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Integrated Design of a CVT-equipped Electric Powertrain
via Analytical Target Cascading

Chyannie A. Fahdzyana1, Mauro Salazar1, Tijs Donkers2, Theo Hofman1

Abstract— Electric vehicles are gaining momentum as a valid
alternative to conventional engine-based cars. In order to meet
the high expectation of the market, they must strive for a
similar, if not better, performance and driving range. To this
end, their powertrain must be carefully designed and account
for the interconnections among the various components in an
integrated fashion. In this paper, we present a co-design frame-
work for electric powertrains, whereby we jointly optimize
the size of the electric machine (EM) and the geometry of a
continuously variable transmission (CVT) together with its ratio
trajectory, with the goal of minimizing the energy consumption
of the vehicle. Specifically, we first frame the minimum-energy
co-design problem in an integrated manner, accounting for the
CVT geometry and dynamics, and the EM size. Given the
problem complexity, we decompose it into an EM-design and a
CVT-design subproblem, whereby we jointly optimize the CVT-
ratio trajectory, and leverage analytical target cascading (ATC)
to effectively solve the design problem. Finally, we showcase
our framework on the New European Driving Cycle (NEDC),
highlighting the importance of designing powertrains in an
integrated fashion: Compared to the case whereby only the
EM, the CVT, or the control are optimized, our joint EM-CVT
design can improve the energy consumption of the vehicle by
up to 22%.

I. INTRODUCTION

AS A RESULT of stricter regulations on emissions, electric
and hybrid electric vehicles are increasing in popularity

[1]. However, in order to fully take effect, such powertrains
still have a number of challenges to overcome, namely the
initial cost of buying the vehicle and the achievable driving
range. One of the components of a vehicle powertrain is the
transmission which connects the propulsion source to the
wheels. Typically, electric vehicle powertrains are equipped
with fixed-gear transmissions. In the past few years, several
studies have highlighted the potential energy saving and
performance benefits of using multi-speed and continuously
variable transmissions (CVTs) in electric vehicle applica-
tions [2], [3]. In particular, a CVT is capable of realizing con-
tinuous transmission-ratio values, allowing the mover(s)—
combustion engine and/or electric machine (EM)—to operate
at the highest possible efficiency, and improving the driving
comfort via a smooth torque transmission. While CVTs
typically have lower energy efficiency compared to that of
a fixed-gear transmission, their flexibility also enables to
downsize the prime mover. This calls for methods to optimize
vehicle powertrains in an integrated manner. Against this
backdrop, we investigate the problem of jointly optimizing an
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Fig. 1. Schematic diagram of the considered electric powertrain with an
electric machine (EM) that supplies the required traction power, and a CVT
that is connected to the wheels via a final drive ratio (FD).

electrical powertrain in terms of EM size and CVT geometry,
including the ratio control, whilst accounting for the CVT
dynamics.

A. Literature Review

Our work pertains to two research streams, namely, power-
train design and co-design of complex systems. The use of
CVTs in conventional and hybrid electric vehicle powertrains
has been explored quite extensively [4]–[7]. However, to
the best of our knowledge, not much research has been
conducted to investigate the benefits of using CVTs in battery
electric vehicle powertrain applications. Furthermore, current
studies typically employ a simple static CVT model [3],
[8], [9], where the dynamic behavior of the system is not
considered. In our previous research, we focused on jointly
optimizing the geometric design and feedback controller of
CVTs [10], also accounting for its low-level dynamics [11],
but assuming that the primary mover’s (combustion engine)
size and operating points (e.g., the rotational speed and
torque), as well as the desired ratio trajectory are given.

