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Chapter 1

Introduction

“The desire to write grows with

writing.”

Desiderius Erasmus

Nowadays, more people are living in cities than ever before. After decades of urban growth,

urban populations have been continuously growing in both developed and developing

countries. According to the United Nations, in 2018, 55% of the world’s population was living

in cities. Projections show that the urban share of the worldwide population will increase to

68% by 2050 (see UN.org [113]). Meanwhile, after years of profound technological change,

an increasing number of urban individuals are immersed in ever-connected mobile devices

and curated digital environments. Over the past decade, more people, especially younger

generations, preferred to purchase goods and services using their mobile phones, which is

convenient and fast. This trend led to the booming of e-commerce. In 2017, e-commerce

sales jumped 24.8 percent to 2.3 trillion dollars and are projected to continue growing for the

foreseeable future (eMarketer [37]). According to Internet Retailer’s analysis (Young [130]),

e-commerce made up 14.9% of total retail sales in 2019 in the United States.

Both trends bring more challenges to logistics systems. The transport demand for freight and

passenger transport in the cities is expected to grow dramatically in the coming decades to

serve the growing urban population and economy. As an example, the average number of

daily deliveries to households in New York City tripled to more than 1.1 million shipments

from 2009 to 2017 (Haag and Hu [51]). As another example, in 2017 the total freight transport

volume within the European Union equaled 3616.6 billion tonne-kilometres, and the total

movement of people within the European Union reached a new all-time high (6912.7 billion

passenger-kilometres; see Statistical Pocketbook [105]). Both measures were 30 % higher than

in 1995. At the same time, urbanization and e-commerce also directly changed the consumer

expectations, as consumers now expect fast, free shipping and competitive pricing.
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As customer expectations increase, so too will traffic congestion in cities. The rising traffic

congestion becomes an inescapable phenomenon in large and growing metropolitan areas

across the world. According to the annual summary by motoring organisation Royal Dutch

Touring Club (ANWB), the Dutch roads saw a 17% increase in the volume of traffic jams in

2019 (Verhoeven [119]). At the same time, consumer expectations for faster delivery times are

growing rapidly, especially as overnight and same-day delivery become more popular. This

trend could lead to more traffic bottlenecks and capacity problems.

This all made transportation costs rise for the past few years, despite declining oil prices (Joo

et al. [59]). Transportation costs are known to be one of the largest expenses for many logistics

companies because transportation is a key logistics activity. In 2019, Amazon’s transportation

costs climbed to 37.9 billion dollars, which surged by 36.6% compared to the previous year

(Clement [19]). Furthermore, last-mile logistics, more specifically short-haul transportation,

causes disproportionately high costs of up to 28% of the total transportation costs [89].

To cope with this reality, innovative and effective transportation solutions need to be

proposed and investigated. The efficiency of transport systems depends on the decisions

to allocate scarce resources to perform a set of tasks (services). Generally, (short-haul)

transportation encompasses different decision levels, such as strategic decisions (e.g., the

location of distribution centres), tactical decisions (e.g., the type and size of fleet, public

transport schedules), and finally, operational decisions (e.g., the routing and scheduling of

the transport operations, crew scheduling).

More specifically, the primary research objective of this thesis is to investigate whether more

efficient last-mile logistics can be achieved by taking travel-time fluctuations into account

or not. Currently, in many routing applications, the travel time between two customers is

assumed to be a constant value, such as a distance metric or an average travel time estimate.

However, this assumption is not realistic. Due to the limited capacity of the road network and

traffic intensification, the travel speed is seriously affected by the traffic fluctuations, which

also results in great variations in travel times and transportation costs.

The rest of this chapter is organized as follows: Section 1.1 discusses the four research

questions addressed in this thesis. Section 1.2 provides a brief introduction to the investigated

problem. Finally, an overview of the thesis is given in Section 1.3.
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Introduction

1.1 Research questions

To achieve the aforementioned objective, we investigated in this thesis four research projects

based on last-mile transportation solutions that consider fluctuations in travel time. More

specifically, in the first three projects, we investigated several time-dependent extensions of

the classical one-to-one pickup and delivery problem, where each customer request consists

of transporting a load from one pickup location to one delivery location. We defined them

as a family of time-dependent pickup and delivery problems with time windows. In the

last project, we focused on one of the challenges in the laundry business and defined this

problem as the time-dependent laundry routing problem with stochastic pickup demand.

This problem generalizes the classic vehicle routing problem with simultaneous pickup

and delivery in which each customer has commodities to be delivered from the depot and

commodities to pick up to bring back to the depot.

Moreover, a set of research questions is formulated and addressed in the corresponding

chapters of the thesis. The research questions are as follows:

Research question 1. Which exact and heuristic methods are effective to manage pickup and

delivery service in a time-dependent environment?

Fundamentally, the problems considered in this thesis are optimization problems. Many

algorithms can be used to solve an optimization problem, which can be classified into two

main categories. Some of these algorithms are grouped as exact methods, and others belong

to heuristic methods. The main advantage of an exact method is that it is able to produce the

optimal solution to a given optimization problem. However, most of the exact methods are

highly sophisticated and typically take more time to execute. In contrast, heuristic methods

are easier to implement and can offer a quick and good solution, which is practical. The

main drawback of this type of method is that its generated solution is not necessarily optimal.

Therefore, in the first two projects, we focus on designing efficient exact methods for problems

with small and medium-sized instances. The heuristics approaches are considered in the last

two projects for problems with large-sized instances.

Research question 2. What are the benefits and advantages of taking fluctuating travel times

into account while planning routes in pickup and delivery services?

According to Malandraki and Dial [72], two main components lead to travel-time fluctuations.

The first component is associated with random events such as accidents and weather
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conditions, which is referred to as stochastic travel time. The second component comprises

the road congestion incurred due to daily predictable fluctuations of traffic density, which is

referred to as time-dependent travel time. However, according to Barnhart and Laporte [10],

the routing problem becomes quite challenging when both time-dependent and stochastic

travel times are considered. A possibly exponential number of routes need to be evaluated to

ensure an optimal route is found. Moreover, when vehicle arrivals are random but somewhat

correlated with time-dependent travel time, the vehicle assignment becomes significantly

more complicated (Hickman and Bernstein [54]). Therefore, in this thesis, we consider

only time-dependent travel times. Under this setting, the travel time between locations is

dependent on the time the driver departs (e.g. in rush hours traveling takes more time); a

tour’s cost depends on the tour’s start time.

Research question 3. What is the value of different degrees of flexibility in pickup and

delivery services when fluctuating travel times are considered?

On one hand, managing and owning a private fleet enables companies to control and shape

their customers’ journey and may lead to cost savings when managed well. However, the cost

of recruiting and training enough drivers may not be affordable for smaller companies. On

the other hand, outsourcing to a third-party logistics provider can eliminate the need to invest

in warehouse space, technology, a delivery fleet, or the manpower needed to handle all the

delivery processes. The companies can remain agile and responsive during periods of peak

demand, maintaining the quality of their customer experience. However, huge potential risks

are also associated with it; for example, the third-party logistics provider may not be able to

fulfil all requirements in delivery quality or delivery time. Therefore, one strategy a logistics

provider can employ for meeting the increasing demands and expectations is to complement

and coordinate its fleet operations with those of for-hire, third-party logistics providers. For

instance, e-commerce businesses Style Theory ([85]) and Vipshop.com ([128]) use a hybrid

pickup and delivery model that consists of their own fleet and a partnership with third-party

logistics providers Pickupp and SF Express, respectively. Therefore, in this thesis, we consider

problems in which it can be decided to not serve certain customers (e.g., by outsourcing it to

a third-party logistics provider).

Moreover, in some businesses, shift planning needs to be done before the daily vehicle routing

starts. In these situations, start times of the routes are fixed. In other businesses the start times

of the shifts can be flexible. In this thesis, we investigate the difference between variants where

the start time is fixed or where it can be optimized.
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Research question 4. Is a pickup and delivery service still efficient and effective when

information regarding pickup demand is uncertain during the planning process?

Most research on vehicle routing assumes that all the necessary information is known and

available to formulate and solve the problem. However, in practical applications, this

assumption usually does not hold. The presence of uncertainty affects various aspects of

the problem under study. In general, uncertainty generates a time lag, which separates

the moments when a solution is planned and when it is executed. Therefore, in the last

research project, we investigate a problem in which the pickup demands are uncertain at the

moment of planning, given corresponding demand distributions. A planned route under

a deterministic setting may turn out to be infeasible if the total observed demands for the

customers scheduled on the route exceed the capacity of the vehicle. When such cases occur,

a recourse action with additional costs is needed to produce a feasible solution.

1.2 Conceptual model

One of the most common routing problems for operational decisions in transportation, the

vehicle routing problem (VRP), was first introduced by Danzig and Ramser [26]. It aims

to construct optimal routes for multiple vehicles starting from a depot and visiting a set

of geographically distributed customers. The time-dependent vehicle routing problem with

time windows (TDVRPTW) is a generalization of the classical VRP. Generally, the TDVRPTW

consists of designing a set of vehicle routes with least route duration cost, which start and

end at a depot, to satisfy a set of requests. The travel time between any pair of locations

varies over time. Therefore, the TDVRPTW aims to better represent the dynamic nature of the

travel time, especially in urban areas where traffic congestion can have a significant impact

on logistic operations. On one hand, because of its applicability and inherent complexity,

most of the efforts have been spent on (meta-)heuristic algorithms (see, e.g., Donati et al.

[33], Hashimoto et al. [52], Ichoua et al. [56], Malandraki and Daskin [71], Malandraki and Dial

[72], Van Woensel et al. [114]). Generally, these algorithms trade optimality for computational

time. The aim is to generate good-quality solutions within relatively short times. On the other

hand, several exact algorithms have been proposed in the literature to optimally solve the

TDVRPTW (see, e.g., Dabia et al. [25]). When it is not required to serve all requests and a

specific reward is obtained if a request is served, the goal of the logistics provider changes

to deciding which subset of requests to serve such that the collected reward is maximized

within a maximum allowed travel time. This problem is called the orienteering problem (OP).

Compared to the VRP or the OP, the time-dependent OP and its extensions have received very
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little attention in the scientific literature (see, e.g., Fomin and Lingas [40], Li [66], Verbeeck et al.

[117, 118]). This thesis focuses on solving different variants of time-dependent extensions

to the pickup and delivery problem with time windows (PDPTW) and the vehicle routing

problem with simultaneous pickup and delivery (VRPSPD).

The PDPTW is a generalization of the classical VRP. The PDPTW consists of designing a set of

least cost vehicle routes, which start and end at a depot, to satisfy a set of pickup and delivery

requests. The considered transportation network consists of depot and request locations. Each

request is characterized by an origin location, a destination location, desired time windows

for both locations, and demand. Due to time window constraints, the problem of finding

a feasible pickup and delivery plan is NP-hard as discussed in Savelsbergh and Sol [96].

The applicability and inherent complexity of the PDPTW lead to an extensive amount of

research. Most of the efforts have been spent on heuristic algorithms (see e.g., Nanry and

Barnes [79], Røpke and Pisinger [93]). On the other hand, several exact algorithms have been

proposed in the literature to optimally solve the PDPTW (see, e.g., Dumas et al. [34], Røpke

and Cordeau [91], Røpke et al. [92]).

In this thesis, we first extend the single-vehicle case of the PDPTW by considering time-

dependent travel times, and request selection (Chapter 2). Then, a family of time-dependent

pickup and delivery problems with time windows (TDPDPTW) under two dimensions of

operational flexibility are solved by an exact solution approach (Chapter 3). In Chapter 4, we

focus on a heuristic for one variant of TDPDPTW, named as the time-dependent profitable

pickup and delivery problem with time windows (TDPPDPTW). It considers time-dependent

travel times and allows all routes to start at a flexible departure time and has an option to

select only the profitable requests.

In general, vehicle routes need to satisfy the following constraints.

• Each route starts and ends at the predefined depot;

• Every request is served at most once. If it is served, the pickup and delivery nodes of

the request should be visited by the same vehicle;

• Precedence relations: The pickup location of a request is required to be visited before

its corresponding delivery location;

• If a request is served, its nodes must be visited in the imposed time windows;

• Vehicle capacity must not be violated at any time.
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The VRPSPD has attracted a lot of attention in the scientific community. It was introduced

by Min [73], inspired by the problem of distributing and collecting books in a library. Unlike

classic PDPTW, each customer has delivery demands for the delivery commodity and pickup

demands for the pickup commodity. The problem is to construct vehicle routes with minimum

total cost, satisfying the pickup and delivery requests of each customer in a single visit while

not exceeding the capacity of the vehicles. Angelelli and Mansini [2] considered time windows

as additional constraints in the VRPSPD. The recent literature offers just a few contributions

to the VRPSPD with stochastic demands (see, e.g., Dimitrakos and Kyriakidis [32], Minis and

Tatarakis [75], Pandelis et al. [81], Wollenberg et al. [126], Zhu and Sheu [133]). In Chapter

5, we examine a real application in a laundry business and study a time-dependent laundry

routing problem with stochastic pickup demands (TDLRPSPD). This problem generalizes the

VRPSPD by extending it with soft time windows, time-dependent travel times, and stochastic

pickup demands. In the TDLRPSPD, each customer has a chosen soft time window in which it

wants to be served. Late servicing of customers incurs some penalty costs. Untimely response

to the pickup failure influences customer service satisfaction level and consequently reduces

market share. Furthermore, most research has focused on the case with the delivery of a single

commodity, whereas the TDLRPSPD considers a pickup and delivery laundry case such that

restaurants and hotels prefer to use textiles with their own logos (such as uniforms). Thus, the

following constraints need to be satisfied:

• Each route starts and ends at a predefined depot;

• Every customer is served exactly once in the planned routes (it might be that due to

failures in operations an extra visit is necessary);

• Each node is served no earlier than the earliest time at which service may start;

• The total delivery demands of each vehicle must not violate its capacity limit.

1.3 Overview of the thesis

In Chapter 2, we introduce the time-dependent capacitated profitable tour problem with

time windows and precedence constraints and formally describe it as an arc-based mixed-

integer program (MIP). First, the proposed MIP is solved using optimization software (i.e.,

Gurobi 5.6), considering small-size instances with up to 60 locations (30 pickup and delivery

requests). To tackle larger instances, a tailored labeling algorithm is proposed. Several

dominance criteria are also introduced to discard unpromising labels. Our computational

results demonstrate that the algorithm is capable of solving instances with up to 150 locations
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(75 pickup and delivery requests) to optimality. Additionally, we present a restricted dynamic

programming heuristic to improve the computation time. This heuristic does not guarantee

optimality, but is able to find the optimal solution for 32 instances out of the 34 instances in

short computation times.

Chapter 3 studies a family of TDPDPTW, which extends the problem in Chapter 2 to the

multiple-vehicle case. We aim to optimize the service of a transportation provider under

two dimensions of operational flexibility. In the first, we consider problems wherein the

transportation service provider can choose the transportation requests it serves to maximize

profit. In the second, we consider problems wherein they can take advantage of periods

of light traffic by dictating to drivers when their routes should begin. We also consider

problems wherein these flexibilities are not present. We propose an exact solution approach

for solving problems from this family that is based upon branch and price, wherein columns

are generated via a tailored labeling algorithm. We augment the framework with adaptations

of various speed-up techniques from the literature, including limited-memory subset-row cuts

and route enumeration. With an extensive computational study, we assess the effectiveness

of the proposed framework and the impact of the adapted techniques. We have shown that

small to medium-size instances, with up to 45 freight requests (90 locations), can be optimally

solved by the proposed exact algorithm within a reasonable run-time.

In Chapter 4, we focus on the TD-PPDP-TW. As one variant of the problem studied in

Chapter 3, it allows all routes to start at a flexible departure time. It also decides which

customers to serve, and orders the visits in each route. Moreover, we propose an adaptive

large neighborhood search (ALNS) algorithm. The general idea of an ALNS algorithm is to

iteratively improve a given solution by first partially deteriorating it and then repairing it. A

destroy operator and an insertion operator are used, respectively. We use a total of ten removal

and five insertion operators. Each operator is selected based on its past performance during

the search process. Results of an extensive computational study show that the algorithm is

able to quickly find high-quality solutions on instances with up to 75 transportation requests

(150 locations). We also conduct a study of the impact on profits when explicitly recognizing

traffic congestion during planning operations.

Chapter 5 investigates an important process for the commercial laundry business, the

TDLRPSPD. While providing convenience and flexibility to customers, efficient laundry

pickup and delivery will also result in reduction in cost and time and improvement in service

quality. It ultimately results in customer loyalty, economic efficiency, and gain of competitive
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advantage. Moreover, the pickup quantity for each hotel or restaurant is stochastic as it

depends on how many customers this hotel or restaurant has had in the previous days. We

assume that the laundry service provider can make a reasonable prediction based on each

restaurant or hotel’s historical performance. The literature on this problem is quite limited. To

tackle this challenge, we present a two-stage stochastic programming with recourse model.

We also propose a sample average approximation method together with an ALNS algorithm

to obtain a heuristic solution. Several experiments are conducted to show the effect of

our solution approach. Compared to a pure deterministic solution using expected pickup

demands, it shows that an average cost savings of more than 50% can be achieved.

To help clarity, in Table 1.1, we summarize the general features of the research conducted in

each chapter of this thesis. Column “Time-dependency” indicates whether the considered

problem considers time-dependent travel time, “Request selection” indicates whether it is

allowed to serve only a subset of the transportation requests, “Stochastic aspect” indicates

which feature of the problem is considered to be stochastic in the considered problem,

“Methodology” represents the types of algorithms used to solve the considered problem, and

“Maximum instance size” indicates the largest (in terms of the number of requests) instance

solved. Finally, column “Research questions” indicates which specific research question is

answered in the corresponding chapter.

Table 1.1: An overview of the thesis

Chapter Time- Requests Stochastic Methodology Maximum
Research questions

dependency selection aspect instance size 1 2 3 4

2 3 3 Exact & Heuristic 75 3

3 3 3 Exact 45 3 3

4 3 3 Heuristic 75 3 3

5 3 pickup demands Heuristic 100 3 3

The work of Chapters 2 to 4, have already been published in the following papers:

Chapter 2: Peng Sun, Lucas P. Veelenturf, Said Dabia, Tom Van Woensel, The Time-Dependent

Capacitated Profitable Tour Problem with Time windows and Precedence Constraints.

European Journal of Operational Research, 264(3): 1058-1073, 2018.

Chapter 3: Peng Sun, Lucas P. Veelenturf, Mike Hewitt, Tom Van Woensel, The time-

dependent pickup and delivery problems with time windows. Transportation Research Part

B: Methodological, 116: 1-24, 2018.

Chapter 4: Peng Sun, Lucas P. Veelenturf, Mike Hewitt, Tom Van Woensel, An adaptive

23



Chapter 1

large neighborhood search heuristic for the time-dependent profitable pickup and delivery

problems with time windows. Transportation Research Part E: Logistics and Transportation

Review, 138, 2020.
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Chapter 2

The Time-Dependent Capacitated Profitable Tour

Problem with Time Windows and Precedence

Constraints

“It does not matter how slowly you go

as long as you do not stop.”

Confucius

2.1 Introduction

The effective usage of empty vehicles’ space is an important opportunity to increase the

efficiency of urban transportation systems and to reduce traffic congestion, fuel consumption,

and pollution. Comapnies (e.g., Uber) can generate extra income by renting out vehicles’s

empty space rising in their transportation processes. Several mobile applications are

developed to improve the last-mile deliveries by involving the city’s residents. For instance,

Roadie created an on-the-way delivery network which is an online market where people post

their required shipments and where anyone can offer to execute the shipment. DHL launched

a platform called MyWays, enabling individuals to deliver packages with products ordered

online directly to other end consumers. For those individuals with limited transportation

resources, it is important to know which parcels are profitable to collect and deliver. On the

one hand, serving a request may be attractive because it generates revenue. On the other

hand, there is additional cost for serving the request. Consequently, it might not always be

economically beneficial to serve a request. Moreover, taking time windows into consideration

makes the routing problem more realistic, since, in daily operation, customers and freight

requests are only available during the opening hours. Furthermore, due to the limited capacity

of the road network and traffic intensification, the travel speed is serious affected by the traffic

fluctuations, which also results in great variations in travel times and transportation costs.
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Therefore, considering the time-dependent travel time has large potential for cost savings.

Under this setting, the travel time between locations is depend on the time the driver departs

(e.g. in rush hours traveling takes more time), a tour’s cost depends on the tour’s start time.

Therefore, those independent drivers need a tool to help them out in making decisions on

which request to serve and which time to depart. However, scarce literature can be found that

focus on this area.

This chapter aims at building such a tool by modeling and solving a time-dependent

capacitated profitable tour problem with time windows and precedence constraints. We

consider a single vehicle with capacity limit and a set of requests which have a pick-up and

a delivery node. Each pickup node and delivery node has its own time window in which it

should be served. Moreover, a delivery node of a request can only be served after its pickup

node is visited. For each served request a profit is collected. To capture travel speed variation

during a day, a time-dependent travel time function is assigned to each edge linking two

nodes. The objective is to determine the vehicle’s tour starting and ending at the depot, and

maximizing the difference between the total collected profits and total travel cost (See Figure

2.1). Following the literature in this area, the tour’s total travel cost is equal to the tour’s

duration.
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Figure 2.1: An illustration of the time-dependent capacitated profitable tour problem with time windows
and precedence constraints. Pi and Di are the pickup node and delivery node of request i respectively.
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The described problem is NP-hard because it is an extension of the traveling salesman problem

with pickup and delivery (TSPPD), which itself is an extension of the traveling salesman

problem (TSP). In contrast to the TSPPD and the TSP, in our problem, it is not necessary to

carry out all the requests.

The main contributions of this chapter are summarized as follows. First, we introduce a new

model which extends the classical TSPPD by having time-dependent travel times and the

option to reject requests. Secondly, we propose an exact solution method for this problem by

developing a tailored labeling algorithm in which novel and strong dominance criteria are

used. Finally, a restricted dynamic programming heuristic is proposed with a high solution

quality and lower computation times than the labeling algorithm.

The remainder of the chapter is structured as follows. Section 2.2 provides a brief review

of related existing work. Section 2.3 defines the problem and introduces a mathematical

formulation of the problem. In Section 2.4, we present the tailored labeling algorithm

and in section 2.5 the restricted dynamic programming heuristic is introduced. Finally,

computational results are reported in Section 2.6, followed by conclusions in Section 2.7.

2.2 Literature review

There are three classes of problems closely related to the problem studied in this chapter: the

traveling salesman problem with pickup and delivery (TSPPD), the time-dependent vehicle

routing problem (TDVRP) and the traveling salesman problem with profits (TSP with profits).

2.2.1 The traveling salesman problem with pickup and delivery (TSPPD)

Our problem extends the TSPPD by considering time-dependent travel times. The TSPPD is

firstly introduced by Ruland and Rodin [95] and is proven to be of great use in applications like

dial-a-ride systems and courier services. Although the pickup and delivery problem (PDP),

in which the TSPPD can appear as a subproblem, is extensively studied in the literature, only

limited research focuses on the TSPPD.

Currently, the most popular methodology for solving the TSPPD is branch-and-cut. Ruland

[94] and Ruland and Rodin [95] considered the undirected case of this problem and developed

four classes of valid inequalities that are embedded in a branch-and-cut algorithm. The

algorithm is tested on instances with up to 15 pickup and delivery requests. Recently,
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Dumitrescu et al. [35] studied the same problem, the authors analyzed its polyhedral structure

and proposed new valid inequalities that are shown to be facets for the TSPPD polytopes.

Their algorithm is capable of solving instances with up to 35 pickup and delivery requests to

optimality.

The TSPPD appears as pricing problem for the PDP and is in that situation usually named as

the elementary shortest path problem with time windows, capacity and pickup and delivery

(ESPPTWCPD). Sol [103], Sigurd and Pisinger [102] and Røpke and Pisinger [93] presented

labeling algorithms with several different dominance rules to solve this problem to optimality.

2.2.2 The time-dependent vehicle routing problem (TDVRP)

Another related problem is the TDVRP. Although the TDVRP has attracted the attention of

many researchers, literature on this subject remains scarce. The pioneering work is done by

Malandraki and Daskin [71] and Malandraki and Dial [72]. In these papers mixed integer

linear programs and several heuristics to solve the problem are proposed. The First-In-First-

Out (FIFO) property, which implies that for every arc a later departure time results in a later

(or equal) arrival time, is an intuitive and desirable property for time dependent routing

problems. Ichoua et al. [56] and Dabia et al. [25] considered the TDVRP with travel time

variability modelled by ”constant speed” time periods, which ensures the FIFO property. The

idea of constant speed time periods is adopted in our problem as well.

Due to the complexity of the time-dependent problem, most of the existing algorithms are

based on heuristics. In Van Woensel et al. [114] a tabu search heuristic is used to solve the

capacitated vehicle routing problem with time dependent travel times. An approximation

based on queueing theory and the number of vehicles on a link is used to determine travel

speeds. Donati et al. [33] developed a multi-ant colony system for the TDVRP and Ibaraki

et al. [55] proposed an iterated local search heuristic for the time-dependent vehicle routing

problem with time windows (TDVRPTW). Recently, Dabia et al. [25] developed a branch-and-

price algorithm for the TDVRPTW, where a tailored labeling algorithm is presented to solve

the time-dependent shortest path problem with resource constraint (TDSPPRC), which is the

pricing problem in the algorithm.
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2.2.3 The traveling salesman problem with profits (TSP with profits)

The proposed problem extends the traveling salesman problem with profits (TSP with profits),

in which profits are associated with each request and the overall goal is to find athe shortest

tour with the maximum collected profits. This means that in contrast to the original TSP, not all

nodes have to be visited. In comparison with our study, it does not include time dependency

and requests with pickup and delivery nodes.

According to Feillet et al. [39] and Vansteenwegen and Gunawan [115], TSPs with profits

can be categorized into three generic problems depending on the way the terms profits and

travel time are addressed in the objective function and constraints. They can be classified

in the following categories: the profitable tour problem (PTP), the prize-collecting traveling

salesman problem (PCTSP), and the orienteering problem (OP). Dell’ Amico et al. [27] studied

the profitable tour problem (PTP) where both the profits and the travel time are combined in

the objective function. Our study builds upon the PTP by having the profits and the travel time

in the objective as well. The difference between the prize-collecting TSP (PCTSP) and the PTP

is that the profit collection is not a part of the objective function but a constraint, which ensures

that a minimum amount of profits is collected within the tour. In the original definition of the

PCTSP by Balas [5] there were also penalty values for unvisited nodes within the objective

function. An abundant number of publications is devoted to the orienteering problem (OP),

which aims to maximize the collected profits subject to a constraint on the maximum allowed

tour length. This problem is also known as the selective traveling salesman problem (Laporte

and Martello [63]).

A variant of the OP is the time-dependent orienteering problem (TDOP) which includes

time-dependent travel times. Fomin and Lingas [40] provided a (2 + ε)−approximation

algorithm for the TDOP which runs in polynomial time if the ratio between the minimum and

maximum travel time between any two sites is constant. Li [66] designed a novel dynamic

labeling algorithm for the TDOP in which time is measured in discrete units. Therefore, the

FIFO property may not be satisfied in their model. Verbeeck et al. [117] provided a fast

solution method for the TDOP based on an ant colony optimization algorithm. Recently,

Verbeeck et al. [118] presented an ant colony optimization based algorithm for a stochastic

variant of TDOP, which is addressed as the stochastic time-dependent orienteering problem

with time windows. For more details about the OP and its variants, readers are referred to

Vansteenwegen et al. [116] and Gunawan et al. [50].

To the best of our knowledge, no literature could be found that handle precedence in
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pickup and delivery, profit-maximizing selection, and time-dependent travel time routing

cost minimization at the same time. Thus, in this study, we introduce the time-dependent

capacitated profitable tour problem with time windows and precedence constraints, which

take care of these three challenges simultaneously. Moreover, both exact and heuristic

methods are proposed to solve this problem.

2.3 Problem description and mathematical formulation

In this section, we first define the problem and introduce the notation used throughout the

chapter. Afterwards, we present a mathematical formulation for the problem.

2.3.1 Problem definition

The time-dependent capacitated profitable tour problem with time windows and precedence

constraints is defined as follows. We consider a set of n requests R1, ..., Rn, where Ri

(i = 1, ..., n) is associated with the pickup node i and the corresponding delivery node n+ i.

Let G = (N,A) be a directed graph, where N = {0, 1, ..., 2n + 1} is the set of all nodes, and

0 and 2n + 1 represent the origin and destination depot of the vehicle. We define the subsets

NP = {1, ..., n} and ND = {n + 1, ..., 2n} as the pickup and delivery nodes, respectively.

With each pickup node i ∈ NP a profit ri and a load qi are associated, and with each delivery

node a load qn+i is associated. For the requests, it must hold that qi = −qn+i. There is no

inventory at the depots and therefore q0 = q2n+1 = 0. To serve the requests we have one

vehicle available with limited capacity Q.

A hard time window [ej , lj ] is associated with each node j ∈ NP ∪ ND , where ej and lj

represent the earliest and latest time, respectively, at which the service at node j may start.

The service time is denoted by sj . A vehicle needs to wait until time ej , if it is arriving at node

j before time ej ; and arriving later than lj is not allowed. We denote [e0, l0], [e2n+1, l2n+1]

as the time windows of the origin and the destination depot, respectively. Without loss of

generality, we assume that e0 = 0 and s0 = s2n+1 = 0.

Let τij(ti) denote the travel time from node i to node j, which depends on the departure time

ti at node i. Then, we can define the set of feasible arcs as A = {(i, j) ∈ N × N : i 6= j and

ei + si + τij(ei + si) ≤ lj}. This means that an arc from node i to node j is only included if it

is possible to go from node i to j while respecting the time windows of both nodes.
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The notation is summarized in Table 2.1.

Table 2.1: Parameters

Notation Definition

R = {1, ..., n} Set of requests

N Set of nodes

A Set of arcs

NP Set of pickup nodes

ND Set of delivery nodes

(i, n+ i) A transportation request Ri
ri Profit of request Ri
qi Demand of request Ri
Q Carrying capacity of the vehicle

[ei, li] Time window of node i

si Service time at node i

ti Departure time from node i

τij(ti) Travel time from node i to node j with departure time ti at node i

The planning horizon is divided into several time periods. Each arc (i, j) ∈ A has a speed

profile associated with it, which consists of a constant speed within each time period. By

using those stepwise speed functions, the FIFO property holds for every arc in the graph G

(i.e. a later departure always leads to a later arrival and therefore overtaking will not occur).

The speed profiles can be different for each arc.

Figure 2.2 depicts a speed profile and the corresponding travel time function for some arc

(i, j). Using the idea described in Ichoua et al. [56], we denote the points a, b, c, d, and ewhere

the speed changes as speed breakpoints. There are also travel time breakpoints in the travel

time function. These are the departure times which ensure an arrival at node j exactly at the

time of a speed breakpoint (e.g., a
′

is the departure time at node i to arrive at node j at time

a).

The travel time function is piecewise linear and can be represented by the breakpoints values.

Note that in case of time-dependent travel times, the triangle inequality does not necessarily

hold. Intuitively, when the direct link between node h and l is heavily congested, we may

reach destination node l earlier by taking a diverted route (i.e., via one or several other nodes)

than by the direct link from node h. One way to circumvent this, is to do pre-processing on the

data, such that the travel time between node i and node j always represents the shortest travel

time from i to j even if it is via a detour. However this requires to find time-dependent shortest

routes from i to j for all possible departure times. This also results in increased computational
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complexity and memory consumption. Another solution will be to allow nodes to be visited

more than once. However allowing for non-elementary paths in the problem also leads to

new mathematical challenges.

Because of the FIFO property of the travel time functions, a later departure at the depot 0

always results in a later arrival time at node i. Therefore, if a path is infeasible for a certain

departure time t0 at the origin depot (i.e., a time window of a node in the path is violated), it

will also be infeasible for any departure time t
′
≥ t0 at the origin depot.

b edc

a

a

b c d ea’ b’ c’ d’

Departure time

Departure time

Speed

Travel Time

Figure 2.2: Speed and Travel Time Functions

Given a path p = (v0, v1, ..., vk) with v0 = 0 and vi being the node at position i in the path

p, we define δpvi(t) as the ready time function at node vi in path p given a departure time t at

node 0. This ready time function is nondecreasing in t and can be calculated recursively for

each node in the path as follows:

δpvi(t) =

t if i = 0,

max{evi + svi , δ
p
vi−1

(t) + τvi−1,vi(δ
p
vi−1

(t)) + svi} otherwise.
(2.1)
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The ready time function is piecewise linear and this means that we can represent the ready

time function by using the ready time function breakpoints. These are the breakpoints of the

ready time function of the predecessor node, breakpoints of the travel time function, and the

boundary values of the time window of node vi.

The duration of the path given a departure time t at node 0 can be calculated as δpvk (t) − t,

which is again a piecewise linear function. In this problem we minimize the total duration

of the selected tour instead of the sum of the arc cost. As the duration is a piecewise linear

function of the departure time, it is clear that the minimum duration of a tour can be computed

by only considering the breakpoints of the ready time function.

2.3.2 Mathematical formulation

For every arc (i, j) ∈ A, we denote Tij as the set of time periods of the corresponding travel

time function τij(ti). A time period Tm ∈ Tij , is defined by two consecutive travel time

breakpoints, Tm = [wm, wm+1]. As τij(ti) is linear in each time period, using wm, wm+1,

τij(wm) and τij(wm+1), we can easily calculate the corresponding slope θm and its intersection

ηm with the y-axis. Therefore

τij(ti) = θmti + ηm. ∀ti ∈ Tm (2.2)

Furthermore, let xmij be a binary variable that takes value 1 if and only if the vehicle traverses

the arc (i, j) ∈ A with a departure time in time period m. A variable tmij is introduced to

denote this departure time of traveling from i to j in time period Tm. This means that tmij is

such that

tmij =

ti if xmij = 1,

0 otherwise.
(2.3)

Consequently, when traveling from i to j, we have that:

ti =
∑

j∈N\{0}

|Tij |∑
m=0

tmij . (2.4)
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It means that the travel time function τij(ti) of arc (i, j) at node i can be written as:

τij(ti) =

|Tij |∑
m=0

(θmt
m
ij + ηmx

m
ij ). (2.5)

Let yi be a binary variable that equals 1 if and only if node i ∈ NP∪ND is visited. Furthermore,

let Qi, i ∈ N be a nonnegative integer variable that is the load of the vehicle upon departure

from node i. Then the Mixed Integer Programming formulation is given as follows:

max
∑
j∈NP

rjyj − (t2n+1 − t0) (2.6)

subject to

∑
j∈NP

|T0j |∑
m=0

xm0j = 1 (2.7)

∑
i∈ND

|Ti,2n+1|∑
m=0

xmi,2n+1 = 1 (2.8)

∑
i∈N\{2n+1}

|Tij |∑
m=0

xmij = yj ∀j ∈ N \ {0} (2.9)

∑
i∈N\{2n+1}

|Tik|∑
m=0

xmik −
∑

j∈N\{0}

|Tkj |∑
m=0

xmkj = 0 ∀k ∈ N \ {0, 2n+ 1} (2.10)

∑
j∈N\{0}

|Tij |∑
m=0

xmij −
∑

j∈N\{0}

|Tn+i,j |∑
m=0

xmn+i,j = 0 ∀i ∈ NP (2.11)

tj ≥ (1 + θm)tmij + ηmx
m
ij + sjx

m
ij ∀i ∈ N \ {2n+ 1}, j ∈ N \ {0} (2.12)

Qi + qj ≤ Qj +M(1− xmij ) ∀i, j ∈ N, ∀m,m+ 1 ∈| Tij | (2.13)

tn+i ≥ ti ∀i ∈ NP (2.14)

ti =
∑

j∈N\{0}

|Tij |∑
m=0

tmij ∀i ∈ N \ {2n+ 1} (2.15)

wmx
m
ij ≤ tmij ≤ wm+1x

m
ij ∀i, j ∈ N, ∀m,m+ 1 ∈| Tij | (2.16)

eiyi ≤ ti ≤ liyi ∀i ∈ NP ∪ND (2.17)

max{0, qi} ≤ Qi ≤ min{Q,Q+ qi} ∀i ∈ N (2.18)

xmij , yi ∈ {0, 1} ∀i, j ∈ N,∀m ∈| Tij | (2.19)
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The Objective Function (2.6) aims to find a tour that maximizes the collected profits minus

the total traveling duration. Constraints (2.7)-(2.8) guarantee that the path starts at the origin

depot 0 and ends at the destination depot 2n+ 1. Constraints (2.9) guarantee that every node,

except the nodes representing the start and end depots, is visited at most once. Constraints

(2.10) keep the flow conservation. Constraints (2.11) ensure that it is not possible to visit only

the pickup node or only the delivery node of a certain request. Constraints (2.12) guarantee

that the departure time at a node in the route is larger or equal than the sum of the departure

time from the previous node, the travel time between these two nodes and the required

service time. Constraints (2.13) determine the consistency of the load variables. Precedence

constraints (2.14) ensure that for each request i, the pickup node is visited before the delivery

node. Constraints (2.15) are formulated as mentioned before in (2.4). Constraints (2.16)-(2.17)

force the departure time of each request to be in the given time period and the given time

window. Finally, Constraints (2.18) ensure that the load in the vehicle is never larger than the

capacity of the vehicle.

Due to the computational inefficiency of solving large-scale instances with a commercial ILP

solver, we develop a tailored labeling algorithm to solve this problem.

2.4 A tailored labeling algorithm

In order to solve our problem, we introduce a new exact dynamic programming algorithm,

that is named as the tailored labeling algorithm. Røpke and Pisinger [93] developed a

labeling algorithm to solve the pickup and delivery problems with time windows (PDPTW).

However, this time-independent algorithm is only efficient if the triangle inequality holds.

More recently, Dabia et al. [25] proposed another labeling algorithm for the time-dependent

vehicle routing problem with time windows. Their algorithm has great potential for the time-

dependent routing problem without precedence constraints.

In our situation the triangle inequality does not necessarily hold due to the time dependent

travel times and furthermore precedence constraints are present. Therefore, we need to

develop a new algorithm. Note that the proposed algorithm can be generalized to solve other

time-dependent routing problems with precedence constraints.

The algorithm starts generating labels from the depot 0. It progressively extends all feasible

labels until they reach the end depot 2n + 1. Moreover, to speed up our tailored labeling

algorithm, instead of starting the label extension only from the origin depot 0 in a forward
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direction, we simultaneously generate labels in backward direction from the destination depot

to its predecessors as well. Where both forward labels and backward labels are extended to

some time tm (e.g., the middle of the planning horizon) but not further. At the end, complete

paths are generated by merging the partial paths of forward and backward labels. All

complete paths are evaluated and the path with the best objective function value is the optimal

path. This bidirectional approach has shown great potential for improving the running time

of related resource constrained shortest path problems (see, e.g. Righini and Salani [88] and

Dabia et al. [25]).

The forward labeling algorithm is introduced in Section 2.4.1, followed by the backward

labeling algorithm in section 2.4.2. If labels are dominated by the criterion introduced in

Sections 2.4.1 and 2.4.2, they are removed from the list. Note that if in the procedure none

of the labels are dominated, this algorithm is equal to the complete enumeration of all feasible

paths. Therefore the dominance criterion is very important. Finally, we discuss the way to

merge the partial paths of forward and backward labels in Section 2.4.3.

2.4.1 The forward labeling algorithm

In the forward labeling algorithm we start generating labels from the start depot. The

definition of a forward label is discussed in Section 2.4.1. The labels are extended if the

extension is feasible as discussed in Section 2.4.1. The dominance criterion for forward labels

is discussed in Section 2.4.1.

Forward label
For each forward label Lf , we use the following notation:

Only the items marked with a * are stored in the label. The set D(Lf ) and P (Lf ) can be

deduced from the sets O(Lf ) and U(Lf ). Furthermore, the partial path can be deduced from

iteratively checking the last node visited in the parent label of which the this label was an

extension.

Label extension
We extend a label L

′
f along an arc (v(L

′
f ), j), only when the extension is feasible in terms of

time windows and capacity. First, the following two conditions should be met:
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p(Lf ) The partial path of label Lf .

v(Lf ) * The last node visited on the partial path p(Lf ).

L−1(Lf ) * The parent label from which Lf originates by extending it with v(Lf ).

O(Lf ) * The set of incomplete requests in p(Lf ), i.e., the pickup node is visited but not
the delivery node.

U(Lf ) * The set of requests for which the pickup nodes are already visited along the
partial path p(Lf ). It contains both the complete and the incomplete requests.
Therefore, O(Lf ) ⊆ U(Lf ).

P (Lf ) The set of pickup nodes not visited in p(Lf ), i.e., j ∈ NP and Rj /∈ U(Lf ).

D(Lf ) The set of delivery nodes of incomplete requests in p(Lf ), i.e., j ∈ ND and
Rj−n ∈ O(Lf ).

q(Lf ) * The load of the vehicle after visiting node v(Lf ).

δLf (t) * The piecewise linear function that represents the ready time at v(Lf ) if the vehicle
departed at the origin depot at t and reached v(Lf ) through partial path p(Lf ).
Moreover, δLf (0) is the earliest ready time at v(Lf ) since the earliest departure
time at the origin depot is 0.

r(Lf ) * The overall profits collected by serving the requests visited on the partial path
p(Lf ).

δ
L
′
f
(0) + τ

v(L
′
f

),j
(δ
L
′
f
(0)) + sj ≤ min{tm, lj + sj} ∧ j ∈ N \ {0} (2.20)

q(Lf ) + qj ≤ Q ∧ j ∈ N \ {0} (2.21)

Condition (2.20) ensures that an extension to node j can only be performed if node j can

be reached within its time window and guarantees that the extension is stopped before tm

is exceeded. Condition (2.21) ensures that an extension to node j is only possible if there is

enough capacity to deal with the load of node j.

Secondly, L
′
f and j must also satisfy one of the following three conditions:

j /∈ U(L
′
f ) ∧ j ∈ NP (2.22)

j − n ∈ O(L
′
f ) ∧ j ∈ ND (2.23)

O(L
′
f ) = ∅ ∧ j = 2n+ 1 (2.24)

Condition (2.22) states that j should not have been visited before, if it is a pickup node.

Condition (2.23) indicates that if j is a delivery node, the corresponding pickup node should
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have been visited already. The last condition, Condition (2.24), states that if j is the end depot

then all visited requests should have been completed. In the presence of those conditions,

only elementary paths that satisfy precedence constraint (2.11) are generated.

At last, we need to check that all delivery nodes of requests for which the pickup node is

already visited in p(L
′
f ) can still be reached. In case the triangle inequality holds, a node is

unreachable if traversing the direct arc from j to this node is not possible by capacity, time

window or precedence constraints. However, time-dependent travel times cannot guarantee

the triangle inequality. Therefore, a node that is unreachable via the direct arc from node j by

the time window constraints might still be reachable indirectly via a diverted route. First, we

need to know the earliest ready time at node j after following partial path p(L
′
f ) before visiting

node j, which will be denoted by tr(L
′
f , j). It holds that tr(L

′
f , j) = max{ej + sj , δL′

f
(0) +

τ
L
′
f
,j

(δ
L
′
f
(0))+sj}. Then, we need for any unvisited node k the earliest arrival time given that

the vehicle visits node j and k consecutively after partial path p(L
′
f ), which can be computed

by tr(L
′
f , j) + τjk(tr(L

′
f , j)). Finally, the earliest possible time the vehicle could reach a node

after node j is given by te(L
′
f , j) = min

k∈P (L
′
f

)∪D(L
′
f

)
{tr(L

′
f , j) + τjk(tr(L

′
f , j))}. This means

that any node k with the latest allowed arrival time lk earlier than this time (i.e. lk < te(L
′
f , j))

is unreachable from j, also in an indirect way as no node could be reached before te(L
′
f , j). If

a delivery node k is unreachable after j and its corresponding pickup node is already visited

(i.e k−n ∈ O(L′f )), the extension to j is not feasible as the picked up item can not be delivered

anymore. Therefore, as stated in condition (2.25), all delivery nodes of requests of which the

pickup node is already visited in p(L
′
f ) should still be reachable to make sure that extending

label L
′
f to j is feasible. Note that this test can be done quickly, but we might fail to find all

unreachable delivery nodes.

lk ≥ te(L
′
f , j) ∀k ∈ D(L

′
f ) : k 6= j (2.25)

If the extension along the arc (v(L
′
f ), j) is feasible according to all described conditions, then
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a new label Lf is created. The information in label Lf is updated as follows:

L−1(Lf ) = L
′
f (2.26)

v(Lf ) = j (2.27)

δLf (t) = max{ej + sj , δL′
f
(t) + τ

L
′
f
,j

(δ
L
′
f
(t)) + sj} (2.28)

q(Lf ) = q(L
′
f ) + qj (2.29)

r(Lf ) =

r(L
′
f ) + rj if j ∈ NP ,

r(L
′
f ) otherwise.

(2.30)

O(Lf ) =

O(L
′
f ) ∪ {j} if j ∈ NP ,

O(L
′
f ) \ {j − n} if j ∈ ND.

(2.31)

U(Lf ) =

U(L
′
f ) ∪ {j} if j ∈ NP ,

U(L
′
f ) otherwise.

(2.32)

Equations (2.26)-(2.30) set the last visited node, the ready time function, the load, and the

collected profits of the new label, respectively. Equation (2.31) updates the set of incomplete

requests O(Lf ) and Equation (2.32) updates the set of visited pickup nodes U(Lf ).

Label dominance
Let dom(Lf ) and img(Lf ) be the domain and image of the ready time function δLf (t)

respectively. If the partial path is feasible, a departure at time 0 from the origin depot is always

feasible. Therefore, dom(Lf ) is always of the form [0, t] for some t ≥ 0. When v(Lf ) = 2n+1,

the objective function value of the path corresponding to Lf is:

obj(Lf ) = r(Lf )− min
t∈Dom(Lf )

{δLf (t)− t} (2.33)

In the labeling algorithm, all possible extensions are processed and stored for each

label. However, the number of labels that can be processed is typically very large and

computationally expensive. Therefore, a dominance test is established between pairs of labels

that have the same last visited node. The number of labels is reduced by only storing the

non-dominated labels. Before the dominance criterion is introduced some definitions need to

be provided.

First, similar to the idea of Feillet et al. [38], we introduce for every label Lf the set
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Ũ(Lf ) which extends U(Lf ) by adding requests of which the pickup node is unreachable

from v(Lf ). Similar to the discussion in Section 2.4.1 it can be derived that the earliest

possible time the vehicle could reach a pickup node after v(Lf ) is given by te(Lf ) =

minj∈P (Lf )∪D(Lf ){δLf (0) + τv(Lf )j(δLf (0))}. This means that any pickup node j with the

latest allowed arrival time lj earlier than this time (i.e. lj < te(Lf )) is unreachable from v(Lf ).

Therefore, the corresponding request cannot be served anymore and can be added to the set

Ũ(Lf ). Note that the check lj < te(Lf ) does not guarantee to find all unreachable pick up

nodes.

Secondly, we define the interval

I ⊆ (−∞,max(dom(L1
f ))−max(dom(L2

f ))). (2.34)

Based on I , we also define a real number φ(L1
f , L

2
f ),

φ(L1
f , L

2
f ) = max{x ∈ I : δL1

f
(max{0, t+ x}) ≤ δL2

f
(t),∀t ∈ dom(L2

f )}. (2.35)

When φ(L1
f , L

2
f ) is positive, it indicates that the vehicle can depart at maximum φ(L1

f , L
2
f )

time units later when traversing partial path p(L1
f ) instead of traversing p(L2

f ), to still reach

node v(L1
f ) earlier via path p(L1

f ) than via partial path p(L2
f ). When it is negative, it indicates

that the vehicle should depart at least φ(L1
f , L

2
f ) time units earlier when traversing partial

path p(L1
f ) instead of traversing p(L2

f ), to be able to reach node v(L1
f ) earlier via path p(L1

f )

then via partial path p(L2
f ).

In Figure 2.3, we depict several simple examples: If there is no intersection between labels

L1
f and L2

f , φ(L1
f , L

2
f ) is positive when max(dom(L1

f )) > max(dom(L2
f )) (see Figure 2.3(a)),

or negative when max(dom(L1
f )) < max(dom(L2

f )) (see Figure 2.3(b)). Otherwise, φ(L1
f , L

2
f )

can only be negative (see Figure 2.3(c)).

Finally, the dominance test is stated in Proposition 1 as follows:

Proposition 1. Label L2
f is dominated by label L1

f if

1. v(L1
f ) = v(L2

f )

2. U(L1
f ) ⊆ Ũ(L2

f )

3. O(L1
f ) = O(L2

f )

4. δL1
f
(0) ≤ δL2

f
(0)

5. r(L1
f ) ≥ r(L2

f )− φ(L1
f , L

2
f )
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Figure 2.3: Illustration of φ(L1
f , L

2
f ).

6. q(L1
f ) ≤ q(L2

f )

PROOF OF PROPOSITION 2.1.
Consider two labels L1

f and L2
f that satisfy the six conditions in proposition 1. We need

to show that (i) any feasible extension L that extends p(L2
f ) to 2n + 1 is also a feasible

extension for p(L1
f ) to 2n + 1 and (ii) that for all these feasible extensions L it holds that

obj(L1
f

⊕
L) ≥ obj(L2

f

⊕
L), where Lf

⊕
L is the label resulting from extending Lf with L.

With regards to point (i), first, capacity will not be violated along the path p(L1
f

⊕
L) as it

was not violated on path p(L2
f

⊕
L) and by condition 6 it holds that q(L1

f ) ≤ q(L2
f ). Secondly,

the path p(L1
f

⊕
L) is elementary. By conditions 2 and 3, all nodes visited in p(L1

f ) are either

nodes visited in p(L2
f ) or nodes which could not be reached by any extension of label L2

f (i.e.

the nodes of requests included in Ũ(L2
f ) \ U(L2

f )). A feasible extension of L2
f cannot contain

any node visited along path p(L2
f ) or node which is unreachable from label L2

f . Therefore, all

nodes visited along path p(L1
f ) are not visited in L, so path p(L1

f

⊕
L) is elementary as well.

Third, there exists a departure time for path p(L1
f

⊕
L) which does not violate time windows.

As L is a feasible extension of L2
f it means that there is a departure time at v(L1

f ) after δL2
f
(0)

making sure that all nodes in L are visited within their time windows. If condition 4 is met,

the vehicle is via path p(L1
f ) always able to reach v(L1

f ) before this time. For example by

departing at 0, the vehicle arrives at v(L1
f ) at time δL1

f
(0) which is by condition 4 smaller than

or equal to δL2
f
(0). Therefore, a departure at 0 over path p(L1

f

⊕
L) does not violate any time

windows. In conclusion, any extension L of p(L2
f ) to 2n + 1 will be a feasible extension of

p(L1
f ) to 2n + 1 as it results in an elementary path with does not violate time windows and

capacity constraints.
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Then for (ii), it still has to be proven that for all feasible extensions of L of p(L2
f ) to 2n + 1

it holds that obj(L1
f

⊕
L) ≥ obj(L2

f

⊕
L). Let L1∗

f = L1
f

⊕
L and L2∗

f = L2
f

⊕
L. We also

denote t20 = argmint∈dom(L2∗
f

){δL2∗
f

(t)− t} as the optimal departure time from the depot for

path p(L2∗
f ) and r(L) as the sum of the profits associated with the nodes visited along path

p(L). The objective value of the path is:

obj(L2∗
f ) = r(L2∗

f )− (δL2∗
f

(t20)− t20)

= r(L2
f ) + r(L)− (δL2∗

f
(t20)− t20) (2.36)

Now consider the path p(L1∗
f ) resulting from extending L1

f by L. Moreover, consider a

departure time at the depot of this path of t10 = max{0, t20+φ(L1
f , L

2
f )}. The time t10 is a feasible

departure time for label L1∗
f because a departure time of 0 is always possible (as the extension

of L1
f by L is feasible) and by the definition of φ(L1

f , L
2
f ) in equation (2.35) t20 + φ(L1

f , L
2
f )

belongs to dom(L1
f ) if it is nonnegative. This departure time t10 ensures that we reach node

v(L1
f ) at time δL2

f
(t20) or earlier, meaning:

δL1
f
(t10) ≤ δL2

f
(t20). (2.37)

Moreover, as t10 is a feasible departure time it can be used to compute a lower bound on

obj(L1∗
f ):

obj(L1∗
f ) ≥ r(L1∗

f )− (δL1∗
f

(t10)− t10) = r(L1
f ) + r(L)− (δL1∗

f
(t10)−max{0, t20 + φ(L1

f , L
2
f )})

(2.38)

≥ r(L1
f ) + r(L)− (δL2∗

f
(t20)−max{0, t20 + φ(L1

f , L
2
f )})

(2.39)

≥ r(L1
f ) + r(L)− (δL2∗

f
(t20)− t20 − φ(L1

f , L
2
f )) (2.40)

≥ r(L2
f )− φ(L1

f , L
2
f ) + r(L)− (δL2∗

f
(t20)− t20 − φ(L1

f , L
2
f ))

(2.41)

≥ r(L2∗
f ) + r(L)− (δL2∗

f
(t20)− t20) = obj(L2∗

f ) (2.42)

Note that in inequality (2.39) we use the property derived at (2.37). Inequality (2.40) is derived

by the simple fact that ∀x ∈ R : −max{0, x} ≤ −x, and inequality (2.41) uses condition 5 of
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Proposition 1. �

2.4.2 The backward labeling algorithm

In the backward labeling algorithm we start in the opposite direction and start generating

labels from the end depot. The definition of a backward label is discussed in Section 2.4.2. The

labels are extended as discussed in Section 2.4.2. The dominance criterion for backward labels

is discussed in Section 2.4.2.

Backward label
In the backward labeling algorithm, labels are extended from the end depot 2n + 1 to its

predecessors. For a label Lb, we associate the following components:

p(Lf ) The partial path of label Lb.

v(Lb) * The first node visited on the partial path p(Lb).

L−1(Lb) * The parent label from which Lb originates by extending it with v(Lb).

O(Lb) * The set of incomplete requests, i.e., the delivery is visited but not the pickup node.

U(Lb) * The set of requests for which the delivery nodes are already visited along the
partial path p(Lb). It contains both the complete and incomplete requests.
Therefore, O(Lb) ⊆ U(Lb).

P (Lb) The set of pickup nodes of incomplete request in p(Lb), i.e., j ∈ NP and
Rj+n ∈ O(Lb).

D(Lb) The set of delivery nodes not visited in p(Lb), .i.e., j ∈ ND and Rj−n /∈ U(Lb).

q(Lb) * The load of the tour after visiting node v(Lb).

δLb (t) * The arrival time at the end node 2n + 1 through the partial path represented by
Lb when leaving node v(Lb) at time t.

r(Lb) * The overall profits collected with the requests completed on the partial path
p(Lb).

Again, only the items marked with a * are stored in the label and the sets D(Lb) and P (Lb)

can be deduced from the sets O(Lb) and U(Lb). Furthermore, the partial path can be deduced

from iteratively checking the first node visited in the parent label of which the this label was

an extension.

Label extension
Let dom(Lb) be the domain of the function δLb(t) and let tl(Lb) denote the latest possible

ready time at v(Lb): tl(Lb) = max(dom(Lb)). We extend a label L
′
b along an arc (j, v(L

′
b)) to

create a new label Lb. To be a feasible extensions at least the following two conditions should
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be met:

tl(Lb) ≥ max{tm, ej + sj} ∧ j ∈ N \ {2n+ 1} (2.43)

q(Lb) + qj ≤ Q ∧ j ∈ N \ {2n+ 1} (2.44)

Condition(2.43) ensures that node j can be reached within its time window and that the

extension will be stopped before tm is exceeded, while condition (2.44) ensures capacity

feasibility. Furthermore, L
′
b and j must satisfy one of the following three conditions:

j + n ∈ O(L
′
b) ∧ j ∈ NP (2.45)

j /∈ U(L
′
b) ∧ j ∈ ND (2.46)

O(L
′
f ) = ∅ ∧ j = 0 (2.47)

Condition (2.45) indicates that if j is a pickup node, the corresponding delivery node should

have been visited already. Furthermore, condition (2.46) states that if j is a delivery node, it

should not have been visited before. Finally, Condition (2.47), states that if j is the begin depot

then all visited requests should have been completed. In the presence of those conditions, only

elementary paths that satisfy precedence constraint (2.11) are generated.

At last, it needs to be checked that all pickup nodes of incomplete requests for which the

delivery node is included in p(L
′
b) can be visited before node j. To do so, first the latest

possible arrival time at node j which ensures a ready time of tl(Lb) at v(Lb) should be

determined. Let this be denoted by tr(j, L
′
b), then it holds that tr(j, L

′
b) = min{lj ,max{t :

t+ sj + τ
jv(L

′
b
)
(t) + s

v(L
′
b
)
≤ tl(L

′
b)}. As shown tr(j, L

′
b) is determined by the latest possible

arrival time at j (i.e. lj) or by the latest possibility departure time to reach v(L
′
b) on time.

Then, all nodes from which the vehicle cannot depart before time tr(j, L
′
b) due to time window

constraints, cannot be visited before node j and are defined as unreachable. This can be made

stronger by considering the travel time to node j as well. However, again due to the absence

of the triangle inequality and the time dependent travel times we cannot simply consider the

travel time of the direct connection. Therefore, we need for any unvisited node k the latest

possible departure time to arrive at j at time tr(j, L
′
b), which can be computed by max{t :

t+τkj(t) ≤ tr(j, L
′
b))}. Finally, the latest possible time the vehicle could depart from any node

before node j is given by td(j, L
′
f ) = max

k∈P (L
′
f

)∪D(L
′
f

)
{max{t : t+ τkj(t) ≤ tr(j, L

′
b)}}.

This means that any node k with the earliest allowed arrival time ek later than this time (i.e.
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lk > td(j, L
′
f )) cannot be a predecessor of node j, also not in an indirect way as no node could

be left after td(j, L
′
f ) and still reaching node j on time.

If a pickup node k cannot be a predecessor of node j and its corresponding delivery node is

already visited (i.e k + n ∈ O(L′f )), the extension to j is not feasible as the item which should

be delivered cannot be picked up anymore. Therefore, as stated in condition (2.48), all pickup

nodes of requests of which the delivery node is already visited in p(L
′
b) should be a possible

predecessor of j to make sure that extending label L
′
b to j is feasible.

lk ≤ td(j, L
′
b) ∀k ∈ P (L

′
b) : k 6= j (2.48)

If the extension along the arc (j, L
′
b) is feasible according to the provided conditions, the

information in label Lb is set as follows:

L−1(Lb) = L
′
b (2.49)

v(Lb) = j (2.50)

δLb(t) = δ
L
′
b
(max{e

v(L
′
b
)
, t+ τ

jv(L
′
b
)
(t)}+ s

v(L
′
b
)
) (2.51)

q(Lb) = q(L
′
b) + qj (2.52)

r(Lb) =

r(L
′
b) + rj if j ∈ NP ,

r(L
′
b) otherwise.

(2.53)

O(Lb) =

O(L
′
b) \ {j} if j ∈ NP ,

O(L
′
b) ∪ {j − n} if j ∈ ND.

(2.54)

U(Lb) =

U(L
′
b) ∪ {j − n} if j ∈ ND,

U(L
′
b) otherwise.

(2.55)

Label dominance
Dominance of the backward algorithm can be constructed in the same way as in the case of

the forward algorithm, because the arrival time functions are non-decreasing and stepwise
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linear as before.

Similar to the forward algorithm, in Proposition 2, we extend the set U(Lb) to Ũ(Lb) by

including request of which the pickup or delivery node cannot be a predecessor of v(Lb). Via

the same reasoning as in Section 2.4.2 it can be derived that the latest possible time a vehicle

could depart from a node to reach v(Lb) on time is td(Lb) = maxj∈P (Lb)∪D(Lb){max{t :

t + τjv(Lb)(t) ≤ tl(Lb) − sv(Lb)}}. This means that any node j with the earliest possible

departure time ej + sj later than this time (i.e. ej + sj > td(Lb)) cannot be a predecessor of

v(Lb). Therefore, the corresponding request cannot be served anymore and can be added to

the set Ũ(Lb).

Furthermore, we define φ(L1
b , L

2
b) (see Figure 2.4) as:

φ(L1
b , L

2
b) = max{x ∈ R : δL1

b
(t) + x ≤ δL2

b
(t), ∀t ∈ dom(L2

b)} (2.56)

2

fL1

fLReady time for label Ready time for label

(a) (b)

(5,6)

(5,9) (4,10)

(4,6)

Departure time Departure time 

Ready time Ready time 

1 1( , ) 4 0f fL L   1 1( , ) 4 0f fL L   

Figure 2.4: Illustration of φ(L1
f , L

2
f ).

Then the dominance criterion will become:

Proposition 2. Label L2
b is dominated by label L1

b if

1. v(L1
b) = v(L2

b)

2. U(L1
b) ⊆ Ũ(L2

b)

3. O(L1
b) = O(L2

b)

4. t(L1
b) ≥ t(L2

b)
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5. r(L1
b) ≥ r(L2

b)− φ(L1
b , L

2
b) 6. q(L1

b) ≤ q(L2
b)

For the proof of proposition 2 the same reasoning as the proof of proposition 1 could be

followed.

2.4.3 Merging forward and backward labels

When all forward and backward labels are generated, they are merged to construct feasible

profitable tours. A forward label Lf and a backward label Lb can be merged if the following

conditions are satisfied:

1. v(Lf ) = v(Lb)

2. O(Lf ) ∩O(Lb) = {v(Lf )}

3. (U(Lf ) \O(Lf )) ∩ (U(Lb) \O(Lb)) = ∅

4. q(Lf ) + q(Lb) = qv(Lf )

5. Img(Lf ) ∩ dom(Lb) 6= ∅

The resulting path p(L) = (p(Lf )
⊕
p(Lb)) has the following attributes:

1. v(L) = 2n+ 1

2. r(L) = r(Lf ) + r(Lb)− rv(Lf )

3. O(L) = ∅

4. U(L) = U(Lf ) ∪ U(Lb)

5. q(L) = 0

6. δL(t) = δLb(δLf (t)), ∀t ∈ dom(Lf ) such that δLf (t) ∈ dom(Lb)

However, this bidirectional labeling algorithm can generate duplicate solutions. Consider a

feasible solution p∗ including nodes i, j and k in this order. Each node x ∈ p∗ is associated

with a forward label Lf (x) and a backward label Lb(x) (i.e. v(Lf (x)) = v(Lb(x)) = x).

Therefore, the path p∗ can be obtained by merging Lf (i) with Lb(i) as well as merging by

Lf (j) with Lb(j). To overcome this drawback, we devised an additional test: we accept a

solution only when a further extension of the forward label is impossible. In our example (see

Figure 2.5) the extension from Lf (i) to node j is feasible and the extension from Lf (j) to node

k is infeasible by the predefined fixed time tm. We generate solution p∗ by merging Lf (j) and

Lb(j) instead of Lf (i) and Lb(i). The test is performed for each candidate pair of labels and

guarantees that each path is generated only once.
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Figure 2.5: An Illustration of Preventing Duplicate Solutions.

2.5 Restricted dynamic programming heuristic algorithm

Although the tailored labeling algorithm returns the optimal solution of our proposed

problem, it is not fast enough to solve problems of realistic size within reasonable computation

time.

In order to avoid enormous computation times and to save memory usage, Malandraki and

Dial [72] proposed a restricted dynamic programming heuristic algorithm for the TSP. The

main concept is to limit in each stage the number of partial paths for further extension by a

given parameterB. Furthermore, in each stage all partial paths should have the same number

of visited nodes. Malandraki and Dial [72] show that increasing the value of B results in

better solutions, but also in substantial higher computation times. Note that B = 1 results

in a nearest neighborhood heuristic and B = ∞ results it an exact dynamic programming

algorithm.

Gromicho et al. [49] propose a restricted dynamic programming algorithm for solving realistic

VRPs and restrict the state space even further, by using a form of beam search (Bisiani. [13]),

which means that each partial path is only expanded to E of its nearest feasible nodes.

The same principle of restricting the number of extension of partial paths can be applied to our

labeling algorithm as well with some minor changes. Because of the precedence constraints,

expanding a partial path to a pickup node may improve or deteriorate the objective function

value depending on the profit of that node and the additional travel time to visit that node.

However, expanding to a delivery node can only decrease the objective function value as

additional travel time is necessary to visit that node while no profit is assigned to the node.

Moreover, because of the time-dependent travel time, the objective function value of a partial

path is determined by its optimal departure time at the origin depot, which might change

after a certain extension.
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Therefore, it is not sufficient to select the partial paths with the highest objective function

value, and we introduce a new selection method for each stage taking global information into

account. For every extension of a partial path the E/2 best expanded partial paths ending

with a pickup node and the E/2 best expanded partial paths ending with a delivery node

are selected. Furthermore, in each stage we select the best B/2 partial paths that expand

to a pickup node and the best B/2 partial paths that expand to a delivery node for further

expansion. Moreover, instead of just using the objective function value for the selection, we

use the earliest arrival time to order the expanded partial paths. If two expanded partial paths

have the same earliest arrival time, the objective function value will be used to order them.

The restricted dynamic programming heuristic is described in Algorithm 1. Herein, an empty

labels setZk is created for each stage k for further extension (Step 2). Then the first label which

represents the start from the depot is generated and put into the set Z0 (Step 3 and Step 4).

If the number of the labels stored in each stage k is larger than B, only the B best labels are

selected for further extension (Step 7). Moreover, for each label in stage k, onlyE of its feasible

extensions are made and put in Zk+1 (Step 9). In the end, the best route Rt∗ will be found by

checking the labels in Z2n+1 (Step 10).

Algorithm 1: The restricted dynamic programming heuristic
input : Request size n with two parameters B and E
output: The best route Rt∗

1 for (each stage k = 0, 1, ..., 2n+ 1) do
2 Label set Zk = ∅
3 L0← {v(L0), δL0

(t), O(L0), U(L0), q(L0), r(L0)}
4 Z0← Z0 ∪ {L0}
5 for (each stage k = 0, 1, ..., 2n) do
6 if (Size of Zk ≥ B) then
7 Keep the B best labels in Zk

8 for (each Label Lk ∈ Zk) do
9 Do E of its feasible extensions. Put the non− dominated labels into Zk+1

10 Find the best route Rt∗ in set Z2n+1

Note that there is no optimality guarantee anymore with such a restricted dynamic

programming heuristic algorithm.

2.6 Computational results

In this section the computational experiments are discussed. The algorithms are coded in

JAVA and all computations are carried out on a single thread of a server with four CPU’s
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(2.4 GHz/6 cores) and 64GB RAM. Each run has a time limit of 2 weeks and a maximum

memory allowance of 16GB RAM. For our numerical study we use an adapted version of

the instances for the PDPTW in Røpke and Pisinger [93]. In these instances, the coordinates

of each pickup and delivery location are both randomly and uniformly distributed over a

[0, 50]× [0, 50] square and a single depot is located in this square. The load qi for each request

Ri is also randomly selected from the interval [5, Q], where Q is the vehicle capacity. Table

2.2 summarizes the characteristic of these instances including the vehicle capacity Q and the

width of the time windows W . For each group, there are 10 instances with the number of

requests ranging from 30 to 75. For more details, we refer to Røpke and Pisinger [93].

Table 2.2: Characteristics of the TDPPDPTW and its variants instances

Group Q W

AA 15 60

BB 20 60

CC 15 120

DD 20 120

In addition to the instances proposed by Røpke and Pisinger [93], we created for each class

four new small instances with the amount of requests ranging from 10 to 25. They are

generated by only keeping the first α requests of the instance with 30 requests of each class,

where α = 10, 15, 20 and 25. For example, the instance AA10 is created by considering the

first ten requests of AA30.

In our instances, the coordinates, time windows and loads of the depot, pickup nodes and

delivery nodes are the same as in the instances of Røpke and Pisinger [93]. Furthermore, the

vehicle capacity Q is also the same. In the instances of Røpke and Pisinger [93] the travel time

is fixed and no profits were assigned to the requests.

To make the travel time time-dependent, road congestion is handled by a so-called speed

model which consists of different speed profiles. It is used to determine the travel time

between two nodes on a specific departure time. This speed model is based on the speed

model of Verbeeck et al. [117] for the TDOP and Dabia et al. [25] for the TDVRPTW. Without

loss of generality, we assume that breakpoints are the same for all speed profiles as congestion

tends to happen around the same time regardless of the type of speed profile. The pickup

and delivery node of each request is randomly assigned to one of the three predefined areas:

morning and evening commuting area, city center and highways. Then, the speed profile of a

link is assigned according to the type (e.g. depot or request node) and location of the tail node
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and head node.

In our speed model, the planning horizon covers 14 working hours (840 minutes, from 7 am to

9 pm) and a minute is set to be one unit of time, while, in Røpke and Pisinger [93], the planning

horizon of length 600 minutes is considered. Each speed profile has four non-overlapping time

periods with constant speed, reflecting two congested periods and two periods with normal

traffic conditions. Five speed profiles are included (see Figure 2.6 and Table 2.3):

• Slow speed (SS): these links represent a busy central business district (CBD) with a lot

of traffic during the whole day.

• Normal speed with morning peak (NSMP): these links represent roads leading from a

residential area to the CBD. These roads are in most cases congested in the morning.

• Normal speed with evening peak (NSEP): these links represent roads leading from a

CBD to a residential zone. The roads typically encounter evening congestion.

• Fast speed with two peaks (FSTP): these links represent roads near the highway with a

morning and evening peak in both directions.

• High speed (HS): these links connect the request nodes with the depot.

City center

Morning/

evening 

commuting
Depot Highways

FSTP

HS

HS

HS

HS

Start 

Depot

Pickup

Delivery

SS

SS

FSTP

FSTP

NSEP

NSEP

NSMP

NSMP

NSMP

NSEP

End 

Depot

HS

Figure 2.6: An Illustration of a Instance with Different Speed Profiles.

As in the PDPTW (Røpke and Pisinger [93]), all requests needed to be served, so no selection
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Table 2.3: Speed Profiles

Congestion Morning Normal Evening Normal

description peak peak

Time periods 7 am-9 am 9 am-5 pm 5 pm-7 pm 7 pm-9 pm

1.SS 0.5 0.81 0.5 0.81

2.NSMP 0.67 1.33 0.88 1.33

3.NSEP 0.88 1.33 0.67 1.33

4.FSTP 0.85 1.5 0.85 1.5

5.HS 1.0 2.0 1.0 2.0

is required and no profits are considered. To come up with meaningful settings for the profits

we did preliminary tests with 20, 40 and 80 units of profit assigned to each pickup node. As

shown in Table 2.4, if the profit of the requests is 20, it will be too low. There are even routes

in which it is best to do nothing. If the profit per request is 40, on average 56% of the requests

are served and the total profit in the route is 52% higher than the traveling cost. When the

profits increase to 80, the provider would like to serve more request (on average 74%) and the

generated profits are way (on average 141%) higher than the traveling cost. To avoid bias on

either profits or traveling cost, in the remainder of the computational experiments, we decided

to assign a profit of 40 units to all pickup nodes, which makes a request only profitable if the

additional travel time to serve the request (i.e. visiting both the pickup and delivery node) is

less than 40 time units.

Table 2.4: Comparison of results for different profits settings

20 units profit for each request 40 units profit for each request 80 units profit for each request

Instance Optimal Profits Traveling Optimal Profits Traveling Optimal Profits Traveling

value (Served) cost value (Served) cost value (Served) cost

AA10 0 0 (0) 0 27.14 80 (2) 52.86 196.22 400 (5) 203.78

AA15 0 0 (0) 0 37.77 120 (3) 82.23 392.37 880 (11) 487.63

AA20 0 0 (0) 0 73.7 240 (6) 166.3 566.03 1200 (15) 633.97

AA25 9.06 60 (3) 50.94 203.01 560 (14) 356.99 884.41 1440 (18) 555.59

AA30 13.07 60 (3) 46.93 266.72 640 (16) 373.28 1020.86 1600 (20) 579.14

BB10 0 0 (0) 0 39.26 120 (3) 80.74 247.65 720 (9) 472.35

BB15 6.61 20 (1) 13.39 99.58 280 (7) 180.42 518.03 960 (12) 441.97

BB20 6.61 20 (1) 13.39 138.05 600 (15) 461.95 738.05 1200 (15) 461.95

BB25 6.25 40 (2) 33.75 147.88 520 (13) 372.12 787.64 1360 (17) 572.36

BB30 4.26 20 (1) 15.74 274.45 840 (21) 565.55 1114.45 1680 (21) 565.55

CC10 2.81 40 (2) 37.19 57.63 160 (4) 102.37 340.2 560 (7) 219.8

CC15 5.69 40 (2) 34.31 98.29 280 (7) 181.71 469.59 960 (12) 490.41

CC20 4.35 20 (1) 15.65 97.27 480 (12) 382.73 712.53 1280 (16) 567.47

CC25 9.42 60 (3) 50.58 226.23 720 (18) 493.77 984.3 1600 (20) 615.7

CC30 3.73 60 (3) 56.27 316.39 800 (20) 483.61 1167.47 1760 (22) 592.53

DD10 11.8 60 (3) 48.2 85.88 160 (4) 74.12 315.34 720 (9) 404.66

DD15 10.18 60 (3) 49.82 99.05 200 (5) 100.95 554.55 1040 (13) 485.45

DD20 14.44 80 (4) 65.56 182.14 640 (16) 457.86 832.05 1360 (17) 527.95

DD25 6.66 80 (4) 73.34 250.16 680 (17) 429.84 1025.75 1600 (20) 574.25

DD30 16.9 80 (4) 63.1 343.65 840 (21) 496.35 1247.22 1840 (23) 592.78
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2.6.1 Performance of the tailored labeling algorithm

Table 2.5 gives the results of the experiments using the tailored labeling algorithm without

dominance and feasibility check and the tailored labeling algorithm with dominance and

feasibility check. In Table 2.5, we observe that the tailored labeling algorithm without

dominance and feasibility check can only solve 11 instances (out of 20 instances) to optimality

within the given memory limit (16GB) or time limit (1 day). In contrast, the tailored labeling

algorithm with dominance and feasibility check is able to solve all of the instances within a

reasonable running time (within 15 mins). Moreover, due to the dominance and feasibility

check much less labels and routes (column 7 and 8) are generated compared to its counterpart

(column 3 and 4). Therefore, it shows that the proposed dominance criterion and feasibility

check both show their great potentials to get rid of the unpromising labels (column 9 and 10)

which are proven not to be the part of the optimal solution. On average 84% of the labels are

dominated and about 11% is proven to lead to an infeasible extension.

Table 2.5: Comparison of the tailored labeling algorithm without and with dominance and feasibility
check

TDTL without dominance and feasibility check TDTL with dominance and feasibility check

Instance Optimal Generated Generated Time(s) Optimal Generated Generated Dominated Infeasible Time(s)

Value labels(#) routes(#) Value labels(#) routes(#) labels(#) labels(#)

AA10 27.14 1680 19 0.468 27.14 196 15 121 0 0.234

AA15 37.77 67201 57 0.998 37.77 471 26 329 0 0.374

AA20 73.7 1295435 658 12.044 73.7 1183 49 886 12 0.796

AA25 - - - Out of memory 203.01 10174 80 8113 974 1.591

AA30 - - - Out of memory 266.72 18719 77 15012 2247 2.792

BB10 39.26 3647 43 0.375 39.26 204 21 104 0 0.219

BB15 99.58 387803 5311 3.932 99.58 1729 52 1023 263 0.499

BB20 138.05 14067769 420587 30019.417 138.05 11572 89 9445 1565 1.95

BB25 - - - Out of memory 147.88 13787 145 10660 1886 2.247

BB30 - - - Out of memory 274.45 40335 152 31755 7019 3.167

CC10 57.63 4859 70 0.437 57.63 289 25 184 0 0.265

CC15 98.29 119687 1455 1.919 98.29 1799 43 1501 19 0.625

CC20 97.27 5763951 14981 47.207 97.27 5206 82 4337 215 1.248

CC25 - - - 86400 226.23 97782 278 81472 6626 11.951

CC30 - - - Out of memory 316.39 347803 490 284760 42498 78.939

DD10 85.88 5567 55 0.608 85.88 222 20 129 0 0.25

DD15 99.05 1041425 2272 5.054 99.05 1471 53 850 267 0.609

DD20 - - - Out of memory 182.14 11292 111 8473 1735 2.106

DD25 - - - Out of memory 250.16 405617 630 324304 48709 199.735

DD30 - - - Out of memory 343.65 1257385 547 1085122 128811 855.204

In Table 2.6, we present the results of the experiments using the mathematical model

introduced in Section 2.3.2, solved by the optimization software Gurobi (version 5.6) with

its default parameter settings and a computation time limit of 1 day. For each instance, we

provide the lower bound (LB), best feasible solution found (Best), the processing time given

in seconds (Time) and the gap (Gap) provided by Gurobi and the relative gap with respect

to the optimal solution (Gapopt). The relative gap is calculate by Gapopt = 100 × Best−Opt
Best

in which Opt is the value of the optimal solution for the instance derived by our tailored
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labeling algorithm. As shown in Table 2.6, the proposed mathematical model is able to solve

instances with up to 25 requests within the time limit. However, for larger instances, it takes

already more than one day compared to the at maximum 15 minutes of our tailored labeling

algorithm.

Table 2.6: Results of solving the mathematical model by using the Gurobi

Instances LB Best Time(s) Gap(%) Gap opt(%)

AA10 27.14 27.14 1.95 0 0
AA15 37.77 37.77 4.664 0 0
AA20 73.7 73.7 24.93 0 0
AA25 203.01 203.01 46344.063 0 0
AA30 216.34 543.475 86400 151 50.923
BB10 39.26 39.26 1.451 0 0
BB15 99.58 99.58 121.029 0 0
BB20 138.05 138.05 1669.737 0 0
BB25 147.88 147.88 48616.51 0 0
BB30 245.7 515.404 86400 110 46.751
CC10 57.63 57.63 3.292 0 0
CC15 98.29 98.29 44.337 0 0
CC20 97.27 97.27 7935.288 0 0
CC25 209.088 1316.688 86400 530 82.818
CC30 237.02 1674.739 86400 607 81.108
DD10 85.88 85.88 1.435 0 0
DD15 99.05 99.05 54.648 0 0
DD20 182.14 182.14 4959.477 0 0
DD25 221.391 1419.806 86400 541 82.381
DD30 279.51 1733.624 86400 520 80.177

2.6.2 Results of the tailored labeling algorithm on all instances

In Table 2.7, we report the results of our tailored labelling algorithm. We present the

computation times for both the bidirectional search (i.e tm = 420, the middle of the time

horizon) and the mono-directional search (i.e tm = 840, the end of the time horizon). Since

both algorithms lead to the optimal value, this value is presented only once (column 2).

The bidirectional search shows greater potential power in terms of computation time. For

some instances (DD40 and DD50), the bidirectional search is even 10 times faster than the

monodirectional search. Moreover, the bidirectional search is capable of finding the optimal

value of more instances than the monodirectional search within our set computation time

limit of 2 weeks. This is mainly because of the fact that the number of labels needed to be

processed in the bidirectional search is considerably less compared to the mono-directional

search. However, for several easy-to-solve instances (solved to optimality within 6 minutes)

in AA group and BB group (AA35 and BB45), the mono-directional search outperforms the
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bidirectional search. On the one hand, the total number of the generated labels for these

instances are comparably limited. On the other hand, this phenomenon indicate that the

merging forward and backward labels also takes a significant portion of processing times.

With the bidirectional search, 34 of the 40 instances could be solved within our time limit of 2

weeks. We did not find optimal solutions for the instances with more than 65 requests in the

CC group and more than 55 requests in the DD group. This means that the algorithm was still

generating labels after 2 weeks, and therefore also no upper bound is available.

Table 2.7: Monodirectional Algorithm vs. Bidirectional Algorithm

Processing Time (s)
Instance Optimal Requests Monodirectional Bidirectional

Value Served

AA30 266.72 16 2.37 2.12
AA35 278.14 20 4.68 5.04
AA40 341.74 22 7.94 5.82
AA45 361.57 21 23.54 5.6
AA50 430.41 23 22.40 9.53
AA55 436.05 27 32.79 18.66
AA60 505.02 26 87.11 24.71
AA65 576.39 29 182.09 34.80
AA70 606.68 29 180.01 39.14
AA75 715.53 31 1038.67 257.60
BB30 274.45 21 2.36 2.78
BB35 337.55 22 1.30 1.03
BB40 326.82 23 8.30 9.95
BB45 378.90 23 34.88 27.94
BB50 432.10 25 31.81 37.41
BB55 530.84 27 40.14 59.02
BB60 558.02 28 164.38 119.2
BB65 547.84 25 353.15 332.13
BB70 558.29 27 225.79 351.57
BB75 613.35 27 775.58 511.37
CC30 316.39 20 32.51 27.64
CC35 386.26 24 133.15 104.18
CC40 464.28 25 2934.28 942.27
CC45 497.68 26 20641.34 3422.21
CC50 519.60 26 45532.40 13913.43
CC55 581.50 28 156770.32 28429.25
CC60 624.95 30 ≥ 2 weeks 52801.65
CC65 663.31 31 ≥ 2 weeks 699831.05
DD30 343.65 21 396.23 80.42
DD35 410.19 22 2815.31 338.16
DD40 490.92 25 53402.91 4618.11
DD45 540.17 27 67293.53 7667.97
DD50 610.07 30 186697.41 21889.86
DD55 639.75 29 ≥ 2 weeks 823755.21
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It is not a surprise that the computation time increases with the number of requests. However,

Table 2.7 also demonstrates that the computation time increases if the vehicle capacity (i.e BB

compared with AA and DD compared with CC) or time window width (CC compared with

AA and DD compared with BB) increases. This is mainly caused as a larger vehicle capacity

or time window width will lead to a larger solution space.

In Table 2.8 we present a more detailed look at the solution of instance AA30. The solution

only serves 16 requests in the reported sequence. Since the time dependent travel time instead

of the traveled distance is considered as part of the objective, the vehicle’s departure time

becomes crucial. Therefore, delaying the departure time of the vehicle may lead to less

traveling cost. We observe that the vehicle departs from the origin depot at 208.23 and arrives

to the destination depot at 581.51. Other departure times will lead to higher travel cost.

Table 2.8: Solution of AA30

Start time End time Travel cost Served request Generated profit

208.23 581.51 373.28 1, 11, 3, 26, 22, 18, 28, 25, 19, 8, 5, 13, 15, 7, 4, 27 640

In Table 2.9, we also present the results on small instances if we double the capacity of the

vehicles. On one hand, vehicles with more capacity can serve more requests, which returns a

better objective than its less capacitate counterparts. On the other hand, for some groups, the

instances with larger vehicle capacities need much more time to get the optimal solution (e.g.

CC25 and DD25).

Table 2.9: Comparison of the different capacity settings

Original Ropke’s capacity Double Ropke’s capacity

Instances Optimal Profits Requests Travel Time(s) Optimal Profits Requests Traveling cost Time(s)

Value served cost Value Served cost

AA10 27.14 80 2 52.86 0.234 27.14 80 2 52.86 0.297

AA15 37.77 120 3 82.23 0.374 79.63 200 5 120.37 0.952

AA20 73.7 240 6 166.3 0.796 146.41 440 11 293.59 2.574

AA25 203.01 560 14 356.99 1.591 286.68 600 15 313.32 29.469

BB10 39.26 120 3 80.74 0.219 46.49 200 5 153.51 0.484

BB15 99.58 280 7 180.42 0.499 131.25 320 8 188.75 2.652

BB20 138.05 600 15 461.95 1.95 192.46 600 15 407.54 11.779

BB25 147.88 520 13 372.12 2.247 268.91 800 20 531.09 20.717

CC10 57.63 160 4 102.37 0.265 96.56 240 6 143.44 0.624

CC15 98.29 280 7 181.71 0.625 121.9 320 8 198.1 2.745

CC20 97.27 480 12 382.73 1.248 147.505 520 13 372.495 5.335

CC25 226.23 720 18 493.77 11.951 434.01 960 24 525.99 10808.19

DD10 85.88 160 4 74.12 0.25 99.13 160 4 60.87 0.312

DD15 99.05 200 5 100.95 0.609 108.55 200 5 91.45 1.373

DD20 182.14 640 16 457.86 2.106 233.61 640 16 406.39 19.298

DD25 250.16 680 17 429.84 199.735 452.94 960 24 507.06 82620.399
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2.6.3 Performance of the restricted dynamic programming heuristic

We also have conducted computational experiments to analyze the solution quality produced

by the restricted dynamic programming heuristic. In Table 2.7, we have seen that the exact

procedure has enormous computation times. In Table 2.10, we show the results for the same

instances but now with the restricted dynamic programming heuristic. The restricted dynamic

programming heuristic algorithm has been run with different values for B. In these first tests

we set E =∞. For the instances of which the optimal solution is not known, we compare the

solution to the best found solution (i.e. the solution found in case B = 10000) to have a lower

bound on the gap.

With a value of B = 1000 the algorithm leads in on average 71.26 seconds to the optimal

solution for 25 out of the 40 instances. For 1 instance it is not sure whether or not the optimal

solution is reached. The average gap is at least 0.79%. With a value of B = 2500 the average

computation time increased to 237.42 seconds. For one more instance the optimal solution is

found, and again there is 1 instance for which it is not sure whether or not the optimal solution

is reached. The average gap (at least 0.42%) is about half of the gap as in the case ofB = 1000.

With a value of B = 5000 the average gap is halved again to at least 0.22% and the number

of instances for which the optimal solution is found increases considerably to 30. For 3 more

instances the solution found could be the optimal one. However, the average computation

time is also increased to 580.44 seconds. Increasing the value of B to 10000 ensures that 32 of

the 34 instances of which we know the optimal solution are solved to optimality. The average

computation time in caseB = 10000 equals 1567.3 seconds. The two instances which were not

solved to optimality have respectively a gap of 0.48% and 0.11%. This means that, compared

to the tailored labeling algorithm, the average gap of the restricted dynamic programming

heuristic algorithm over the 34 instances of which the optimal solution is known is just 0.02%.

Note that all the instances for which the exact labeling algorithm was not able to solve in 2

weeks (e.g. DD75 in Table 2.7), can be solved within 20 hours with this restricted dynamic

programming algorithm.

In Table 2.11, we present the impact of differentE values on the performances of the algorithm

with B = 10000. We set the values of E to 0.5n, 0.25n and 0.125n and fractional values are

rounded to its closed integer.

The results indicate that the computation times decrease if the value for E decreases, but not

that much. As can be seen in Table 2.11, when the value of E is equal to 0.5n, the solution
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Table 2.10: Impact of Different B Values on Instances in Table 2.7

B=1000 B=2500 B=5000 B=10000

Instance Optimal Value Time(s) Gap Value Time(s) Gap Value Time(s) Gap Value Time(s) Gap

AA30 266.72 266.72 3.32 0.00 266.72 3.03 0.00 266.72 3.14 0.00 266.72 3.01 0.00

AA35 278.14 278.14 4.43 0.00 278.14 4.17 0.00 278.14 4.10 0.00 278.14 4.31 0.00

AA40 341.74 341.74 4.06 0.00 341.74 5.16 0.00 341.74 5.09 0.00 341.74 4.23 0.00

AA45 361.58 361.58 6.65 0.00 361.58 7.40 0.00 361.58 7.68 0.00 361.58 7.89 0.00

AA50 430.41 430.41 8.22 0.00 430.41 11.93 0.00 430.41 12.92 0.00 430.41 14.29 0.00

AA55 436.05 433.21 11.33 0.65 436.05 15.29 0.00 436.05 18.42 0.00 436.05 23.25 0.00

AA60 505.02 505.02 11.19 0.00 505.02 16.68 0.00 505.02 21.76 0.00 505.02 26.66 0.00

AA65 576.39 576.39 14.87 0.00 576.39 21.78 0.00 576.39 27.04 0.00 576.39 27.25 0.00

AA70 606.68 606.68 15.05 0.00 606.68 25.12 0.00 606.68 30.13 0.00 606.68 33.98 0.00

AA75 715.53 714.65 32.07 0.12 714.65 57.36 0.12 715.53 111.54 0.00 715.53 162.37 0.00

BB30 274.45 274.45 2.00 0.00 274.45 1.89 0.00 274.45 1.88 0.00 274.45 1.86 0.00

BB35 337.55 337.55 1.03 0.00 337.55 1.21 0.00 337.55 1.05 0.00 337.55 1.17 0.00

BB40 326.82 326.82 4.01 0.00 326.82 4.79 0.00 326.82 5.07 0.00 326.82 5.37 0.00

BB45 378.90 378.90 8.61 0.00 378.90 12.89 0.00 378.90 17.43 0.00 378.90 19.14 0.00

BB50 432.10 432.10 8.04 0.00 432.10 14.40 0.00 432.10 19.88 0.00 432.10 22.75 0.00

BB55 530.84 530.84 12.40 0.00 530.84 20.19 0.00 530.84 26.80 0.00 530.84 33.32 0.00

BB60 558.02 558.02 16.08 0.00 558.02 28.47 0.00 558.02 43.92 0.00 558.02 69.61 0.00

BB65 547.84 547.84 16.41 0.00 547.84 31.09 0.00 547.84 61.08 0.00 547.84 104.54 0.00

BB70 558.29 558.29 21.72 0.00 558.29 34.10 0.00 558.29 50.89 0.00 558.29 83.74 0.00

BB75 613.35 613.35 23.32 0.00 613.35 45.66 0.00 613.35 65.52 0.00 613.35 106.88 0.00

CC30 316.39 316.39 9.16 0.00 316.39 13.39 0.00 316.39 16.18 0.00 316.39 18.46 0.00

CC35 386.26 386.26 17.39 0.00 386.26 31.84 0.00 386.26 38.27 0.00 386.26 53.09 0.00

CC40 464.28 464.28 32.67 0.00 464.28 56.99 0.00 464.28 85.19 0.00 464.28 124.12 0.00

CC45 497.68 497.68 52.17 0.00 497.68 108.30 0.00 497.68 190.84 0.00 497.68 303.98 0.00

CC50 519.60 516.59 48.71 0.58 516.59 171.45 0.58 517.10 364.55 0.48 517.10 616.42 0.48

CC55 581.50 564.03 98.13 3.00 572.88 306.60 1.48 572.88 746.83 1.48 581.50 1416.82 0.00

CC60 624.95 593.46 114.55 5.04 606.11 327.94 3.01 624.95 911.43 0.00 624.95 1840.42 0.00

CC65 663.31 636.12 169.39 4.10 653.51 470.64 1.48 655.84 1295.07 1.13 662.61 3879.84 0.11

CC70 - 678.11 188.24 ≥ 0.55 680.30 585.96 ≥ 0.23 680.56 1589.12 ≥ 0.19 681.84 4858.95 ≥0.00

CC75 - 686.68 250.89 ≥ 0.00 686.68 634.38 ≥ 0.00 686.68 1745.03 ≥ 0.00 686.68 7159.92 ≥0.00

DD30 343.65 343.65 17.32 0.00 343.65 35.09 0.00 343.65 46.71 0.00 343.65 46.1 0.00

DD35 410.19 410.19 37.57 0.00 405.07 92.01 1.25 410.19 168.55 0.00 410.19 275.19 0.00

DD40 490.92 477.82 74.59 2.67 490.92 233.52 0.00 490.92 526.53 0.00 490.92 1026.12 0.00

DD45 540.17 540.17 78.77 0.00 540.17 210.87 0.00 540.17 415.69 0.00 540.17 953.24 0.00

DD50 610.07 589.67 104.49 3.34 599.02 264.49 1.81 610.07 725.41 0.00 610.07 1277.29 0.00

DD55 639.75 617.52 159.5 3.47 626.86 550.42 2.01 629.70 1132.39 1.57 639.75 2754.41 0.00

DD60 - 690.87 191.22 ≥ 3.16 695.74 742.63 ≥ 2.47 695.54 1785.51 ≥ 2.50 713.39 4054.79 ≥ 0.00

DD65 - 754.65 246.71 ≥ 0.75 758.57 963.77 ≥ 0.23 760.32 2212.53 ≥ 0.00 760.32 5853.15 ≥ 0.00

DD70 - 746.44 334.40 ≥ 2.31 751.56 1434.89 ≥ 1.64 753.58 3869.98 ≥ 1.38 764.10 9581.94 ≥ 0.00

DD75 - 830.50 399.73 ≥ 0.63 831.49 1899.06 ≥ 0.51 835.76 4816.39 ≥ 0.00 835.76 15842.28 ≥ 0.00

Average 515.18 510.34 71.26 ≥ 0.76 512.48 237.42 ≥ 0.42 513.72 580.44 ≥ 0.22 515.10 1567.30 ≥0.01
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Table 2.11: Impact of Different E Values on Instances when B=10000

E=0.5n E=0.25n E=0.125n
Instance Value Time(s) Gap Value Time(s) Gap Value Time(s) Gap

AA30 266.72 4.23 0.00 258.68 3.99 3.01 183.89 1.33 31.06
AA35 278.14 5.01 0.00 278.14 4.73 0.00 268.40 2.14 3.50
AA40 341.74 7.27 0.00 341.74 6.93 0.00 341.74 4.57 0.00
AA45 361.58 8.88 0.00 361.58 8.49 0.00 358.74 8.22 0.79
AA50 430.41 20.11 0.00 430.41 11.01 0.00 418.09 9.19 2.86
AA55 436.05 33.49 0.00 436.05 26.04 0.00 424.6 13.15 2.63
AA60 505.02 31.72 0.00 505.02 23.89 0.00 505.02 14.34 0.00
AA65 576.39 30.23 0.00 576.39 24.45 0.00 568.4 22.18 1.39
AA70 606.68 79.56 0.00 606.68 47.77 0.00 599.97 31.50 1.11
AA75 715.53 294.76 0.00 715.53 210.50 0.00 713.67 144.16 0.26
BB30 274.45 3.53 0.00 274.45 2.20 0.00 249.00 1.48 9.27
BB35 337.55 2.62 0.00 316.85 5.02 6.13 316.85 1.89 6.13
BB40 326.82 6.6 0.00 326.82 6.52 0.00 326.82 4.54 0.00
BB45 378.90 25 0.00 378.9 14.61 0.00 378.9 11.62 0.00
BB50 432.10 32.89 0.00 432.10 17.19 0.00 432.1 11.83 0.00
BB55 530.84 50.25 0.00 530.84 31.97 0.00 530.84 18.36 0.00
BB60 558.02 72.85 0.00 558.02 71.65 0.00 558.02 36.90 0.00
BB65 547.84 129.72 0.00 547.84 120.02 0.00 547.84 56.83 0.00
BB70 558.29 139.86 0.00 558.29 92.68 0.00 558.29 48.46 0.00
BB75 613.35 190.45 0.00 613.35 158.15 0.00 613.35 49.19 0.00
CC30 316.39 20.66 0.00 316.39 19.25 0.00 292.65 5.80 7.50
CC35 386.26 54.93 0.00 386.26 45.49 0.00 375.17 12.00 2.87
CC40 464.28 133.99 0.00 464.28 152.86 0.00 448 38.50 3.51
CC45 497.68 497.68 0.00 497.68 352.53 0.00 479.19 191.45 3.72
CC50 517.1 542.93 0.48 517.1 598.14 0.48 503.47 421.23 3.10
CC55 581.5 1920.55 0.00 581.5 1421.72 0.00 579.34 2338.11 0.37
CC60 624.95 1244.56 0.00 624.95 1579.68 0.00 624.95 2338.36 0.00
CC65 662.61 4098.04 0.11 662.61 2629.06 0.11 662.61 2203.57 0.11
CC70 681.84 4918.55 0.00 681.84 3110.90 0.00 681.84 2453.23 0.00
CC75 686.68 4290.45 0.00 686.68 5518.81 0.00 686.68 3183.47 0.00
DD30 343.65 68.19 0.00 343.65 63.74 0.00 330.79 17.25 3.74
DD35 410.19 350.53 0.00 410.19 399.22 0.00 385.85 84.60 5.93
DD40 490.92 1158.38 0.00 490.92 1133.28 0.00 483.48 1036.05 1.52
DD45 540.17 889.37 0.00 540.17 962.77 0.00 532.17 827.67 1.48
DD50 610.07 1919.31 0.00 610.07 1595.29 0.00 597.37 1352.25 2.08
DD55 639.75 2861.15 0.00 639.75 2733.71 0.00 638.36 4879.35 0.22
DD60 713.39 5432.74 0.00 713.39 4656.094 0.00 708.52 4264.71 0.68
DD65 760.32 6456.7 0.00 760.32 5255.72 0.00 758.57 4545.88 0.23
DD70 764.1 9593.25 0.00 764.1 8355.49 0.00 760.5 6054.51 0.47
DD75 835.76 11762.83 0.00 835.76 10770.09 0.00 835.76 8465.89 0.00

Average 515.10 1484.60 0.01 514.38 1306.04 0.15 506.50 1130.14 1.69
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quality is the same as in case E = ∞ but the computation times are reduced by 5%. When

we restrict E further the solution quality is going down drastically without gaining too much

computation time. In comparison, a combination of B = 1000 and E =∞ is much faster and

has higher solution quality then the combination of B = 10000 and E = 0.125n

2.7 Conclusion

This chapter presents the time-dependent capacitated profitable tour problem with time

windows and precedence constraints, which combines features of both the traveling salesman

problem with pickup and delivery, and the traveling salesman problem with profits.

Moreover, time-dependent traveling speeds are considered to capture road congestion, which

increases the complexity of the problem.

We propose a tailored labeling algorithm to solve this problem enriched by new and strong

dominance rules to discard 95% of the labels. Extensive computational results show that most

instances with up to 75 requests can be solved to optimality within the given time limit of two

weeks, but also show that some instances remain unsolved.

To reduce the computation time and memory usage, a restricted dynamic programming

heuristic algorithm is implemented. The heuristic is able to find solutions for all instances

with good qualities (on average 0.01% gap) and less computational time (on average 1567

seconds).

Obviously, the performance of our exact algorithm critically depends on the tailored

dominance criterion that we propose. It shows great potential when there are relatively tight

time windows attached to all the nodes. Further strengthening dominance is a promising

direction for future research.

In addition, solving extensions of the time-dependent capacitated profitable tour problem

with time windows and precedence constraints seems to be an attractive research direction.

More specifically, the time-dependent variant of the pickup and delivery problem with time

windows (TDPDPTW) and the time-dependent team orienteering problem (TDTOP) are very

interesting as it aims to optimize the routes of a fleet of vehicles, instead of a single vehicle

only. When column generation is utilized to solve those two problems in an exact way, our

proposed model can be used as the pricing problem.
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The time-dependent pickup and delivery problem with

time windows

“What is reasonable is real; that

which is real is reasonable.”

Georg Wilhelm Friedrich Hegel

3.1 Introduction

The advent of E-commerce has led to increased shipping volumes both when the customer

is a business (i.e. B2B) and when the customer is an individual (B2C). In either case, the

trend in customer expectations is for shorter, and more precisely specified (i.e. just-in-time

logistics), delivery times. To handle these trends at low cost and environmental impact,

transportation companies need tools for effectively optimizing how they should respond to

and serve transportation requests. In this chapter, we focus on transportation requests that

indicate a pickup location for a shipment, a time window during which the shipment must

be picked up, a delivery location for the shipment, and a time window during which the

shipment must be delivered. In the literature [22, 82, 83], optimizing the service of such

requests with a fixed fleet of capacitated vehicles has been termed the pickup and delivery

problem with time windows (PDPTW)

The objective of the classical PDPTW is to minimize the transportation costs incurred when

executing routes designed under the assumption that all transportation requests must be

served. This assumption is particularly relevant to supply chains based upon transportation

that is either owned or outsourced to a dedicated carrier. A growing trend in supply chain

management is to instead outsource transportation needs on a request basis through the use

of “load markets” or “boards”. Some of the growing demand for transporting individual
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requests can be attributed to the capabilities and ease-of-use of the software platforms

supporting such boards. From the transportation supply side, the easy (sometimes mobile)

access that these platforms provide also enables transportation service providers to pick and

choose the requests that yield the greatest profits. As a result, in this chapter we study variants

of the PDPTW wherein the transportation company can select a subset of the requests to serve

based on the revenues it receives for serving those requests. In these variants, the objective is

then to maximize profits.

The routing community has long studied problems (including PDPTWs) that assumed that

travel times are constant, or, time-independent. However, both demographic trends towards

larger populations in urban areas and improved technology for solving routing problems

has led researchers [25, 56, 57, 114] to study those that consider time-dependent travel times

(as reviewed in Gendreau et al. [46]). Such problems are particularly important as customer

expectations for short delivery times reduce the flexibility transportation companies have for

accommodating variations from “average” travel times. While some variation may be due

to unforeseen events, some is due to traffic and congestion. As traffic patterns are somewhat

predictable, embedding their impact on travel times in deterministic routing models is likely

to yield plans that are more likely to meet customer expectations at low cost than those that

ignore those impacts.

Thus, in all the variants of the PDPTW that we study in this chapter, we consider time-

dependent travel times, meaning that the time it takes to travel between two locations

depends on the time when travel begins. Like Ichoua et al. [56], we assume these travel

times adhere to the “first in first out” (FIFO) property, meaning that the earlier the departure,

the earlier the arrival. However, recognizing that travel times may vary throughout the day

brings a new dimension to the PDPTW. Specifically, there can be value in optimizing the time

at which a route begins. As providing a driver with a different start time each day may not

be feasible in all labor/operational settings, we consider variants where the departure time is

fixed as well as those where it can be optimized.

We present an optimization-based framework for variants of the PDPTW that can recognize

time-dependent travel times as well as specify vehicle start times. To do so, and like Røpke

and Cordeau [91], the framework models vehicle departure times with continuous variables.

As a result, the framework optimizes vehicle routes based upon precise representations of the

timings of vehicle departures and arrivals. Relatedly, continuous time variables make it easy

to model travel times that adhere to the FIFO property. An alternative approach, and one
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proposed by Mahmoudi and Zhou [70], is to optimize decisions on a network that represents

both the physical and temporal attributes of decisions (i.e. a space-time network). While such

a network can facilitate the representation of time-dependent travel times, it also necessitates

discretizing time, which can introduce approximation errors into an optimization model.

In total, we study four variants of the time-dependent pickup and delivery problem with

time windows (TDPDPTW), that differ with respect to two attributes: (1) whether the variant

requires that all transportation requests be served, and, (2) whether the variant requires that

all routes begin at a fixed departure time. For the sake of clarity, let Ω be our base problem,

i.e. the time-dependent pickup and delivery problem with time windows. We denote the four

variants then as follows: Ω(Fix,All), Ω(Fix, Prof), Ω(Flex,All) and Ω(Flex, Prof), where

Fix versus Flex refers to fixed versus flexible departure times, and All versus Prof refers to

handling all versus only the profitable requests. We present a solution framework based on

branch-and-price that can solve each of these variants to optimality. Our framework adapts

and extends the work presented in Røpke and Cordeau [91] and Røpke et al. [92] for solving

the PDPTW and employs some of the techniques presented in Sun et al. [109] in an algorithm

for solving single-vehicle variants of the problems we study.

As such, this chapter makes the following contributions to the literature:

• We present a general mathematical model for variants of the time-dependent pickup

and delivery problems with time windows that are inspired by changing trends in the

transportation industry.

• We present an exact algorithm for solving the time-dependent pickup and delivery

problem with time windows and the variants we consider. To the best of our

knowledge, this is the first algorithm that is able to solve all of these variants.

• We illustrate how to adapt known speed-up techniques from the literature on other,

related, routing problems to the problems we seek to solve. An extended computational

study demonstrates their effectiveness.

The remainder of this chapter is organized as follows. Section 3.2 presents a brief review of

the existing work related to this chapter. Section 3.3 introduces the mathematical formulation

for the variants of the time-dependent pickup and delivery problem with time windows

we consider in this chapter. In Section 3.4, we describe our exact framework. Finally,

computational results are reported in Section 3.5, followed by conclusions in Section 3.6.

63



Chapter 3

3.2 Literature review

There are several problems in the literature that share characteristics with the time-dependent

pickup and delivery problem with time windows. These include the pickup and delivery

problem with time windows (PDPTW), the vehicle routing problem with profits (VRPP) and

the time-dependent vehicle routing problem with time windows (TDVRPTW). We preview

how the problems we study intersect with those problems in Figure 3.1 and will next discuss

those intersections in detail.

PDPTW

TDVRPTWVRPP

PDPTWPR

Ω(Fix, All)

Ω(Flex, All)

Ω(Fix, Prof)

Ω(Flex, Prof)

TDOP

TDOPTW

TDTOPTW

Figure 3.1: Classification of related problems

3.2.1 The pickup and delivery problem with time windows (PDPTW)

The PDPTW models a variety of operational planning problems in transportation and

logistics. This results in a rich literature on PDPTW-related problems over the last few

decades. In this problem, a set of homogeneous vehicles with limited capacity based at a

depot is required to carry out a group of geographically scattered requests. Each request

needs to be transported from a specified origin and delivered to a specified destination within

the predefined time windows, which is the interval of time during which the service at a

node must start. The interested readers are referred to Cordeau et al. [22] and Parragh et al.

[82, 83] for recent surveys. Moreover, due to the difficulty of the problem, much of the existing

literature concentrates on heuristics.

Less work has been done on exact algorithms for these types of problems. The pioneering

work is done by Dumas et al. [34] who proposed the first branch-cut-price algorithm for the

PDPTW. This method was able to solve tightly constrained instances with up to 55 requests.

Recently, the exact approach was also used in Sigurd and Pisinger [102], Sol [103], Røpke
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and Cordeau [91] and Røpke et al. [92]. The method of Røpke and Cordeau [91] is a branch-

cut-and-price algorithm that uses different classes of valid inequalities to improve the lower

bound and two different methods for solving the pricing problem. Baldacci et al. [6] have

designed two exact algorithms relying on column generation and variable fixing based on

reduced cost. Recently, Azadian et al. [4] proposed an exact method based on a decomposition

approach for a variant of the PDPTW wherein requests are unpaired. In the problem they

study, delivery costs are time-dependent, but travel times are time-independent.

Unlike the problems studied in this chapter, the majority of related publications consider

a constant travel time environment. Moreover, unlike some of the problems we study, the

majority of the literature studies problems wherein all requests must be served.

3.2.2 The vehicle routing problem with profits (VRPP)

The vehicle routing problem with profits (VRPP) also arises in a wide range of transportation

and logistics applications. In these problems, along with Ω(Fix, Prof) and Ω(Flex, Prof),

there is a request selection decision that must be made. Instead of maximizing the difference

between total revenues and total costs, which defines the profitable tour problem (PTP), the

orienteering problem (OP) aims to maximize the total collected profits subject to a maximum

tour length. Conversely, the prize-collecting traveling salesman problem (PCTSP) aims to

minimize the total traveling cost with the constraint that the total collected profits can not

be less than a given amount. A recent survey (Vansteenwegen and Gunawan [115]) of

routing problems with a single vehicle and profits indicates that most of existing literature

focus on the OP with its variants. As an example, Righini and Salani [88] proposed an

extended bidirectional dynamic programming algorithm to solve the orienteering problem

with time windows (OPTW), which recognizes the presence of time window constraints. More

recently, Duquei et al. [36] adapted the pulse algorithm to the OPTW by adding new problem-

specific strategies. The resulting algorithm (computationally) outperforms the algorithm

proposed by Righini and Salani [88]. Extending the orienteering problem to teams yields

the team orienteering problem (TOP). Similarly, the OPTW has been extended to the team

orienteering problem with time windows (TOPTW). Exact and heuristic solution strategies

have been developed for both of these problems. An exact algorithm for the TOP can

be found in Boussier et al. [15], whereas Labadie et al. [62] developed a granular variable

neighborhood search for the TOPTW. Recently, Archetti et al. [3] proposed a branch-cut-and-

price algorithm to solve a variant of the TOP known as the capacitated team orienteering

problem (CTOP), which also models vehicle capacity. We refer the reader to the survey
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presented by Vansteenwegen et al. [116] and Gunawan et al. [50] for a detailed review of

the OP and its variants. For more details on VRPP, we refer the readers to the book written

by Vansteenwegen and Gunawan [115]. However, ultimately, much of the literature on these

problems assumes a constant travel time environment.

3.2.3 Time-dependent vehicle routing problems

Less research has been done on problems that allow travel times between origins and

destinations to vary based on the time of departure from the origin. One problem that has

been studied is the time-dependent vehicle routing problem with time windows (TDVRPTW).

The objective of this problem is to find a set of routes that visit all customers with minimum

traveling duration. Malandraki and Daskin [71] presented a mixed integer programming-

based formulation of this problem, some construction heuristics, and a cutting plane-based

solution method. Later, Ichoua et al. [56] proposed a parallel tabu search to solve the problem.

However, they also made the important observation that previous models of time-dependent

travel times did not adher to the “first in first out” (FIFO) property. Namely, that if two

identical vehicles traverse the same arc, the one that leaves first will arrive first. As a result,

they proposed a speed model that is a step-wise function and satisfies the FIFO principle. This

speed model was also used in Donati et al. [33], which presented a multiple ant colony system

(ACS) solution framework for the TDVRPTW. This ACS framework was then enhanced in

Balseiro et al. [8]. Regarding exact approaches, Dabia et al. [25] developed a branch and price

algorithm for TDVRPTW that employs a tailored labeling algorithm to solve a pricing problem

that can be formulated as a time-dependent shortest path problem with resource constraints

(TDSPPRC). The proposed algorithm is able to solve instances with up to 100 customers.

Readers interested in the TDVRPTW and its variants should consult the recent survey by

Gendreau et al. [46]. The TDVRPTW differs from the problems we study in this chapter as it

does not consider the precedence relationships between locations (i.e. the pickup node of a

request must be visited before the corresponding destination node).

3.2.4 Closely related problems

We have (briefly) reviewed three different classes of problems: (1) those that model pickups

and deliveries that must occur with time windows, (2) those that model request selection,

and, (3) those that model time-dependent travel times. Research has been done on problems

that model attributes of two of these problem classes. For example, Li et al. [67] consider a

PDPTW in a profitable context, which they refer to as the pickup and delivery problem with
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time windows, profits, and reserved requests (PDPTWPR). In this problem, there is one type

of request that must be served (called reserved requests), and another which may be rejected

or outsourced. They propose an adaptive large neighborhood search to solve this problem.

Similarly, researchers have studied the Time-dependent orienteering problem (TDOP) and its

variants. Fomin and Lingas [40] provide a (2 + ε)− approximation algorithm for the TDOP

which runs in polynomial time if the ratio between the minimum and maximum traveling

time of any two sites is constant. Li [66] designed a dynamic labeling algorithm for the

TDOP, where discrete time units are used. Verbeeck et al. [117] proposed an ant colony

optimization-based heuristic for the TDOP. To the best of our knowledge, the only heuristic

for the TDTOPTW is the iterated local search-based method proposed by Gavalas et al. [45].

Recently, Sun et al. [109] introduced the time-dependent capacitated profitable tour problem

with time windows and precedence constraints. A tailored labeling algorithm is proposed

that is able to solve instances with up to 75 requests to optimality. They also propose

a dynamic programming-based heuristic for instances that cannot be solved by the exact

method. However, unlike the problems considered in this chapter, it only considers a single

vehicle.

Also related to the work presented in this chapter is that of Mahmoudi and Zhou [70], which

studies a time-dependent PDPTW seen in ride-sharing settings. They propose a solution

approach that couples a Lagrangian relaxation scheme for producing dual bounds with a

dynamic programming-based method for producing primal solutions. Their approach is

based on a state-space-time network representation of the problem, which is based on a

discretization of time.

As discussed previously, the framework presented in this chapter and the method of

Mahmoudi and Zhou [70] model the timing of decisions differently. However, they also

consider profits in different ways. The variants considered in this chapter treat the profit

earned from serving a customer request as a known and fixed value, and thus the framework

we propose seeks to maximize the difference between the profits associated with serving

customers and the costs incurred by doing so. The problem studied in Mahmoudi and

Zhou [70] focuses on minimizing the total cost associated with transporting all passengers.

However, the Lagrangian component of their method relaxes the requirement that each

passenger is transported. Associated with the relaxed constraints are dual variables that

are iteratively updated, and converge to values that can be interpreted as marginal profits.
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Relatedly, the procedure for producing primal solutions allows for passengers to be assigned

to virtual vehicles.

Finally, the framework in this chapter and the method of Mahmoudi and Zhou [70] differ

in the known guarantees that can be made regarding their performance. The framework we

present is based upon branch-and-price, an algorithmic strategy for solving integer programs

that is known to be exact. Namely, that when run for sufficient time, it is guaranteed to

produce both a primal solution that is optimal and a certificate of its optimality. This guarantee

is based on appropriately-designed subroutines for generating new variables and partitioning

the solution space. We propose such subroutines and thus exact algorithms for the variants we

consider. As Mahmoudi and Zhou [70] do not include a proof that the method they propose

is exact, such a guarantee is not yet known.

3.3 Problem description and mathematical formulation

In this section, we first present a mathematical programming formulation of Ω(Flex, Prof).

From this formulation we show how to derive formulations of the other three variants by

adapting its objective function and/or fixing certain variables. As a result, we refer to

the Ω(Flex, Prof) as the general time-dependent pickup and delivery problem with time

windows

The general time-dependent pickup and delivery problem with time windows considers a

fleet of homogeneous vehicles that travel on routes constructed to serve customer pickup and

delivery requests. To serve a request, which in turn generates profits, the vehicle must visit

the pickup location during a given time window and then later visit the delivery location

during another given time window. Visiting either a pickup or delivery location requires a

service time. To model time-dependent travel times between a pair of locations, we divide

the planning horizon into time zones for travel between those locations, wherein a different

speed may be associated with each time zone. The objective of the problem is to maximize

the difference between the profits earned by serving requests and costs associated with

transportation. Transportation costs include costs associated with time spent traveling and a

fixed cost incurred when a vehicle is used. The formulation we present for the Ω(Flex, Prof)

is inspired by the PDPTW formulation presented in Røpke and Cordeau [91]. We define a

directed graph G = (N,A), wherein N = 0, 1, ..., 2n+ 1 is the set of all nodes and A is the set

of arcs. Nodes 0 and 2n + 1 represent the origin and destination depot of the vehicles. The

sets NP = 1, ..., n,⊆ N and ND = n+ 1, ..., 2n,⊆ N represent the sets of pickup and delivery
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locations, respectively. There is a set of n requests R1, ..., Rn, wherein serving request i yields

profit pi. Associated with request Ri is a pickup node i, with service time si, and delivery

node n + i, with service time sn+i. A time window [ei, li] is associated with every node

i ∈ NP ∪ ND , wherein ei and li represent the earliest and latest times, respectively, at which

service may start at node i. If the vehicle arrives at i earlier than ei, it waits; it can not arrive

later than li. The depot nodes also have time windows [e0, l0], [e2n+1, l2n+1] representing the

earliest and latest times, respectively, at which the vehicle may leave from and return to the

depot.

Each request has a size, qi. We associate with the pickup node i the quantity qi and the delivery

node n+ i the quantity qn+i(= −qi). We presume there is no inventory at the depot, and thus

q0 = q2n+1 = 0. Similarly, we assume s0 = s2n+1 = 0. To serve requests, there is a fleet of K

identical vehicles, each with capacity Q and a fixed cost, Z, that is paid when the vehicle is

used.

We let τij(tki ) denote the travel time from node i to node j when vehicle k departs from node i

at time tki . We define the set of arcs asA = {(i, j) ∈ N×N : i 6= j and ei+si+τij(ei+si) ≤ lj}.

In other words, an arc from node i to node j is included only if they can be visited in succession

while respecting their time windows. Similar to Ichoua et al. [56], Jabali et al. [57], Dabia et al.

[25] and Franceschetti et al. [41], associated with each (i, j) ∈ A is a speed profile that can

be represented by a step-wise function based upon a division of the planning horizon into

time zones. In this profile, speeds are constant within a time zone but may vary from one

zone to the next. With such a speed profile, we can generate travel times that satisfy the FIFO

principle.

Specifically, we use a travel time function that is piece-wise linear and continuous (see Figure

3.2 for an example). This function is based on a set of breakpoints that denote when a change

of speed (and hence travel time) occurs. Specifically, we let Tij represent the set of time zones

modeled by the travel time function τij(·). A time zone Tmij ∈ Tij can be defined by two

consecutive travel time breakpoints, Tmij = [wm, wm+1], wherein the travel time function is

linear within those breakpoints. Thus, for time zone Tmij , given the valueswm, wm+1, τij(wm),

and τij(wm+1), we calculate the slope, θm, of the function and its intersection, ηm, with the

y-axis. From this slope and intercept, we compute the travel time when departure occurs at

time tki ∈ Tmij as follows:

τij(t
k
i ) = θmt

k
i + ηm. ∀tki ∈ Tmij (3.1)
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Figure 3.2: Travel time function

To model this piecewise-linear function within an integer program, we define the binary

variable xkmij , i, j ∈ N, k ∈ K,m = 1, . . . , | Tij |, to represent whether vehicle k travels from

node i to node j by departing from i in time zone Tmij . Relatedly, we let the continuous variable

tkmij , i, j ∈ N, k ∈ K, represent the time when vehicle k departs from i to j during time zone

Tmij . If vehicle k does not depart from i to j during time zone Tmij (i.e. xkmij = 0)), then tkmij = 0.

With these variables, we can express the travel time function τij(tki ) of arc (i, j):

τij(t
k
i ) =

|Tij |∑
m=1

(θmt
km
ij + ηmx

km
ij ) (3.2)

Regarding request selection, we let yki , i ∈ N , be a binary variable that represents whether

vehicle k visits node i. Relatedly, we define Qki , i ∈ N, k ∈ K as a nonnegative integer

variable that equals the load of vehicle k when leaving node i. Finally, we presume travel

costs are a linear function of travel times, and represent this relationship with the cost per unit

parameter, ct.

With these variables and parameters, we formulate Ω(Flex, Prof) as the following mixed

integer program:

ObjΩ(Flex,Prof) = max
∑
k∈K

[
∑
i∈NP

piy
k
i − ct(tk2n+1 − tk0)− Zyk0 ] (3.3)
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subject to

∑
j∈NP

|T0j |∑
m=1

xkm0j = yk0 ∀k ∈ K, (3.4)

∑
i∈ND

|Ti,2n+1|∑
m=1

xkmi,2n+1 = yk2n+1 ∀k ∈ K, (3.5)

∑
k∈K

ykj ≤ 1 ∀j ∈ NP ∪ND, (3.6)

∑
i∈N\{2n+1}

|Tif |∑
m=1

xkmif −
∑

j∈N\{0}

|Tfj |∑
m=1

xkmfj = 0 ∀f, i, j ∈ NP ∪ND, ∀k ∈ K, (3.7)

∑
i∈N\{2n+1}

|Tij |∑
m=1

xkmij = ykj ∀j ∈ NP ∪ND, (3.8)

∑
j∈N\{0}

|Tij |∑
m=1

xkmij −
∑

j∈N\{0}

|Tn+i,j |∑
m=1

xkmn+i,j = 0 ∀i ∈ NP , ∀k ∈ K, (3.9)

tki + τij(t
k
i ) + sj ≤ tkj +M(1− xkmij ) ∀i, j ∈ NP ∪ND,m = 1, . . . , | Tij |, ∀k ∈ K,

(3.10)

Qki + qj ≤ Qkj +M(1− xkmij ) ∀i, j ∈ N,m = 1, . . . , | Tij |, ∀k ∈ K,

(3.11)

tki =
∑

j∈N\{0}

|Tij |∑
m=1

tkmij ∀i ∈ N \ {2n+ 1}, ∀k ∈ K, (3.12)

tkn+i ≥ tki ∀i ∈ NP , ∀k ∈ K, (3.13)

wmx
km
ij ≤ tkmij ≤ wm+1x

km
ij ∀i, j ∈ N,m = 1, . . . , | Tij | − 1, ∀k ∈ K,

(3.14)

(ei + si)y
k
i ≤ tki ≤ (li + si)y

k
i ∀i ∈ N,∀k ∈ K, (3.15)

max{0, qi} ≤ Qki ≤ min{Q,Q+ qi} ∀i ∈ N,∀k ∈ K, (3.16)

xkmij , y
k
i ∈ {0, 1} ∀i, j ∈ N,∀m = 1, . . . , | Tij |, ∀k ∈ K.

(3.17)

The objective function (3.3) measures the difference between profits collected and costs

incurred due to travel and vehicle use. Constraints (3.4) and (3.5) guarantee that if vehicle k is

used, its route starts from and ends at the depot. Constraints (3.6) ensure that every request is

served at most once. Constraints (3.7) are classical flow conservation constraints. Constraints
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(3.8) and (3.9) ensure both the pickup and delivery nodes are visited when a request is served,

and by the same vehicle. Given a vehicle’s route, constraints (3.10) ensure its departure

times from locations respect travel and service times. Constraints (3.11) compute the quantity

carried by the vehicle throughout its route. Constraints (3.12) calculate the departure time

for vehicle k from location i. Constraints (3.13) ensure that the vehicle visits the pickup node

for a request before its delivery node. Constraints (3.14) ensure that the departure time for

a vehicle from a location is associated with the correct time zone. Constraints (3.15) ensure

that a vehicle departs at a location after starting service within the time window. Constraints

(3.16) ensure that the vehicle capacity is respected. The last set of constraints define decision

variables and their domains.

Formulation for Ω(Fix,All)

This is the most restrictive variant, as it requires all customer requests to be served and each

vehicle route to depart from the depot at time 0. We model these restrictions by adding

constraints to the model presented above, which in turn, simplifies the objective function.

The resulting integer program is as follows:

ObjΩ(Fix,All) = max
∑
i∈NP

pi −
∑
k∈K

(ctt
k
2n+1 + Zyk0 ) (3.18)

subject to (3.4)-(3.5), (3.7) - (3.17), with the following extra constraints:

∑
k∈K

ykj = 1 ∀j ∈ NP ∪ND (3.19)

tk0 = 0 ∀k ∈ K (3.20)

Constraints (3.19) ensure that each request is served, while constraints (3.20) ensure that each

route departs from the depot at time 0. Due to the fixed variables the objective function

reduces to (3.18).
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Formulation for Ω(Flex,All)

This variant requires all customer requests to be served, but allows for flexibility in when a

route departs from the depot. As a result, we formulate the problem as follows:

ObjΩ(Flex,All) = max
∑
i∈NP

pi −
∑
k∈K

[ct(t
k
2n+1 − tk0) + Zyk0 ] (3.21)

subject to (3.4)-(3.5), (3.7) - (3.17) and (3.19).

Formulation for Ω(Fix, Prof)

This variant does not require that each customer request be served, but does require that each

route departs from the depot at time 0. The resulting integer program is as follows:

ObjΩ(Fix,Prof) = max
∑
k∈K

(
∑
i∈NP

piy
k
i − cttk2n+1 − Zyk0 ) (3.22)

subject to (3.4)-(3.17) and (3.20).

Relation between objective function values of the variants

As these four optimization problems are related, and can each be solved for the same

instance, we can determine relationships between their optimal objective function values.

For example, as Ω(Flex, Prof) is the least restricted variant, for a given instance, we have

that ObjΩ(Flex,Prof) will be the largest optimal objective function value. Conversely, as

Ω(Fix,All) is the most restricted variant, we have that ObjΩ(Fix,All) will be the smallest

optimal objective function value for a given instance. Similarly, one can observe that

ObjΩ(Fix,All) ≤ ObjΩ(Fix,Prof) and ObjΩ(Fix,All) ≤ ObjΩ(Flex,All). While statements can not

be made regarding the relationship between ObjΩ(Fix,Prof) and ObjΩ(Flex,All) for general

instances, we will analyze the relationship between these two quantities in our computational

study.

3.4 Solution approach

It is well known that compact formulations of routing problems, such as the one presented

above, have weaker linear relaxations than extended formulations, wherein each variable

models an entire vehicle route. The stronger bounds that result from using an extended

formulation can greatly speed up the solution of the integer program, but come at the expense
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of a large number of variables. In particular, such extended formulations often involve

variable sets that are either too large to enumerate in a reasonable run-time, or to fit in run-

time memory, or both. However, using column generation, our algorithm begins with a model

that includes a small portion of the variable set and then generates more variables (columns)

when there is evidence they may appear in an optimal solution. We refer interested readers to

[30] for a detailed description of column generation. Therefore, this algorithm can retain the

benefits of using an extended formulation without the challenges presented by the ensuing

variable set.

As a result, we propose a solution framework that is based on branch-and-price [9], a

branch-and-bound-based technique for solving integer programs that relies on generating

variables dynamically through column generation. We employ several techniques to improve

the performance of the algorithm, including limited-memory subset-row cuts and route

enumeration, which we will detail later. We next present the general structure of our

framework.

• Step 1. Choose an unprocessed node from the branch-and-bound tree. If the difference

between the upper bound associated with this node and the current best lower bound

is below the predefined tolerance, fathom the node and return to Step 1. Otherwise,

continue.

• Step 2. Solve the linear relaxation of the restricted master problem (RMP), (see Section

Section 3.4.1).

• Step 3. Use the heuristic pricing procedure (see Section 3.4.3) to search for columns with

positive reduced cost. If such columns are found, add them to RMP and go back to Step

2. Otherwise, continue.

• Step 4. Use the exact pricing procedure (see Sections 3.4.3 and 3.4.3) to search for

columns with positive reduced cost. If new columns are found, add them to the RMP

and go to Step 2. Otherwise, the optimal value of RMP is an upper bound on the optimal

objective function value of the problem. If this upper bound is below the current best

lower bound, fathom the node and return to Step 1. Otherwise, continue.

• Step 5. Generate lm−SRCs cuts (see Section 3.4.2). If any violated cuts are found, add

them to the RMP and go to Step 2. Otherwise, continue.

• Step 6. If the solution of the linear relaxation of the RMP is fractional, perform route

enumeration (see Section 3.4.5) to generate extra columns. Update the lower bound by

solving the RMP as an integer program.
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• Step 7. Solve the linear relaxation of the RMP and branch (see Section 3.4.4) if the

solution is fractional, adding the resulting child nodes to the set of unprocessed branch

nodes. Mark the current node as processed and go back to Step 1.

We note that executing the exact pricing procedure (Step 4) when the heuristic procedure does

not yield any columns with positive reduced cost ensures that the approach will solve the

linear relaxation of the master problem at a node of the branch-and-bound tree. Much of this

framework can be used, unchanged, to solve any of the four variants we consider. However,

in the following sections, we will highlight the steps that need to be adapted when solving a

specific variant.

3.4.1 Set packing formulation

In this section, we describe how we reformulate the integer program presented in Section 3.3

to a set packing problem. To do so, we let Ψ represent the set of feasible routes satisfying

Constraints (3.7)-(3.17). We associate with each route r ∈ Ψ the value vr, which represents the

profits generated by that route minus the costs it incurs:

vr =
∑
i∈r

pi − ct(δr2n+1(tr0)− tr0)− Z (3.23)

Here, tr0 is the optimal departure time from the depot (0) on route r and δr2n+1(tr0) is the

resulting arrival time at the depot. For the variants Ω(Fix,All) and Ω(Fix, Prof), we set

tr0 = 0.

For the two variants with flexible departure time, Ω(Flex,All) and Ω(Flex, Prof), we must

solve for tr0. To do so, we let ui denote the node at position i in route r (ui−1 is then the

predecessor node of ui on that route). We define δrui(t) to be a “ready time” function, as it will

indicate when a vehicle following route r can depart from ui, assuming it departs from the

depot at time t. Because travel times adhere to the FIFO property, this ready time function is

nondecreasing in t, and can be calculated recursively for each node in the route as follows:

δrui(t) =

t if i = 0,

max{eui + sui , δ
r
ui−1

(t) + τui−1,ui(δ
r
ui−1

(t)) + sui} otherwise.
(3.24)
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The duration of the route, given that it departs from node 0 at time t can be calculated as

δr2n+1(t) − t. As a result, the departure time from the depot that leads to the shortest route

duration can be calculated as follows:

tr0 = argmint∈T {δr2n+1(t)− t} (3.25)

We also associate with route r ∈ Ψ the parameter air, i ∈ NP , which denotes whether route

r visits node i. Finally, we let the binary variable wr indicate whether route r is chosen. The

resulting set packing formulation is as follows:

v(MP ) = max
∑
r∈Ψ

vrwr (3.26)

subject to

∑
r∈Ψ

airwr ≤ 1 ∀i ∈ NP (3.27)

∑
r∈Ψ

wr ≤ K (3.28)

wr ∈ {0, 1} ∀r ∈ Ψ (3.29)

Constraints (3.27) ensures that each request is visited at most once. For the Ω(Fix,All) and

Ω(Flex,All) variants, this constraint is changed to an equality constraint. Constraint (3.28)

limits the number of vehicles used to K.

As noted, because there may be a large number of routes (i.e. |Ψ| is large) for many instances,

we dynamically generate routes, r, to add to Ψ with column generation (Desaulniers et al.

[30]). To do so, we repeatedly solve a restricted master problem,RMP (Ψ
′
), based on a subset,

Ψ
′
⊂ Ψ, of feasible routes. The subset Ψ

′
is initialized with a set of routes wherein each

route visits a single pair of requests. At each iteration of the algorithm, the linear relaxation

of RMP (Ψ
′
) is solved and the corresponding dual variables are recorded. We let πi, i ∈ NP ,

denote the nonnegative dual variable associated with constraint (3.27) and π0 the nonnegative
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dual variable associated with constraint (3.28). The algorithm then solves a pricing problem to

determine whether there are variables, wr, r ∈ Ψ/Ψ
′
, that are not yet considered inRMP (Ψ

′
)

and have positive reduced cost. In this context, the reduced cost of a variable r is calculated

as:

vr = vr −
∑

i∈NP∪{0}

airπi = (
∑
i∈r

pi − ct(δr2n+1(tr0)− tr0)− Zr)−
∑

i∈NP∪{0}

airπi (3.30)

We note that whenever we have an upper bound, v̄r on the route with the largest reduced cost,

we can derive an upper bound on the optimal objective function value of the original problem

[69]. Specifically, we let v(RMP )LPR denote the optimal value of the linear relaxation of the

RMP. v(MP )LPR is defined similarly. Given that at most k routes can be chosen, we have:

v(RMP )dualLPR = v(RMP )LPR + k ∗ v̄ ≥ v(MP )LPR (3.31)

This bound, v(RMP )dualLPR, provides a stopping criteria for column generation other than

the absence of columns with positive reduced cost. Speficially, if (v(RMP )dualLPR −

v(RMP )LPR)/v(RMP )LPR is within some tolerance (i.e. 1% in our experiments), we can

terminate the column generation procedure.

3.4.2 Valid inequalities

Extended formulations of a problem can be further strengthened with the addition of valid

inequalities, or, cuts. Jepsen et al. [58] applied the Chvatal-Gomory rounding procedure to

Constraints (3.27) to develop the following family of valid inequalities for VRPTWs.

Specifically, given a base set C ⊆ NP and a multiplier γ, 0 < γ < 1 , we define the following

(C, γ)−Subset Row Cut (SRC) as follows:

∑
r∈Ψ

bγ
∑
i∈C

aircwr ≤ bγ|C|c (3.32)
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While these cuts have been shown [58] to strengthen the linear relaxation, as they are defined

on the route variables they can make the pricing subproblem harder to solve with dynamic

programming. Specifically, each cut adds a dimension to the labels that must be stored.

Recently, Pecin et al. [84] proposed limited-memory SRCs, that, while weaker than the

SRCs, have a reduced impact on the pricing subproblem. As such, while the use of these

limited-memory cuts, in comparison to those of Jepsen et al. [58], may lead to more time

spent generating cuts, less time solving the pricing problem, and an overall reduction in

computation time.

The definition of the limited memory (C,M, γ)−Subset Row Cut (lm − SRC) requires an

additional set M , C ⊂M ⊂ NP . The resulting cut is:

∑
r∈Ψ

α(C,M, γ, r)wr ≤ bγ|C|c (3.33)

where α is a function of C, M , γ, r computed by the Algorithm 2.

Algorithm 2: Computing α(C,M, γ, r) of wr in a lm− SRC

input : A feasible route r
output: A coefficient α

1 α← 0 , state← 0
2 for (each node i in NP ) do
3 if (i /∈M ) then
4 state← 0
5 else
6 if (i ∈ C) then
7 state← state + γ
8 if (state > 1) then
9 α← α + 1

10 state← state + 1

When M = NP , the function α will return bγ
∑
i∈C airc and the lm − SRC will be identical

to a SRC. On the other hand, when M is not equal to NP , the lm−SRC may be a weakening

of its corresponding SRC. This happens because the variable state in the function is set to 0

once the route r leaves M .

The function α(C,M, γ, r) also impacts how the lm − SRCs should be taken into account in

the pricing problem discussed later. Specifically, for each lm− SRC, each label needs to store

its state in the corresponding partial paths. However, the coefficient does not need to be stored

in the label. Instead, whenever a label extension causes an increment of the coefficient of an
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lm−SRCs according to function α, the value of its dual variable is immediately added to the

reduced cost of the generated label. Moreover, the number of possible states of a lm − SRC

depends on its γ. In this chapter, we only consider lm − SRCs defined for subsets C with

cardinality 3. In this case, γ = 1/2 and the state can be only 0 or 1/2. Therefore, it can be

represented by a single bit.

The lm−SRCs have potential advantage over the classical SRCs due to their reduced impact

on the pricing problem when |M | << |NP |. In the following, we introduce the strategy

for separating lm − SRCs such that small memory sets can be obtained. First, a violated

SRC(C, γ) need to be identified. Then, a minimal set M is determined such that lm −

SRC(C,M, γ) has the same violation. For example, take a given fractional solution with paths

that visit C = {1, 2, 3} at least twice. In this example they are: r1 = (0− 1− 4− 2− 5− ...− 0)

with λ1 = 0.5, r2 = (0−3−6−2−5− ...−0) with λ2 = 0.5 and r3 = (0−3−7−1−4− ...−0)

with λ3 = 0.5. The SRC(C, 1/2) λ1 + λ2 + λ3 ≤ 1 has a violation of 0.5. A minimal set M

that yields a lm− SRC(C,M, 1/2) with the same violation can be M = C ∪ {4} ∪ {6} ∪ {7}.

Moreover, like Cherkesly et al. [18] and Pecin et al. [84], we also limit the usage of lm−SRCs

to prevent running out of memory when solving the pricing problem.

3.4.3 The pricing problem

In this section, we present the algorithm used to solve the pricing problem, which aims to find

a route, r that minimizes vr of function (3.30) while taking into consideration the constraints

that model feasibility. The pricing problem can be seen as a variant of the elementary shortest

path problem, which is known to be NP-hard. We solve this problem with the tailored labeling

algorithm proposed by Sun et al. [109].

In this algorithm, a label L is used to record the information associated with a path that starts

at the depot and ends at node v(L). The label includes information regarding the requests

already visited, the cumulative reduced cost, and the ready time function. Starting from

the initial label L0 associated with the depot, the algorithm propagates labels toward the

destination depot with a feasible extension process. Dominance tests are also employed to

eliminate unpromising labels.

We next briefly present the tailored labeling algorithm introduced by Sun et al. [109], which is

used to solve the pricing problem in our branch-and-price framework. Then, we explain how

to incorporate the dual information associated with generated lm − SRCs into this tailored
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labeling algorithm. We finish with a discussion of a pricing heuristic we use to accelerate the

branch-cut-and-price algorithm.

Pricing without lm-SRCs
In this section, we introduce the forward tailored labeling algorithm based on Sun et al. [109].

The interested reader is referred to Sun et al. [109] for the backward version and related

bidirectional search techniques. For each forward label Lf , we use the same notation as

introduced in Sun et al. [109], which is explained as the following:

p(Lf ) * The partial path of label Lf .

v(Lf ) * The last node of the partial path p(Lf ).

L−1(Lf ) * The parent label from which Lf originates by extending it with v(Lf ).

O(Lf ) * The set of onboard requests in the partial path p(Lf )

U(Lf ) * The set of unreachable requests in the partial path p(Lf ).

q(Lf ) * The load of the vehicle after visiting the last node v(Lf ).

δLf (t) * The ready time function at v(Lf )

r(Lf ) * The overall profits collected by serving the requests visited on the partial path
p(Lf ).

π(Lf ) * The sum of the dual values associated with the pickup nodes visited on the partial
path p(Lf ) and dual value π0 associated with constraint (3.28).

Only the items marked with a * are stored in the label. A request is said to be on-board if

it has been started, but not completed, i.e., the request has been picked up but not delivered

to its delivery mode. A request Ri is said to be unreachable if i has already been visited, or

if traveling either directly or indirectly from v(Lf ) to i violates the time window at pickup

node i. Therefore, O(Lf ) ⊆ U(Lf ). The ready time function δLf (t) is piece-wise linear and

represents the ready time at v(Lf ) if the vehicle departed at the origin depot at t and reached

v(Lf ) through partial path p(Lf ). For Ω(Flex,All) and Ω(Flex, Prof), we need to store this

function for each generated label, while for Ω(Fix,All) and Ω(Fix, Prof) we only need to

store δLf (0), which is the earliest ready time at v(Lf ) as the departure time at the origin depot

is imposed to be 0. The partial path can be deduced from iteratively checking the last node

visited in the parent label of which the label was an extension.

Given a labelL
′
f , its extension along an arc (v(L

′
f ), j) is feasible only if it satisfies the following

conditions:

δ
L
′
f
(0) + τ

v(L
′
f

),j
(δ
L
′
f
(0)) + sj ≤ min{tm, lj + sj} ∧ j ∈ N \ {0} (3.34)

q(Lf ) + qj ≤ Q ∧ j ∈ N \ {0} (3.35)
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Condition (3.34) stipulates that only if node j can be reached within its time window and the

extension to node j takes place before tm is exceeded, the extension to node j is allowed to

be performed. Condition (3.35) ensures that the label can only be extended to node j if the

remaining capacity is enough to deal with the load of node j. Besides, L
′
f and j need satisfy

one of the following three conditions:

j /∈ U(L
′
f ) ∧ j ∈ NP (3.36)

j − n ∈ O(L
′
f ) ∧ j ∈ ND (3.37)

O(L
′
f ) = ∅ ∧ j = 2n+ 1 (3.38)

Condition (3.36) states that if node j is a pickup node, it should have never been visited before

on the route. Condition (3.37) shows that if j is a delivery node then its corresponding pickup

node j − n should already been visited. Condition (3.38) states that if j is the end depot, then

all visited requests should have been completed. In the presence of those conditions, we only

keep elementary paths that satisfy precedence constraint (3.10). If the extension along the arc

(L
′
f , j) is feasible, then a new label Lf is created. The information in label Lf is updated as

follows:

L−1(Lf ) = L
′
f (3.39)

v(Lf ) = j (3.40)

δLf (t) = max{ej + sj , δL′
f
(t) + τ

L
′
f
,j

(δ
L
′
f
(t)) + sj} (3.41)

q(Lf ) = q(L
′
f ) + qj (3.42)

r(Lf ) =

r(L
′
f ) + rj if j ∈ NP ,

r(L
′
f ) otherwise.

(3.43)

π(Lf ) =

π(L
′
f ) + πj if j ∈ NP ,

π(L
′
f ) otherwise.

(3.44)

O(Lf ) =

O(L
′
f ) ∪ {j} if j ∈ NP ,

O(L
′
f ) \ {j − n} if j ∈ ND.

(3.45)

U(Lf ) =

U(L
′
f ) ∪ {j} if j ∈ NP ,

U(L
′
f ) otherwise.

(3.46)
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Equations (3.39)-(3.43) set the parent label, the last visited node, the ready time function, the

load, and the collected profits of the new label, respectively. Equation (3.45) updates the set of

onboard requests O(Lf ) and Equation (3.46) updates the set of unreachable requests U(Lf ).

Similar to the idea of Feillet et al. [38] and Sun et al. [109], the unreachable request set U(Lf )

is further enriched by adding requests of which the pickup node is unreachable from v(Lf ).

Before the dominance criterion is introduced some definitions need to be provided. The first

one is the definition of interval I as explained in Sun et al. [109].

I = (−∞,max(dom(L1
f ))−max(dom(L2

f ))) (3.47)

Based on I , we define a real number φ(L1
f , L

2
f ),

φ(L1
f , L

2
f ) = max{x ∈ I : δL1

f
(max{0, t+ x}) ≤ δL2

f
(t),∀t ∈ dom(L2

f )} (3.48)

This function describes for the partial path represented by label L1
f , how much the departure

time can be postponed (when φ(L1
f , L

2
f ) is positive) or arranged in advance (if φ(L1

f , L
2
f ) is

negative), compared to the departure time of partial path p(L2
f ), such that v(L1

f ) is reached at

the same time or earlier via partial path p(L2
f ) than via partial path p(L2

f ).

A label L1
f dominates a label L2

f if every feasible extension of p(L2
f ) yields a complete route

with reduced cost smaller than the feasible route generated by using the same extension into

p(L1
f ). The following six conditions in Proposition 3, together, are sufficient to ensure such

dominance:

Proposition 3. Label L2
f is dominated by label L1

f if

1. v(L1
f ) = v(L2

f )

2. U(L1
f ) ⊆ U(L2

f )

3. O(L1
f ) = O(L2

f )

4. δL1
f
(0) ≤ δL2

f
(0)

5. r(L1
f )− π(L1

f ) ≥ r(L2
f )− π(L2

f )− φ(L1
f , L

2
f )

6. q(L1
f ) ≤ q(L2

f )

Proof of Proposition 3. To prove this proposition, we consider two labels L1
f and L2

f , each of

which satisfies the six conditions of Proposition 3. We will prove two claims regarding these
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labels, which will in turn prove this proposition:

1. Any feasible extension L of p(L2
f ) that yields a complete route, p(L2

f

⊕
L), is also a

feasible extension of p(L1
f ), and yields a complete route p(L1

f

⊕
L), and,

2. For any feasible extension L that led to p(L1
f

⊕
L) and p(L2

f

⊕
L), the reduced cost

v(L1
f

⊕
L) is not smaller than the reduced cost v(L2

f

⊕
L).

Regarding claim (1), we must show that p(L1
f

⊕
L) does not carry more load than the capacity

of the vehicle, is elementary, and does not violate any time windows. Regarding vehicle

capacity, we note that due to condition 6, the load associated with path p(L1
f

⊕
L) will not

exceed vehicle capacity as it did not on path p(L2
f

⊕
L). We can conclude that p(L1

f

⊕
L)

is elementary because conditions 2 and 3 ensure that all nodes visited in p(L1
f ) are either

nodes visited in p(L2
f ) or nodes which could not be reached by any extension of label L2

f .

Thus, as p(L2
f

⊕
L) is elementary, so is p(L1

f

⊕
L). Turning to time windows, we observe

that condition 4, coupled with the presumption that travel times adhere to the FIFO property

implies that p(L1
f

⊕
L) will not violate any time windows. For example by departing at 0, the

vehicle arrives at v(L1
f ) at time δL1

f
(0) which is by condition 4 smaller than or equal to δL2

f
(0).

Therefore, a departure at 0 over path p(L1
f ) does not violate any time windows.

Regarding claim (2), consider an extension, L, of p(L2
f ) that yields a complete route (i.e.

v(L2
f

⊕
L) = 2n + 1. Letting L1∗

f = L1
f

⊕
L and L2∗

f = L2
f

⊕
L, we will show that

v(L1∗
f ) ≥ v(L2∗

f ). To do so, we let t20 = argmint∈dom(L2∗
f

){δL2∗
f

(t) − t} represent the optimal

departure time from the depot for path p(L2∗
f ) and r(L) the sum of the profits associated with

the nodes visited along the path p(L) associated with the extension, L. Given this, we have

that the reduced cost of the path is:

v(L2∗
f ) = r(L2∗

f )− (δL2∗
f

(t20)− t20)− π(L2∗
f )− Z

= r(L2
f ) + r(L)− (δL2∗

f
(t20)− t20)− (π(L2

f ) + π(L))− Z (3.49)

Next, consider the path p(L1∗
f ), which departs from the depot at time t10 = max{0, t20 +

φ(L1
f , L

2
f )}. We note that the time t10 is a feasible departure time for label L1∗

f because a

departure time of 0 is always possible (as the extension of L1
f by L is feasible) and the

definition of φ(L1
f , L

2
f ) in equation (3.48) implies that t20 +φ(L1

f , L
2
f ) belongs to dom(L1

f ) when
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it is nonnegative. This departure time t10 ensures that we reach node v(L1
f ) at time δL2

f
(t20) or

earlier, meaning we have the following inequality:

δL1
f
(t10) ≤ δL2

f
(t20). (3.50)

Moreover, this value of t10 enables us to show that v(L2∗
f ) is a lower bound on v(L1∗

f ):

v(L1∗
f ) ≥ r(L1∗

f )− (δL1∗
f

(t10)− t10)− π(L1∗
f )− Z (3.51)

= r(L1
f ) + r(L)− (δL1∗

f
(t10)−max{0, t20 + φ(L1

f , L
2
f )})− (π(L1

f ) + π(L))− Z (3.52)

≥ (r(L1
f )− π(L1

f )) + (r(L)− π(L)) + (δL2∗
f

(t20)−max{0, t20 + φ(L1
f , L

2
f )})− Z

(3.53)

≥ (r(L1
f )− π(L1

f )) + (r(L)− π(L))− (δL2∗
f

(t20)− t20 − φ(L1
f , L

2
f ))− Z (3.54)

≥ (r(L2
f )− π(L2

f )− φ(L1
f , L

2
f )) + (r(L)− π(L))− (δL2∗

f
(t20)− t20 − φ(L1

f , L
2
f ))− Z

(3.55)

= r(L2
f ) + r(L)− (δL2∗

f
(t20)− t20)− (π(L2

f ) + π(L))− Z (3.56)

= r(L2∗
f )− (δL2∗

f
(t20)− t20)− π(L2∗

f )− Z = v(L2∗
f ) (3.57)

We note that inequality (3.53) is derived in part from inequality (3.50). Inequality (3.54) is

derived in part from the fact that ∀x ∈ R : −max{0, x} ≤ −x. Finally, inequality (3.55) relies

upon condition 5 of Proposition 3. �

Pricing algorithm with lm-SRCs
When pricing in the presence of lm-SRCs, each label must have an additional dimension

for each lm − SRC with non-zero dual value in the current restricted master problem

solution (hereafter called an active lm − SRC). To discuss this in more detail, as well as

the corresponding dominance criteria, we define the following notation:

E(Lf ) * The vector of states associated with the lm− SRCs .

σh * The dual variable associated with lm− SRC h.

For an active lm−SRC h, E(Lf )[h] will first be assigned the value E(L−1(Lf ))[h]. However,

if v(Lf ) /∈ M(h), it is set to zero. Then, if v(Lf ) /∈ C, it is increased by γ. Finally, E(Lf )[h] is

decremented by 1 if it becomes larger than or equal to 1.
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In addition, the calculation of π(Lf ) also sums over the duals associated with active lm −

SRCs. We denote this quantity as
∑
h∈DECLf

σh, where DECLf is subset of the active

lm− SRCs whose states were decremented by one when calculating Lf .

Given these definitions, the following six conditions, together, are sufficient to guarantee

dominance:

Proposition 4. Label L2
f is dominated by label L1

f if

1. v(L1
f ) = v(L2

f )

2. U(L1
f ) ⊆ U(L2

f )

3. O(L1
f ) = O(L2

f )

4. δL1
f
(0) ≤ δL2

f
(0)

5. r(L1
f )− π(L1

f ) ≥ r(L2
f )− π(L2

f )− φ(L1
f , L

2
f )−

∑
h∈H:E(L1

f
)[h]>E(L2

f
)[h] σh

6. q(L1
f ) ≤ q(L2

f )

The conditions of Proposition 4 are analogous to those of Proposition 3. Specifically, only

condition 5 differs, in that the expression on the right-hand-side reflects the duals associated

with the currently active lm−SRCs. As such, the proof of Proposition 4 is nearly identical to

that of Proposition 3.

Proof of Proposition 4. Similar to Proposition 3, and by using conditions 2, 3, 4, and 6, we can

prove that any extension L of p(L2
f ) to 2n+ 1 will be a feasible extension of p(L1

f ) to 2n+ 1 as

it results in an elementary path with does not violate time windows and capacity constraints.

As to point (2), compare to Proposition 3, we also need to consider
∑
h∈H:E(L1

f
)[h]>E(L2

f
)[h] σh

in condition 5, that is an upper bound on completion of route p(L1
f ) can gain over the

completion of route p(L2
f ), by avoiding the penalizations of revisiting the limited-memory

subset-row cuts in which E(L1
f )[h] > E(L2

f )[h].�

We note that the traditional SRCs have a high potential for disrupting the label dominance

by making Condition 5 much less likely to be satisfied. The limited-memory mechanism

mitigates that difficulty. As the state of given cut h is reset to 0 whenever a route visit a

pickup node which is not included in M(h), its dual variable σh is involved in fewer label

comparisons.
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Heuristic pricing
To accelerate the performance of the branch-and-price algorithm, a heuristic is used to quickly

search for routes with positive reduced cost. The heuristic speeds up the search by using

dominance criteria that are “too strong” and may lead to the pruning of optimal solutions to

the pricing problem. Specifically, the heuristic replaces O(L1
f ) = O(L2

f ) with O(L1
f ) ⊆ O(L2

f ),

which is less restrictive and may lead to the pruning of more partial paths. However, these

criteria are invalid for the problems we study as they assume the triangle inequality holds,

something that is not necessarily true in the problems we study. In summary, the dominance

conditions considered by the heuristic are as follows:

Heuristic pricing rule. Label L2
f is dominated by label L1

f if

1. v(L1
f ) = v(L2

f )

2. U(L1
f ) ⊆ U(L2

f )

3. O(L1
f ) ⊆ O(L2

f )

4. r(L1
f )− π(L1

f ) ≥ r(L2
f )− π(L2

f )

5. q(L1
f ) ≤ q(L2

f )

3.4.4 Branching rules

While column generation is a scheme for solving linear programs, by embedding it within a

branch-and-bound scheme it can be used to solve an integer program. Such a scheme requires

defining how to sub-divide the feasible region associated with a node in a branch-and-bound

tree when a solution to the linear relaxation of the RMP associated with that node is not

integral (and hence not a solution to MP). Such a sub-division yields “child nodes” of the

current node. We next present, in the order in which they are applied, the branching rules

used by the algorithm for creating these child nodes. We note that all rules create two such

child nodes.

• The first branching rule concerns the value of m =
∑
r∈Ψ wr , the number of vehicles

used in the solution. If this value is fractional, we impose
∑
r∈Ψ wr ≤ bmc and∑

r∈Ψ wr ≥ dme on the other branch. In the pricing problem, a dual variable associated

with this new constraint in the master is attached to the depot.

• The second branching rule concerns whether a request is served. If
∑
r∈Ψ airwr

is fractional for some i ∈ NP , we impose on one branch
∑
r∈Ψ airwr = 0 and∑

r∈Ψ airwr = 1 on the other branch. For branch
∑
r∈Ψ airwr = 0, the pickup node

i will be set as unreachable in the pricing problem. For branch
∑
r∈Ψ airwr = 1, a dual
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variable associated with this new constraint in the master will be attached to the pickup

node i.

• The third branching rule considers an expression of the solution to the linear relaxation

of RMP in terms of arc variables xij . Specifically, given the solution w∗ to the linear

relaxation of RMP, it calculates x∗ij =
∑
r∈Ψ

′
:(i,j)∈r w

∗
r . It then looks for pairs (i, j),

i, j ∈ N such that x∗ij + x∗ji is close to 0.5. The algorithm then imposes two branches:

(1) x∗ij +x∗ji ≤ bx∗ij +x∗jic, and, (2) x∗ij +x∗ji ≥ dx∗ij +x∗jie. For the node associated with

x∗ij + x∗ji ≤ bx∗ij + x∗jic, the arc (i, j) will be removed from the graph constructed when

solving the pricing problem. For the other branch, all arcs that emanate from i other

than (i, j) are removed from the graph constructed when solving the pricing problem.

In addition,
∑
r∈Ψ airwr = 1 is imposed on this branch. Thus, in the pricing problem,

a dual variable will be attached to the pickup node i.

The proposed branching scheme is the same for both the Ω(Fix, Prof) and Ω(Flex, Prof),

while, for Ω(Fix,All) and Ω(Flex,All), only the first rule and the last rule are applicable,

since all the requests are required to be visited exactly once.

We note that branching constraints that restrict the number of vehicles used or whether a

request is served can yield an infeasible RMP . To ensure the RMP remains feasible, we add

to the formulation a variable κwith a large (in absolute value) and negative objective function

coefficient. This variable is then included in the constraints representing a request that must

be served and the number of vehicles used. The resulting constraints are
∑
r∈Ψ airwr + κ =

1,
∑
r∈Ψ wr − κ ≤ bmc, and

∑
r∈Ψ wr + κ ≥ dme.

Finally, we note that the second and third rules may yield multiple candidates for branching.

Namely, there may be multiple requests that are partially served (the second rule) and/or

there may be multiple arcs that are fractionally chosen (the third rule). Given a rule that

yields multiple candidates, we choose one by employing strong branching [90].

3.4.5 Route enumeration

For the algorithm to terminate with a provably (near-) optimal solution to the MP, it must

find such a solution and produce a dual bound that guarantees its quality. The cuts presented

above are used to reduce the time needed to produce such a dual bound. To reduce the time

required to find a high-quality primal solution, we employ a route enumeration technique [7].

This technique generates routes, outside of the context of solving the pricing problem, that can
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then be added to the RMP. With these extra routes, the algorithm solves the RMP (an integer

program) to produce a potentially improving primal solution to the MP.

We employ the restricted dynamic programming heuristic proposed above to generate routes.

However, as we do not want the algorithm spending a lot of time generating routes, this

heuristic limits the number of partial paths that are extended. Specifically, at each stage of

its execution, the heuristic only considers the best B/2 partial paths that expand to a pickup

node and the bestB/2 partial paths that expand to a delivery node for further expansion (B is

an algorithm parameter that we set to 8000 in our experiments). To select these partial paths,

the heuristic uses a mechanism similar to that presented in Sun et al. [109]. First, we order the

expanded partial paths by the earliest arrival time. Then, if two expanded partial paths have

the same earliest arrival time, we order them by their objective function value. The heuristic

pricing rule is also applied to prune unpromising labels. After the heuristic has finished, it

returns a set of potential routes, along with the reduced cost associated with each route.

However, we do not add all generated routes to the RMP. Instead, the algorithm filters the

set of generated routes based on a prediction of whether a route will appear in an improving

solution. To do so, we let zbnub denote the upper bound associated with the node in the branch-

and-bound tree that is currently being processed. Similarly, we let zcbestlb denote the objective

function value of the best primal solution to the MP found. With these values, we calculate

the relative gap % = (zbnub − zcbestlb )/zbnub × 100. We observe that a route can only appear in an

improving solution if its reduced cost is smaller than the gap %.

3.5 Computational results

In this section, we present the results of a computational study on the effectiveness of the

proposed algorithmic framework at solving the problems we are interested in. All algorithms

are coded in Java, using Eclipse SDK version 4.2.0, and our experiments are performed on

a single thread of a server with four CPU’s (2.4 GHz/6 cores) and 64GB RAM. The LP

relaxations are solved with Gurobi 5.6.3. A time limit of 10 hours and a maximum memory

allowance of 16GB RAM has been imposed on each run.

For our numerical study, we generated a set of instances by adopting the instances presented

in Sun et al. [109], which in turn were derived from those proposed by Røpke and Cordeau

[91] for the PDPTW. Specifically, our instances are based on the same node coordinates, time

windows, vehicle capacity, and load quantities as those in Røpke and Cordeau [91]. The
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instances are divided into four groups, with each group containing nine instances. Table 3.1

presents the vehicle capacity, Q, and time window width, W, for each group. The profits were

adapted in order to balance the fixed cost associated with using a vehicle (which was not

included in Sun et al. [109]) and the profit associated with serving a request. Specifically, we

set the fixed cost equal to 100, while randomly assigning to each request a profit in the interval

[50, 150].

Table 3.1: Characteristics of the instances used in computational study.

Group Q W

AA 15 60

BB 20 60

CC 15 120

DD 20 120

Regarding the time-dependent travel times, we use the same values as in Sun et al. [109].

There, road congestion is modeled by a so-called speed model which consists of different

speed profiles. It is used to determine the travel time between two nodes on a specific

departure time. As denoted in Table 3.2, five types of speed profiles are considered: slow

speed (SS), normal speed with morning peak (NSMP), normal speed with evening peak

(NSEP), fast speed with two peaks (FSTP) and high speed (HS). We refer the reader to Sun et al.

[109] for detailed information regarding the explanation of the different speed profiles and

how they are assigned to the arcs. Furthermore, without loss of generality, it is assumed that

the breakpoints are the same for all speed profiles as congestion tends to happen around the

same time regardless of the speed profiles’ type. Each speed profile has four non-overlapping

time periods with constant speed, reflecting two congested periods and two periods with

normal traffic conditions. As a result, in terms of our model, the number of time zones m

equals 7 for the instances we solve.

Table 3.2: Speed Profiles

Congestion Morning Normal Evening Normal

description peak peak

Time periods 7 am-9 am 9 am-5 pm 5 pm-7 pm 7 pm-9 pm

1.SS 0.5 0.81 0.5 0.81

2.NSMP 0.67 1.33 0.88 1.33

3.NSEP 0.88 1.33 0.67 1.33

4.FSTP 0.85 1.5 0.85 1.5

5.HS 1.0 2.0 1.0 2.0
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Our computational experiments focus on understanding the following issues. First, we

compare the performance of a commercial MIP solver (Gurobi) when solving the compact

formulation of each variant with that of the pure branch and price framework presented in

Section 3.4 solving the corresponding extended formulation. Second, we perform an in-depth

analysis of the performance of the exact framework in order to determine the appropriate

combination of speed-up techniques (i.e. lm − SRCs and Route Enumeration) for each

variant. Third, as each variant represents a different degree of operational flexibility, we

analyze solutions to the different variants to quantify the value of that flexibility. We note

that to test the correctness of our algorithm and implementation, we executed it on instances

solved by the method presented in Røpke and Cordeau [91]. We observed that the framework

we propose was able to generate the same results, however, as expected, in larger computation

times. These larger computation times can be attributed to the fact that algorithm presented in

Røpke and Cordeau [91] includes techniques that presume the triangle inequality is valid. Our

algorithm is designed for problems with time-dependent travel times, wherein the triangle

inequality does not necessarily hold, and thus does not employ those techniques. Detailed,

instance-level results can be found in the Appendix in Table 9.

We note that while the following sections contain summary statistics derived from the

computational results, detailed results can be found in 6.2.

3.5.1 Performance comparison of MIP solver and exact framework

We first, for each variant, compare the performance of a MIP solver, Gurobi 5.6.3, when solving

the compact formulation with the proposed exact framework solving the corresponding

extended formulation. We note that Gurobi was executed for ten hours and with all

parameters set to their default values. In this analysis, we only consider four instances from

each group (AA, BB, CC, and DD); those with 10,15, 20 or 25 requests, as Gurobi already could

not solve instances with 20 or 25 requests.

We first present in Table 3.3 the percentage of instances solved by the MIP solver (Gurobi) and

the exact framework (Exact), for each variant by the number of requests. We see that while

the MIP solver is unable to solve many of the instances, including none with 20 or 25 requests,

the proposed exact framework is able to solve almost all instances within 10 hours.

Continuing the comparison, in Table 3.4 we present averages of the time to termination for

both Gurobi and the exact method. We see that in addition to solving all of the instances, the
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Table 3.3: % instances solved by MIP solver and BP

Ω(Fix,All) Ω(Fix, Prof) Ω(Flex,All) Ω(Flex, Prof)

# Requests Gurobi Exact Gurobi Exact Gurobi Exact Gurobi Exact

10 100.00% 100.00% 100.00% 100.00% 75.00% 100.00% 50.00% 100.00%

15 50.00% 100.00% 25.00% 100.00% 0.00% 100.00% 0.00% 100.00%

20 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%

25 0.00% 50.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%

Average 37.50% 87.50% 31.25% 100.00% 18.75% 100.00% 12.50% 100.00%

exact framework was able to do so in relatively little time. Gurobi required on average the

largest computation time for the most flexible variant, Ω(Flex, Prof) (i.e. the variant with

the largest solution space), while our framework required on average the largest computation

time for the least flexible variant, Ω(Fix,All) (i.e. the variant with the smallest solution space).

Therefore, we did a more in depth analysis of the performance of our framework in the next

section.

Table 3.4: Solve time (seconds) for MIP solver and the exact framework

Ω(Fix,All) Ω(Fix, Prof) Ω(Flex,All) Ω(Flex, Prof)

# Requests Gurobi Exact Gurobi Exact Gurobi Exact Gurobi Exact

10 1,704.1 0.6 643.6 0.4 16,961.3 0.9 18,245.2 1.0

15 20,890.3 4.4 27,595.1 1.9 36,000.0 7.0 36,000.0 7.1

20 36,000.0 210.3 36,000.0 7.4 36,000.0 371.7 36,000.0 21.2

25 36,000.0 21,237.2 36,000.0 27.4 36,000.0 1,584.9 36,000.0 126.2

Average 23,648.6 5363.1 25,059.7 9.3 31,240.3 491.1 31,561.3 38.9

3.5.2 Analyzing the performance of the exact framework

Having established that the exact framework is more effective at solving instances of each

variant, we next study its performance in greater detail. For each variant, we assess

whether Limited-memory Subset-row cut and Route enumeration techniques improve the

performance of the exact framework. To do so, we report in Table 3.5 how often the exact

framework, when augmented with one or both of these techniques, performs better than when

it does not use either. We note that in these results, we only consider instances that have 30 or

fewer requests. We also do not consider instances that can be solved at the root node before

any of the techniques would be employed.

How we compare the performance of two methods (the exact framework with techniques

and without) on an instance depends on whether either method could solve the instance

to optimality in the given time limit. If either could solve the instance, then we record the
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Table 3.5: Performance of exact framework with and without enhancements

Ω(Fix,All) Ω(Fix, Prof)

Options #Better #Equal #Worse Overall #Better #Equal #Worse Overall

BP+1 1 7 5 -4 0 1 4 -4
BP+2 4 5 4 0 0 0 5 -5

BP+1+2 5 5 3 2 0 0 5 -5

Ω(Flex,All) Ω(Flex, Prof)

Options #Better #Equal #Worse Overall #Better #Equal #Worse Overall

BP+1 2 3 8 -6 1 4 6 -5
BP+2 6 3 4 2 2 4 5 -3

BP+1+2 9 3 1 8 4 3 4 0

1: Route Enumeration.
2: Limited-memory Subset-row Cuts.

one that could do so in less time as performing “better” on that instance, and the one that

took more time as performing “worse.” Note that if one method solves and the other does

not, then the one that does is recorded as performing “better” and the one that does not is

recorded as performing “worse.” If neither could solve the instance, then we compare the

methods in terms of the quality of the objective function values of the feasible solutions they

produce. For either metric, there are also instances wherein the two methods perform equally

well. We summarize these relative performance measures in the column “Overall”, which

we calculate as “# Better” - “# Worse.” We see that for both Ω(−, All) variants, using both

techniques (BP +1+2) leads to the best performance. However, the original branch and price

algorithm (BP ) performs much better than BP + 1 + 2 on Ω(Fix, Prof) and comparably on

Ω(Flex, Prof). Therefore, in the remainder of this section, we will use the Branch-Cut-and-

Price framework with route enumeration (BP + 1 + 2) for the Ω(−, All) variants and our

regular Branch-and-Price framework (BP ) for the Ω(−, P rof) variants.

Next, we study the performance of the selected exact frameworks on larger instances, with up

to 45 requests. To that effect, we present in Table 3.6 three statistics measuring the performance

of the algorithm when solving instances of each variant and by number of requests: (1) The

percentage of instances solved (% Solved), (2) The average time to termination, in seconds,

(Time), and, (3) The optimality gap reported at termination (Gap). Detailed, instance-level

results can be found in the Appendix in Tables 4-7.

We see that for both Ω(−, P rof) variants, all instances up to 30 requests can be solved to

optimality, while the same is not true for the Ω(−, All) instances (one instance (DD30) for

Ω(Fix,All) and two instances (AA30 and DD30) for Ω(Flex,All)). We also note that 30

requests is the point at which the exact framework begins to struggle to solve instances,
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Table 3.6: Performance of exact framework on larger instances
Ω(Fix,All) Ω(Fix, Prof) Ω(Flex, All) Ω(Flex, Prof)

# Requests % Solved Time Gap % Solved Time Gap % Solved Time Gap % Solved Time Gap

10 100% 0.7 0.0% 100% 0.4 0.4% 100% 1.0 0.0% 100% 1.0 0.0%

15 100% 2.8 0.0% 100% 1.9 0.0% 100% 5.9 0.0% 100% 7.1 0.0%

20 100% 1,015.3 0.0% 100% 7.4 0.0% 100% 317.4 0.0% 100% 21.2 0.0%

25 75% 11,809.4 1.9% 100% 27.4 0.0% 100% 2,138.0 0.0% 100% 126.2 0.0%

30 50% 18,276.2 8.4% 100% 475.0 0.0% 50% 24,340.3 4.7% 100% 4,405.3 0.1%

35 50% 18,584.4 20.4% 50% 18,104.0 1.1% 25% 27,006.9 3.1% 75% 19,506.2 0.1%

40 50% 18,417.9 12.5% 50% 18,191.0 1.0% 25% 27,996.8 0.1% 50% 18,239.1 0.6%

45 25% 27,876.3 14.5% 50% 18,084.6 5.0% 25% 27,898.3 1.9% 50% 18,357.0 0.8%

Average 68.8% 11,997.88 7.2% 81.3% 6,861.5 0.9% 65.6% 13,713.1 1.2% 84.4% 7,582.9 0.2%

with a dramatic increase in the solution time and optimality gap reported at termination.

We conclude from this table that the exact framework is more effectiving at solving the

Ω(−, P rof) variants, as it tends to solve more instances, take less time, and report a smaller

optimality gap at termination.

To better understand when the exact framework is able to solve an instance, we present in

Table 3.7 statistics related to the impact of valid inequalities and branching, averaged over

the instances that are and are not solved. Specifically, we report the number of lm − SRCs

generated (# Cuts), the number of branches created (# Branches), and the improvement in

the bound between when the root node linear programming relaxation is solved (but before

cuts are added) and when the algorithm terminates (Bound gap). Specifically, for this last

statistic, we let zLPR represent the optimal value of the linear programming relaxation and

zFinal represent the the final bound produced. With these statistics, we calculate the Bound

gap as (zFinal − zLPR)/zFinal.

Table 3.7: Impact of cuts and branching
Ω(Fix,All) Ω(Fix, Prof) Ω(Flex, All) Ω(Flex, Prof)

Instances # Cuts # Branches Bound gap # Branches Bound gap # Cuts # Branches Bound gap # Branches Bound gap

Unsolved 0.5 131.75 -3.49% 283.00 -2.70% 10.45 3.55 -0.71% 27.00 -1.27%

Solved 35.68 111.41 -2.87% 4.81 -0.34% 9.05 7.67 -0.90% 161.30 -1.29%

Average 24.69 116.83 -3.03% 49.67 -0.66% 9.53 6.25 -0.76% 140.31 -1.29%

From these results, we conclude that the Ω(Fix,−) instances are hard to solve when few

lm − SRCs are generated, as doing so leads to a large number of branches, with branching

having a limited effect on the dual bound. On the other hand, we observe that for the

Ω(Flex,−) instances, branching is more effective, as fewer branches lead to a bigger decrease

in the dual bound.
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3.5.3 Value of flexibility

Each variant studied in this chapter considers a different degree of flexibility in operations,

wherein the Ω(Flex, Prof) variant is the most flexible and the Ω(Fix,All) is the least. As

noted in Section 3.3, one can also derive relationships between objective function values

of optimal solutions. Namely, that one must have ObjΩ(Fix,All) ≤ ObjΩ(Fix,Prof) ≤

ObjΩ(Flex,Prof), and, ObjΩ(Fix,All) ≤ ObjΩ(Flex,All) ≤ ObjΩ(Flex,Prof). We next quantify

the relative differences in these objective function values. Specifically, for instances wherein

Ω(Fix,All) could be solved to optimality, we calculate the percentage improvement in

objective function value for a given variant with respect to Ω(Fix,All) with the expression

(Objother − ObjΩ(Fix,All))/(ObjΩ(Fix,All)). Then, in Figure 3.3, we illustrate the averages of

these differences for each variant and by number of requests.

Fix, Profit Flex, All Flex, Profit

10 41.96% 114.88% 196.59%

15 19.50% 26.96% 39.60%

20 41.07% 39.36% 50.77%

25 24.03% 20.73% 27.15%

30 13.62% 14.88% 18.90%

35 5.27% 6.83% 9.86%

40 6.50% 4.60% 9.75%

45 4.96% 2.69% 5.59%
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Figure 3.3: Value of flexibility

We see in Figure 3.3 that the flexibility afforded by the Ω(Flex, Prof) variant leads to a

significant increase in profits. This suggests that there is significant value for a carrier in

moving away from publishing a fixed schedule to which they must adhere. We also see that

no relationship can be derived between Ω(Fix, Prof) and Ω(Flex,All), as sometimes one

yields a higher objective function value and sometimes the other. We also note that there

seems to be a correlation between the number of requests and these differences. The larger

the number of requests, the smaller the gains associated with adding flexibility.
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3.6 Conclusions and future research opportunities

In this chapter, we introduced the time-dependent pickup and delivery problem with time

windows, as well as three variants of the problem that model different levels of operational

flexibility. We presented an exact branch-and-price-based algorithmic framework that can

solve each of these variants. This framework incorporates a tailored labeling algorithm for

solving the pricing problem, as well as speed-up techniques from the literature. The results

of an extensive computational study indicate that the framework can solve to optimality

instances with up to 45 pickup and delivery requests. We also assessed the impact of the

speed-up techniques and the relative computational complexity of the four variants. Adding

cuts to the framework only works out for the situation where all customers need to be served.

For the more flexible variants, where it is allowed to skip some customers, the pure branch-

and-price framework performs best. Surprisingly, these variants in which it is allowed to skip

customers can be solved much faster than their respective counter parts in which all customers

need to be served.

Regarding future research, we see multiple opportunities for adapting the framework we

propose to solve related problems. For example, the framework could be adapted to solve

problems wherein vehicles are heterogeneous. Similarly, it could be adapted to solve problems

wherein not all vehicles are based at the same depot. We believe that both adaptations can

be performed by changing the way the framework prices out new columns. Finally, we are

exploring adapting the framework to a variant wherein travel times are both time dependent

and stochastic. However, such an adaptation requires more algorithmic development.
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Adaptive large neighborhood search for the

time-dependent profitable pickup and delivery problem

with time windows

“The highest activity a human being

can attain is learning for

understanding, because to

understand is to be free”

Baruch Spinoza

4.1 Introduction

The advances in global digital technologies have accelerated the growth of the e-commerce

market share in recent years. According to an Internet Retailer’s analysis (Young [130]), e-

commerce made up 14.3% of total retail sales in 2018 in the U.S. For customers, e-commerce

provides an opportunity to purchase a wide range of products and services from local and/or

foreign businesses. For logistics service providers e-commerce brings both opportunities and

challenges. On the one hand, they face increased demands for their services, from which

they can generate revenues. On the other hand, these demands involve narrow delivery time

windows, which generally lower vehicle utilization and increase transportation costs.

One strategy a logistics provider can employ for meeting these increases in demands and

expectations is to complement and coordinate its fleet operations with those of for-hire, third-

party logistics providers. For instance, several e-commerce businesses such as Style Theory

[85] and Vipshop.com ([128]) use a hybrid pickup and delivery model that consists of their

own fleet and a partnership with third-party logistics providers such as Pickupp and SF

Express. We study an optimization problem for coordinating those operations: the time-
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dependent profitable pickup and delivery problem with time windows. In this problem,

the logistics provider has the opportunity to use its fleet of capacitated vehicles to transport

shipment requests, for a profit, from pickup to delivery locations. Owing to demographic

and market trends, we focus on an urban setting, wherein road congestion is a factor. As

a result, the problem explicitly recognizes that travel times may be time-dependent. The

logistics provider seeks to maximize its profits from serving transportation requests, which

we compute as the difference between the profits associated with transported requests and

transportation costs.

In this study, we focus on the static version of the proposed problem, which assumes all

orders are known before the operations start. This setting is used in many online shops.

For example, VIP.com and Style Theory receive their order information before they construct

delivery routes. Furthermore, often fixed scheduling deadlines are used in more instant

delivey services. For example, in the Netherlands, the largest online retailer (Bol.com) enforces

a timeline where orders received before 14:00 are delivered in the evening between 18:00 and

22:00. As a result, routes can be determined after 14:00 by which time all orders have arrived

[14].

We propose an adaptive large neighborhood search (ALNS) approach for solving the routing

problem of these companies. The proposed approach solves the time-dependent profitable

pickup and delivery problem with time windows (TD-PPDP-TW). It decides which potential

customers to serve and constructs cost-effective vehicle routes for doing so. This problem was

addressed in the previous chapter as a variant of the time-dependent pickup and delivery

problem with time windows, named as Ω(Flex, Prof).

ALNS consists of a group of removal and insertion operators, each of which modifies an

incumbent solution to generate a number of neighboring solutions. To identify whether a

neighboring solution is improving, ALNS evaluates its objective function value. In most

applications of ALNS to routing problems, evaluating the objective function value of a

solution is easy to do from a computational complexity perspective. However, for the problem

we seek to solve, doing so involves solving an optimization problem, for which Vidal et al.

[120] show that no efficient algorithm exists. Owing to the time-dependent travel times the

triangle inequality is not guaranteed to hold anymore. In such cases, the travel time of an arc

(i, j) is modeled as a piecewise linear function τij(t), with departure time t at the tail node i of

the arc (i, j). For a given route h =< v0, v1, ...vi, vj , ..., vm >, the ready time function δv0,m(t)

is defined as the function that gives the ready time at node vm, whereas the departure time
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of v0 is t. The ready time function can be derived by propagating the travel time functions

τij(t) of each arc (i, j) in route h. Then, the route duration can be calculated as (δv0,m(t) − t).

For instance, we can first calculate δv0,i(t) and δvj,m(t); then δv0,m(t) can be derived by using the

function composition δvj,m(δv0,i(t) + τij(δ
v
0,i(t))). However, extra memory is required to keep a

binary tree-based data structure, which also needs to be re-built whenever a route is changed.

In this chapter, we propose a method for approximating the objective function value of such

a solution. Computational experiments indicate the method can provide quick and accurate

estimates.

The contributions of this chapter are as follows:

• We adapt the classical ALNS heuristic to solve the time-dependent profitable pickup

and delivery problem with time windows.

• To efficiently handle time-dependent travel times in ALNS, a simple and approximate

route evaluation is employed, which performs well compared with the exact route

evaluation.

• Compared with the existing literature, we show that large-sized instances can be solved

within a relatively short CPU time with the proposed algorithm.

• The study results indicate that solutions obtained without considering time-dependent

travel time will result in either sub-optimality or infeasibility.

The remainder of this chapter is organized as follows. Section 4.2 presents a brief review of

the existing literature related to this study. Section 4.3 introduces a formal problem definition

of the TD-PPDP-TW. In Section 4.4, we develop an ALNS to solve the proposed problem.

Section 4.5 introduces the test instances. Section 4.6 first present the parameter tuning and

relative performance of each operator used in ALNS. Then a series of experimental results

and case studies are reported, followed by conclusions in Section 4.7.

4.2 Literature review

The problem addressed in this study is structurally similar to the PPDPTW, where serving

all requests is not mandatory and a profit is associated with each request. To the best of our

knowledge, only two similar problems have been studied by Li et al. [67] and Gansterer et al.

[44]. Li et al. [67] presented the pickup and delivery problem with time windows, profits, and

reserved requests (PDPTWPR). In this problem, the authors considered two types of requests:
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reserved requests, which are required to be served, and selective requests, which may be

rejected or outsourced to others. An ALNS approach is developed to solve this problem.

Gansterer et al. [44] proposed and defined the multi-vehicle profitable pickup and delivery

problem (MVPPDP), which does not consider the time window constraints. To solve this

problem, the authors developed two variants of the general variable neighborhood search and

tested them on self-created instances. At its core, the PPDPTW is also a generalization of the

classical PDPTW, which models a variety of operational planning problems in transportation

logistics and has been extensively studied in the literature. The interested readers are referred

to Cordeau et al. [22] and Parragh et al. [82] for recent surveys.

Our problem involves an additional dimension of decision-making, as compared with the

PPDPTW. In particular, because travel times are time-dependent, the departure time of a

driver from the depot can also be optimized, whereas in the classical PPDPTW, the structure

of the optimal solution is not affected by changes in the departure time. Excluding Sun et al.

[110], no other study has considered time-dependent travel times, which can render their

proposed solutions infeasible.

Another stream of research this work is rooted in is named the time-dependent vehicle routing

problem with time windows (TDVRPTW). Compared with the PDPTW, considerably less

research has been devoted to this area. Similar to our proposed problem, TDVRPTW assumes

time-dependent travel times: a different travel time may be incurred if the departure time at

a location is changes. Malandraki and Daskin [71] presented a mixed integer programming

for this problem, and some simple constructive heuristics and a cutting plane method are

employed. Later, Ichoua et al. [56] proposed a parallel tabu search. In their paper, they

point out that previous models did not verify the “first in first out” (FIFO) property. This

property states that if two identical vehicles traverse the same arc, the one that leaves first

also should arrive first. Therefore, they proposed speed models, which are stepwise functions

that satisfy the FIFO principle. An approximate evaluation procedure is used to reduce the

complexity of the calculation. Then, the M best solutions according to this approximation are

evaluated exactly, and the best solution is selected. Its objective is to find a set of minimum

travel duration cost vehicle routes that serve every customer.

A similar objective function has also been used by Donati et al. [33] and Balseiro et al. [8].

Donati et al. [33] presented a multiple ant colony system (ACS) framework for the TDVRPTW.

Then, Balseiro et al. [8] enhanced the ACS framework with an aggressive insertion heuristic

relying on the minimum delay metric. Moreover, the evaluation of time feasibility can be
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performed in O(1) time in Donati et al. [33] and Balseiro et al. [8], because the variables earliest

departure and latest arrival are maintained for every customer in the solution. As to the

exact approaches, Dabia et al. [25] developed a branch-and-price algorithm for TDVRPTW,

where a tailored labeling algorithm is presented to solve the time-dependent shortest path

problem with the resource constraint (TDSPPRC), which is the pricing problem of TDVRPTW.

The proposed algorithm can solve instances up to 100 customers. The extension of the

TDVRPTW to the case with a single vehicle with infinite capacity is known as the time-

dependent traveling salesman problem TDTSP (with time windows TDTSPTW), which also

received some attention in the past decade. Cordeau et al. [20] proposed a branch-and-cut

algorithm to solve TDTSP. In this study, the travel speed functions are defined by employing

the degradation of the congestion factors and the proposed algorithm can solve instances with

up to 40 nodes. Most recently, Montero et al. [77] presented an integer linear programming

model for the TDTSPTW and developed an exact algorithm. This approach is also able to

solve instances with up to 40 customers. Vu et al. [122] proposed a dynamic discretization

discovery framework for the TDTSPTW. Two objectives are considered in this problem. One

seeks to make the driver return to the depot as early as possible, the other aims to minimize the

travel duration. The interested readers are referred to Gendreau et al. [46] for recent surveys

on TDVRPTW and its variants. Compared with our problem, none of these studies considered

the precedence constraints for pickup and delivery services and possibility to serve a subset

of requests. It is also difficult to directly apply methods from the time-dependent VRP to our

problem given that it allows for customers to not be served.

Fu [42] has developed frameworks that explicitly incorporate a time-dependent, stochastic

travel model for dial-a-ride applications subject to tight service time constraints, which is a

variant of pickup and delivery service in passenger transportation. Later on, Schilde et al. [97]

adapted four existing metaheuristics for the stochastic time-dependent dynamic dial-a-ride

problem using statistical information available on historical accidents. The time-dependent

travel time is included by modeling congestion as gradually expanding and shrinking circles.

In Chapter 2, we introduced the time-dependent capacitated profitable tour problem with

time windows and precedence constraints, which considers only a single vehicle. A tailored

labeling algorithm is proposed to solve instances with up to 75 requests to optimality.

Moreover, a dynamic programming heuristic is designed for difficult instances that cannot be

solved by the exact method. The TD-PPDP-TW, was studied in Chapter 3 as one variant of the

time-dependent pickup and delivery problem with time windows. It extended the PDPTW

by considering time-dependent travel times and there is a possibility to skip requests that are

not profitable. The authors provided a mix integer linear programming formulation for the
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family of time-dependent pickup and delivery problems with time windows. A branch-cut-

and-price framework is proposed to solve these problems. However, this method is able to

solve instances up to 45 requests to optimality within a predefined time limit.

4.3 Problem description

Following the notation of Sun et al. [110], we define an undirected graph G = (N,A), whose

node set N consists of pickup nodes NP = {1, 2, ..., n}, delivery nodes ND = {n + 1, ..., 2n},

and depots {0, 2n+ 1}. Each request is specified by its pickup node i and delivery node i+n.

Moreover, all feasible routes need to start from depot 0 and to end at 2n+ 1 (which can be the

same node as 0 in reality). For each pickup node i ∈ NP , a nonnegative profit pi and load qi

is assigned. It must hold that qi = −qn+i. Without loss of generality, q0 = q2n+1 = 0. A time

window [ei, li] is associated with every vertex i ∈ NP ∪ ND , where ei and li represent the

earliest and latest times, respectively, at which service may start at node i. The vehicle waits

until time ei, if arriving at i before ei; arriving later than li is not allowed. The service time of

each node i ∈ NP ∪ ND is denoted by si. The depot nodes also have time windows [e0, l0],

[e2n+1, l2n+1] representing the earliest and latest times, respectively, at which the vehicle may

leave from and return to the depot. Without loss of generality, we assume that s0 = s2n+1 = 0.

Let K denote the set of vehicles to serve those requests. We assume that vehicles are identical

and have capacity Q. Furthermore, a fixed operational cost, Z, is assigned per used vehicle.

In classical VRPs, the travel time between two locations is presumed to be known and

constant. In particular, it is generally assumed to be a scalar transformation of distance. In

the time-dependent VRP, the travel time between two nodes is a function of both the distance

traveled and departure time, with speed modeled as a stepwise function of the departure

time. This can lead to objectives that optimize the duration of a tour, in time, rather than its

distance. Formally, we let the piecewise linear function τij(tki ) denote the travel time on arc

(i, j) ∈ A, as a function of departure time tki of vehicle k at node i. As explained in Ichoua

et al. [56], this function is based on a stepwise speed function, with fixed speeds per time zone.

In this way, the FIFO property holds, i.e., vehicles that depart earlier from the departure node

of an arc will not arrive later at the destination node of that arc.

The set of feasible arcs can be described asA = {(i, j) ∈ N×N : i 6= j and ei+si+τij(ei+si) ≤

lj}. Let yki , i ∈ N be a binary variable set to 1 if node i is visited by vehicle k, and 0 otherwise.

The cost per unit of route duration is denoted as ct.
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The objective function includes three parts: (i) the profit obtained from served requests; (ii)

cost related to travel duration; and (iii) total setup cost for the number of used vehicles.

Therefore, the objective of the TD-PPDP-TW can be described as follows:

max
∑
k∈K

[
∑
i∈NP

piy
k
i − ct(tk2n+1 − tk0)− Zyk0 ] (4.1)

while satisfying the following constraints:

• The route of vehicle k starts from the origin depot and ends at the destination depot, if

vehicle k is used.

• Every request is served at most once and its pickup and delivery nodes are visited by

the same vehicle.

• For each request, its pickup node is required to be visited before the delivery node.

• The departure time at each node of the request should be within the given time window

(if the request is served).

• Capacity constraints of vehicles.

The complete mathematical formulation of the constraints can be found in Apprendix A.

The TD-PPDP-TW is similar to the problems studied in Wang [125] and Cortés-Murcia

et al. [23], which are also extensions of the VRP and which belong to the class of NP-hard

problems. It means that an increase in the size of problem leads to exponential growth in the

computational effort required to find the corresponding solution. To solve large instances in

a reasonable times, we propose an efficient metaheuristics to handle the proposed problem in

Section 4.4.

4.4 An adaptive large neighborhood search for the TD-PPDP-TW

In this section, we presents an ALNS heuristic for the TD-PPDP-TW. It is an extension of the

LNS heuristic proposed by Shaw [99]. The ALNS metaheuristic was first developed by Røpke

and Pisinger [93] and Pisinger and Røpke [86]. Unlike LNS, where only one removal and

one insertion heuristic are used, the ALNS heuristic applies multiple removal and insertion
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operators. In each iteration, a roulette wheel mechanism is used to choose one removal

operator to partially deconstruct the current solution and one insertion operator to repair

it in a different way. At the end of each iteration, a neighborhood of the current solution is

obtained. Moreover, a weight is associated to each operator. The selection probability of an

operator is related to its weight, which is adjusted dynamically and based on the historic and

current performance of all operators. Furthermore, a simulated annealing algorithm (SA) is

used to determine the acceptance of the incumbent solution.

In this study, we implement a similar framework as in Pisinger and Røpke [86], Røpke

and Pisinger [93], and Demir et al. [29]. Moreover, to cope up with the peculiarities of

our problem, we first introduce the route feasibility check and route evaluation during the

removal or insertion in Section 4.4.1. The general structure of our ALNS algorithm with

simulated annealing is provided in Algorithm 3. Its components are detailed in the following

subsections. In Section 4.4.2, we describe how to construct the initial solution. The weight

and score adjustments are introduced in Section 4.4.3. The various removal and insertion

operators used in our ALNS are described in Section 4.4.4 and Section 4.4.5, respectively. The

SA scheme is described in Section 4.4.6.

4.4.1 Route feasibility check and route evaluation

Due to the their dependency on departure time, travel times need to be evaluated through

the end of a route in order to check the feasibility or to accurately measure the impact of a

removal or insertion operator. Moreover, the triangle inequality property does not necessarily

hold anymore, which for road networks means that, due to traffic jams on the direct road

between verticesA and C, it might be faster to drive through vertexB. