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Chapter 1

1.1 General introduction

According to the European Cardiovascular Disease Statistics report of 20171,
each year cardiovascular diseases (CVD) cause almost 4 million deaths in Eu-
rope. CVD account for 45% of all deaths in Europe and are the main cause of
death in most European countries. Moreover, the cost related to CVD affects
the EU economy with a burden of 210 billion euros a year, which constitutes
an issue for the future sustainability of European healthcare systems. It is
therefore important to try to reduce the impact of CVD on people’s health and
on the sustainability of the healthcare systems.
Technology is one of the pillars that support the sustainability of healthcare
systems. Technology can contribute by either improving treatment quality or
by decreasing its costs providing, for instance, early and improved diagnosis.
An example of technology that contributes by early detecting a pathology is
provided by Bonomi et al [7], where a wrist-wearable device is used to detect
atrial �brillation. This technology offers the opportunity to have a distributed
controlling system that does not require hospitalization andmight contribute
to early detection without an increase in the costs. Therefore, it might con-
tribute directly to the patient value [60], that can be expressed as the ratio be-
tween the bene�t for the patient in terms of health and the cost for the health
system. Technology can also contribute through the use of computer models.
Computer models of the heart might be used to achieve improved decision
making and prognosis. Their usemight support the evidence-basedmedicine
approach by enlarging the set of data at cardiologists disposal with person-
alized model-interpreted patient data. Ideally, in the personalized medicine
framework, computer models might help detect potential non-responders to
speci�c therapies and in simulating the outcome of a treatment. Several com-
putermodels were developed in the last years and different applications were
addressed [61, 9, 52, 71], making these models a promising tool for the fu-
ture. Nowadays, computer models are commonly used in an inverse anal-
ysis framework to extract quantitative biomarkers or interpret the severity
of pathology from noisy measurements, typically coming from non-invasive
imaging methodologies such as Computed Tomography scan (CT), Magnetic
Resonance Imaging (MRI), and Echocardiography. Sermesant et al [70] pro-
posed amethodology to estimate patient-speci�cmyocardial conductivity and
contractility from MRI images, invasive le� ventricular endocardial electro-
physiological mapping and pressure recording. They applied this method-
ology to simulate different pacing scenarios for two Heart Failure (HF) pa-

1http://www.ehnheart.org/cvd-statistics.html
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tients. Marchesseau et al [45], applied a methodology based on the Reduced
Order Unscented Kalman Filter (ROUKF) to estimate local contractility in the
14 AHA regions of the Le� Ventricle (LV) using measurements of regional
volumes computed from cine-MRI in three HF patients. Finsberg et al [19],
estimated the mechanical activation in seven healthy subjects and seven pa-
tients affected by Le� Bundle Branch Block (LBBB) using strain and volume
measurements from 4D Echocardiography. One of the limiting factors that
prevents the application of those models inside the clinics is the lack of sys-
tematic validation and the lack of the estimation of the uncertainty affecting
model predictions. This issue can be addressed by combining computermod-
els with what is o�en addressed as Veri�cation, Validation and Uncertainty
Quanti�cation (VVUQ) [55]. Veri�cation addresses the question concerning
the correctness and the accuracy of the solution of the mathematical prob-
lem. Validation assesses the suitability of the mathematical model to model
the process observed in the real-world. Uncertainty Quanti�cation allows es-
timating the probability distribution of the error propagated from the model
input to the output through the prediction, thus providing some sort of con�-
dence interval around the prediction.
Most of those computermodels are 3Dmodels that typically require a �nite el-
ement discretization technique. Those models require information about the
geometry, the orientation of the �bers constituting the myocardium, bound-
ary conditions, and material properties determining the electro-mechanical
response of the tissue such as material stiffness, contractility and moment of
activation. While geometry (and potentially also �ber orientation) can be es-
timated using imaging techniques, material properties have to be estimated
non-invasively. The quality of this estimation depends on the level of accu-
racy of our information about the geometry and �ber orientation, and con-
sequently the amount of uncertainty affecting them. In modeling the heart,
most of the models of mechanics involved in inverse approaches put a lot of
emphasis in the determination of a patient-speci�c geometry, while �ber ori-
entation is generally modeled using genericmodels or ex-vivomeasurements
adapted to the patient anatomy. This fact might be explained by the relative
ease of generating a patient-speci�c geometry non-invasively using most of
the common imaging techniques, although time and human interaction are
typically required. Instead, in-vivo assessment of patient-speci�c �ber ori-
entation via Diffusion Tensor MRI (DT-MRI) is still a challenging task. Ad-
vancements in this process have been proposed by Toussaint et al [77]. Their
methodology allows reconstructing a patient-speci�c 3D �ber �eld by non-
invasively acquiring 7 − 10 short-section slices of the patient heart using DT-
MRI. Despite the good results in terms of acceleration, there is still an average

11



Chapter 1

error of about 10◦ and the acquisition process still takes too long (70−100min-
utes) to let the use of DT-MRI become a standard clinical examination. A few
studies investigated the importance of �ber orientation in the determination
of cardiac function [9, 21, 59]. Several sensitivity analyses addressed the role
of �ber orientation within models of cardiac mechanics [27, 79, 50, 9, 21, 59].
Nonetheless, those studies present some limitations. Speci�cally, they are
mostly qualitative, since they lack a certain robust sensitivity analysis struc-
ture with statistical indices for a quantitative assessment of the quantities of
interest. The choice of the parameter ranges is somewhat arbitrary and o�en
unphysiological. They focus on global quantities of interest (single scalar val-
ues) to assess the sensitivity of a complex, largely spatially varying 3D vector
�eld as that of myo�bers.
This thesis aims to contribute to thedevelopment of patient-speci�c computer
models of the LV. The personalized computer model can potentially be ap-
plied to simulate different intervention scenarios or to better select groups
of patients that would bene�t from therapy. Some examples of these appli-
cations are reported in Smith et al [73]. In particular, patient-speci�c models
can be applied in the planning of Cardiac Resynchronization Therapies, to
reduce dyssynchrony in Heart Failure (HF) patients; in the planning of Ra-
dioFrequency Ablation (RFA) therapies, by testing several ablation strategies;
in the application of a Le� Ventricular Assist Device (LVAD), by improving
the patient selection and by identifying situations where the LVAD can in-
duce a myocardial remodeling that promotes recovery from HF. To obtain a
patient-speci�c model from clinical data, o�en, a geometry is reconstructed
frommedical images and tissue properties andmicro-structure are either in-
versely estimated or directly included from measurements. In this regard,
we investigate the role of geometry and �ber orientation within a model of
the mechanics of the LV. To accomplish this task, we apply a global sensitiv-
ity analysis methodology based on the elementary effects method [47, 10, 68]
to assess the sensitivity of end-systolic strains to geometry and �ber orienta-
tion. End-systolic strains were chosen because they can be measured non-
invasively in-vivo in clinical practice and can be interpreted by a computer
model to provide a direct relation with tissue properties. The ultimate goal is
to quantify the effects of different descriptions of geometry and �ber orienta-
tion on computed end-systolic strains. These results would also provide pre-
cious information on how strain observation should be included to improve
the outcome of inverse analysis by highlighting important relations between
parameters and strain components.
In this chapter, we brie�y describe the anatomy of the heart and its function-
ing. We give an overview of different modeling choices for the heart and we

12
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Figure 1.1: Representation of the anatomy of the heart and the �ber orientation of the le� ven-
tricle. On the le�, the heart with labels indicating: (1) the le� atrium, (2) the le� ventricle, (3)
the right atrium, (4) the right ventricle, (5) the aorta, and (6) the pulmonary veins. On the right,
an idealized le� ventricle with the representation of �ber orientation. The helix angle, αh, lies
in the circumferential-longitudinal plane and is null when the �ber is oriented circumferen-
tially. Similarly, the transverse angle, αt, lies in the circumferential-transmural plane and is
null when the �ber is oriented circumferentially.

present our model of the le� ventricle. We discuss available sensitivity anal-
ysis and uncertainty quanti�cation methods. We provide some background
information about currently used data assimilation and parameter estimation
techniques and we conclude this chapter with the aims and the outline of the
thesis.

1.2 Cardiac anatomy and function

The heart is a four chamber hollow organ that pumps blood in our circula-
tory system thanks to the contractile capabilities of its constituting muscle
calledmyocardium. The four chambers are divided into twoatria and twoven-
tricles. Anatomically, the atria and the ventricles are separated by the basal
plane. A common way to address this structure is to separate the le� heart,
Le� Ventricle (LV) and the Le� Atrium (LA), from the right heart, Right Ven-
tricle (RV) and Right Atrium (RA). The right heart collects the low saturated
blood from the circulation and pumps it to the lungs, while the le� heart col-
lects the oxygenated blood from the pulmonary veins and pumps it through-
out the body via the circulatory system. The pumping action of the heart is
determined by the contraction of themyo�bers constituting themyocardium.
This contraction is induced by an electrical stimulus generated by dedicated

13
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pacemaker cells situated in the sinoatrial node. The signal �rst activates the
atria and then is delayed about 100 ms in the atrioventricular node. Then, the
signal is rapidly conducted by specialized �bers, the Purkinje �bers. In the
septum, the Purkinje �bers are arranged in two bundle branches: the Right
Bundle Branch (RBB) the Le� Bundle Branch (LBB). Towards the apex, in the
sub-endocardium, these branches bifurcate into many branches. From these
branches, the electrical signal starts propagatingwithin themyocardium,most-
ly from endocardium to epicardium. The delay between the activation of the
atria and that of the ventricles allows time for the blood to �ll the ventricles.
The contraction of the ventricles determines the increase of cavity pressures
and allows ejection.
The myocardium is constituted by myo�bers embedded in an extracellular
matrix of collagen. Myo�bers are made by several myo�brils which contain
the contractile unit, the sarcomere. Myo�bers are similarly distributed among
mammals [25, 24, 75, 69] following a right-handed helical path in the sub-
endocardium, being circumferential at mid-wall, and following a le�-handed
helical path in the sub-epicardium. Different histological and DT-MRI mea-
surements highlighted the presence of two angles for the description of �ber
orientation: the helix angle, describing the apex-to-base component of the
�ber vector; and the transverse angle, describing its endocardium-to-epicardi-
umcomponent. The helix angle largely varies transmurally. A common trans-
mural range of about 120◦ with negative angles at the epicardium and positive
angles at the endocardium is reported. The transverse angle has smaller val-
ues than the helix angle, generally having amodulus smaller than 10◦ [74, 69],
and varies both longitudinally and transmurally.
Fiber orientation plays an important role in the determination of themechan-
ics of the LV. This is because of the strong anisotropy dictated by the pres-
ence of the myo�bers. Already in the passive state, the myocardium is stiffer
along the �ber than perpendicular to the �ber. During myocardial contrac-
tion, the build-up of active stress increases further the level of anisotropy.
This anisotropy strongly affects the distribution of stress and strains within
the myocardium.

1.3 Computermodels of the heart

The functionof theheart is the result of complexmulti-scale andmulti-physics
coupled phenomena [61]. The electromechanics of the heart describes the
way the electrical signal distributes within themyocardium and how themus-
cle generates stress. Thedeformationof themyocardiumdepends on the elec-
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trical activation, its ability to generate stress, the concentration of oxygen and
metabolites, and the interaction with the blood coming from the circulation.
Describing all those phenomena in detail in one single model would greatly
increase the complexity and the computational time, let alone the number
of parameters and the related uncertainty. Therefore, o�en phenomenologi-
cal models are employed as a trade-off between accuracy and computational
costs. Within models of electrophysiology, a model for the generation of the
Action Potential (AP) and a model for its propagation are required. Different
models for the generation of AP have been proposed [28, 5, 44]. The propa-
gation of the AP within the myocardium can be modeled using the bidomain
model [22] or the monodomain model, derived from the bidomain model by
assuming that the extracellular conductivity tensor is proportional to the in-
tracellular one [34]. Due to the small width of the propagation front and the
steep temporal upstroke of the AP, very �ne spatial and temporal resolutions
are required for solving the bidomain model. An alternative approach con-
sists in computing the spatial distribution of the electrical activation time of
the myocardium using the Eikonal equation [20]. This approach is computa-
tionally less demanding, not requiring to compute the spatial distribution of
action potential at every time step, has been thoroughly investigated [36, 37,
38, 39] and has been applied to simulate different pacing con�gurations in
heart failure patients [70].
Regarding the mechanics, the con�guration is computed stemming from the
equilibrium between external forces, induced by the cavity pressure and in-
teractionswith neighboring tissues, and themyocardial stresses, arising from
passive and active deformations. The mechanics is typically described using
the Finite Elasticity theory, where themyocardium ismodeled as a hyperelas-
tic material with exponential behavior.
Considering that the myocardium is constituted by myo�bers that are stiffer
than the extracellular matrix, its material law must take into account the an-
isotropy. To describe the anisotropy within the myocardium two pieces of
information are required: the direction of the �bers and their tissue prop-
erties. Model parameters describing tissue properties have been generally
determined in such a way to represents measurements on explanted hearts
in different experiments [16, 30, 15, 72]. More recently, other studies focused
on the inverse estimation of those parameters [1, 23, 80, 2] based on observa-
tion of either strains, cavity pressure-volume loops, or displacement. Fiber
orientation can be described using rule-based models embedding the most
important features observed in histologicalmeasurements [25, 24, 75] andDT-
MRI acquisitions [43, 69]. Generally, rule-based �ber models include only the
transmural variability of the helix angle, rarely include the transverse angle,
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and neglect circumferential heterogeneity and �ber dispersion. One of the
most detailed rule-based �ber models presented in literature is the one pre-
sented by Bovendeerd et al [9], which includes transmurally and longitudi-
nally varying helix and transverse angles. Over the years, different atlases of
�bers were proposed. In these atlases, �bers were reconstructed from ex-vivo
DT-MRI measurements on canine LV [57] or from ex-vivo DT-MRI measure-
ments onhumanhearts [43]. To include circumferential variability andmodel
spatial �ber dispersion, in some studies �bers from an atlas are mapped and
re-oriented to match a patient-speci�c geometry [40]. Despite the personal-
ized geometry and the geometry-speci�c re-orientation of �bers, this solution
does not lead to a personalized �ber model. This approach only relates a sin-
gle physiological �ber �eld to the patient-speci�c geometrywithout including
the natural variability between individuals or potential variations in �ber ori-
entation induced by pathologies. No patient-speci�cmodelswith in-vivo �ber
information have been proposed yet.
The presence of myo�bers inside the myocardium introduces a strong an-
isotropy along �ber. This fact led the �rst models of mechanics to describe
themyocardiumas a transversely isotropicmaterial. Subsequently, LeGrice et
al [42, 41] evidenced an ordered laminar arrangement of myocytes. The pres-
ence of this arrangement introduces another direction of anisotropy since
the bonding between �bers within the same laminar sheet is tighter than the
bonding between adjacent laminar sheets. For this reason, the myocardium
is o�enmodeled as an orthotropic material [29, 18, 61, 63]. As a consequence,
the description of the myocardium as an orthotropic material requires the
description of sheet direction, which is much less regular and homogeneous
than�ber direction [43], and thede�nitionofmore stiffness parameters. Usyk
et al [78] showed that the importance of modeling the myocardium as ortho-
tropic is unclear. Consequently, transversely isotropic material laws are still
used in models of cardiac mechanics [35, 14, 19, 8, 26, 6, 13, 45, 70].
Themechanical activation of themyocardium can be described using two ap-
proaches: the active stress and the active strain. The former is the most used
approach [8, 65, 56, 49, 48, 9] and relies on the addition of an active stress
term to the passive stress tensor. The active strain approach [64, 51, 58] intro-
duces a multiplicative splitting of the deformation gradient that allows pre-
scribing the active deformation that a myocyte undergoes. This splitting al-
lows to easily prescribe incompressible active deformations which improve
numerical properties of the problem. However, since the overall deformation
stems from the combination between active (constitutively given) and pas-
sive (unknown) deformations, modeling physiological contractions that lead
to physiological strain distributions is more dif�cult.
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1.4 Sensitivity analysis and uncertainty quanti�cation

Within the frameworkofUncertaintyQuanti�cation (UQ), forwarduncertainty
propagation andparameter SensitivityAnalysis (SA) are possible. Forwardun-
certainty propagation aims at estimating the probability distribution of some
Quantity Of Interest (QOI) given that input parameters are stochastic vari-
ables. SAaimsat quantifyinghowaperturbationof an input parameter affects
the QOI of a model and allows to prioritize the parameters by their in�uence.
It typically involves the computation of derivative-based indices to assess the
sensitivity of QOIs to input parameters.
Within SA, two methods can be distinguished: local and global methods. Lo-
cal SAmethods estimate sensitivity indices by perturbing parameters around
a single point in the input parameter space. This approach is informative only
when the underlying model is linear, as the results can be extended from the
sampling point to the whole parameter space. Nonetheless, for its simplicity,
it is o�en used in qualitative SA. When more quantitative information is re-
quired, methods based on the exploration of the full input parameter space
must be used. In this case, we talk about global SA. An example of global SA
method is the Elementary Effect Method (EEM) [67]. This method was �rst
presented by Morris [47] as a screening method and later improved by Cam-
polongo et al [10]. It is a non-intrusivemethod that has been applied in the car-
diovascular �eld [31, 17]. Hurtado et al [31] applied the EEM to assess the sen-
sitivity of QOI such as action potential duration and maximum intracellular
calcium concentration to variations in differentmaximal conductances using
two electromechanical models. Among global SA methods, variance-based
methods are considered the gold standard in sensitivity analysis. However,
because of the large number of model evaluations required, most o�enmeta-
modeling is needed to reduce the high computational cost. Meta-modeling is
o�en used to replicate a scalar QOI as predicted by the original model. The
EEM and other variance-based methods can be combined to reduce even fur-
ther the computation burden. An example of this combination is provided by
Donders et al [17]. Donders et al [17] used the EEM to select non-in�uential pa-
rameters in a pulse wave propagationmodel, consisting of serially connected
one-dimensional elements and zero-dimensional Windkessel models, before
applying the variance-based Saltelli’s method [66] combined with a General-
ized Polynomial Chaos (GPC) expansion [76] as meta-model to estimate the
sensitivity indices.
In the �eld of cardiac mechanics, most of the sensitivity studies that address
the role of geometry and �ber orientation are qualitative local approaches [21,
14, 27, 79, 50]. Few sensitivity studies addressed the output of the mechanics
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model using a structured sensitivity analysis approach such as the stochastic
collocation method combined with a GPC meta-model [62, 11, 54]. The only
study addressing strains is the one from Campos et al [11]. They investigated
the sensitivity of �ber strain averaged in a single region of the AHA segments
[53] to the local variation of the LV wall thickness. However, the sensitivity of
�ber strain computed in this way might be underestimated, since the strain
error related with the uncertainty in the �ber direction is neglected, and the
results cannot be easily related with experimental data, since typically �ber
orientation is unknown.

1.5 Data assimilationmethodologies

The ultimate goal of computer models in the cardiovascular �eld is the appli-
cation in the clinic as a supportive tool to clinicians. The most used method
to connect computer models with clinical measurements is Data Assimila-
tion (DA). DA aims at improving model prediction by combining the model
with observations of reality. DA is o�en used to determine system properties
when incomplete information is available. That is the case in clinical practice,
where measurements may be noisy, and spatially and temporally scattered.
Two main approaches exist: the variational approach, which relies on the
minimization of the error between observations and predictions; and the se-
quential approach, which is based on statistical estimation theory and aims
at minimizing the variability of model error. For particular choices of the er-
ror functions the two approaches are equivalent. However, in the variational
case, it is not convenient to set the problem in the same way as in the sequen-
tial case because it would require to store in memory large dense matrices.
To avoid this issue, a combination of a descent method and an adjoint-based
approach to compute the gradient of the error is used tominimize directly the
error function. The adjoint problemcanbe derived from the original problem
and its computational cost is usually of the same order. This method allows
achieving high-resolution parameter estimations, for which the size of the es-
timated parameter is of the order of that of the unknown of the problem. Ex-
amples of this method can be found in [19, 2, 3, 4]. Being framed within the
theory of optimization, issues related to lack of convexity and nonlinearity are
nontrivial to treat.
The Kalman Filter (KF) [33] is one of the most famous sequential approaches.
The goal of theKF is to compute anoptimal estimate of the systemstate given a
set of observations. It is called a sequential approach because, as soon as new
observations become available, the estimation can be easily updated without
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the need for recomputing everything. TheKF is optimal under the hypotheses
of Gaussianity of the stochastic variables and the linearity of the observation
operator. Twomain issues prevent the application of the KF to the problem of
mechanics of the heart: the inherent nonlinearity of the problem, and the size
of the problem. The nonlinearity breaks one of the assumptions of the opti-
mality of the KF. In a discretized �nite element problem, the state estimated
by the KF is the displacement and the associated covariancematrix is a square
matrix of the same size of the displacement. Due to the typical size of those
problems, the treatment of such a large dense covariance matrix makes the
computational effort required by the KF unbearable. To overcome these lim-
itations, Moireau et al [46] proposed the Reduced Order Unscented Kalman
Filter (ROUKF) that exploits the Unscented Transform (UT) [32] to treat the
nonlinearity. The UT relies on the choice of speci�c points (so-called sigma-
points) to propagate themean and covariance of a random variable through a
nonlinear operator. The ROUKF allows rewriting the �lter using a factorized
matrix of reduced rank that is typically much smaller than the state size. In
this way, the method does not require the computation of the inverse of large
densematrices and the factorization can be chosen to be restricted to the esti-
mation of the parameter section of the extended state (state and parameters).
The resulting method can thus be used on problems with parameters of size
much smaller than the state, it is not intrusive, and it does not require the
computation of tangent or adjoint problems. Themethod has been applied in
the context of cardiac mechanics to estimate passive stiffness parameters of
the myocardium [80] using synthetic data, to estimate regional contractility
values [12] using synthetic and animal data, and to estimate regional contrac-
tility in healthy volunteers and pathological cases [45].

1.6 Aims and outline of the thesis

This thesis aims to contribute to thedevelopment of patient-speci�c computer
models of the LV.More speci�cally, we use amodel of themechanics of the le�
ventricle proposed by Bovendeerd et al [9] to investigate the sensitivity of end-
systolic cardiac strains to settings of geometry and �ber orientation and we
make a �rst step towards data assimilation. The outline of the thesis is as fol-
lows. In chapter 2, we present a new implementation of themodel of theme-
chanics of the le� ventricle proposed by Bovendeerd et al [9] using the FEniCS
library. The implementation includes a model of the isolated LV mechanics
coupledwith a 0D closed-loop circulationmodel [9]. Themechanics is framed
within the context of �nite elasticity and the myocardium is modeled as a hy-
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perelastic, transversely isotropic, active stressmaterial. A detailed rule-based
�ber orientation model is used to prescribe the direction of anisotropy of the
myocardium. This model includes longitudinally and transmurally varying
helix and transverse angles. The mechanical activation of the myocardium is
assumed to occur homogeneously since physiological asynchrony of electri-
cal activation in physiological conditions does not affect signi�cantly the me-
chanical activation [36]. The new implementation is validated in a theoretical
case, is investigated numerically, and compared with its previous implemen-
tation.
In chapter 3 and chapter 4 we perform sensitivity analyses of end-systolic
strains to geometry and �ber orientation. In our analysis, we include com-
plex 3D data as input and we assess their in�uence on 3D strain distributions.
We adopt the EEM since it seems more adequate to compute sensitivity in-
dices of 3D strains without the need for using meta-modeling. In chapter 3,
we investigate the sensitivity of end-systolic Green-Lagrange strains to varia-
tions in the anatomical description of the le� ventricle using ourmodel of the
mechanics of the le� ventricle. The variations in the anatomical description
of the le� ventricle are de�ned in terms of deviation from an average geom-
etry using six shape modes de�ned in [? ? ]. The elementary effects method
is used to compute sensitivity indices to evaluate the sensitivity in the physio-
logical case.
In chapter 4, a similar analysis is performed for the study of the sensitivity of
end-systolic strains to variation in the parameters describing the orientation
of �ber within the le� ventricular myocardium. In this chapter, the results of
the two sensitivity analysis are compared.
Considering the results of our analyses from chapter 3 and chapter 4, in
chapter 5we present our preliminary results on the application of a method-
ology based on the ROUKF to estimate patient-speci�c �ber orientation from
observation of end-systolic strains.
In chapter 6, we conclude the thesis with a general discussion of overall re-
sults achieved by this research putting the results into perspectives.
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Chapter 2

Abstract

A new implementation of the models describing the problem of the mechan-
ics of the Le� Ventricle coupled with a close-loop circulation model is pre-
sented. The new implementation, based on the FEniCS project, has been
developed in a modular way in a python package. The high performance is
enabled by the C++ back-end implemented in FEniCS together with MPI par-
allelization by means of distributed linear algebra provided by dedicated ex-
ternal libraries. The new implementation has been tested theoretically, nu-
merically, and against a previous implementation. The results predicted by
the new implementation are in good agreement with those predicted by the
previous one. Performances are comparable when assuming using the same
discretization. However, the new implementation is more robust in the sense
that enables simulations whose execution failed with the previous implemen-
tation. Moreover, thanks to use high-order schemes used to discretize ODE,
the new implementation allows to obtain speedups when using larger time
steps while preserving the accuracy of the solution.

The contents of this chapter are partially based on: Barbarotta, L., Rossi, S.,
Dedè, L. and Quarteroni, A., 2018. A transmurally heterogeneous orthotropic
activation model for ventricular contraction and its numerical validation. In-
ternational journal for numericalmethods in biomedical engineering, 34(12),
p.e3137.
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2.1 Introduction

The CardioVascular BioMechanics group at the Technical University of Eind-
hoven has developed during the years a set of models for the modeling of
the ventricular mechanics. These models rely on the Finite Element Method
(FEM) to discretize the partial differential problem stemming from the mo-
mentum balance equation, whose resolution is required to compute the equi-
librium con�guration of the problem. The myocardium is described within
the theory of the �nite elasticity and the constitutive law is modeled in terms
of a strain energy density function [6]. The activation of themyocardium, that
is the ability ofmyo�bers todevelop stress uponelectrical stimulation, ismod-
eled using an active stress formulation [7]. The FEM discretization requires
the de�nition of a mesh, a partitioning of an approximation of the geometry
using simple geometrical elements, that allows the approximation of the in-
tegrals required by the approximation of the problem. Two geometries were
implemented: one for simulating the le� ventricle (LV) only, and one for sim-
ulating the BI-Ventricular (BIV) case. Depending on the type of geometry, the
mechanics is coupled explicitlywith a single closed-loop circulationmodel for
the LV or with a double closed-loop circulation model. Eventually, the active
stress generation can be assumed to originate homogeneously throughout the
geometry or inhomogeneously according to the solution of the Eikonal equa-
tion [17].
All these models were developed on top of the commercial package Sepran
[28]. This implementation will be referred in the text as the previous/old im-
plementationor the Sepran implementation. At thebeginningof this research,
an ef�cient andmodern simulator for the presented problemwas considered
a cornerstone for the project. However, the development of the underlying
library Sepran was discontinued. This would have meant that no more sup-
port and nomore updates would have been issued during the development of
my project. This issue, together with the strong compiler dependency and the
lack of support for standard data formats for input/output and visualization,
determined the group’s choice to derive a new implementation of the models
based on a different project.
We decided to base the development of the new implementation on the FEn-
iCS project [19] (fenicsproject.org). FEniCS is a suite of python packages that
allow the de�nition of partial differential problems that are then solved ef�-
ciently using the C++ back-end de�ned in the Dol�n library. Dol�n is a C++
compiled library whose symbols are exported in python. It interfaces with
many linear algebra packages such as PETSc [3], Trilinos [15], and Eigen [12].
PETSc and Trilinos in particular, introduce in the project distributed linear al-
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(a) (b) (c)

Figure 2.1: Representation of geometry and coordinates ξ and θ. On the le�, the geometry
colored according to the surface labels: red for Γ0,Endo, blue for Γ0,Base, and green for Γ0,Epi;
in the middle and on the right, the spatial distribution of ξ and θ, respectively.

gebra, thus enablingMPI-based parallelization. Moreover, in PETSc and Trili-
nos many advanced numerical tools are available such as Krylov solvers and
algebraic preconditioning techniques. Other important features of the FEn-
iCSproject are thepossibility of enablingparallel input/output using theHDF5
library [10] and to deal with general scienti�c formats such as XDMF that can
be then visualized using free so�ware like Paraview [2] and VisIt [8]. The exis-
tentmodelswhere thusnewly implemented in apythonpackagenamedBeatIt
(git@mategit.wfw.wtb.tue.nl:Barbarotta/beatit.git).
This chapter is structured as follows. In the �rst section, the model proposed
by Bovendeerd et al [7] is presented and its numerical implementation is de-
tailed. In the second section, the results of different in-silico experiments are
compared with the analytical solution and other approximated solutions. In
the third section, the results and implementation choices are discussed. Fi-
nally, in the last section, the conclusions are presented.

2.2 Models andmethods

2.2.1 Mathematical models

The mathematical model presented in [7] includes the description of the me-
chanics of the LV coupled with a 0D closed-loop circulation model. The me-
chanics is framed within the theory of hyper-elasticity and is described by
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partial differential equations that enforce conservation of mass and momen-
tum [20]. The myocardium is described as an transversely isotropic nearly-
incompressible material [6]. The contraction of the myocardium is modeled
in terms of an additive active stress term [17]. The �ber orientation dictates
the direction of anisotropy during both passive deformation and active con-
traction. This orientation is modeled using Legendre polynomials [7]. The
partial differential equations are discretized using the Finite ElementMethod
(FEM) and the resultingnonlinear system is solvedusing theNewton-Raphson
method [24, 23].

LV geometry and �ber orientation

The geometry of an idealized le� ventricle can be approximated using a pro-
late ellipsoidal shape [6]. Such ellipsoid can be describe using the prolate el-
lipsoidal coordinate system with radial coordinate ξ, longitudinal coordinate
θ, and circumferential coordinate φ. By �xing a focal length fl and the bound-
aries for ξ and θ the following coordinate system can describe an axisymmet-
ric prolate ellipse

~x =


x = fl sinh (ξ) sin (θ) cos (φ) ,

y = fl sinh (ξ) sin (θ) sin (φ) ,

z = fl cosh (ξ) cos (θ) .

(2.2.1)

By constraining ξ ∈ [ξendo, ξepi], θ ∈ [arccos (zbase/ cosh(ξ)) , θapex], and φ ∈
[0, 2π], an idealized le� ventricular geometry can be de�ned. To achieve a
cavity volume of 44 ml and a wall volume of 136 ml, the focal length is set to
43mm, θendo = 0.371, θepi = 0.678, θapex = π, and the basal plane is de�ned
by the plane zbase = 24 mm. The geometry is shown in Figure 2.1a. On this
geometry, the circumferential ~ec, the longitudinal ~el, and transmural ~et basis
vectors can be de�ned normalizing the derivatives of ~x with respect to φ, θ,
and ξ as follows

~ec =

∂~x
∂φ

‖∂~x∂φ‖2
= cos(φ)~ey − sin(φ)~ex, (2.2.2)

~el =
∂~x
∂θ

‖∂~x∂θ ‖2
=
(

sinh(ξ) cos(θ) cos(φ)~ex + sinh(ξ) cos(θ) sin(φ)~ey

− cosh(ξ) sin(θ)~ez

)(
sinh2(ξ) + sin2(θ)

)− 1
2
, (2.2.3)
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Representation of the geometry and �ber orientation. The top row shows: on the
le�, the geometry with a representation of the �ber angles; in the middle and on the right, the
spatial distribution of normalized coordinates v andu, respectively. The bottom row shows: on
the le�, a section of the geometry colored using the values of αt and the �ber �eld ~ef colored
using the values ofαh; in themiddle, both the transmural and the complete spatial distribution
of αh; on the right, the transmural and the complete spatial distribution of αt.

~et =

∂~x
∂ξ

‖∂~x∂ξ ‖2
=
(

cosh(ξ) sin(θ) cos(φ)~ex + cosh(ξ) sin(θ) sin(φ)~ey

+ sinh(ξ) cos(θ)~ez

)(
sinh2(ξ) + sin2(θ)

)− 1
2
. (2.2.4)
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Figure 2.1b and Figure 2.1c show the spatial distribution of ξ and θ, respec-
tively.
The ellipsoidal coordinates allow to de�ne spatially varying quantities within
the geometry. For instance, �ber orientation is provided as a function of the
normalized transmural and longitudinal coordinates, v and u respectively.
These two normalized coordinates v and u are computed by integrating nu-
merically the 2-norm of the derivative of the coordinates with respect to ξ and
θ respectively, as follows

v (ξ, θ) = (vmax − vmin)

∫ ξ
ξmin

√
sinh2(ξ′) + sin(θ)dξ′∫ ξmax

ξmin

√
sinh2(ξ′) + sin(θ)dξ′

+ vmin, (2.2.5)

u (ξ, θ) =


umin

1−

∫ θ
π

√
sinh2(ξ) + sin(θ′)dθ′∫ π/2

π

√
sinh2(ξ′) + sin(θ)dξ′

 , if θ >
π

2
,

umax
z

zmax
, if θ ≤ π

2
.

(2.2.6)

According to [7], we set vmin = −1 and vmax = 1, and umin = −1 and umax =
0.5. Note that the de�nition of u requires that u becomes null at equator.
The orientation of �bers inside the myocardium is described by the helix an-
gle and the transverse angle. The two angles de�ne ~ef as the unit vector along
the �ber in the following way

~ef (αh, αt) = a (αh, αt) cos(αt)~ec

+ a (αh, αt) sin(αt)~et − b (αh, αt)~el, (2.2.7)

a (αh, αt) =

√
1

1 + cos2(αt) tan2(αh)
, (2.2.8)

b (αh, αt) =

√
cos2(αt) tan2(αh)

1 + cos2(αt) tan2(αh)
, (2.2.9)

where the helix angle de�nes the component of~ef in the longitudinal-circum-
ferential plane and the transverse angle de�nes the component in the circum-
ferential-radial plane (Figure 2.2a). αh and αt are functions of the u and v, the
normalized longitudinal and transmural coordinates. As in [7], the functional
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description of αh and αt is provided in terms of Legendre polynomials

αh (u, v) =
(
hv0L0(v) + hv1L1(v) + hv2L2(v)

+ hv3L3(v) + hv4L4(v)
)

(1 + hu2L2(u) + hu4L4(u)) , (2.2.10)

αt (u, v) = (1 + tv1L1(v) + tv2L2(v))
(
1− v2

) (
tu1L1(u)

+ tu3L3(u) + tu5L5(u)
)
, (2.2.11)

where Ln are unnormalized Legendre polynomials of degree n de�ned as fol-
lows

L0(x) = 1, L1(x) = x, L2(x) =
1

2

(
3x2 − 1

)
, L3(x) =

1

2

(
5x3 − 3x

)
,

(2.2.12)

L4(x) =
1

8

(
353x4 − 30x2 + 3

)
, L5(x) =

1

8

(
63x5 − 70x3 + 15x

)
.

(2.2.13)

The �ber orientation is shown in Figure 2.2 together with the transmural dis-
tribution of the helix and transverse angle at different longitudinal locations.
The parameters used in the de�nition of the αh and αt are reported in Ta-
ble 2.1.

hij 0 1 2 3 4 5
v 0.362 rad −1.16 rad −0.124 rad 0.129 rad −0.0614 rad -
u - - 0.0984 - −0.0701 -
tij 0 1 2 3 4 5
v - −0.626 rad 0.502 rad - - -
u - 0.626 - 0.211 - 0.038

Table 2.1: Constitutive parameters for the de�nition of the spatial distribution of �ber orien-
tation [7].

Hyperelasticity problem

For a deforming body of material, we denote with Ω0 and Ω the initial and
current con�gurations, respectively. In particular, we takeΩ0 andΩ to be two
open sets inR3 with Lipschitz boundaries. The deformation is characterized
by the motion ~φ : Ω0 → Ω such that ~x = ~φ(~x0), which maps the reference
coordinate ~x0 ∈ Ω0 to the current one ~x ∈ Ω. The vector ~u = ~x−~x0 represents
the displacement �eld and relates the position of a particle in the reference
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con�guration ~x0 to its position in the current con�guration ~x. We denote the
boundaries ofΩ0 andΩ asΓ0 = ∂Ω0 andΓ = ∂Ω, respectively. We also assume
that ~φ is a diffeomorphism from Ω0 to Ω, such that the deformation gradient
tensor F = ∇~x = I + ∇~u and the deformation Jacobian determinant J =
det(F) > 0 are always well de�ned. We denote withH = JF−T the cofactor
of the tensor F.
The equations of Lagrangian solid dynamics describe the rate of change of
position, density, andmomentum of amaterial body, and can be expressed in
an inertial reference frame. In the reference con�guration, the equations of
static equilibrium are expressed as

ρJ = ρ0 in Ω0, (2.2.14a)

−∇0 ·P = ρ0
~b in Ω0, (2.2.14b)

where ρ0 and ρ are the reference and current densities, P (F (~x0)) is the �rst
Piola-Kirchhoff stress tensor, ∇0· is the divergence operator with respect to
the reference coordinates and ~b represents the external forces acting on the
body. In the theory of hyperelasticity,P is obtained from a strain energy func-
tionW (C) as

P =
∂W
∂C

∂C

∂F
, C = FTF, (2.2.15)

whereC is the right Cauchy-Green deformation tensor. According to [6], grav-
itational and inertial effects are neglected. Equation (2.2.14b) needs to be
supplied with appropriate boundary conditions. With this aim, we split the
boundary of the le� ventricle into three subsets Γ0,Base, Γ0,Endo, and Γ0,Epi,
such that ∂Ω0 = Γ0,Base ∪ Γ0,Endo ∪ Γ0,Epi. These are shown in Figure 2.1a.
Γ0,Base represents the le� ventricular basal plane,wherewe typically impose a
Dirichlet condition to block displacement normal to the basal plane to anchor
the ventricle and to avoid rigid displacements and rotations. We also prevent
the innermost region of the basal ring frommoving along the circumferential
direction, thus preventing rotation around the long axis.
The surface region Γ0,Endo represents the endocardium, the inner part of the
myocardium where the muscle is in contact with blood inside the ventricular
cavity. On this portion of the boundary, we set a natural boundary condition
to describe the force that the blood exerts on the ventricular wall. We assume
that the ventricular pressure in the cavity pv is uniformly distributed and that
the stress is directed along the normal of the deformed surface. The surface
region Γ0,Epi represents the epicardium, the outer part of the myocardium
where the muscle is interfaced with the pericardium and the viscous �uids
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that reduce frictions between the two tissues. On this surface we set a homo-
geneous natural boundary condition.
Since the deformed con�guration is unknown, we resort to the Piola transfor-
mation, which is nonlinear, in order to reformulate the boundary condition
in the known reference con�guration:

P ~N0 = −pvH ~N0 on Γ0,Endo. (2.2.16)

In summary, the�nal problem in its strong formulation, endowedwithbound-
ary conditions, reads:

−∇0 ·P (~u) = ~0 in Ω0,

~u · ~N0 = ~0 on Γ0,Base,

ux = 0 on {Γ0,Ring ∩ {x = 0}},
uy = 0 on {Γ0,Ring ∩ {y = 0}},(

I− ~N0 ⊗ ~N0

)
P ~N0 = ~0 on Γ0,Base,

P ~N0 = −pvH ~N0 on Γ0,Endo,

P ~N0 = ~0 on Γ0,Epi,

(2.2.17a)

(2.2.17b)
(2.2.17c)
(2.2.17d)

(2.2.17e)

(2.2.17f)

(2.2.17g)

whereΓ0,Ring = Γ0,Base∩Γ0,Endo. All equations dependon the time t > 0. Note
that we omitted (2.2.14a) in (2.2.17) because incompressibility will be weakly
enforced using a nearly incompressible formulation (see section 2.2.1). By
introducing the Hilbert space

V =
{
~v ∈ [H1(Ω0)]3 : ~v · ~N0 = 0 on Γ0,Base, vx = 0 on Γ0,RingX ,

vy = 0 on Γ0,RingY

}
, (2.2.18)

Γ0,RingX = Γ0,Ring ∩ {~x ∈ Ω0 : x = [~x]1 = 0}, (2.2.19)
Γ0,RingY = Γ0,Ring ∩ {~x ∈ Ω0 : y = [~x]2 = 0}, (2.2.20)

the weak formulation of problem (2.2.17) reads:

�nd ~u ∈ V :

∫
Ω0

P(~u) : ∇0~v ~dV +

∫
Γ0,Endo

pvJF
−T ~N0 · ~v ~dA = 0 ∀~v ∈ V.

(2.2.21)

The choice of the functional space is made compatibly with the need to com-
pute gradient of ~v and ~u and to preserve square integrability in the sense of
Lebesgue.
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Constitutive law for the passivemyocardium

We still need to characterize, in problem (2.2.21), the formof the stress tensor.
It is common to assume that the myocardial tissue is a hyperelastic material
[7, 9, 16, 11] for which the stress tensor can be derived from a pseudo strain-
energy function. The myocardium is modeled as a transversely isotropic ma-
terial and we denote with ~ef0 the orientation of the cardiac �bers. The strain
energy density function is the one proposed by Bovendeerd et al [6] and writ-
ten in terms of invariants ofE = 1

2 (C− I), the Green-Lagrange strain tensor,
to guarantee frame indifference. By introducing the isotropic invariants

I1 (E) = trE, I2 (E) =
1

2

(
tr
(
E2
)
− tr (E)2

)
, (2.2.22)

and the pseudo-invariant

I4,f (E) = ~ef0 ·E~ef0 , (2.2.23)

the strain energy function reads

W = a0 (exp (Q)− 1) , (2.2.24)

Q = a1I1 (E)2 + 2a1I2 (E) + a3I4,f (E)2 . (2.2.25)

Nearly-incompressible formulation

The constitutive law (2.2.24) iswritten for an incompressiblematerial. Incom-
pressibility is typically enforced by setting an internal constraint on the con-
stitutive lawbymeans of a Lagrangemultiplier, which introduces the pressure
�eld. The introduction of the additional pressure term allows to obtain defor-
mations that preserve the mass. However, this additional term also increases
the size of the problem and makes it more dif�cult to solve computationally.
For this reason, a different approach is taken. Incompressibility is weakly en-
forced using a penalization term, which is added to the strain energy density
function. The additional termWvol is the energy term characterizing volume
changes J =

√
I3 (C). It penalizes volume variations by making a deforma-

tionmore energetically “expensive” when J 6= 1. Several expressions forWvol
are proposed in literature [14]: generally, an optimal choice is to consider a
penalty function bounded (from below), convex and whose slope is null in
J = 1. The energy term proposed by Simo et al [27] satis�es the aforemen-
tioned prerequisites and read:

Wvol(J) = 4k
(
J2 − 1− 2 lnJ

)
. (2.2.26)
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The parameter k in (2.2.26) is called bulk modulus. The bulk modulus is a
penalization factor that allows to weakly enforce incompressibility. Ideally
incompressibility is enforced for k approaching in�nity. For practical appli-
cations, it is suf�cient to set a �nite value for k that allows only slight deviation
from incompressibility. The�nal formof the strain energy function andof the
�rst Piola-Kirchhoff stress tensor reads as follows

W = a0

(
exp

(
a1I1 (E)2 + 2a1I2 (E) + a3I4,f (E)2

)
− 1
)

+ 4k
(
J2 − 1− 2 lnJ

)
. (2.2.27)

P = 2a0 exp (Q)
(

(a1 − a2) (E : I)F + a2FE

+ a3

(
~eTf0 ·E~ef0

)
F~ef0 ⊗ ~ef0

)
+ 8k

(
J2 − 1

)
F−T . (2.2.28)

The parameters involved in the de�nition of the �rst Piola-Kirchhoff stress
tensor (2.2.28) are shown in Table 2.2

Passive stress model
a0 [kPa] a1 [-] a2 [-] a3 [-] k [kPa]

0.4 3 3 3 10

Table 2.2: Constitutive parameters of the passive myocardiummodel [7].

Active stress formulation

The active term of the �rst Piola-Kirchhoff stress tensor is modeled through
a serial arrangement of an elastic element and a contractile element. The
active stress, adopted from [7], acts along �ber direction and is dependent on
sarcomere and contractile lengths, time and velocity as follows:

Pa =
ls0
ls
fiso (lc) ftwitch (ta, ls)Ea (ls − lc)F~ef0 ⊗ ~ef0 , (2.2.29)

where ls is the sarcomere length, lc is the contractile length, ls0 is the stress-
free sarcomere length, ta is the activation time, fiso is the length dependent
stress term, ftwitch is the time dependent stress term, and Ea is the stiffness
of the elastic element. The expressions of fiso and ftwitch are
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fiso (lc) = T0 tanh2 [al (lc − lc0)]χ[lc0,+∞) (lc) , (2.2.30)

ftwitch (ta, ls) = tanh2

(
ta
τr

)
χ[0,b(ls−ld)] (ta)

tanh2

(
b(ls − ld)− ta

τd

)
, (2.2.31)

where T0 is the reference active stress level, al models the steepness of the
stress-length curve, lc0 is the contractile element threshold below which the
active stress is zero, the rise and decay of ftwitch is dictated by τr and τd, b
modulates the twitch duration depending on the sarcomere length, ld is the
sarcomere length corresponding to a twitch duration of zero, and χA(x) is the
indicator function of the variable x on the setA. Finally, the time evolution of
the contractile length is given by

dlc
dt

= [Ea (ls − lc)− 1] v0, (2.2.32)

where v0 is the unloaded shortening velocity.
The constitutive parameter settings of the active stress model are given in Ta-
ble 2.3.

Active stress model
T0 [kPa] Ea [µm−1] al [µm−1] lc0 [µm] ls0 [µm]

160 20 2 1.5 1.9

τr [ms] τd [ms] b [ms/µm] ld [µm]
75 150 160 −0.5

Table 2.3: Constitutive parameters of the active stress model [7].

2.2.2 Circulation

The LV cavity pressure is determined by the interaction between the blood
inside the ventricular chamber and the myocardium. Following [7], to de-
scribe the blood distribution within the body a 0D model is used. This model
is constituted by two three-elementsWind-Kessel [29] models. The two three-
elements Wind-Kessel share the same resistive element and model the sys-
temic and pulmonary circulations, respectively. Themodel is brie�y sketched
in Figure 2.3 using the electric equivalence. In fact in this representation, ca-
pacitors are used to model the ability of vessels to store blood, resistors are
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Figure 2.3: Representation of the electric-equivalent of the circulation model.

used to model viscous properties of the vessels, and diodes are used to model
ideal valves. The governing equations for resistive and compliant elements
are

∆p = Rq, C
dp

dt
=
dV

dt
= q, (2.2.33)

respectively. Including these equations in the system in Figure 2.3 leads to the
system of ordinary differential equations:

C (plv)



qp =
part − pven

Rp
,

qao =
pao − part

Za
= χav

plv − part
Za

,

qmv =
pven − pmv

Zv
= χmv

pven − pmv
Zv

,

dVlv
dt

= qmv − qao,

dVart
dt

= qao − qp,

Vven = Vtot − Vlv − Vart,

Ca
dpart
dt

=
dVart
dt

,

Cv
dpven
dt

=
dVven
dt

,

(2.2.34)

where the initial conditions for the two latter differential equations are V 0
art

and V 0
ven, which are the volume of blood stored in arteries and veins, respec-
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tively, when the transmural pressure is null. Note that pmv and pao are equal
to plv when the mitral and aortic valves are open, respectively. This behavior
is modeled using the indicator functions χmv and χav that return one when
the respective valve is open and zero otherwise. Note also that the valves are
the only source of nonlinearity inside the circulation model.
The resulting circulation model can be coupled with any sort of model of the
LV, provided that this model can estimate the cavity pressure and cavity vol-
ume. As an example of this, in Figure 2.3 the LV is represented using a time
varying elastancemodel, which linearly relates cavity pressure and cavity vol-
umebymeans of anon-linearly varying time-dependent elastance factorE(t).
Theparameters used in the circulationmodel are taken from [7] andare shown
in Table 2.4. The model is initialized by setting part = 11.5 kPa and Vven =
Vtot − Vc − Vart, exploiting the balance of circulating blood.

Rp 1.2× 10−1 kPa ·ms/mm3

Za 10−2 kPa ·ms/mm3

Zv 5× 10−3 kPa ·ms/mm3

Vtot 5× 106 mm3

V 0
art 5× 105 mm3

V 0
ven 3× 106 mm3

Ca 2.5× 104 mm3/kPa

Cv 6× 105 mm3/kPa

Table 2.4: Parameters of the circulation model.

2.2.3 Numerical approximation

Spatial discretization

We want to solve problem (2.2.21) using the Galerkin method. Given that the
space V is an separableHilbert space, thismethod allows to obtain an approx-
imation of the solution of the original in�nite dimensional problem by pro-
jecting this problem onto a �nite dimensional subspace [26]. To create this
�nite dimensional subspace, the �nite element method relies on the intro-
duction of a discretization of the domain by means of a mesh. On this mesh,
a set of shape functions de�nes a basis for the subspace, thus allowing the
projection of the problem. The meshing procedure introduces a polygonal
approximationΩ0,h of the geometryΩ0. This procedure creates a partitioning
Th of the domain Ω0,h of non-overlapping elements such that the union of all
the elements equals the domain: Ω0,h = ∪K∈ThK. Where the inside of each
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element must be non-empty and the intersection of the insides of any pair
of elements in Th must be empty. Moreover, if a pair of elements has a non
empty intersection, this intersection must be either a whole face or a whole
edge or a vertex. The diameter of an element is indicated by hK , while the
maximum diameter over the mesh is indicated by h = maxK∈Th hK . We only
consider partitioning made by linear tetrahedra. The space of continuous �-
nite elements is then the set of globally continuous functions that are locally
polynomials on each elementK of Th

Xr
h =

{
vh ∈ C0

(
Ω0,h

)
: vh|K ∈ Pr ∀K ∈ Th

}
. (2.2.35)

For a variational problem satisfying the hypothesis of Lax-Milgram theorem
[22], a convergence result for the�nite elementmethod states that, if the exact
solution ~u ∈ Hr+1 (Ω), then

‖~u− ~uh‖H1(Ω) ≤
M

α
Chr|~u|Hr+1(Ω), (2.2.36)

where ~uh is the approximated solution,M and α are the continuity and coer-
civity constants of the Lax-Milgram theorem, respectively, andC is a constant
independent from h and ~u. Note that (2.2.36) relates the accuracy of the ap-
proximation to the mesh resolution h, the degree of the basis functions, and
the regularity of the solution. This result also suggests two methods to con-
trol the accuracy of the approximation: re�ning the mesh by decreasing h
(h−re�nement), and by increasing the polynomial order (p−re�nement, as
long as the regularity of ~u allows it). In the following we will consider the
effects of global h− p−re�nement.
We project problem (2.2.21) on Vh, de�ned as follows

Vh =
{
~vh ∈ [Xr

h]3 : ~vh · ~N0 = 0 on Γ0,Base

}
. (2.2.37)

A general function ~vh of Vh can be expressed as a linear combination of basis
functions of (2.2.37)

~vh(~x0) =
n∑
i=1

vi~φi(~x0), (2.2.38)

where ~x0 ∈ Ω0,h, n is the total number of degrees of freedom introduced by
the spatial discretization and ~φi is the i-th Lagrangian basis function. In this
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context the displacement and the deformation gradient can be de�ned as

~uh =
n∑
j=1

uj~φj(~x0), (2.2.39)

Fh (~x0) = I +

n∑
j=1

uj∇0
~φj(~x0), (2.2.40)

respectively. Note that the order of polynomial interpolation is dictated by the
choice of r in (2.2.37). Then, we de�ne Jh = det (Fh ) andHh = JhF

−T
h .

By introducing Gauss-Jacobi quadrature rules with nq and nqBD nodes over
domain andboundaries, whoseweights arew(~x0,q) andwBD(~x0,q) respectively
and by plugging (2.2.39) and (2.2.40) into (2.2.21), we derive the corresponding
algebraic formulation for the elastostatic problem. By setting

Li(~uh) =

nq∑
q=1

w(~x0,q)
[
P (Fh (~x0,q)) : ∇0

~φi(~x0,q)
]
, (2.2.41)

BN
i (~uh) =

nqBD∑
q=1

wBD(~x0,q)

[
pvHh (~x0,q) ~N0 · ~φi(~x0,q)

]
, (2.2.42)

the sum of (2.2.41) and (2.2.42) yields the algebraic nonlinear system

M(~uh) = L(~uh) + BN (~uh) = ~0. (2.2.43)

Note that for the sake of brevity in (2.2.41) and (2.2.42) numerical integration
is performed in a loop over the mesh elements, while in reality the integra-
tion is preformed in the reference element because of its computational ef�-
ciency. This is achieved by mapping the reference element to each element
and changing the variable under the integral sign, for instance:∫

Ki

∇~xu (~x) · ~v (~x)d~x
~x= ~Fi(~̂x)

=

∫
K̂
J−TG,i∇~̂xu

(
Fi(~̂x)

)
· ~v
(
Fi(~̂x)

)
det (JG,i)d~̂x,

(2.2.44)

where [JG,i]jk = ∂Fi,j/∂x̂k is the Jacobian matrix of the geometric transfor-
mation that maps the reference element to the i-th elementKi. In particular,
for our af�ne �nite element approach, the expression for JG,i can be obtained
exploiting the linear Lagrangian basis functions of the reference element [22]

x =

4∑
i=1

Xiφ̂i(~̂x), y =

4∑
i=1

Yiφ̂i(~̂x), z =

4∑
i=1

Ziφ̂i(~̂x), (2.2.45)
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where Xi, Yi, Zi are the coordinates of the vertices of the current element.
Note that this approach is differentwith the one implemented in Sepran, since
Sepran implements isoparametric �nite elements. In fact, in isoparametric
�nite elements, the basis functions used in (2.2.45) are of the same family and
degree of those used for the approximation of the solution.

Linearization

We solve the nonlinear problem (2.2.43) by the Newton-Raphson method [5,
23]. Themethod exploits information from the Jacobian J ofM(~u) to achieve
the solution of the nonlinear problem:

Jij(~uh)δuj = lim
ε→0

Mi(~uh + εδ~uj)−Mi(~uh)

ε

=

nq∑
q=1

wq∇0
~φi,q :

∂P

∂F
(Fh (~x0,q))

[
δuj∇0

~φj,q

]

+

nqBD∑
q=1

wBD,q~φi,q ·

[
pv

[ (
F−Th (~x0,q) : δuj∇0

~φj,q

)
I

− F−Th (~x0,q)
(
δuj∇0

~φj,q

)T ]
Hh (~x0,q) ~N0

]
, (2.2.46)

where we denote with δ~uj = δukδk,j, wq = w(~x0,q), wBD,q = wBD(~x0,q) and
~φj,q = ~φj(~x0,q). The fourth order tensor ∂P/∂F depends only on the constitu-
tive assumptions of the material and it is symbolically derived by FEniCS [19]
from the strain energy density function as

∂P

∂F
=

∂2W
∂F∂F

. (2.2.47)

Givenan initial guess~u0
h, the solutionof (2.2.43) is achievedas the limit (should

it exist) of the sequence {~unh}, such that

J(~unh)δ~un+1 =M(~unh) (2.2.48)

~un+1
h = ~unh − δ~un+1. (2.2.49)

The Dirichlet boundary condition is enforced algebraically by manipulating
the rows of the matrix:

JjDj = δjD,j for j = 1, .., n, (2.2.50)
MjD = δūnjDδn,0, (2.2.51)
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being jD the index identifying aDirichlet nodeand δūjD the valueof thebound-
ary condition.

Time discretization and coupling betweenmechanics and circulation

The natural boundary condition in problem (2.2.21) is dictated by the blood
pressure within the LV cavity. Depending on the state of the valves, this pres-
sure is determined by circulation model (2.2.34). When the aortic valve is
open, plv is equal to pao and the blood can �ow from the LV through the aorta,
injecting blood in the circulatory system and decreasing the LV cavity vol-
ume. Conversely when the mitral valve is open, plv equals pmv and the blood
enters the LV from the circulatory system, increasing the LV cavity volume.
The result is a coupled mechanics-circulation problem. To solve this prob-
lem, we �rst discretize the circulation model. The algebraic-differential sys-
tem in (2.2.34) is fully discretized by integrating exactly the last two equations
and applying two different numerical schemes to the equations governing the
balance of �ows for the LV and the arterial node. A Forward Euler scheme is
introduced for backward compatibility

q(n)
p =

p
(n)
art − p

(n)
ven

Rp
,

q(n)
ao = χav

p
(n)
lv − p

(n)
art

Za
,

q(n)
mv = χmv

p
(n)
ven − p(n)

mv

Zv
,

V
(n+1)
lv = V

(n)
lv + dt

(
q(n)
mv − q(n)

ao

)
,

V
(n+1)
art = V

(n)
art + dt

(
q(n)
ao − q(n)

p

)
,

V (n+1)
ven = Vtot − V (n+1)

lv − V (n+1)
art ,

p
(n+1)
art =

V
(n+1)
art − V (0)

art

Ca
,

p(n+1)
ven =

V
(n+1)
ven − V (0)

ven

Cv
,

(2.2.52)

and an implicit second order Crank-Nicholson scheme

A~x(n+1) = ~b, (2.2.53)
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where

A =



1 0 0 0 0 0 −1
Rp

1
Rp

0 1 0 0 0 0 χ∗av
Za

0

0 0 1 0 0 0 0 χ∗mv
Zv

0 dt
2 χ
∗
av −dt

2 χ
∗
mv 1 0 0 0 0

dt
2 −dt

2 χ
∗
av 0 0 1 0 0 0

0 0 0 1 1 1 0 0
0 0 0 0 −1

Ca
0 1 0

0 0 0 0 0 −1
Cv

0 1


, (2.2.54)

~x =



qp
qao
qmv
Vlv
Vart
Vven
part
pven


, ~b =



0
plv
Za
χav

−plv
Zv

χmv

V
(n)
lv + dt

2

(
q

(n)
mvχ

(n)
mv − q(n)

av χ
(n)
av

)
V

(n)
art + dt

2

(
q

(n)
ao χ

(n)
av − q(n)

p

)
Vtot
−V 0

art
Ca
−V 0

ven
Cv


. (2.2.55)

Note that the valves, representedbyχav andχmv, introducenonlinearity in the
system; therefore inA, χ∗av and χ∗mv are treated explicitly but will be updated
during the iterative scheme that solves the non linearity.
To solve the nonlinearity, we adopted an iterative approach that requires suc-
cessive resolutions of both problems, coupled by p(n)

lv,k (cavity pressure at time
n at iteration k), until the coupling condition is met. This coupling condition
makes sure that the distance between the LV cavity volume computed from
the circulation, V (n+1)

lv,k

V
(n+1)
lv,k = V

(n)
lv +

dt

2

(
q(n)
mv − q(n)

ao + q
(n+1)
mv,k χ

(n+1)
mv,k−1 − q

(n+1)
ao,k χ

(n+1)
av,k−1

)
, (2.2.56)

and the one computed using the �nite element model of the LV mechanics,
Vc,k, is smaller thanaprede�ned tolerance. At iteration k, given adeformation
~xk that takes the undeformed con�guration Σ0 to Σk, the cavity pressure Vc,k
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can be computed as follows

Vc,k =

∫
Σk

~dv =

∫
Σk

1

3
∇ · (~xk − ~xo,base) ~dv (2.2.57)

=
1

3

∫
∂Σk

(~xk − ~xo,base)~n ~da, (2.2.58)

=
1

3

∫
∂Σ0

(~xk − ~xo,base) JkF−Tk ~N0
~dA, (2.2.59)

= −1

3

∫
Γ0,Endo

(~xk − ~xo,base) JkF−Tk ~N0
~dA, . (2.2.60)

Note that, Σk is assumed to have a planar cap at the base. ~n is the vector nor-
mal to ∂Σk, and xo,base is a reference point on the planar cap at the base. In
(2.2.60), we exploited the fact that on the planar cap ~xk − ~xo,base is orthogonal
to the ~n.
To drive the mechanics towards the desired Vc, a �xed-point iterative scheme
is used to estimate the cavity pressure pn+1

lv,k . The scheme is the following. At
the �rst iteration, the pressure is extrapolated from the previous time steps:
pn+1

0 = 2pn − pn−1, then

pn+1
k+1 = pn+1

k +
1

Cn+1
lv,k

(V n+1
c,k − V n+1

lv,k ), (2.2.61)

where the LV compliance Clv,k is modeled as follows

Clv,k =


V n+1
c,k

pn+1
lv,k

, k = 0,

V n+1
c,k − V n+1

c,k−1

pn+1
lv,k − p

n+1
lv,k−1

, k > 0.

(2.2.62)

Strains computation

The computation of strains is performed during post processing. There are a
few reasons behind this choice. The �rst one is that a simulation must store a
minimum amount of output that allows to repeat the simulation or restart it
from the last saved state in order to minimize disk occupancy. In fact, many
derived quantities may be required from different analyses. Consequently,
these quantities can be obtained by post processing the output of the simula-
tion. The second reason is that the post-processing problem is amuch simpler
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one and might bene�t from using different numerical techniques together
with parallel computing.
During the post processing, the state of the simulated problem is loaded in
all/a subset of the available time steps and output quantities can be computed.
Typically from a mechanical point of view, we are interested in tissue defor-
mation. In this regard, during post processing we are mostly interested in
computing strains. When computing strains in-vivo, different reference con-
�gurations for the computation of strains are possible. Commonly, either of
end diastolic, end-systolic, or begin ejection con�gurations are used as ref-
erence. Given a reference displacement ~uRef , the Green-Lagrange strains at
time t can be computed as follows

FRef = I +∇0~uRef (~x) , (2.2.63)
F (~x, t) = I +∇0~u (~x, t) , (2.2.64)

FRef→t (~x) = F (~x, t) (FRef )−1 , (2.2.65)

ERef→t (~x) =
1

2

[(
FRef→t (~x)

)T
FRef→t (~x)− I

]
, (2.2.66)

~eRefi (~x) =
FRef (~x)~ei (~x)

‖FRef (~x)~ei (~x) ‖2
, (2.2.67)

ERef→tkl (~x) = ERef→t (~x)~eRefk (~x) · ~eRefl (~x) , (2.2.68)

where ~ek and ~el are normal unit vectors de�ned on Ω0. Note that if ~uRef = 0,
strains are computed using the unloaded con�guration as reference, since
FRef = I. The strains are computed projecting expression (2.2.68) using the
L2 (Ω0) scalar product onto a scalar �nite element space of the same degree
of the polynomials used in the computation of the displacement. The strain
is obtained by solving the following linear system

A~y = ~b, (2.2.69)

Aij =

∫
Ω0

φi (~x)φj (~x)d~x, (2.2.70)

b =

∫
Ω0

ERef→tkl (~x)φi (~x)d~x, (2.2.71)

where φi and φj are the test and trial functions, respectively. The integrals
in (2.2.70) and (2.2.71) are computed using Gaussian quadrature with degree
of exactness twice as large as the degree of the polynomials used in the dis-
cretization of the displacement.
Once computed, strains can be stored as they are in anHDF5 �le format, with-
out loss of information. For visualization instead, strains are stored in an
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XDMF �le that keeps only vertex values. For this reason, during visualization
of strains they might look less smooth than they actually are.

2.2.4 Simulations performed

To test whether the code implementation was carried out correctly and to un-
derstandwhat level of approximation of the solution is needed, several exper-
iments are performed.

Cardiac cycle: the effect of spatial discretization

Concerning the anisotropic active stress mechanics, no known analytical so-
lution is available. We assess the accuracy of the solution numerically. Ac-
cording to (2.2.36), the accuracy of the solution can be improved by increas-
ing the order of the basis functions, if the exact solution is regular enough, or
by decreasing the size of the mesh elements. We try both strategies making
use of anisotropicmeshes in order to speed up computations andwe compare
the results with a very �ne isotropic mesh. In this analysis, beside the mesh
implemented in Sepran, three anisotropic meshes are considered: a coarse
mesh, MC; a medium mesh, MM; and a reference �ne mesh, MF. The four
meshes are shown in Figure 2.4. Three �nite elements spaces are used for the
spatial discretization of the problem. These spaces, de�ned in (2.2.35), share
the same family (Lagrangian) and differ by the degree of the polynomials:
linear (r=1), quadratic (r=2), and cubic (r=3). We use the combination of the
mesh label and the degree of polynomials used in the spatial discretization to
label a simulation. For instance, a cardiac cycle performed using the coarse
mesh, MC, with cubic basis functions (r=3) is labeled as MC3. An overview
of the combinations of mesh resolution and �nite element spaces used in the
following analyses is provided in Table 2.5.
As output of interestwe focuson transmural distributions of end-systolicGreen-
Lagrange strains using the end-diastolic con�guration as reference, since we
expect that this choice will lead to strains withmaximummagnitude. Eventu-
ally, we compare the same quantities of interest obtained with the mesh and
the �nite element space stemming from the previous analyses to the results
of the previous implementation.
A cardiac cycle simulation consist in the resolutionof theLVmechanics-circula-
tion coupled problem for every time step of the four phases determined by the
state of the valves. These four phases are: the passive �lling, the isovolumic
contraction, the ejection, and the isovolumic relaxation.
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analysis label
p-re�nement MC1 MC2 MC3
h-re�nement MC2 MM2 MF2

analysis label
comparison with Sepran MM2 Sepran

integration scheme for active stress FEdt2 RK4dt8

Table 2.5: Simulation labels for the fours analyses presented: p-re�nement, h-re�nement,
comparison with Sepran, and active stress discretization scheme. Note that the Sepran label
denotes a cardiac cycle performed with iso-parametric quadratic �nite elements and a mesh
with 108 hexahedral elements. For the integration scheme for active stress, scheme FEdt2 de-
notes the use of the Forward Euler scheme with time step of 2 ms and RK4dt8 denotes the use
of the explicit four stages Runge-Kutta schemewith time-step of 8 ms. In these last two cardiac
cycles, the combination MC2 is used.

The passive �lling is characterized by the open state of the mitral valve and
the close state of the aortic valve. During this phase, the small residual active
stress of the previous cardiac cycle vanishes completely and the LV is in�ated
by the blood �owing through the mitral valve. When the active stress level
in the myocardium start rising again, the LV cavity pressure increases deter-
mining the closure of the mitral valve when this pressure reaches the atrial
pressure. This moment is referred as the end diastole.

