3 ,α4, α5), a global scaling parameter
(s), and the volumetric flow rate (Q) to the CFD-computed transvalvular pressure-drop.

The quality of the meta-model (Equation 4.7) should converge when the number of
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training points increases. Hence, the 7-dimensional (5 shape parameters, scaling, and
flowrate) input space was uniformly sampled with Latin Hypercube designs (maximin)
(M. D. Morris and Mitchell 1995) of 25, 50, 100, 200, 400, 800, 1600, and 3200 samples.
Samples were excluded when the transvalvular pressure-drop exceeded 300 mmHg,
when the aortic valve was completely closed, or when simulations diverged. On average
26% of the simulation samples were excluded based on these criteria. The input-space for
the shape parameters were limited to lie within [−3

√
λm, 3

√
λm]. The scaling parameter

was limited to values between 0.8 and 1.25, and volumetric flow-rate between 50 and 650
ml/s. Consequently, the Genetic-Aggregation meta-model was trained on the resulting
simulation data. In the remainder of this manuscript, this meta-model will be refered to
as the inner meta-model (Figure 4.1a).

QUALITY OF THE INNER META-MODEL

Quality of this inner meta-model was evaluated by the root mean square error, relative
root mean square error, and the mean absolute percent error. Figure 4.3 demonstrates
that errors for the verification samples, which where excluded from training, reduced
considerably with an increase in the available training samples. Additionally, Figure 4.3b
and c suggest that beyond 1000 samples the quality of the meta-model levels off. The
meta-model trained with the most training samples yielded the best quality, and was
used as the inner meta-model which facilitated sensitivity analysis and uncertainty
quantification (Figure 4.1b).

Figure 4.3 Inner meta-model quality as function of the number of successfully simulated training samples. An
increase in available training samples improves the root mean square error (RMSE), relative root mean
square error (rRMSE) and the mean absolute percent error (MAPE) between the meta-model and veri-
fication points which were not used for training the meta-model

4.2.2 SENSITIVITY ANALYSIS AND UNCERTAINTY QUANTIFICA-
TION

Changes in boundary conditions and shape affect the CFD-computed transvalvular
pressure drop. In order to quantify the sensitivity of the transvalvular pressure-drop to
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changes in shape, main and total sensitivity indices (see Equation 4.2 and Equation 4.3)
were obtained by the agPCE method (Quicken et al. 2016; Blatman and Sudret 2010b).
The method uses polynomial chaos expansion in order to obtain an explicit formulation
of f (Equation 4.1), and expands the stochastic model output Y into a series of orthogonal
polynomials (Quicken et al. 2016). The generalized polynomial chaos expansion is defined
as:

Y = f(Z) ≈ fgPCE(Z) =

Np∑
j=1

cjΨj(Z). (4.9)

Where Ψj(Z) represents the polynomials and cj represents the expansion coefficients. An
adaptive algorithm (agPCE) was used to include only the polynomials that significantly
increased meta-model quality (Quicken et al. 2016). This kept meta-model quality high,
while keeping the required training set small. Sensitivity indices were analytically
derived from this expansion (Sudret 2008; Quicken et al. 2016). Quality of this "outer"
meta-model was evaluated with a leave-one-out cross-validation coefficient (Q2). Q2

ranges between 0 (lowest quality) and 1 (highest quality), and it has been shown that
with increasing Q2 sensitivity indices convergence (Quicken et al. 2016). For this study,
Legendre polynomials — which are most suitable for uniform distributions — up to
order 3 were considered.

POPULATION-BASED SENSITIVITY

A global variance-based sensitivity analysis was performed in order to determine the
sensitivity of the transvalvular pressure-drop to changes in shape mode coefficients
and flow rate. The lower and upper limits of each of the the shape mode coefficients
were restricted to −2

√
λm and 2

√
λm respectively. This range covered a wide range

of feasible shapes in the population, whilst avoiding the corners of the input domain
where meta-model results were likely poor. Uncertainties in flow-rate were based on the
work by Namasivayam et al. (2020), who measured the average systolic flow rate in 1131
patients with severe or moderate aortic stenosis, and found mean systolic flow rates of
243 ± 42 ml/s. It was assumed that systolic flow approximately follows a sine squared
profile, hence mean-systolic values were multiplied by two to obtain peak systolic flow.
This resulted in a peak-systolic lower limit of 382 ml/s and upper limit of 590 ml/s in
flow uncertainty. The distribution of the input uncertainties were unknown, hence a
uniform distribution was assumed for all input parameters, which can be considered a
conservative estimate of the uncertainty distribution.
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Table 4.1 Patient-based parameter uncertainties for sensitivity analysis and uncertainty quantification

Parameter Symbol
∂εmax

∂αm

∂ε

∂αm

Minimum Maximum Assumed

[mm/α]† [mm/α]‡ change in αm

Shape mode α1 85 17 αp,1 − 0.018 · 6
√
λ1 αp,1 + 0.018 · 6

√
λ1 3.6% of 6

√
λ1

Shape mode α2 76 21 αp,2 − 0.025 · 6
√
λ2 αp,2 + 0.025 · 6

√
λ2 5.0% of 6

√
λ2

Shape mode α3 58 22 αp,3 − 0.039 · 6
√
λ3 αp,3 + 0.039 · 6

√
λ3 7.8% of 6

√
λ3

Shape mode α4 79 21 αp,4 − 0.035 · 6
√
λ4 αp,4 + 0.035 · 6

√
λ4 7.0% of 6

√
λ4

Shape mode α5 84 21 αp,5 − 0.035 · 6
√
λ5 αp,5 + 0.035 · 6

√
λ5 7.0% of 6

√
λ5

Note that with these parameters any shape variation is defined with respect to the patient-specific shape x̂p

found by Equation 4.5, and these values of uncertainty were calibrated to emulate a maximum (εmax) shape
variation of 0.5 mm. εmax = 1.0 mm was obtained by multiplying these values by 2.
† Partial derivative indicating the maximum displacement that is observed with a unit-change in that partic-
ular shape mode coefficient. The region where vertex displacement is maximum is illustrated — per shape
mode — in Figure 4.4.
‡ Partial derivative indicating the mean displacement of all vertices in the mesh with a change in that particular
shape mode coefficient

PATIENT-BASED SENSITIVITY ANALYSIS AND UNCERTAINTY QUANTIFICATION

In addition to a global variance-based population sensitivity analysis, an additional
sensitivity analysis was performed for each patient separately. Recall that each individual
segmentation was approximated by Equation 4.5 (Nm = 5). With variations in these
shape-mode coefficients, uncertainty in shape can be emulated. That is, the original
segmentations were not exact, and some uncertainty with respect to the actual in-vivo
geometry is expected.

Previous studies that used deformable model-based segmentation frameworks have
demonstrated that segmentation errors are in the order of voxel size (Ecabert et al. 2011;
Pouch et al. 2013). Hence, it is assumed that local uncertainty in shape is between 0.5
and 1.0 mm. This shape uncertainty may be imposed by introducing variations in the
shape mode coefficients. That is, any change in αm leads to (localized) changes in vertex
positions in a particular direction (Figure 4.4). The maximum (∂εmax/∂αm) and mean
(∂ε/∂αm) rate of change with respect to αm was obtained from the mean mesh and
shape modes numerically (using Equation 4.5), and depends on the specific shape mode,
see Table 4.1 and Figure 4.4. Uncertainty in shape mode coefficients were calibrated to
impose a maximum (εmax) vertex-to-vertex displacement of 0.5 and 1.0 mm, which were
considered in separate analyses. Figure 4.4 specifies shape uncertainty per shape mode
when imposing an uncertainty of 0.5 mm. This resulted in patient-specific uncertainty
ranges, and is in Table 4.1 expressed as a percentage of the total feasible range (6

√
λm).

Only shape changes were of interest, and volumetric flow-rate was fixed and uncertainty
in the scaling parameter was neglected. The uncertainties in Table 4.1 were applied to
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Figure 4.4 Resulting uncertainty in vertex-to-vertex position (mapped onto x̄) by introducing a 0.5 mm uncer-
tainty by considering uncertainty in the shape mode coefficients (Table 4.1). Each shape mode intro-
duces variation in a specific part of the surface model (first and second column) and in a particular
direction (third column). The histogram illustrates how uncertainty in vertex position was distributed
over all 1808 vertices for each shape mode.

each patient, and using the agPCE algorithm, the patient-specific sensitivity indices were
computed. Exploratory Monte-Carlo simulations (all cases, 0.5 mm uncertainty, flowrate
400 ml/s, 500,000 samples per case) demonstrated that the distribution was different
for each case, where stenotic cases generally showed more skewed output distributions.
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Hence, boxplots were used to visualize uncertainty in the transvalvular pressure-drop
vs. flow relation. Boxplots (min, max, 25, 50, and 75th percentiles) were constructed
by making use of the samples (typically around 40) that were used to build the agPCE
meta-model of highest Q2. Due to the low-discrepancy Soboĺ sequence sampling of the
uncertain input space around each patient, it was assumed that boxplots of the agPCE
samples were representative of the expected output distribution.

4.3 RESULTS

Table 4.2 Main and total sensitivity indices of the global population-based sensitivity analysis

Parameter Symbol Si
† Si Range‡ ST,i

† ST,i Range‡

Shape mode α1 0.930 [0.900 – 0.937] 0.953 [0.900 – 0.955]

Shape mode α2 0.010 [0.009 – 0.012] 0.016 [0.010 – 0.018]

Shape mode α3 0.011 [0.003 – 0.011] 0.018 [0.003 – 0.020]

Shape mode α4 0.000 [0.000 – 0.004] 0.001 [0.001 – 0.004]

Shape mode α5 0.010 [0.008 – 0.017] 0.018 [0.012 – 0.020]

Flow-rate Q 0.016 [0.015 – 0.067] 0.018 [0.018 – 0.067]

† Sensitivity index obtained from the outer meta-model (agPCE) with highest Q2 (Q2 = 0.9998).
‡ Range of sensitivity indices considering all generated meta-models irrespective of Q2

Main and total sensitivity indices Si and ST,i of the population-based sensitivity analysis
are depicted in Table 4.2. The outer agPCE meta-model with highest quality reached a
Q2 of 0.9998, which can be considered excellent quality. Results of this high-quality outer
meta-model are summarized in Table 4.2, and suggest that the transvalvular pressure-
drop is most sensitive to changes in the first shape mode (open/closure of the aortic
valve). 93% of the output variance was explained by variations in this input parameter
(Si = 0.930, ST,i = 0.953). Contribution of shape modes Φ2 (Si = 0.010, ST,i =

0.016), Φ3 (Si = 0.011, ST,i = 0.018), and Φ5 (Si = 0.10, ST,i = 0.018) to the output
variance was limited to around 1 – 2%. Although shape mode Φ4 was ranked higher
statistically compared to Φ5, variation in α4 did not contribute to the output variance
(Si = 0.000, ST,i = 0.001). Hence, shape variation in the direction of shape mode Φ4

seemed unimportant from a population perspective. Flow-rate is another contributing
factor, but only accounted for 1.6% of the total output variance (Si = 0.016, ST,i =

0.018). Total sensitivity indices ST,i suggest that limited interaction was present between
shape modes and/or flow-rate. Additionally, the total sensitivity index of α4 remained
approximately zero.

The global population-based sensitivity analysis suggests that α4 does not contribute to
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Figure 4.5 Sensitivity indices per case, given the uncertainty in the shape mode coefficients of Table 4.1. Results
are sorted from small to large geometric valve area (bottom graph). With an increase in valvular area,
variation in other shape modes start to have a substantial effect on the transvalvular pressure-drop.
Classification according to the basic grading criteria of Baumgartner et al. (2016). Severe: valve area <
100 mm2; moderate: valve area 100–150 mm2; mild/healthy: valve area >150 mm2.

the output variance, and may thus be fixed. This is partially supported by the results of the
patient-based sensitivity analysis. Patient-based sensitivity indices (in order of increasing
aortic valve area) are illustrated in Figure 4.5. Uncertainty in the first shape mode
coefficient α1 accounted for more than 90% of the the output variance for severely and
moderately stenotic heart valves (Figure 4.5). Additionally, Figure 4.5 suggests that the
remaining output variance for these two subgroups was mostly explained by uncertainty
in α3 and α5. Similar to the observations of the population-based sensitivity analysis,
uncertainty in α4 seemed to play a minor role for severely and moderately stenotic valves.
Interestingly, main sensitivity indices seem to strongly depend on valvular area. That is,
importance of α1 decreased, whereas importance of α4 tended to increase for more open
valves, and actually even exceeded that of α3 and α5 (e.g., see main indices of cases 69:
Sα4 = 0.2 and 70: Sα4 = 0.17).

Besides the main and total sensitivity indices, samples that were used to construct the
agPCE model were used to construct boxplots around the meta-model results. These
boxplots provide and estimate for uncertainty in the transvalvular pressure-drop vs. flow
relation for each case. In Figure 4.6 the transvalvular pressure-drop vs. flow curves of
a typical stenotic, moderate, and mild/healthy case are enhanced with these boxplots,
given an imposed uncertainty of 0.5 and 1.0 mm ( Table 4.1). Figure 4.6 exposes that
the uncertainty in output was considerable when uncertainties of 0.5 and 1.0 mm were
imposed. For example, for Case 7 (severe aortic valve stenosis; valve area 86 mm2), the
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inner meta-model gives a transvalvular pressure-drop of 69 mmHg at 400 ml/s. However,
interquartile ranges (Q3–Q1) were 74–63 (median: 68, min-max: 55–84) mmHg and 82–58
(median: 68, min-max: 44–105) mmHg for imposed uncertainties of 0.5 and 1.0 mm
respectively. Case 38 (moderately stenotic), the inner meta-model yields a transvalvular
pressure-drop of 25 mmHg with interquartile ranges of 26–23 (median: 25, min-max:
21–29) mmHg and 28–21 (median: 24, 17–34) mmHg, for imposed uncertainties of 0.5 and
1.0 mm respectively. Finally, for Case 73 (healthy), uncertainty seems to deteriorate in a
relative sense. That is, the inner-meta model yielded a transvalvular pressure-drop of 0.6
mmHg with interquartile ranges of 0.6–0.5 mmHg (median: 0.6, min-max: 0.4–0.7), and
0.7–0.4 (median: 0.5, min-max 0.2–0.9) mmHg for imposed uncertainties of 0.5 and 1.0
mm respectfully. Transvalvular pressure-drop vs. flow relations and uncertainties for all
cases can be found in Figure 4.7 – 4.9 of the appendix. These results clearly demonstrate
that with small deviations in geometry, e.g., in the direction of the first shape mode, the
uncertainty in the output of the model can become substantial.

Figure 4.6 Transvalvular pressure-drop vs. flow curves for a typical severely stenotic (left), moderately stenotic
(middle), and mildly stenotic/healthly (right) aortic valve. Filled circles represent the CFD results
on the original segmentation mesh M(xp, T ). Results of the inner meta-model (dashed line with
triangles) are augmented with boxplots. Boxplots of imposed uncertainties of 0.5 mm (blue) and 1.0
mm (red) are depicted.

4.4 DISCUSSION

The aim of this study was to quantify how sensitive transvalvular pressure-drop compu-
tations were to uncertainty in valvular shape. Two sensitivity analyses were done. First, a
global variance-based population-level sensitivity analysis was performed, and the main
and total sensitivity indices were extracted. This revealed that uncertainty in the weight-
ing of Φ1 was most important, accounting for 93% of the expected variance. The main
indices of α2, α3, and α5 were low, suggesting limited importance of uncertainty in the

90



SENSITIVITY ANALYSIS & UNCERTAINTY QUANTIFICATION

direction of shape modes Φ2, Φ3, and Φ5. Similarly, the contribution of volumetric flow
rate Q to output uncertainty was low and may be fixed in the range that was considered.
We would like to note that Q may however become important again when uncertainty
in valvular shape is substantially reduced. In addition, the total sensitivity indices of α4

suggest that geometric changes in the direction of shape mode Φ4 were unimportant.

