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Nonparametric Analysis of Random Utility Models:

Computational Tools for Statistical Testing

Bart Smeulders∗, Laurens Cherchye†, Bram De Rock‡

June 17, 2020

Abstract

Kitamura and Stoye (2018) recently proposed a nonparametric statistical test for random utility
models of consumer behavior. The test is formulated in terms of linear inequality constraints and
a quadratic objective function. While the nonparametric test is conceptually appealing, its practi-
cal implementation is computationally challenging. In this note, we develop a column generation
approach to operationalize the test. These novel computational tools generate considerable compu-
tational gains in practice, which substantially increases the empirical usefulness of Kitamura and
Stoye’s statistical test.

1 Introduction

In the analysis of consumer behavior, random utility models are popularly used to structure the notion
of stochastic rationality in the presence of unrestricted (possibly infinite dimensional) unobserved het-
erogeneity. In a recent and insightful paper, Kitamura and Stoye (2018) (henceforth KS) provided an
operational method to nonparametrically test random utility models. Particularly, they developed a sta-
tistical test for the hypothesis that a repeated cross-section of demand data might have been generated by
a population of rational consumers, in a setting with any number of goods and allowing for unrestricted
unobserved heterogeneity. To do so, these authors built on the seminal work of McFadden and Richter
(1990), who presented a nonparametric characterization of stochastic rationalizability (i.e. data consis-
tency with random utility optimization), but without considering in much detail its operationalization
or statistical testing. For their statistical test, KS extended the linear program proposed by McFadden
and Richter with a quadratic objective function. In essence, the resulting optimization problem takes the
form of a large quadratic programming problem that calculates the Euclidean minimum distance between
a vector and a convex set in a high-dimensional space.

While conceptually attractive, the practical implementation of KS’s statistical test is computation-
ally challenging. KS explicitly recognize computational complexity as one of the main limiting factors
of their novel testing procedure, and they mention the development of computational tools that make
their theoretical findings applicable to larger sized problems as a “salient issue” for further research (KS,
p. 1906). We will formally motivate this issue by showing the NP-hardness of Kitamura and Stoye’s
testing problem (see Section 4.1). In the current note, we propose novel tools for operationalizing KS’s
testing procedure, and we show that these tools can considerably alleviate computational constraints in
empirical applications. We expect that this will contribute to the further dissemination of KS’s appealing
nonparametric test in applied work.

Our specific contribution is to propose a column generation approach for the Euclidean distance cal-
culation. This approach exploits that optimal solutions to programming problems with many variables
but few constraints can often be characterized in terms of only a small number of variables. Therefore, a
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column generation approach starts with a limited number of variables, and identifies new ones as needed
through a separate optimization problem. As for the practical application of such a column generation
approach to the setting under study, a specific issue relates to the tightening procedure that KS propose
for computing the critical value of their test statistic. However, this obstacle can be overcome through
a slight modification of KS’s original procedure. Finally, we illustrate the practical usefulness of our
newly proposed column generation algorithms by re-analyzing KS’s empirical application. This appli-
cation demonstrates that our novel tools generate considerable computational gains in practice, which
substantially increases the empirical usefulness of KS’s test.

This note unfolds as follows. Section 2 sets the stage by briefly describing KS’s random utility model
and proposed testing procedure. Section 3 introduces our column generation algorithms to implement
KS’s statistical test. Section 4 presents our empirical application. Section 5 concludes and discusses
alternative applications of our column generation approach.

2 Kitamura and Stoye’s Statistical Test

Throughout, we focus on a discrete choice setting. KS consider a continuous choice setting in their basic
set-up, with choice sets representing budget sets that are characterized by prices and expenditure levels.
However, they rely on a discretization of these choice sets in their testing procedure, which makes it
formally equivalent to the setting described below. For compactness, we only focus on those aspects of
KS’s statistical test that are instrumental for our following discussion, and we refer to KS for further
details.

2.1 Random Utility and Stochastic Rationalizability

Let X represent the set of all discrete choice options xi, with |X | the number of choice options, and let
u : X → R denote a utility function.1 For simplicity, we assume u(xi) 6= u(xj) for all xi, xj ∈ X , i 6= j. A
choice situation t is characterized by a subset of the discrete choice options, denoted Xt ⊆ X . We assume
there are T choice situations, and every choice set Xt contains It choice options. A rational individual
with a utility function u picks the choice option x that satisfies

x = arg max
xj∈Xt

u(xj).

Given the discrete nature of the choice sets Xt, there is a finite number of possible choice profiles
defined over the T choice situations. We refer to each such choice profile as a choice type, indexed by r.
Specifically, we encode a choice type r as ar = (ar,1,1, . . . , ar,T,IT ), with ar,t,i = 1 if choice option xi is
chosen in situation t by type r and ar,t,i = 0 otherwise. The set of rational choice types R is the set of
all types r for which there exists some utility function ur such that

ar,t,i = 1 if and only if xi = arg max
xj∈Xt

ur(xj).

The set of rational choice types R will generally depend on the specific application setting at hand.
For the moment, we will assume a given specification of rational choice types r ∈ R. In their application,
KS get empirical content by characterizing rational choice types in terms of the Strong Axiom of Revealed
Preference (SARP). We will consider this specific instance in Section 4.2

Let MR be a probability distribution over all rational choice types, and let µr be the probability of a
given choice type. We define the sets Rt,i as the subsets of R such that r ∈ Rt,i if and only if ar,t,i = 1,
i.e. Rt,i is the set of rational choice types that choose xi in choice situation t.

Assume a set of observed choice situations for a given population, and let πt,i denote the probability
that option i is chosen in situation t. Stochastic rationalizability requires there exists a probability
distribution MR such that, summed over all rational choice types r, the probability of choosing option
xi in situation t (given by

∑
r∈Rt,i

µr) equals πt,i. For π = (π1,1, . . . , πT,IT ) representing the choice
probabilities, we thus have the following definition.

1We assume utility functions u with the same well-behavedness properties as in Kitamura and Stoye (2018).
2KS’s general statistical test may also be applied to other characterizations of rational choice types. See, for example,

Deb et al. (2017) for such an alternative application.
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Definition 1. The choice probabilities π are stochastically rationalizable if and only if there exists a
distribution MR over choice types such that∑

r∈Rt,i

µr = πt,i ∀t = 1, . . . , T,∀xi ∈ Xt.

We conclude this section by highlighting the geometric interpretation of Definition 1. Consider a space
with the number of dimensions equal to the number of choice options summed over all choice situations.
Then, we can interpret π as a vector in this space, with πt,i the coordinate in the dimension associated
with situation t and choice option xi. Similarly, the vectors ar provide coordinates in each dimension for
each rational choice type, which can be used to define the convex cone

C = {c|c =
∑
r∈R

λrar, λr ≥ 0, r ∈ R}. (1)

The choice probabilities π are stochastically rationalizable if and only if π ∈ C.