The isovolumic contraction takes place when both aortic and mitral valve are
closed and the active stress level is increasing. The contraction of the my-
ocardium determines a rapid increase of cavity pressure, since blood cannot
�ow.

When the cavity pressure reaches the aortic pressure, the aortic valve opens
allowing the blood to �ow through the aorta. This moment is referred as be-
gin ejection. With the aortic valve open, the LV ejects the blood and the cavity
pressure increases until the active stress reaches the maximum before start-
ing to decline. The ejection phase ends when the cavity pressure goes below
the aortic pressure again. This moment is referred as end systole or end ejec-
tion.

During the isovolumic relaxation, the active stress decreases and both the aor-
tic and the mitral valve are closed, thus preventing the blood from �owing
from and to the LV. The decrease of active stress determines a rapid decrease
of cavity pressure. When the cavity pressure falls below the atrial pressure,
the mitral valve opens and the passive �lling starts again.
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Convergenceof strains overp-re�nement Starting from amesh resolution
comparable to that employed by Bovendeerd et al [7] (108 hexahedral ele-
ments Figure 2.4a), where theprevious implementationof themodelwasused,
weperformedcardiac cycle simulationsusing threedifferent spatial discretiza-
tions where the displacement �eld is approximated by linear (r = 1, (2.2.37)),
quadratic (r = 2) and cubic (r = 3) basis functions. To generate themesh used
in this analysis, mesh MC, we started from the number of hexahedra of the
structured mesh of quadratic hexahedra generated by Sepran. We converted
a quadratic hexahedronwith 6 linear tetrahedra and we slightly increased the
number of circumferential elements in order to achieve a better geometrical
approximation of the ellipsoidal shape using linear tetrahedra. For this rea-
son the number of tetrahedra is larger than 6 times the number of hexahedra.
The mesh generated with this features has 12 elements in the circumferen-
tial direction, 5 elements in the longitudinal direction, and 3 elements in the
transmural direction. An additional cardiac cycle simulation is performed for
reference. This reference simulation involves the use of a �ne isotropic mesh
with element size of 2 mm, labeled as MF, and the de�nition of a �nite ele-
ment space with quadratic basis functions (r = 2 in (2.2.37)). Themeshes, MC
andMF, used in this analysis are shown in Figure 2.4b and Figure 2.4d, respec-
tively. Figure 2.4 also shows the original quadratic mesh used in the previous
Sepran implementation.
We assessed the six end-systolic strain components of the Green-Lagrange
strain tensor, following (2.2.69) and (2.2.68), in ellipsoidal coordinates using
the end-diastolic con�guration as reference. Each cardiac cycle simulation
consist in 400 time steps which involves the resolution of the coupled circula-
tion-mechanics problem.
The parameters used in all the simulations are the same employed in [7] and
are reported in Table 2.1, Table 2.2, Table 2.3, and Table 2.4.

Convergence of strains over h-re�nement We repeat the cardiac cycle ex-
periment by increasing the number of elements, while keeping the order and
family of �nite element employed �xed. Three meshes of linear tetrahedra
are considered: 2 anisotropicmeshes, MC (Figure 2.4b) andMM (Figure 2.4c);
and a very �ne isotropic mesh, MF (Figure 2.4d). The simulations were per-
formed using the same set of parameters, the same temporal discretization
and the end-systolic strains were computed as in the previous experiment.

Comparison against previous implementation Two simulations consist-
ing in 15 cardiac cycles are performed using the new BeatIT package and the
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(a) Sepran. (b)MC. (c)MM. (d)MF.

Figure2.4: Themeshes used in the veri�cation of the implementation. The �rst from the le� is
the mesh of quadratic hedahedra of the previous implementation in Sepran as used in [7] and
[17]. The second from the le�, MC (972 elements), has 12 circumferential, 5 longitudinal, and 3
transmural elements. The third from the le�, MM (5.472 elements) has 16 circumferential, 10
longitudinal, and 6 transmural elements. The last mesh from the le�, the reference isotropic
mesh MF (68.924 elements), has element size of 2 mm.

previous implementation in Sepran. We considered the last cycle of both sim-
ulations as thehemodynamical converged state andwecomputed end-systolic
Green-Lagrange strains using the end-diastolic con�guration as reference.
The strains are computed using the same approach as before using (2.2.68)
and (2.2.69), but along the basis vectors of the cylindrical coordinates: ~ec the
circumferential direction, ~ez the longitudinal direction (constantly along the
LV long-axis), and~er the radial direction. These vectors are de�ned as follows:

r =
√
x2 + y2, ϕ =


arctan (y/x) , if x > 0,

π + arctan (y/x) , if x < 0,
y

|y|
π

2
, if x = 0,

(2.2.72)

~ec =
r

|r|

 − sin(ϕ)
cos(ϕ)

0

 , ~ez =

 0
0
1

 , ~er =

 sin(ϕ)
cos(ϕ)

0

 . (2.2.73)

Cardiac cycle: integration scheme for active stress To compare the results
of the new BeatIT package with the previous Sepran package, we needed to
limit differences in the numerical implementation. However, an upgrade in
the discretization scheme of (2.2.32) might improve the stability and the ac-
curacy of the computations. In the previous implementation, the ordinary
differential equation for the time evolution of the contractile length lc used
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in the active stress model was discretized using a Forward-Euler scheme. Re-
calling (2.2.32), the scheme reads

ln+1
c = lnc + dt

[
Ea
(
ln+1
s − lnc

)
− 1
]
v0. (2.2.74)

Thismethod is linear, single-step, and has linear order of convergence. More-
over, is only conditionally asymptotically stable. In fact, when increasing the
time step over 2 ms the simulation fails at the beginning of the isovolumic
contraction, which is the beginning of the active stress generation. To over-
come this issue, different numerical schemes can be employed. Speci�cally,
a good candidate should be a high order method with a larger region of sta-
bility. Explicit Runge-Kutta methods [23] are nonlinear, single step methods
whose order of accuracy relates with the number of function evaluations of
the scheme. A fourth-order Runge-Kutta method requires the evaluation of
the function at four different stages

K1 =
[
Ea
(
ln+1
s − lnc

)
− 1
]
v0,

K2 =

[
Ea

(
ln+1
s −

(
lnc + dt

K1

2

))
− 1

]
v0,

K3 =

[
Ea

(
ln+1
s −

(
lnc + dt

K2

2

))
− 1

]
v0,

K4 =
[
Ea
(
ln+1
s − (lnc + dtK3)

)
− 1
]
v0,

ln+1
c = lnc +

dt

6
[K1 + 2K2 + 2K3 +K4] .

(2.2.75)

Theoretically, the resulting scheme has higher order of accuracy and larger
region of stability than the one previously implemented. Potentially, it should
allow to solve the problem with a larger time step, still preserving the ac-
curacy. For this reason, a comparison between the two schemes has been
carried out. Two cardiac cycle simulations have been performed using mesh
MC (Figure 2.4b) and quadratic basis functions. In one simulation, the same
scheme of the previous implementation (2.2.74) was adopted using a time step
of 2 ms (FEdt2). In another simulation, the Runge-Kutta scheme in (2.2.75)was
adopted using a time step of 8 ms (RK4dt8).

2.3 Results

The implementation of themodels presented in the previous section is tested
and validated in several experiments. The results are reported in this section.
First, only the circulation is tested and the results are compared with those
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obtained from a simulation using the previous implementation. Then, �ve
experiments for themechanics are presented. In the �rst experiment, the im-
plementation is validated against the theoretical solution in a simple test case
involving only the passive mechanics of an isotropic material. In the second
and third experiments, numerical tests to �nd the optimal values for themesh
resolution and the degree of the polynomial used in the spatial discretization
of the problem are carried out. A�er the comparison of the strains obtained
using the old and the new implementations, a new discretization technique
for the active stress model is tested against the one implemented in Sepran.

2.3.1 Convergence of strains over p-re�nement

The number of degrees of freedom for the four considered function spaces
are reported in Table 2.6 together with the computational times. The compu-
tational times refer to simulations run on a single core on a Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50GHz workstation.

Simulation
Quadrature
Degree Dofs

Matrix
Assembly

Linear
System Cardiac Cycle

MC1 2 972 0.005 s 0.02 s 1 min 41 s
MC2 2 4.863 0.07 s 0.07 s 5 min 40 s
MC3 4 15.366 0.45 s 0.55 s 35 min 30 s

MF2 2 311.214 5.55 s 48 s 29 h 34 min 16 s

Table 2.6

The four simulated cardiac cycles resulted in the pressure volume loops rep-
resented in Figure 2.5. Values for the cavity pressure and cavity volume for
MC1, MC2, MC3, and MF2 are shown in Table 2.7. Simulation MC1 led to an
ejection fraction of 57.4 % larger than those obtained forMC2 andMC3, 52.4 %
and 52.0 % respectively. The pressure-volume loops for simulations MC2 and
MC3 coincide. The reference simulation, MF2, presents a larger ejection frac-
tion, mostly due to the larger compliance. In this regard, Figure 2.5b shows
a detail of the pressure-volume relation during the passive �lling. It shows
that the compliance of the le� ventricular cavity increase with the number of
degrees of freedom. Figure 2.5b shows how the geometrical approximation
of the domain affects the determination of initial cavity volume, considering
that all the meshes are built starting from the same geometry. In fact, the
initial cavity volume for MF is exactly 44 mL while for MC is 40.5 mL. This er-
ror introduces a shi� in the pressure-volume diagram. Moreover, given the
same mesh MC, the compliance is affected by the interpolation order. Using
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linear interpolation results in a steeper curve while with quadratic and cubic
interpolation the two lines have very limited differences. Also mesh resolu-
tion affects the computation of cavity volume, since keeping r = 2 and using
MC and MF leads to slightly different curves even a�er compensating for the
error on the initial cavity volume.

MC1 MC2 MC3 MF2
Vc,0 41.32 mL 40.51 mL 40.51 mL 44.77 mL

Vc,ED 92.82 mL 99.00 mL 99.80 mL 108.3 mL

plv,max 16.87 kPa 16.21 kPa 16.15 kPa 17.31 kPa

Table 2.7: Convergence of strains over p-re�nement. Unloaded cavity volume, Vc,0, end-
diastolic cavity volume, Vc,ED, and peak cavity pressure, plv,max, for simulations MC1, MC2,
MC3, and MF2.

The transmural distributions of the six components of the end-systolic Green-
Lagrange strain tensor are shown in Figure 2.9. The strain components are
interpolated on a transmural line atmid-ventricle (z = −15 mm, 39 mm below
the base, having the LV a long-axis of 78 mm, shown in Figure 2.9). The av-
erage error with the reference along the line in 1-norm normalized using the
in�nity-norm (the maximum of the absolute value across the nodes) for each
strain component for the three cases is reported in Table 2.8.Ecc, Ell, and Ecl
in models MC1, MC2 and MC3 with the coarse mesh present little deviations
frommodel MF2 with the �ne mesh. For Ett, Ect and Elt, only MC2 and MC3
achieve a qualitative good prediction. Note in particular that the best pre-
diction is achieved for Ett with quadratic interpolation. Instead, for Ect and
for Elt, the improvement in the prediction when using cubic interpolation is
mostly due to a better �t in the sub-epicardial region.

MC1 MC2 MC3
Ecc 4 % 6 % 13 %

Ell 19 % 13 % 21 %

Ett 23 % 10 % 14 %

Ecl 19 % 16 % 20 %

Ect 47 % 16 % 9 %

Elt 24 % 14 % 8 %

Table 2.8: Convergence of strains over p-re�nement. Average 1-norm of the error with
MF2 along the transmural line normalized with the in�nity-norm in MF2: ‖Ecc‖∞ = 0.28,
‖Ell‖∞ = 0.23, ‖Ett‖∞ = 0.87, ‖Ecl‖∞ = 0.14, ‖Ect‖∞ = 0.37, ‖Elt‖∞ = 0.27.
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2.3.2 Convergence of strains over h-re�nement

The number of degrees of freedom for the three considered function spaces
are reported in Table 2.9 together with the computational times. The com-
putational times refer to simulations run in serial on a Intel(R) Core(TM) i7-
4710MQCPU@ 2.50GHzworkstation. In Figure 2.6 the pressure-volume loops

Simulation Dofs
Matrix

Assembly
Linear
System Cardiac Cycle

MC2 (Figure 2.4b) 4.863 0.07 s 0.07 s 5 min 40 s

MM2 (Figure 2.4c) 24.516 0.4 s 1.2 s 50 min 10 s

MF2 (Figure 2.4d) 311.214 5.55 s 48 s 29 h 34 min 16 s

Table 2.9: Problem sizes and computational times using the three listed meshes using
quadratic interpolation and quadrature with degree of exactness of 2.

of the three simulation are shown. All the three simulations achieved a sim-
ilar end-systolic cavity volume of about 46 mL. The main differences are in
the three end-diastolic cavity volumes: 99 mL, 105 mL, and 108 mL for MC2,
MM2, andMF2, respectively. This difference is larger than the error in the ini-
tial cavity volume induced by the discretization with linear tetrahedra. In fact
MC2 andMM2 have a reduced cavity volume of 41 mL and 43 mL compared to
the exact cavity volume of 44 mL. Values for cavity pressure and cavity volume
are shown in Table 2.10. The difference in cavity volumes increases during
the passive �lling, as an improvement in mesh resolution results in a more
compliant LV, as can be observed from Figure 2.6b. From the differences in
end-diastolic cavity volume also follow slightly different peak pressures, with
the coarsest mesh having the smallest (16.21 kPa) and the �nest mesh having
the largest peak pressure (17.31 kPa).

MC2 MM2 MF2
Vc,0 40.51 mL 43.06 mL 44.77 mL

Vc,ED 99.00 mL 105.2 mL 108.3 mL

plv,max 16.21 kPa 16.88 kPa 17.31 kPa

Table 2.10: Convergence of strains over h-re�nement. Unloaded cavity volume, Vc,0, end-
diastolic cavity volume, Vc,ED, and peak cavity pressure, plv,max, for simulations MC2, MM2,
and MF2.

Figure 2.10 shows the six independent components of the end-systolic Green-
Lagrange strain tensor. In all three cases, there is an agreement in the trans-
mural trend of the three lines. Among the two anisotropicmeshes, the results
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in MC2 are the furthest from the reference simulation, MF2. The average er-
ror with theMF2 along the line in 1-norm normalized using the in�nity-norm
for each strain component for the three cases is reported in Table 2.11. The
average 1-norm of the difference with MF2 for MC2 is at least twice as large
as that obtained usingMM2. Moreover, the prediction obtained using MM2 is
spatially more consistent with those obtained withMF2. In this respect, as an
example, in Figure 2.11 we show the transmural distribution of Ell, Ect, and
Elt near the base (z = 20 mm) and the apex (z = −35 mm). The transmural
trend of strains predicted in MM2matches best those obtained in MF2, while
MC2 has the largest offset. In fact, the average 1-norm errorwithMF2 forMC2
is about twice as large than that of MM2 for all the strain components along
all the three lines (see Table 2.10). The only exception isEtt at the apex, which
has similar error for MC2 (29 %) and MM2 (34 %) due to much lower values
assumed by Ett in MF2 at the epicardium (not shown).

base mid-ventricle apex
MC2 MM2 MC2 MM2 MC2 MM2

Ecc 7 % 2 % 6 % 1 % 4 % 1 %

Ell 53 % 4 % 13 % 3 % 9 % 1 %

Ett 12 % 4 % 10 % 5 % 29 % 34 %

Ecl 33 % 6 % 16 % 7 % 30 % 13 %

Ect 24 % 4 % 16 % 7 % 19 % 11 %

Elt 29 % 8 % 14 % 7 % 13 % 8 %

Table 2.11: Convergence of strains over h-re�nement. Average 1-norm of the error with MF2
along the basal, mid-ventricular, and apical transmural lines normalized with the in�nity-
norm inMF2: ‖Ecc‖∞ = 0.28, ‖Ell‖∞ = 0.23, ‖Ett‖∞ = 0.87, ‖Ecl‖∞ = 0.14, ‖Ect‖∞ = 0.37,
‖Elt‖∞ = 0.27.

2.3.3 Comparison against Sepran implementation

Figure 2.7a shows the pressure-volume diagrams of the last cycle of the two
simulations: Sepran andMM2. The sepran andBeatIT implementations yield-
ed end-diastolic cavity volumes of 101 mL and 98 mL, end-systolic cavity vol-
ume of 38 mL and 37 mL, and ejection fractions of 62 % and 63 %, respectively.
The BeatIT simulation achieved a converged end-diastolic cavity volume of
about 98 mL and an end-systolic cavity volume of about 37 mL, leading to an
ejection fraction of about 63%. The twomain differences reside in the slightly
higher peak pressure reached by the BeatIT implementation and the slightly
lower passive stiffness during the �lling phase of the Sepran implementation
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(Figure 2.7b).
In Figure 2.12 are shown the six independent end-systolic Green-Lagrange
strain components using the end-diastolic con�guration as reference. The
strains refer to the last cycle of both simulations where we reached a con-
verged hemodynamic state, thus limiting potential effects of different initial-
ization of the hemodynamics. Visually from Figure 2.12, the best agreement
is achieved for Ecc, Ezz, Err, and Ecz, while Ecr, Ezr present only a similar
transmural distribution but the two lines deviate from each other. ForEzr the
main difference occurs in the sub-endocardium, while for Ecr the deviation
between the two lines is larger. The average 1-norm of the difference of the
two lines is: 0.007 for Ecc, 0.009 for Ezz, 0.062 for Err, 0.013 for Ecz, 0.074 for
Ecr, 0.063 for Ezr. The same values normalized with the in�nity-norm of the
respective strain computed in MM2 are: 2.6 % for Ecc, 3.4 % for Ezz, 5.8 % for
Err, 12 % for Ecz, 26 % for Ecr, 21 % for Ezr.

2.3.4 Active stress time integration scheme

The active stressmodel relies on the solutionof anOrdinaryDifferential Equa-
tion (ODE) that describes the time evolution of the length of the contractile
element of the �ber model. In Sepran, this ODE is discretized using the �rst
order Forward Euler method. In BeatIT, we discretize the same ODE using a
four-stages explicit Runge-Kutta of order 4. The higher order of the Runge-
Kutta scheme allows to obtain the same accuracy with a larger discretization
step, thus leading to a performance improvement. The results in terms of
pressure-volume loop and in terms of end-systolic strains are shown in Fig-
ure 2.8 and Figure 2.13, respectively. From Figure 2.8 can be noticed that the
two curves overlap for most of the cycle with only a small deviation at begin
ejection, when the aortic valve opens. In terms of tissue deformation, instead,
no noticeable differences can be seen from Figure 2.13.
The use of the four-stages Runge-Kutta scheme allows a fourfold increase of
the time discretization step and preserves the accuracy of the predictions of
strains, thus allowing to achieve a speedup of about four times for a cardiac
cycle simulation.
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(a) (b)

Figure 2.5: Convergence of strains over p-re�nement. Pressure-volume diagram of the simu-
lated cardiac cycles. On the le� is shown pressure-volume loop of the full cardiac cycle while
on the right is shown the pressure-volume relation during passive �lling. The blue lines rep-
resents the simulation on mesh MC (Figure 2.4b) usign linear (dashed), quadratic (solid), and
cubic (dash-dotted) Lagrangian basis functions. The red line represents the simulation on the
isotropic reference mesh (Figure 2.4d).

(a) (b)

Figure 2.6: Convergence of strains over h-re�nement. Pressure-volume diagram of the simu-
lated cardiac cycles. On the le� is shown pressure-volume loop of the full cardiac cycle while
on the right is shown the pressure-volume relation during passive �lling. The blue lines rep-
resent the simulations onmeshMC (dashed, Figure 2.4b) (dashed) andMF (solid, Figure 2.4b).
The red solid line represents the simulation on the isotropic reference mesh (Figure 2.4d). All
the simulations were performed using quadratic interpolation.
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(a) (b)

Figure 2.7: Comparison against Sepran implementation. Pressure-volume diagram of the sim-
ulated cardiac cycles. On the le� is shown pressure-volume loop of the full cardiac cycle while
on the right is shown the pressure-volume relation during passive �lling. The blue line repre-
sents the simulation on mesh MM (Figure 2.4c) using af�ne �nite elements with quadratic La-
grangian basis functions on tetrahedra. The red solid line represent the simulation performed
in Sepran using the mesh in Figure 2.4a using isoparametric �nite elements with quadratic
interpolation on hexahedra.

Figure 2.8: Active stress time integration scheme. Pressure-volume diagram of the simulated
cardiac cycles. The blue dashed line represents the simulation onmeshMC (Figure 2.4c) using
quadratic Lagrangian basis functions for the spatial discretization and fourth-order explicit
Runge-Kutta discretization for the active stress model (2.2.32) (RK4dt8). The red solid line rep-
resents the simulation using the samemesh and same spatial discretization, but different tem-
poral discretization using the Forward-Euler scheme (FEdt2).
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2.4 Discussion

We developed a �nite element package using an open source library. The de-
velopment was relatively quick thanks to the python interface of the FEniCS
library. The BeatIT package has been conceived in a modular way so that the
coupled solver for the mechanics-circulation problem can be split in two de-
tached solvers or a bi-ventricular solver can be easily created by extending
the LV solver. The new package has several numerical tools made available
by PETSc [3], ranging from iterative solvers to many type of algebraic precon-
ditioners.
We assessed the outcome of the implementation using the analytical solution
available for a simpli�ed test case and results coming from the previous im-
plementation. We also assessed numerically the quality of the prediction of
strains by varying the order of the �nite element space and the mesh resolu-
tion.
Wevalidated thenew implementationusing ananalytical solution for theprob-
lem of passive �lling of a thick-walled isotropic sphere. The analytical and the
numerical solutions are in excellent agreement (see 2.B). This result validates
the implementation of the passive isotropic mechanics. Instead, no theoreti-
cal validation is possible for the anisotropic activemechanics. In this respect,
we resort to numerical assessments and comparison with previous results.
The actual phenomenon that wewant to simulate includes the coupling of the
mechanicswith the circulationmodel. Thanks to themodularity of the BeatIT
implementation, the circulation model could be detached from the coupled
solver and could be tested aside. The hemodynamics of the circulationmodel
shows an excellent agreement Figure 2.14. In fact, by inserting cavity pres-
sure and cavity volume coming from the mechanics simulated in Sepran and
comparing the resulting hemodynamics in the two implementations, no dif-
ferences emerged.
To assess the quality of predictions and to prove some sort of numerical con-
vergenceof the solution,we checked the in�uenceof numerical discretization
on transmural distribution of end-systolic Green-Lagrange strains. Since no
analytical solution is available for the problem, we generated a numerical so-
lution approaching the limit of our computational capabilities. This approx-
imation relies on quadratic �nite elements and the isotropic mesh MF (Fig-
ure 2.4d). The goal was to �nd the optimum balance between the accuracy of
the predicted strains and the computational cost of a cardiac cycle. We �rst
analyzed the order of the �nite elements basis functions starting from amesh
comparable with that used in Sepran (Figure 2.4a). This analysis showed that
quadratic �nite elements led to a reduction of 31 % of the largest strain error
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with a fourfold increase of the computational cost as compared to linear ele-
ments. Increasing further the order of polynomials to three only decreased
the strain error of about 7 % for twoout of six strain components, with a seven-
fold increase of the computational cost. Therefore, we found an optimal bal-
ance between geometrical approximation and functional approximation by
discretizing the problem using quadratic continuous Lagrangian basis func-
tions (Figure 2.9). This is because, keeping �xed the number of degrees of
freedom, in an af�ne �nite element approach the geometrical approximation
of curved domains is larger with higher order �nite elements. This geometri-
cal approximation error affects the computation of the cavity volume and con-
sequently also the steady state solution of the coupled circulation-mechanics
problem. On the other hand, the quality of prediction of strains with linear
�nite elements is rather poor, especially for Ett, Ect, and Elt (Figure 2.10).
We then tuned the mesh resolution keeping the same �nite element space.
Using the resulting quadratic continuous Lagrangian�nite elements, we qual-
itatively checked the transmural distribution of end-systolic strains at base,
mid-ventricle, and apex when re�ning the mesh. We found a deviation be-
tweenMM2 andMF2 of less than 8 % at basal andmid-ventricular level for all
the strain components and a deviation of less than 13 % at apex for �ve out of
six strain components, with the only exception Ett deviating by 35 %. The de-
viation between MC2 and MF2 is at least twofold larger than that of MM2 for
all the strains and all the three locations except for Ett at apex which is com-
parable. The strains obtained using the anisotropicmeshMMare comparable
with those predicted using our reference isotropic meshMF (Figure 2.10), but
the computational cost of using mesh MM is much smaller (about 36 times).
Beside the results shown in this document, we also tested othermeshes in the
neighborhood of the resolution of mesh MM and we did not �nd fundamen-
tal variations. We concluded that, even though mesh MM is computationally
not the cheapest mesh among those considered, it gives robust estimations
in view of the mesh morphing operation that will be considered in the model
personalization process.
We compared the end-systolic Green-Lagrange predicted by the BeatIT pack-
age with a dataset of strain predicted by Sepran. The dataset included strains
in cylindrical coordinates. We found a deviation of less than 6 %, which we
consider very good, for the normal strains. While a larger deviation is found
for shear strains, with the largest difference for Ecr (26 %). There might be
several reasons behind this deviation. We investigated four possible causes.
Although the models implemented in BeatIT show numerical convergence,
theremight be implementation issues that hinder the adherence to themath-
ematical model. We do not know whether this error resides in the new or in
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the old implementation. The only non validated parts are the anisotropic me-
chanics and the active stress implementations. First, concerning anisotropic
mechanics, we compared nodal values of �ber orientation with those gen-
erated by previous implementation revealing no meaningful differences (the
magnitude of the maximum difference was below 0.01 %). Moreover, �bers
are de�ned differently in the two implementations: in Sepran, the �ber vec-
tor is de�ned at quadrature node; in BeatIT, it is de�ned at mesh nodes and
then interpolated on quadrature nodes. In BeatIT, the two approaches were
compared and no meaningful differences emerged (not shown in this docu-
ment). Second, we realized that the active stress model is rather sensitive to
its numerical implementation. For instance, the peak pressure is affected by
themesh resolution and by the choice of �nite elements. Although the differ-
ences in ejection fraction are quite limited (about 1.5 %), this differencemight
be induced by a deviation of the spatial distribution of the active stress, thus
leading to a difference in the prediction of strains. We could not assess the ef-
fects on the active stress generation of mesh re�nement in Sepran, since im-
plementation issues prevented the generation of �ner meshes, especially in
the longitudinal direction. Instead, from the BeatIT side, we assessed numer-
ically the quality of strain predictions and we found good agreement with our
reference solution. Third, in the comparison other implementation details
might have played a role in determining the differences emerged. In particu-
lar, the computation of cavity volume and the computation of strainswere car-
ried out differently. In the Sepran package, the cavity was meshed extruding
endocardial surface element into tetrahedra having the vertex in the center
of the basal plane. In the BeatIT package this method is substituted with for-
mula (2.2.60), which is easier to implement and independent from the prob-
lem discretization. The two methods have a different approximation error
thatmight affect the pressure-volume loops. This differencemightmodify the
steady state equilibrium of the circulation-mechanics coupled problem, thus
leading to comparison at end-systolic con�gurations having slightly different
cavity pressures. Fourth, in the new implementation strains are computed by
projecting the strain expression onto the same �nite element space used to
compute the displacement �eld (coherently made scalar). In the previous im-
plementation, the nodal values of the deformation gradient were multiplied
accordingly with the nodal values of the basis vectors of the coordinates sys-
tem to compute the node-wise expression of the strains. In this respect, it is
curious that this issue would mainly affect Ecr and Ezr. For the sake of time,
we did not investigate further into these differences. Instead, we accepted the
new implementation to be a good numerical approximation of the problem.
Given the good qualitative agreement between the results obtained with the
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two implementations, we consider the new implementation mature enough
to be employed in this research project.
Performance-wise, the two implementations are similar. Whenusing themesh
generated in Sepran (Figure 2.4a) andMC2 (Figure 2.4b), both the implementa-
tions achieved a cardiac cycle in approximately 5 min, although in the BeatIT
simulation the number of degrees of freedom was larger (3213 for Sepran,
4.863 for BeatIT). We could not compare the performances with �ner meshes
with the previous implementation, because of implementation issues in the
Sepran model that prevented the simulation from running.
Performance can be further improved by using the fourth order Runge-Kutta
scheme for the discretization of the ordinary differential equation involved in
the active stress formulation (2.2.32). This scheme is of fourth order, mean-
ing that with the same time step the approximation error is proportional to
the fourth power of the time step, thus leading to a much smaller approx-
imation error as compared to the �rst order Forward-Euler implemented in
Sepran. For this reason and because of the larger stability region of the fourth
order Runge-Kutta scheme, increasing the time step of the problem allows to
preserve the accuracy of the solution. As opposed to Sepran, where larger
time steps led to divergence, this scheme allowed the increase of the time
step from 2 ms to 8 ms obtaining the same strain prediction (Figure 2.13), thus
impacting the overall simulation time by a factor of 4. A downside of this
approach occurs at the aortic valve opening where a small deviation in the
pressure volume loop can be noticed (Figure 2.8), due to the larger time step.
Weonly tested the four-stages Runge-Kutta schemewith homogeneous activa-
tion. It is still to be proven whether a larger time discretization step could be
used when considering asynchronous activation. As a future improvement,
an adaptive approach for the selection of the time discretization step should
be considered.
The simulation of a cardiac cycle using mesh MM and quadratic Lagrangian
basis functions takes approximately 50 min. We tried to improve the perfor-
mances by using parallel computing. The time employed in the stiffness ma-
trix assembly scaled linearly with the number of cores, but the time required
for the resolution of the linear system did not scale as nicely. In fact, the
MUMPS direct solver in parallel worsened the performance, most likely due
to the communication overhead involved in the multiplicative matrix decom-
position performed in parallel. Nonetheless, the MUMPS direct solver re-
sulted to be the fastest solver available in PETSc through from the FEniCS
interface. We also tried to use iterative solvers. None of the combinations
of available iterative solvers/algebraic preconditioners converged to a solu-
tion, with the exception of the combination of a biconjugate gradient stabi-
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lized method combined with the Hypre BoomerAMG preconditioner (paral-
lel multi-grid factorization) [18]. This combination applied to the reference
problem (isotropic meshMFwith 68.924 elements, 311.214 dofs, quadratic La-
grangian basis functions), where the advantages of using an iterative solver
should bemore evident, led to the resolution of the linear system in 90 s using
4 core, which is still 50% slower thanMUMPS on a single core. To understand
this behavior, we estimated the condition number of the stiffness matrix us-
ing a singular value decomposition on a coarser isotropic mesh and we real-
ized that the condition number of the matrix is very high, thus affecting the
number of iterations needed by an iterative solver to converge. The reasons
behind this behavior are beyond the scope of this thesis; however, we name
some possible causes to be addressed in the future. The tissue stiffness along
�ber direction largely varies in time, due to the activation of myocyctes, and
in space, due to the spatially varying �ber distribution. This large variability
might affect the overall condition number of the stiffness matrix. The combi-
nation of strong anisotropy and nearly-incompressibility might as well affect
the condition number of the problem [13]. In this regard, the use of an active
strain based model [25, 1, 4] might alleviate the issue, since it allows to intro-
duce incompressible active deformations during the activation of myocytes.
Lastly, also the choice of the boundary conditions might affect the problem.
Especially the stress-free condition at epicardium.

2.5 Conclusion

We successfully implemented the new BeatIT package for the �nite element
approximation of the mechanics of the LV. The package relies on the python
interface of the FEniCS library and high performances are granted by its C++
back-end. Thanks to the interface between PETSc and FEniCS, distributed
linear algebra is available, thus enabling parallel computing. However, at the
current stage of themodel parallel computing does not improve performance.
In general, the new implementation is more robust with respect to the choice
of the compiler and relies on open source compilers. The new implementa-
tion is alsomore robust in the sense that runs simulation that failed in the pre-
vious implementations. This robustness allowed to perform several numer-
ical assessments on the implementation. From those assessments, we rec-
ommend the use of an anisotropic mesh with 16 circumferential elements, 10
longitudinal elements, and 6 transmural elements and the use of continuous
quadratic Lagrangian �nite elements for the approximation of the displace-
ment. Using this discretization the computational time for a cardiac cycle is
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about 50 min and error in strains is typically below 8 %. The use of the explicit
Runge-Kutta scheme for the ODE of the active stressmodel allows to speed up
computations by a factor of 4.

Appendix

2.A Detached circulation simulation

The close loop circulation model presented in 2.2.3 has already been tested
using the previous implementation. We need to assess that the results of the
new implementation match with the previous one. To do so, we coupled the
new implementation of the circulation model with the LV cavity volume and
cavity pressure of a reference simulation performed with the previous im-
plementation. In Sepran, we performed several cardiac cycles allowing to
achieve an hemodynamical steady state of the solution. From this solution,
the LV pressure and the cavity volume were extracted and introduced as in-
put in a simulation of the circulation using the new implementation of the
circulation model. We then compared the two results in terms of arterial and
venous pressures and arterial, venous, and peripheral �ows.
The comparison of aortic and venous pressures, and aortic, venous and pe-
ripheral �ows are reported in Figure 2.14. The two results match very well
with amaximumrelative error onbothpressures and�owsof 5× 10−3,mostly
due to discrepancies at valves change of state, where the curves tend to be
steeper.
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(a) (b)

(c) (d)

Figure 2.14: Comparison of pressures and �ows of the circulationmodel using the new BeatIT
implementation and the old Sepran implementation.

2.B In�ation of a thick-walled sphere

We assess the correct implementation of the isotropic passive mechanics by
testing the result of a simulation performed with the new BeatIT package
against the analytical solution of the in�ation of a thick-walled sphere. To
test our implementation of the mechanics, we check the numerical solution
of the in�ation of a sphere against the known analytical solution (see 5.2.2 in
[21]).

The problem is the following. Given a sphere in spherical polar coordinates:

A ≤ R ≤ B, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π, (2.B.1)
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under the following deformation

r =
(
R3 + a3 −A3

)1/3
= Rf(R), with f(R) =

(
1 +

a3 −A3

R3

)1/3

= λ

(2.B.2)

θ = Θ, (2.B.3)
φ = Φ, (2.B.4)

where a is the inner radius of the deformed con�guration, with deformation
gradient

F =
(
f(R) +Rf ′(R)

)
~er ⊗ ~ER + f(R)

(
~eθ ⊗ ~EΘ + ~eφ ⊗ ~EΦ

)
(2.B.5)

=
1

f(R)2
~er ⊗ ~ER + f(R)

(
~eθ ⊗ ~EΘ + ~eφ ⊗ ~EΦ

)
, (2.B.6)

=
1

λ2
~er ⊗ ~ER + λ

(
~eθ ⊗ ~EΘ + ~eφ ⊗ ~EΦ

)
, (2.B.7)

where ~er, ~eθ, ~eφ are the basis vectors of the spheroidal polar coordinates, ~ER,
~EΘ, ~EΦ the dual basis. The deformation is isochoric with principal stretches
λ1 = f(R)−2 = λ−2, λ2 = λ3 = f(R) = λ. Following [21], assuming a stress
free boundary condition on the outer surface, the load acting on the inner
wall can be obtained

p =

∫ λb

λa

dW(λ)
dλ

λ3 − 1
dλ, (2.B.8)

where λa = a/A and λb = b/B are the radial stretch at the two boundaries,
andW (λ) is the strain energy function de�ned in (2.2.24) in which Q and E
are rewritten in terms of λ (the volumetric energy term in (2.2.26) is null since
the deformation is isochoric).
We simulated the in�ation of a quarter of sphere with inner radiusA = 3 mm
and outer radius B = 5 mm. The sphere is modeled as an isotropic material
described by the strain energy (2.2.27) with a3 = 0. A mesh of linear tetra-
hedra of about 18.000 nodes approximates the domain on which a �nite ele-
ment space with quadratic basis functions is generated, resulting in∼ 50.000
dofs. The sphere is loaded on the inner surface with pressure increments un-
til reaching 5 kPa and the cavity (Vc), and thewall (Vw) volumes are computed.
From the volume the radial stretches on the surfaces can be computed

λa = 3

√
Vc

4
3πA

3
, λb = 3

√
Vc + Vw

4
3πB

3
. (2.B.9)
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Figure 2.15: Volume ratio Vc over Vw as function of the load. The blue solid line represents the
analytical solution and the red triangles represents the simulated solution.

For a given load, λa and λb are computed from the simulated Vc and Vw and
are fed into the integral in (2.B.8), which is solved numerically in Matlab. The
stretch/load combination of the analytical and simulated solutions are shown
in Figure 2.15. The simulation took 7.5 min on a workstation with Intel core
i7-4710MQ running on one core. 40 load increments were set and on average
3 iterations of the Newton-Raphson algorithm were needed to achieve an ab-
solute tolerance of 5× 10−7 on the residual. Each Newton step required the
assembly of a Jacobian matrix (0.82s) and the resolution of a linear system
(2.9 s using the LU decomposition implemented in MUMPS [? ]).
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Abstract

Personalized cardiac medicine aims at assisting clinicians with model based
interpretation of the patient’s data, observed in the clinic. Since model in-
put data are affected by errors and uncertainty, it is important to assess the
sensitivity of model output to its input. In this work we use a Finite Element
model of le� ventricular (LV)mechanics to assess the sensitivity of LV end sys-
tolic wall strains to geometry. Six principal shape modes, extracted from an
atlas of LV geometries using principal component analysis, have been used
to model the variability of the geometry of a population of 300 asymptomatic
volunteers. Green-Lagrange strains during ejection were expressed with re-
spect to the local circumferential (c), longitudinal (l) and transmural (t) di-
rection. We observed that shape mode 1 (related to variation in size within
the population) must be personalized for an accurate prediction of the nor-
mal strains Ecc, Ett, and the shear strain Ect. For the prediction of Ell, Ecl,
and Elt also shape modes 2 and 3 (related to the basal diameter and its orien-
tation in the anteroseptal-inferolateral direction, and the basal orientation in
the inferoseptal-anterolateral direction)must be included in the geometry de-
scription. Shape modes 4, 5, and 6 can be considered non in�uential. Finally,
no meaningful interaction between the shape modes emerged.

The contents of this chapter are based on: Barbarotta, L. and Bovendeerd, P.,
2019, June. A computational approach on sensitivity of le� ventricular wall
strains to geometry. In International Conference on Functional Imaging and
Modeling of the Heart (pp. 240-248). Springer, Cham.
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3.1 Introduction

Decisionmaking in the clinic relies on the availability of relevant patient data.
Indiagnosis and treatment of cardiac disease, suchdata ideally should contain
spatial maps of for example contractility, tissue stiffness and electrical activa-
tion time. However, direct measurement of such quantities may be impossi-
ble, or limited due to the invasiveness of the measurement technique. There-
fore, these quantities should bederived from information that canbe assessed
in the patient. Personalized cardiacmedicine aims at assisting clinicians with
model based interpretation of the patient’s data, observed in the clinic. In the
last decades, several attempts were made to try estimating patient speci�c
cardiac tissue properties such as contractility [9, 18, 27, 28, 29]. Recently, a
variational approach has been used to perform high resolution data assimila-
tion on strains computed from 4D echocardiographic measurements to esti-
mate tissue properties in-vivo [3, 12]. These studies included in their analyses
patient speci�c le� ventricular (LV) [3, 12, 27, 28, 29] or bi-ventricular [9, 18]
geometries. The application of this methodology to inversely represents the
patient’s data inside the model is typically affected by errors and uncertainty.
It is therefore important to assess the sensitivity ofmodel output to its input to
understand whether a pathology can be observed regardless the uncertainty
propagated from the input. Geometry is typically a parameter of mathemat-
ical models of the heart and it is possible to reconstruct the patient’s geome-
try non invasively. However, besides being affected by geometrical approxi-
mations, such as exclusions of the papillary muscles and trabeculae, patient
speci�c geometries are also affected by measurement and reconstruction er-
rors. Furthermore, the generation of a patient speci�c mesh, required for a
simulation of the cardiac mechanics, is a complex operation which is time
consuming and dif�cult to automatize. Finally, the geometry obtained clin-
ically does not represent the unloaded state of the patient’s heart, and ad-
ditional steps need to be taken to estimate the unloaded geometry, needed
in �nite element computations. For these reasons it is important to quantify
the effects that such assumptions on the description of a personalized geom-
etry introduce. In this work we use simulations of LVmechanics to assess the
global sensitivity of 3D end-systolic strain distributions on realistic variations
inmodel geometry based on human data from the Cardiac Atlas Project (CAP,
http://www.cardiacatlas.org [13]).
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s1 s2 s3 s4 s5 s6

+3SD

−3SD

Figure 3.1: Surface representation of the shape modes.From le� to right, geometric variation
due to shapemodes s1 through s6 is demonstrated by adding them to the average geometry by
an amount of +3SD (top row) and −3SD (bottom row). We may interpret the shape modes
in the following way: mode 1 describes the variation of the size, mode 2 describes how the
base diameter varies together with its orientation in the anteroseptal-inferolateral direction,
mode 3 describes the basal plane orientation in the inferoseptal-anterolateral direction, mode
4 the conicity, mode 5 describes the asymmetry between the wall thickness at septum and that
at the lateral side, and mode 6 describes how the length varies together with its basal plane
orientation in the septal-lateral direction.

3.2 Material andmethods

3.2.1 Geometry

We obtained geometric data from the CAP, in particular shape models from
300 asymptomatic volunteers derived from images from theMulti Ethnic Study
of Atherosclerosis (MESA) [5]. Zhang et al [30] and Medrano-Gracia et al [20]
applied Principal Component Analysis (PCA) to those shape models, to sum-
marize the geometrical complexity using only few shape modes in order to
study the shape variation within the human population and the remodeling
following a myocardial infarction. From their PCA on a population of asymp-
tomatic volunteers, six end-diastolic shapemodes explaining about 80% of the
population variability weremade freely available by CAP. The data include in-
formation about epicardial and endocardial surface meshes. The surfaces of
the six shape modes at ±3SD from the average are shown in Figure 3.1. The
SD of the shape modes is reported in Table 3.1. Interpretation of the modes
is not straightforward, since they are given in terms of non trivial three di-
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mensional vector �elds. Nonetheless, an interpretation is given in Figure 3.1.
We used these data to generate representative geometries, de�ned by combi-
nations of shapemodes. We interpolated the associated end-diastolic surface
meshes onto the surfaces of an idealized le� ventricular template mesh, a�er
aligning the two basal planes. Then, using the transmural coordinate, numer-
ically integrated from the ellipsoidal coordinates de�ning the templatemesh,
the internal nodes of the mesh were moved in order to obtain transmurally
even elements. By using this method, we were able to generate high quality
meshes for arbitrary end-diastolic con�gurations. The deformation gradient
of the geometric mapping from the templatemesh to the deformedmesh was
used to reorient the vector �elds de�ned over the template mesh to the end-
diastolic con�guration. In particular the end-diastolic �ber orientation is ob-
tained as follows

~ef,ED =
FT→ED~ef,T
‖FT→ED~ef,T ‖2,

(3.2.1)

where ~ef,T is the �ber orientation of the template geometry and FT→ED is
the deformation gradient of the geometric mapping. Note that this operation
preserve the tangentiality of �bers on the surfaces. An example of mesh and
�ber �eld generated using this technique can be seen in Figure 3.2.

SD1 SD2 SD3 SD4 SD5 SD6

0.7967 0.4597 0.3443 0.3007 0.2512 0.2429

Table 3.1: Standard deviations of the shape modes.

3.2.2 Material properties

We simulated LV mechanics using the model by Bovendeerd et al [6]. Brie�y,
the myocardium is described as an hyperelastic �ber-reinforced transversely
isotropic active stress material. The Cauchy stress tensor σ thus reads

σ = σp + σa~ef ⊗ ~ef . (3.2.2)

The active stress σa is adopted from Bovendeerd et al [12]. It depends on sar-
comere and contractile element lengths, time elapsed since activation (as-
sumed to be simultaneous throughout the ventricle) and sarcomere shorten-
ing velocity, and acts along the current �ber direction ~ef (see 2.2.1 for details).
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The passive stress σp is derived from a strain energy density function as fol-
lows

σp =
1

det(F )
F
∂W
∂E

F T , (3.2.3)

where W is composed of a term Wshape, describing response to change in
shape, and a termWvolume, representing near incompressibility:

W =Wshape +Wvolume, (3.2.4)

Wshape = a0 (expQ− 1) , (3.2.5)

Q = a1I2
1 + 2a2I2 + a3I2

4,f, (3.2.6)

Wvolume = 4k
(
J2 − 1− 2 lnJ

)
, (3.2.7)

where I{1,2} are the invariants of the Green-Lagrange tensor E, I4,f is the
pseudo-invariant of E introducing the anisotropy along myo�bers, J is the
determinant of the deformation gradient F , and a{0,1,2,3} and k are a consti-
tutive parameters. Note thatWvolume was modi�ed from Bovendeerd et al [6]
according to Simo et al [? ] to comply with assumptions of positivity, convex-
ity, and unboundedness at both zero and in�nity. The values of the consti-
tutive parameters are given in Table 2.2. The orientation of �bers inside the
myocardium is described by the helix angle and the transverse angle, describ-
ing the base-to-apex component and the endocardium-to-epicardium compo-
nent of the �ber vector, respectively. These angles were speci�ed by high or-
der Legendre polynomials of normalized transmural and longitudinal coordi-
nates [6]. In Bovendeerd et al [6] the model has been evaluated against exper-
imental strains measured using MRI tagging on three healthy volunteers.

3.2.3 Computation of le� ventricular wall mechanics

Le� ventricular wall mechanics was computed by solving for equilibrium be-
tween forces related to active stress, passive stress and cavity pressure:

Div (P (F )) = ~0 in Ω0,

P~n0 = −pJF−T~n0 on Γ0,Endo,

P~n0 = ~0 on Γ0,Epi,

~u · ~n0 = 0 on Γ0,Base,

ux = 0 on {Γ0,Base ∩ Γ0,Endo ∩ {x = 0}},
uy = 0 on {Γ0,Base ∩ Γ0,Endo ∩ {y = 0}},

(3.2.8)
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where P is the �rst Piola-Kirchhoff stress tensor; F is the deformation gra-
dient; and ∂Ω0 = Γ0,Base ∪ Γ0,Endo ∪ Γ0,Epi represents the decomposition of
the unloaded boundary in basal, endocardial and epicardial surfaces, respec-
tively; and ~n0 is the normal vector de�ned over those surfaces. Note that in
(3.2.8) ~n0 at base is parallel to ~ez, and that we suppressed rotations around ~ez
by blocking circumferential displacements of nodes within the intersection
of the endocardial basal ring and those on the x and y axes.
We did not couple our LV model to the closed circulation model described in
Bovendeerd et al [6]. Instead, we let the heart �ll until a �xed preload of 1.5
kPa was reached. From this end-diastolic state, we then simulated the isovo-
lumic contraction phase by initiating active stress development and comput-
ing the increase of cavity pressure while keeping cavity volume constant. As
soon as cavity pressure reached a preset a�erload pressure of 12 kPa, we let
the heart eject against this constant pressure until it reached the end-systolic
state, de�ned as the state of minimum cavity volume. From the simulations,
end-systolic strains with respect to the end-diastolic con�guration were com-
puted using the Green-Lagrange strain tensor along the wall-bound basis vec-
tors in circumferential (~ec), longitudinal (~el), and transmural (~et) directions.

3.2.4 Computation of the unloaded con�guration

To perform a �nite element simulation of LVmechanics we need to recover a
virtually unloaded con�guration from the loaded end-diastolic con�guration,
provided in the atlas. In order to estimate this unloaded con�guration, we
de�ated the end-diastolic con�guration using a standard approach based on
the concept of Inverse Design [15]. This method relies on the solution of the
momentum balance equation in the deformed con�guration Ω as follows

div (σ (F )) = ~0 in Ω,

σ~n · ~n = −p on ΓEndo,

σ~n = ~0 on ΓEpi,

(3.2.9)

and the same kinematic boundary conditions of (3.2.8). The sought solution
is the displacement from Ω to the virtually stress free con�guration Ω0

~x0 (~x) = ~x− ~u (~x) , (3.2.10)

F (~x0) =
∂~x

∂~x0
(~x0) . (3.2.11)

SinceΩ0 and itsmetric are unknown, the derivatives involved in the de�nition
of F cannot be computed. However, the problem can be circumvented by
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using the spatial deformation gradient f , de�ned as

f (~x) =

(
I − ∂~u (~x)

∂~x

)
=

(
I +

∂~u (~x0)

∂~x0

)−1
∣∣∣∣∣
~x0=~x−~u

= F−1 (~x) . (3.2.12)

Consequently the Cauchy stress tensor reads

σ (F ) = σ
(
f−1

)
=

f−1

det (f−1)

∂W
∂E

∣∣∣∣
F=f−1

f−T , (3.2.13)

where we assumed that no residual active stress σa is present during diastole.
To solve (3.2.9), an end-diastolic pressure load p is needed. Since the pressure
is unknown, we increment the pressure load until the unloaded con�gura-
tion reaches an estimated unstressed cavity volume. We assumed that under
normal circumstances this volume Vc,0 would be equal to Vc,ES, the volume at
end ejection. In turn, this volumewas estimated from the end-diastolic cavity
volume by assuming a physiological ejection fraction (EF) of 60%

Vc,0 ≈ Vc,ES = (100− EF )Vc,ED. (3.2.14)

Note that the solution of (3.2.9) modi�es the domain on which the �bers are
de�ned and affects their orientation. Therefore, �ber orientation in the un-
loaded state ~ef,0 is de�ned as a function of f and ~ef,ED as follows

~ef,0 =
f~ef,ED
‖f~ef,ED‖2.

(3.2.15)

3.2.5 Finite element implementation

We implemented our Finite Element model in a python package based on the
FEniCS library (fenicsproject.org, [1]). The spatial discretization of the prob-
lem was studied in order to achieve an accurate prediction of strains at an
affordable computational cost. In this respect, we use a sub-parametric �-
nite element approach where the geometry is discretized using linear tetra-
hedra on top of which the solution is discretized using continuous piece-wise
quadratic Lagrangian polynomials. The spatial discretization resulted in 5760
elements and 24519 degrees of freedom. The nonlinear problem was solved
using the Newton-Raphson algorithm and the resulting linear systems were
solved using the LU decomposition implemented in the MUMPS library [2].
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(a) (b) (c)

Figure 3.2: View of meshes and �bers for the template geometry (le�), and the end-diastolic
con�guration (middle) and the reconstructed unloaded geometry (right) of the average geom-
etry.

3.2.6 Sensitivity analysis approach

In our sensitivity study we emply the Elementary Effects method [25]. It is a
global sensitivity analysis method that was �rst presented by Morris [21] as
a screening method and later improved by Campolongo et al [7]. It is a non-
intrusive method that has been applied in the cardiovascular �eld [16, 11]. It
allows to compute sensitivity indices of the strain distributions without re-
quiring the use of meta-modeling techniques.
For the sensitivity analysis we considered the 6 shape modes si (i = 1, ..., 6).
We varied each mode over a range of 1 SD around the mean. We built a struc-
tured grid with a p nodes resolution along each mode direction in the param-
eter space yielding p6 shape mode combinations. Using an optimized sam-
pling strategy we generated r trajectories with a maximum spread [7], vis-
iting a total of M different shape mode combinations. Each trajectory vis-
its a set of 7 shape mode combination (~sj1 , ~sj2 , ~sj3 , ~sj4 , ~sj5 , ~sj6 , ~sj7) that allows
the computation of an elementary effect along every shape mode direction i
(~sji+1 = ~sji+∆i~ei, for i = 1, ..., 6). A shapemode combination~sj = (sj1, . . . , s

j
6)

univocally determines a geometry as follows

~gj(~x) = ~gavg(~x) +

6∑
i=1

sji ~vi(~x), (3.2.16)

where the ~vi(~x) are the eigenvectors stemming from the PCA, and ~gavg(~x) is
the average geometry of the atlas. As output we considered all six end-systolic
Green-Lagrange strain components Eαβ, referred to the state at end diastole,
where α and β are in {c, l, t}.
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Per strain component Eαβ and per node ~xi, we computed the coef�cient of
variation (CV), de�nedas the standarddeviationof the strain component com-
puted over all the simulated geometries normalized with respect of the norm
of the average respective strain.

Eavgαβ (~xi) =
1

M

M∑
j=1

Eαβ
(
~xi, ~s

j
)
, (3.2.17)

CV avg
Eαβ

(~xi) =

√
1

M−1

∑M
j=1

(
Eαβ (~xi, ~sj)− Eavgαβ (~xi)

)2

‖Eavgαβ (x) ‖∞
, (3.2.18)

where i = 1, ..., N ,N is the number of nodes used in the discretization of the
�nite element LV model, and ‖Eavgαβ (x) ‖∞ is the `∞ norm over all the N LV
nodes ~xi. To analyze the contribution of each shape mode to the CV, we �rst
assessed the elementary effects EEi. For a speci�c point in the parameter
space~s = (s1, . . . , s6),EEi,αβ gives an estimation of the effect that a geometric
perturbation through a change in a shape mode si by an amount ∆i has on a
strain component Eαβ:

EEi,αβ (~xj , ~s) =
Eαβ (~xj , ~s+ ∆i~ei)− Eαβ (~xj , ~s)

∆∗
, (3.2.19)

∆∗ =
p

2 (p− 1)
, (3.2.20)

∆i = 2∆∗SDi, (3.2.21)

where j = 1, ..., N , ~ei is the i-th vector of the standard orthogonal basis of
the six dimensional parameter space, p is the grid resolution of the param-
eter space, and the values of the standard deviations SDi are given in Ta-
ble 3.1. The use of two different ∆ (3.2.20) and (3.2.21) is dictated by the need
to guarantee an appropriate adimensional uniform sampling in the image of
the assumed probability distribution of each shape mode (∆∗ ∈ (0, 1)) and to
transform this node sampling in the considered range for each shape mode
(∆i ∈ [−SDi,+SDi]) according to the choice of the probability distribution.

Elementary effects EE were computed for all six end-systolic strain compo-
nents. By collecting all the elementary effects over the trajectories, three sen-
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sitivity indices were computed as follows:

µi,αβ (~xk) =
1

r

r∑
j=1

EEji,αβ
(
~xk, ~s

ji
)
, (3.2.22)

µ∗i,αβ (~xk) =
1

r

r∑
j=1

|EEji,αβ
(
~xk, ~s

ji
)
|, (3.2.23)

σi,αβ (~xk) =

√√√√ 1

r − 1

r∑
j=1

(
EEji,αβ (~xk, ~sji)− µi,αβ (~xk)

)2
, (3.2.24)

where k = 1, .., N , r is the number of trajectories, µi gives an overall estima-
tion of the effect of a variation on shape mode si, µ∗i is used to detect whether
variations on si are non in�uential, and σi gives information about howmuch
the effect of a perturbation on si depends on the sampling point in the param-
eter space, giving an estimation of the ensemble of the shape mode’s effects
due to interactions and nonlinear behaviors. Note that these quantities are
statistics of the elementary effects and therefore are summed over the num-
ber of trajectories.
To obtain the average strain variation within the parameter space, we multi-
plied the indices µi,αβ (~x) and µ∗i,αβ (~x) by the variation step ∆∗ and normal-
ized them with the in�nity norm of the respective strain computed in the av-
erage shape (~s = (0, 0, 0, 0, 0, 0)) as follows:

µ̂i,αβ (~xj) =
µi,αβ (~xj) ∆∗

‖Erefαβ (~x) ‖∞
, (3.2.25)

µ̂∗i,αβ (~xj) =
µ∗i,αβ (~xj) ∆∗

‖Erefαβ (~x) ‖∞
, (3.2.26)

σ̂i,αβ (~xj) =
σi,αβ (~xj) ∆∗

‖Erefαβ (~x) ‖∞
(3.2.27)

where i varies between 1 and 6 as the shape modes, and j = 1, .., N . µ̂i,αβ,
µ̂∗i,αβ, and σ̂i,αβ are computed per node ~xj, and thus are scalar �elds with spa-
tial variability and are algebraically represented, as all the sensitivity indices,
in the average geometry.
To summarize the detailed information in µ̂i,αβ (~x) and µ̂∗i,αβ (~x) we compute
the average 1-norm which is the 1-norm re-scaled using the number of nodes
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involved in the �nite element LV discretizationN

µ̂avgi,αβ =
1

N
‖µ̂i,αβ (~x) ‖1 =

1

N

N∑
j=1

|µ̂i,αβ (xj) |, (3.2.28)

µ̂∗,avgi,αβ =
1

N
‖µ̂∗i,αβ (~x) ‖1 =

1

N

N∑
j=1

|µ̂∗i,αβ (xj) |, (3.2.29)

σ̂avgi,αβ =
1

N
‖σ̂∗i,αβ (~x) ‖1 =

1

N

N∑
j=1

|σ̂∗i,αβ (xj) |. (3.2.30)

We use σ̂avgi,αβ to estimate the interactions between the shape modes. To this
end, we observed the ratio between the average 1-norm of µ̂avgi,αβ and σ̂

avg
i,αβ. We

de�ned three levels of interaction using the reference value 3/2. If µ̂avgi,αβ over
σ̂avgi,αβ exceeds this value the interaction is considered weak, if µ̂

avg
i,αβ over σ̂

avg
i,αβ

fall below 2/3 the interaction is considered strong. In the remaining case the
interaction is considered moderate.
In the current study we choose r = 500 trajectories over a parameter space
grid with resolution p = 4 for a total ofM = 2339 simulations.
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3.3 Results

The unloading procedure resulted in an average unloaded cavity volume Vc,0
of about 43mL (±8mL mainly due to mode 1) and an average cavity pressure
of 1.46kPa (±0.05kPa), bothwithin physiological ranges, with an average ratio
of unloaded cavity volume to wall volume Vc,0/Vw = 0.34. The average end-
diastolic, the unloaded, and thewall volumes of the geometries for each shape
mode are reported in Table 3.2 with their SD.

Vc,ED [mL] Vc,0 [mL] Vw [mL]
shape mode 1 107.8± 15.4 42.8± 6.1 125.9± 16.4

shape mode 2 106.3± 0.9 42.4± 0.4 124.6± 0.7

shape mode 3 106.0± 0.6 42.4± 0.3 124.3± 1.0

shape mode 4 106.5± 0.2 42.6± 0.1 125.0± 0.5

shape mode 5 106.4± 1.4 42.6± 0.6 124.9± 3.7

shape mode 6 106.2± 0.4 42.6± 0.2 124.7± 1.9

Table 3.2: Per shapemode average end-diastolic cavity volume Vc,ED, unloaded cavity volume
Vc,0, and wall volume Vw with their standard deviation.

The constant preload-constant a�erload experiment resulted in an average
stroke volume of about 58mL±10mL and an ejection fraction of about 53%±
1%.
Regarding strain distributions, Figure 3.3 shows the spatial distribution and
the histogram of the coef�cient of variation (CV) of normal strains: the cir-
cumferential strain Ecc, the longitudinal strain Ell the transmural strain Ett.
The norms used in the de�nition of CV in (3.2.18) were:

‖Eavgcc ‖∞ = 0.31, ‖Eavgll ‖∞ = 0.22, ‖Eavgtt ‖∞ = 1.2. (3.3.1)

The maximum values occur in the basal plane region for Ecc and Ell, and on
the endocardial surface for Ett, while the minimum values occur on the epi-
cardial surface for Ecc and Ett, and in the basal and apical region of the en-
docardial surface forEll. The bottom row of Figure 3.3 shows the distribution
of the coef�cient of variation of normal strains. For Ecc, Ell, and Ett the co-
ef�cient of variation ranges are about 1% ∼ 18%, 3% ∼ 25%, and 2% ∼ 30%,
respectively, whereas the mean values of CV±SD are 6% ± 3%, 10% ± 4%,
9%± 4%, respectively.
Figure 3.4 shows the spatial distribution and thehistogramof the coef�cient of
variation for the shear strains: the circumferential-longitudinal shear strain
Ecl, the circumferential-transmural shear strainEct, the longitudinal-transmu-
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ral shear strain Elt. The norms of the average shear strains were:

‖Eavgcl ‖∞ = 0.14, ‖Eavgct ‖∞ = 0.37, ‖Eavglt ‖∞ = 0.36. (3.3.2)

The maximum values occur in the equatorial region of the endocardium and
on thebase forEcl, on the apical sub-epicardiumforEct, in the sub-endocardial
region between equator and apex forElt, while theminimum values occur on
the epicardial surface for Elt and in the apical region for Ecl and Ect. For
the Ecl, Ect, and Elt the coef�cient of variation ranges are about 2% − 20%,
2% − 32%, and 2% − 27%, while the mean values of CV±SD are 9% ± 3%,
13%± 6%, 12%± 5%, respectively.
To explain how the different shape modes contribute to the CV of the strains,
inTable 3.3we report the sensitivity indices µ̂∗,avgi,αβ for the six considered strains
and the six shape modes. Recalling that µ̂∗i,αβ is an upper bound on µ̂i,αβ, the
overall sensitivity, µ̂∗,avgi,αβ represents the maximum average normalized effect
that a variation of the shape through mode si by an amount ∆i (see (3.2.21)
and Table 3.1) has on the strain component Eαβ. Being a good proxy for the
Sobol total effect index ST [7], µ̂∗i,αβ can be used to detect non in�uential pa-
rameters. We highlighted values above 5% in pink and those larger than 10%
in red. In this respect, µ̂∗,avg4,αβ , µ̂

∗,avg
5,αβ , and µ̂

∗,avg
6,αβ are always smaller than 5%.

µ̂∗,avg2,αβ and µ̂∗,avg3,αβ are between 5% and 10% only for Ell, Ecl, and Elt. Instead,
except forEcl, µ̂

∗,avg
1,αβ is always larger than 5%with µ̂∗,avg1,ct and µ̂∗,avg1,lt larger than

10%.

s1 s2 s3 s4 s5 s6

Ecc 8.4 2.7 2.5 2.3 2.4 2.9

Ell 9.3 6.4 5.4 4.4 2.7 3.9

Ett 6.6 3.9 3.5 3.5 3.5 3.9

Ecl 4.8 6.3 6.6 2.7 2.2 4.4

Ect 11.5 4.4 4.1 4.3 3.6 4.4

Elt 12.8 6.2 5.1 4.7 4.1 4.3

Table 3.3: Spatially averaged relative sensitivity of strains Eαβ (rows) to variations in shape
mode si (columns), expressed inparameter µ̂∗,avgi,αβ [%]. Values above 5% arehighlighted inpink.
Those above 10% are highlighted in red.

Figure 3.5 shows the distribution of the normalized strain variations µ̂i,αβ (~x)
over the LV nodes, for the six strain components. To explain the presentation,
we �rst focus on the effect of mode s1 on the normal strain Ecc, presented in
the upper le� bar. The green bar indicates that in 41% of the LV nodes the
effect of variation along s1 on Ecc was below 5% of the value of Ecc in the
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central geometry. The dark blue bar indicates that Ecc was reduced by more
than 10% of the average value in 35% of the nodes. A dark red bar would indi-
cate the percentage of geometrieswith an increase ofEcc bymore than 10% of
the average value. The absence of this part indicates that geometric variations
throughmode 1 have an asymmetric effect onEcc, with a tendency to decrease
it. The two remaining regions indicate the prevalence of variations in mode 1
that increase (yellow) of decrease (light blue) the average strain in the range
of 5%− 10%. Variations throughmode s1 affectEll beyond the 10% threshold
level in 35% of the cases as well, but the distribution is less asymmetric, with
9% exceeding the +10% level and 26% exceeding the −10% level. Ect and Elt
are affected in magnitude beyond the 10% threshold in about 47% and 50% of
the cases, with a strong tendency for a decrease of Ect and an increase of Elt.
When comparing between shape modes, mode 1 is found to cause the most
prominent changes.
Shape mode 2 affects mainly Ell, Ecl, and Elt, although only about 20% of the
values exceed the threshold of 10%. Ell and Ecl present a rather symmetric
distribution of extreme values, whileElt has a slight tendency to increasewith
increase ofmode 2. The effect of shapemode 3 on the strains is similar to that
of shape mode 2. None of shape modes 4, 5, and 6 affects strains more than
the 10% threshold value in more than 10% of the values.
Figure 3.6 shows how variation in geometry through mode s1 affects cardiac
strains as a function of location in the LV, represented through theAHA 17 seg-
ment representation for both the sub-endocardium and sub-epicardium. We
see that increments along shapemode 1 lead to reductions ofEcc in the apical
area, reductions of Ect mainly in the sub-epicardium, and increments of Elt
in the sub-endocardium. Due to increases along shape mode 1 Ell decreases
in the apical regions and increases elsewhere in the sub-epicardium, while
both Ecl and Ett mainly increases in the apical regions.
Variation along shape modes 2 and 3 primarily affected strain components
Ell, Ecl and Elt (Figure 3.5). The spatial distribution of the change in these
strain components is shown in Figure 3.7. An increase along shape mode 2
affects Ell more at the epicardium than at the endocardium, with a tendency
to decrease Ell at the septal side and increase it at the lateral side. Similarly,
increases along shapemode 3 affectsEll slightlymore at the epicardium, with
a tendency to increaseEll in the inferolateral region and decrease it in the an-
teroseptal region. The effects of variations along both shape mode 2 and 3
affectEcl similarly at the endocardium and epicardium. Increments in shape
mode 2 have the tendency to decrease Ecl in the inferior segments and in-
crease it in the anterior ones, while increments in shape mode 3 have the
tendency to increase Ecl in the inferolateral segments and decrease it in the
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anteroseptal ones. Transmurally, increases in Elt due to increments in shape
mode 2 mainly shows a shi� towards positive values in the sub-endocardial
inferior region. Going from endocardium to epicardium, increases inElt due
to increments in shape mode 3 shi� from the infero-septal segments at base
to the same segments at equator and decreases in Elt due to increments in
shape mode 3 shi� from lateral segments at base to antero-lateral segments
at equator. In general for Ell and Elt the effects of both shape modes 2 and 3
tend to occur in small scattered regions, while for Ecl these regions are less
scattered and they have more spatial consistency.
Table 3.4 shows the ratio µ̂avgi,αβ/σ̂

avg
i,αβ used to estimate the interactions between

the shapemodes. The reference value 2/3 is used to de�ne three intervals for
three level of interactions: [0, 2/3] for the high interaction region, (2/3, 3/2]
for themoderate interaction region, and (3/2,+∞) for the low interaction re-
gion. For almost all the shapemodes and strain components the ratio is close
or above 2, thus falling in the low interaction region, meaning that the effect
of a perturbation along a shape mode is about twice as strong than effects
due to nonlinear behavior or interactions between shape modes. For Ett, in-
stead, shape modes 2 to 5 fall in the moderate interaction region. However,
those shape modes are considered non in�uential for Ett (see Table 3.3) and
therefore also themagnitude of either interactions or nonlinear effects, being
smaller than µ̂avgi,αβ, are considered non in�uential.

s1 s2 s3 s4 s5 s6

Ecc 4.6 1.9 1.8 1.9 2.0 2.5

Ell 3.7 3.4 3.0 3.0 1.8 2.3

Ett 1.8 1.5 1.3 1.4 1.3 1.6

Ecl 2.2 3.9 4.2 2.4 1.6 3.6

Ect 3.7 1.8 1.8 2.2 1.8 2.1

Elt 3.4 2.2 1.9 2.1 1.9 1.8

Table 3.4: Nonlinear behavior and interactions between the shape modes, represented
through the ratio between µ̂avgi,αβ and σ̂

avg
i,αβ. Values falling within the high interaction range

[0, 2/3) are highlighted in red, values within the moderate interaction interval [2/3, 3/2) are
highlighted in pink, and values within the low interaction interval [3/2,+∞) are kept in white
background.
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Figure 3.6: Effect of variation of shape mode 1 as a function of location in the LV, visualized in
an AHA 17 segments representation for the sub-endocardial and the sub-epicardial regions of
the LV. The top row shows µ̂1 for the normal strains. The bottom row shows µ̂1 for the shear
strains. The 17 segments are named as follows: 1 basal anterior, 2 basal anteroseptal, 3 basal
inferoseptal, 4 basal inferior, 5 basal inferolateral, 6 basal anterolateral, 7 mid anterior, 8 mid
anteroseptal, 9 mid inferoseptal, 10 mid inferior, 11 mid inferolateral, 12 mid anterolateral, 13
apical anterior, 14 apical septal, 15 apical inferior, 16 apical lateral, 17 apex.