Secondly, uncertainties in patient-specific valvular shape were imposed by considering
uncertainty in shape mode coefficients. In this approach, we introduced an uncertainty
in shape mode coefficients that corresponds to likely segmentation errors of up to 0.5 and
1.0 mm. With this we were able to emulate geometric uncertainties, and study how this
propagated through to patient-specific pressure-drop vs. flow relationship. The results
of this sensitivity analysis partly corroborate the population-based sensitivity analysis.
However, main sensitivity indices from the patient-based sensitivity analysis demonstrate
that the importance of shape variation is in fact patient-specific. More specifically, for
severely stenotic and moderately stenotic cases, sensitivity indices roughly correspond to
the indices found with the population-based analysis, i.e., uncertainty in α1 seems most
important (Sα1 > 0.9). However, Figure 4.5 also shows that geometric uncertainty in the
direction of the other shape modes tended to become more important with an increase
in valvular area. The results from the population-based sensitivity may therefore not be
representative for the entire spectrum of valve configurations.

Shape mode Φ1 captures valve opening and closing, and naturally would have the
most substantial effect on the computed transvalvular pressure-drop. That is, a change
in the weighting of Φ1 leads to a change in valvular area, and as a consequence the
predicted transvalvular pressure-drop changes. Additionally, it was shown that errors in
the direction of Φ1 which are in the order of voxel size can lead to substantial uncertainty
in the transvalvular pressure-drop. This suggest that accurate segmentation of the free
cusp edge of the aortic valve could substantially reduce uncertainty in the computed
transvalvular pressure-drop vs. flow relationship.

The direction of Φ4 and Φ5 seem to correspond with changes in ascending aorta diameter.
The observation that the (recovered) transvalvular pressure-drop becomes more sensitive
to changes in Φ4 and Φ5 with an increase in valvular area may be explained by pressure-
recovery. That is, when blood is accelerated into the narrow orifice, pressure decreases.
Consequently, downstream from the aortic valve flow decelerates again, and pressure is
(partly) recovered (Laskey and Kussmaul 1994; Voelker et al. 1992; Bahlmann et al. 2010;
Yoganathan et al. 1988). When the cross sectional area of the ascending aorta is large,
more kinetic energy will be converted back to pressure. When the aortic valve is fully
open (e.g., when healthy) the net transvalvular pressure-drop is small. As a consequence,
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the relative importance of uncertainties in ascending aorta diameter (Φ4 and Φ5) will
increase compared to moderately or severely stenotic cases. Nevertheless, uncertainty in
α1 is still most important, and accounts for at least 60% of output variance (e.g., see Case
69). Additionally, it is observed that for severely and moderately stenotic valves Sα3 and
Sα5 generally exceed Sα2 . These observations indicate that geometrical variation that is
statistically relevant, may not necessarily be relevant from a fluid mechanics perspective.
This is supported by the work of Wu et al. (2017), who used statistical shape modeling
to introduce global deformation modes to emulate airfoil geometric uncertainty. It was
shown that deformation (shape) modes of lower statistical relevance can in fact be more
important for transonic aerodynamic lift and drag coefficients than modes of higher
statistical relevance.

Available literature shows that statistical shape modeling is a technique that has been
applied for numerous applications. Some examples in the bio-medical field include,
organ segmentation (Yates and Untaroiu 2018; Spinczyk and Krasoń 2018; Woo et al.
2016) and extraction of morphology from medical images (Suinesiaputra et al. 2018;
Uetani et al. 2014; Bruse et al. 2016). Only a limited number of studies have tried to
combine statistical shape modeling with computational models, and are mainly found
for orthopedic applications. For example, statistical shape models have been used for
real-time prediction of knee joint mechanics (Gibbons et al. 2019), predicting femur bone
strength (Nicolella and Bredbenner 2012), or creating parametric models to model cervical
spine loading (Bredbenner et al. 2014). The study by Bredbenner et al. (2014) introduced
uncertainty in geometry considering cervical spines that were ±1σ from the mean shape,
and showed that shape variation influenced the computed axial, flexion-extension, and
lateral displacements. However, sensitivity indices were not explicitly computed, and
only variations from the mean shape were considered. The work by Khalafvand et al.
(2018) studied the influence of shape variation on intraventricular flow variables, such as
wall shear stress, vortex formation time, and the time integral of energy dissipation, but
did not compute sensitivity indices of the simulation output parameters. In this study
we have demonstrated that besides the accepted applications, statistical shape modeling
in combination with computational modeling can also be used to determine physically
relevant shape variation. Moreover, we have shown that this approach may be used to
estimate how shape uncertainty affects uncertainty in the output of the computational
model.

Image-based CFD models often include complex anatomical shapes. Some examples of
computational models of complex shapes include: the aortic tree (Reymond et al. 2012)
coronary tree (P. D. Morris et al. 2013), or lungs (Backer et al. 2010). Similar to valve
geometries, these shapes are difficult to parameterize, and as such investigating how
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shape uncertainty affects the results is challenging. Sankaran et al. (2015) resolved this
by splitting the coronary tree into sections, and exploring the solution in a family of
probable geometries with an assumed uncertainty in radius of 0.3 mm. Similar to our
approach, Sankaran et al. (2015) used a a surrogate (meta) model based on machine
learning to replace the compute-intensive blood flow simulations. This demonstrates
that meta-models, which learn the relation between physics and shape, will be crucial for
uncertainty quantification.

4.4.1 LIMITATIONS

The Shape Constrained Deformable Model framework is yet to be validated for aortic
valve segmentations, and imposed uncertainties were therefore hypothetical. Neverthe-
less, uncertainties of 0.5 and 1.0 mm seem plausible based on existing literature (Ecabert
et al. 2011; Queirós et al. 2019; Pouch et al. 2013; Ionasec et al. 2010; Liang et al. 2016).
The shape modes inherently depend on the data-set. As a consequence, precise control
over local shape variation was not possible with the method that was proposed. These
limitations would however not change our conclusion that uncertainty in geometry and
simulation output needs to be considered, and preferably quantified for image-based
computational models.

The inner meta-model relates variations in shape modes (weighted by the shape coeffi-
cients) and flow rate to the transvalvular pressure-drop. A small number of shape modes
was used, and yielded an approximation of the original segmentation. Likewise, the
inner meta-model, relating shape coefficients to the transvalvular pressure-drop, is an
approximation of the transvalvular pressure vs. flow relationship as well. Figure 4.7–4.9
demonstrate that for most cases the meta-model adequately approximates this relation-
ship. However, for some cases in Subgroup C (healthy), this method seems to break down.
That is, training of the inner meta-model seemed insufficient, or the five shape modes
did not seem to adequately capture the features that were relevant for the transvalvular
pressure-drop vs. flow relationship.

The agPCE method is a variance-based sensitivity method. This assumes that variance can
fully capture the uncertainty in the output parameter. However, this may be inappropriate
when the output distribution is skewed or multi-modal (Pianosi et al. 2016). Hence, the
sensitivity indices (Figure 4.5) may not be appropriate for all cases. An exploratory Monte-
Carlo simulation with the uncertainty ranges in Table 4.1 demonstrated that for healthy
cases the distribution in transvalvular pressure-drop followed a normal distribution,
and variance is an appropriate statistical measure. However, for moderately stenotic
cases, the distribution became lightly left-skewed. Furthermore, it was observed that
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left-skewness (tendency towards a lower transvalvular pressure-drop) increased with an
increase in stenosis severity. Hence, variance-based methods for sensitivity analysis may
not be ideal in all circumstances. Density based methods which characterize the output
distribution by the cumulative density function, may in those cases be more appropriate,
and should be considered in future work (Pianosi and Wagener 2015).

In line with Chapter 3, the transvalvular pressure-drop at peak systole was approximated
by the CFD simulations, and expressed as an uncertain scalar parameter Y . In-vivo
however, the transvalvular pressure-drop would strongly vary throughout the cardiac
cycle due to flow pulsatility. Hence, the current approach could be expanded to include
uncertainty in the transvalvular pressure-drop over time. This would require computa-
tionally more demanding pulsatile simulations. Moreover, Y would need to be expanded
to an uncertain vector Y that captures temporal variation.

4.4.2 CONCLUSION

We have developed a method for sensitivity analysis and uncertainty quantification for
transvalvular pressure-drop vs. flow relationships. This method assumes that physically
relevant shape variation can be adequately captured with a statistical shape model.
Consequently, a meta-model that is trained on a limited number of these shape modes
can be used to quantify how geometric uncertainty affects the transvalvular pressure-drop
computations. With this method we have demonstrated that geometric uncertainties
in the order of voxel size may in fact strongly influence transvalvular pressure-drop
predictions by image-based CFD. Hence, we recommend that the influence of geometric
uncertainty is quantified for applications that rely on image-based CFD models.
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APPENDIX

Figure 4.7 Volumetric flow-rate vs. transvalvular pressure-drop curves for subgroup A: valve opening area < 100
mm2. Filled circles represent the CFD results on the original segmentation meshM(xp, T ). Results of
the inner meta-model (dashed line with triangles) are augmented with boxplots. Boxplots of imposed
uncertainties of 0.5 mm (blue) and 1.0 mm (red) are depicted.
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Figure 4.8 Volumetric flow-rate vs. transvalvular pressure-drop curves for subgroup B: valve opening area 100–
150 mm2. Results of the inner meta-model (dashed line with triangles) are augmented with boxplots.
Boxplots of imposed uncertainties of 0.5 mm (blue) and 1.0 mm (red) are depicted.
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Figure 4.9 Volumetric flow-rate vs. transvalvular pressure-drop curves for subgroup C: valve opening area >150
mm2. Results of the inner meta-model (dashed line with triangles) are augmented with boxplots. Box-
plots of imposed uncertainties of 0.5 mm (blue) and 1.0 mm (red) are depicted.
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ABSTRACT

Background Aortic valve stenosis is a common valvular disease that leads to disturbed
blood flow in the thoracic aortic artery. In-vivo and in-vitro studies have demonstrated
that blood flow downstream of the diseased aortic valve intermittently exhibits random
fluctuations in the velocity field which are associated with turbulence. The wide range
of time and length scales involved in such flows warrants the use of computationally
demanding scale-resolving numerical models such as Direct Numerical or Large Edddy
Simulations. Aim The aim of this work was to numerically compute the turbulent flow
downstream of healthy and stenotic heart valves, in both steady as pulsatile flow con-
ditions. Methods Large Eddy Simulations and Reynolds-Averaged Navier-Stokes were
used to compute the flow field at Reynolds numbers of 2700 and 5400. Aortic valves
with an opening area of 70 mm2 and 175 mm2, and their projected orifice-plate type
counterparts were considered. Projections were considered since they are easily obtained
and parameterized. Both steady-state and pulsatile simulations were performed. Power
spectra of velocity fluctuations and downstream turbulent kinetic energy were quantified.
Results Projected geometries exhibited an increased pressure-drop (>90%), and an in-
creased centerline turbulent kinetic energy (>150%). Centerline turbulent kinetic energy
was an order of magnitude higher in severely stenotic heart valves compared to healthy
valevs. Turbulent kinetic energy peaked at 1 and 2 diameters downstream of of stenotic
and healthy valves respectively. Reynolds-Averaged Navier-Stokes models adequately
captured the pressure-drop over the valve, but underestimated turbulent kinetic energy.
Pulsatile flow stabilized flow in the acceleration phase, whereas deceleration triggered
(healthy valve) or amplified (stenotic valve) turbulence. Conclusion Simplification of the
aortic valve by projecting the orifice area leads to an overestimation of the pressure-drop
and turbulence production, and should be avoided. Reynolds-Averaged Navier-Stokes
simulations may be used to predict the pressure-drop over the valve, but if detailed
information of the flow field is required, scale resolving models are recommended.
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5.1 INTRODUCTION

Aortic valve stenosis (AVS) is a common valvular disease that occurs in approximately 4%
of the population above the age of 70 years (Nkomo et al. 2006). AVS is characterized by
a narrowing of the aortic valve systolic opening area. Consequently, this narrowing leads
to a significant increase in the pressure-drop between the left ventricle and the ascending
aorta. This pressure-drop significantly determines the load on the left ventricle, and as
such has been shown to have predictive clinical value. Clinically, the pressure-drop is
estimated from the maximum velocity of blood through the valve in combination with
a simplified form of the Bernoulli equation (Vahanian et al. 2012; Baumgartner et al.
2016). However, this method may not be representative for the actual pressure drop since
it does not take into account pressure recovery, flow unsteadiness, or turbulent losses
(Niederberger et al. 1996; Baumgartner et al. 1999; Bahlmann et al. 2010).

Early in-vivo (Stein and Sabbah 1976; Walburn et al. 1983; Nygaard et al. 1994; Ha et al.
2018b; Yamaguchi et al. 1983) and in-vitro (Bluestein and Einav 1995; Yoganathan et al.
1979; Clark 1976) studies have demonstrated that significant oscillations in blood velocity
can be expected downstream of healthy and diseased heart valves. Furthermore, it
was demonstrated that patients with stenotic heart valves may exhibit higher levels of
turbulence compared to healthy individuals. Some studies have suggested that disturbed
blood flow is associated to hemolysis (Sallam and Hwang 1984; Kameneva et al. 2004)
and to thrombus formation (Stein and Sabbah 1974; Dangas et al. 2016).

Quantification of turbulence is challenging. In the 20th century, invasive patient studies
established the presence of turbulent flow downstream of the aortic valve by hot-film
anemometers. These, hot-film anemometers were for example fitted on catheters (Stein
and Sabbah 1976; Walburn et al. 1983), or used in combination with specific vessel-mounts
(Nygaard et al. 1992; Nygaard et al. 1994). In recent years, non-invasive methods such as
phase-contrast Magnetic Resonance Imaging (pc-MRI) have become available. pc-MRI
captures the full velocity field in space and time, and despite its limited resolution can
be used to directly quantify turbulence. For example, pc-MRI can be used to quantify
viscous and turbulent losses in both flow phantoms (Binter et al. 2015; Ha et al. 2018a),
and patients (Ha et al. 2016; Ha et al. 2018b). Alternatively, medical imaging data can be
used to derive the patient-specific geometry of the valve/aorta that can then be used in
Computational Fluid Dynamics (CFD) simulations. With the increase in computational
power and improvements in numerical schemes, the latter has become a powerful tool.
Image-based CFD models are now widely used to study unsteady flow phenomena
(including turbulence) of aortic coarctations (Andersson et al. 2017; Arzani et al. 2011;
Goubergrits et al. 2013; Lantz et al. 2013), and aortic valve stenosis (Hoeijmakers et al.
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2019; Gilmanov et al. 2019; Wendell et al. 2013; Luraghi et al. 2019).

Flow downstream of a (stenotic) heart valve is characterized by intermittent (low Reynolds)
turbulence (Bluestein and Einav 1995). That is, turbulent structures are generated in
systole, but quickly decay in diastole due to viscosity, and the lack of flow (energy source).
Turbulent flows are characterized by a wide range of spatial and temporal scales in the
velocity field, which makes Direct Numerical Simulation (DNS) particularly demanding
from a computational point of view. Instead, in the field of engineering the flow field is
computed with Reynolds Averaged Navier-Stokes (RANS) equations, or through scale-
resolving models such as Large Eddy Simulation (LES). The RANS approach assumes
that the flow can be decomposed into a mean part and a fluctuating part. Through
closure models and a "turbulent viscosity", the mean turbulent flow is then characterized.
Popular models in industry include the k − ε (Launder and Spalding 1974) and Shear-
Stress Transport k − ω models (Menter 1994). As suggested by Yoganathan et al. (2005),
these RANS models may not be suitable for the transitional and intermittent nature of
turbulence encountered in cardiovascular flows. Although RANS simulations have been
used for pulsatile flow, agreement with experimental data can be very poor for separated
flows (Varghese and Frankel 2003). Instead, computationally demanding scale-resolving
simulations — such as LES — that resolve atleast (part) of the length/time scales may be
more suitable for these types of flows.

The aim of this work was to characterize the turbulent flow downstream of healthy and
stenotic aortic valves by LES simulations. More specifically, the turbulent fluctuations
are analyzed in steady and pulsatile flow conditions. The effect of mesh size on the
computed fluctuations is systematically investigated for the steady-state LES simulations.
Furthermore, the difference between flow through a valvular shape and an orifice-type
opening is presented. Finally, the LES computed pressure-drop is compared to the
pressure-drop computed by RANS simulations to assess whether RANS is a viable
alternative.