In general, simultaneously optimizing the plant and control
artifacts of complex systems consisting of multiple com-
ponents may not always be computationally feasible, as it
may entail several implementation issues, such as memory
limitations and unreasonably high computation times. A
possible approach to overcome this issue is to divide the
problem into multiple subproblems and solve them via a
coordinated optimization strategy converging to the original
problem’s solution. Traditional system design uses sequential
or iterative methods which do not account for the coupling
between the separate plant and control problem, and there-
fore often yield deficient designs. A popular alternative is
the nested approach [12]–[14], as it not only guarantees
system optimality, but also allows optimal control solution
techniques to be directly applied to the control subproblem.
Yet this approach is limited by the assumption that an
optimal controller does exist for the system [15], which



may not always be the case, and is based on derivative-free
optimization algorithms. Against this backdrop, a number
of researchers have studied different decomposition methods
for optimal system designs, namely multidisciplinary design
optimization [16] and analytical target cascading (ATC) [17].
In particular, ATC has been shown to be a very useful coordi-
nation method for decomposed optimization strategies [18],
due to its proven convergence properties [19]. However, ATC
has not yet been applied to jointly optimize the motor and
the transmission of powertrain systems.

Summing up, as far as the authors have ascertained, there
is no optimization framework to design electric powertrain
systems in an integrated fashion, including the transmission’s
geometry and control.

B. Statement of Contribution
To bridge this gap, we present a design optimization frame-
work based on ATC to design a CVT-equipped electric
powertrain in an integrated manner. We jointly optimize
the size of the EM and the geometry and ratio control of
the CVT, accounting for its internal dynamics. We focus
on minimizing the electric energy that must be supplied
to the EM (e.g., by a battery or a fuel cell) in order to
maximize the vehicle’s driving range, whilst accounting for
the impact of the components’ mass on the total power
request. Furthermore, we also investigate the benefits of
jointly optimizing the powertrain components (i.e., CVT and
EM) and their control, as opposed to optimizing only EM
and control, CVT and control, or control on its own.

C. Organization
This paper is organized as follows: Section II details the
models of the powertrain components used in this work.
The general co-design problem formulation is presented in
Section III, whilst we devise our decomposed optimization
framework in Section IV. Finally, we discuss our results in
Section V and draw the conclusions in Section VI.

II. MODELING

In this study, we consider a simple powertrain configuration
shown in Fig. 1. The modeling of the powertrain components
of the proposed design problem will be elaborated below.

A. Electric Machine
We proceed by modeling the EM losses as a continuous
function of the motor rotational speed and power. These
losses of the EM are also influenced by the size of this
component, where they are assumed to scale linearly with
the motor size,

Ploss,em = semPloss,em,o , (1)

where sem represents the scaling factor of the motor size,
and the original fitted EM loss Ploss,em,o is given by

Ploss,em,o = Z>QZ , (2)

where Z =
[
1 ωem,o Pem,o

]>
. We scale the motor with

respect to the torque

sem =
Tem
Tem,o

, (3)

Fig. 2. Fitted EM power loss model considered in this study. The RMSE
of the electrical power loss is 4%.

and we obtain a new expression for Ploss,em, yielding

Ploss,em = sem · Z̃>QZ̃ , (4)

where Z̃ =
[
1 ωem,o Pem/sem

]>
, Q is a positive-definite

matrix of the motor loss model coefficients. The motor model
as a function of the motor speed and power is visualized in
Fig. 2. Additionally, the maximum delivered torque of the
EM then becomes a function of the scaling parameter sem,
given by

T em = semT em,o , (5)

where T em,o is a maximum torque (before scaling) that can
be delivered by the electric machine. The mass of the EM is
expressed as a function of the scaling parameter, such that

Mem = ρemsemP em,o , (6)

where ρem is the specific density of the EM in kg/kW, and
P em,o is the maximum EM power before scaling (sem = 1).

B. Continuously Variable Transmission
In this subsection, we discuss the CVT modeling, system
dynamics, and the losses considered in this study. Interested
readers are referred to [10], [20] for a more detailed expla-
nation of the models. The CVT transmission ratio is defined
as the ratio of the output to the input speed,

rg =
ωs

ωp
, (7)

where ωp and ωs are the CVT primary (connected to the
electric machine) and secondary rotational speed (connected
to the wheels), respectively.

The system dynamics of the CVT transmission is de-
scribed by the CMM model, derived in [20],

ṙg = 2ωp∆
1 + cos2(β)

sin(2β)
c(rg)

[
ln
Fp

Fs
− ln

Fp

Fs

∣∣∣∣
ss

]
, (8)

where ωp is the rotational speed at the primary side, which
is the motor rotational speed ωem, ∆ denotes the pulley
deformation, β is the pulley wedge angle. Fp and Fs are the



applied primary and secondary clamping forces, and Fp

Fs

∣∣
ss

denotes the steady-state clamping force ratio, which is the
ratio needed to sustain rg such that ṙg = 0. The term c(rg)
can be written as

c(rg) = c1r
2
g + c2rg + c3 . (9)

Furthermore, the steady-state clamping force ratio is de-
scribed as
Fp

Fs

∣∣∣∣
ss

(β, rg) = a1(β)r2g + a2(β)rg + a3(β) + b1Υ2 + b2Υ ,

(10)
where Υ is given by

Υ =
|Tem|

|Tem|+ 0.3T em

. (11)

In addition, the pulley deformation ∆ is described as a
function of the secondary clamping force Fs,

∆(Fs) = (1 + 0.02 · (Fs/1000− 20)) · 0.001 (12)

Fs =
cos(β)(|Tem|+ 0.3T em)

2µRp
. (13)

We select the CVT control input as u =[
ln

Fp

Fs
− ln

Fp

Fs

∣∣
ss

]
, meaning that the CVT dynamics

in (14) can now be written as

ṙg = 2ωem∆
1 + cos2(β)

sin(2β)
c(rg)u . (14)

We aim to optimize the CVT with respect to the physical
design as well as its control performance. The physical de-
sign parameters considered in this work are the pulley wedge
angle β, shaft radius R1 and pulley radius R2 [10]. These
parameters influence the CVT mass, which is expressed as

Mcvt = Mcvt,o +Mvar(β,R1, R2, T em) , (15)

where Mcvt,o is the CVT base mass, T em is the maximum
deliverable torque of the EM, and Mvar is the variator mass.
The variator mass is influenced by the maximum torque and
the pulley design parameters, such that

Mvar = cmT em +Mv(β,R1, R2) , (16)

where Mv is the pulley and belt mass which is described in
[10]. The value of cm is shown in Table II.

Furthermore, we consider the leakage losses that occur
at the pulley hydraulic chambers throughout operation, de-
scribed as

Ploss,cvt = cpp
2
p + csp

2
s , (17)

where cp and cs are variator leakage factor coefficients
obtained from [21]. The CVT losses are directly influenced
by the clamping pressures pp and ps,

pp =
Fp − Fcent,p(R1, R2, ωem)

Ap(R1, R2)
, (18)

ps =
Fs − Fcent,s(R1, R2, ωem, rg)

As(R1, R2)
, (19)

where Fj are the clamping forces, Fcent,j are the centrifugal
forces, and Aj is the pulley surface area for j ∈ {p, s},
and they depend on the geometric parameters of the CVT
variator, i.e., the shaft radius R1 and the pulley radius R2.

C. Longitudinal vehicle dynamics
Here, we utilize a backward-facing model to describe the
longitudinal dynamics of the vehicle.

Froll = Mveh g Cr cos(αmax) (20)

Faero = 0.5ρaCdAfv
2
wh (21)

Finert = Mveh(1 +Mrot)awh (22)
Fgrad = Mvehg sin(α) (23)
Tv = (Froll + Faero + Finert + Fgrad) ·Rwh (24)

Preq = Tvωv (25)

ωem =
ωv

rfdrg
(26)

where Froll, Faero, Finert, Fgrad are the rolling resistance,
aerodynamic drag, inertia, and gradability force, respectively.
The vehicle speed ωv is given by the drive cycle, and is
used to determine the required wheel power Preq. It can be
observed that the requested power Preq depends on the mass
of the vehicle Mveh, which is given by

Mveh = Mveh,o +Mem +Mcvt , (27)

where Mveh,o is the vehicle base mass, Mem is the EM mass,
and Mcvt is the CVT mass.