3.4 Discussion

3.4.1 Methods

Geometry

The geometry of a 3D �nite elementmodel is a high resolution parameter that
would be unfeasible to treat in a sensitivity study. Therefore, we adopted the
Principal Component Analysis, presented by Zhang et al [30] and Medrano-
Gracia et al [20], and used the �rst six shapemodes to represent the geometri-
cal feature variation within the population. A disadvantage of our approach is
that these modes are not straight forward to interpret, being non trivial three
dimensional vector �elds. However, they represent a realistic variation of the
geometry, and allow us to impose well motivated ranges for variation of the
geometry.
To obtain a stress-free con�guration, we assumed an ejection fraction EF =
60% and that the stress free cavity volume Vc,0 is comparable with the end-
systolic cavity volume Vc,ES. We then recovered stress free cavity volume us-
ing (3.2.14). These assumptions led to physiological values of end-diastolic
pressure and to an average ratio Vc,0/Vw ∼ 0.34 (Vw ∼ 125mL, Vc,0 ∼ 43mL)
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consistent with experimental �nding of Nikolić et al [22] (Vc,0/Vw = 0.29) and
McCulloch et al [19] (Vc,0/Vw = 0.28).
We started from the �ber distribution from [6] and, to preserve the tangen-
tiality of �bers to the surfaces, we re-oriented them using the geometricmap-
ping between the template mesh and the reconstructed end-diastolic con�g-
uration. This operation broke the symmetry of the template �ber �eld and
introduced slight and physiological spatial heterogeneity.However, this also
introduced slight differences in the �ber orientations of different geometries
thatmight have confounded our results. To this end, further investigations on
sensitivity of end-systolic strains to �ber orientation are needed.

Fixed preload-�xed a�erload experiments

In this study we evaluate the effect of the amount of detail in the description
of the LV geometry onmyocardial wall strains. To do so, we employed a �nite
element simulator of the mechanics of the LV [6]. Simple replacement of the
ellipsoidal geometry in the latter model by any of the geometries in the cur-
rent study, without modifying the circulation model, would have confounded
the effects of the geometry with the effect of a possible mismatch between
cardiac size and circulationmodel. To circumvent this problem, we choose to
replace the circulation model by pressure boundary conditions of 1.5 kPa at
end �lling, and 12 kPa during ejection.

Sensitivity analysis

We applied the elementary effects method to compute sensitivity indices of
the 3D distribution of end-systolic strains. We decided to observe end-systolic
strains referred to the state of end diastole because their measurement is
non invasively viable in clinical practice bymeans of imaging techniques and
because more and more inverse approaches to estimate patient’s data using
computer models rely on strain measurements. Furthermore, at end systole
the contraction of myo�bers reaches the peak, thus allowing to estimate the
pump function of the LV.
Each shape mode has been sampled assuming a uniform distribution. The
range of this distribution is within one standard deviation around the mean,
with the standard deviation of each mode coming from the principal compo-
nent analysis. The six shape modes are sorted in descending order with re-
spect to the amount of the overall variance that they describe. Consequently,
the �rst modes were varied more than the last modes. However, this re�ects
the actual distribution of geometrical features described by the shape modes
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Figure 3.7: AHA 17 segments representation for the sub-endocardial and the sub-epicardial
regions of the LV. The top row shows µ̂2 forEll,Ecl, andElt. The bottom row shows µ̂3 for the
same strains. The 17 segments are named as follows: 1 basal anterior, 2 basal anteroseptal, 3
basal inferoseptal, 4 basal inferior, 5 basal inferolateral, 6 basal anterolateral, 7 mid anterior, 8
mid anteroseptal, 9mid inferoseptal, 10mid inferior, 11mid inferolateral, 12mid anterolateral,
13 apical anterior, 14 apical septal, 15 apical inferior, 16 apical lateral, 17 apex.

within the human population. Moreover, the magnitude of the difference be-
tween geometries induced by each shape mode variation does not always re-
lates with the respective variance. For instance, shape mode 6, which have
the smallest variance, introduces differences in geometries larger than shape
mode 4 and 5. We scanned the resulting parameter space using 500 trajecto-
ries and we computed the three sensitivity indices. We checked the conver-
gence and we found that in the last 50 trajectories the change in the average
1-norm of these indices was two orders of magnitude smaller than the small-
est index. The CV of the strain components changed by less than 0.5%.

3.4.2 Results

Our results indicate that end-systolic shear strains are more sensitive to ge-
ometry than normal strains. The histograms in Figure 3.3 and Figure 3.4 show
that the distributions of the coef�cients of variation of shear strains Ect and
Elt present the largest means and standard deviations. The maximum vari-
ability for both strains happens between the equatorial and the apical regions,
where the CV reaches approximately 30% (Figure 3.4). We cannot exclude that
this effect is not only due to the variation in geometry, but also due to a slight
variation in �ber orientation. In our model, �ber orientation is de�ned us-
ing normalized coordinates, which are subject to slight errors in themapping
between the template geometry and the unloaded con�guration. Considering
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that shear strains aremore sensitive to �ber orientation thannormal strains [?
], this might partly explain the higher sensitivity of shear strains as compared
to normal strains.
It is not straightforward to determine a threshold under which a strain vari-
ation can be considered non in�uential. Among others, this threshold value
would depend on the methodology of strain measurement, and on the mag-
nitude of the effect that the pathology under investigation has on strains. In
particular, the accuracy achieved by ameasurement technique is the ultimate
limit that allows to distinguish between two strain measurements. Since the
accuracy level of the various imaging techniques is unclear, we analyze our
results assuming different values of accuracy for the strain measurements.
If this accuracy level would be above 15% for every strain component, none
of the shape modes would affect the simulated strains in a way that could be
discerned by different measurements of the same patient. Therefore, an av-
erage geometry could be adopted in this case. If this accuracy level would be
about 10%, then Figure 3.5 shows that only shape mode 1 must be considered
in�uential, especially for shear strains Ect and Elt. For these strains an in-
crease in shapemode 1 would lead to an observable increase (Elt) or decrease
(Ect) in almost 50% of the geometry. The same holds Ecc and Ell for which
an increase in shape mode 1 exerts an observable decrease in strain in about
30% of the geometry. If the accuracy level would be about 5%, shape mode 1
plays amajor role for all the strains with the exception ofEcl, for which shape
mode 2 and 3 are more important. The in�uence of shape mode 1 tends to
appear in a more clustered fashion with high spatial coherence, as shown in
Figure 3.6. In particular, increments in shape mode 1 greatly contribute in
decreasing apical values of Ecc and Ell, and sub-epicardial values of Ect, and
greatly contribute in increasing sub-endocardial values of Elt. Instead, the
in�uence of shape modes 2 and 3 mainly affects Ell, Ecl, and Elt and tends to
appear in general less strongly than that of shapemode 1, with the only excep-
tion ofEcl. As shown in Figure 3.7, the distribution of µ̂2 and µ̂3 forEll andElt
is more scattered with low spatial coherence, while for Ecl their distribution
is more clustered. This means that the way we model the basal diameter, the
basal orientation, and the distance between the basal and equatorial plane
Figure 3.1 affects the prediction of Ecl as shown in Figure 3.7. From Table 3.3
none of the shapemodes present a clear lack of in�uence, since all values are
in the same order of magnitude. However, shape modes 4, 5, and 6 do not
affect any of the strain componentsmore than the lowest of the threshold val-
ues that we considered in this analysis (5%). In this sense, we consider those
three modes non in�uential.
We used σ to get information about the interaction between shapemodes. We
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reasoned that µi measures the effect of an error in setting si, whereas σi es-
timates how µi changes due to the errors in setting the other parameters. To
understand whether σi can be considered large, we used the ratio µi/σi. This
ratio can be seen as a signal to noise ratio: when it is high the error in setting si
is stronger than the errors affecting the other parameters interacting with si;
therefore, simust be personalized if considered in�uential. Conversely when
µi/σi is low, the interactions dominates the error on si and further investi-
gations are needed to discover which parameters contribute the most to the
uncertainty affecting si and possibly personalize them. Finally, when µi and
σi are comparable we de�ne the interactionmoderate meaning that the error
on setting si approximately equals the ones due the error on the other param-
eters. In this case, if µi is considered non in�uential also the interactions are
regarded as non signi�cant. If µi is considered in�uential more analysis is re-
quired to address which parameters interact themost with si. In our analysis,
almost all the strain components have a ratio µi/σi larger than 3/2 for all the
shape modes. This means that the shape modes are rather independent and
do not interact much. The only exception to this is Ett, for which
we observed a slightly moderate interaction of modes 2 through 5 (Table 3.4);
however, due to the non in�uential nature of those modes (Table 3.3) for the
considered strain the relevance of this interaction is limited. The limited in-
teractions found in this study thus did not require further investigations to
distinguish between contributions due to non linear behavior and true inter-
actions and suggest that the in�uential parameters must be prioritized while
the non in�uential ones can be set to generic values without largely affecting
the strains. Therefore, if the goal is to accurately observe Ecc, Ett, and Ect,
shape mode 1, representing the size variation within the human population,
must be included in the personalization of the geometry. To correctly pre-
dict Ell, Ecl, and Elt, shape mode 2 and shape mode 3 must be personalized,
representing the basal diameter/orientation in the anteroseptal-inferolateral
direction and the basal orientation in the inferoseptal-anterolateral direction,
respectively.
The data set included in thiswork has beenused elsewhere to understandhow
pathologies such as myocardial infarction affect the remodeling of the heart
[26]. The purpose of those studies was to establish the effectiveness of algo-
rithms that try to categorize the health state of a patient based on the shape
of the heart. However, our goal is to contribute to approaches that aim for
a physics based interpretation of measured quantities by using data assimi-
lation techniques. In this approach it is important to quantify the sensitivity
to input data and to prioritize them. In our study, we quantify the effect of
one of these inputs, the geometry, on strains, and sort geometrical features
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(the shapemodes) by importance. The application of sensitivity analysis tech-
niques to investigate the effect of geometry on output of models of cardiac
mechanics is not new. Campos et al [8] applied the probabilistic collocation
method to study the effects of wall thickness uncertainty during the passing
�lling. They included among the quantities of interest end-diastolic Cauchy
�ber stress and Green-Lagrange �ber strain averaged in a region of the lateral
side of the myocardium. They concluded that stress is the highly in�uenced
by wall thickness and that the effect of uncertainty in wall thickness is com-
parable with, and in some cases larger than, the one due to uncertainty in the
wall stiffness. Choi et al [10] studied the role of geometric features of an ellip-
soidally shaped LV, such as sphericity and volume (and indirectly wall thick-
ness), concluding that the transmural distribution of end-diastolic �ber stress
and strain are strongly affected by the longitudinal curvature and wall thick-
ness. However, the geometries included in their study do not always re�ect
the human anatomy and they did not quantify the sensitivity of the quanti-
ties of interest. Furthermore, both the studies of Campos and Choi address
passive �lling only. Geerts et al [14] investigated the role of geometry in an
ellipsoidally shaped LV during systole. They found that LV geometry varia-
tions considered representative for the biological range changed the equato-
rial distribution of active myo�ber stress and shortening by about 10 to 15%.
Pluijmert et al [24] performed a local sensitivity analysis on a biventricular
geometry varying both le� and right ventricles and alsomyo�ber orientation.
They concluded that varying the short- to long-axis ratio by 27% in the LV and
the length of the right ventricle by 16% led to changes in the pump work of
about 5%. The studies by Geerts et al [14] and Pluijmert et al [24] addressed
pump function at tissue and organ level, but they did not focus on changes
in strains. That is what we aimed at in our current study, in view of the po-
tential use of strains as an input for a data assimilation procedure. In a pre-
liminary study [4], we presented our methodology for the global sensitivity of
end-systolic strains with a brief overview on preliminary results. In this study
we better summarized the uncertainty on the spatial distribution of strains
using the averaged 1-norm, bar plots and by using the AHA17 representation
to identify regions affected the most by shape mode variations. According to
our knowledge, this is the �rst work inwhich a detailed description of real hu-
manLVgeometries has beenused in a global sensitivity analysis framework to
systematically quantify the effect that variations in the geometry description
introduce on 3D end-systolic strain �elds.
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3.4.3 Limitations

Limitations of this study are related to the choice of the mathematical model,
the availability of data, and the computational cost. Regarding themathemati-
calmodel, we assumed the onset of active stress development to be simultane-
ous throughout the geometry. Even though it has been suggested that pattern
of mechanical activation is less inhomogeneous than pattern of electrical de-
polarization [17], the effect of asynchronous mechanical activation might be
investigated. Regarding the availability of data, we note that the shape modes
included information about the LV only. For this reason we only use an iso-
lated LV geometry. Although in principle it might be possible to extend our
analysis to bi-ventricular geometries, we expect that adding the right ventricle
might affect the spatial distribution of LV strains, but not somuch the sensitiv-
ity indices. Another source of uncertainty concerns the boundary conditions.
The uniform pressure boundary condition at the endocardial surface and the
stress free conditions at the epicardial surface are commonly used in other
models in literature and considered appropriate. Applying realistic bound-
ary conditions at the base, to represent the interactions with the atria and the
large arteries is less obvious. At the base we avoided rigid body motions try-
ing not to constrain the basal deformations toomuch. In fact, we adopted the
same boundary conditions applied in [6], that are in line with other models
in literature and comply with the �ndings of a recent study comparing differ-
ent choices of boundary conditions [23]. Due to the high computational cost
related to the sensitivity analysis we performed, we could not re�ne the grid
for the discretization of the shape mode space. This would have required fur-
ther compromises in the discretization of the �nite element solution or the
use of meta-modeling techniques. This also motivated our choice for a uni-
form distribution in the shape mode space; at a higher resolution it would be
more natural to better approximate a Gaussian distribution. Consequently,
our analysis is affected by a slight over representation of extreme geometries
that we tried to contain by limiting the domain to only one standard deviation
around the average geometry.

3.5 Conclusions

In this work we assessed the sensitivity of LV end-systolic wall strains to LV
geometry, varied according to six shape modes reported in literature [30, 20].
We concluded that shape mode 1 (related to LV size) must be personalized for
an accurate prediction of Ecc, Ett, and Ect. For an accurate prediction of Ell,
Ecl, andElt also shapemodes 2 and 3 (related to the basal diameter and its ori-
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entation in the anteroseptal-inferolateral direction, and the basal orientation
in the inferoseptal-anterolateral direction) must be included in the person-
alization of the geometry. Instead, shape modes 4, 5, and 6 can be set to a
generic value without largely affecting the prediction of strains. To the best of
our knowledge this is the �rst attempt to apply global sensitivity techniques
to quantify the effects that different real human LV geometries have on 3D
end-systolic strain �elds.
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Abstract

In this chapter we use a Finite Elementmodel of le� ventricular (LV)mechan-
ics to assess the sensitivity of LV end systolic wall strains to �ber orientation.
A 5-parameter rule based description of the �ber orientation in terms of helix
and transverse angles has been used to describe the spatial variation through-
out the LV wall. The �ve parameters include: the transmural offset h0

v, the
transmural slope h1

v, and the longitudinal slope h1
u of the helix angle; and the

longitudinal offset t0u, and the longitudinal slope t1u of the transverse angle.
The ranges for the �ve parameters represent the variability within the human
population, as inferred from DTI measurements found in literature. End sys-
tolic Green-Lagrange strains with respect of the end diastolic state were ex-
pressedwith respect to the local circumferential (c), longitudinal (l) and trans-
mural (t) direction. The results show that the strain componentsmost affected
by �ber orientation areEct (38±18%), andEcl (25±8%). Themost in�uential
parameters are found to be t0u and h0

v. t0u affects all the strain components, but
in particular Ect (∼ 35%), and the h0

v affects especially Ecl (∼ 18%). Further-
more, t0u interacts mostly with t1u, and vice-versa.
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4.1 Introduction

Computer models of the heart are developing towards a stage where they can
be used in the context of personalized medicine. These models have been
used in recent studies to estimate cardiac (pathological) tissueproperties from
patients by combining patient measured deformation data and data assimila-
tion techniques. It is expected that the spatio-temporalmaps of cardiac defor-
mation constitute a rich source of information for retrieval of spatial maps of
tissue properties. Some studies estimated passive material properties of the
myocardium [36, 37, 38], while others aimed at estimating contractility and ac-
tivation time [9, 1, 8, 18]. While data assimilation methods are precious tools
that potentially make possible the transition from researchmodels to models
that can be used in the clinic, for a reliable clinical use of such methods it is
also important to provide interval con�dence of the validity of the provided
solution. Sensitivity Analysis (SA) and Uncertainty Quanti�cation (UQ) are es-
sential steps in this process, allowing to estimate and weigh uncertainty com-
ing from modeling assumptions, noise, and measurement error propagated
from the input.
Inmodels of cardiacmechanics, �ber orientation is both amajor source of un-
certainty and an important determinant of tissue stress and strain, as shown
in [28, 12]; nonetheless, �ber orientation is typicallymodeled only in terms of
a linearly varying helix angle [10, 16, 27, 30]. Streeter et al [33]made one of the
�rst attempts to perform histological measurements on �ber orientation and
identi�ed the helix angle, the angle de�ning the base-to-apex component of
the �ber vector (see Figure 4.1), to vary non-linearly in transmural direction,
between 60◦ at endocardiumand−60◦ at epicardium. In a later study, Streeter
et al [32] also identi�ed the transverse angle, describing the endocardium-to-
epicardium component of the �ber vector; in the apical part of the le� ven-
tricle it was found to be small and negative. These �ndings where later con-
�rmed in other studies performed using Diffusion Tensor Imaging (DTI) [?
? 11]. Lombaert et al [17] built an atlas of myo�ber orientation from a popu-
lation of 10 ex-vivo healthy human hearts and provided an estimation of the
distributions of the helix and the transverse angle within the human popula-
tion. Typically, the measurement error of these angles is about 10◦ [11]. To
create a patient-speci�c model, ideally �ber orientation should be measured
in vivo. The main challenges for in-vivo �ber orientation measurements are
the long acquisition time and the movement of the heart. To reduce the long
acquisition time of fully 3D in-vivo DTI measurements, DTI acquisitions on
several short-axis slices of the ventricles are used in the reconstruction of the
3D �elds [34? ? ? ? ]. Typically, the in-vivo measurement error is higher than

117



Chapter 4

the ex-vivo DTI measurement error. Due to its lowmagnitude (about 10◦), the
transverse angle is more affected by this error.
In view of the limited accuracy with which �ber orientation can be deter-
mined, it is important to quantify how the output of computer models of the
mechanics of theheart are affectedby this uncertainty. Fewstudies arepresent
in literature in this context. Some of them only qualitatively investigated the
sensitivity of cavity volume, and �ber stress and strain during the passive �ll-
ing to variations of the helix angle [13, 35, 24]. O�en non-physiological val-
ues for the helix angle were used, such as constant helix angles [13] or spatial
distributions of the helix angle with a transmural range much smaller (60◦,
[35, 24]) or much larger (160◦, [24]) than the histologically observed range of
about 120◦. Only in [13, 35, 24] a physiological transverse angle was included,
showing no in�uence on end-diastolic cavity volume.
Amore quantitative and complete UQ technique has been employed in Rodri-
guez-Cantano et al [29] to quantify the sensitivity to both rule-based �ber ori-
entation (using both helix and transverse angles) and random �ber �elds.
They computed the main and total Sobol indices for four scalar global quan-
tities of interest based on Quasi-Monte Carlo (QMC) simulations, Polynomial
Chaos Expansion (PCE), and Karhunen-Loève expansion. However, the ob-
served LV end-diastolic quantities can be easilymeasured using imaging tech-
niques but provided no insight about how the local mechanics is affected by
the uncertainty. Geerts et al [12] compared the sensitivity of �ber stress and
strain during the active phase of the cardiac cycle to limited variations in
geometry and helix angle using a LV model. Pluijmert et al [28] compared
the sensitivity of averaged local and global quantities to variations in the bi-
ventricular (BIV) geometry and variation in the �ber orientation according to
a remodeling algorithmpresented inKroon et al [15]. In the latter, it is dif�cult
to properly quantify the sensitivity to the speci�c parameters determining the
�ber orientation, such as helix and transverse angle and their spatial distri-
bution. Both studies suggest that �ber orientation plays a major role in the
mechanics of the LV during the active phase. However, the variations in �ber
orientation included in Geerts et al [12] are somewhat arbitrary and involved
only the helix angle, while those included in Pluijmert et al [28] were deter-
mined by an algorithm andmay not be realistic. Moreover, these studies used
a local sensitivity approach in which a quantitative assessment of quantities
of interest was achieved over only few parameter combinations.
For this reason, the goal of this study is to quantify the effects that variations in
the �ber description within the variability observed in the human population
have on end-systolic strain distributions of a computer model of the LV me-
chanics with a realistic geometry and to assess the sensitivity to the parame-
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Figure 4.1: Representation of the helix and transverse angles de�nitions (le�) and reference
�ber �eld for the unloaded average geometry (right). The helix angle, αh, is the angle be-
tween the circumferential direction (ec) and the projection of the �ber vector (ef ) onto the
circumferential-longitudinal plane. The transverse angle, αt, is the angle between the circum-
ferential direction and the projection of the �ber vector onto the circumferential-transmural
plane.

ters describing the�ber �eld. Besides quantifying the uncertainty propagated
from �ber orientation to the strains, the results of this analysis might give a
precious insight to the development of a personalization method to compute
�ber orientation [21, 22], highlighting possible relations between strains and
�ber parameters. Moreover, to put the results into perspective, we compare
the effect that realistic variations on the description of the LV geometry and
realistic variations on �ber orientation have on end-systolic strain distribu-
tions.
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(a) h0v (b) h1v (c) h1u

(d) t0u (e) t1u (f)

Figure 4.2: Representation of themeaning of the parameters involved in the description of the
helix and transverse angles. 4.2a and 4.2b show the in�uence of h0

v and h1
v on the transmural

variation of the helix angle at equator. The solid lines represent their reference values and the
dashed lines their two extremes. 4.2c shows how h1

u affects the transmural and longitudinal
distribution of the helix angle. The black solid line represents the reference extreme values
of h1

u a the equator, the blue dashed lines represents the extremes of h1
u at the apex, and the

red dashed lines represents the extremes of h1
u at the base. The bottom row shows how the pa-

rameters involved in the description of the transverse angle affect its longitudinal distribution.
4.2d and 4.2e show the in�uence of t0u and t1u, respectively. The solid lines represent their ref-
erence values and the dashed lines their two extremes. 4.2f shows the transmural distribution
of the transverse angle using reference values for t0u and t1u.

4.2 Material andmethods

4.2.1 Material properties

We simulated LV mechanics using the model by Bovendeerd et al [6]. Brie�y,
the myocardium is described as an hyperelastic �ber-reinforced transversely
isotropic active stress material. The Cauchy stress tensor σ thus reads

σ = σp + σa~ef ⊗ ~ef . (4.2.1)

The active stress σa is adopted from Bovendeerd et al [6]. It depends on sar-
comere and contractile element lengths, time elapsed since activation (as-
sumed to be simultaneous throughout the ventricle) and sarcomere shorten-
ing velocity, and acts along the current �ber direction ~ef (see 2.2.1 for details).
The passive stress σp is derived from a strain energy density function as fol-
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lows

σp =
1

det(F )
F
∂W
∂E

F T , (4.2.2)

where W is composed of a term Wshape, describing response to change in
shape, and a termWvolume, representing near incompressibility:

W =Wshape +Wvolume, (4.2.3)

Wshape = a0 (expQ− 1) , (4.2.4)

Q = a1I2
1 + 2a2I2 + a3I2

4,f, (4.2.5)

Wvolume = 4k
(
J2 − 1− 2 lnJ

)
, (4.2.6)

where I{1,2} are the invariants of the Green-Lagrange tensor E, I4,f is the
pseudo-invariant of E introducing the anisotropy along myo�bers, J is the
determinant of the deformation gradient F , and a{0,1,2,3} and k are a consti-
tutive parameters. Note thatWvolume was modi�ed from Bovendeerd et al [6]
according to Simo et al [? ] to comply with assumptions of positivity, convex-
ity, and unboundedness at both zero and in�nity.

4.2.2 Geometry and �ber orientation

We use a realistic geometry derived from theMESA study [20]. This geometry
and its �ber �eld are obtained using a transformation that deforms a template
geometry and its �ber �eld. The template geometry is an idealized geometry
de�ned by the prolate ellipsoidal coordinate system

x = fl sinh (ξ) sin (θ) cos (φ)

y = fl sinh (ξ) sin (θ) sin (φ)

z = fl cosh (ξ) cos (θ)

(4.2.7)

where fl is the focal length set to 43 mm. The endocardial and epicardial sur-
faces are de�ned by ξ = 0.371 and ξ = 0.678, respectively. The base is mod-
eled as a plane orthogonal to the long axis intersecting the geometry at 24 mm.
On this geometry, the circumferential ~ec, the longitudinal ~el, and transmural
~et basis vectors are de�ned as in 2.2.1. Geometry and mesh generation, the
computation of the normalized transmural (v) and longitudinal (u) coordi-
nates, and the mapping of scalar and vector �elds are performed using the
method presented in 3.2.
The orientation of �bers inside the myocardium is described by the helix an-
gle and the transverse angle, where the helix angle de�nes the component
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of the �ber unit vector, ~ef , in the longitudinal-circumferential plane and the
transverse angle de�nes the component in the circumferential-transmural
plane (Figure 4.1).
The functional description of αh and αt characterizes the �ber orientation
inside the myocardium. To this end, we use �ve parameters, three for the
helix angle and two for the transverse angle

αh (u, v) =
(
h0
v + h1

vv
)

(1 + h1
uu), (4.2.8)

αt (u, v) =
(
1− v2

)
(t0u + t1uu). (4.2.9)

The �ve parameters introduce variability in the �ber orientation as follows
(see Figure 4.2): h0

v describes the transmural offset of the helix angle, h1
v de-

scribes the transmural slope and de�nes the transmural range of the helix
angle, h1

u describes the longitudinal variability of the helix angle, t0u describes
the longitudinal offset of the transverse angle (t0u = 0 means that the trans-
verse angle is nil at equator), t1u describes the longitudinal slope of the trans-
verse angle. Note that the transverse angle is assumed to be always null on
both the endocardial and epicardial surfaces and that its transmural distribu-
tion is assumed to be parabolic. Geometry and �ber orientation are shown in
Figure 4.1 and the parameter representations are shown in Figure 4.2.

4.2.3 Fiber parameter ranges

The reference values for the�veparameters describing thehelix and the trans-
verse angles have been obtained performing an analytical projection on our
model of the helix angle reported in Bovendeerd et al [6] and the transverse
angle reported inGeerts et al [11] using the scalar product de�ned inL2([−1, 0.5]×
[−1, 1]) (central values in Table 4.1).
For each parameter, we set a range around its reference value to describe the
interval in which the parameter will be varied during the sensitivity analysis.
We inferred the parameters ranges mainly from two studies: from Lombaert
et al [17], who used DTI to measure �ber �elds in 10 ex-vivo healthy human
hearts; and fromGeerts et al [11], whousedDTI tomeasure�ber orientation in
a population of 5 ex-vivo healthy goat hearts. We interpreted the mode of the
standard deviation of the helix angle reported in Lombaert et al [17] (11.5◦) as
the maximum helix angle variation achievable by any combination of h0

v and
h1
v. Therefore, we allowed variation of about 8◦ on h0

v. Since h1
v represents

half of the range of the transmural distribution of αh, we set its variation to
4◦. The parameter h1

u represents longitudinal variation in the helix angle. We
vary this parameter by ±0.25 to represent the standard deviati of about 20◦
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αh αt
h0
v h1

v h1
u t0u t1u

20.43◦ ± 8◦ 60◦ ± 4◦ 0± 0.25 0◦ ± 6◦ 9.96◦ ± 8.67◦

Table 4.1: Central parameter combination ± parameter ranges. The central parameter com-
bination is obtained as the least square projection of the helix angle from Bovendeerd et al [6]
and the transverse angle from Geerts et al [11] onto our �ve parameters model (4.2.8) (4.2.9).

found in the mean �ber con�guration in Lombaert et al [17]. The variation
in t0u was set to ±6◦, based on the longitudinal distribution of the transverse
angle presented by Geerts et al [11]. The range for t1u was set using themode of
the standard deviation of the transverse angle reported in Lombaert et al [17]
(13◦). This value was re-scaled using the range of the longitudinal parameter
u, thus leading to 8.67◦. The reference parameters and their variations are
shown in Table 4.1.

4.2.4 Computation of le� ventricular wall mechanics

Le� ventricular wall mechanics was computed by solving for equilibrium be-
tween forces related to active stress, passive stress and cavity pressure, as ex-
plained in detail in 2.2.1. In short,

Div (P (F )) = ~0 in Ω0,

P~n0 = −pJF−T~n0 on Γ0,Endo,

P~n0 = ~0 on Γ0,Epi,

(4.2.10)

where P is the �rst Piola-Kirchhoff stress tensor; F is the deformation gra-
dient; and ∂Ω0 = Γ0,Base ∪ Γ0,Endo ∪ Γ0,Epi represents the decomposition of
the unloaded boundary in basal, endocardial and epicardial surfaces, respec-
tively; and ~n0 is the normal vector de�ned over those surfaces. To prevent
rigid bodymotion we suppressed displacement normal to the basal plane and
circumferential displacement of the basal endocardium. We did not couple
our LV model to the closed circulation model described in [6]. Instead, we
let the heart �ll until a �xed preload of 1.5 kPa was reached. From this end-
diastolic state, we then simulated the isovolumic contraction phase by initiat-
ing active stress development and computing the increase of cavity pressure
while keeping cavity volume constant. As soon as cavity pressure reached a
preset a�erload pressure of 12 kPa, we let the heart eject against this constant
pressure until it reached the end-systolic state, de�ned as the state of mini-
mum cavity volume. From the simulations, end-systolic strains with respect
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to the end-diastolic con�guration were computed using the Green-Lagrange
strain tensor along the wall-bound basis vectors in circumferential (~ec), lon-
gitudinal (~el), and transmural (~et) directions.

4.2.5 Computation of the unloaded con�guration

To perform a �nite element simulation of LVmechanics we need to recover a
virtually unloaded con�guration from the loaded end-diastolic con�guration,
provided in the atlas. In order to estimate this unloaded con�guration, we fol-
lowed the same procedure as the one in 3.2.4. We de�ated the end-diastolic
con�guration, obtained from the atlas of the MESA study [20], using a stan-
dard approach based on the concept of Inverse Design [? ]. Thismethod relies
on the solution of the momentum balance equation in the deformed con�gu-
ration Ω as follows 

div (σ (F )) = ~0 in Ω,

σ~n · ~n = −p on ΓEndo,

σ~n = ~0 on ΓEpi,

(4.2.11)

and the same kinematic boundary conditions of (3.2.8). The sought solution
is the displacement from Ω to the virtually stress free con�guration Ω0

~x0 (~x) = ~x− ~u (~x) , (4.2.12)

F (~x0) =
∂~x

∂~x0
(~x0) . (4.2.13)

SinceΩ0 and itsmetric are unknown, the derivatives involved in the de�nition
of F cannot be computed. However, the problem can be circumvented by
using the spatial deformation gradient f , de�ned as

f (~x) =

(
I − ∂~u (~x)

∂~x

)
=

(
I +

∂~u (~x0)

∂~x0

)−1
∣∣∣∣∣
~x0=~x−~u

= F−1 (~x) . (4.2.14)

Consequently the Cauchy stress tensor reads

σ (F ) = σ
(
f−1

)
=

f−1

det (f−1)

∂W
∂E

∣∣∣∣
F=f−1

f−T , (4.2.15)
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where we assumed that no residual active stress σa is present during diastole.
To solve (4.2.11), an end-diastolic pressure load p is needed. Since the pressure
is unknown, we increment the pressure load until the unloaded con�guration
reaches an estimated unstressed cavity volume. We assumed that under nor-
mal circumstances this volume Vc,0 would be equal to Vc,ES, the volume at
end ejection. In turn, this volumewas estimated from the end-diastolic cavity
volume by assuming a physiological ejection fraction (EF) of 60%

Vc,0 ≈ Vc,ES = (100− EF )Vc,ED. (4.2.16)

Note that the solution of (4.2.11) modi�es the domain on which the �bers are
de�ned and affects their orientation. Therefore, �ber orientation in the un-
loaded state ~ef,0 is de�ned as a function of f and ~ef,ED as follows

~ef,0 =
f~ef,ED
‖f~ef,ED‖2.

(4.2.17)

4.2.6 Finite element implementation

We use the same Finite Element model described in 3.2.5. The spatial dis-
cretization of the problemwas studied in order to achieve an accurate predic-
tion of strains at an affordable computational cost. In this respect, we use a
sub-parametric �nite element approachwhere the geometry is discretized us-
ing linear tetrahedra and the solution is discretizedusingquadratic Lagrangian
polynomials. The spatial discretization resulted in 5760 elements and 24519
degrees of freedom. The nonlinear problem was solved using the Newton-
Raphson algorithm and the resulting linear systems were solved using the LU
decomposition implemented in the MUMPS library [? ].

4.2.7 Sensitivity analysis approach

As in 3.2.6, we use the Elementary Effects method [? ]. It is a global sensitivity
analysis method that was �rst presented byMorris [? ] as a screeningmethod
and later improved by Campolongo et al [7]. It is a non-intrusive method that
has been applied in the cardiovascular �eld [? ? ]. It allows to compute sen-
sitivity indices of the strain distributions without requiring the use of meta-
modeling techniques.
To explain the sensitivity analysis we �rst consider a general case with np pa-
rameters. We built a structured grid with a nn nodes resolution along each
parameter direction in the parameter space yielding nnpn parameter combi-
nations. Using an optimized sampling strategy we generated nt trajectories
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with a maximum spread [7], visiting a total of M different parameter com-
binations. Each trajectory visits a set of np + 1 nodes in the parameter grid
(~sj1 , ~sj2 , ..., ~sjnp , ~sjnp+1) that allows the computation of an elementary effect
along every parameter direction i (~sji+1 = ~sji + ∆i~ei, for i = 1, ..., np). As
output we considered all six end-systolic Green-Lagrange strain components
Eαβ, referred to the state at end diastole, where α and β are in {c, l, t}.
As in 3.2.6, per strain component Eαβ and per node ~xk in the FE model, we
computed the coef�cient of variation (CV), de�ned as the standard deviation
of the strain component computed over all theM simulated �ber con�gura-
tions normalized with respect of the norm of the average respective strain.

Eavgαβ (~xk) =
1

M

M∑
j=1

Eαβ
(
~xk, ~s

j
)
, (4.2.18)

CV avg
Eαβ

(~xk) =

√
1

M−1

∑M
j=1

(
Eαβ (~xk, ~sj)− Eavgαβ (~xk)

)2

‖Eavgαβ (x) ‖∞
, (4.2.19)

where k = 1, ..., NLV , NLV is the number of nodes used in the discretization
of the �nite element LVmodel, and ‖Eavgαβ (x) ‖∞ is the `∞ normover all the LV
nodes ~xk. To analyze the contribution of each parameter to the CV, we �rst as-
sessed the elementary effectsEEi. For a speci�c point in the parameter space
~s = (s1, . . . , snp), EEi,αβ gives an estimation of the effect that a perturbation
in parameter si by an amount ∆i has on a strain component Eαβ:

EEi,αβ (~xk, ~s) =
Eαβ (~xk, ~s+ ∆i~ei)− Eαβ (~xk, ~s)

∆∗
, (4.2.20)

∆∗ =
nn

2 (nn − 1)
, (4.2.21)

∆i = 2∆∗rangei, (4.2.22)

where k = 1, ..., NLV , ~ei is the i-th vector of the standard orthogonal basis of
the np-dimensional parameter space, nn is the grid resolution of the parame-
ter space, and rangei is the actual range considered for the i-th parameter.

Elementary effects EEi,αβ were computed for all six end-systolic strain com-
ponents. By collecting all the elementary effects over thent trajectories, three
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sensitivity indices were computed as follows:

µi,αβ (~xk) =
1

nt

nt∑
j=1

EEji,αβ
(
~xk, ~s

ji
)
, (4.2.23)

µ∗i,αβ (~xk) =
1

nt

nt∑
j=1

|EEji,αβ
(
~xk, ~s

ji
)
|, (4.2.24)

σi,αβ (~xk) =

√√√√ 1

nt − 1

nt∑
j=1

(
EEji,αβ (~xk, ~sji)− µi,αβ (~xk)

)2
, (4.2.25)

where k = 1, .., NLV , nt is the number of trajectories, µi gives an overall esti-
mation of the effect of a variation onparameter si,µ∗i is used to detectwhether
variations on si are non in�uential, and σi gives information about howmuch
the effect of a perturbation on si depends on the sampling point in the param-
eter space, giving an estimation of the ensemble of the parameter’s effects due
to interactions and nonlinear behaviors. Note that these quantities are statis-
tics of the elementary effects and therefore are summed over the number of
trajectories.
To obtain the average strain variation within the parameter space, we multi-
plied the indices µi,αβ (~x) and µ∗i,αβ (~x) by the variation step ∆∗. We then nor-
malized the variationwith the in�nity normof the respective strain computed
using the reference �ber con�guration as follows:

µ̂i,αβ =
µi,αβ∆∗

‖Erefαβ ‖∞
, µ̂∗i,αβ =

µ∗i,αβ∆∗

‖Erefαβ ‖∞
, σ̂i,αβ =

σi,αβ∆∗

‖Erefαβ ‖∞
(4.2.26)

where i varies between 1 and np as the parameters.
To summarize the detailed node-wise information in µ̂i,αβ (~x) and µ̂∗i,αβ (~x)we
compute the average 1-norm which is the 1-norm re-scaled using the number
of nodes involved in the �nite element LV discretizationNLV

µ̂avgi,αβ =
1

NLV
‖µ̂i,αβ (~x) ‖1 =

1

NLV

NLV∑
k=1

|µ̂i,αβ (xk) |, (4.2.27)

µ̂∗,avgi,αβ =
1

NLV
‖µ̂∗i,αβ (~x) ‖1 =

1

NLV

NLV∑
k=1

|µ̂∗i,αβ (xk) |, (4.2.28)

σ̂avgi,αβ =
1

NLV
‖σ̂i,αβ (~x) ‖1 =

1

NLV

NLV∑
k=1

|σ̂∗i,αβ (xk) |. (4.2.29)
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We use σ̂avgi,αβ to estimate the interactions between the parameters. Differently
from3.2.6, to fully investigate the sensitivity of LVwall strains to settings of the
�ber parameters, we performed three types of analysis: the complete analy-
sis, the single-parameter analysis, and the double-parameter analysis. In the
complete analysis (np = 5, nn = 4, nt = 500), we varied all the 5 parame-
ters altogether around the reference con�guration reported in Table 4.1. We
performed also 5 single-parameter analyses (np = 1, nn = 128, nt = 64) in
which we varied one single parameter at a time. The considered parameter
was varied according to the range reported in Table 4.1 while the other pa-
rameters were kept at their reference values. Lastly, we performed 10 double-
parameter analyses (np = 2, nn = 16, nt = 128) varying a pair of parameters
per time. The two considered parameters were varied according to the range
reported in Table 4.1 while the other parameters were kept at their reference
values.
We used the results from the complete analysis to compute the CV and the
sensitivity indices µ̂i,αβ, µ̂∗i,αβ, and σ̂i,αβ. The σ̂i,αβ computed in this analysis
includes both the possible nonlinear behavior of the considered parameter
and all the interactions with the other parameters until the ��h order. It is
therefore hard to assess the contribution of each individual parameter to the
interactions using only results coming from this analysis. To this end, weused
results from the single-parameter analyses to estimate the nonlinear behavior
of each parameter and those from the double-parameter analyses to estimate
themagnitude of second order interactions. When no superscript is indicated
on µ̂i,αβ, µ̂∗i,αβ, and σ̂i,αβ we refer to results coming from the complete analysis
varying all the �ve parameters altogether. In the investigation of interactions
we indicated as σ̂avgi,αβ the index coming from the complete analysis, as σ̂avg,1i,αβ

the index coming from the single-parameter analysis, and as σ̂avg,2i,αβ the index
coming from the double-parameter analysis. We indicated with σ̂avg,inti,αβ the
component of σ̂avg,2i,αβ that account for the second order interactions only. It is
de�ned as follows

σ̂avg,inti,αβ (j) = σavg,2i,αβ (i, j)− σavg,1i,αβ (i) , if i 6= j, (4.2.30)

where i is the parameter along which the elementary effects are computed,
and j is the parameter for which the interaction with i is assessed. The pur-
pose is that of investigating and distinguishing the nonlinear behavior (given
by σ̂avg,1i,αβ ) from the second order interactions (in σ̂avg,2i,αβ together with the non-
linear part).
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4.3 Results

4.3.1 Complete analysis

In the complete analysis, we computed the sensitivity indices for the end-
systolic strains byperforming constant preload-constant a�erloadexperiments
for the selected combinations of �ber parameters. The �ve parameters of the
5-parameter �ber model were within the ranges presented in Table 4.1. Each
constant preload-constant a�erload experiment was preceded by an unload-
ing stage in which the average end-diastolic con�guration was de�ated using
the selected �ber �eld. The unloading procedure from the average MESA ge-
ometry (Vc,ED = 106.41mL) resulted in an average unloaded cavity volume
Vc,0 of about 42.44±0.06mLand an average cavity pressure of 1.483±0.012kPa.
In�ation of the unloaded geometry until an end-diastolic pressure of 1.5 kPa
yielded an end-diastolic volume of 107.57±0.32mL. Ejection against the a�er-
load pressure of 12 kPa resulted in a stroke volume of 49±7mL and an ejection
fraction of 46± 6 %. Thus, the effect of �ber orientation during passive �lling
is minor as compared to the effect during active ejection. The ejection frac-
tion of the central parameter combination is 53 %. About 67% of the standard
deviation is due to t0u and h0

v only.
Figure 4.3 shows the spatial distribution and the histogram of the coef�cient
of variation (CV) of normal strains: the circumferential strain Ecc, the longi-
tudinal strain Ell the transmural strain Ett. The norms used in the de�nition
of CV in (4.2.19) were ‖Eavgcc ‖∞ = 0.28, ‖Eavgll ‖∞ = 0.26, and ‖Eavgtt ‖∞ = 1.32.
Themaximum values of the CV occur in both the basal and the apical regions
forEcc,Ell, andEtt. Theminimumvalues forEcc andEtt aremostly in the sub-
epicardium, and for Ell the minimum values occur in the sub-endocardium
in the equatorial region. For the circumferential, the longitudinal and the
transmural strains the coef�cient of variation ranges from about 4% − 56%,
5%−44%, and 3%−47%, respectively. From the spatial distributions of CV in
Figures (4.3a, 4.3b, 4.3c), we derived the histograms shown in Figures (4.3d,
4.3e, 4.3f). From the histograms the average and the standard deviation are
about 15%± 7% for Ecc, 22%± 8% for Ell, and 17%± 7% for Ett.
Figure 4.4 shows the spatial distribution and thehistogramof the coef�cient of
variation (CV) of shear strains: the circumferential-longitudinal shear strain
Ecl, the circumferential-transmural shear strain Ect, and the longitudinal-
transmural shear strain Elt. The norms used in the de�nition of CV were
‖Eavgcl ‖∞ = 0.19, ‖Eavgct ‖∞ = 0.60, and ‖Eavglt ‖∞ = 0.54, The maximum values
for the CV occur in both the basal and the apical regions for Ecl, at mid-wall
in both basal and equatorial regions for Ect, and at the apex for Elt. The min-
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imum values occur on the endocardial side at equator for Ecl, in most of the
sub-endocardial region and at the apex for Ect, and mostly between mid-wall
and the sub-epicardial region for Elt. For the circumferential-longitudinal,
the circumferential-transmural and the longitudinal-transmural shear strains
the coef�cient of variation ranges in about 7%−49%, 5%−64%, and 4%−63%,
respectively. The bottom row of Figure 4.4 shows the frequency of CV for nor-
mal strains. From the histograms the average and the standard deviation are
25%± 8% for Ecl, 38%± 18% for Ect, and 21%± 9% for Elt.
To explain how the different parameters contribute to the CV of the strains,
in Table 4.2 we report the sensitivity index µ̂∗,avg for the six considered strains
and the �ve parameters. This index is an upper bound on the sensitivity to a
parameter and it is a good proxy for the Sobol total effect index ST [7], thus
µ̂∗i,αβ can be used to detect non in�uential parameters. In Table 4.2 we high-
lighted values above 10% in pink and those larger than 20% in red. In this
respect, varying the transmural range of the helix angle αh through h1

v affects
all the strain components by less than 10 %. Variation of h1

u, determining the
longitudinal variation of the helix angle, and t1u, determining the base-to-apex
range of the transverse angle at midwall, affects only one strain component
above 10% (Ell and Ect, respectively). Instead, variation of h0

v, determining
helix angle at midwall at the equator, affects 4 out of 6 strain components be-
yond 10%. Finally, variation of t0u, determining the longitudinal position at
which the transverse angle is zero, affects 6 out 6 strain components beyond
10% of which Ect and Elt beyond 20%.

h0
v h1

v h1
u t0u t1u

Ecc 9.91 2.76 3.64 13.98 9.24

Ell 10.46 8.71 13.35 13.44 8.72

Ett 8.17 3.21 4.49 15.67 7.90

Ecl 19.44 7.56 8.18 12.29 7.23

Ect 10.92 3.85 5.99 35.96 14.27

Elt 13.45 4.68 6.46 21.01 9.81

Table 4.2: Spatially averaged relative sensitivity of strains Eαβ (rows) to variations in the i-th
parameter (columns), expressed in parameter µ̂∗,avgi,αβ [%]. Values above 10% are highlighted in
pink. Those above 20% are highlighted in red.
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Figure 4.5 shows the spatial distribution of µ̂i,αβ (~x) for each strain component
categorized in �ve regions: below −20%, between −20% and −10%, between
−10% and 10%, between 10% and 20%, and above 20%. On top of each bar the
value µ̂avgi,αβ is indicated. To explain the presentation, we �rst focus on the ef-
fect of parameter h0

v on the normal strainEcc, presented in the upper le� bar.
The green region indicates that in 65% of the LV nodes the effect of a varia-
tion of h0

v on Ecc was below 10% of the value of Ecc obtained with the central
parameter settings. The orange region indicates thatEcc was increased in be-
tween 10% and 20% of the average value in 25% of the nodes. The red region
indicates thatEcc was increased by more than 20% of the average value in 8%
of the nodes. Apparently, Ecc is reduced by more than 10% in only 2% of the
nodes. Figure 4.6 shows how these changes in Ecc are distributed over the
LV wall, represented by a 17 segment AHA distribution. The increase in Ecc
occurs mainly in the sub-endocardial, sub-basal region.
Overall, h0

v affects 2 out of 6 strain components with a µ̂
avg
h0v ,αβ

beyond 10%:
Ecl (18.2%), and Elt (10.8%). Ecl tends to increase due to variation in h0

v by
more than 10% in 87% of the geometry and by more than 20% in 40% of the
geometry. Those variations occur almost everywhere in themyocardiumwith
a largermagnitude in the sub-epicardium, as shownby Figure 4.6. Elt tends to
increase due to variation in h0

v by more than 10% in 39% of the geometry and
by more than 20% in 12% (dark red bar), mostly in the apical regions (except
the septum, see Figure 4.6), while Elt tends to decrease by more than 10% in
9% of the geometry.
Variation of h1

v does not affect any strain component on average beyond 10% .
There is a slight tendency for an increaseofEll in the equatorial sub-epicardial
region, see Figure 4.6.
Variation of h1

u affects mainly Ell with a µ̂
avg
h1u,ll

= 12.8%. Ell tends to increase
due to variation in h1

u by more than 10% in 48% of the geometry and by more
than 20% in 19% of the geometry, mostly in the sub-epicardial equatorial re-
gions (Figure 4.6).
Variation of t0u affects 5 out of 6 strain components with a µ̂

avg
t0u,αβ

beyond 10%:
Ect (35.3%),Elt (19.5%),Ett (13.4%),Ell (11.5%), andEcl (10.8%). In particular,
variationof t0u affectsEll andEcl similarly (11.5% and 10.8%, respectively)with
a similar distribution of positive and negative contributions. Variation in t0u
increases Ell in 20% of the geometry and increase Ecl 23% of the geometry,
both at the base, while variations in t0u decrease Ell in 25% of the geometry
in the apical sub-epicardial regions and decrease Ecl in 17% of the geometry.
The average in�uence of t0u onEtt is 13.4%. Ett increases due to variation in t0u
bymore than 10% in 41% of the geometry and bymore than 20% in 17% (dark
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red bar), mostly in sub-equatorial regions, whileEtt decreasesmore than 10%
in 18% of the geometry and by more than 20% in 8% (dark blue bar), mostly
in at the base Figure 4.6. Variations in the value of t0u greatly affectEct (35.3%)
asymmetrically with the tendency to reduce its value by more than 10% in
71% of the geometry and by more than 20% in 59% (dark blue bar). Figure 4.6
shows how these changes occur almost everywhere in the myocardium with
the exception of the apex. Variations in the value of t0u largely affect also Elt
(19.5%) although in a more symmetric manner. Elt tends to increase due to
variation in t0u bymore than 10% in 42% of the geometry andbymore than 20%
in 28% of the geometry (dark red bar), mostly in the sub-endocardial region
(Figure 4.6), whileElt tends to decreasemore than 10% in 27% of the geometry
and by more than 20% in 16% of the geometry (dark blue bar), mostly in the
sub-epicardium.
Variation in t1u affects mainly Ect with a µ̂

avg
t1u,ct

= 13.2%. Ect tends to increase
by more than 10% in 45% of the geometry and by more than 20% in 22% of
the geometry. Those increases happen in the apical regions with larger mag-
nitude in the sub-epicardium, as shown by Figure 4.6.
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Figure 4.6: AHA 17 segments representation of µ̂i,αβ averaged over each segment. The my-
ocardium has been split in two regions: the sub-epicardium, from endocardium to mid-wall;
and sub-epicardium, frommid-wall to epicardium.
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To evaluate the interactions between the setting of parameters, we evaluate
σ̂i,αβ together with µ̂i,αβ. Figure 4.7 shows the cumulative effect of the di-
rect in�uence (µ̂i,αβ) and the ensemble of nonlinear effect and interactions
(σ̂i,αβ) for all the combinations of strain components and parameters. The to-
tal height of the bars (black values on the top) indicates the overall in�uence
of a parameter on a strain component due to its direct effect (red bar, rep-
resenting µ̂avgi,αβ) and due to nonlinear effects and interactions with other pa-
rameters (blue bar, representing σ̂i,αβ). The percentage contributions to the
overall in�uence due to µ̂i,αβ and σ̂i,αβ are indicated in white on the respec-
tive bars. We applied the k-means algorithm to create two groups out of the
30 combinations, representing strain-parameter combinations with high and
low total overall in�uence. The group of high overall in�uence includes all the
parameter-strain combinations that exceed the threshold value of about 20 %.
No combinations of h1

v and h1
u with any strain components are present in the

high overall in�uence group. The eight combinations in this group, sorted in
descending order, are: Ect, Elt, Ett, Ecc, Ell, due to t0u; Ecl, and Elt due to h0

v;
andEct due to t1u. The percentage contribution of σ̂

avg
i,αβ to the overall in�uence

for these bars ranges between 34% and 66%. For these elements, the overall
in�uence on the respective strain component can be lowered by studying the
composition of σ̂i,αβ using single and double-parameter analyses.

4.3.2 Single-parameter and double-parameter analyses

To investigate deeper the interactions between parameters, we compare the
value of σ̂avgi,αβ coming from the complete analysis with the ones obtained from
the single-parameter and the double-parameter analyses. We recall that the
complete analysis was obtained analyzing the sensitivity of all parameters to-
gether, the single-parameter analysis was obtained varying only one single
parameter and keeping the rest at their reference values, and the double-
parameter analysis was obtained varying all the possible pairs of parameters
and keeping the other parameters at their reference values. The σ̂i,αβ com-
puted in the single-parameter analysis represents the nonlinear effect of the
considered parameter. The σ̂i,αβ computed in the double-parameter analysis
represents the nonlinear effect of the considered parameter and its interac-
tion with the other parameter included in the analysis. The σ̂i,αβ computed
in the complete analysis represents the nonlinear effect of the considered pa-
rameter and its interaction with the other parameter included in the analysis.
The use of the three σ̂i,αβ computed in the three analyses allows to evaluate
the nonlinear effect of a parameter, the second order interactions, and the re-
maining higher order interactions. The results are shown in Figure 4.8. We fo-

138



In Silico Assessment of Sensitivity of LV Wall Strains to Fiber Orientation

cus on the 8 strain-parameter combinations with high total overall in�uence,
as identi�ed in the complete analysis. For each strain-parameter combina-
tion we show three bars: the black one represents σ̂avgi,αβ, the interactions of
any order up to the ��h between the 5 parameters and nonlinear effects from
the complete analysis; the second bar represents σ̂avg,inti,αβ , the second order
interaction between the considered parameter and the one indicated by the
bar color; the third bar represents σ̂avg,1i,αβ , the nonlinear behavior of the con-
sidered parameter. 5 �gures out of the 8 in Figure 4.8 refer to t0u, meaning that
this parameter not only is in�uential for most of the strain components but
also presents interactionsmore than the other parameters. In those 5 �gures,
the nonlinear behavior of t0u is always larger than the sum of all the second
order interactions. The parameter showing the largest interaction with t0u is
t1u, as shown by the red bars representing σ̂

avg,int
t0u,αβ

. The interactions between
h0
v and t0u are comparable to those between t0u and t1u forEct andElt, as shown
by the light blue bars. 2 �gures out of the 8 in Figure 4.8 refer to h0

v and con-
cernEcl andElt. All the parameters interact with h0

v similarly and there is not
a dominant parameter in the interactions. The last �gure refers to t1u. Ect is
affected by the interactions of t1u with the other parameters. The interaction
between t1u and t0u is dominant while the nonlinear behavior of t1u equals the
effect of the remaining interactions.
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4.4 Discussion

4.4.1 Methods

We performed an unloading phase in order to get a virtually unloaded geom-
etry starting from the average end-diastolicMESA con�guration. The unload-
ing procedure led to physiological values for both cavity volume and cavity
pressure. The average ratio between the computed unloaded cavity volume
and wall volume Vc,0/Vw = 0.34 agrees with the values measured by Nikolić
et al [23] and McCulloch et al [19]. The low standard deviation found on es-
timated end-diastolic pressure shows that the in�uence of �ber orientation
during the LV passive �lling is low. This is not surprising, since the level of
anisotropy of the myocardium in the passive phase is low (the ratio between
�ber and cross-�ber stiffness being about 2).
We did not couple our LV model to a closed circulation model because then
ventricular preload and a�erloadwould becomedependent onLVpump func-
tion itself: a lower pump function would lead to a lower arterial pressure and
volume, and consequently a higher preload pressure and vice versa. In our
constant preload-constant a�erload experiment, we avoid that the feedback
from the circulation model could confound our results and ensure that we
purely test the effects that �ber orientation has on the contractile function of
the LV.
We used the elementary effects method to compute the sensitivity indices µ,
µ∗, andσ, and to compute theCVof strains. In all the three sensitivity analyses
we adopted a number of trajectories large enough to achieve a high coverage
of the parameter space and to allow the sensitivity indices to converge. How-
ever, because of the computational effort required by the analysis, the more
parameters we included in the sensitivity analyses, the lesser was the reso-
lution of the parameter space. For this reason, in the complete analysis, the
number of nodes along each direction was set to 4. The choice of the param-
eter space grid resolution affects directly the computation of elementary ef-
fects via ∆∗. However, ∆∗ converges to 0.5 as nn approach in�nity, according
to (4.2.21). This means that increasing the resolution of the parameter space
may lead to changes in the elementary effects, but this increase should re�ect
the convergence of∆∗. Instead, the enrichment of the parameter spacewould
probably allow to highlight even more the nonlinear behavior of parameters
and their interactions, since variations in the parameter would induce com-
plex nonlinear variations in the spatial strain distribution. To investigate in
more detail the nonlinear behavior and the second order interaction of pa-
rameters, we applied the elementary effect method using increasing number
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of parameters (np = {1, 2, 5}) and decreasing number of nodes per parameter
(nn = {128, 16, 4}). From this analysis, it emerged that higher order interac-
tions were much smaller than second order interactions and non-linearities.
To understand whether this is due to the limited resolution of the complete
analysis or it is actually a property of the considered model, the same analy-
sis must be performedwith amuch �ner parameter space grid. However, due
to the high computational cost, the coverage of the total parameter combina-
tions must be lowered to make this analysis feasible.

4.4.2 Results

Effects of �ber orientation on hemodynamics

We achieved the end-diastolic con�guration by setting a �xed preload pres-
sure of 1.5 kPa for all the �ber con�gurations considered. The end-diastolic
cavity volume shows very little variation, meaning that �ber orientation does
not affect the �lling phasemuch. This can be explained by the low anisotropy
if themyocardium during �lling. Conversely in the active phase, where �bers
contract and tissue anisotropy is much higher, the change in volume is much
more affected by the orientation of �bers. Similarly, ejection fraction is also
largely affected by �ber orientation (46±6%). This variation isway larger than
that found in our sensitivity analysis to geometry [2], where it was about 2%
(53±1%). Most of this variability is due to h0

v and t0u. The average ejection frac-
tion obtained in this analysis is a bit lower than normal physiological values;
however, we consider it to be good enough to obtain meaningful end-systolic
strains for our sensitivity analysis.

Effects of �ber orientation on end-systolic strains

Our results shows that end-systolic shear strains are in generalmore sensitive
to �ber orientation as compared to normal strains. Among the shear strains,
Ect and Ecl are the most affected. From a mechanical point of view, Ecl is
related to shortening of the oblique �bers in the sub-endocardial and sub-
epicardial layers. Contraction of sub-endocardial myo�bers (αh ∼ 60◦) would
cause a clockwise apical rotation, when viewing the apex in apex-to-base di-
rection. Contraction of sub-epicardialmyo�bers (αh ∼−60◦) would cause the
opposite effect. The balance between these effects will result in a net rotation
and a net torsional deformation and will create a transmural shear load that
leads to circumferential-radial shear. This shear load is counteracted by the
passive myocardial tissue and by the myo�bers transmural component intro-
duced by the transverse angle αt. Among the normal strains, Ecc is related to
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the overall circumferential component of �bers and Ell is related to the over-
all longitudinal component of �bers. Both the circumferential and the longi-
tudinal components of �ber orientation are mainly determined by the helix
angle αh. Instead,Ett is related to both the helix and the transverse angle. On
the one hand, to a �rst approximation, Ett is strongly coupled to Ecc and Ell
by incompressibility and is related to αh. On the other hand, the transmural
�ber component introduced by αt increases the transmural stiffness, which
in turn affects Ett. Following this interpretation, we expect that parameters
describing αt would affectEct. In fact, among the parameters describing this
angle, t0u (the mid-wall value assumed by αt at equator) is the most in�uen-
tial parameter, since it affects 5 out of 6 strain components beyond 10%. It
affects the mostEct with the tendency to decrease it. Parameter t1u affectsEct
to a lesser amount than t0u. Conversely from t0u, t1u increases Ect. t0u affects
the ratio of the size of the two regions having positive αt (base) and negative
αt (apex). Instead, t1u affects the magnitude of αt in those regions. This dif-
ference might explain the different effect on Ect. This also explains the large
secondorder interaction foundbetween the twoparameters. In fact, our anal-
ysis of interactions between parameters for the most affected strains shows
that t1u is always the parameter interacting the most with t0u and vice-versa. In
this analysis, the nonlinear effect of a parameter is discerned from the inter-
action with other parameters. The secondmost in�uential parameter, h0

v (the
mid-wall value of assumed by αh at equator), largely affects 2 out of 6 strain
components. It mostly affectsEcl with the tendency to increase its value. This
can be motivated by the fact that h0

v introduces transmural asymmetry in the
helix angle, thus shi�ing the balance in torque, created by the oblique �bers
in the sunendocardial and subepicardial layers. This interpretation explains
also the small increase of Ect induced by h0

v. Surprisingly, other parameters
describing the helix angle, h1

v (the transmural slope of αh) and h1
u (the longi-

tudinal slope of αh) resulted to be quite non-in�uential. Their main contribu-
tion is in the slight increase ofEll that canbe explainedby anoverall increased
longitudinal component of the �bers.
Besides being the most in�uential parameter, t0u shows also the largest non-
linear behavior, which at least equals the sum of all the second order interac-
tions. For this reason, among all the parameters, t0u should be included in the
description of �bers and should be carefully personalized. Also h0

v must be
included in αh and, given its in�uence, also its value should be personalized.
Among the least in�uential parameters, we found h1

v, h1
u, and t1u. However,

two considerationsmust bemade. First, we found a large interaction between
t1u and t0u (Figure 4.8). This interaction creates an indirect in�uence of t1u on
the strain components affected by t0u and the other way round (Figure 4.7 and
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Figure 4.8). It is therefore convenient to include also t1u among the in�uential
parameters. Second, both h1

v and h1
u modify the transmural slope of the helix

angle. Consequently, we may have over-represented variations in the trans-
mural slope of αh (see Figure 4.2c). Nonetheless, even when over-estimated
the transmural slope of the helix angle does not affect end-systolic strains as
much as t0u and h0

v. For this reason, we consider these two parameters non
in�uential and we suggest to set them to generic values that represent the av-
erage values found in the human population.
Although we were conservative in the setting of the parameter ranges of αt,
the transverse angle resulted to be the most in�uential angle in the descrip-
tion of �bers. In fact, we included data from Geerts et al [11], whose mea-
sured values for the transverse angle comply well with the small transverse
angle measured by Streeter et al [32]. The resulting values of the transverse
angle are in line with those presented by Toussaint et al [34] for in-vivo mea-
sured DTI �bers. However, DTI measurements of other studies (e.g. Lom-
baert et al [17]) present larger values for the transverse angle, especially at
the endocardial side. This might be due to dif�culties of the reconstruction
algorithms in identifying the surfaces, especially at endocardium where the
presence of papillary muscles and of trabeculation make the determination
of a surface very dif�cult. The irregular trabeculated surface might affect the
computation of the basis vectors used for the computation of angles, while
the presence of papillary muscles may bias the diffusion tensor acquisition.
This might explain the large values measured for the transverse angle, since
non nil αt at the endocardiummeans �bers sticking out from the surface.
Other studies have investigated the sensitivity to �ber orientation in the con-
text of cardiac mechanics. In particular, sensitivity of the passive mechanics
of the le� ventricle to �ber orientation has been addressed byWang et al [35],
Hassaballah et al [13], Nikou et al [24], and Rodriguez-Cantano et al [29]. Has-
saballah et al [13] studied the effects that �ber orientation have on the cav-
ity volume during the diastole and compared their results with experimental
measurements. No quantitative assessment was performed, but among the
most physiological �ber�elds considered (αh,epi, αh,endo = −60◦, 60◦,−30◦, 60◦,
and −60◦, 30◦), basically a null coef�cient of variation of the cavity volume is
observed throughout the �lling phase. This is in line with the low variability
in end-diastolic cavity volume found in our results. Wang et al [35] and Nikou
et al [24] tested the effects that variations in the transmural range of the helix
angle have on end-diastolic stress along �bers. Both the analyses concluded
that end-diastolic �ber stress is affected by the helix angle. However, both
studies lack a proper quanti�cation of the sensitivity. From the circumferen-
tial distribution of �ber stress at mid-ventricle presented by Nikou et al [24]

144



In Silico Assessment of Sensitivity of LV Wall Strains to Fiber Orientation

an average coef�cient of variation of about 13 % is to be expected. Rodriguez-
Cantano et al [29] assessed the sensitivity of 4 end-diastolic quantities of inter-
est to bothmodel based variations to �ber orientation and to �ber orientation
seen as a random vector �eld. They employed the Polynomial Chaos Expan-
sion together with Quasi-Monte Carlo simulations to quantify the sensitivity
using the Sobol sensitivity indices [31] and coef�cient of variations. They con-
cluded that the 4 end-diastolic quantities of interest (end-diastolic cavity vol-
ume, apex lengthening, wall thickening, and wall volume) are rather insen-
sitive to endocardial and epicardial values of the helix angle (affecting only
2 % of the output variance), while are more sensitive to local variations and
noise in the �ber orientation (about 4 % coef�cient of variation). In our study,
we did not focus on end-diastolic stresses and strains. But we found that end-
diastolic �lling volume is hardly affected by �ber orientation and attributed
this to the low anisotropy of the passive tissue. The same motivation prob-
ably explains the low sensitivity of end-diastolic stresses and strains to �ber
orientation.
Concerning the sensitivity of the mechanics of the le� ventricle to �ber ori-
entation during the active phase, Geerts et al [12] compared the sensitivity of
average �ber strain and stress during the ejection phase to variations in ge-
ometry de�nition spanning the whole human population with sensitivity to
variations in the helix angle in the range of ex-vivo measurement error. They
concluded that the coef�cient of variation of �ber strain for the considered
variations in geometry is about 10 %, which is comparable with the same co-
ef�cient of variation computed for variation of 8◦ in �ber orientation. Con-
sidering the wide range of geometries included in their analysis as compared
with the limited variation included in �ber orientation, their results highlight
the stronger in�uence of �ber orientation in computation of �ber strain. Plui-
jmert et al [28] quanti�ed that a perturbation of about 8◦ in the �ber orienta-
tion led to a variations in pump work in the range of 11 − 19%, which was
at least double the one obtained applying variations to the description of ge-
ometry (5%). Although it is not a global sensitivity analysis on local strain
distributions, this analysis gives results qualitatively in agreement with ours
with �ber in�uencing end-systolic strains by two times more than geometry
[2] (see Figure 4.9). In fact, compared with our previous sensitivity analysis
of end-systolic strains to real human geometries [2], we found that the uncer-
tainty propagated from �ber orientation to the strain components is at least
twofold that propagated from the geometry. Most of this uncertainty is due to
the transverse angle. Current models tend to focus on patient-speci�c geom-
etry and o�en use generic rule based �ber �eld, typically modeled using h1

v

only and neglecting the transverse angle. Our results suggest that a precise
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Comparison between the spatial distribution of SD due to variation of �ber orien-
tation computed in this study (light blue) and the spatial distribution of SD due to variation of
geometry description (red) from chapter 3.

prediction of end-systolic strains may be hindered by the lack of information
concerning �ber orientation, even when using a personalized geometry.
To our knowledge, no other global sensitivity study that addressed the sensi-
tivity of end-systolic strains to �ber orientation has been published in litera-
ture. In this sense, this is the�rst attempt to quantify variations in end-systolic
strain distributions induced by variation inmyo�ber orientation representing
the variability within the human population.