5.2 METHODS

5.2.1 AORTIC VALVE GEOMETRY

The shape of the aortic valve leaflets was obtained from a segmentation framework,
extensively described in previous work (Weese et al. 2017; Ecabert et al. 2011). The
generated surface models of the aortic valve included part of the left ventricular outflow
tract, ascending aorta, and sinus. These parts were removed or modified such that the
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B-PROJB-3D

A-PROJA-3D

Cylindrical support

Projection

Projected area

3D

1 mm

24 mm

1 mm

1 mm

17 mm
(a) (b)

Figure 5.1 (a) axial view of all considered CAD models. Full three dimensional shape of the leaflets (A-3D and
B-3D) and their projected counter parts (A-PROJ and B-PROJ) were used. (b) the geometric area is
projected onto a single plane, resulting in a orifice-plate type construct (A-PROJ and B-PROJ).

construct fitted in a circular support with an internal diameter of 24 mm, a length of
17 mm and thickness of 1 mm. Moreover, additional Computer Aided Design (CAD)
models were derived from the valvular shapes by projecting the geometric opening area
along the valve axis on a plane of 1 mm thickness (Figure 5.1). This was done to imitate
clinical practice in which the aortic valve opening area may be extracted by planimetry
of echocardiography (Okura et al. 1997) or CT (Shah et al. 2009) images.

Valves A and B were selected based on their opening area. Valve A had an opening area
of 70 mm2, corresponding to a stenotic heart valve. Valve B had a geometric orifice area
of 175mm2, and represented a healthy/mildy stenotic heart valve.

5.2.2 NUMERICS

To facilitate CFD modeling, the CAD model of Figure 5.1 was extended at the upstream
side by a tube with an inner diameter of 26 mm, and length of 1.7 diameters. Additionally,
a downstream section with a length of 20 diameters was added. Note that the inner
diameter of the up- and downstream sections was 2 mm larger than the valvular section,
and corresponded to the dimensions of the physical model that was 3D printed for
validation of the computed pressure-drop (Chapter 6).
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Table 5.1 Approximate cell sizes and number of cells in the computational domain

Cell Size [mm] Cell count

Type Name Upstream 0D-5D 5D-20D 0D-5D† Total

3D A-3D-M1 2.00 2.00 2.00 8.6 · 103 1.5 · 106

A-3D-M2 2.00 1.00 2.00 6.9 · 104 1.6 · 106

A-3D-M3 2.00 0.50 2.00 5.5 · 105 2.5 · 106

A-3D-M4 2.00 0.25 2.00 4.4 · 106 6.4 · 106

B-3D-M3 2.00 0.50 2.00 5.5 · 105 2.5 · 106

B-3D-M4 2.00 0.25 2.00 4.4 · 106 6.7 · 106

Projected A-PROJ-M1 2.00 2.00 2.00 8.6 · 103 0.8 · 106

A-PROJ-M2 2.00 1.00 2.00 6.9 · 104 0.9 · 106

A-PROJ-M3 2.00 0.50 2.00 5.5 · 105 1.5 · 106

A-PROJ-M4 2.00 0.25 2.00 4.4 · 106 5.7 · 106

† Estimated by dividing the volume of 0D-5D by the volume of a single hexahedral cell.

D

20.0

flow direction
x/D

5.00-1.7 2.5

Figure 5.2 Cross sectional view of the discretized fluid domain of B-3D-M4. Different element sizes were consid-
ered in the region of interest (0D-5D).

5.2.2.1 MESH GENERATION

Volumetric discretization of the fluid volume was performed with ANSYS Fluent Mesh-
ing R19.2 (ANSYS Inc, Canonsburg, Pennsylvania, United States). Volumetric meshes
consisted of regular hexahedral elements in the core, which transitioned to polyhedral
elements close to the boundary (poly-hexcore). Features such as the expected point of
seperation were reconstructed with extremely small cell sizes of 0.05 mm (Figure 5.2).
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Moreover, cell sizes of 0.25 mm were introduced in all other areas that were in proximity
of the valve construct (see Figure 5.1). Upstream of the valve and between 5 and 20 diam-
eters downstream of the valve, coarse cells were used (2x2x2 mm). Volumetric meshes
were refined in the area deemed relevant for jet development and breakdown, that is,
between 0D and 5D downstream of the valve. In this section, four levels of refinement
were considered to establish mesh sensitivity: cells of 2x2x2 mm, 1x1x1 mm, 0.5x0.5x0.5
mm, and 0.25x0.25x0.25 mm (Table 5.1).

5.2.2.2 GOVERNING EQUATIONS

Fluid flow of a viscous and incompressible fluid (constant density) are governed by the
Navier-Stokes equations (in Einstein notation):

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν
( ∂ui
∂xj

+
∂uj
∂xi

)]
(5.1)

∂ui
∂xi

= 0

With ui the velocity, p the pressure, and ν the kinematic viscosity of the fluid. In general,
three approaches to modeling turbulent flows exist. 1) Resolve all length and time-scales
of the turbulent flow by making use of the Navier-Stokes equations (Equation 5.1) directly,
known as DNS. 2) Resolve the time-averaged flow field, and use a model to approximate
the contribution of turbulence, known as Reynolds Averaged Navier Stokes (RANS). Or
3) separate the length scales in the turbulent flow by resolving the largest scales, and
modeling the small sub-grid scales, known as LES. The following paragraphs briefly
describe the RANS and LES approaches.

REYNOLDS AVERAGED NAVIER STOKES

In RANS models, Reynolds decomposition is used to separate the velocity components
of Equation 5.1 into the time-average ( ) and fluctuating parts (′):

ui = ui + u′i, p = p+ p′ (5.2)

When substituting Equation 5.2 into Equation 5.1 the partial differential equations that
govern the mean (incompressible) turbulent flow can be obtained (Alfonsi 2009):
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uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν
( ∂ui
∂xj

+
∂uj
∂xi

)]
− ∂τij

∂xj︸︷︷︸
Reynolds

stress tensor

(5.3)

∂ui
∂xi

= 0

Note that the time-derivative now disappeared from Equation 5.3. The Reynolds stress
tensor in Equation 5.3 includes the effects of turbulent motions on the mean stress, but is
in fact unknown. That is, it actually introduces six additional independent unknowns.
However, it can be approximated by the Boussinesq approximation (Hinze 1975):

τij = u′iu
′
j ≈

2

3
kδij − νt

( ∂ui
∂xj

+
∂uj
∂xi

)
(5.4)

With δij the Kronecker delta, k the turbulent kinetic energy, and νt the turbulent stresses
that need to be modeled. For modeling νt the Shear Stress Transport k−ω model was used
in this study. This models the contribution of turbulence by introducing two additional
transport equations, one for the transport of turbulent kinetic energy k, and one for
transport of the specific dissipation rate ω (Menter 1994).

LARGE EDDY SIMULATION

The LES method spatially filters only the small-scale turbulent structures, and thus
resolves the larger (anistropic) structures. Structures below the spatial filter (typically
grid size) still need to be modeled, and are known as subgrid-scale (SGS) models. Spatially
filtered flow variables are denoted by ˜. The (spatially) filtered momentum and continuity
equations (Equation 5.1) then read:

∂ũi
∂t

+
∂

∂xj
(ũiũj) = −1

ρ

∂p̃

∂xi
+

∂

∂xj

[
ν
( ∂ũi
∂xj

+
∂ũj
∂xi

)]
− ∂τij
∂xj

(5.5)

∂ũi
∂xi

= 0

Note that — in contrast to the RANS formulation — the time-derivative is now non-zero,
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and is included in the solution process. Similar to the RANS equation, the Boussinesq
hypothesis is used, but now only for the subgrid scales:

τij =
1

3
τkkδij − νt

( ∂ũi
∂xj

+
∂ũj
∂xi

)
(5.6)

Similarly to Equation 5.4, a turbulent viscosity νt is introduced, and was in this study
accounted for by the dynamic Smagorinsky model (Lilly 1992).

5.2.2.3 SOLUTION PROCEDURE

Steady flow conditions were simulated with both the RANS approach (Equation 5.3)
as the LES approach (Equation 5.5). Pulsatile flow conditions exclusively used the LES
formulation .

STEADY FLOW

Inflow-diameter-based Reynolds numbers of 2700 and 5400 were considered, and cor-
responded to a flow of 3.5 and 7.0 Lmin-1 of a fluid with water-like properties. Density
of the fluid was set at 998 kgm-3, and viscosity was set at 1.05 · 10−3 Pa·s (water at 18◦

Celsius). Reynolds numbers corresponded to typical mean and peak-systolic in-vivo
flow conditions in rest. A fully developed turbulent flow was assumed at the inflow
boundary. This profile followed a 1/7th power-law (Equation 5.7), representative for the
time-averaged fully developed turbulent velocity profile (Chant 2005).

u(r) = Umax
(
1− r

R

)1/n (5.7)

with :

Umax =
1

2

Q

A0

(n+ 1)(2n+ 1)

n2

Where Q is the volumetric flow rate, A0 the area of the circular vessel, and n = 7.
Furthermore, a constant zero pressure outlet boundary condition, and no-slip walls were
used. With these boundary conditions the RANS solution with the Shear Stress Transport
k − ω turbulence model was obtained. Besides the RANS simulations, additional LES
simulations were performed that resolved a large part of the turbulent fluctuations.
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The RANS solution was used as an initial guess of the time-averaged flow field, and
helped speed up convergence of the LES model which used the same boundary conditions.
Once in LES-mode, time advancement was performed by the non-iterative fractional step
method (Armfield and Street 1999). Time-advancement was performed with a constant
time-step of 1 · 10−4 s. A total of 6 seconds of steady flow was simulated (60000 time-
steps). The first two seconds (approximately one flow-through time) were excluded from
analysis. Consequently, the remaining 4 seconds (40000 time-steps) were used to analyze
the statistics of the steady flow. A time-step of 1 · 10−4 s, peak centerline velocity of
approximately 3 ms-1, and grid size of 0.25 · 10−3 m ensured that the Courant number
stayed below one throughout the domain. Note that this is an estimate based on A-PROJ-
M4, and given the lower jet-velocity in all other cases, should thus be a conservative
estimate.

PULSATILE FLOW

To simulate pulsatile flow conditions, a sine squared-based boundary condition was
adopted which closely matched a Fourier series representative of aortic blood-flow that
was presented by Olufsen et al. (2000). That is, the volumetric flow rate Q depended on
time:

Q(t) =


Q0 sin

2
(
t

π

2Tacc

)
t < Tacc

Q0 sin
2
(
(t+ Tdec − Tacc)

π

2Tdec

)
Tacc ≤ t ≤ Tsystole

0 t > Tsystole

(5.8)

Here, Tacc and Tdec represent the period of the acceleration and deceleration slopes
respectively. With Tacc = 0.12Tcycle and Tdec = 0.22Tcycle, systole becomes a fraction of
the full cardiac cycle: Tsystole = 0.34Tcycle. Q0 represents the flow-rate at peak-systole,
and was set at 7.0 Lmin-1. For all pulsatile simulations Tcycle = 3.33 s, resulting in a
Womersley parameter of approximately 14. With these water-like fluid properties, the
cycle time is considerably longer than in-vivo, but ensured that the physiological ratio
between transient inertial forces and viscous forces was maintained. Similar to steady
flow simulations, the velocity profile at the inflow boundary was prescribed as a 1/7th

power law (Equation 5.7), and time-advancement was performed with a constant time-
step of 1 · 10−4 s by the non-iterative fractional step method. Data of the first cycle was
discarded from all analyses.
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5.2.3 POST-PROCESSING

Multiple monitor points were defined along the centerline at 0.2D intervals (0D-5D),
and 0.5D intervals (5D-20D). At these locations along the centerline, the instantaneous
velocity components u(x, t) were sampled during the solution process. Using Reynolds
decomposition, the fluctuating part u′(x, t) was separated from the time-average u(x).
For continuous records the time-average of u(x, t) over a period of time T is defined as:

u(x) =
1

T

∫ t0+T

t0

u(x, t)dt (5.9)

Or for discrete periodic time-series with N samples and a constant time-step:

u(x) =
1

N

N∑
i=1

u(x)i (5.10)

The deviations from the mean velocity u′(x, t) are then defined as:

u′(x, t) = u(x, t)− u(x) (5.11)

For the steady-state flow conditions that were simulated with LES, computing u(x)

and u′(x, t) was straightforward, and time-averaged velocities were computed over the
interval t = [2, 6] seconds.

When applying the same procedure for the pulsatile simulations, u(x) would contain the
large-scale fluctuations that are due to the pulsatility of the flow. Hence, to distinguish
between actual turbulent fluctuations and large-scale motions, an ensemble average
(Mittal et al. 2003; Scotti and Piomelli 2001; Varghese et al. 2007b) was taken overN cycles
with period T . That is:
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uens(x, t) =
1

N

N−1∑
n=0

u(x, t+ nT ) (5.12)

In periodic time-series, the ensemble average of uens(x, t) would then reflect the mean
velocity at a specific location, at a specific phase of the cardiac cycle, thus accounting
for the large-scale pulsating motion of the fluid. Consequently, for pulsatile simulations
u′(x, t) was obtained by replacing u(x) with uens(x, t). Data of the first cycle was
discarded, and 30 cycles were used to construct uens(x, t).

Power spectral density of the fluctuating velocity magnitude |u′| was estimated by
Welch’s method (Welch 1967) (steady-state: eight segments, 50% overlap, pulsatile: 30
segments, 50% overlap) at five points along the centerline, and is similar to the approach
employed by Bergersen et al. (2018) and Varghese et al. (2007b). Furthermore, the
turbulent kinetic energy k was computed from the fluctuating velocity components
u′(x, t), v′(x, t), and w′(x, t) by:

k =
1

2

(
(u′)2 + (v′)2 + (w′)2

)
(5.13)

Finally, planes orthogonal to the centerline at x/D = [0.0, 0.2, 0.4, 1.0, 2.0] were used to
visualize instantaneous, time-averaged and the fluctuating part (root mean square) of
u(x, t) .

5.3 RESULTS

STEADY FLOW

Steady flow conditions were simulated with the RANS and LES approach. The first
two seconds (20000 timesteps) of the steady flow LES results were excluded from the
analysis. Figure 5.3 suggests that excluding the first two seconds was sufficient to avoid
a potential simulation start-up effect, fluctuations seem to be random between 2 and
6 seconds of steady flow time. Furthermore, Figure 5.3 shows that the magnitude of
velocity fluctuations was much larger for valve A than for valve B (both projected and
3D). Moreover, Figure 5.3 suggests that fluctuations strongly depend on axial position,
and were smaller in magnitude for the 3D valves than for their projected counterparts.
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Figure 5.3 Fluctuations in velocity magnitude for projected and 3D configurations of valve A and B over 4 seconds
at steady flow conditions. Tracings contain 40000 samples at five specific points along the centerline.

PULSATILE FLOW

Normalized centerline velocity magnitudes of valve A and B in pulsatile flow condi-
tions are illustrated in Figure 5.4 and 5.5. Significant fluctuations in centerline velocity
magnitude of Valve A (stenotic) were initiated at x/D ≥ 0.6, and were maintained up
to approximately x/D = 1.8. At x/D = 4.0 fluctuations have decreased substantially.
Fluctuations in Valve A were initiated in early systole, and persist throughout a large
part of the systolic phase. Tracings of the ensemble average show that the overall input
waveform (see x/D = 0.0) was maintained between x/D = 0.0 and x/D = 2.0, but
slightly flattens further downstream.

Similar behavior was observed in valve B (Figure 5.5). However, in contrast to valve
A, fluctuations were generally observed further downstream x/D ≥ 1.0. Additionally,
fluctuations were not present in the acceleration phase, but were triggered immediately
after peak systole (t > 0.12Tcycle), i.e., where flow decelerates.

5.3.1 POWER SPECTRA VELOCITY MAGNITUDE

STEADY FLOW

Power spectra of the velocity fluctuations show how the power of the fluctuations is
distributed over the involved frequencies. Low frequencies and high power are associated
to larger eddies passing the observation point, whereas higher frequencies of low power
are associated with smaller eddies. For LES simulations, power spectra therefore strongly
depend on mesh density. That is, a finer mesh resolves a larger part of the energy
spectrum, and a smaller part needs to be modeled. Figure 5.6 depicts the power spectral
density, and demonstrates that the density of the mesh downstream of the valve clearly
affected the power spectra. For both the projected and 3D configuration, the smaller
elements captured fluctuations over a larger frequency range. Furthermore, Figure 5.6
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Figure 5.4 Left: numerically computed time history of the normalized velocity magnitude of 5 out of 30 cycles for
A-3D-M4 in pulsatile flow conditions. Right: ensemble average of velocity magnitude over 30 cycles.
Superimposed gray patch indicates the acceleration phase of systole.
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Figure 5.5 Left: numerically computed time history of the normalized velocity magnitude of 5 out of 30 cycles for
B-3D-M4 in pulsatile flow conditions. Right: ensemble average of velocity magnitude over 30 cycles.
Superimposed gray patch indicates the acceleration phase of systole.