The above representation (1) of the cone C is called its V -representation, which defines the cone as a set
of positive linear combinations of the vectors ar. Each cone has an equivalent H-representation, which
characterizes the cone in terms of hyperplanes (by the Weyl-Minkowski theorem; see Gruber (2007)).
More specifically, the cone C can be represented as the intersection of feasible regions characterized by
two sets of hyperplanes, H≤ and H=. The set H≤ contains hyperplanes h≤ that divide the space into a
half-space (including the hyperplane itself) representing a feasible region and a half-space representing an
infeasible region. For each hyperplane h≤ there exists numbers bh≤,t,i that describe the feasible region as

containing all c that satisfy
∑T
t

∑It
i bh≤,t,ict,i ≤ 0. Similarly, the set H= contains hyperplanes h= that

define a feasible region equal to the hyperplane itself. In this case, each hyperplane h= corresponds to
numbers bh=,t,i describing the feasible region as containing all c such that

∑T
t

∑It
i bh=,t,ict,i = 0. Then,

the H-representation of the cone C is given as

C =

{
c

∣∣∣∣∣
∑T
t

∑It
i bh≤,t,ict,i ≤ 0,∀h≤ ∈ H≤∑T

t

∑It
i bh=,t,ict,i = 0,∀h= ∈ H=

}
. (2)

2.2 Testing the Random Utility Model

We next recapture KS’s test statistic for checking stochastic rationalizability, as well as their bootstrap
method for simulating the critical value of this statistic. We assume a sample consisting of N observed
choices in total (summed over all T choice situations), and we let π̂ be an empirical estimate for the
choice probabilities π.

Test Statistic. KS propose to use the test statistic JN defined as the Euclidean distance between the
vector π̂ and the set C specified above. More formally, we can compute JN as the solution to the following
optimization problem:

Minimizeµr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (3)

Subject to ∑
r∈Rt,i

µr + st,i = π̂t,i ∀t = 1, . . . , T, ∀xi ∈ Xt (4)

µr ≥ 0 ∀r ∈ R. (5)

Like before, µr denotes the probability associated with the rational choice type r. Then, for each
dimension associated with choice situation t and option xi, the value st,i gives the distance between a
linear combination of the types (i.e.

∑
r∈Rt,i

µr) and the estimated choice probability π̂t,i. Referring to

Definition 1, π̂ is stochastically rationalizable if and only if JN = 0. In what follows, we use η̂ to denote
the projection of π̂ onto C that corresponds to the solution of this minimization problem.
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Critical Value. KS propose a bootstrap procedure to simulate the critical value of their test statistic.
The procedure is characterized by a tuning parameter τN that is chosen such that τN ↓ 0 and

√
NτN ↑ ∞.

This tuning parameter is used as a lower bound to the µ variables, giving the following optimization
problem:

Minimizeµr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (6)

Subject to ∑
r∈Rt,i

µr + st,i = π̂t,i ∀t = 1, . . . , T,∀xi ∈ Xt (7)

µr ≥ τN/|R| ∀r ∈ R. (8)

This problem imposes strictly positive lower bounds on all variables µr. These bounds tighten the
cone, which enables KS to establish validity of their inference. KS’s bootstrap procedure makes use of
M bootstrap replications with sample frequencies π̂∗(m) for m = 1, . . . ,M . Algorithm 1 describes the
calculation of the critical value for JN .

Algorithm 1: Calculating the critical value for JN

1: Compute the µr that solve (6)-(8).
2: Compute the τN -tightened estimator η̂τN , with η̂τN ,t,i =

∑
r∈Rt,i

µr for all t = 1, . . . , T, ∀xi ∈ Xt.
3: for m = 1, . . . ,M do

4: Define the τN -tightened recentered bootstrap estimators, π̂
∗(m)
τN = π̂∗(m) − π̂ + η̂τN .

5: Compute the bootstrap test statistic J
∗(m)
N (τN ) as the optimal value of minimization problem

(6)-(8) with π̂
∗(m)
τN replacing π̂.

6: end for
7: Use the empirical distribution of J

∗(m)
N (τN ), m = 1, . . . ,M to obtain the critical value for JN .

2.3 Computational Difficulties

Computing the test statistic JN and its critical value requires solving 2 + M quadratic programs: the
problem (3)-(5) must be solved once, and the problem (6)-(8) must be solved 1+M times (once to obtain
the τN -tightened estimator η̂τN , and M times for the bootstrap replications to generate the empirical

distribution of J
∗(m)
N (τN )). As mentioned by KS, solving these problems is computationally challenging.

In their own computations, KS follow a straightforward approach by first identifying all rational choice
types r ∈ R, to subsequently solve 2 +M large quadratic programs (involving one variable per rational
type). However, the number of rational choice types can rise exponentially with the number of choice
situations T , which makes KS’s procedure computationally costly for moderately sized instances, and
even practically impossible to handle for larger instances.

As a specific illustration, Table 1 shows the approximate number of rational choice types for different
size instances in KS’s own empirical application.3 When recapturing this application in Section 4, we
also formalize the computational complexity of computing JN (and its critical value) by showing it is
NP-hard in general.

3 Goods 4 Goods 5 Goods
Min Max Min Max Min Max

T = 7 3.00E+00 1.79E+04 3.10E+01 2.03E+05 3.10E+01 3.36E+05
T = 10 8.82E+02 7.53E+07 1.15E+04 1.03E+10 1.34E+05 2.43E+10
T = 15 6.91E+09 2.59E+13 1.53E+13 2.38E+16 7.16E+14 2.08E+17
T = 20 2.68E+16 6.52E+20

Table 1: Approximate maximum and minimum number of rational choice types in KS’s application.

3The total number of choice types is calculated exactly. We use random sampling to estimate the ratio of rational choice
types to total choice types.
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3 Statistical Testing through Column Generation

In the following sections, we describe a column generation procedure to operationalize KS’s statistical
test without requiring the identification of all rational choice types. In Section 3.1, we focus on problem
(3)-(5). In Section 3.2, we handle problem (6)-(8). This problem is subtly different from problem (3)-(5),
as it involves strictly positive lower bounds for the variables µr associated with the rational choice types.
In principle, this makes it impossible to solve this problem without first identifying all rational choice
types. However, a minor adaptation of KS’s original procedure allows us to circumvent this problem.
Finally, we also point out the possible use of an upper bounds method to more efficiently calculate critical
values in practical applications of our column generation approach.

3.1 Computing the Test Statistic

Our column generation algorithm does not solve problem (3)-(5) directly, but instead starts from a re-
stricted version of this problem which uses only a subset of its variables (representing a subset of rational
choice types). We call this new problem the restricted master problem, and refer to the original problem
(3)-(5) as the complete master problem. We then check whether the solution of the restricted master
problem is also a solution of the complete problem (3)-(5) by solving a so-called pricing problem. If this
turns out not to be the case, we can use the outcome of the pricing problem to identify a new variable
to be added to the restricted master, and we proceed by (re-)solving the resulting problem.4

We formally introduce the proposed algorithm in a step-by-step manner. In a first step, we solve
the problem (3)-(5) with a restricted set R̄ containing k rational choice types. Throughout, we use
bar notation for variables, sets or solutions that correspond to a restricted master problem. We let
µ̄∗ = (µ̄∗1, . . . , µ̄

∗
k) and s̄∗ = (s̄∗1,1, . . . , s̄

∗
T,IT

) represent the optimal solution to this restricted master prob-

lem. We can use this solution to construct the Euclidean projection of π̂ on the restricted set C̄, and we
denote this projection by η̄∗ = (η̄∗1,1, . . . , η̄

∗
T,IT

), with η̄∗t,i =
∑
r∈R̄t,i

µ̄∗r .