III. CO-DESIGN PROBLEM FORMULATION

In this section, we present the integrated plant and control
design of a battery electric vehicle, taking into account the
design of the EM and its corresponding transmission system
(CVT). The aim of the optimal design is to minimize the
energy along the drivetrain that needs to be supplied by the
battery. The combined plant and control design problem is
given by

min
xP,xC

∫ tf

0

(Preq(xP) + Ploss,em(xP,xC) + Ploss,cvt(xP,xC)) dt ,

(28)
where the plant design parameters are the motor scaling
parameter and the CVT geometry, xP = {sem , β , R1 , R2},
and the control design parameters are the optimal CVT ratio
and input trajectories, xC = {rg(t) , u(t)}, subject to (9)-
(14), (17), (20)-(27), as well as

Ploss,em = sem

[
1 ωv

rgrfd
Pem

]
Q

 1
ωv

rgrfd

Pem

 (29)

Pem = Pwh + Pl,fd (30)
Pem = ωemTem (31)

Pem ≤ P em (32)
rg ≤ rg ≤ rg (33)
sem ≤ sem ≤ sem (34)
u ≤ u ≤ u (35)

β ≤ β ≤ β (36)

R1 ≤ R1 ≤ R1 (37)

R2 ≤ R2 ≤ R2 , (38)

where the design parameters are the scalar plant design
parameters, including the scaling factor of the EM and the



CVT geometry, xP = {sem, β, R1, R2}, as well as the
optimized trajectories of the CVT ratio and input signal
xC = {rg(t), u(t)}.

As observed from the proposed design problem, there are
strong dependencies between the plant and control design
parameters, objectives, and constraints. Due to this property,
solving this integrated powertrain design problem is not a
trivial matter. In the subsequent section, we will discuss the
proposed deconstructed approach to the co-design problem.

IV. DECOMPOSED FRAMEWORK

The optimization problem definition proposed in Section III
is a highly complex formulation. We therefore propose a
decomposed co-design framework based on the concept of
ATC to solve the original co-design problem. This approach
allows the large co-design problem to be decomposed into
smaller subproblems which can be solved iteratively, ensur-
ing that the dependency between the separated subsystems
is accounted for.

To proceed in the manner indicated, we first identify the
analysis functions’ dependencies on the design parameters.
We observe that the requested power is influenced by the
EM and CVT design parameters; the EM losses depend on
the motor scaling parameter and the CVT ratio trajectory;
the CVT losses depend on the CVT geometry, as well as the
CVT and ratio input trajectory. Based on these relationships,
we divide the original optimization problem into two hier-
archical subproblems. We first identify the local variables–
the optimized parameters that only appear in the respective
subproblems–and the shared variables, which are those that
appear in the two or more subproblems. The subproblems
optimize for both variable types, while ensuring that the
shared variables converge into the same value. In order
to do this, we employ a quadratic penalty function in the
optimization objective to minimize the discrepancy between
the shared variables. The presented framework is explained
in more detail below.

A. Upper Level
We first discretize the original continuous-time formulation
using Forward Euler method. The objective of the upper
level subproblem is to minimize the requested energy and
EM loss, subject to the design parameters, i.e., the motor
scaling parameter xP1 = [sem] and the CVT ratio trajectory
xC1 = [rg]. Mathematically, the optimization formulation in
discrete time is given by

min
xP1,xC1

N∑
k=1

(Pem(k)+Ploss,em(k)) ∆t+(zL−z)>W(zL−z)

(39)
subject to (20)-(27) and (30)-(34). Here, z denotes the
vector of shared variables, which in this case are the
CVT ratio, EM scaling factor, the CVT mass z =
[rg(1) , rg(2) , . . . , rg(N) , sem , Mcvt]

>, and W is a diago-
nal matrix of optimization weights W = diag(w1·1, w2, w3).

As seen from the formulation, the upper-level optimization
minimizes the power generated by the EM and the losses,
as well as the discrepancy between the shared variables.
Furthermore, the optimization also uses several values that

are generated by the lower level subproblem, indicated by
superscript L. When solving the upper level problem, the
parameters with superscript L are treated as constants. Once
the optimization at this level is completed, the upper level
then propagates the resulting shared variables zU to the lower
level subproblem as targets.

B. Lower Level
The lower-level optimization subproblem concerns the mini-
mization of the CVT mass and the leakage losses, as well as
the discrepancy between the target (generated by the upper-
level subproblem) and response variables. Mathematically,
the optimization of the lower level subproblem is formulated
as

min
xP2,xC2

N∑
k=1

Ploss,cvt(k) ∆t+ (zU − z)>W(zU − z) , (40)

subject to the constraints described in (9)-(14), (17),
(29)-(38). The design parameters are the CVT geome-
try xP2 = [β ,R1 , R2], as well as the CVT ratio and
input trajectory, xC2 = [rg,u]. Similarly, the lower
level then passes the generated shared variables zL =
[rLg (1) , rLg (2) , . . . rLg (N) , sLem , M

L
cvt]

> as a response to the
upper level, and a new iteration begins. The iterative process
is repeated until the termination criterion ε is reached, given
by

1

N

N∑
k=1

(
rUg (k)− rLg (k)

rUg (k)

)2

·∆t+

(
sUem − sLem

sUem

)2

+

(
MU

cvt −ML
cvt

MU
cvt

)2

≤ εtol,j ,

(41)

where εtol,j is the maximum allowable tolerance on the
discrepancies between the shared variables.

By selecting rg, sem, and Mcvt as the shared variables,
the original subproblems can be decomposed into smaller
and more manageable tasks, while ensuring that the strategy
converges to a tractable set of solutions.

V. RESULTS AND DISCUSSION

This section presents the results obtained with the proposed
co-design formulation over the New European Driving Cycle
(NEDC). The decomposed optimization subproblems are
parsed with CasAdi [22] and solved in Python using the
IPOPT solver [23] provided by the OPTI toolbox. Speci-
fically, we compare our integrated design and control opti-
mization results whereby the EM’s size, the CVT’s geometry
and the ratio trajectory are jointly optimized, to the results
stemming from the sole optimization of (i) EM’s size and
ratio trajectory, (ii) CVT’s geometry and ratio trajectory, and
(iii) ratio trajectory. The results are summarized in Table I,
whilst the simulation parameters used in this study can be
found in Table II.

It can be seen from Fig. 3 that at the start of the iterative
process, the discrepancy ε between the shared variables of
the subproblems is large. However, it gradually decreases
in the next iterations until ε reaches an acceptable value.
Consequently, we observe that both the upper and lower
level optimization subproblems of the decomposition-based



TABLE I
RESULTS OF USING THE PROPOSED DECOMPOSITION BASED CO-DESIGN APPROACH

Solution Description Optimize CVT+EM Optimize CVT only Optimize EM only Optimize control only Unit

sem Motor scaling 0.6 1 0.6 1 -
β Wedge angle 7.14 9.16 11 11 deg
R1 Shaft radius 20 20 23.5 23.5 mm
R2 Pulley radius 88.5 88.5 85.5 85.5 mm
Mcvt CVT mass 65.23 93.53 93.6 93.6 kg
El,em EM loss 0.76 1.26 0.76 1.26 MJ
El,cvt + El,fd CVT loss 61.9 67.94 63.8 69.6 kJ
Eb Motor input energy 1.97 2.51 1.99 2.52 MJ

Fig. 3. Evolution of ε per iteration for the proposed decomposition-based
optimization.

optimization framework manage to converge to the same
optimized ratio trajectory rg. Additionally, although we can
observe in Fig. 3 that the proposed decomposed optimization
eventually converges, there exists no guarantee on both the
optimality of the obtained results and the convergence of
the algorithm due to the nonlinearity of the optimization
problem.