114



SCALE-RESOLVING SIMULATIONS

100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 [m

2
/s

]

100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

Frequency [Hz]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 [m

2
/s

]

100 101 102 103

Frequency [Hz]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

Frequency [Hz]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

Frequency [Hz]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

x/D: 0.0 x/D: 0.4 x/D: 1.0 x/D: 2.0 x/D: 3.0 x/D: 5.0

A-3D-M1 A-3D-M2 A-3D-M3 A-3D-M4

A-PROJ-M1 A-PROJ-M2 A-PROJ-M3 A-PROJ-M4

Figure 5.6 Power spectral density for different mesh densities and at 0.0, 0.4, 1.0, 2.0, 3.0 and 5.0 diameters down-
stream of the valve at steady flow conditions (7 Lmin-1; Re = 5400). Top row: projection of valve A;
bottom column: 3D configuration of valve A.

illustrates that for both valves the power of high frequency velocity oscillations on the
centerline was strongest at approximately x/D = 1.0. Additionally, Figure 5.3 and
Figure 5.6 suggest that the power of fluctuations was lower in the 3D configuration at
x/D = 0.4. Power spectra between 10 and 100 Hz of the projection (A-PROJ-M4) and
3D configuration (A-3D-M4) at locations x/D = [1.0, 2.0, 3.0, 5.0] were comparable. The
power spectrum for the projected case (A-PROJ-M4) seems to deviate mainly in the lower
frequency range (<30 Hz). These low-frequency fluctuations for A-PROJ-M4 are also
clearly visible at x/D = 1.0 in the velocity time-series (Figure 5.3).

Furthermore, Figure 5.6 demonstrates that at the valve opening (x/D = 0.0), and at
x/D = 5.0 high frequency oscillations in velocity magnitude were not present. This
indicates that at these locations turbulence was not yet triggered (x/D = 0.0), or has
decayed substantially (x/D = 5.0).

Figure 5.7 illustrates the effect of the inflow Reynolds number on the power spectra.
With an increase in steady-state flowrate, (and thus Reynolds number), the power of the
fluctuations increased substantially. For example, at x/D = 2.0 the power of fluctuations
of valve A at 100 Hz was 10 times higher at a Reynolds number of 5400 compared to 2700.
Although fluctuations were of lower frequency and magnitude in B-3D-M4, a similar
10-fold increase in power at x/D = 2.0 was observed at higher Reynolds numbers.
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Figure 5.7 Power spectra for valve A (top row) and valve B (bottom row) in steady-flow (left column: Re=5400;
middle column: Re=2700) and pulsatile flow conditions (right column). A shift towards higher fre-
quencies, and stronger fluctuations was observed when 1) the valve was more stenotic, and 2) the
inflow Reynolds number was larger.

PULSATILE FLOW

Power spectra of valve A and B in pulsatile flow conditions can be found in Figure 5.7.
Maximum power and highest frequencies were found at x/D = 1.0 and x/D = 2.0 for
valves A and B respectively. This is in line with observations in steady flow conditions,
e.g., see Figure 5.6 and Figure 5.7. Pulsatile flow was characterized by a mean flow rate of
3.5 Lmin-1 (Re=2700), and peak flow-rate of 7.0 Lmin-1 (Re=5400). Power spectra of steady
and pulsatile flow conditions suggests that steady-flow at mean flow rates (3.5 Lmin-1)
was more representative for pulatile flow than steady flow at peak-systolic flowrates (7.0
Lmin-1).
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5.3.2 TURBULENT KINETIC ENERGY

STEADY FLOW

Figure 5.8 illustrates the resolved part (with LES) of the turbulent kinetic energy along
the centerline, and gives information on the kinetic energy associated with turbulent
eddies. In line with the observations in Figure 5.6, a finer mesh resolves a larger part of
the turbulent fluctuations. Indeed, Figure 5.8 demonstrates that a coarse mesh under-
resolves the turbulent kinetic energy, and a finer meshes seems more appropriate since
they allow the model to resolve a larger part of the turbulent kinetic energy. The most
coarse mesh (M1) only resolved around 1/3th of the turbulent kinetic energy that was
resolved with meshes M2-M4. With these more dense grids a much larger part of the
turbulent kinetic energy was resolved. For M2-4, peak centerline turbulent kinetic energy
was reached around x/D = 1.0, the same for both the projected and 3D valve. Judging
from Figure 5.8, refining beyond mesh M4 would give marginal improvements in the
estimation of turbulent kinetic energy. Furthermore, it was observed that generation
of turbulent kinetic energy in the projected cases was approximately two times larger.
Additionally, the level of stenosis plays a substantial role, and peak turbulent kinetic
energy was ten times higher for a stenotic valve (A-3D-M4: 0.211 m2s-2) than for a healthy
valve (B-3D-M4: 0.022 m2s-2 ). Also note that for healthy valves (B-3D-M4) the peak in
turbulent kinetic energy was shifted further downstream to x/D = 2.0.

Opposed to the LES simulations, the RANS simulations do not directly resolve the
turbulent fluctuations. Instead, production and transport of k was entirely modeled
through the Shear-Stress Transport model. Table 5.3 demonstrates that this approach may
underestimate the production of turbulent kinetic energy along the centerline. Although
not included in the current results, it was observed that the RANS simulations generally
over-predict the downstream distance of maximum turbulent kinetic energy.

PULSATILE FLOW

Turbulent kinetic energy k for the pulsatile flow condition was computed by making use
of the ensemble average uens(x, t) (Equation 5.12). Turbulent kinetic energy distribution
along the centerline at eight time instances are visualized in Figure 5.9. In the stenotic
valve (Valve A), turbulent kinetic energy builds up in the acceleration phase of systole
(t2), and reached a maximum between t3 and t4, i.e., just after systole. At t ≥ t4 turbulent
kinetic energy rapidly reduceed to negligible levels at the end of systole (t7). The healthy
valve (Valve B) does not exhibit elevated levels of turbulent kinetic energy until peak
systole t3. However, in the deceleration phase, turbulent kinetic energy was drastically
amplified, and reached a maximum at approximately t5 and — similar to valve A —
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Figure 5.8 Turbulent kinetic energy at Re=5400 (7 Lmin-1) for each mesh density, projected and 3D configurations
and valves A and B. The coarsest mesh under-resolved the turbulent fluctuations, and turbulent kinetic
energy was substantially underestimated. Peak turbulent kinetic energy was approximately 10 times
higher for the stenotic valve A when compared to valve B.

quickly diminishes late systole (t6 − t7).

Valve A exhibits a peak in centerline turbulent kinetic energy at approximately x/D = 1.2.
In valve B, peak turbulent kinetic energy is shifted further downstream, and is observed
at x/D = 2.0. This is in line with the steady-state results, where the same observation is
made (Figure 5.8). Compared to the steady-state simulations, maximum turbulent kinetic
energy levels were of the same order of magnitude for the pulsatile simulations, but were
only maintained for a short time span. It should be noted that with kmax = 0.304 and
kmax = 0.036 maximum turbulent kinetic energy was somewhat higher during pulsatile
flow (Table 5.2). However, k was derived from a limited number of cycles, e.g., with 30
cycles the ensemble average, and all derived metrics, may not have completely converged
from a statistical point of view.

5.3.3 CENTERLINE VELOCITY AND PRESSURE

Time-averaged centerline maximum velocity magnitude and pressure-drop results of
each simulated case are summarized in Table 5.3 (steady flow) and Table 5.2 (pulsatile
flow).

STEADY FLOW

Maximum centerline velocities for A-3D were 2.0 and 1.0 m/s for flow rates of 7.0 and
3.5 Lmin-1 respectively. At 7.0 Lmin-1 valve A exhibited a pressure-drop of 12.3 mmHg,
and at 3.5 Lmin-1 a pressure-drop of 3.1 mmHg. A-3D-M4 yielded a maximum centerline
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Figure 5.9 Turbulent kinetic energy at specific time instances in systole. Valve A: turbulent kinetic energy builds
up in the acceleration phase (t2), and is maximal at peak systole, and was sustained over the time
interval t3 − t4, k decays between t5 and t6, and was completely diminished by the end of systole
(t7). Valve B: turbulent kinetic energy was zero in the entire acceleration phase, but was elevated at
peak systole (t3), and further amplified in the deceleration phase (t3 − t5). Turbulent kinetic energy
rapidly decays in late systole (t6 − t7). Levels of k were an order of magnitude lower in valve B.

velocity that was 4% higher than A-3D-M1, the coarsest mesh. Pressure-drop results were
consistent for mesh sizes A-3D-M[1-4]. RANS simulations yielded maximum centerline
velocity magnitudes and pressure-drops that were in line with LES results of both A-3D
as B-3D.

Projected cases exhibited a significantly higher centerline velocity than 3D cases. For
example, A-PROJ-M4 exhibited a peak centerline velocity of 2.69 m/s, approximately
35% higher than A-3D-M4. The increased jet velocity in A-PROJ-M4 translates to a 90%
increase in the pressure-drop (23.4 vs. 12.3 mmHg). Similarly, B-PROJ-M4 exhibited a
pressure drop that is 92% higher (1.2 vs. 2.3 mmHg). Differences in maximum centerline
velocity magnitude and pressure-drop between LES simulations and RANS simulations
were negligible.

PULSATILE FLOW

Table 5.2 summarizes velocity and pressure-drop results for the pulsatile flow condition.
Maximum centerline velocity magnitude at peak systole computed from uens(x, t)max

are 2.07 and 0.72 m/s for Valve A and B respectively. Velocities compared well to the
steady flow conditions at 7.0 Lmin-1. Furthermore, ∆P over both valves, at peak systole,
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Figure 5.10 Contours along the centerline of instantaneous (top row - T=6s), time-averaged (middle row) and root
mean square (bottom row) of the velocity magnitude (A-PROJ-M4).

corresponded to ∆P results of the steady-state simulations at 7.0 Lmin-1. The combined
effect of acceleration and the stenosis — represented by ∆Pmax — shows that the effect of
acceleration on ∆P was marginal in Valve A (13.2 vs. 12.4 mmHg). The effect of fluid
acceleration was more clear in Valve B. The maximum pressure-drop in systole was 4.3
mmHg, whereas the pressure-drop at peak systole was only 1.2 mmHg, indicating that
unsteadiness was more important. For Valves A and B, the mean pressure-drop over
systole — which contained both acceleration/deceleration effects as the effect of stenosis
— was around 1/3th the pressure-drop that was observed at peak systole.

5.3.4 CROSS SECTIONAL VELOCITY DISTRIBUTION

STEADY FLOW

In Figure 5.10 and 5.11 the instantaneous, mean and root mean square of the velocity
magnitude of A-PROJ-M4 and A-3D-M4 at specific cross-sections are visualized. A clear
jet-like structure is observed for both cases up to 0.4D downstream of the valve. The
high-velocity core slowly dissipates, and at x/D = 1.0 and x/D = 2.0 is not visible
anymore. Large RMS values throughout the cross section indicate that jet breakdown
was initiated.

The instantaneous contours of A-PROJ-M4 suggest that the jet was rotating clockwise
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Figure 5.11 Contours along the centerline of instantaneous (top row - T=6s), time-averaged (middle row) and root
mean square (bottom row) of the velocity magnitude (A-3D-M4).

at that time instance. However, the time-averaged contours at 0.2D do not show this
rotation, suggesting that this was averaged out over time, and may be caused by a
counter-clockwise, and clockwise alternation of the jet. This appears to influence the
centerline velocity downstream, i.e., low-frequency behavior is observed in the tracings
of Figure 5.3 at x/D=1.0 and x/D=2.0.

Instantaneous and time-averaged contours of A-3D-M4 illustrate that there was a transi-
tion from a triangular shaped jet, to a triangular shaped jet that was rotated 180 degrees
around the centerline. This apparent 180 degrees rotation may be a result of radial
momentum provoked by the presence of the leaflets, essentially carrying flow to the
opposite side of the vessel. As expected, RMS values show that velocity fluctuations were
particularly strong at the edge of the (stable) core-region of the jet. Similar to A-PROJ-M4,
jet breakdown of A-3D-M4 occurs approximately 1.0D downstream of the valve. Further-
more, RMS values around the core of the jet at 0.4D demonstrate that instabilities of the
turbulence-triggering shear layer seem to be captured with the finest grid level.

Results for B-3D-M4 are not shown, but showed similar patterns, with the exception that
velocities and RMS of velocity fluctuations were lower, and jet breakdown occurs further
downstream, e.g., see evolution of centerline k in Figure 5.8.
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Table 5.2 Simulation results for pulsatile simulations

Flow Sim. Qmean Qmax Re |uens|max ∆Pmean
† ∆Ppeak

‡ ∆P∗max kmax

Type Type [Lmin-1] [Lmin-1] [-] [ms-1] [mmHg] [mmHg] [mmHg] [m2s-2]

A-3D-M3 pulsatile LES 3.5 7.0 2700 2.07 4.5 12.4 13.2 0.304

B-3D-M3 pulsatile LES 3.5 7.0 2700 0.72 0.4 1.2 4.3 0.036

† Mean pressure-drop over systole
‡ Pressure-drop at peak-systole. i.e. no acceleration or deceleration
∗Maximum observed pressure-drop in acceleration phase. I.e. Acceleration effects are included in the pressure-

drop.

5.4 DISCUSSION

The main aim of this study was to numerically compute and characterize the turbulent
flow downstream of four aortic-valve-like geometries in steady and pulsatile flow con-
ditions. This was done in order to establish the validity of steady-flow assumptions
in cardiovascular modeling. Fluctuations in the steady turbulent flow and pulsatile
intermittent turbulent flow were characterized by means of power-spectra at specific
locations along the centerline. Additionally, the distribution of turbulent kinetic energy
along the centerline was presented. It was demonstrated that substantial differences in
power spectra, pressure-drop, and turbulent kinetic energy can be expected when simpli-
fying the complex valvular shape to orifice-plate type geometries. Additionally, from the
power spectra it was observed that turbulent fluctuations were particularly strong for
stenotic valves. Turbulent kinetic energy along the centerline is substantially higher for
the stenotic configuration (valve A) compared to the healthy configuration (valve B). An
order-of-magnitude difference is observed when an inflow Reynolds number of 5400 is
used.

In pulsatile flow conditions, deceleration initiates or amplifies fluctuations and turbulent
kinetic energy. Acceleration has a stabilizing effect. Nevertheless, substantial fluctuations
were observed downstream of the stenotic valve during flow acceleration. In the healthy
valve, fluctuations were only triggered upon onset of the deceleration phase.

5.4.1 NUMERICS

Blood flow in the cardiovascular system is mostly low-Reynolds number laminar pulsat-
ing flow. However, a stenosis of the blood vessel may cause flow separation, recirculation,
and together with the pulsating nature of blood flow may cause intermittent transition to
turbulence in large vessels. For example, it has been observed that (transitional) turbulent
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Table 5.3 Simulation results for all steady-state simulations

Name Flow Type Simulation Type Q Re |u|max ∆P† kmax
‡

[Lmin-1] [-] [ms-1] [mmHg] [m2s-2]

A-3D-M1 steady-state LES 7.0 5400 1.92 12.3 0.062

A-3D-M2 steady-state LES 7.0 5400 1.98 12.3 0.174

A-3D-M3 steady-state LES 7.0 5400 1.98 12.3 0.221

A-3D-M4 steady-state LES 7.0 5400 2.00 12.3 0.211

A-3D-M3 steady-state LES 3.5 2700 1.00 3.1 0.055

A-3D-M4 steady-state LES 3.5 2700 1.00 3.1 0.058

B-3D-M3 steady-state LES 7.0 5400 0.73 1.2 0.022

B-3D-M3 steady-state LES 3.5 2700 0.37 0.3 0.006

B-3D-M4 steady-state LES 7.0 5400 0.72 1.2 0.021

B-3D-M4 steady-state LES 3.5 2700 0.37 0.3 0.006

A-3D-M1 steady-state RANS SST k − ω 7.0 5400 1.91 12.4 0.180

A-3D-M2 steady-state RANS SST k − ω 7.0 5400 1.96 12.4 0.170

A-3D-M3 steady-state RANS SST k − ω 7.0 5400 1.96 12.3 0.161

A-3D-M4 steady-state RANS SST k − ω 7.0 5400 1.98 12.4 0.156

B-3D-M4 steady-state RANS SST k − ω 7.0 5400 0.72 1.2 0.012

A-3D-M1 steady-state RANS SST k − ω 3.5 2700 0.96 3.1 0.044

A-3D-M2 steady-state RANS SST k − ω 3.5 2700 0.99 3.1 0.042

A-3D-M3 steady-state RANS SST k − ω 3.5 2700 0.99 3.1 0.039

A-3D-M4 steady-state RANS SST k − ω 3.5 2700 0.99 3.2 0.040

B-3D-M4 steady-state RANS SST k − ω 3.5 2700 0.37 0.3 0.003

A-PROJ-M1 steady-state LES 7.0 5400 2.69 22.7 0.188

A-PROJ-M2 steady-state LES 7.0 5400 2.71 23.2 0.398

A-PROJ-M3 steady-state LES 7.0 5400 2.74 24.8 0.501

A-PROJ-M4 steady-state LES 7.0 5400 2.69 23.4 0.522

B-PROJ-M4 steady-state LES 7.0 5400 0.94 2.3 0.063

A-PROJ-M1 steady-state RANS SST k − ω 7.0 5400 2.72 22.7 0.197

A-PROJ-M2 steady-state RANS SST k − ω 7.0 5400 2.72 22.8 0.317

A-PROJ-M3 steady-state RANS SST k − ω 7.0 5400 2.74 23.6 0.346

A-PROJ-M4 steady-state RANS SST k − ω 7.0 5400 2.72 23.3 0.421

† Represents the time-averaged pressure-drop over 4 seconds.
‡ Maximum turbulent kinetic energy along the centerline. k is computed by Equation 5.13.
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flow may occur downstream of both healthy as stenotic heart valves (Nygaard et al.
1994; Stein and Sabbah 1976). Several attempts were made to model such flows through
DNS. For example, Varghese and colleagues performed both steady-state (Varghese et al.
2007a) and pulsatile (Varghese et al. 2007b) simulations in an idealized axi-symmetric
and eccentric 75% stenosed vessels at inlet Reynolds numbers of 1000. It was observed
that the jet transitioned to full turbulence at about x/D=5 downstream of the stenosis. In
a similar numerical study, Khair et al. observed a peak in turbulent kinetic energy two
channel heights downstream of a 75% stenosis (Khair et al. 2015) at a Reynolds number
of 2000.

Similar observations were made in this study. A peak in turbulent kinetic energy at
x/D=2.0 was found for valve B. However, with more severe constrictions (valve A), jet
break-down occurred closer to the valve, typically around x/D=1.0. This indicates that
jet formation for healthy valves is present, but that such a jet is typically more stable than
for stenotic valves, and yields turbulent fluctuations of substantially lower intensity.

5.4.2 STEADY VS. PULSATILE FLOW

From experimental and numerical studies it is known that pulsatility of cardiovascular
flows has a suppressing effect on turbulence production (Varghese et al. 2007a; Sherwin
and Blackburn 2005; Bluestein and Einav 1995). That is, turbulent fluctuations are
stabilized in the accelerating phase of the cycle. Consequently, at peak-systole, the adverse
pressure-gradient destabilizes the flow, and turbulence is triggered. Subsequently, in
diastole flow loses momentum, and the flow field will relaminarize. This process is further
stimulated during the acceleration phase of the next cardiac cycle. Similar behavior is
observed in the presented numerical simulations. Even though the inflow Reynolds
number is expected to be in the turbulent regime, valve A does not exhibit random
fluctuations in a large part of the acceleration phase, but instabilities in the flow field were
only observed late in the acceleration phase. Fluctuations were further amplified upon
onset of deceleration. This is in line with DNS simulations by Varghese et al. (2007b),
who observed similar behavior in a pulsating flow through a 75% stenosis at (inlet-based)
peak Reynolds numbers of 1000. Although their lower Reynolds number meant that
these fluctuations were observed further downstream, i.e., at x/D ≥4 and x/D ≤8.

These numerical results are also in line with in-vivo and in-vitro studies. Stein and Sabbah
(1976) showed that for diseased valves turbulent fluctuations close to the valve and in
the ascending aorta were present throughout ejection. For healthy cases, downstream
turbulence dissipated more quickly. Additionally, Walburn et al. (1983) showed that
close to healthy aortic valves turbulent fluctuations may occur, that stabilize in early
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systole. Bluestein and Einav (1995) was able to replicate this effect in an in-vitro study as
well, and showed that the root mean square of velocity fluctuations, measured 30 mm
(approximately 1 diameter) downstream, substantially reduced during acceleration, but
was elevated again in the decelerating phase. Root mean square values between 0.4 and
1.5 m/s were found for a 90% stenosis, and 0.25-1.5 m/s for a 65% stenosis, which seems
to correspond to the RMS values found in our steady-state simulations.

Figure 5.7 reveals that the frequency and power of velocity fluctuations of pulsatile flow
seems to correspond better to steady flow with mean systolic flow rate, opposed to peak
systolic flow rate. Additionally, Figure 5.9 corroborates earlier observations by Bluestein
and Einav (1995) and Yamaguchi et al. (1983), who observed that turbulence peaked
during the deceleration phase. This study clearly demonstrated that peak turbulence
in stenotic heart valves occured just after peak systole, whereas in healthy valves peak
systolic velocity fluctuations were relatively low, and were triggered in late systole.
Similar to the steady flow conditions, k may be an order of magnitude higher in stenotic
heart valves compared to healthy valves.

5.4.3 PROJECTION VS. 3D CONFIGURATION

It is well established that valvular shape substantially affects the instantaneous pressure-
drop over the aortic valve. For example, Gilon et al. (2002) found that dome-shaped valves
exhibit a substantially higher coefficient of contraction compared to flattened valves with
the same anatomic orifice area. Differences of up to 40% in pressure-drop were observed.
Furthermore, in-vitro work by Garcia and colleagues showed that a contraction coefficient
of 0.6 can be expected for circular flat-plate orifices, and approximately 1 for funnel-type
orifices (Garcia et al. 2004; Garcia and Kadem 2006). This is in line with the findings in
the current study. Indeed, the pressure-drop computed for the 3D valvular shapes is
much lower than for the projected cases due to the contraction coefficient being closer to
unity. Furthermore, the results of this study suggests that a straightforward projection
would lead to a severe overestimation of expected turbulent kinetic energy. Contour
plots of the RMS (Figure 5.10 and 5.11) suggest that velocity fluctuations in the shear
layer are considerably higher for the projected case. Due to the lower jet velocity of the
3D configuration, jet velocity (and thus jet Reynolds number) is lower, and consequently
fluctuations in the shear layer are substantially lower as well. Hence, careful consideration
is needed when designing in-vitro validation studies that aim to replicate in-vivo flow
conditions. For example, Ha et al. (2018a) used simple 3D printed circular orifice models
in an in-vitro setup, and assessed the generation of turbulent kinetic energy in the shear-
layer through pc-MRI. Due to the effect of valvular shape on turbulence production,
extrapolation of those results to the in-vivo situation should be done with caution.
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5.4.4 TURBULENCE MODELING

Modeling turbulent flows is typically done with RANS, LES, or DNS. However consensus
on the best approach seems to be absent. For example, results from a inter-laboratory
study by the Food and Drug Administration demonstrated that 26 out of 28 participants
used RANS models when asked to solve the turbulent flow (Reynolds numbers between
3500 and 6500) in a device that contains a nozzle and sudden expansion (Stewart et al.
2012). Flow through such a device shows some similarities to flow through the aortic
valve. Furthermore, results of Stewart et al. (2012) show a wide spread in agreement
between experiments and RANS simulations, specifically for Reynolds numbers below
3500. Better agreement between experimental observations and numerical results were
found at higher Reynolds numbers (6500). Demonstrating that even though CFD mod-
eling is widely used, tackling turbulent flows is still challenging. Our results, and the
results by Stewart et al. (2012) show that RANS models should be used carefully, and
comparison with high quality scale-resolving simulations is desirable, in particular for
flows that are in the transitional regime. Nevertheless, when interested in the transvalvu-
lar pressure-drop, RANS simulations seem to yield adequate results when compared to
the, computationally much more expensive, scale-resolving methods.

Several other studies have suggested the use of compute-intensive scale-resolving meth-
ods such as LES (Bergersen et al. 2018; Janiga 2014) or even DNS (Abad et al. 2020). But
these studies have demonstrated that even with these more accurate models, prediction
of jet-breakdown is not guaranteed for low Reynolds numbers. For example, Bergersen
et al. (2018) observed that by refining the mesh, jet breakdown unexpectedly shifted
further downstream. Similarly, DNS simulations of Abad et al. (2020) demonstrated simi-
lar behavior for throat Reynolds numbers of 5000, more-accurate higher order spectral
elements (polynomial order 7) predicted jet-transition to be further downstream than
experimental observations. This demonstrates that even with scale-resolving methods,
correct prediction of flow physics is not guaranteed, and results should be scrutinized.

5.4.5 TRANSVALVULAR PRESSURE-DROP

The transvalvular pressure-drop and mean transvalvular pressure-drop are well estab-
lished indicators of aortic valve stenosis severity. Typical peak pressure-drop values
measured in patients with aortic stenosis range between 40-65 mmHg for moderate aortic
stenosis. Severe aortic stenosis is classified by a peak pressure-drop larger than 65 mmHg
(Bohbot et al. 2017; Falk et al. 2017; Nishimura et al. 2014; Baumgartner et al. 2016), and
can sometimes even exceed 100 mmHg for some extreme cases (Yang et al. 2015).
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The simulated pressure-drops in this study are substantially lower. And one could argue
that the simulated flow conditions are therefor not in the physiological range for aortic
valve stenosis. However, to facilitate comparisons with in-vitro measurements, water-
like fluid properties were chosen (Chapter 6). Consequently, boundary conditions were
adjusted to make sure that the Reynolds number in the simulation matched with the
Reynolds number expected for physiological flow conditions, i.e., a physiological cardiac
output of 23 Lmin-1, density of 1060 kg/m2, and viscosity of 0.0035 Pa·s. Hence, the
magnitude of the velocity is lower than the in-vivo situation, which in turn results in
a lower pressure-drop. For flows where dynamic effects are dominant, the pressure is
typically scaled with ρU2. Hence, the simulated pressure-drop can be scaled back to

the expected in-vivo scale by: ∆Pp = ∆Pm
ρpU

2
p

ρmU2
m
≈ 12∆Pm. Where the subscripts p

represents the physiological density and characteristic velocity, and subscript m indicates
the density and characteristic velocity of the simulations.

When taking this pressure-scaling into account, the pressure losses correspond to those
that are typically observed in patients with mild or severely stenotic heart valves. Clearly,
valve A is at the extreme side of the clinical spectrum with a re-scaled pressure-drop of
12 · 12.4 ≈ 150 mmHg. Similarly, valve B can be considered healthy or mildly stenosed
with a re-scaled pressure-drop of 12 · 1.2 ≈ 14 mmHg.

5.4.6 LIMITATIONS

The main limitation in the current study is the absence of the opening- and closing func-
tion of the aortic valve during the pulsatile flow condition. Additionally, it was assumed
that the aortic valve opening area remains consistent irrespective of flow rate. However,
results from dobutamine stress studies in aortic stenosis patients have demonstrated that
valve opening area is a function of flow-rate, and may show strong intra-patient vari-
ability (Johnson et al. 2018; Takeda et al. 2001; Blais et al. 2006). Additionally, variations
in the aortic root were not considered in the present work. The shape of the aorta and
aortic root may have considerable effects on the generation of Reynolds shear stresses
(Barannyk and Oshkai 2015; Zhu et al. 2018).

In addition, any non-Newtonian effects (e.g., shear-thinning) were neglected. It is well
known that blood behaves as a non-Newtonian fluid (Long et al. 2005). It has been shown
that non-Newtonian effects may affect the flow field for abdominal aneurysms (Deplano
et al. 2014), or may prolong flow stabilization in stenosed vessels (Walker et al. 2013).
Although non-Newtonian behavior may affect the flow field locally, it was shown that
the transvalvular pressure-drop remains insensitive to non-Newtonian behavior (Vita
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et al. 2015).

5.4.7 CONCLUSION

This study numerically computed and characterized turbulent flow downstream of
four rigid aortic valve-like geometries. Simplification of the aortic valve geometry to
an orifice plate-type geometry by projection results in a significant overestimation of
velocity fluctuations, and pressure-drop, and should be avoided. Additionally, it was
demonstrated that both stenotic and healthy aortic valves exhibit significant fluctuations
downstream of the valve, both in steady as pulsatile flow conditions. In pulsatile flow
conditions, fluctuations are either triggered (healthy valve), or amplified (stenotic valve)
in the deceleration phase. During flow acceleration and in the diastolic phase fluctuations
were mostly absent. Turbulent kinetic energy can be an order of magnitude higher
in severely stenotic valves, in both steady as pulsatile flow conditions. Finally, RANS
simulations yield similar peak-systolic transvalvular pressure-drops as LES simulations,
and may thus be a computationally efficient alternative to predict the peak-systolic
transvalvular pressure-drop.
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ABSTRACT

Background The transvalvular pressure-drop is a key indicator for aortic valve steno-
sis severity, and as such of clinical interest. Accurate assessment of the transvalvular
pressure-drop requires catheterization, an invasive procedure. Doppler echocardiog-
raphy allows for non-invasive assessment, but accurate assessment of the irreversible
pressure-drop is challenging. However, recent developments in medical imaging, seg-
mentation techniques, and Computational Fluid Dynamics (CFD), provide an alternative
for non-invasive assessment of the transvalvular pressure-drop. But flow through the
aortic valve is complex, and modeling strategies need to be validated with experimental
data. Hence, the aim of this work was to validate the CFD computed transvalvular
pressure-drop with in-vitro experimental data. Methods Four 3D valves with opening
areas of 70, 122, 175, and 230 mm2, and their projected counterparts were printed with
a 3D printer. A gear-pump driven flow-circuit was designed and used for steady and
pulsatile flow generation. Two pressure transducers, placed at 1.7 diameters upstream
of the valve and 20 diameters downstream of the valve, were used to evaluate the (re-
covered) transvalvular pressure-drop in steady and pulsatile flow conditions. Reynolds
numbers of 2700 and 5400 were considered. Eight CFD models were developed that cor-
responded to the in-vitro models. Steady flow conditions were simulated with the Shear
Stress Transport k − ω model, and pulsatile flow conditions with Large Eddy Simulation.
Results Projection of valve area lead to an overestimation of ∆P between 28 and 82%,
and depended on valve area magnitude. For stenotic valves (70 mm2) good agreement be-
tween computed and experimentally obtained maximum and peak-systolic transvalvular
pressure-drops was found. The maximum transvalvular pressure-drop occurred before
peak-systole. CFD models tended to underestimate steady and peak-systolic ∆P, but
adequately captured the pressure-drop waveform in pulsatile flow conditions. Conclu-
sion In stenotic aortic valves, the pressure-drop was dominated by the narrowing of the
valve. However, with increasing valve area, the pressure loss due to the valve became
lower, while unsteadiness became more important, and should be included to obtain a
good estimate of the pressure-drop. CFD models tended to underestimate steady and
peak-systolic ∆P, regardless of model choice, but adequately captured the pressure-drop
waveform in pulsatile flow conditions.
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6.1 INTRODUCTION

Aortic valve stenosis is characterized by a narrowing of the aortic valve opening area
in systole. As a result, the transvalvular pressure drop and load on the left ventricle is
increased. The increased load on the heart induces a hypertrophic response, thickening
the heart muscle which may eventually lead to heart failure, limiting the day-to-day
activities of a patient. Clinically, the transvalvular pressure-drop is used to assess the
severity of aortic valve stenosis and to guide treatment strategies (Baumgartner et al.
2016).

In the past, the transvalvular pressure-drop was obtained by cardiac catheterization
(Nishimura and Carabello 2012). However, in current clinical practice the transvalvular
pressure-drop is estimated by Doppler echocardiography, which allows for cheap non-
invasive assessment of the pressure-drop (Nishimura and Tajik 1994). With Doppler
echocardiography the velocity of blood through the valve is measured. Consequently,
this velocity is used in combination with the simplified Bernoulli equation, and an
estimate of the transvalvular pressure-drop is obtained (∆P = 4v2, with v the measured
velocity) (Hatle et al. 1980). The simplified Bernoulli method assumes that when flow
accelerates into the orifice, energy conversion from potential to kinetic energy in the
constriction is irreversible. However, numerous studies have shown that pressure-
recovery downstream of the stenotic valve can be considerable, leading to Doppler
echocardiography overestimating the severity of mild to moderate stenoses (Niederberger
et al. 1996; Voelker et al. 1992; Bahlmann et al. 2010; Laskey and Kussmaul 1994). Hence,
non-invasive alternatives that complement the Bernoulli equation in order to better reflect
stenosis severity are desirable.

As one extension to the Bernoulli equation it has been proposed to take into account the
post-stenotic pressure-recovery. For example, Garcia et al. (2000) proposed to extend
the simplified Bernoulli equation by taking into account the effective orifice area of
the stenosis and the cross sectional area of the ascending aorta (both approximated by
echocardiography). This was shown to better reflect the severity of aortic valve stenosis.
Similary, Ha et al. (2018) showed that phase-contrast resonance imaging (pc-MRI) can
be used to non-invasively estimate the pressure-drop by evaluating turbulence produc-
tion, good agreement with the extended Bernoulli equation of Garcia et al. (2000) was
obtained. Alternatively, image-based three-dimensional computational fluid dynamics
(CFD) can be used to approximate the patient-specific flow field. From these models an
approximation of the patient-specific transvalvular pressure-drop can consequently be
obtained (Chapter 2 and Chapter 3).
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Medical imaging techniques such as MRI and computed-tomography, enable detailed
three-dimensional digital reconstructions of (specific) parts of the cardiovascular system.
That is, medical images have been used to generate high quality and detailed surface
models of — among others — the left ventricle, mitral valve and the aortic valve (Ionasec
et al. 2010; Ecabert et al. 2008; Grbic et al. 2012). Consequently, such models can be
used to simulate blood flow with CFD. Given a set of appropriate boundary conditions,
CFD provides approximate solutions to the governing Navier-Stokes equations, yielding
detailed information of the expected flow field. CFD models have been used to obtain an
estimate of patient-specific flow patterns and transvalvular pressure-drops (Weese et al.
2017; Hoeijmakers et al. 2019; Hoeijmakers et al. 2020; Bruening et al. 2018). Although
CFD is widely used for research purposes in the field of cardiovascular research, it is still
an intricate tool where model simplifications are often a necessity to keep computational
cost reasonable. Some typical simplifications include: 1) assuming fully developed
turbulence; 2) neglecting flow pulsatility; 3) neglecting non-Newtonian behavior; and 4)
neglecting vessel compliance. Hence, modeling work should ideally be closely integrated
with and guided by in-vitro and in-vivo experimental validation to determine the most
appropriate modeling approach.

Anatomical structures are often of complex shape, and it is challenging to create an
accurate physical model of the patient-specific geometry for in-vitro validation studies.
However, with developments in 3D printing — an additive manufacturing technique
— generation of physical models has become much more accessible. For example, 3D
printing has been used to generate patient-specific molds or models of coronaries, carotids,
aortic and cerebral aneurysms, and aortic valves (Brunette et al. 2004; P. Cao et al. 2015;
Sulaiman et al. 2008; Yagi et al. 2013; Ferrari et al. 2019; Zelis et al. 2020). In addition,
these models can be used to study patient-specific hemodynamics, e.g., by Particle Image
Velocimetry (PIV) (Yagi et al. 2013) or by pressure measurements (Zelis et al. 2020).

In previous chapters we have used CFD models in order to approximate the patient-
specific transvalvular pressure-drop in steady (Chapter 3) or pulsatile flow conditions
(Chapters 2 and 5). These chapters exclusively used numerical models to predict the
pressure-drop. In this chapter we aim to validate the numerical models with in-vitro
measurements. To achieve this, 3D printing was used to create physical models of the
aortic valve, which were then inserted into an in-vitro setup that allowed pressure-drop
measurements.
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6.2 METHODS

6.2.1 AORTIC VALVE GEOMETRIES

The shape of the aortic valve leaflets was obtained from the statistical shape model that
was used in Chapters 3 and 4. The statistical shape model was generated by making use
of 74 aortic valve segmentations, which were obtained by the segmentation framework
that is extensively described in previous work (Weese et al. 2017; Ecabert et al. 2011). Four
aortic valves at different stages of opening were created with the statistical shape model
(Chapters 3 and 4). The generated surface models of the aortic valve also included part
of the left ventricular outflow tract, ascending aorta, and aortic sinuses. These parts were
removed or modified such that the construct fitted in a circular support with an internal
diameter of 24 mm, a length of 17 mm and thickness of 1 mm. Moreover, four models of
the same valve, at different stages of opening, were created by taking a planar projection
of the geometric opening area along the valve axis (Figure 5.1). Projected orifice areas
were: 70 mm2 (Valve A); 122 mm2 (Valve B); 175 mm2 (Valve C); and 230 mm2 (Valve D),
and represent several degrees of stenosis.

6.2.2 3D PRINTING

An Objet Connex 350 (Stratasys, Eden Prairie, USA) professional 3D printer was used
to print all four (rigid) geometries out of VeroWhite, a photo-polymer. Minimum layer
thickness was 16 µm, but actual printing accuracy was approximately 100 µm. To verify
3D printing accuracy, a Scanco Medical 100 µCT scanner (Brüttisellen, Switzerland) was
used to generate a digital image with a resolution of 17 µm of the printed models. The
resulting 3D images were segmented with 3D Slicer (Kikinis et al. 2013) with a fixed gray
scale threshold. Segmentations were converted into a high-resolution stereo-lithography
file.

6.2.3 EXPERIMENTAL SETUP

A flow circuit to measure the transvalvular pressure-drop was designed, and driven by a
Liquiflo 37F gear-pump (Liquiflo, Garwood, United States) with a theoretical displace-
ment of 0.023 L/Rev (Figure 6.2). Flow-rate was determined by gear-pump rotation speed,
which was controlled by a servo-motor (Parker-Hannifin, Oldenzaal, The Netherlands).

Upstream and downstream of the valve housing, two rigid, transparent tubes with
an inner diameter of 26 mm and a length of 520 mm (20 diameters) were connected
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(b)
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B-PROJ C-PROJ D-PROJ

(c)

Figure 6.1 (a) Axial view of each of the CAD models that were experimentally tested. (b) graphical illustration
on how the projected geometries were obtained. (c) Result of the µCT scan, note the unintentional
rounding of the sharp edges due to the 3D printing process.

to generate a straight flow channel, intended to obtain fully developed entry flow at
the throat of the valve. 20 diameters upstream of the valve, a settling chamber (50%
water, 50% air) was included: the air compartment in this chamber effectively acted as
a physical low-pass filter, and filtered out gear-pump induced vibrations. In pulsatile
flow conditions this chamber was completely filled with water to avoid compliance
in the system. To monitor flowrate an ultrasonic flow rate sensor (ME13PXN Inline,
Transonic Systems Inc, Ithaca, NY, USA) was placed upstream of the settling chamber.
Furthermore, a Windkessel afterload module with a variable resistance was installed 20
diameters downstream of the valve, and was consequently connected to the reservoir.
Two pressure transducers (P10EZ-1; Beckton Dickinson Medical, Sint-Niklaas, Belgium)
with a range of -50–350 mmHg were installed 1.7 diameters upstream, and 20 diameters
downstream from the valve. Data were acquired at 200 Hz with dedicated LabVIEW
(National Instruments, Austin, USA) hard- and software of the pump.

Steady flow-rates between 1.0 and 11.0 Lmin-1 (43 and 478 rev/min respectively) at 1.0
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Lmin-1 intervals were considered. Pulsatile flow conditions were obtained by imposing a
time-varying rotation speed. The flow waveform followed a sine squared-based wave-
form (also see Chapter 5) that closely matched a Fourier series representative of aortic
blood-flow (Olufsen et al. 2000). That is:

Q(t) =


Q0 sin

2
(
t

π

2Tacc

)
t < Tacc

Q0 sin
2
(
(t+ Tdec − Tacc)

π

2Tdec

)
Tacc ≤ t ≤ Tsystole

0 t > Tsystole

(6.1)

Here, Tacc and Tdec represent the period of the acceleration and deceleration slopes
respectively. With Tacc = 0.12Tcycle and Tdec = 0.22Tcycle, systole becomes a fraction
of the full cardiac cycle: Tsystole = 0.34Tcycle. Note that with this choice of parameters
the deceleration phase is approximately twice as long as the acceleration phase. Q0

represents peak-systolic flow-rate, and was set at 7.0 Lmin-1, in line with the simulations
of (Chapter 5). For all pulsatile simulations Tcycle = 3.33 s, resulting in a Womersley
parameter of approximately 14. The lower viscosity of water results in a cycle time that
is considerably longer than in-vivo, but ensured that the physiological ratio between
transient inertial forces and viscous forces was maintained.

Figure 6.2 Schematic of the experimental setup. The gear-pump extracted water from the reservoir, and was used
as a fixed (steady flow) or variable displacement (pulsatile flow) pump. A flow-sensor was included
upstream of the settling chamber. The settling chamber consisted of a fluid filled chamber, and a
variable resistance. Pressure transducers were included 1.7D upstream and 20D downstream of the
valve housing. An afterload module was used to adjust the RC time of the system in pulsatile flow
conditions.
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6.2.3.1 DATA ACQUISITION AND PROCESSING

Measurements in steady flow conditions were performed for 120 seconds, of which only
the last 30 seconds were used for further data analysis. Steady flow pressure data were
filtered with a first-order low-pass Butterworth filter with a cut-off frequency of 0.5
Hz. Filtered data were used to compute the time-averaged pressure difference between
transducers P1 and P2 (Figure 6.2) over the last 30 seconds.

Unlike the steady-flow data, pulsatile data did not require additional filtering. Data of
120 cardiac cycles (equivalent to 400 seconds) were collected and analyzed. Measured
flow data were used to identify the start of systole in each cycle. Consequently, the peak
systolic, maximum, and mean systolic pressure-drop between P1 and P2 was computed.

6.2.4 COMPUTATIONAL METHODS

The section between both pressure transducers (Figure 6.2) was reproduced in a CAD
model (also see Chapter 5). Volumetric discretization of the fluid volume was per-
formed with ANSYS Fluent Meshing R19.2 (ANSYS Inc, Canonsburg, Pennsylvania,
United States). Volumetric meshes consisted predominantly out of regular hexahedral
elements in the core, which transitioned to polyhedral elements close to the boundary
(poly-hexcore). Features such as the expected point of separation were discretized with
extremely small cell sizes, down to 0.05 mm. Moreover, cell sizes of 0.25 mm were
introduced in all other areas that were in proximity of the valve construct (see Figure 6.1).
Upstream of the valve and between 5 and 20 diameters downstream of the valve coarse
cells were used (2x2x2 mm). Volumetric meshes were refined in the area deemed relevant
for jet development and breakdown, that is, between 0D and 5D downstream of the
valve. In this section, hexahedral elements sized 0.25x0.25x0.25 mm. The total number of
elements was between 6 and 7 million.

Inflow-diameter-based Reynolds numbers of 2700 and 5400 were considered, and corre-
sponded to a flow of 3.5 and 7.0 Lmin-1. Density of the fluid was set at 998 kg·m-3, and
viscosity was set at 1.05 · 10−3 Pa·s, the approximate viscosity of water at 18◦ Celsius. A
1/7th power-law velocity profile, corresponding to that of a fully developed turbulent
flow (Chant 2005), was prescribed at the inflow boundary. That is:
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u(r) = Umax
(
1− r

R

)1/n (6.2)

with:

Umax =
1

2

Q

A

(n+ 1)(2n+ 1)

n2

and:

n = 7

A constant zero-pressure boundary condition on the outflow boundary, and no-slip walls
were used. The solution in steady-state flow conditions was obtained with the Reynolds
Averaged Navier Stokes Shear-Stress-Transport k − ω model. The solution of pulsatile
conditions was obtained by Large Eddy Simulations, using a constant time-step of 1·10-4

seconds and the non-iterative fractional step method (Armfield and Street 1999). The
time-step was kept constant between geometries, and ensured that the Courant number
was below 1. Five pulsatile cycles were simulated, and the mean systolic pressure-drop
(∆Pmean), the max systolic pressure-drop (∆Pmax), and the peak-systolic pressure-drop
(∆Ppeak) were evaluated.

6.3 RESULTS

Figure 6.1c demonstrates that the µCT scan of the 3D printed model deviates from the
original CAD model. The 3D printing process did not seem to capture sharp edges very
well, e.g., the 90 degree angles in the projections, and seemed to strongly depend on
printing direction. A fillet with a radius of approximately 0.5 mm was observed at the
downstream edge.

Experimentally measured ∆Ppeak was consistently larger in the projected cases: with
respect to the 3D configuration increases of 76% (Valve A), 53% (Valve B), 82% (Valve C),
and 28% (Valve C) were observed (Table 6.1). Similar differences between the 3D and
projected configuration were found in steady flow conditions: at 7.0 and 3.5 Lmin-1 an
increase in ∆P of 82–87% (Valve A), and 75–91% (Valve B) were observed in the projected
cases (with respect to the 3D configuration). In valves C and D at 3.5 Lmin-1 ∆P ≈ 0, and
pressure seems to have fully recovered. CFD simulations demonstrated similar relative
differences in ∆P between the 3D and projected configurations. Steady flow simulations
suggested that ∆P is between 66–113% larger for projected geometries.
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Figure 6.3 Typical example of measured pressures by sensor P1 and P2. The pressure-drop was defined as: ∆P =
P1 − P2. Last graph depicts measured flow rate. x indicates time of peak systolic flow rate.
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between simulation results and experimental data is good. In valve A, the peak-systolic pressure-drop
is underestimated.
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∆Pmax is affected by the flow unsteadiness and the presence of the valve, and was
reached before peak systolic flow. Figure 6.5 demonstrates that ∆Pmax ∼ ∆Ppeak for
valves A and B: relative differences of 1% (Valve-A-3D), 2% (Valve-A-PROJ), 12% (Valve-
B-3D), and 4% (Valve-B-PROJ) were observed. However, for more open valves (Valves C
and D), the influence of the stenosis reduced, and ∆Pmax was mainly associated with
the acceleration of the fluid. Hence, for valves C and D, ∆Pmax � ∆Ppeak: relative
differences of 138% (Valve-C-3D), 32% (Valve-C-PROJ), 120% (Valve-D-3D), and 70%
(Valve-D-PROJ) were observed.

With ∆Pmean = 6.0 mmHg, the mean systolic pressure-drop of Valve A was the largest
of all valves, and corresponded to 0.4∆Ppeak. The ratio between ∆Pmean and ∆Ppeak
decreased when the valve was more open, and may reach values as low as 0.3∆Ppeak.
Steady-state experiments showed that ∆Ppeak in pulsatile flow conditions agree well
with steady flow conditions at 7.0 Lmin-1 (corresponds to peak-systolic flow). Steady
flow conditions at 3.5 Lmin-1 (corresponding to mean flow rate in systole) yielded ∆P
values that generally under predict ∆Pmean.
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Figure 6.5 ∆Pmax vs. ∆Ppeak . For the most stenotic valves A and B the pressure-drop at peak systole reflects
the maximum pressure drop in systole. For valves C and D, the peak systolic pressure-drop is not
representative for the maximum pressure-drop in systole, i.e., unsteadiness dominates the pressure-
drop. Significant differences in pressure-drop are observed between the full 3D configuration (filled
markers) and its projected counterpart (open markers).

Figure 6.3 demonstrates that cycle-to-cycle variation in pressure waveforms was generally
small. This is corroborated by relatively small standard deviations in Table 6.1. Addi-
tionally, Figure 6.4 demonstrates that the simulated pressure and flow wave forms agree
reasonably well. In line with the results in Table 6.1, it becomes clear from Figure 6.4 that
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∆Ppeak was underestimated by the CFD simulations. Additionally, Figure 6.4 suggests
that the experimentally measured ∆Pmax of Valve C occured slightly earlier in systole
compared to the CFD simulation.

Figure 6.6 shows that in steady flow conditions CFD-computed ∆P may substantially
underestimate experimental ∆P. Good agreement between ∆Pexp and ∆PCFD was ob-
served for Valve A-PROJ at all flow-rates. However, agreement at low-∆P was generally
poor for all other valves and their projected counterparts. CFD simulations seemed to
predominantly underestimate the experimentally measured pressure-drop at low ∆P.

Figure 6.6 (a): ∆Pexp vs. ∆PCFD in steady flow conditions. (b) zoomed to dotted section of (a). Error bars
represent one standard deviation in the experimentally measured pressure-drop (unfiltered difference
between P1 and P2).
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6.4 DISCUSSION

The availability of robust commercial codes and developments in high performance
computing have made CFD models popular in the cardiovascular research community.
However, model results should be corroborated with in-vitro and in-vivo validation stud-
ies when possible. In this controlled study, we have shown that generally, CFD models
and experimental results demonstrate the same trends. That is, both CFD and experi-
mental measurements showed that a projected geometry may significantly overestimate
∆P. In addition, we demonstrate that the evolution of ∆P in pulsatile flow conditions is
captured reasonably well. However, it was also demonstrated that agreement between
the computational results and experiments is not guaranteed. For all geometrical com-
binations, the CFD model tends to underestimate ∆P in steady flow conditions, and
underestimate ∆P at peak systole in pulsatile flow conditions. In severely stenotic valves
(Valve A) ∆P is dominated by the presence of the stenosis. However, with an increase in
valve opening flow unsteadiness becomes increasingly important.

The observation that the three-dimensional shape (projected vs. 3D) significantly influ-
ences ∆P can be explained by a reduction in the ratio between the effective and anatomical
orifice area, in literature referred to as the contraction coefficient (Cc = Ajet/Aanatomical).
The contraction coefficient is a measure for how much the streamlines contract down-
stream of an orifice and is the point where velocity reaches a maximum. In-vivo (Migliore
et al. 2017) and in-vitro (Gilon et al. 2002) work has shown that valvular shape can have a
substantial effect on the contraction coefficient, e.g., Cc = 0.85−0.9 and Cc = 0.71−0.76

were reported for dome and flat shaped valves respectively.

Pressure waveforms (Figure 6.3) demonstrate that ∆P reversal (P2 > P1) occurs in late
systole. Pressure-drop reversal occurs later in systole for severely stenotic valves (Valve
A), indicating that energy loss due to the presence of the valve is considerable throughout
most of systole. In less stenotic valves (Valve C–D), P2 > P1 for a larger part of the cycle,
and is observed once flow deceleration is initiated. This is in line with findings in animal
studies, where normalized time to ∆P reversal was 93 ±13% and 69 ± 36% for mongrel
dogs with aortic valve stenosis and healthy controls respectively (Bermejo et al. 2002). In
addition, in-vivo measurements by Firstenberg et al. (2000) demonstrated that including
flow unsteadiness in the Bernoulli equation yielded better estimates of the the maximum
pressure-drop across normal mitral valves. This suggests that flow unsteadiness may be
more important for moderately stenosed or healthy valves. This is further supported
by our numerical and experimental observations of ∆Ppeak. ∆Ppeak agrees well with
∆Pmax for Valves A and B. However, when the transvalvular peak systolic pressure-drop
(∆Ppeak) is negligible, ∆Pmax becomes higher than ∆Ppeak, and occurs at the time instant

146



EXPERIMENTAL VALIDATION

of maximum acceleration.

Results in Figure 6.4, Figure 6.6, and Table 6.1 suggest that ∆P in steady flow conditions
and at peak systole is underestimated by CFD. Underestimation of ∆P in CFD simulations
is common. For example, an in-vitro validation study by Quaini et al. (2011) reported
an underestimation of ∆P in rectangular (35 mm2) and circular orifices (40 mm2) that
were used to model mitral valve regurgitation. CFD generally underestimated ∆P
by 5–16%. In pulsatile flow conditions, data of a follow up study showed that CFD
underestimated ∆P at peak flow by approximately 20% (Wang et al. 2017). In a similar
study on mitral regurgation, Sonntag et al. (2014) demonstrated good agreement between
jet velocity measurements by Particle Image Velocity and CFD in circular (38.5 mm2),
rectangular (60 mm2), and star-shaped (63 mm2) orifices with a thickness of 5 mm.
CFD consistently underestimated jet velocity up to approximately 10% in steady flow
conditions, differences in ∆P were unfortunately not reported. Differences between
experimental measurements and CFD computed pressure-drops were larger in this study,
and could either be due to model assumptions and/or experimental inaccuracies. Both
are briefly discussed in the following sections.

6.4.1 ASSUMPTION OF FULLY DEVELOPED FLOW

Flow through a stenotic valve is similar to flow through a nozzle or orifice. In industry, the
pressure difference caused by such a constriction is exploited to measure flow-rate, and
is well documented in the ISO-5167 standard (ISO5167 2003). In orifice-type flow-meters
the measured pressure differential is empirically related to the flowrate by the discharge
coefficient, and accurate flow measurements require the flow to be fully developed
(Reader-Harris 2015). For example, it has been demonstrated that when the upstream
velocity profile had a deficit on the centerline, ∆P across the orifice exceeds that of
fully developed flow (Morrow et al. 1991; Morrison et al. 1992). Morris and colleagues
demonstrated that in extremely skewed velocity profiles the coefficient of discharge
can change by 20% (Morrison et al. 1992). Since the discharge coefficient is inversely
proportional to the square root of ∆P (Cd ∝ 1√

∆P
), the observations by Morrison et al.

(1992) would suggest that ∆P can vary substantially with underdeveloped flow profiles.
Although these observations were made in fully turbulent flow (Re = 80000), it is likely
that at lowerRe, under developed flow-profiles can affect the transvalvular pressure-drop
as well. Hence, the assumption of a, symmetric, fully developed turbulent flow (described
by the 1/7th power law) that was made in the simulations may not be representative for
the — potentially underdeveloped — velocity profile in the experimental setup. Hence,
it is recommended that future studies make an effort to quantify the upstream velocity
profile to verify that 20 diameters of smooth upstream tubing is enough to ensure fully

147



CHAPTER 6

developed flow. For example, by making use of flow visualization techniques such as
PIV, Tomo-PIV (3D) or Laser Doppler Velocimetry.

6.4.2 EXPERIMENTAL INACCURACIES

Pressure sensors have a finite accuracy in combination with bridge amplifiers. Two
individual pressure transducers were placed in the experimental setup, and error sources
for both may be different. For example, errors due to linearity and hysteresis are ±0.1

mmHg over 0 to 10 mmHg. Moreover, pressure transducers have a sensitivity of approxi-
mately 5 µV/V/mmHg (±1%). At low pressure-drops these inherent characteristics of
measuring devices may have dominated the results. It should be noted that water was
used as a working fluid for practical reasons, and low flow-rates were used to maintain
physiological Re numbers. As a consequence, at low-flow-rates and for open valves, very
low steady-state/peak-systolic pressure-drops (< 1 mmHg) were observed, and were
difficult to accurately measure. Experimental errors may be reduced by using water-
glycerol mixtures (Yazdi et al. 2018), which would require larger flowrates to maintain the
Reynolds number, and lead to larger pressure-drops. Alternatively, pressure transducers
that are suitable for a smaller range may be used to obtain more reliable results at low
transvalvular pressure-drops. However, it remains unclear to what extent this affected
the accuracy of the results.

6.4.3 LIMITATIONS

Flow characteristics of upstream flow were not quantified, and it is suggested that
future work attempts to quantify upstream conditions in order to verify the numerical
assumption of fully developed (turbulent) flow. Aortic valve stiffness is important in
valvular behavior but was neglected in this study. Furthermore, the sinus region was
not included, but may be of importance, e.g., it has been shown that coronary flow may
suppress vortex development behind the leaflets of the valve (K. Cao and Sucosky 2016).

6.4.4 CONCLUSION

In this study we validated a 3D CFD model of aortic-valve like geometries and their
projected counterparts. Projected orifices yielded pressure-drops that were substantially
larger than their 3D counterparts. Additionally, we have shown that the 3D CFD sim-
ulations were able to reproduce ∆P waveforms to an acceptable level in pulsatile flow
conditions. However, peak-systolic ∆P and ∆P in steady flow conditions measured in
our experiments were underestimated by CFD.
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GENERAL DISCUSSION

7.1 OVERVIEW OF MAIN FINDINGS

IN this thesis, CFD models were used to analyze blood flow through healthy and
stenotic heart valves. Valvular shapes were obtained from CT images, and enabled
patient-specific CFD simulations. These CFD simulations allow for the computation

of transvalvular pressure-drop vs. flow relationships (Chapters 2 and 3), new indices
of stenosis severity (Chapter 2), or extensive analysis of specific characteristics of the
flow field (Chapter 5). When sufficient valvular shapes are available, statistical shape
modeling and CFD models may be used to train efficient surrogates (meta-models) of
the computationally expensive model (Chapter 3). In addition, techniques from the field
of sensitivity analysis and uncertainty quantification were used in order to estimate the
sensitivity of results to potential segmentation errors (Chapter 4). In Chapter 5, high-
fidelity CFD models were used to quantify the intermittent turbulent behavior of flow
downstream of healthy and stenotic aortic valves. Ultimately, the computational models
were validated against in-vitro measurements (Chapter 6). The main findings of this
thesis are:

• Image-based CFD models have the potential to provide relevant diagnostic infor-
mation that may complement existing clinical measures (Chapter 2).

• Steady-state simulations are adequate to estimate the peak-systolic transvalvular
pressure-drop (Chapters 2, 5 and 6).

• Statistical shape modeling can be effective in extracting physiologically relevant
shape variation (Chapter 3).

• Statistical shape modeling and CFD models can be used to reduce compute-
intensive computational models to real-time by using meta-models (Chapter 3).

• Uncertainty in valvular shape may substantially affect the predicted transvalvular
pressure-drop vs. flow relationship (Chapter 4).

• Intermittent turbulence exists in both healthy and stenotic valves. Turbulent kinetic
energy can be up to an order of magnitude higher in stenotic valves (Chapter 5).

• Experimental validation showed that pressure-drop evolution over the cardiac
cycle can be modeled by CFD. Peak-systolic pressure-drops may however be
underestimated by CFD models (Chapter 6).
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In the following sections the implications of these findings are discussed. In addition,
limitations and recommendations for future work and clinical practice are provided.

7.2 IMAGE-BASED COMPUTATIONAL MODELS

Aortic valve stenosis is characterized by a long asymptomatic latent period, but upon
onset of symptoms prognosis is poor (Ross and Braunwald 1968). The threshold for
severe aortic valve disease is currently set at a jet-velocity of >4 m·s-1, and a valve area of
<1.0 cm2, which comes from observations in prospective studies that two-year survival in
asymptomatic patients with excessive jet velocities is poor (Otto et al. 1997; Lancellotti et
al. 2018). However, these clinical indicators of aortic valve stenosis are population based
(Otto et al. 1997; Falk et al. 2017), and may not be representative for the hemodynamic
state of the individual. This is reflected in discrepancies in the grading of aortic valve
stenosis at low flows — known as low-flow/low-gradient aortic valve stenosis — which is
present in approximately 10% of all aortic valve stenosis patients (Kulik 2006). In this
subgroup of patients, stenosis severity is uncertain and the benefit of valve replacement
is not obvious (Clavel et al. 2016).

To aid diagnosis and disease management, patient-specific image-based computational
models — such as those in Chapter 2 — may be of complementary value. In Chapter 2, an
image-based computational framework was developed, which was used to compute an
index that reflects the energy loss due to the presence of the stenosis. Although this model
inevitably contains significant simplifications, it was shown that velocity measurements
alone do not properly reflect stenosis severity. The image-based model in Chapter 2
assumes that the valve is imaged in the most open position, and reflects maximum
opening at the time of imaging. As such, the valve resistance index of Chapter 2 relies
heavily on adequate imaging of the valve. This is supported by the observations in
Chapter 4, where we have shown that uncertainties in the exact valvular shape may
propagate through the CFD model, yielding an uncertain estimate of the transvalvular
pressure-drop. Moreover, since no valvular motion is modeled, the model of Chapter 2
would in fact not be able to distinguish between true and pseudosevere aortic valve stenosis.
To differentiate between true and pseudosevere, the model of Chapter 2 would need to be
extended with a fluid-structure interaction model. With such an extension, valve opening
and closing can be modeled. Consequently, dobutamine stress testing — a clinical method
to distinguish between true and pseudosevere aortic valve stenosis — could be simulated.
A requirement for this approach would be non-invasive extraction of material properties.
Material properties affect valve dynamics (Gilmanov et al. 2019), and can potentially be
inferred from 4D CT (Hamdan et al. 2012). In addition, calcific distribution in the valve
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apparatus may influence valve dynamics as well, and may need to be included in order
to obtain realistic valve behavior (Bosi et al. 2018; Luraghi et al. 2019a).

Inclusion of fluid-structure interaction or high-fidelity, time-dependent simulations —
such as the simulations that were presented in Chapter 5 — may be more appropriate.
However, such simulations generally lead to excessive computational times that require
in the order of days or weeks to complete (Bavo et al. 2016; Luraghi et al. 2019b). For
such demanding simulations using meta-models (Chapter 3) — a "model of a model" —
may be an attractive solution.

7.3 IN PURSUIT OF FAST AND ACCURATE PATIENT-SPECIFIC MOD-
ELS: IS META-MODELING THE SOLUTION?

Computational models are commonly used in the cardiovascular research community,
and will become increasingly important for fundamental understanding of the devel-
opment and progression of cardiovascular diseases. In addition, such models have the
potential to yield clinically relevant, diagnostic information, which has been demon-
strated by the industry’s success-story of HeartFlow™, a company that offers solutions
for virtual diagnosis of coronary disease based on blood simulations and CT data (Kawaji
et al. 2016; Morris et al. 2017; Min et al. 2015). Such patient-specific computational models
are in general very time-consuming, and require extensive pre- and post-processing by
an expert. Both these issues inhibit integration of image-based patient-specific computa-
tional models into the clinical workflow. Techniques from the field of machine learning
may help provide a solution for this. For example, statistical shape modeling (Chapter 3)
makes use of principal component analysis, a dimensionality reduction technique, which
extracts the main directions of shape variation (Heimann and Meinzer 2009; Biglino et al.
2016). In Chapter 3, we showed that this method can effectively describe changes in
shape by just a few (statistically relevant) parameters. Consequently, a large number of
simulations may generate enough data to train a meta-model, i.e., a model of a model, that
covers the entire input-space. This meta-model can "learn" the relationship between shape
variation, and simulation output, and can for any patient, including "unseen" patients,
provide a decent prediction of the simulation results. This approach becomes increasingly
attractive when computational cost of a single simulation increases, and would therefore
also be convenient when more complex models are required, e.g., time-dependent models
(Chapter 5), or those that aim to model fluid-structure interaction.

Furthermore, meta-models facilitate sensitivity analysis and uncertainty quantification
(Quicken et al. 2016). With the shift from population-based medicine to personalized-
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medicine, predicting the uncertainty of model output will become increasingly important
(Eck et al. 2015). In Chapter 4, meta-models were used in order to predict the sensitivity
of the transvalvular pressure-drop to potential segmentation errors. More importantly,
it was shown that the uncertainty in model input may lead to substantial uncertainties
in model output. Quantification of these uncertainties, and identification of parame-
ters contributing to uncertainty, will be key in the road towards clinical acceptance of
computational models.