By the separating hyperplane theorem, η̄∗ is also the Euclidean projection of π̂ on the complete set
C if only if

(π̂ − η̄∗) · (η − η̄∗) ≤ 0 for all η ∈ C.

Since C is a cone generated by linear combinations (with positive coefficients) of the vectors ar (for
r ∈ R), it suffices that this inequality holds for all ar. Note that π̂−η̄∗ = s̄∗ and, thus, we can rewrite the
inequality (π̂ − η̄∗) · (ar − η̄∗) ≤ 0 as s̄∗ar ≤ s̄∗η̄∗. Therefore, we can check whether η̄∗ is the Euclidean
projection of π̂ on C by verifying the following problem.

Problem 1. Does there exist a choice pattern r ∈ R such that s̄∗ar > s̄∗η̄∗ ?

We can check Problem 1 through the optimization problem

arg max
r∈R

s̄∗ar, (9)

which we refer to as the pricing problem. Clearly, for each solution to (9), we can easily check whether the
optimal objective value exceeds the threshold value s̄∗η̄∗. If this turns out to be the case, the optimizing
choice type r ∈ R is added to the set of choice patterns considered in the restricted problem, which is
then re-solved. Otherwise, the solution (µ̄∗, s̄∗) to the restricted problem is also an optimal solution to
the problem that considers the full set R of rational choice types.

Importantly, although an optimal solution to (9) is preferable, it is actually sufficient to identify any
r ∈ R that meets s̄∗ar > s̄∗η̄∗ to continue with the column generation procedure. To speed up compu-
tation, it can thus be more interesting to quickly find any type r ∈ R meeting this threshold criterion
than to spend a longer time finding the optimal solution to (9). We explore this feature in our empirical
application in Section 4, by comparing computation times when using heuristics to solve the pricing

4Basically, this approach computes the distance between a point and a polytope by iteratively taking into account
additional vertices of a polytope. This type of procedure was originally described by Wolfe (1976), and is similar in spirit
to the Dantzig-Wolfe decomposition for linear programming problems (Dantzig and Wolfe, 1960). Cadoux (2010) provided
an extension of Wolfe’s original procedure that no longer requires an exhaustive list of the vertices of the polytope. Our
following procedure adapts Cadoux’ method to our problem setting.
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problem with computation times when using an exact algorithm.

Algorithm 2 summarizes our column generation procedure. The crucial benefit of this column gen-
eration approach is that it allows us to solve problem (3)-(5) with only a fraction of the rational choice
types identified. In Section 4 we show that this yields substantial computational gains in practice.

Algorithm 2: Quadratic Program Column Generation Algorithm

1: Solve Initial Restricted Master Problem, optimal solution µ̄∗, s̄∗, η̄∗.
2: while there exists r ∈ R with s̄∗ar > s̄∗η̄∗ do
3: Find a choice pattern r ∈ R with s̄∗ar > s̄∗η̄∗.
4: Set R̄ := R̄ ∪ r.
5: Re-Solve Restricted Master Problem, optimal solution µ̄∗, s̄∗, η̄∗.
6: end while
7: Restricted Master Solution µ̄∗, s̄∗, η̄∗ is the optimal solution p∗, s∗,η∗ to the Complete Master

Problem.

3.2 Computing the Critical Value

The tightened problem to compute the critical value of KS’s test statistic involves the specific complication
that it is characterized by a strictly positive lower bound on µr for all r ∈ R. In principle, this is
incompatible with the column generation algorithm described in the previous section, which only uses
a subset of these variables and, thus, puts multiple values µr equal to zero by default. To handle this
issue, we first show that it is in fact possible to solve problem (6)-(8) by only imposing a strictly positive
lower bound on a small subset of the variables µr. To this end, we consider a subset of the rational
choice types R′ ⊂ R such that, for each hyperplane h≤ ∈ H≤, there exists at least one r ∈ R′ satisfying∑T
t=1

∑It
i=1 bh≤,t,iar,t,i < 0. Then, the following result follows readily from the proof of Lemma 4.1 in

KS.

Lemma 1. For τ > 0, define

Cτ =

{
c|c =

∑
r∈R

λrar, λr ≥ 0,∀r ∈ R\R′, and λr ≥ τ/|R′|,∀r ∈ R′
}
.

Then, one also has

Cτ =

{
c|

T∑
t

It∑
i

bh≤,t,i ct,i ≤ −τφh≤ ,∀h≤ ∈ H≤, and

T∑
t

It∑
i

bh=,t,i ct,i = 0,∀h= ∈ H=

}
,

with φh≤ > 0 for all h≤ ∈ H≤.

Given a suitable set R′, it thus suffices to solve the problem

Minimizeµr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (10)

Subject to ∑
r∈Rt,i

µr + st,i = π̂t,i ∀t = 1, . . . , T,∀xi ∈ Xt (11)

µr ≥ τN/|R′| ∀r ∈ R′ (12)

µr ≥ 0 ∀r ∈ R. (13)

As the goal of our column generation approach is to minimize the number of variables we consider
explicitly, being forced to use all variables r ∈ R′ is not ideal. The following lemma provides us with a
suitable reformulation that sets all lower bounds to zero.
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Lemma 2. The problem

Minimizeµr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (14)

Subject to ∑
r∈Rt,i

µr + st,i = π̂t,i −
∑
r∈R′t,i

τN/|R′| ∀t = 1, . . . , T,∀xi ∈ Xt (15)

µr ≥ 0 ∀r ∈ R. (16)

is equivalent to problem (10)-(13).

Proof. Given a feasible solution (st,i, µr) to (10)-(13), then (st,i, µ
′
r) is a feasible solution to (14)-(16),

with µ′r = µr for r ∈ R\R′ and µ′r = µr − τN/|R′| for r ∈ R′. Since both problems have the same
objective function, and the st,i variables have the same value in both feasible solutions, a solution to
(10)-(13) implies the existence of a solution to (14)-(16) with the same objective value. Likewise, given
a feasible solution (s′t,i, µ

′
r) to (14)-(16), we have (s′t,i, µr) with µr = µ′r + τN/|R| for r ∈ R and µr = µ′r

otherwise, is a feasible solution to (10)-(13), again with the same objective value. Thus, the optimal
solutions to both problems have the same value.

In view of practical applications of KS’s statistical test, a final important observation is that it is

actually not required to identify the exact distribution of J
∗(m)
N (τN ) to check whether or not JN exceeds

its critical value. We only need to compute the fraction of bootstrap test statistics J
∗(m)
N (τN ) larger or

smaller than JN to conclude the test. As an implication, we can make use of an upper bound on the

bootstrap test statistics J
∗(m)
N (τN ) to more quickly determine the p-value of JN . More precisely, if for

a given bootstrap repetition we can determine at any point in the column generation algorithm that

J
∗(m)
N (τN ) is strictly smaller than JN , then we can terminate the algorithm and restrict to saving (only)

the upper bound on J
∗(m)
N (τN ). Obviously, this approach can yield significant savings of computation

time: the bootstrap test statistics need not be computed exactly, while the resulting p-values do not
change.

An interesting by-product of our column generation approach is that it readily allows for defining

such an upper bound on J
∗(m)
N (τN ): by construction, the objective value of the restricted master problem

provides an upper bound on the objective value of the original problem (6)-(8), as any solution to the
restricted master problem is also feasible for the original problem. Thus, because the restricted master
problem is already solved in every iteration of the column generation algorithm, no additional work is
required to obtain this upper bound.

4 Empirical Application

We show the empirical usefulness of our novel computational tools by replicating the empirical tests
conducted by KS in their original study. KS characterize rational choice types in terms of the Strong
Axiom of Revealed Preference (SARP). In what follows, we start by briefly recapturing SARP, and we
show how this SARP characterization of rationality can be integrated in our general set-up introduced
in Section 2. Subsequently, we customize the general column generation approach described in Section
3 to the specific application setting under study. Finally, we report and discuss the main results of our
empirical application.

4.1 SARP-based rational choice types

For a given consumer, consider a dataset D = {(pt,yt)}Tt=1, with yt ∈ RK+ a bundle of K goods bought
at the price vector pt ∈ RK++. Suppose that ptyt′ < ptyt for observations t and t′. Then, the consumer
reveals her preference for the quantities yt over the quantities yt′ , since the latter bundle was affordable
when the former bundle was chosen. Formally, we denote ptyt′ < (≤)ptyt by yt � (�)yt′ , with �
representing “strict” revealed preference. Furthermore, we use yt �∗ yt′ if there exists a chain of quantity
vectors such that yt � . . . � yt′ , and yt �∗ yt′ if such a chain exists with at least one � relation included.
We can now define SARP, which basically requires that the dataset D defines acyclic revealed preference
relations.
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Definition 2. The dataset D = {(pt,yt)}Tt=1 satisfies the Strong Axiom of Revealed Preference (SARP)
if there do not exist two observations t, t′ ∈ T , with yt 6= yt′ , such that yt �∗ yt′ and yt′ �∗ yt.

A central result in the literature on nonparametric demand analysis is that there exists a utility
function rationalizing the consumer’s observed behavior if and only if the dataset D satisfies SARP (see
Afriat (1967) and Varian (1982)).5 In that case, we say the consumer is rational.

In their application, KS consider a repeated cross-section of demand data that have been generated
by a population of consumers. Every cross-section/year t = 1, . . . , T represents a choice situation that is
characterized by a budget hyperplane (i.e. prices and total expenditures); this hyperplane is the same
for all consumers observed in year t. To apply the set-up of the previous sections, we discretize the
budget hyperplane of each year t by partitioning the set of possible choices into subspaces xt,1, . . . , xt,It ;
we will use the word “patches” to refer to these subspace elements. This partitioning is such that (i)
for all bundles y,y′ ∈ xt,i and each other year t′, y and y′ induce exactly the same revealed preference
relations, and (ii) the partition is of minimal size. Following KS, we only consider patches corresponding
to strict revealed preference relations. Every choice set Xt is the set of patches for a given year t, and
the set X contains the union of patches defined over all observations t. For each year t, the number of
patches (and, thus, possible choices) we must account for is bounded from above by 2T .

Following our above reasoning, we are specifically interested in rational choice types, which we char-
acterize by the SARP condition in Definition 2. That is, the set of rational choice types R is the set
of all types r for which the chosen patches induce acyclic revealed preference relations (so obtaining
SARP-consistency). Since there exists a finite number of patches, the number of rational choice types to
be considered is also finite by construction. For the sets Xt and R that apply to KS’s application setting,
we can formally establish the complexity of computing the test statistic JN (which we already briefly
discussed in Section 2.3). In Appendix A, we prove the following result.

Theorem 1. Computing the test statistic JN is an NP-hard problem.

To sketch the meaning of this result, we note that the class of NP-hard problems is a class of prob-
lems defined in computational complexity theory (see Garey and Johnson (1979) for an introduction).
Informally, a problem is NP-hard if it is at least as difficult as the hardest problems in the class NP. This
means no algorithm can exist for these problems with a runtime polynomially bounded by the input size,
unless one can prove P = NP. Computational complexity follows because it is widely believed that P 6=
NP (although this last inequality still has not been shown formally).

Finally, Theorem 1 does not exclude that in special cases there may be particular structure in the
choice options (and induced revealed preference relations) that can be exploited to reduce the computa-
tional complexity of the problem. For example, Hoderlein and Stoye (2014) provide a polynomial size
description of the set in the case of 2 goods. In this special case, the small number of goods puts limits
on the sets Xt and R, so that the problem becomes polynomially solvable. For instances with more than
2 goods, it may equally be possible that the problem exhibits structure that can be exploited to find
polynomial time algorithms. We see a further exploration of this question as a potentially interesting
avenue for follow-up research.

4.2 Customization

We next adapt the general column generation procedure of Section 3 to the specific SARP-based setting
under study. The (restricted) master problem does not require customization, as the formulation (3)-(5)
readily applies to any discrete choice setting. However, the set of rational choice types R is setting-
specific and, therefore, we make use of a tailored formulation of the pricing problem (9). In particular,
we design a customized pricing problem that defines binary variables αt,i encoding a valid choice type r
(characterized by the binary variables ar,t,i above) that is consistent with SARP. An optimal solution to
the problem shows whether or not a rational choice type exists that can be added to the master problem.

5To be exact, KS consider the Generalized Axiom of Revealed Preference (GARP) in addition to SARP. However, as they
point out, GARP and SARP become empirically equivalent when we restrict attention to patches exhibiting strict revealed
preference relations, which is also what KS do in their empirical application. Varian (1982) (based on Afriat (1967)) shows
that there exists a (non-satiated) utility function rationalizing the consumer’s behavior if and only if the set D satisfies
GARP (which is equivalent to SARP in our application setting).
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If so, the solution values of the αt,i variables encode one such type r (for which we can set ar,t,i = αt,i).

Analogous to the variables ar,t,i above, the binary variables αt,i indicate which patch xt,i is chosen in
each year t. Next, we let the binary variables ρt,t′ represent the revealed preference relations between the
patches chosen in the observations t and t′: ρt,t′ = 1 if the patch chosen in year t is revealed preferred
over the one chosen in year t′, and ρt,t′ = 0 otherwise. To ensure that the ρ-variables are consistent with
the choices encoded by the α-variables, we use the parameters Xt,i,t′ . These parameters reflect the direct
revealed preference relations implied by a given choice. In particular, Xt,i,t′ = 1 if the choice of patch xt,i
implies that any patch chosen on t′ is revealed preferred over xt,i (which is the case if the patch xt,i lies
below the budget hyperplane of t′), and Xt,i,t′ = 0 otherwise. The revealed preference relations captured
by the variables ρt,t′ extend these direct revealed preference relations by using transitivity of preferences.
Then, we can define the following customized pricing problem:

Maximize

T∑
t=1

It∑
i=1

st,iαt,i (17)

Subject to

It∑
i=1

αt,i = 1 ∀t = 1, . . . , T (18)

It∑
i=1

αt,iXt,i,t′ − ρt′,t ≤ 0 ∀t, t′ = 1, . . . , T (19)

ρt,t′ + ρt′,t” − ρt,t” ≤ 1 ∀t, t′, t” = 1, . . . , T (20)

ρt,t′ + ρt′,t ≤ 1 ∀t, t′ = 1, . . . , T (21)

ρt,t′ ∈ {0, 1} ∀j, t,= 1, . . . , T (22)

αt,i ∈ {0, 1} ∀t = 1, . . . , T, i = 1, . . . , It (23)

Constraint (18) ensures that exactly one patch is chosen in each choice situation. Constraints (19)-
(21) guarantee that SARP is satisfied for the chosen patches. Specifically, constraint (19) imposes that,
if a chosen patch induces a revealed preference relation (Xt,i,t′ = 1), then ρt′,t must be set to one. Next,
constraint (20) makes sure that the ρ-variables reflect transitivity of the preference relations. Finally,
constraint (21) enforces that the preference relations are acyclic. Together, these constraints guarantee
that the αt,i-variables encode a type satisfying SARP.

As explained in Section 3, an optimal solution to the pricing problem is actually not required to
proceed with the column generation algorithm. It suffices to add any rational choice type satisfying
s̄ar ≥ s̄∗η̄∗ to the restricted master problem in order to improve its solution. Therefore, and because
solving the pricing problem to optimality is often computationally costly, we propose to solve the pricing
problem by using heuristics, which are generally much less time consuming. We use exact procedures to
solve the pricing problem only when these heuristics do not allow us to identify new choice types to be
added to the restricted master. Algorithm 3 shows how the heuristic and exact procedures work together.
In our empirical implementation, we adopt a Best Insertion heuristic (Mart́ı and Reinelt, 2011) to solve
our specific pricing problem. See Appendix B for a detailed description.

Algorithm 3: Solving the pricing problem

1: Solve the pricing problem using heuristic algorithms.
2: if The best solution has a value < s̄∗η̄∗ then
3: Solve the pricing problem using exact algorithms.
4: end if

Finally, the tightening procedure for computing the critical value of JN requires that a subset of
the rational choice types R′ ⊂ R is identified a priori. This subset R′ can be generated by randomly
drawing choice types, to subsequently retain the rational choice types (that satisfy SARP). Admittedly,
this approach may be time consuming if the probability is low that a randomly chosen choice type is
rational. Therefore, we opt for a semi-random method to speed up the process. Specifically, we begin by
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randomly generating choice types, and subsequently make small changes to these initial types to remove
violations of rationality. In our application, the subset R′ contains 1,000 rational choice types. Appendix
C provides a detailed description of our procedure to define R′.

4.3 Results

We implement our column generation algorithm in C++, and we use CPLEX 12.8 to solve the quadratic
master problems and the exact pricing problems.6 We ran our computational experiments on a computer
with a quad-core 2.6 GHz processor and 16Gb RAM. For the first bootstrap iteration, we initialize the
set R̄ as an empty set. At the end of each bootstrap iteration, the set R̄ is saved and used as the starting
set for the next bootstrap iteration. This approach generally speeds up computation, as good solutions
for different bootstrap iterations usually have rational choice types in common, which do not need to be
re-generated when using these starting sets.7

Our specific focus is on the speed-ups that are achieved through the use of the various techniques
introduced above. Specifically, we compare three configurations:

1. Exact: all pricing problems solved exactly, no use of bounds (on bootstrap test statistics).

2. Heur.-No Bounds: heuristic & exact algorithms for the pricing problem, no use of bounds.

3. Heur.-Upper Bounds: heuristic & exact algorithms for the pricing problem, upper bounds used.

We use KS’s dataset, which is drawn from the U.K. Family Expenditure Survey. It contains annual
consumption data for the period from 1975 to 1999; the number of data points used varies from 715
(in 1997) to 1509 (in 1975), for a total of 26341. We refer to KS for additional information on sample
selection criteria and (composite) goods used in the analysis.

Following KS, we start by considering the setting with 3 composite goods and time blocks of 7 con-
secutive year observations. To demonstrate the computational gains generated by our novel tools, we
also consider longer time blocks of 10 and 15 year observations. Further on, we discuss results for 4 and
5 composite goods (constructed as in KS), time blocks of 20 consecutive year observations, and a time
block containing all 25 year observations covered by KS’s dataset.

Table 2 summarizes our results for the different configurations under study. It reports the minimum,
maximum and average computation times defined over all possible exercises. For the specifications with
the (longest) time blocks of 20 and 25 consecutive year observations, we only considered the (most efficient)
configuration Heur.-Upper Bounds. The Online Appendix D presents the detailed results underlying Table
2.

Exact Heur. - No Bounds Heur. - Upper Bounds
Min Avg Max Min Avg Max Min Avg Max

T = 7 3 10 22 3 9 18 3 7 14
T = 10 6 73 332 6 33 107 6 22 57
T = 15 240 2142 10482 94 461 1600 95 311 998
T = 20 1170 5964 13544
T = 25 58225 58225 58225

Table 2: Minimum, Maximum and Average computation times (in seconds) for 3 goods.

Our results for the first three time block specifications (7, 10 an 15 year observations) demonstrate the
large impact on computation time of using heuristics (for the pricing problem) and upper bounds (for the
bootstrap test statistics). While these features appear to have limited impact for the smaller instances,
they do substantially speed up computation for the more complex problems. The addition of heuristics
lowers the average computation time by almost 55% for the 10 observations instances, and by more than

6Our C++ code, the data and a readme file are available on https://github.com/BSmeulders/RandomUtilitywithCG. We
also provide the MATLAB codes that allow for integrating our column generation algorithms into KS’s original procedure.

7The set R̄ can become large over time, slowing down computation. If this is the case, it can be beneficial to record
how often variables are used in the optimal solution and to periodically remove rarely used variables. This reduces the size
of the master problem allowing for quicker solving. There is a trade-off here since some patterns may need to be re-added
through additional iterations.
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75% for the 15 observations instances. Likewise, the use of upper bounds speeds up computation by
about 35% for both the 10 and 15 observations instances. We note that the harder instances benefit more
from the algorithmic improvements.

Let us then consider the specifications with time blocks of 20 year observations and 25 year obser-
vations. While average computation times increase by about one order of magnitude for each 5 year
observations added, these instances remain within reach, with the hardest 20 observations instance tak-
ing under 4 hours and the 25 observations instance taking a little over 16 hours. Like before, these results
support the practical usefulness of our novel tools; they allow us to implement KS’s statistical tests in
reasonable time even in the case of computationally complex instances.

To put our results in Table 2 into perspective, even though KS do not provide detailed computation
times, they do mention (in footnote 17) that computing all rational choice types takes up to 1 hour, while
computing one test statistic takes about 5 seconds. Given 1000 bootstrap repetitions, this implies more
than 2 hours to compute the critical value for the hardest instances these authors tested (with time blocks
of 7 or 8 consecutive observations). While it is effectively impossible to compare computational results
exactly, Table 2 clearly reveals that even in its simplest configuration (Exact), our column generation
approach enables statistical testing on substantially larger datasets.

So far, we have restricted to instances characterized by 3 goods. Generally, increasing the number
of goods increases the computational difficulty of the testing problem. More goods typically lead to
more patches, which in turn increase the number of (rational) choice types; see also Table 1 above.
Computation times clearly reveal this higher complexity. Whereas the average computation time for 10
observations instances equals 22 seconds for 3 goods (using the configuration Heur.- Upper Bounds), it
amounts to 127 seconds for 4 goods and to 156 seconds for 5 goods. For 15 observations blocks, the
longest 4 and 5 goods instances take a little over 2.5 and 4.5 hours respectively, compared to 16 minutes
in the 3 goods case. See Appendix D for more details.

One last interesting observation pertains to the conclusions of the statistical tests regarding stochastic
rationalizability of the observed consumption behavior under study. Based on their analysis of time blocks
that consist of 7 and 8 consecutive observations, KS (p. 1906) state “that estimated choice probabilities
are typically not stochastically rationalizable, but also that this rejection is not statistically significant”.
Our results allow us to further strengthen this conclusion. Particularly, the qualitative finding of positive
but statistically insignificant test statistics remains intact even when considering substantially longer time
blocks. See, for example, the results in Appendix D for the blocks of 10 and 15 observations.

5 Conclusion

We address the computational complexity of KS’s nonparametric approach to testing random utility
models, by developing advanced algorithms that yield substantial computational gains in practice. The
basic ingredient of our column generation approach is that it avoids a complete enumeration of all rational
choice types, but instead generates rational types only when necessary. We demonstrate the practical
usefulness of our novel computational tools by applying them to KS’s original application setting. An
interesting empirical conclusion of our application is that models of random utility optimization have
substantial (nonparametric) empirical support even when considering long time periods.

In essence, our column generation approach successfully combines two strategies to generate computa-
tional gains. First, we use that KS’s high-dimensional master problem can be solved by sequentially con-
sidering lower-dimensional pricing problems that are substantially easier to handle. Our second strategy
consists of adopting heuristic algorithms for linear ordering from recent developments in computational
science, which we tailor to the problem at hand. This obtains a powerful method that is applicable to
a wide range of problems. For example, directly attacking the master problem of KS’s empirical ap-
plication for T = 15 requires dealing with about 7E + 09 rational choice types (see Table 1), which is
computationally hardly tractable. By contrast, our sequential approach can tackle the same problem in
typically about 5 minutes (see Table 2).

Importantly, our methodological developments are also directly useful for alternative extensions of
KS’s original contribution that have been proposed in follow-up work. For example, Deb et al. (2017) ex-
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tended KS’s original analysis to apply to the notion of revealed price preference, with consumers trading
off the utility of consumption against the disutility of expenditure, and Kitamura and Stoye (2019) build
on KS’s basic results to bound features of counterfactual choices in the nonparametric random utility
model of demand.8 These extensions imply formally similar programming problems with many variables
and few constraints, of which optimal solutions can be characterized in terms of only a small number of
variables. Our column generation approach is fairly easily adapted to these other settings.

More generally, the computational problems handled in the current paper are similar to those en-
countered in the study of random utility models in binary choice settings with rational choice types
represented by strict linear orders over the choice alternatives (Block and Marschak, 1960). Smeulders
et al. (2018) propose column generation algorithms for this particular setting. Finally, Strazlecki (2017)
provides a recent overview of random utility models with a formal structure that is similar to the one of
McFadden and Richter (1990)’s model. We see the exploration of these alternative possible applications
of our computational tools as a fruitful avenue for follow-up research.
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Appendix A: Proof of Theorem 1

The proof uses the technique of reducing a known NP-hard problem B to a new problem A. Such a
reduction shows that, given an instance of B, an instance of A can be constructed in polynomial time,
and the solution to the instance of A can be transformed back into a solution to the instance of B, again
in polynomial time. Thus, the reduction proves that, if a polynomial time algorithm exists for solving A,
there must also exist one for solving B. (For example, transforming the B instance into an A instance,
solving this new A instance and transforming it back to the B instance would be one such algorithm.)
This is known to be impossible unless P = NP.

Proof. Using the notation introduced in Section 4.2, the set R of rational choice types is completely
described by the sets of choice options Xt for t = 1, . . . , T and the parameters Xt′,i,t. Computing the
exact value of JN is at least as hard as deciding whether JN = 0 or not. Thus, if the membership problem
(i.e. decide whether π ∈ C or π /∈ C) is NP-hard, computing the exact value of JN is too. Grotschel et al.
(1988) show there exists a polynomial equivalence between the problems of membership and optimization
(∃c ∈ C : cw ≥ W ?) over a set defined by linear inequalities: if optimizing over the set is NP-hard,
than so is the membership problem, and by extension computing JN . By definition, C is the set of all
positive linear combinations of ar, r ∈ R. As such, the optimization problem can be equivalently written
as: ∃r ∈ R : arp ≥W ? We now formally define an instance of the optimization problem.

Problem 2. Weighted Rational Choice Type (WRCT)
Instance: Sets of discrete choice options Xt for t = 1, . . . , T , binary values Xt′,i,t for all t, t′ = 1, . . . , T
and xi ∈ Xt, weights wt,i for all t = 1, . . . , T , xi ∈ Xt and a value W .
Question: Does there exist a rational choice type r ∈ R such that arp ≥W?

This problem is at least as hard as the well-known NP-hard problem feedback vertex set.

Problem 3. Feedback Vertex Set (FVS)
Instance: A directed graph G = (V,A) and a value M .
Question: Does there exist a subset of vertices V ′ ⊆ V with |V ′| ≥M , such that G′ = (V ′, A′) is acyclic,
with (v, v′) ∈ A′ ⇐⇒ (v, v′) ∈ A and v, v′ ∈ V ′.

Given an instance of FVS, we construct an instance of WRCT, as follows. For each vertex v, there is
one set Xv consisting of two choice options xv,1 and xv,2. Set wv,1 := 1 and wv,2 := 0. Furthermore, set
Xv,1,v′ := 1 if there exists an arc (v′, v) ∈ A, and set Xv,1,v′ := 0 otherwise. Xv,2,v′ := 0 for all v′ ∈ V .
Finally, set W := M .

We can show there exists a satisfying solution to FVS if and only there exists a satisfying solution to
WRCT.

⇒) First, suppose a satisfying solution to WRCT exists. Then, there must exist a satisfying solution
to FVS. Indeed, consider the rational choice type r for which arp ≥ W . There must be at least W
choice situations for which ar,v,1 = 1. Construct V ′ by selecting all vertices corresponding to these choice
situations. Trivially, we have |V ′| ≥ W = M . Furthermore, the existence of (v, v′) ∈ A′ in the FVS
solution implies ρv,v′ = 1. Indeed, (v, v′) ∈ A′ requires both v, v′ ∈ V ′, i.e., both ar,v,1 = 1 and ar,v′,1 = 1.
By construction, if ar,v′,1 = 1 and (v, v′) ∈ A, ρv,v′ = 1. Thus, if the preference relations represented by
the ρ-variables are acyclic, the graph G′ = (V ′, A′) is acyclic too.

⇐) Next suppose a satisfying solution to FVS exists. Then, there must exist a satisfying solution to
WRCT. For each v ∈ V ′, set ar,v,1 := 1. Conversely, if v /∈ V ′, set ar,v,2 := 1. Clearly, arp ≥ W . It
remains to be shown that the revealed preference relations represented by the ρ-variables are acyclic. Note
that ar,v,2 = 0 for each v /∈ V ′. Thus, there does not exist any v′ such that ρv′,v = 1. As a result, there
can be no cycle of revealed preference relations involving v /∈ V ′, and we must only consider ρv,v′ = 1
with v, v′ ∈ V ′. Now, ρv,v′ = 1 with v, v′ ∈ V ′ implies (v, v′) ∈ A′. Indeed, by construction ρv,v′ = 1
is only possible if (v, v′) ∈ A and, since v, v′ ∈ V ′, it follows that (v, v′) ∈ A′. Thus, if G′ = (V ′, A′) is
acyclic, the preference relations represented by the ρ-variables are too.
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Appendix B: Heuristic Pricing Algorithm

For the pricing problem we use a Best Insertion heuristic to quickly generate good rational choice types
to add to the restricted master problem. The Best Insertion Algorithm iteratively creates an ordering
of the choice situations, which (can) correspond to a rational choice type. First, we explain the link
between orderings of the choice situations and rational choice types. Next, we explain how to build an
ordering that provides a good solution to the pricing problem. Algorithm 4 provides the pseudo-code for
the heuristic.

Let T = {t|1 ≤ t ≤ T} represent the set of the observed choice situations. Consider an ordering
OT over all choice situations t ∈ T . We can associate a rational choice type with this ordering if the
patch chosen in a lower ranked choice situation is not preferred over one chosen in a higher ranked
choice situation. More specifically, let oT (t) be the position of choice situation t in the ordering. We can
associate a rational choice type with this ordering if for each choice situation t there exists a patch xt,i,
such that for all choice situations t′ with oT (t) < oT (t′) ≤ T we have Xt,i,t′ = 0. In this case, there exists
a feasible solution to the pricing problem for which ρj,j′ = 1 only if j ≤ j′. Given the objective function
of the pricing problem, we can easily find the objective value of the best rational choice types respecting
the ordering of choice situations, by using the following function:

V (OT ) =

T∑
t=1

max
(i:Xt′,i,t=1,∀t′ for which oT (t)<oT (t′))

st,i, (24)

with st,i the value of choosing patch xt,i in the pricing problem.

Building an ordering is done in an iterative fashion. Consider an ordering Om of m choice situations
in the set T ′ ⊂ T . We now wish to expand this ordering by inserting an additional choice situation
t /∈ T ′. The ordering Ojm is an ordering of m + 1 elements, created by inserting alternative t in the jth

position in the ordering Om. More precisely, all choice situations in positions j to m in the ordering Om
are placed one position further back, and choice situation t is placed in the jth position. The value of the
best (partial) rational choice type consistent with Ojm can be evaluated using (24), if one exists. In this
fashion, the best insertion position can be identified and the resulting ordering is fixed. This process is
repeated until all choice situations have been added to the ordering.

In the implementation, we add a dummy patch xt,It+1 for each t ∈ T , with Xt,It+1,t′ = 0 for all t′ ∈ T
and st,It+1 an arbitrarily low (negative) number. In this way, the value V (Om) is always defined, and a
negative value indicates that there does not exist a consistent rational choice type.

Algorithm 4: Best Insertion Algorithm

1: Choose t ∈ T .
2: Create order O1 and set o1(t) := 1.
3: Set T ′ := {t}, k := 1.
4: while T ′ 6= T do
5: Choose t ∈ T \T ′.
6: For each j = 1, . . . , k, compute V (Ojk).

7: Let r := arg maxj=1,...,k V (Ojk).
8: Set Ok+1 := Ork.
9: Set T ′ := T ′ ∪ {t}.

10: Set k := k + 1.
11: end while

As a final implementation note, the choice situation to be inserted in the partial order can be chosen
freely. Different choices in the order in which choice situations are inserted can lead to different orderings.
In the implementation, we randomly generated the orders in which the situations are inserted. For each
pricing iteration we ran the algorithm 10 times with different insertion orders. From these 10 runs of the
best insertion algorithm, only the best solution to the pricing problem is kept.
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Appendix C: Generation of Choice Types for Tightening

To tighten the set based on a subset of the rational choice types, we generate the subset in a semi-random
way. First, we generate (likely irrational) choice types by randomly choosing one patch in each choice
situation. If this choice type is rational, we add it to the subset for tightening. If it is not, we identify
the subsets of choice situations for which preference cycles exist. For each such subset, we randomly
pick one choice situation. For that choice situation, we look for a patch which (i) removes at least one
preference relation within the subset, (ii) is as close as possible to the currently selected patch in that
choice situation, and (iii) removes (rather than adds) revealed preference relations. In this way, we slightly
change the choice type, while increasing the probability that it is a rational choice type. If after these
changes the choice type is not yet rational, the procedure is repeated until a rational choice type is found.
Algorithm 5 contains the pseudo-code to generate these rational choice types in a semi-random way. In
the algorithm, we again define T = {t|1 ≤ t ≤ T} as the set of all choice situations.

Algorithm 5: Generation of rational choice types.

1: Randomly generate a choice type a with
∑It
i=1 at,i = 1.

2: while a /∈ R do
3: Identify revealed preference relations ri,j , ∀i, j = 1, . . . , T .
4: Identify a partitioning T1, . . . , Tm with

⋃m
i=1 Ti = T and Ti ∩ Tj = ∅ for all i 6= j.

5: for all Tk with |Tk| > 1 do
6: Randomly choose t ∈ Tk, with xt,z the currently chosen patch on Bt.
7: for all xt,i, i = 1, . . . , It do
8: if Xt,i,t′ ≤ Xt,z,t′ for all t′ ∈ Ti then
9: Scorei := 999.

10: end if
11: for all t′ ∈ T do
12: if Xt,z,t′ = −1 and Xt,i,t′ = 1 then
13: Scorei := Scorei + 1.
14: else if Xt,z,t′ = 1 and Xt,i,t′ = −1 then
15: Scorei := Scorei + 5.
16: end if
17: end for
18: Find a patch xt,j with j ∈ arg mini=1,...,It Scorei.
19: Set at,z := 0 and at,j := 1.
20: end for
21: end for
22: end while
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Appendix D: All Computational Results (FOR ONLINE PUB-
LICATION)

Exact - No Bounds Heur. - No Bounds Heur. - Upper Bounds
Period Jstat Pval Time Time Time
75 81 3.86 0.35 21.8 17.9 8.1
76 82 11.77 0.13 15.9 14.2 5.2
77 83 9.96 0.18 18.4 14.8 5.8
78 84 7.49 0.22 14.9 11.8 5.1
79 85 0.11 0.966 14.6 12.0 12.1
80 86 0.01 1.00 15.7 11.0 10.8
81 87 0.00 1.00 9.5 9.9 10.1
82 88 0.00 1.00 3.8 4.3 4.6
83 89 0.00 1.00 3.3 3.9 4.1
84 90 0.00 1.00 3.8 4.6 4.7
85 91 0.04 0.80 3.3 3.8 3.5
86 92 2.24 0.63 8.2 8.3 6.6
87 93 1.55 0.74 21.3 16.8 13.9
88 94 1.68 0.67 16.6 14.4 11.0
89 95 0.04 0.97 10.2 9.1 9.2
90 96 0.04 0.94 5.6 5.7 5.7
91 97 0.04 0.94 4.8 5.3 5.1
92 98 0.04 0.97 3.3 3.7 3.6
93 99 0.04 0.66 3.0 3.3 2.9

Table 3: Computational results for 7 observations, 3 goods.

Exact - No Bounds Heur. - No Bounds Heur. - Upper Bounds
Period Jstat Pval Time Time Time
75 84 10.08 0.226 173.3 65.3 31.2
76 85 9.94 0.217 174.6 66.7 35.2
77 86 10.08 0.319 331.5 106.5 56.8
78 87 11.14 0.487 120.1 46.2 29.2
79 88 2.93 0.882 55.4 29.2 23.7
80 89 4.02 0.666 23.7 13.9 10.9
81 90 0.00 1 11.3 10.2 10.6
82 91 0.06 0.956 6.1 6.1 6.0
83 92 3.40 0.789 14.9 13.7 12.1
84 93 7.03 0.82 40.0 30.5 25.3
85 94 4.22 0.795 56.0 31.5 26.5
86 95 3.26 0.814 42.4 30.8 25.2
87 96 3.43 0.742 36.6 28.4 22.9
88 97 2.98 0.8 34.6 23.2 19.1
89 98 1.99 0.823 30.1 19.9 15.1
90 99 1.90 0.767 14.9 9.7 8.8

Table 4: Computational results for 10 observations, 3 goods.
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Exact - No Bounds Heur. - No Bounds Heur. - Upper Bounds
Period Jstat Pval Time Time Time
75 89 27.95 0.243 10482 1600 660
76 90 15.42 0.618 6180 1358 998
77 91 17.11 0.709 2632 718 566
78 92 18.37 0.637 1102 353 293
79 93 23.87 0.902 724 188 185
80 94 19.96 0.594 420 132 100
81 95 12.87 0.771 454 115 102
82 96 12.92 0.854 240 94 95
83 97 13.66 0.846 297 123 108
84 98 15.26 0.827 647 238 195
85 99 29.45 0.895 384 149 123

Table 5: Computational results for 15 observations, 3 goods.
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# Goods # Observations Period JStat Pval Time

3 20 75 94 39.85 0.354 10688
3 20 76 95 26.99 0.732 13544
3 20 77 96 35.43 0.660 5698
3 20 78 97 35.18 0.738 3443
3 20 79 98 30.39 0.744 1721
3 20 80 99 26.13 0.771 1425
3 25 75 99 55.33 0.492 58225
4 7 75 81 5.43 0.266 8
4 7 76 82 5.74 0.368 13
4 7 77 83 6.07 0.381 14
4 7 78 84 2.14 0.682 16
4 7 79 85 0.33 0.942 23
4 7 80 86 1.70 0.812 13
4 7 81 87 0.64 0.88 11
4 7 82 88 0.30 0.65 5
4 7 83 89 0.26 0.516 3
4 7 84 90 0.25 0.717 3
4 7 85 91 3.59 0.461 4
4 7 86 92 7.27 0.313 6
4 7 87 93 6.60 0.432 11
4 7 88 94 6.95 0.389 15
4 7 89 95 4.89 0.329 12
4 7 90 96 4.42 0.2 8
4 7 91 97 3.32 0.259 6
4 7 92 98 0.06 0.885 8
4 7 93 99 0.00 1 4
4 10 75 84 5.73 0.404 303
4 10 76 85 4.60 0.577 606
4 10 77 86 6.11 0.613 443
4 10 78 87 4.27 0.725 145
4 10 79 88 1.99 0.919 52
4 10 80 89 2.90 0.856 20
4 10 81 90 0.88 0.955 15
4 10 82 91 5.86 0.619 11
4 10 83 92 11.35 0.496 10
4 10 84 93 10.36 0.599 22
4 10 85 94 13.42 0.473 25
4 10 86 95 11.15 0.598 69
4 10 87 96 5.83 0.667 232
4 10 88 97 7.99 0.469 177
4 10 89 98 13.79 0.506 86
4 10 90 99 4.91 0.416 18
4 15 75 89 29.23 0.167 3188
4 15 76 90 11.32 0.76 8582
4 15 77 91 14.85 0.67 1376
4 15 78 92 17.90 0.623 852
4 15 79 93 17.91 0.59 619
4 15 80 94 25.92 0.46 443
4 15 81 95 22.70 0.553 508
4 15 82 96 21.31 0.578 880
4 15 83 97 25.45 0.455 676
4 15 84 98 25.79 0.424 776
4 15 85 99 16.37 0.657 923

Table 6: Computational results for 3 and 4 goods, Heuristic Pricing and Upper Bounds
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# Goods # Observations Period JStat Pval Time

5 7 75 81 4.75 0.193 8
5 7 76 82 5.34 0.258 12
5 7 77 83 4.66 0.367 15
5 7 78 84 1.45 0.748 20
5 7 79 85 0.22 0.96 28
5 7 80 86 7.91 0.239 9
5 7 81 87 6.33 0.314 8
5 7 82 88 9.39 0.185 4
5 7 83 89 9.73 0.136 2
5 7 84 90 10.26 0.246 3
5 7 85 91 3.59 0.435 4
5 7 86 92 9.46 0.239 6
5 7 87 93 6.32 0.416 16
5 7 88 94 6.91 0.377 19
5 7 89 95 5.84 0.295 17
5 7 90 96 3.55 0.256 14
5 7 91 97 3.27 0.234 7
5 7 92 98 0.01 0.992 7
5 7 93 99 0.00 1 4
5 10 75 84 4.92 0.359 333
5 10 76 85 4.03 0.486 663
5 10 77 86 9.20 0.314 463
5 10 78 87 7.67 0.389 174
5 10 79 88 25.85 0.299 50
5 10 80 89 10.90 0.238 18
5 10 81 90 10.55 0.412 16
5 10 82 91 17.34 0.347 9
5 10 83 92 24.67 0.185 9
5 10 84 93 17.67 0.296 29
5 10 85 94 9.44 0.578 47
5 10 86 95 7.75 0.677 113
5 10 87 96 5.44 0.689 402
5 10 88 97 7.00 0.561 328
5 10 89 98 5.90 0.408 121
5 10 90 99 5.71 0.394 29
5 15 75 89 23.48 0.148 8950
5 15 76 90 15.76 0.428 16807
5 15 77 91 16.29 0.463 4767
5 15 78 92 22.79 0.335 2038
5 15 79 93 20.57 0.365 1585
5 15 80 94 24.41 0.363 1211
5 15 81 95 19.24 0.517 2040
5 15 82 96 19.04 0.513 2943
5 15 83 97 20.86 0.501 1669
5 15 84 98 18.82 0.521 2379
5 15 85 99 10.43 0.787 2246

Table 7: Computational results for 5 Goods, Heuristic Pricing and Upper Bounds
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