4.4.3 Limitations

Limitations of this study are related to the choice of the mathematical model,
the availability of data, and the computational cost. Regarding themathemati-
calmodel, we assumed the onset of active stress development to be simultane-
ous throughout the geometry. Even though it has been suggested that pattern
of mechanical activation is less inhomogeneous than pattern of electrical de-
polarization [14], the effect of asynchronous mechanical activation might be
investigated.
Another limitation shared with other similar studies [12, 13, 35, 24, 29, 25] is
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the geometry, which is an isolated LV. We generated the geometry from the
MESA dataset which includes the LV only. It is not clear how the difference
in wall thickness of the RV may impact on the sensitivity indices. In general,
we expect that, due to the mechanical coupling between the two ventricle,
the strain distribution patterns would be affected in a bi-ventricular geome-
try. However, in terms of sensitivity, Pluijmert et al [28] used a bi-ventricular
geometry and obtained results similar to ours.

We opted tomodel �ber orientation using a rule-based approach and to inter-
pret measurements found in literature in terms of parameters of our model.
Even though we use a simpli�ed 5-parameter model, the �ber orientation
included in our analysis (see Figure 4.2) complies with both physiology and
other studies of this kind (Geerts et al [12] and Pluijmert et al [28], for in-
stance). All the �ber �elds were generated using an axisymmetric model.
We partly compensated for the lack of circumferential variability in our rule-
based model by reorienting the �ber according to the geometrical mapping
between the template axisymmetric geometry and the average geometry of
the MESA population [20].

Another source of uncertainty concerns the boundary conditions. The uni-
form pressure boundary condition at the endocardial surface and the stress
free conditions at the epicardial surface are commonly used in other models
in literature and considered appropriate. Applying realistic boundary condi-
tions at the base, to represent the interactions with the atria and the large
arteries is less obvious. At the base we avoided rigid body motions trying not
to constrain the basal deformations too much. In fact, we adopted the same
boundary conditions applied in [6], that are in line with other models in lit-
erature and comply with the �ndings of a recent study comparing different
choices of boundary conditions [26].

Due to the high computational cost related to the complete sensitivity analysis
and the analyses performed to investigate the low order interactions, we did
not re�ne further the grid for the discretization of the parameter space. This
would have required further compromises in the discretization of the �nite
element solution or the use of meta-modeling techniques (see for instance
[5, 4, 3]). In this respect, our resultsmust be seen as lower bound estimations.
We cannot exclude that increasing the parameter space grid resolutionnn and
studying the second order interactions further from the reference parameter
combinationmight increase the role of nonlinear behaviors and interactions.
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4.5 Conclusions

In this work we assessed the sensitivity of LV end-systolic wall strains to LV
�ber orientation, varied according to ranges inferred from data found in lit-
erature. We quanti�ed how the uncertainty propagated from parameters de-
scribing�ber orientation affects the spatial distributionof end-systolicGreen-
Lagrange strains. To the best of our knowledge this is the �rst attempt to apply
global sensitivity techniques to quantify the effects that �ber orientation have
on 3D end-systolic strain �elds.
We concluded that the strain components most affected by �ber orientation
are two shear-strains: the circumferential-transmural shear strainEct, with a
coef�cient of variationof 38±18%; and the circumferential-longitudinal shear
strain Ecl, with a coef�cient of variation of 25 ± 8%. Most of the variability
of Ect is due to t0u, describing the longitudinal offset of the transverse angle,
while most of the variability of Ecl is due to h0

v, describing the transmural
offset of the helix angle. The two parameters t0u and h0

v were found to be the
most in�uential among all those considered. Parameter t1u, describing the
longitudinal slope of the transverse anglewas less in�uential, and parameters
h1
v, describing the transmural slope of the helix angle, and h1

u, describing the
longitudinal slope of the helix angle, resulted to be the least in�uential.
These conclusions imply that the transverse angle should be included in the
description of �ber orientation to correctly predict the end-systolic strain dis-
tribution. Moreover, in the context ofmodel personalization, the personaliza-
tion of the helix angle should focus on the transmural offset rather than the
most commonly modeled transmural range.
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Abstract

In chapter 4 we showed that �ber orientation is a major factor in the deter-
mination of end systolic strains within �nite element models of cardiac me-
chanics. Its precise modeling might improve the �delity of models andmight
lead to better estimations when these models are used to inversely analyse
patient data. Unfortunately, patient-speci�c �ber orientation measurements
via DT-MRI are not viable nowadays in clinical practice. Therefore, alterna-
tivemethods are required to assess patient-speci�c �ber orientation based on
viable data. In this respect, we investigated the application of the Reduced Or-
der Unscented Kalman Filter to estimate rule-based �ber orientation param-
eters from end systolic wall strains of the patient, as could be observed using
imaging techniques commonly included in clinical practice. We address the
estimation of �ber orientation in the physiological le� ventricle. End systolic
strain observations were generated in-silico using two different rule-based
�ber models. The estimation process focused on the determination of the
three most in�uential parameters emerged from our sensitivity study: two
model parameters for the transverse angle (describing the endocardium-to-
epicardium component of the �ber vector) and one model parameter for the
helix angle (describing the base-to-apex component). Results show that the
strain component Ect alone carries enough information to achieve the esti-
mation of the three parameters hv0 (the transmural offset of the helix angle),
tu0 (the longitudinal offset of the transverse angle), and t

u
1 (longitudinal slope

of the transverse angle) within the measurement error of DT-MRI.
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5.1 Introduction

Patient-speci�c models of cardiac electromechanics might constitute a pre-
cious tool for assisting cardiologists during decision making. Patient-speci�c
models are obtained by tailoring a generic model including patient data. Pa-
tient data come typically from imaging techniques currently adopted in the
clinic, suchasMRI andUltrasound. Using suchmethodologies, patient-speci�c
geometries can be derived andmyocardial strains can be computed non-inva-
sively [14, 3, 17, 22]. Non-invasive in-vivo strain measurements are o�en in-
cluded in data assimilation procedures in order to achieve a patient-speci�c
model that allows a physics-based interpretation of patient data [5, 18, 27, 11,
12, 30]. Data assimilation is typically used to inversely estimate regional quan-
tities such as contractility and moment of activation. These quantities might
be helpful for clinicians during diagnosis and decision making as this infor-
mation is more directly related to the pathology than information on abnor-
malities in the spatial distribution of strains and displacement.
In models of cardiac mechanics, the orientation of �bers in the myocardium
plays an important role in determining cardiac function [25, 13]. Myo�bers
follow a complex path and constitute a major direction of anisotropy during
the myocardial contraction. In the free wall of the le� ventricle, they largely
vary their orientation transmurally in the circumferential-longitudinal plane
from −60◦ at epicardium, to approximately 0◦ (circumferential) at mid-wall,
to 60◦ at endocardium. Myo�ber orientation can be measured using Diffu-
sion Tensor MRI (DT-MRI). Peyrat et al [23], proposed a methodology to build
atlases out of ex-vivo DT-MRI measurements and applied this methodology
to measurements obtained from nine ex-vivo canine hearts. A 3D �ber at-
las from ten ex-vivo healthy human hearts has been created by Lombaert et
al [16] using DT-MRI. Typically, such ex-vivo DT-MRI data are o�en used to de-
�ne �ber �elds in models of cardiac mechanics [15], although they cannot be
considered patient-speci�c. Patient-speci�c information might be obtained
using in-vivo DT-MRI, but this is more complicated due to the bulk motion
of the heart. In this regard, Toussaint et al [28] developed a technique to re-
construct the 3D �ber �eld from several 2D slice acquisitions. However, the
acquisition of each single slice took between 10 min to 15 min. Despite op-
timizations, the current long acquisition time of in-vivo DT-MRI acquisition
does not allow its use in clinical practice.
Most o�en in data assimilation procedures applied to models of electrome-
chanics, �ber orientation is chosen according to generic ex-vivo Diffusion
Tensor MRI measurements [27] or generic rule-based �ber models [5, 12, 30].
Given the important role of �ber orientation within those models, the long
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acquisition time required by DT-MRI, and the measurement error of such
procedure, alternative solutions are required arrive at a patient-speci�c �ber
�eld and hence to improve the predictive capabilities of suchmethodology. A
possible solution might come from the application of data assimilation tech-
niques to estimate patient speci�c �ber orientationwithout requiringDT-MRI
measurements. One of the �rst attempts to use data assimilation techniques
to estimate �ber orientation was proposed by Nagler et al [20], who applied
the Reduced Order Unscented Kalman Filter (ROUKF) to estimate the param-
eters of a rule-based �ber model from noisy DT-MRI measurements. This
method, however, still relies on the availability of a DT-MRI measurement of
the patient, which is dif�cult to achieve. The same author in [21] applied a
maximum likelihood estimator to reconstruct �ber orientation from arbitrar-
ily spaced DT-MRI acquisition. Despite still relying on DT-MRImeasurement,
themethod constitutes a possible acceleration factor for DT-MRI acquisitions
for �ber orientation reconstruction. Alternatively, to overcome the dif�culty
in obtaining patient-speci�c DT-MRI measurements, the application of data
assimilation methodologies to estimate parameters of rule-based �ber mod-
els based on available patient measurements should be investigated. In this
chapter, we investigate the use of strain data to inversely estimate parameters
of a rule-based �bermodel using the ROUKF [19]. As a �rst step, we use strain
data obtained in-silico rather than in-vivo.
We perform three experiments of parameter estimation for a model describ-
ing the spatial distribution of �ber orientation. The estimation is based on the
observation of a subset of Green-Lagrange end-systolic strain components in
ellipsoidal coordinates using the end-diastolic con�guration as reference. In
the �rst experiment, observations are generated in-silico using our model of
mechanics of the LV with a simpli�ed �ber orientation model including �ve
parameters. The �ber parameters are then estimated using the same �ber
model starting from the ground truth values. This experiment is used to de-
termine which combination of strain components best allows to estimate pa-
rameters. In the second experiment, the estimation procedure involves the
same model of mechanics and the same �ber model of the previous experi-
ment, but the �ber parameters are initialized at one SD-distance from their
ground truth values. This experiment is used to determine whether the pa-
rameter estimation converges also when introducing a perturbation in the
initial guess proportional to the uncertainty typically encountered in�ber ori-
entation measurements. In the last experiment, observations are generated
using a twelve parameter �ber orientationmodel presented by Bovendeerd et
al [7] and then �ber parameters are estimated using the simpli�ed �ve param-
eter �bermodel. This experiment allows to understandwhether the presence
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of incomplete information concerning the �bermodel would still allow to ex-
tract meaningful information.

5.2 Methods

5.2.1 Reduced order unscented Kalman �lter

Kalman �ltering can be used to estimate the state of a dynamic system af-
fected by model and observation errors. It is a convenient approach that al-
lows the sequential estimation of a process state by minimizing the variance
of the estimation error. Sequential means that, as soon as new information
is available, the estimation is updated without the need of recomputing ev-
erything, but only updating the posterior probability density function (PDF)
including the new observation [4]. Assuming a linear process and a linear ob-
servationoperator, if both themodel error and theobservation error areGaus-
sian white noise, then the posterior PDF is Gaussian and the estimation ob-
tained using a Kalman Filter (KF) is optimal. Two issues prevent the straight-
forward application of the KF for the problem of cardiac mechanics: the non-
linearity and thedimensionof theproblem. A solution to the�rst issue, comes
from the Unscented Transform [29], which allows at least a second order ap-
proximation of the PDF a�er the nonlinear transformation by using sigma-
points. Sigma-points are a set of n + 1 points in n-dimension that allows to
de�ne a discrete distribution having a certain given mean and covariance. A
solution to the second issue, comes from the reduction of covariance matri-
ces [9, 6]. However, in general further modi�cations must be introduced in
the �lter algorithm as in [24].
In this work, we implemented a Reduced Order Unscented Kalman Filter pre-
sentedbyMoireauet al [19] to estimateparameters in a�ber orientationmodel
included in the model of LV mechanics (2.2.43). The ROUKF algorithm re-
quires three stages: a sampling stage, a prediction stage, and a correction
stage. In the sampling stage, the sigma-points are generated according to the
updated average and covariance of the parameters involved in the estimation.
In the prediction stage, the predictive model predicts the states correspond-
ing to the sigma-points sampled at the previous stage. In this work, the state
is the deformed con�guration of the LV and the sigma-points are a subset of
the �ber parameters. At the correction stage, the average and the covariance
of state and parameters are corrected using the difference between the mea-
surements and the observations derived from the prediction stage.
The prediction stage relies on the simulation of a cardiac cycle until the end-
systolic con�guration. Given ~θn, a vector of parameters of the LV mechan-
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ics model to be estimated, the end-systolic con�guration ~xn+1 is achieved by
means of the following nonlinear operator

~xn+1 = An+1|n

(
~x0, ~θn

)
, (5.2.1)

where ~x0 is the unloaded con�guration andAn+1|n is nonlinear operator that
solves the circulation-mechanics coupled problem until the end-systolic con-
�guration at time n+ 1 given the parameters ~θn, de�ned as follows

An+1|n

(
~x0, ~θn

)
=





(solve until end systole)
C (plv)→ Vlv, circulation

M
(
~u; plv, ~θn

)
= 0→ Vc, wall mechanics

until Vc = Vlv,

~xn+1 = ~x0 + ~u
(
~x0; ~θn

)
,

(5.2.2)

where C, de�ned in (2.2.34), is the nonlinear operator that represents the cir-
culation problem,M, de�ned in (2.2.43), is the nonlinear operator that rep-
resents the mechanics, and Vc and Vlv are the two cavity volumes computed
within the �xed-point iteration scheme in (2.2.61). The state ~x is observed
at the end of systole using the nonlinear observation operator H that com-
putes end-systolic Green-Lagrange strains with respect to the end-diastolic
con�guration from the displacement. Given a set of pairs of normal vectors
(~ei1 , ~ej1) . . . (~ein , ~ejn), with i1, . . . , in and j1, . . . , jn in {c, l, t} (c circumferential,
l longitudinal, and t transmural), it reads

~zn+1 = H (~xn+1) + ~v, with: (5.2.3)

H (~xn+1) =
[
EED→ES (~xn+1)~ei1 · ~ej1 , . . . ,EED→ES (~xn+1)~ein · ~ejn

]T
,

(5.2.4)

EED→ES (~xn+1) =
1

2

[
∇0~x

−T
ED,n+1∇0~x

T
n+1∇0~xn+1∇0~x

−1
ED,n+1 − I

]
, (5.2.5)

where ~xED,n+1 is the end-diastolic con�guration, ~v is a Gaussian randomvari-
able with covariance matrixW that describes the measurements and the dis-
cretization errors. Note that the nonlinear operator An+1|n is static and its
application on ~x0 using parameters ~θn leads directly to the estimation of the
end-systolic con�guration and, consequently, to the observation of the end-
systolic strain components viaH. Therefore, the parameter estimation is ac-
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complished by solving a sequence of application of An+1|n without includ-
ing information from the intermediate states achieved during the cardiac cy-
cle. To achieve the parameter estimation, �rst an ensemble of points, called
sigma-points, is drawn during the sampling stage. Then, these sigma-points
are simulated using operator An+1|n during the prediction stage. Eventually
during the correction stage, the posterior distribution is updated and the so-
lution is corrected accordingly. These three stages are repeated sequentially
until the satisfaction of a stopping criterion.
Thealgorithm initialization startswith thede�nitionof a centered (zero-mean)
sigma-points matrix V∗ ∈ Rp×r, where p is the number of parameters to
be estimated and r the number of sigma-points. According to Moireau et
al [19] for the simplex case, which requires a minimum amount of sigma-
points (r = p+ 1) and requires no re-sampling, a possible choice forV∗ is

V∗ =

 1 0 −1
. . .

0 1 −1

 , (5.2.6)

from which sigma-points with unitary variance (I∗ ∈ Rp×r) can be derived
using the following formula

I∗ =
(
V∗DαV

∗T )− 1
2 V∗T , where, (5.2.7)

Dα =
1

r

 1 0
. . .

0 1

 , (5.2.8)

whereDα ∈ Rr×r. Exploiting the de�nitions ofV∗ andDα the a-priori covari-
ance can be de�ned as

PV
α = V∗DαV

∗T . (5.2.9)

The last stepof the initialization requires thede�nitionofLθ0 ∈ Rp×p, andLx0 ∈
Rs×p (with s being the size of ~x), the operators that transform the sigma-points
into parameter and state vectors, respectively. Lθ0 is initialized as the identity
matrix andLx0 is initialized as the nullmatrix. Finally,U0 = Cov(δ~θ)−1 ∈ Rp×p
representing the inverse of the covariance matrix of the parameters will be
de�ned in the results section depending on the involved parameters.
The sampling stage requires the de�nition of

√
U−1
n , achieved using the Cho-

lesky decomposition, and exploits this matrix to convert sigma-points into
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new state and parameter vectors

(sampling)
Cn =

√
U−1
n , (Cholesky decomposition onU−1

n ),

~x(i)+
n = ~x+

n + LxnC
T
n
~I(i),

~θ(i)+
n = ~θ+

n + LθnC
T
n
~I(i),

(5.2.10)

where i = 1, . . . , r, ~I(i) is the i-th column of I∗, and the superscript + means
that the quantities have been corrected (in the previous iteration).
The prediction stage requires the simulation of the r sigma-points and a cor-
rection using the Kalman gain matrix

(prediction)

Kn+1|n = Lxn
(
PV
α

)−1
HxT
L,nW

−1
n ,

~x
(i)−
n+1 = An+1|n

(
~x0, ~θ

(i)+
n

)
+ Kn+1|n

(
~Zn −H

(
~x(i)+
n

))
,

~x−n+1 = Eα
(
~x∗−

)
=

1

r

r∑
i=1

~x
(i)
n+1,

~θ
(i)−
n+1 = ~θ+

n ,

(5.2.11)

where the superscript − means that the quantities are predicted but not yet
corrected,Wn is the covariance matrix of the observation error, ~x∗− ∈ Rs×r

is thematrixmade by collecting all the column vectors ~x(i)−
n+1, andH

x
L,n ∈ Rq×p

(with q the size of the observation vector andHx
L,0 initialized to the null ma-

trix) is de�ned during the correction stage of the previous iteration.
Finally, the correction stage allows to update the factorized posterior covari-
ance matrix by means of Lxn+1, L

θ
n+1,Un+1, andHx

L,n+1

(correction)

Lxn+1 = x∗−DαV
∗T,

Lθn+1 = θ∗−DαV
∗T,

~z
(i)
n+1 = H

(
~x(i)−

)
,

Hx
L,n+1 = z∗n+1DαV

∗T,

Un+1 = PV
α + HxT

L,n+1W
−1
n+1H

x
L,n+1,

~x+
n+1 = ~x−n+1 + Lxn+1U

−1
n+1H

xT
L,n+1W

−1
n+1

(
~zn+1 − Eα

(
z∗n+1

))
,

~θ+
n+1 = ~θ−n+1 + Lθn+1U

−1
n+1H

xT
L,n+1W

−1
n+1

(
~zn+1 − Eα

(
z∗n+1

))
,

(5.2.12)
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where z∗n+1 ∈ Rq×r is made by collecting all the observation vectors z(i)
n+1,

θ∗− ∈ Rp×r is made by collecting the parameter vectors ~θ(i)−
n+1, and ~zn+1 is the

measurement vector. Note that the use of factorization for the covariancema-
trices prevented the creation of a square dense covariancematrix of the same
size of the state variable. For a more in depth description of the algorithm,
refer to Moireau et al [19].

5.2.2 Simulation settings

At each iteration of the ROUKF algorithm, r sigma-points, corresponding to r
sets of �ber parameters, are sampled. For each sigma-point, a cardiac cycle
simulation is performed until the end-systolic con�guration using the corre-
sponding �ber parameters. The remaining parameters are kept to their de-
fault values, which are reported in Table 2.2, Table 2.3, Table 2.4. For the sake
of computational time, the discretization of the problem relies on linear con-
tinuousLagrangianpiece-wisepolynomials (r = 1 in (2.2.37)). Brie�y, an ellip-
soidal geometry with cavity volume 44 mL and wall volume of 136 mL is used
to generate an anisotropic mesh using 16 circumferential elements, 10 longi-
tudinal elements, and 6 transmural elements. The geometry is characterized
by a ξendo = 0.371 and ξepi = 0.678 and a planar base at z = 24 mm.
We perform three estimation procedures. In all three estimation procedures
the �ber orientation is modeled using the simpli�ed 5-parameters model in
(4.2.8) and (4.2.9). Within this model, the helix and the transverse angles are
de�ned using 5 parameters and the normalized longitudinal and transmural
coordinates (u, and v).

αh (u, v) = (hv0 + hv1v) (1 + hu1) ,

αt (u, v) =
(
1− v2

)
(tu0 + tu1u) .

(5.2.13)

Among the 5 parameters, we include in the estimation process only the three
most in�uential parameters emerged from our previous sensitivity analysis
in chapter 4, which are hv0, t

u
0 , t

u
1 . In each of the three estimation procedures,

we considered seven parameter combinations: three single parameter esti-
mations (hv0, t

u
0 , t

u
1 ), where only one parameter is estimated per procedure;

three double parameter estimations ((hv0, t
u
0 ), (h

v
0, t

u
1 ), (t

u
0 , t

u
1 )), where two pa-

rameters are estimated per procedure; and a three-parameter experiments,
where all the three parameters are estimated in the same estimation proce-
dure. For all the parameter combinations, six combinations of the three ob-
served end-systolic strains are considered thatwere found to bemost sensitive
to variations in the �ber �eld in chapter 4. These combinations are based on
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observations of Ect, the strain component most affected by tu0 and t
u
1 , Ecl, the

strain most affected by hv0, and Ecc, the strain affected in a similar fashion
by hv0 and t

u
0 . The six considered combinations are: z = [Ect]

T , z = [Ecl]
T ,

z = [Ecc]
T , z = [Ect, Ecl]

T , z = [Ect, Ecc]
T , z = [Ect, Ecl, Ecc]

T . We le� out the
combination z = [Ecl, Ecc]

T as, a�er simulating the �rst three combinations,
it was clear that Ect played the main role in the estimation.
In a real application, the covariance matrix of the observation error should
represents themany sources of error affecting the strain measurement in pa-
tients. Among these errors, for instance, the error affecting the image acqui-
sition depends on the measurement methodology, might not be uniform in
time and space, and it might affect strain components differently. We are un-
able to quantify this error. Instead, since in our previous analysis (chapter 4)
we estimated the variation of end-systolic strains induced by perturbation of
�ber orientation. We make use of this piece of information to model the co-
variance matrix of the observation error Wn. This covariance matrix is as-
sumed to be diagonal (spatially independent noise)with diagonal values being
equal to themean coef�cient of variation computed from the sensitivity anal-
ysismultiplied by the in�nity-normof themeasured strain component. These
mean coef�cients of variation for the three strains considered are: Ecc = 0.15,
Ecl = 0.25, and Ect = 0.38. Since the observation vector is generated by in-
silico experiments, the in�nity-norm of the measured components depends
on the ground truth values of the �ber model.
The difference between the three estimation procedures relies in the �ber
model used to generate in-silico the observations and the initialization of �ber
parameters. For the �rst two estimation procedures, observations are gener-
ated using the same 5-parametersmodel. Instead, in the third estimation pro-
cedure, observations are generated using the �bermodel proposed by Boven-
deerd et al [7].
In the �rst procedure, experiment 1, �ber parameters are initialized to their
ground truth values. Instead, in the second procedure, experiment 2, �ber
parameters are initialized at one SD-distance from the ground truth values.
In these �rst two experiments, the ground truth parameter values for the 5-
parameters model are: hv0 = 0.3565 rad, hv1 = −1.0471 rad, hu1 = 0 rad, tu0 =
0 rad, and tu1 = 0.1738 rad. Observations generated using these values result in
end-systolic strains with the following in�nity-norm (the maximum absolute
value within the geometry)

‖Ecc‖∞ = 0.2774, ‖Ecl‖∞ = 0.1731, ‖Ect‖∞ = 0.2875. (5.2.14)

For the third estimation procedure, experiment 3, observations are gener-
ated using the �ber model proposed by Bovendeerd et al [7]. The model has
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been rewritten here without using Legendre polynomials in order to have a
clearer correspondence between the parameters of the two considered mod-
els. This procedure led to the following de�nition, that we address as the 14-
parameters model

αh (u, v) =

(
4∑
i=0

aiv
i

)(
4∑
i=0

biu
i

)
,

αt (u, v) =

(
2∑
i=0

civ
i

)(
1− v2

)( 5∑
i=0

diu
i

)
,

(5.2.15)

where the parameter values are shown in Table 5.1.

a0 a1 a2 a3 a4

0.4010 −1.3535 0.0442 0.3225 0.2686

b0 b1 b2 b3 b4
0.9245 0 0.4105 0 −0.3067

c0 c1 c2

0.749 −0.626 0.753

d0 d1 d2 d3 d4 d5

0 0.3807 0 0.1950 0 0.2993

Table 5.1: Parameter values for the 14-parameters model corresponding to the same �ber
model proposed by Bovendeerd et al [7]. All values are expressed in radian.

In experiment 3, since we use two different �ber models for generating the
observations and for the estimation process, the de�nition of ground truth
values is not straightforward. We projected the 14-parameters model onto the
5-parameters model using the L2([−1, 1] × [−1, 0.5]) integral scalar product,
leading to hv0 = 0.3565 rad, hv1 = −1.0471 rad, hu1 = 0 rad, tu0 = 0 rad, and
tu1 = 0.5164 rad. These values will be considered as the ground truth in the
third estimation procedure. Observations generated using the 14-parameters
model result in end-systolic strains with the following in�nity-norm

‖Ecc‖∞ = 0.2771, ‖Ecl‖∞ = 0.0540, ‖Ect‖∞ = 0.1684. (5.2.16)

5.3 Results

5.3.1 Experiment 1: estimation without model error from ground
truth

In this �rst estimation experiment, the observations are generated using the
5-parameters �bermodel (5.2.13). The same 5-parameters �bermodel is used
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in the estimation procedure. The estimation algorithm starts from �ber pa-
rameter values set equal to the ground truth. Figure 5.1 shows the evolution
of parameter errors in estimation experiments where different strain com-
ponent combinations were considered. Each panel of the �gure represents
the absolute error of a parameter from its ground truth value. The line color
identi�es the parameter: h0

v in green, t0u in blue, and done in green. The line
style classi�es the combination of parameters estimated in the experiment.
The estimation algorithm starts from �ber parameter values set equal to the
ground truth and the parameters not included in the estimation are not per-
turbed from the ground truth. Note that this information is not included in
the �gures as it refers to the state at iteration zero. At the very �rst iteration,
the estimated parameters are already perturbed using the initial guess of the
inverse covariance matrix of the parameters U0 during the sampling stage.
All the estimation experiments were stopped once the absolute incremental
variation of all the parameters involved in the estimation was below a thresh-
old value of 5× 10−4 rad. For this reason, not all the experiments needed the
same number of iterations. A gray region is represented in the plot to indicate
the DTI measurement error (∼ 10◦ [26]).
Figure 5.1a, Figure 5.1b, Figure 5.1c, show the results when the observed strain
is Ecc, Ecl, and Ect, respectively. For the sake of readability only a narrow
range close to the zero-error level is shown. In this range for every panel four
lines should be visible. Otherwise, themissing lines indicate diverged param-
eter estimations or estimations that converged to values that differ from the
ground truth by more than 0.3 rad. In this sense, only Ect allows the estima-
tion of the three parameters to converge with an error below 0.05 rad for h0

v

and t0u and an error of about 0.1 rad for t1u (Figure 5.1c). Instead, observing only
Ecc or Ecl does not allow to estimate h0

v and t1u within the measurement error
in twoout of four experiments. Inparticular for t1u, the estimation failed (error
beyond 0.3 rad) when all the parameters were involved in the estimation. Re-
sults similar to those obtained observing Ect exclusively were obtained when
observing [Ect, Ecl]

T (Figure 5.1d) and [Ect, Ecl, Ecc]
T (Figure 5.1f). In these

three cases, similar results are achieved for all the parameter combinations,
with the estimation error of tu1 in the three-parameter estimations always be-
ing the largest. These estimated parameters lead to an average difference be-
tween the ground truth and the estimated�ber vectors of 1.4◦ (maximum 5.6◦)
when observingEct, 1.2◦ (maximum 5.3◦) when observing [Ect, Ecl]

T , and 1.4◦

(maximum 5.3◦) when observing [Ect, Ecl, Ecc]
T . Concerning convergence,

when estimating the three considered parameters altogether (dashed lines
in Figure 5.1), there is only a slight decrease in the number of iterations re-
quired when observing [Ect, Ecl]

T (Figure 5.1d), 12 iterations compared to 15
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requested by Ect (Figure 5.1c) and [Ect, Ecl, Ecc]
T (Figure 5.1f). Among the es-

timations of the three parameters altogether that included the observation of
Ect, only the observation of [Ect, Ecc]

T led to a converged value for t1u further
than one measurement error distance from the ground truth (Figure 5.1e).
The error between the ground truth strains and the strains predicted using
the estimated parameters can be seen in Figure 5.4. The error is expressed in
terms of average 1-norm, which is the average over the discretization nodes
of the absolute value of the node-wise difference between ground truth and
predicted strains. The average 1-norm of the error is shown in Figure 5.4a for
the observation of Ect, in Figure 5.4b for the observation of [Ect, Ecl]

T , and in
Figure 5.4c for the observation of [Ect, Ecl, Ecc]

T . For these three strain combi-
nations, a steady observation error is achieved a�er 8 iterations. These error
equal about 0.023 (68 % error drop from iteration 1), about 0.014 (73 % error
drop), and about 0.013 (79 % error drop) for observation ofEct, [Ect, Ecl]T , and
[Ect, Ecl, Ecc]

T , respectively.

5.3.2 Experiment 2: estimation withoutmodel error

We repeated the previous experiment setting the initial guess for the param-
eters at about measurement error-distance from the ground truth. This re-
sulted in initial values of 0.175 rad (ground truth 0.3565 rad)for hv0,−0.175 rad
(ground truth 0 rad) for tu0 , and 0 rad (ground truth 0.1738 rad) for tu1 .
Figure 5.2 shows the evolution of parameter errors in estimation experiments
for the three end-systolic strain combinations that led to best estimations in
experiment 1: z = [Ect]

T , z = [Ect, Ecl]
T , and z = [Ect, Ecl, Ecc]

T . All the
estimation experimentswere stoppedonce the absolute variation of all the pa-
rameters involved in the estimationwasbelowa threshold valueof 5× 10−4 rad.
Figure 5.2 shows that results obtained with the three different strain com-
binations are similar. Only the joint estimation of h0

v and t1u failed to con-
verge within 0.20 rad error for all the observed combination of strains. In all
other experiments, the parameters were estimated within the measurement
error. Figure 5.2a and Figure 5.2c show a small difference in number of itera-
tions. In fact, when jointly estimating the three parameters, 19 iterations are
required when observing Ect and 15 iterations are required when observing
[Ect, Ecl, Ecc]

T . The observation of [Ect, Ecl]
T required many more iterations

for the parameters to converge (48 iterations). However, the estimation of t1u
was twice as accurate (tu1 = 0.12 rad) whereas the accuracy of h0

v and t0u re-
mained unchanged. The joint estimations of the three parameters lead to an
average difference between the ground truth and the estimated �ber vectors
of 1.3◦ (maximum 5.5◦) when observing Ect, 0.8◦ (maximum 2.4◦) when ob-
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hv0 error [rad] tu0 error [rad] tu1 error [rad]

(a) z = Ecc

(b) z = Ecl

(c) z = Ect

(d) z = [Ect, Ecl]
T

(e) z = [Ect, Ecc]
T

(f) z = [Ect, Ecl, Ecc]
T

Figure 5.1: Experiment 1: evolution of parameter errors when observation and estimation are
performed using the same �ber model. Each estimation started from the ground truth val-
ues of the parameters. Three columns, one per parameter, and six rows, one per observed
strain combination, are shown. Three colors are used to indicate different parameters errors:
green for h0

v, blue for t0u, and red for t1u. The line type determines the parameters included in
the estimations: solid lines refer to estimations with a single parameter, dotted lines refer to
the joint estimation of all the three parameters, and dashed and dash-dotted lines refer to the
joint estimation of a pair out of the three parameters. The gray area represents the DT-MRI
measurement error reported in [26].

serving [Ect, Ecl]
T , and 1.4◦ (maximum 5.3◦) when observing [Ect, Ecl, Ecc]

T .
The error between the ground truth strains and the strains from the estima-
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hv0 error [rad] tu0 error [rad] tu1 error [rad]

(a) z = Ect

(b) z = [Ect, Ecl]
T

(c) z = [Ect, Ecl, Ecc]
T

Figure 5.2: Experiment 2: evolution of parameter errors when observation and estimation are
performed using the same �ber model. The initial guess for the parameters was set at one
measurement error-distance from the ground truth values. Three columns, one per parame-
ter, and three rows, one per observed strain combination, are shown. As in Figure 5.1, colors
and line types refer to different parameter errors and to different set of estimated parameters,
respectively.

tion can be seen in Figure 5.4. For all the three strain combinations, a steady
error very close to that of experiment 1 is achieved: 0.022 a�er 20 iterations for
the observation of Ect (Figure 5.4a), 0.016 a�er 40 iterations for the observa-
tion of [Ect, Ecl]

T (Figure 5.4b), and 0.012 a�er 15 iterations for the observation
of [Ect, Ecl, Ecc]

T (Figure 5.4c).

5.3.3 Experiment 3: estimation withmodel error

The estimation is performed using the 5-parameter �ber model whereas the
observed strains were generated using the 14-parameter �ber model. The
initial values for the parameters are set to the values obtained from the L2

projection of the 14-parameters model from Bovendeerd et al [7] onto the 5-
parameters model.
Figure 5.3 shows the evolution of parameter errors in estimation experiments
for three combinations of end-systolic strains: Ect, [Ect, Ecl]T , and [Ect, Ecl, Ecc].
All the estimation experiments were stopped once the absolute variation of
all the parameters involved in the estimation was below a threshold value of
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hv0 error [rad] tu0 error [rad] tu1 error [rad]

(a) z = Ect

(b) z = [Ect, Ecl]
T

(c) z = [Ect, Ecl, Ecc]
T

Figure 5.3: Experiment 3: evolution of parameter errors when observation and estimation are
performed using different �ber models. Three columns, one per parameter, and three rows,
one per observed strain combination, are shown. As in Figure 5.1, colors and line types refer
to different parameter errors and to different set of estimated parameters, respectively.

1× 10−5 rad. All the parameter estimations converged within amaximumde-
viation of 0.11 rad (6◦). In the three cases, similar converged values for the
parameters are achieved and a similar number of iterations is required. For
the joint estimation of the three parameters, there is a decrease of parameter
errors when increasing the number of the observed strain components. For
t0u it decreases from 0.016 rad forEct to 0.006 rad for [Ect, Ecl, Ecc]

T ) and for t1u
it decreases from 0.088 rad for Ect to 0.057 rad for [Ect, Ecl, Ecc]

T ). For h0
v, it

remains unaffected at about 0.11 rad. Also, the number of iterations required
shows a limited increasewhen increasing the number of observed strain com-
ponents (20 for Ect, 21 for [Ect, Ecl]

T , and 22 for [Ect, Ecl, Ecc]
T ). In general,

the number of iterations required is in line with those required by the pre-
vious experiments. The joint estimations of the three parameters lead to an
average difference between the ground truth and the estimated �ber vectors
of 6.5◦ (maximum 7.1◦) when observing Ect, 6.3◦ (maximum 6.6◦) when ob-
serving [Ect, Ecl]

T , and 6.5◦ (maximum 6.7◦) when observing [Ect, Ecl, Ecc]
T .

The error between the observation and the estimation can be seen in Fig-
ure 5.4. For all the three strain combinations, a slightly increased steady er-
ror with respect of that of experiment 1 is achieved: 0.027 a�er 20 iterations
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(a) z = Ect (b) z = [Ect, Ecl]
T

(c) z = [Ect, Ecl, Ecc]
T

Figure 5.4: Average 1-norm error of the observed strains, collected in the quantity z. The er-
rors refer to the joint estimation of h0

v, t0u, and t1u in the three experiments. Results were ob-
tained observing Ect (top le� panel), observing [Ect, Ecl]

T (top right panel), and observing
[Ect, Ecc, Ecc]

T (bottom panel).

for the observation of Ect only, 0.018 a�er 21 iterations for the observation of
[Ect, Ecl]

T , and 0.015 a�er 22 iterations for the observation of [Ect, Ecl, Ecc]
T .

All the three strain combinations present a sharp decrease of the observation
error within the �rst 5 iterations.

5.4 Discussion

Adescriptionof cardiac�ber orientation is an important ingredient of patient-
speci�c models of cardiac electro-mechanics. Since direct experimental as-
sessment of �ber orientation is currently not feasible in clinical practice, the
goal of this chapter is to study a methodology that allows to obtain patient-
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speci�c �ber orientation using strain measurements that can be derived us-
ing common imagingmethodologies employed in clinics, such as Ultrasound
and MRI.

5.4.1 Choices

We employed the Reduced Order Unscented Kalman Filter (ROUKF). Within
the context of ROUKF, information about the initial covariancematrices of the
parameters and observation noise is required. For the former, we assumed in-
dependence and we set a 10◦ initial standard deviation (compliant with �nd-
ings fromScollan et al [26]) for all the parameters. This value is overestimated,
since Scollan et al [26] measured about 10◦ difference for the whole �ber vec-
tor, not for the parameters describing its distribution. However, this overes-
timation affects only the �rst iteration of the algorithm, since the covariance
matrix of the parametersUn+1 is updated in the correction step according to
(5.2.12), coherently with the choice of the sigma-points and the covariance of
the observation error. Still, a large deviation at the �rst iterationmight induce
a different dynamics in the evolution of the estimated parameters. In this
sense, further analyses are required. For the covariance of the strain obser-
vation error, we included information about the standard deviation computed
in our previous sensitivity analysis on �ber orientation. This choice allowed
to include information about the variability within our computer model of
the measured strain and also allowed to set different observation errors for
different strain components (coherently with our previous analysis). We as-
sumed spatial independence and independence between strain components.
In this context, we neglected the spatial variability of the strains and we set
the same measurement error covariance for every node, again resulting in a
overestimation of the measurement error. We also did not vary those values.
For this reason, further analyses are required to assess the robustness of the
prediction with respect to different measurement error levels.
Following our previous sensitivity analysis of end-systolic strains to �ber ori-
entation, a simpli�ed rule-based �ber orientation model has been used in or-
der to limit the number of parameters. In particular, the same �ber model
was used in a sensitivity analysis research involving �ve parameters for the
de�nition of �ber orientation (chapter 4). Of those �ve parameters, two pa-
rameters, the least in�uencing ones according to our previous analysis, were
�xed to generic values representing commonly measured �ber �elds. Our
model is less detailed than the �ber model used in [7], which uses 12 parame-
ters to characterize the �ber orientation. Still, it capturesmost of the features
of the extended one having both helix and transverse angles with transmural
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and longitudinal variability.
In our experiments we focused on the observation of combinations of the
strain components Ect, Ecl, and Ecc. These components emerged from our
sensitivity analysis in chapter 4. Ect was included because it resulted to be
the strain component with the largest sensitivity to the three considered pa-
rameters. Ecl was included because, conversely from Ect, it is more sensitive
to h0

v than to t0u. Ecc was included to try decoupling the estimation of h0
v from

that of t0u.
In the assessment of the converged estimated parameter values we used the
�ber orientation measurement error reported in [26].This threshold value of
10◦ represents the averagemeasurement error of thewhole�ber vector through-
out the rather than the error affecting the parameters de�ning �ber orienta-
tion. We use this reference value only to improve the readability of the �gures
and the understanding of the results, as the upper bound set by this choice is
not tight. In fact, if the estimation error of all the parameters approached this
reference value, the overall difference in the angle between the ground truth
and the estimated �ber vectors would exceed the 10◦ threshold. For this rea-
son, when a parameter converged beyond this reference valuewe did not con-
sider the estimation satisfactory. When all the parameters converged within
this reference value, we quanti�ed the error in terms of difference between
�ber vectors andwe veri�ed that this difference was within the 10◦ threshold.

5.4.2 Results

We performed three main estimation experiments: in the �rst two experi-
ments, we assumedperfect knowledge of the�bermodel, whichwas assumed
to coincide with the 5-parameters model; in the latter, we generated the ob-
servation using the 14-parameters model and we performed the estimation
using the 5-parameters model (5.2.13). In the �rst experiment, we initiated
the algorithm from the ground truth parameter set and we found that three
strain combinations, Ect, [Ect, Ecl], and [Ect, Ecl, Ecc] allowed for stable esti-
mates of all the considered parameter combinations (see Figure 5.1) within an
error margin based on the accuracy of ex vivo DTI measurements. In the sec-
ond experiment (Figure 5.2), we focused on these three strain combinations
and we set the initial parameters at one measurement error-distance from
the ground truth. Again stable estimates of the three �ber parameters were
obtained with in general an error similar to that obtained in the �rst experi-
ment. The initialization of the algorithm at one measurement error distance
from the ground truth mostly affected the number of iterations required to
achieved a converged solution, when jointly estimating all the three param-
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eters. Instead, when a subset of the three parameters were estimated, the
estimation error was in general larger for h0

v and t1u.
In the last experiment, we estimated h0

v, t0u, and t1u of the 5-parameters �ber
model fromobservations of strains generatedby the 14-parameters�bermodel.
The estimation achieved a converged statewithin the chosenmargin from the
ground truth values, for all the considered parameter combinations and for
the three strain combinations. Although this is a simple experiment, where
we initiated the algorithm from the ground truth values, it proves that in the
considered strain combinations there is enough information for the estima-
tion of parameters of the �ber model, even in presence of model error. The
comparison with the second experiment seems to indicate that the initializa-
tion of the algorithmmay impact parameter estimationmore than the inexact
modeling of �ber orientation. However, further analyses are required to as-
certain this. A minimum number of 20 iterations was required for the joint
estimation of the three considered �ber parameters. In a perfect parallel im-
plementation of the ROUKF, the algorithmwould take the same time required
by 20 executions of the predictivemodel. This computational time can be low-
ered by changing the stopping criterion of the algorithm, since a�er about 5
iterations both the observation error and the parameter increments stabilize.
The currentmethodologymight be used as a calibration stage before applying
data assimilation techniques to extract information about patient pathology
from images and measurements. It only requires one measurement of Ect
at end systole, leaving other available information for the estimation of the
pathology.
At this stage of the research, it is not clearwhether the presentedmethodology
can be combined with pathology estimation algorithms. The inclusion of the
personalization of the �ber �eld in such algorithms may improve the estima-
tion of pathology related quantities, given the strong impact that �ber orien-
tation has on the local mechanics. However, we expect that the advantage of
this inclusion depends on how the addressed pathology affects the strain dis-
tributions. In particular, we would expect a large improvement from this in-
clusion if themagnitude of the impact of a pathology on strain distributions is
comparable or smaller than that induced by uncertainty on �ber orientation.
Concerning the performance of the estimation algorithm, two factors may be
affected: the number of iterations required by the algorithm to converge, and
the achieved converged state. The former, is due to the fact thatmore parame-
ters are included in the estimation algorithm, thus requiringmore prediction
steps. Moreover, this inclusion may also affect the evolution of the estimated
parameters, resulting in a faster or slower convergence. Regarding the lat-
ter, we addressed only the physiological LV for the personalization of �ber
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parameters. The presence of a pathology in the LVmay affect locally the spa-
tial distribution of strains andmay prevent the convergence of the estimation
when using circumferentially symmetric �ber models.
The ROUKF methodology for the estimation of �ber orientation has been al-
ready used byNagler et al [20] for the estimation of parameters of a rule-based
�ber model. Their goal was to extract the parameters of a rule-based �ber
model from a noisy measurement of patient-speci�c �bers, most likely to ob-
tain a more regular representation of the �ber �eld. Compared to their ap-
proach, ours does not require dif�cult patient-speci�c �ber measurements
and improves the rule-based �ber model by including a longitudinally vary-
ing transverse angle.
Concluding, the preliminary results presented in this work show that obtain-
ing personalized �bers observing only the end-systolic strain component Ect
is feasible and, if the ROUKF is implemented in parallel, the computational
time required is about that of �ve complete cardiac cycle simulations.

5.5 Limitations

Our results can be further tested and improved by addressing some limita-
tions of the current work.
First, we employed an idealized isolated le� ventricular geometry for our sim-
ulations on which we de�ned a rule-based �ber model relying on the nor-
malized coordinates derived from the coordinate vector basis. The consid-
ered rule-based �ber model includes transmural and longitudinal variability
of both helix and transverse angles, but neglects the circumferential variabil-
ity. Introducing further parameters in the rule-based �ber orientation model
describing circumferential variability or using a surface-patches approach
[21] to introduce patch-speci�c parameters, would allow for the estimation
of non axisymmetric �ber �elds.
The presented approach suffers from the typical high computational cost of
parameter estimation techniques, which require several evaluations of the
underlying predictive model. At every iteration, a number of simulations ap-
proximately equal to the number of parameters to be estimated are required.
In a parallel implementation of the ROUKF, these independent simulations
can be computed simultaneously by different computational nodes. However,
also in this case several iterations of the algorithm are required to obtain a
converged solution. Given the large numbers of estimation tests performed
in this research, for the sake of time, we adopted a linear �nite element dis-
cretization of the problem. This choice results in smaller algebraic nonlinear
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systems that can be solved faster. This choice allows to achieve a complete
cardiac cycle in less than 5 min, but affects the accuracy of strain predictions
(chapter 2). If instead we had used a quadratic �nite element approximation,
each prediction step would have taken approximately 50 min. Further anal-
yses are required to con�rm the effectiveness of the approach using a more
appropriate discretization. The use of a more adequate numerical discretiza-
tion would increase the problem size and the size of the observation vector
and its covariance matrix. It is not clear yet whether the same observation
operator would be feasible under those circumstances.
In fact, another limitation of this research is the choice of the observation
operator. In our analysis, we had a one-to-one correspondence between the
nodal values of the observed and predicted strains. This corresponds to using
an identity operator on the strain itself. This results in an ideal situation, since
it prevents the use of interpolation operators that might constitute a further
source of error. Moreover, in real applications, strain measurements may not
be available throughout the whole myocardium. For this reason, the role of
the observation operator H should be addressed in future extensions of this
research. These extensions might improve both the robustness of the pre-
sented estimationmethodology and its feasibility. In fact, decreasing the size
of the observation array directly affects the size of the covariance matrixW,
which is the most demanding matrix of the ROUKF in terms of memory allo-
cation. In this regard, an alternative option would be the inclusion of a subset
of the strains (corresponding to a measured sub-region) or the use of local
averages in sub-regions such as those de�ned by the AHA17 segment model
[8].
A good practice in the testing of parameter estimation algorithms is to check
the robustness with respect to noise and the initialization point. Due to time
constraints, we could not perform more analyses to prove the effectiveness
of the proposed methodology when the algorithm is initiated far from the
ground truth in experiment 3. We modeled observation noise by means of
the dedicated covariance matrix, but we did not perturb the observation with
different level of noise. Instead, we directly addressed the case where the ob-
servations and the estimations were performed by different models.

5.6 Conclusion

In thisworkwepropose amethodologybasedon theReducedOrderUnscented
Kalman Filter for the patient-speci�c estimation of rule-base �ber model pa-
rameters. The algorithm is based on the observation of end-systolic strains
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and it does not require complex DT-MRI measurement of the patient, which
are unavailable in clinical practice. Instead, it relies on strains that can be
obtained in the clinic using common imaging techniques such as Ultrasound
[3, 10] and MRI [14, 2, 1, 31].
We focused on the parameters that were identi�ed to be the most in�uen-
tial parameters by our former sensitivity analysis of end-systolic strains to
�ber orientation. Our results suggest that the estimation of h0

v, the transmu-
ral offset of the helix angle, t0u, the longitudinal offset of the transverse an-
gle, and t1u, the longitudinal slope of the transverse angle, can be achieved
based on the estimation of the end-systolic Green-Lagrange circumferential-
transmural shear strain Ect in the physiological LV.
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6.1 Summary of contributions

The driving idea of our research is that by observing regional strains non-
invasivelymeasured from the patient it is possible to estimate parameters that
could increase the understanding of the patient pathology. Typically, such pa-
rameters would include regional contractility, regional tissue stiffness, and
activation pattern. In a data assimilation approach, such parameters would
be the unknowns and strains the data. Consequently, to be able to estimate
those parameters in the pathological case, the effect of pathology on regional
strains must exceed that of the underlying model uncertainty. In this thesis,
we addressed part of that uncertainty. In particular, we investigated how the
description of the geometry and �ber orientation of the LV myocardium af-
fects the prediction of end-systolic strains. We present in the following para-
graphs the main contributions of this thesis.
In chapter2wepresented a new implementation of themodel of themechan-
ics of the LV published by Bovendeerd et al [? ] based on the FEniCS library [?
]. In that chapter, we showed the consistency of our implementation with the
previous one and we performed a numerical veri�cation of the implementa-
tion. In this veri�cation, we studied how the numerical discretization of the
problem affected the distribution of end-systolic strains and we proposed an
optimal discretization that allows containing the average transmural error of
all the strain components below a 10% threshold, yet keeping computational
time for a cardiac cycle below 1 h.
In chapter 3 and chapter 4, we proposed amethodology to apply the elemen-
tary effects method to estimate the sensitivity of end-systolic strains to phys-
iological variations in the description of the geometry and �ber orientation,
both accounting for the variability within the human population. In particu-
lar, in chapter 3, we included information about the anatomy of 300 healthy
volunteers in the form of six shape modes identi�ed by Medrano-Gracia et
al [? ] and Zhang et al [? ]. The six shape modes were used to represent a mul-
titude of geometries in the neighborhood of one standard deviation around
the average patient anatomy. This analysis allowed to estimate the in�uence
of geometry on the determination of end-systolic strain distributions and to
quantify each shapemode contribution. Similarly, in chapter 4, we extracted
parameter ranges describing�ber orientation fromDT-MRImeasurements of
different studies [? ? ] trying to represent variabilitywithin thehumanpopula-
tion. From this analysis, we quanti�ed the overall effect that �ber orientation
has on end-systolic strain distributions and we quanti�ed the contribution of
every single parameter.
Our �ndings show that �ber orientation affects end-systolic strain distribu-
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tions at least twice as much as geometry. In particular, the main contribution
to this in�uence is given by the transverse angle, being described by two of the
most in�uential parameters identi�ed by the analysis: the parameter describ-
ing its longitudinal offset, tu0 , and the parameter describing its longitudinal
slope, tu1 . Another important contribution comes from the parameter describ-
ing the transmural offset of the helix angle, hv0. This parameter, together with
the whole transverse angle, is o�en neglected when describing �ber orienta-
tion with a rule-based model, where the helix angle at mid-wall is assumed
to be zero. Instead, in our analysis, the transmural slope of the helix angle
presented the least in�uence among the considered parameters. Concerning
geometry, only the �rst shape mode, related to the variability in the size of
the LV within the human population, has an impact somewhat comparable to
that of the most in�uential parameters describing �ber orientation.
These results are in linewithprevious studies [1, 8]; nonetheless, in this thesis,
we properly quanti�ed the effects induced by considering physiological vari-
ations of the parameters within the human population, instead of local vari-
ations of parameteres around a central setting. Moreover, we addressed the
spatial variability of end-systolic strains and provided regional estimations
based on the 17 regions of the AHA segmentation. This information is valu-
able in model personalization since it highlights the importance of proper
modeling of �ber orientation to improve the predictive power of a computa-
tional model of cardiac mechanics. In particular, it supports the inclusion of
the transverse angle. It also suggests that the advantages of creating a patient-
speci�c geometry might be lost whenever a generic model for �ber orienta-
tion is employed.
Following our two sensitivity analyses, in chapter 5we presented a technique
based on the ROUKF that aims at estimating patient-speci�c parameters of a
rule-based �ber model using a single observation of the end-systolic circum-
ferential-transmural shear strain Ect. Our preliminary results show that the
estimation of hv0, describing the transmural offset of the helix angle, t

u
0 , de-

scribing the longitudinal offset of the transverse angle, and tu1 , describing the
longitudinal slope of the transverse angle, can be achieved within the mean
DT-MRI measurement error of 10◦ in the physiological le� ventricle. Simi-
larly, a relation between shear strains and�ber orientationwas used byKroon
et al [? ] to build an adaptation model for �ber reorientation, postulating that
shear strains contributed to damage and regeneration of the extracellularma-
trix. The advantage of their approach is that it does not require an underly-
ing model for the description of �ber orientation and potentially asymmetric
�ber orientations can be obtained. However, despite a physiological explana-
tion of the adaptive process, their approach does not aim to reproduce strain
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measured in patients nor can provide a steady solution. Our approach, in-
stead, relies on a single observation of patient data, shows convergence in
our experiments, and differently from [? ], it does not require long and com-
plex DT-MRI acquisitions. Still, further investigations are needed to con�rm
the robustness of the proposed method to different initialization points, dif-
ferent levels of noise and differentmodels of themechanics and �ber orienta-
tion. Nonetheless, the proposed method might constitute a precious calibra-
tion technique to improve prediction and outcome of the inverse analysis.

6.2 Study limitations

The work presented in this thesis investigates the role of geometry and �ber
orientation within computational models of the mechanics of the LV. The re-
sults provide valuable information about the quanti�cation of the effects that
geometry and �ber orientation have on end-systolic strains. These results can
potentially improve the understanding and the effectiveness of strain-based
inverse analysis approaches aiming to estimate pathological deviations of tis-
sueproperties fromnormal physiological values. However, thisworkpresents
three major limitations.
The �rst limitation concerns the models employed in our study. The main
modeling limitations concern the geometry, the rule-based �ber orientation,
the homogeneous mechanical activation of the myocardium, and the bound-
ary conditions. We addressed the mechanics of an isolated LV with synchro-
nous mechanical activation and axisymmetric rule-based �ber orientation.
Considering the results of our SA on the LV, where the size is more impor-
tant than other shape factors, we expect that a similar consideration would
also hold when substituting the LV geometry with a biventricular one. We do
expect differences in spatial strain distributions, but the magnitude of strain
variations resulting from a SA should be in line with those of the LV.
Despite the large number of parameters of the �ber model that carefully de-
scribe the longitudinal and transmural variability of myo�bers, our model
lacks circumferential variability. Introducing such variability may even in-
crease the sensitivity of strains to �ber orientation.
In our model, the inclusion of a physiological activation pattern of the my-
ocardium led to the prediction of unphysiological strain distributions [2]. For
this reason, the mechanical activation was modeled to occur simultaneously
in the physiological case while in other studies, where our model was used to
simulate the dyssynchronous heart, the activation pattern was derived from
the Eikonal model [7].
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The inclusion of an asynchronous activation pattern would have surely af-
fected the straindistributions resulting fromourmodel. Interpretinghow this
change in the spatial distribution of the moment of activation would have af-
fected the computation of the strain sensitivity indices is not straightforward.
We expect that the sensitivity of end-systolic strains to variations of geometry
and �ber orientation, which do not affect greatly the spatial distribution of
the moment of activation, would not change largely with asynchronous acti-
vation patterns. Most of the shapemodes included in our SA introduced small
shape variations; therefore, the difference in distances traveled by the activa-
tion waves in different geometries could be considered negligible. The effect
of variations of the LV size on the moment of activation is more dif�cult to
predict, as a change in size increases the distance traveled by the activation
wave both transmurally and longitudinally. In this sense, there might be a
slightly delayed activation in basal end epicardial regions in larger ventricles
and a slightly accelerated activation in smaller ventricles. We expect the ef-
fect of variations in �ber orientation to be much smaller on the moment of
activation than on the mechanics. This is because the anisotropy level in the
wave propagation is much lower than that in tissue stiffness.
Concerning the choice of boundary conditions, we adopted commonly used
boundary conditions and this choice complies with recommendations of a re-
cent study addressing the topic [6]. Nonetheless, the resulting boundary con-
ditions are a simpli�cation and the effect of more realistic conditions should
be addressed. It would be interesting comparing the uncertainty propagated
from this choice with results of sensitivity presented in this thesis.
The last modeling issue regards the sensitivity technique adopted in this re-
search. The elementary effects method was originally proposed for parame-
ter screening. It is less quantitative than gold-standard variance-based tech-
niques. Still, it allowed quantifying variations of the spatial distribution of
strains without the need for surrogate models. Nonetheless, a comparison
using a variance-based method would enhance the strength of our results.
The second limitation of our study is that we did not address pathological
cases. We estimated the sensitivity of the mechanics to geometry and �ber
orientation on strain distributions in physiological conditions. Similarly, the
�ber personalization method here proposed has been studied under physio-
logical conditions. It is not clear whether themethod works also in pathologi-
cal conditions nor whether it might improve pathology estimation if included
in a broader data assimilation context.
The last limitation concerns computational time. Our model of the LV takes
approximately 50 min for simulating a cardiac cycle on a modern worksta-
tion. Inverse analysis and SA studies require several evaluations of themodel.
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While SAandUQcanbeperformed for validating amethodologybefore apply-
ing it in the clinics, the goal of the inverse analysis is to improve understand-
ing of patient data measured in clinics. Currently, the computational cost of
data assimilation requires the use of sub-optimal discretizations as in chap-
ter 5. At this level of computational cost, data assimilation could be applied
only in very speci�c case studies.

6.3 Future perspectives

This thesis provided precious insights about the role of geometry and �ber
in model personalization. The results achieved can be extended by address-
ing the model limitations, by addressing other sources of uncertainty, and by
addressing how pathologies affect the prediction of the model.

6.3.1 Model extension

The Cardiac Atlas Project published a new dataset containing four biventric-
ular shape modes extracted fromMRI of the UK Biobank [4]. A�er extending
the implementation of themechanics to includebiventricular geometries, our
sensitivity study on geometry can be repeated including such dataset.
Another simple extension of the implementationwould be the inclusion of an
Eikonal solver to compute the activation pattern of themyocardium. It would
be interesting to compare the sensitivity to different commonly adopted choices
of initiation of the depolarizationwave to the sensitivity to geometry and �ber
orientation, as presented in this thesis.
Another source of uncertainty inmodels of cardiacmechanics regards bound-
ary conditions. Addressing the role of different choices of boundary condi-
tions commonly adopted in literature will allow comparing their in�uence
with that of other parameters more easily measurable.
The elementary effects method can be extended to work with groups of pa-
rameters [9]. A complete sensitivity analysis including groups of parameters
describing the geometry, �ber orientation, initiation of depolarization wave,
and boundary conditions would provide a quanti�cation of major sources of
uncertainty of the model and would allow to prioritize between parameters
and groups of parameters.

6.3.2 Prioritizemodel parameters in pathological cases

We investigated the importance of parameters describing geometry and �ber
orientation in determining end-systolic strains in the physiological LV. Our
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goal was to quantify the uncertainty concerning those parameters propagated
to the observation of strains in order to make choices in the personalization
of the model in view of the inverse estimation of pathologies. Before reach-
ing that point, we need to address the uncertainty in the pathological case.
In fact, strain distributions might be completely altered by pathology and
the role of pathology related parameters might exceed that of inexact mod-
eling of geometry and �ber orientation. Several questions remain still unan-
swered: howmuch do pathologies affect strain patterns? Can the uncertainty
in geometry and �ber orientation be neglected compared to the magnitude
of strain variations induced by pathologies? If not, do we have to include the
most important parameters describing the geometry and �ber orientation in
the inverse parameter estimation algorithm? Do pathologies also alter geom-
etry and �ber orientation? A �rst step towards the answers to those ques-
tions requires us to investigate how strain patterns are affected by different
pathologies. This could be achieved by simulating in-silico a pathology and
studying the sensitivity of strains to pathology-speci�c parameters. From this
study, a relation between pathology-related parameters and strain patterns
should emerge. The analysis of the relations between strains and pathologies
would clarify whether different pathologies could be distinguished one from
the other. This investigation will allow to better select what observation to in-
clude in an inverse analysis and whether the choice of parameters involved in
the estimation should be set a priori.

6.3.3 Combiningdataassimilationandmeta-modeling for (almost)
real time computations

Data assimilation is most likely the way by which computational models will
enter clinical practice. However, given the current computational require-
ments of models and the available resources, the application of data assimila-
tion in clinical practice is unfeasible. A possibilitywould be to use such a tech-
nique only on few speci�c cases, where a quantitative assessment would help
the clinician to better understand a case. Still, before reaching that level of
con�dence inside the clinic, a computational model must undergo extensive
veri�cation, validation, and uncertainty quanti�cation (VVUQ) [5]. Both data
assimilation and VVUQ require several model runs and their combination is
prohibitive because of the computational cost of the underlying models. A
potential solution might come from model order reduction [3] or the use of
surrogatemodels [10] such as polynomial models, neural networks, Kringing,
that run much faster than the original ones.
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6.4 General conclusions

In this thesis, we developed a computational framework to assess the sensitiv-
ity of end-systolic strains to physiological variations in the geometry and �ber
orientation descriptions. The analysis allowed to quantify the effect of geom-
etry and �ber orientation on the spatial distribution of end-systolic strains
and highlighted important relations between strain components and relevant
parameters. These relations have been exploited to create a methodology to
personalize a rule-based model for �ber orientation.
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Summary

Computational models of the heart might constitute a precious tool for car-
diologists during diagnosis and decision making. In this context, a compu-
tational model of the mechanics of the heart can be used to achieve a better
interpretation of the patient clinical measurements or to simulate different
intervention scenarios. Typically, for those applications the model requires
a personalization stage. Personalization of geometry may be based on infor-
mation acquired from imaging. Personalization of additional model parame-
ters requires the use of data assimilation techniques fed by patient data mea-
sured in the clinic. For computational models of the mechanics of the heart,
such data typically include deformations or strains derived from non invasive
imaging methodologies. In this process, very o�en great attention is put on
personalization of the geometry whereas �ber orientation is modeled using
generic rule-based models. This is due mostly to the fact that geometry can
be measured in-vivo more easily than �ber orientation. However, the per-
sonalized descriptions for geometry and �ber orientation both suffer from
presence of measurement noise and reconstruction errors. In this research,
we quantify the impact that different choices for the modeling of geometry
and �ber orientation have on strain predicted by a model of the mechanics
of the le� ventricle. Next, we make a �rst step towards data assimilation by
estimating patient-speci�c �ber orientation from end-systolic strain.
In chapter 2, we present and verify a new numerical implementation of a
model of le� ventricular mechanics, and we propose an optimal choice for
spatial and temporal discretization.
In chapter 3 and chapter 4, we apply the elementary effects method to esti-
mate the sensitivity of end-systolic strains to physiological variations in the
description of the geometry and �ber orientation. Six shape modes describ-
ing the anatomy of 300 healthy hearts were used to represent a multitude of
geometries in the neighborhood of one standard deviation around the average
patient geometry. Information from two atlases of �ber orientation, obtained
from ex-vivo Diffusion Tensor Imaging, was used to represent variations of
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one standard deviation around an average con�guration. Our �ndings show
that �ber orientation affects end-systolic strain distributions at least twice as
much as geometry. The main contribution of this in�uence is given by the
transverse angle, that describes the transmural component of the �ber vec-
tor, and the transmural offset of the helix angle, that describes the longitudi-
nal component of the �ber vector. Concerning geometry, only the �rst shape
mode, related to the variability in the size of the le� ventricle within the hu-
man population, has an impact somewhat comparable to that of �ber orien-
tation.
In chapter 5, we apply a reduced-order unscented Kalman �lter to estimate
parameters in the description of �ber orientation that aremost in�uential for
end-systolic strain. The difference between the estimated and ground truth
�ber orientationwas found to bewithin themeanDT-MRImeasurement error
of 10 degrees.
In conclusion, in this thesis we show that �ber orientation affects the distri-
bution of end-systolic strains twice as much as geometry and we propose a
methodology to estimate patient-speci�c �ber orientation from data that can
be measured in the clinic.
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