Furthermore, we observe that optimizing both the CVT
and EM as well as the ratio trajectory yields the lowest
energy consumption, whilst solely optimizing CVT design
and/or control yields a significantly higher energy consump-
tion, which can be explained as follows: Table I exemplifies
that the overall losses are dominated by the EM, which
explains the higher energy consumption for the case studies
whereby the EM’s size is not optimized. We can observe that
the resulting ratio trajectories for the case of optimizing only
the control or the CVT parameters do not differ significantly
from each other, as shown in Fig. 4.

Moreover, in Fig. 5, depicting the optimal power supplied
to the EM for the different case studies, we do not find
a big difference in optimizing the CVT and/or the ratio
trajectory, which can be ascribed to the fact that the CVT’s
baseline design is already good enough for a relatively
mild driving cycle like the NEDC. However, the power can
be substantially reduced when both the EM and CVT are
concurrently optimized. Finally, we underline the fact that
optimizing the powertrain design and control in an integrated

Fig. 4. Resulting optimized ratio trajectory over a representative drive
cycle (NEDC) for the different case studies in this paper.

Fig. 5. Resulting instantaneous battery power Pb over a representative
drive cycle (NEDC) for the different case studies considered in this paper.
The upper plot displays the required battery power throughout the cycle for
the case of joint EM-CVT plant and control design. The lower plot depicts
the differences of battery requested power ∆Pb obtained for the remaining
case studies with respect to that of the EM-CVT design. It can be observed
that jointly optimizing the EM, CVT, and the control strategy yields the
lowest required battery energy.

manner can improve the energy consumption up to 22%.

VI. CONCLUSIONS

In this paper, we have explored a decomposed co-design
approach to optimize a CVT-equipped powertrain in terms



TABLE II
SIMULATION PARAMETERS

Parameters Description Values Unit

rg overdrive ratio 2.5 -
rg underdrive ratio 0.45 -
β min. wedge angle 7 deg
R1 min. shaft radius 20 mm
R2 min. pulley radius 85.5 mm
β max. wedge angle 13 deg
R1 max. shaft radius 30 mm
R2 max. pulley radius 88.5 mm
εtol,1 tolerance on ε1 1 -
εtol,2 tolerance on ε2 10 kg
ρem EM specific density 0.9 kg/kW
Tmax,o EM max torque 305 Nm
ρa air density 1.23 kg/m3

Cd drag resistance 0.35 -
Af frontal area 2.38 m2

Rwh wheel radius 0.35 m
Mrot vehicle rotational mass factor 0.02 -
Mveh,o vehicle base mass 1000 kg
Mcvt,o CVT base mass 50 kg
cm CVT mass model coefficient 0.24 kg/Nm
w1 optimization weight 300 -
w2 optimization weight 100 -
w3 optimization weight 100 1/kg
∆t discretization time 1 s

of electric motor (EM) sizing and CVT geometry and
control. Specifically, we have leveraged analytical target
cascading (ATC) to dissect the original nonlinear system
design problem into smaller and more tractable optimization
subproblems. We have shown the benefits of optimizing the
design and control of the electric powertrain’s components
in an integrated manner, underlining the strong interconnec-
tion between the plant design (component sizes) and the
control design (performance, energy consumption). Finally,
our results revealed that, whilst the CVT baseline design
is already good enough for the NEDC, jointly optimizing
the EM can significantly improve the energy consumption
of the vehicle, highlighting the potential of designing future
automotive systems in an integrated manner and prompting
more detailed studies.

In the future, we would like to improve the performance
of our decomposed co-design framework and expand our
design problem to include a battery and/or a fuel cell, and
more complex architectures. Moreover, we want to apply
the proposed framework to more aggressive scenarios, e.g.,
employing more demanding acceleration profiles. Finally, we
are interested in comparing the performance achievable with
different transmission technologies such as fixed-gear and
multi-speed transmissions.
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