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SYNCHRONIZED LÉVY QUEUES

OFFER KELLA,∗ The Hebrew University of Jerusalem
ONNO BOXMA,∗∗ Eindhoven University of Technology

Abstract

We consider a multivariate Lévy process where the first coordinate is a Lévy process
with no negative jumps which is not a subordinator and the others are non-decreasing.
We determine the Laplace–Stieltjes transform of the steady-state buffer content vector
of an associated system of parallel queues. The special structure of this transform allows
us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to
interpret the buffer content vector as a sum of independent random vectors.
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1. Introduction

We consider n parallel stations or queues which process some material that we call fluid.
The inputs to the stations are correlated. The net input vector is denoted by

Y = {(Y1(t), . . . , Yn(t)) | t ≥ 0},
where

Yi(t) =
i∑

j=1

Xj(t), 1 ≤ i ≤ n,

and where X1 is a Lévy process with no negative jumps which is not a subordinator and
X2, . . . , Xn are subordinators which are not identically zero. Put differently: station 1 receives
a net input process X1, and station 2 receives in addition X2, and station 3 also receives on
top of that X3, etc. Since the processes X2, . . . , Xn are subordinators, i.e. non-decreasing Lévy
processes, the net input to station i is at least as large as the net input to station i − 1, 2 ≤ i ≤ n.

This model of n parallel stations generalizes the model studied in [6] in two respects. First,
we do not require X1 to be a subordinator minus a linear drift. Second, throughout the paper
we allow X1, . . . , Xn to be dependent, whereas in [6] independence was assumed in deriving
some of its results. Our model also generalizes the model of n parallel queues studied in [2],
because the latter paper restricts itself to compound Poisson inputs (and hence the net inputs are
compound Poisson processes minus linear drifts). The steady-state workload decomposition
that we eventually identify is also related to results developed in [5]. For further literature on
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Synchronized Lévy queues 1223

fluid networks we refer to the mini-survey [3] and references therein; for linear stochastic fluid
networks, see e.g. [11]. Background material on Lévy processes with some emphasis on related
applications can be found in [4] and [13], for example.

Our main results are as follows. We determine the Laplace–Stieltjes transform of the steady-
state buffer content vector for the system of n parallel queues. The special structure of this
buffer content transform allows us to rewrite it as a product of n joint Laplace–Stieltjes trans-
forms. Each term of the product is given a probabilistic interpretation. We are thus able to
interpret the buffer content vector as a sum of n independent random vectors.

The paper is organized as follows. Section 2 contains a detailed model description and
some preliminary results regarding the Laplace exponent of the multivariate Lévy process X.
The main results are derived in Section 3. Two remarks at the end of that section point out that
our main results are also of immediate relevance for a tandem fluid model, a priority queue,
and a multivariate insurance risk model.

2. The model and preliminaries

Let X = {(X1(t), . . . , Xn(t)) | t ≥ 0} be a multivariate Lévy process with X(0) = 0, where X1
is a Lévy process with no negative jumps which is not a subordinator and Xi is a subordina-
tor which is not identically zero for each 2 ≤ i ≤ n. We have E[e−αT X(t)] = eϕ(α)t, where the
Laplace exponent ϕ(α) has the form

ϕ(α) = −aTα+ σ 2

2
α2

1 +
∫
R

n+
(e−αT x − 1 + αTx1(0,1]n (x))ν(dx),

where, if we denote νi(A) = ν(Ri−1+ × A ×R
n−i+ ) for 1 ≤ i ≤ n, then

∫
R+

(x2
1 ∧ 1)ν1(dx1)<∞ and

∫
R+

(xi ∧ 1)νi(dxi)<∞ for 2 ≤ i ≤ n.

For this set-up we can rewrite the Laplace exponent in the following way:

ϕ(α) = −cTα + σ 2

2
α2

1 +
∫
R

n+
(e−αT x − 1 + α1x11(0,1](x1))ν(dx),

where

c1 = a1 +
∫

(0,1]×(Rn−1+ \(0,1]n−1)
x1ν(dx1) and ci = ai −

∫
(0,1]n

xiν(dx) for 2 ≤ i ≤ n.