7.4 VALIDATION OF NUMERICAL MODELS

The computational models presented in Chapters 2, 3, and 5 represent only a small part of
the complete cardiovascular system. In Chapter 6, the computational models of Chapters
2 and 3 were further simplified, and validated by experimental measurements. Validation
studies are required to establish credibility of any computational model, and is gaining
increasingly more attention in the field of cardiovascular modeling. For example, in 2018,
the American Society of Mechanical Engineering released a new Verification & Validation
standard for computational modeling of medical devices (V&V40 2018; Morrison et al.
2019). The main idea of this medical device standard is that credibility requirements of a
computational model should be consistent with the risk associated with model use. That
is, if the model influence on a decision is high, and the consequence of a decision may lead
to adverse events (e.g., surgical intervention), the credibility of the model should also be
high. For medical device development, such risks can be mitigated by providing extensive
in-vitro test data. However, in the case of clinical decision support tools, in-vitro test
data to improve model credibility will not be available on a routine and patient-specific
basis, and would need to be tested rigorously beforehand. Hence, extensive in-vitro and
in-vivo data will be required to establish evidence of model credibility. Some methods to
establish CFD model credibility include: PC-MRI for measuring turbulence production
(Arzani et al. 2011); invasive in-vivo transvalvular pressure-drop measurements by cardiac
catheterization during aortic valve replacement procedures (Luraghi et al. 2019a); in-
vitro Doppler and pressure measurements in flow phantoms (Wang et al. 2017); and
particle image velocimetry (in-vitro) to verify the computed intraventricular flow patterns
(Khalafvand et al. 2018).

These examples show that validation of computational models is usually a task that
requires significant effort. In fact, for most complex systems true validation experiments
are often infeasible or impractical. Therefore, most validation studies are split into small
more manageable blocks (unit-problems), e.g., by making use of validation tiers (Fig-
ure 7.1a) (American Institute of Aeronautics and Astronautics, Inc. 1998; Oberkampf
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Figure 7.1 (a) Validation tiers as proposed by the American Institute of Aeronautics and Astronautics (Oberkampf
and Trucano 2002). (b) Validation tiers applied to (parts of) a model of the cardiovascular system, with
the path to the unit-problems that were addressed in this thesis highlighted in black. In gray: some
examples of potential unit-problems to improve model credibility.

and Trucano 2002). Such a tiered strategy allows for validation at multiple degrees of
complexity, such as geometric complexity or physics coupling. In Figure 7.1b, these con-
ceptual validation tiers are applied to the computational model that is considered in this
thesis. In Chapter 6, the computed transvalvular pressure-drop was validated by in-vitro
measurements. However, Figure 7.1 demonstrates that additional experiments may need
to be designed to further improve the credibility of the model. For example, turbulence
production in steady and pulsatile flow conditions was quantified by computational
models (Chapter 5), but was not validated with in-vitro measurements. Furthermore,
valves were assumed to be rigid, but would in reality be flexible. Each of such adapta-
tions to the computational model would impose stricter or different requirements on the
experimental studies as well. For instance, validation of turbulence production would
require measuring local velocity fluctuations by, for example, hot-wire anemometers.
Similarly experimental validation of a computational model that incorporates valve
flexibility would need to properly tune afterload impedance, or include coronary flow
(Cao and Sucosky 2016), in order to obtain realistic valve motion. It should be noted that
experimental validation does not assume that the experimental measurements are more
accurate than the computational results. Instead experimental measurements should be
seen as the most faithful reflection of reality for the purpose of validation (Oberkampf
and Trucano 2002).
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7.5 LIMITATIONS & RECOMMENDATIONS FOR FUTURE WORK

Fluid-structure interactions were neglected in all computational models that were pre-
sented in this thesis, and can be considered as a major limitation of this thesis. In fact,
aortic valves rapidly open and close, and mechanical properties of the valve may change
with age (Geemen et al. 2016). Furthermore, the presence of calcifications may affect the
dynamics of the aortic valve (Halevi et al. 2016). Obtaining reasonable patient-specific
material properties will pose a significant challenge for future work, but will be essential
in order to build suitable patient-specific computational models of the (diseased) aortic
valve. Additionally, the segmentation framework that was employed in Chapters 2 and
3 was not validated, and validation should be done in order to establish segmentation
accuracy. We suggest that "ground-truth" segmentations are constructed in order to
evaluate the accuracy of the Shape Constrained Deformable Model Framework for aortic
valves (Ecabert et al. 2011; Weese et al. 2017). Consequently, results of such a validation
study can be used to provide better estimates of model output uncertainty (Chapter 4).

Chapters 2 and 3 assume that turbulence is fully developed at peak-systole. However,
Chapter 5 demonstrated that flow through the aortic valve may not reach the fully
developed state. Although in Chapters 2 and 5 it was shown that the transvalvular
pressure-drop is nevertheless adequately captured, RANS models may not provide a
representative realization of time-averaged systolic flow patterns. Hence, scale-resolving
models should be preferred when interested in more detailed flow features, such as wall
shear stresses. In addition, it is recommended that future work attempts to quantify
turbulence production and flow fields downstream of stenotic and healthy heart valves by
in-vitro experimentation. For example, by making use of hot-wire anemometry, particle
image velocimetry, or Doppler ultrasound, ideally in combination with a working fluid
that demonstrates blood-like non-Newtonian behavior.

7.6 FUTURE OUTLOOK ON COMPUTATIONAL MODELING IN CAR-
DIOLOGY

The computational models presented in Chapters 2 and 3 provide image-based patient-
specific clinically relevant information. Although not considered in this thesis, compu-
tational models may also provide information on the predicted (post-surgery) hemody-
namic state of the patient, for instance with lumped parameter (Meiburg et al. 2020) or
finite element models (Luraghi et al. 2019b). These examples from literature only con-
sider short-term effects. However, in the case of aortic valve stenosis, predicting cardiac
remodeling would be crucial in order to predict long-term disease progression. Similarly,
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this may be achieved through lumped parameter (Rondanina and Bovendeerd 2019) or
by finite element models (Kroon et al. 2008; Genet et al. 2015). Integration of each of these
computational models into the clinical workflow poses substantial challenges, but may
eventually lead to a "Digital Twin" of a patient (Corral-Acero et al. 2020). For such "Digital
Twins" both mechanistic (e.g., CFD, lumped parameter models, finite element models)
and statistical models (e.g., statistical shape modeling) will play a vital role. Synergy
between mechanistic and statistical models may assist in interpreting structure-function
relationships or in risk prediction. For instance, supervised principal component analysis
of cardiac motion predicted survival in patients with pulmonary hypertension, indepen-
dent of conventional risk factors. (Dawes et al. 2017). Additionally, statistical models
are able to relate specific features to disease progression, whereas mechanistic models
may assist in understanding the physical meaning of such features, further increasing
the credibility of the model (Corral-Acero et al. 2020).

7.7 CONCLUDING REMARKS

In this thesis, a patient-specific computational workflow was developed that enabled
the modeling and analysis of blood flow through healthy and stenotic aortic valves. We
showed that these models may be used to extract clinically relevant metrics, such as the
valve resistance index and pressure-drop. High fidelity simulations showed that flow
downstream of healthy and stenotic valves is complex, and characterized by intermittent
turbulence. Precise modeling of this complex flow may however not be necessary to
adequately approximate the transvalvular pressure-drop. The combined use of statistical
shape models, CFD models, and meta-models may significantly reduce computational
time, while facilitating uncertainty quantification at the same time. Both of these features
could promote the acceptance of computational models in clinical practice.
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SUMMARY

Aortic stenosis is characterized by a narrowing of the aortic valve opening area, and is
predominantly caused by calcification of the leaflets. Calcific deposits cause the valve
to be more stiff, impeding the opening and closing function of the valve. The partial
opening of the valve imposes a large resistance to blood flow in systole, accompanied by
a large (irreversible) transvalvular pressure-drop, which subsequently causes excessive
loads on the left ventricle and the heart. The transvalvular pressure-drop is an important
clinical indicator of stenosis severity. Non-invasive estimation of this pressure-drop is
however challenging. Combining medical imaging data, such as those from Computed
Tomography and Magnetic Resonance Imaging, with three-dimensional Computational
Fluid Dynamics (CFD) may help to address this issue. Recent advances in medical
imaging, segmentation techniques, and CFD allow such models to be developed. The
development and improvement of such image based computational models is the focus
of this thesis.

In Chapter 2, a proof-of-concept CFD simulation framework is presented that estimates
the patient-specific transvalvular pressure-drop from segmented aortic valves. This
framework is applied to obtain image-based CFD results for 18 patients. From these
results, we propose a valve resistance index which serves as an easy-to-interpret metric
for the relative importance of the stenosis.

The computational models of Chapter 2 are computationally expensive, and not feasible
for day-to-day clinical practice. In Chapter 3 we therefore propose to use a statistical
shape model to capture physically relevant shape variation. With this approach we were
able to capture the valvular shape with a limited number of parameters, and facilitated the
simulation of a large number of virtual patients. This simulation data was subsequently
used to build a cheap-to-evaluate (surrogate) meta-model. It was shown that this meta-
model was of sufficient quality, and allowed for real-time evaluation of the transvalvular
pressure-drop vs. flow relation of 74 patients with varying degrees of aortic valve stenosis.
In Chapter 4 we expanded on this work by taking into account shape uncertainty. It
was demonstrated that CFD-computed transvalvular pressure-drops strongly depend
on geometry. Perturbations in valvular shape that are in the order of 0.5 to 1.0 mm
introduced substantial uncertainty in model output.

Flow downstream of stenotic valves is characterized by intermittent turbulence. In Chap-
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ters 2, 3, and 4, turbulence was modeled through the Reynolds Averaged Navier-Stokes
equations, which computes the fully developed, time-averaged flow field. In Chapter 5
this assumption is tested by making use of computationally expensive, and scale resolv-
ing simulations. With this, we gained a deeper understanding of the intermittent nature
of flow downstream of healthy and stenotic heart valves. For healthy valves, turbulence
is triggered in late systole upon onset of the deceleration phase, and quickly dissipates in
diastole. For stenotic valves, turbulent flow is present throughout most of systole, and
can be an order of magnitude stronger than for healthy valves. Despite this strong inter-
mittency that characterizes aortic valve blood flow, the Reynolds-Averaged Navier-Stokes
equations seem to be acceptable for capturing transvalvular pressure-drops.

Experimental validation is crucial in order to strengthen confidence in computational
modeling. In the last chapter, we experimentally validate the computational model of
Chapter 6. We designed a gear-pump driven flow-circuit to experimentally measure
the (recovered) transvalvular pressure-drop in steady and pulsatile flow conditions.
Heart valves were 3D printed with a high-resolution 3D printer, and covered the full
spectrum of possible valve configurations, from completely open to severely stenotic.
Reasonable agreement between experimental results and the computational model was
found. However, the computational model tended to underestimate peak-systolic and
steady-state transvalvular pressure-drops.

With this thesis we have shown that image-based computational models may provide
clinically relevant and complementary diagnostic information. However, we recognize
that, at this moment, such models may not be suitable for day-to-day clinical practice due
to the excessive computational burden. We attempted to address this by systematically
investigating and validating model assumptions, and by introducing a meta-model that
can function as a surrogate for the computationally expensive simulations.
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Aortaklepstenose wordt gekenmerkt door een vernauwing van het openingsvlak van de
aortaklep en wordt voornamelijk veroorzaakt door verkalking van de klepbladen. Door
deze verkalking worden de klepbladen stijver, wat het functioneren van de aortaklep
belemmerd. De aortaklep gaat hierdoor in systole niet meer volledig open, wat leidt tot
een (onherstelbare) drukval tussen het linker ventrikel en de aortaboog. Deze drukval
resulteert in extra belasting van de hartspier en wordt in de kliniek gebruikt om de
ernst van een aortaklepstenose te bepalen. In de klinische praktijk is het niet-invasief
bepalen van deze drukval echter een uitdaging. Het gebruik van beeldvormende tech-
nieken zoals computertomography (CT) en magnetic resonance imaging (MRI) kunnen
hiervoor uitkomst bieden. Met behulp van deze beelden kunnen computermodellen on-
twikkeld worden die de bloedstroom door de aortaklep simuleren, en zodoende gebruikt
kunnen worden voor het niet-invasief bepalen van de ernst van de aortaklepstenose.
De ontwikkeling en verbetering van dergelijke computermodellen staat centraal in dit
proefschrift.

In Hoofdstuk 2 wordt er aandacht besteed aan het ontwikkelen van een proof-of-concept
computermodel voor het bepalen van de drukval aan de hand van CT beelden. Dit
proof-of-concept vormt een raamwerk voor het verdere proefschrift en wordt in Hoofdstuk
2 gebruikt om de bloedstroming van 18 patiënten te simuleren. Vervolgens gebruiken we
de resultaten om een eenvoudig te interpreteren index op te stellen die aangeeft hoeveel
drukverlies wordt veroorzaakt door de aortaklep, en zodoende een maat is voor de ernst
van de stenose.

De computermodellen die worden besproken in Hoofdstuk 2 vereisen bijzonder veel
rekenkracht en tijd. In Hoofdstuk 3 proberen we via een statistisch vormmodel voor deze
tekortkoming een oplossing te vinden. Dit vormmodel beschrijft de vorm van de klep
met slechts enkele parameters en maakt het mogelijk om een virtuele patiëntenpopulatie
te simuleren. Deze simulatiedata kan vervolgens gebruikt worden om met een meta-
model de relatie tussen de vorm van de aortaklep en de drukval over de aortaklep
te bepalen. We laten zien dat dit meta-model weinig verschilt van de daadwerkelijke
simulatiedata. Bovendien is dit meta-model, in tegenstelling tot de daadwerkelijke
bloedstroomsimulatie, zeer efficiënt, vereist het weinig rekenkracht, en is daardoor
geschikter voor implementatie in de klinische praktijk. De efficiëntie van dit meta-
model maakt het bovendien geschikt voor gevoeligheidsanalyse en het kwantificeren
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van model-onzekerheid (Hoofdstuk 4). Met deze analyses laten we zien dat de drukval
buitengewoon gevoelig kan zijn voor kleine (0.5-1.0 mm) variaties in de vorm van de
aortaklep.

Bloedstroming distaal van een aortaklep wordt gekarakteriseerd door periodiek optre-
dende turbulentie. Computermodellen voor het nauwkeurig simuleren van dergelijke
stromingen zijn bijzonder complex. In Hoofdstuk 2, 3, en 4 werd deze stroming ges-
imuleerd door gebruik te maken van de Reynolds-Gemiddelde Navier-Stokes vergeli-
jkingen, die een volledig ontwikkeld en tijds-gemiddeld stromingsveld aannemen. In
Hoofdstuk 5 wordt deze aanname getoetst met behulp van simulaties die het pulserende
en turbulente karakter van de bloedstroming nauwkeuriger benaderen. Met deze bloed-
stroomsimulaties krijgen we een beter beeld van de periodiek optredende turbulentie bij
gezonde en stenotische aortakleppen. Voor gezonde kleppen wordt turbulentie slechts
aangewakkerd ná piek-systole. Terwijl bij een aortaklepstenose turbulentie al optreed
vóór piek-systole. De Reynolds-Gemiddelde Navier-Stokes vergelijkingen kunnen deze
eigenschappen niet nauwkeurig modelleren, maar zijn desalniettemin bruikbaar als men
enkel geïnteresseerd is in de drukval over de aortaklep.

Bij het modelleren van bloedstroming is het cruciaal om te bepalen in hoeverre sim-
ulatiedata overeenkomt met de fysische werkelijkheid. In Hoofdstuk 6 worden de
resultaten van het computermodel uit Hoofdstuk 5 vergeleken met data van experi-
mentele metingen. Met een 3D printer zijn fysieke modellen van de aortaklep nagemaakt
en vervolgens in een experimentele opstelling geplaatst. De (herstelde) drukval over aor-
takleppen in uiteenlopende klepstanden werd bepaald tijdens constante en pulserende
stroming. We vonden een redelijke overeenkomst tussen het computermodel en de
experimentele metingen. Over het algemeen onderschat het computermodel echter de
drukval bij zowel constante als pulserende stroming.

Met dit proefschrift hebben we laten zien dat computermodellen voor het simuleren van
bloedstroming mogelijk toegevoegde diagnostische waarde hebben voor de klinische
praktijk. Echter erkennen we dat dergelijke tijdrovende simulaties niet geschikt zijn
voor de dagelijkse klinische praktijk. Vandaar dat dit proefschrift de nadruk legt op het
systematisch onderzoeken en het valideren van modelaannames, om zodoende tot een
nauwkeurig maar toch zeer efficiënt surrogaat model te komen.
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