Letting

ϕ1(α1) = ϕ(α1, 0, . . . , 0)

= −c1α1 + σ 2

2
α2

1 +
∫
R+

(e−α1x1 − 1 + α1x11(0,1](x1))ν1(dx1)

gives

ϕ(α) = ϕ1(α1) −
n∑

i=2

ciαi −
∫
R

n+
e−α1x1 (1 − e− ∑n

i=2 αixi)ν(dx). (1)
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1224 O. KELLA AND O. BOXMA

It should be noted that the integral on the right is finite for every choice of α ∈R
n+. This follows

from the fact that

e−α1x1 (1 − e− ∑n
i=2 αixi) ≤

( n∑
i=2

αixi

)
∧ 1,

so that

∫
R

n+
e−α1x1 (1 − e− ∑n

i=2 αixi)ν(dx) ≤
n∑

i=2

αi

∫
(0,1]n

xiν(dx) + ν(Rn+ \ (0, 1]n)

≤
n∑

i=2

αi

∫
(0,1]

xiνi(dx) + ν(Rn+ \ (0, 1]n)

<∞.

We note that we may also write

ϕ(α) = ϕ1(α1) + ϕ(0, α2, . . . , αn) +
∫
R

n+
(1 − e−α1x1 )(1 − e− ∑n

i=2 αixi)ν(dx),

observing that

ϕ(0, α2, . . . , αn) = −
n∑

i=2

ciαi −
∫
R

n+
(1 − e− ∑n

i=2 αixi)ν(dx) ≡ −η(α2, . . . , αn) (2)

is the Laplace exponent of (X2, . . . , Xn), which implies (since it is an (n − 1)-dimensional
subordinator) that necessarily ci ≥ 0 for 2 ≤ i ≤ n.

In a similar manner, letting

ϕk(β) = ϕ( β, . . . , β︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

)

for β ∈R+ and 2 ≤ k ≤ n, we have that ϕk is the Laplace exponent of
∑k

i=1 Xi, which (because
of X1) is not a subordinator, and, from (1),

ϕ( β, . . . , β︸ ︷︷ ︸
k

, αk+1, . . . , αn)

= ϕk(β) −
n∑

i=k+1

ciαi −
∫
R

n+
e−β ∑k

i=1 xi(1 − e− ∑n
i=k+1 αixi)ν(dx). (3)

3. The main results

In this section we determine the Laplace–Stieltjes transform of the steady-state buffer con-
tent vector for the system of n parallel queues (Theorem 1 and Corollary 1). The special
structure of this buffer content transform allows us to rewrite it as a product of n joint Laplace–
Stieltjes transforms. Each term of the product is given a probabilistic interpretation. We are thus
able to interpret the buffer content vector as a sum of n independent random vectors. We end
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Synchronized Lévy queues 1225

the section with a few remarks concerning the relations between the model under consideration
and some other multivariate stochastic models.

Lemma 1. For k = 1, . . . , n − 1, there is a unique positive

β =ψk(αk+1, . . . , αn)

with αk+1, . . . , αn ≥ 0 such that

ϕ(β, . . . , β, αk+1, . . . , αn) = 0. (4)

Proof. Since Xi is not identically zero for each 2 ≤ i ≤ n, then, when αk+1, . . . , αn are not
all zero, it follows from (3) and the fact that c2, . . . , cn ≥ 0 that

ϕ(0, . . . , 0, αk+1, . . . , αn) = −
n∑

i=k+1

ciαi −
∫
R

n+
(1 − e− ∑n

i=k+1 αixi)ν(dx)< 0. (5)

Since
∑k

i=1 Xi is not a subordinator, as β → ∞ we have ϕk(β) → ∞ and∫
R

n+
e−β ∑k

i=1 xi(1 − e− ∑n
i=k+1 αixi)ν(dx) → 0

(dominated convergence), and thus (see (3)) ϕ(β, . . . , β, αk+1, . . . , αn) → ∞. Therefore,
since ϕ is convex (hence ϕ(β, . . . , β, αk+1, . . . , αn) is convex in β), and ϕ(0, . . . ,
0, αk+1, . . . , αn)< 0 according to (5), the statement of the lemma follows. �

Now assume that Yi = ∑i
j=1 Xj for 1 ≤ i ≤ n. Then, for each t ≥ 0, we have for each s< t

that
Y1(t) − Y1(s) ≤ Y2(t) − Y2(s) ≤ · · · ≤ Yn(t) − Yn(s).

Clearly Y = {(Y1(t), . . . , Yn(t)) | t ≥ 0} is also a Lévy process with Laplace exponent

ϕ̃(α) = ϕ(α1 + · · · + αn, α2 + · · · + αn, . . . , αn).

Lemma 1 implies that for

β =ψk(αk+1 + · · · + αn, . . . , αn−1 + αn, αn) −
n∑

i=k+1

αi, (6)

ϕ̃(0, . . . , 0, β, αk+1, . . . , αn) is zero.
We are now ready to study the buffer content of a system of n parallel fluid queues, with net

input Y . Let
Li(t) = − inf

0≤s≤t
Yi(s), Zi(t) = Yi(t) + Li(t).

Note that Zi(t) can be viewed as the buffer content of a queue with net Lévy input Yi(t) =
X1(t) + · · · + Xi(t), i = 1, . . . , n, and Li(t) is the local time at level 0 of that queue.

We necessarily have (see Theorem 6 of [10]) that Zi(t) ≤ Zi+1(t) for 1 ≤ i ≤ n − 1. Thus,
if we assume that EYn(1)< 0 (hence EYi(1)< 0 for all 1 ≤ i ≤ n), then our system of n par-
allel fluid queues has a stationary distribution. We shall now determine the Laplace–Stieltjes
transform (LST) of the steady-state workload vector, to be denoted by Z∗.

Theorem 1. The LST of the steady-state workload vector Z∗ is given by

ϕ̃(α)E e−αT Z∗ =
n−1∑
k=1

αk fk(αk+1, . . . , αn) + αn fn, (7)
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1226 O. KELLA AND O. BOXMA

where fn = −EYn(1) is constant and fk(αk+1, . . . , αn) are recursively given by

fk(αk+1, . . . , αn) =
∑n−1

i=k+1 αi fi(αi+1, . . . , αn) + αn fn∑n
i=k+1 αi −ψk(αk+1 + · · · + αn, . . . , αn−1 + αn, αn)

, (8)

where an empty sum is defined to be zero.

Proof. If Z∗ has this distribution, then, since Z∗
1 ≤ · · · ≤ Z∗

n (hence Z∗
i = 0 implies that Z∗

j =
0 for 1 ≤ j ≤ i), as in (2.12) of [6], (7) is satisfied for all α1, . . . , αn satisfying

∑n
i=k αi ≥ 0

for all k = 1, . . . , n. Below we first determine fn, and thereafter we show how fn−1, . . . , f1 can
successively be determined: fn−1 is expressed in fn, then fn−2 is expressed in fn−1 and fn, etc.
Letting α1 = · · · = αn−1 = 0, we have, upon dividing by αn and letting αn ↓ 0, that

fn = ∂ϕ̃

∂αn
(0) = −EYn(1) = −

n∑
i=1

EXi(1).

Now note that if we let α1 = · · · = αk−1 = 0, then we have the formula

ϕ̃(0, . . . , 0, αk, . . . , αn)E e− ∑n
i=k αiZ∗

i =
n−1∑
i=k

αi fi(αi+1, . . . , αn) + αn fn. (9)

Assume that fi(αi+1, . . . , αn) are known for i = k + 1, . . . , n − 1. Set αk to be the right-hand
side of (6). Recall that Z∗

i−1 ≤ Z∗
i for 2 ≤ i ≤ n. Therefore

n∑
i=k

αiZ
∗
i =ψk(αk+1 + · · · + αn, . . . , αn−1 + αn, αn)Z∗

k +
n∑

i=k+1

αi(Z
∗
i − Z∗

k ) ≥ 0,

so that E e− ∑n
i=k αiZ∗

i ≤ 1 for our choice of αk (remember that we do not demand that all αi ≥ 0).
This implies (8). �

In principle we can thus compute the right side of (7) and hence Ee−αT Z∗
for all α1, . . . , αn

satisfying
∑n

i=k αi ≥ 0 for all k = 1, . . . , n. It follows from (2.12) of [6] that fk(αk+1, . . . , αn)
is a constant times some (joint) Laplace–Stieltjes transform for every 1 ≤ k ≤ n − 1. We shall
also see this in Corollary 1.

It should be mentioned that the above theorem generalizes Section 3 of [6] in two ways. The
first is that it is not necessary to assume that X1 is a subordinator minus a drift and the second
is that it is not necessary to assume that X1, . . . , Xn are independent. It also generalizes results
from [2] from the compound Poisson setting to the more general Lévy subordinator setting.
The latter paper considers a system of n queues which simultaneously receive input from an
n-dimensional compound Poisson process, and the jump sizes of the simultaneous jumps are
stochastically ordered. The steady-state joint workload LST of that system is determined in [2].

In [2], furthermore, a decomposition is presented for the n-dimensional workload LST, and
the terms of this decomposition are given an interpretation. In the remainder of this section,
our aims are also to decompose the n-dimensional LST of Z∗ into a product of terms and to
give interpretations of these terms. In particular, it would be nice to understand the meaning of
ϕk(αk+1, . . . , αn). For this it would suffice to consider k = 1. We follow ideas from [6], where
some unnecessary independence assumptions were made, but with a new observation which
was missed at the time. The first thing to observe is the following. Let

T1(x) = inf{t | X1(t) = −x}.
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Synchronized Lévy queues 1227

Then it is well known that T1(x) is a.s. finite for each x ≥ 0 and in fact {T1(x) | x ≥ 0} is a sub-
ordinator with Laplace exponent −ϕ−1

1 ( · ), where ϕ−1
1 is the inverse of the strictly increasing

and continuous function ϕ1 (from R+ to R+).
Now, since e− ∑n

i=1 αiXi(t)−ϕ(α)t is a mean-one martingale (Wald martingale) for each α ∈
R

n+, this holds in particular for α1 =ψ1(α2, . . . , αn), in which case ϕ(α) = 0. Since T1(x) is a
stopping time, the optional stopping theorem implies that

E exp

(
−ψ1(α2, . . . , αn)X1(T1(x) ∧ t) −

n∑
i=2

αiXi(T1(x) ∧ t)

)
= 1.

Noting that ψ1(α2, . . . , αn) ≥ 0 and X1(T1(x) ∧ t) ≥ −x, and that Xi(T1(x) ∧ t) ≥ 0 for each
2 ≤ i ≤ n, this implies, by bounded convergence and the fact that X1(T1(x)) = −x, that

Ee− ∑n
i=2 αiXi(T1(x)) = e−ψ1(α2,...,αn)x. (10)

In [6] it was explained why {(X2(T1(x)), . . . , Xn(T1(x))) | x ≥ 0} is a (non-decreasing) Lévy
process, and it was stated that it is important that X2, . . . , Xn are independent. This statement
about independence was an oversight, as with a similar argument it holds that it is a Lévy
process without any independence assumptions. Formula (10) implies that −ψ1(α2, . . . , αn)
is in fact the Laplace exponent of this Lévy process. If X1 is independent of (X2, . . . , Xn) then,
recalling (2),

E exp

(
−

n∑
i=2

αiXi(T1(x))

)
=E e−η(α2,...,αn)T1(x) = e−ϕ−1

1 (η(α2,...,αn))x,

and thus for this case
ψ1(α2, . . . , αn) = ϕ−1

1 (η(α2, . . . , αn)),

which is what appears in [6] (with different notation). In fact, since X1(T1(x)) = −x, we clearly
have that {X(T1(x)) | x ≥ 0} is an n-dimensional Lévy process with Laplace exponent α1 −
ψ1(α2, . . . , αn). In particular, this implies that the Laplace exponent of {Y(T1(x)) | x ≥ 0} is

n∑
i=1

αi −ψ1(α2 + · · · + αn, . . . , αn−1 + αn, αn).

At this point it would be good to refer to (6).
Now we note that, for 2 ≤ i ≤ n,

inf
0≤s≤T1(x)

Yi(s) = inf
0≤y≤x

Yi(T1(y))

and thus
Zi(T1(x)) = Yi(T1(x)) − inf

0≤y≤x
Yi(T1(y)).

In addition to the formal proof given in [6], note that if 0 ≤ s ≤ T1(x) and

s �∈ {T1(y) | 0 ≤ y ≤ x}
then, since T1( · ) is right continuous and T1(0) = 0, there must be some y ∈ [0, x] for which
T1(y)< s and X1(T1(y)) = −y< X1(s). Since X2, . . . , Xn are non-decreasing, Yi(T1(y))< Yi(s).
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1228 O. KELLA AND O. BOXMA

This means that the only contenders to minimize Yi on the interval [0, T1(x)] are {T1(y) | 0 ≤
y ≤ x}.

Similar ideas imply that, with Tk(x) = inf{t | Yk(t) = −x},
{(Xk+1(Tk(x)), . . . , Xn(Tk(x))) | x ≥ 0}

is a subordinator with Laplace exponent −ψk(αk+1, . . . , αn), and for every k + 1 ≤ i ≤ n it
follows that

Zi(Tk(x)) = Yi(Tk(x)) − inf
0≤y≤x

Yi(Tk(y)),

and we also observe that

Yi(Tk(x)) =
i∑

j=k+1

Xj(Tk(x)) − x for k + 1 ≤ i ≤ n.

That is, for each k + 1 ≤ i ≤ n, Yi(Tk(x)) is a subordinator minus a unit drift.
Letting Zk∗ denote a random vector having the limiting distribution of Z(Tk(x)), noting that

necessarily Zk∗
1 = · · · = Zk∗

k = 0, then from Corollary 2.3 of [6] we have that

fk(αk+1, . . . , αn) = −EYk(1) E exp

(
−

n∑
i=k+1

αiZ
k∗
i

)
. (11)

The following corollary is now implied by Theorem 1.

Corollary 1.

ϕ̃(α)E e−αT Z∗ =
n∑

k=1

αk( −EYk(1)) E exp

(
−

n∑
i=k+1

αiZ
k∗
i

)
,

with an empty sum being zero.

This confirms the statement, made in the proof of Theorem 1, that all fk are LSTs of some
(joint) distribution, up to a multiplicative constant.

We emphasize that Zk∗ is a vector of workloads having the steady-state distribution asso-
ciated with the vector of workloads process embedded at time instants where station k (hence
also stations 1, . . . , k − 1) is empty. For what follows, we recall that if −ξ (β) is the Laplace
exponent of some one-dimensional subordinator, then for some b ∈R+ and Lévy measure μ
satisfying

∫
R+ (u ∧ 1)μ(du)<∞ we have

ξ (β) = bβ +
∫
R+

(1 − e−βu)μ(du), (12)

and when the mean ξ ′(0) is finite, then ξ (β)/(βξ ′(0)) is the LST of the mixture, with weight
factors (

b

b + ∫ ∞
0 μ(u,∞) du

,

∫ ∞
0 μ(u,∞) du

b + ∫ ∞
0 μ(u,∞) du

)
(13)

of zero and a (residual lifetime) distribution having the density μ(x,∞)/
∫ ∞

0 μ(u,∞) du. See
e.g. (4.6) of [7].

We first discuss the workload decomposition for the case n = 2, exposing the key ideas;
thereafter we briefly treat the case of a general n via a repetition of the argument.
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Synchronized Lévy queues 1229

3.1. Workload decomposition for the two-dimensional case

For the case n = 2, we first note that from ϕ(ψ1(α2), α2) = 0 it follows that with

η2(α2) = −ϕ(0, α2) = c2α2 +
∫
R+

(1 − e−α2x)ν2(dx),

we have

ψ ′
1(0) = η′

2(0)

ϕ′
1(0)

.

It may be seen after some very simple manipulations that, for α2 ≥ 0 and α1 ≥ −α2, with
α1 �=ψ(α2),

E e−α1Z∗
1−α2Z∗

2 = ϕ′
1(0)(α1 + α2 −ψ1(α2))

ϕ(α1 + α2, α2)
· (1 −ψ ′

1(0))α2

α2 −ψ1(α2)
.

An identical formula is given, employing different methods, in Proposition 1 of [2]. That
paper restricts itself to the special case where, with J a two-dimensional compound Poisson
process with non-negative (two-dimensional) jumps, we have X(t) = J(t) − (t, 0) (so that
Y(t) = (J1(t) − t, J1(t) + J2(t) − t)).

If we denote W∗
1 = Z∗

1 and W∗
2 = Z∗

2 − Z∗
1 (non-negative), then

E e−α1W∗
1 −α2W∗

2 = ϕ′
1(0)(α1 −ψ1(α2))

ϕ(α1, α2)
· (1 −ψ ′

1(0))α2

α2 −ψ1(α2)
. (14)

The second expression in the product on the right-hand side is the LST of W1∗
2 = Z1∗

2 (which
has the steady-state distribution of the workload in station 2 observed only at times when
station 1 is empty) and from its form (generalized Pollaczek–Khinchin formula, e.g. (2.5) of
[7], among many others), it is indeed the steady-state LST of a reflected process of a Lévy fluid
queue with subordinator input having the Laplace exponent −ψ1(α2) and a processing rate of
one. That is, it is the steady-state LST of the reflected process associated with the driving
process {Ĵ(x) − x | x ≥ 0}, where Ĵ(x) = X2(T1(x)). In the compound Poisson setting of [2], it
was observed to be the steady-state LST of the workload in an M/G/1 queue with service times
distributed as the extra (compared with queue 1) workload accumulated in station 2 during a
busy period of station 1.

Setting α1 = 0, we can rewrite the resulting equation as follows:

η2(α2)

α2η
′
2(0)

E e−α2W∗
2 = ψ1(α2)

α2ψ
′
1(0)

E e−α2W1∗
2 . (15)

That is, if ξ∗
2 and ξ1∗

2 have LSTs

η2(α)

α2η
′
2(0)

and
ψ1(α2)

α2ψ
′
1(0)

(see the paragraph that includes (12) and (13)) and are respectively independent of W∗
2 and

W1∗
2 , then we have the following decomposition:

ξ∗
2 + W∗

2 ∼ ξ1∗
2 + W1∗

2 . (16)

We note that this is different from the decomposition described in Theorem 4.2 of [6], which
holds when X1 and X2 are independent processes but not otherwise. It is easy to check that with
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this independence, this decomposition holds here as well, where, unlike there, X1 need not be
a subordinator minus some drift.

Our next goal is to identify a joint distribution with LST given by the first expression of the
product on the right-hand side of (14). First we observe from Corollary (2.1) of [6] and the
facts that Z1(T1(x)) = 0, Z1(t) = 0 for points of (right) increase of L1 and Z1(t) = Z2(t) = 0 for
points of (right) increase of L2 (e.g. [8]), that

ϕ̃(α)E
∫ T1(x)

0
e−αT Z(s) ds

=E e−α2Z2(T1(x)) − 1 + α2EL2(T1(x)) + α1E

∫ T1(x)

0
e−α2Z2(s) dL1(s). (17)

This holds in particular when we substitute α1 =ψ1(α2) − α2 (see (6)), in which case ϕ̃(α) = 0.
Therefore, subtracting (17) with α1 =ψ1(α2) − α2 from (17) and noting (see also Corollary 2.1
of [6]) that ∫ T1(x)

0
e−α2Z2(s) dL1(s) =

∫ x

0
e−α2Z2(T1(y)) dy,

we have

ϕ̃(α)E
∫ T1(x)

0
e−αT Z(s) ds = (α1 + α2 −ψ1(α2))

∫ x

0
E e−α2Z2(T1(y)) dy.

Dividing by ET1(x) = x/ϕ′
1(0) and recalling that ϕ̃(α) = ϕ(α1 + α2, α2) now gives

1

ET1(x)
E

∫ T1(x)

0
e−αT Z(s) ds = ϕ′

1(0)(α1 + α2 −ψ1(α2))

ϕ(α1 + α2, α2)

1

x

∫ x

0
E e−α2Z2(T1(y)) dy. (18)

We now observe two facts. The first is that by regenerative theory the left-hand side is the LST
of the steady-state distribution of a corresponding regenerative process where at time T1(x) the
process is restarted. At this time Z1(T1(x)) = 0 and the remaining quantity at station 2 is lost.
The second fact is that as x ↓ 0, by bounded convergence and the fact that Z(T1( · )) is right
continuous with Z(T1(0)) = 0 (since T1(0) = 0), we have

lim
x↓0

1

x

∫ x

0
E e−α2Z2(T1(y)) dy = lim

x↓0
E e−α2Z2(T1(x)) = 1.

Using (18), this implies that

lim
x↓0

1

ET1(x)
E

∫ T1(x)

0
e−αT Z(s) ds = ϕ′

1(0)(α1 + α2 −ψ1(α2))

ϕ(α1 + α2, α2)
,

where the right-hand side converges to 1 as (α1, α2) → (0, 0). By the continuity theorem
for LSTs we have that necessarily the right-hand side is an LST of a non-negative random
vector (for any α2 ≥ 0 and α1 ≥ −α2). This also implies that for α1, α2 ≥ 0, with W(s) =
(W1(s),W2(s)) := (Z1(s), Z2(s) − Z1(s)),

lim
x↓0

1

ET1(x)
E

∫ T1(x)

0
e−αT W(s) ds = ϕ′

1(0)(α1 −ψ1(α2))

ϕ(α1, α2)
, (19)

so this is also an LST. For the compound Poisson case, this implies that this is the LST of a
version of this process such that, whenever Z1(t) = 0, any quantity available in queue 2 is lost.
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For this case, this interpretation was discovered in [2] and it continues to be valid if X1 is a
compound Poisson process with a negative drift and X2 is a general subordinator (X1, X2 can
be dependent).

Remark 1. To obtain moments of W∗
1 ,W∗

2 or Z∗
1 = W∗

1 , Z∗
2 = W∗

1 + W∗
2 requires slightly

tedious but straightforward calculations. First (see (14)),

E(e−α1W∗
1 ) = ϕ′

1(0)α1

ϕ(α1, 0)

yields

EW∗
1 = ϕ′′

1 (0)

2ϕ′
1(0)

= VarX1(1)

−2EX1(1)
.

Second (again from (14)),

E(e−α2W∗
2 ) = −ϕ

′
1(0)ψ1(α2)

ϕ(0, α2)
· (1 −ψ ′

1(0))α2

α2 −ψ1(α2)

yields

EW∗
2 =

( d2

dy2

)
ϕ(0, y)

2
( d

dy

)
ϕ(0, y)

∣∣∣∣
y=0

− ψ ′
1(0)

2ψ ′
1(0)

− ψ ′
1(0)

2(1 −ψ ′
1(0))

,

which term by term corresponds to (see (15) and (16))

EW∗
2 = −Eξ∗

2 +Eξ1∗
2 +EW1∗

2 .

Insertion of

d

dy
ϕ(0, y)|y=0 = −EX2(1),

d2

dy2
ϕ(0, y) = Var(X2(1)),

ψ ′
1(0) = −EX2(1)

EX1(1)
,

ψ ′
1(0) = −ϕ

′
1(0)

ϕ′
1(0)

(ψ ′
1(0))2 −

( d2

dy2

)
ϕ(0, y)|y=0

ϕ′
1(0)

− 2

(
d2

dx dy

)
ϕ(x, y)|x=y=0

ψ ′
1(0)

ϕ′
1(0)

= Var(X1(1))

EX1(1)

(
EX2(1)

EX1(1)

)2

+ Var(X2(1))

EX1(1)
− 2Cov(X1(1), X2(1))

EX2(1)

(EX1(1))2

allows us to express the moments of W∗
1 and W∗

2 in terms of the first two moments and covari-
ance of X1(1) and X2(1). Compared to formula (4.6) of [6], the expression for EW∗

2 contains
an extra term that includes Cov(X1(1), X2(1)).

3.2. Workload decomposition for the n-dimensional case

The above argument may be repeated for the n-dimensional case. Indeed, it follows from
(9), (8), and (11) that for α such that

∑n
i=k αi ≥ 0 for all k = 1, . . . , n,

E e−αT Z∗

= ϕ′
1(0)(

∑n
i=1 αi −ψ1(α2 + · · · + αn, . . . , αn−1 + αn, αn))

ϕ̃(α)
E exp

(
−

n∑
i=2

αiZ
1∗
i

)
,
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or equivalently, introducing αi := αi − αi+1 for 1 ≤ i ≤ n − 1, we have for αi ≥ 0, for i =
1, . . . , n,

Ee−αT W∗ = ϕ′
1(0)(α1 −ψ1(α2, . . . , αn−1, αn))

ϕ(α)
E exp

(
−

n∑
i=2

αiW
1∗
i

)
.

By induction, the right-hand side may be written as a product of n (joint) LSTs where, for
1 ≤ k ≤ n − 1, the kth multiple is

(
1 − ( ∂ψk−1

∂αk

)
(0)

)
(αk −ψk(αk+1, . . . , αn))

αk −ψk−1(αk, . . . , αn)

and the last one is
(1 −ψ ′

n−1(0))αn

αn −ψn−1(αn)
.

From (4) it follows that, for 2 ≤ k ≤ n,

1 − ∂ψk−1

∂αk
(0) = ϕ′

1(0) − ∑k
i=2 η

′
i(0)

ϕ′
1(0) − ∑k−1

i=2 η
′
i(0)

= −EYk(1)

−EYk−1(1)
,

where for k = 2 the empty sum in the denominator is defined to be zero.
For the case where X1 is a subordinator minus a drift and X1, . . . , Xn are independent, it

seems that this decomposition can be inferred from more general results reported in Theorem
6.1 of [5].

Finally, the ideas that led to (19) may be repeated to conclude that each multiplicative factor
participating in this decomposition is indeed a (joint) LST.

Remark 2. The results of this section are also of immediate relevance for a tandem fluid model,
i.e. a model of n stations in series, in which material or work leaves each station as a fluid.
Such a connection between parallel stations and stations in series was already pointed out in
[6]. Tandem fluid models were introduced in [9]. The following n-station tandem fluid model
is introduced and studied in that paper. The input process of station 1 is a non-decreasing Lévy
process and the jth station receives the output of the (j − 1)th station at a constant rate rj−1, as
long as that station is not empty. It was assumed that r1 ≥ · · · ≥ rn, to avoid the trivial case that a
station is always empty. That tandem fluid model was generalized in [6] by allowing additional
external inputs to stations 2, . . . , n. Those inputs were assumed to be subordinators and, for
most of the results, they were assumed to be independent from each other and from the input to
station 1. It was observed in [6] that there is a direct connection between the workloads in this
tandem fluid model and the workloads in a model of n parallel stations. The same observation,
but for the case of compound Poisson inputs (and allowing dependence between the input
processes), was also made in [2]. That connection also extends to the case of dependent external
Lévy inputs. More precisely, let X1, . . . , Xn be the external inputs to stations 1, . . . , n of the
tandem fluid model, with X2, . . . , Xn being subordinators, and let W1, . . . ,Wn denote their
buffer content level processes. Then we can identify Wj(t) with Zj(t) − Zj−1(t), 1 ≤ j ≤ n (hence
W1(t) + · · · + Wj(t) = Zj(t)), where Zj(t) as before denotes the buffer content level of station j
in the system of parallel stations studied in the present paper, and Z0(t) ≡ 0.
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Remark 3. In [6] an equivalence between the tandem fluid model and a particular single server
priority queue is also pointed out. Assume a compound Poisson input vector X of customer
classes 1, . . . , n. Class i has preemptive resume priority over class j if i< j; the total workload
in the first j classes can now be identified with Z∗

j .

In [2] a multivariate duality relation is established between (i) the model of n parallel M/G/1
queues with simultaneous arrivals, with stochastic ordering of the n service times of each arriv-
ing batch, and (ii) a Cramér–Lundberg insurance risk model featuring n insurance companies
with simultaneous claim arrivals and stochastic ordering of those claims. In particular, when
the arrival processes in both systems have the same distribution, the joint steady-state workload
distribution P(V1 ≤ x1, . . . , Vn ≤ xn) in the queueing model equals the survival probability for
all companies, with initial capital vector (x1, . . . , xn). This is a generalization of a well-known
duality that is discussed, for example, on page 46 of [1]. Using the sample path argument
presented there, one should also be able to generalize this duality to the case of the Lévy
input process of the present paper, thus also obtaining the survival probability for n insurance
companies with the same n-dimensional input process as the n parallel stations of the present
paper.
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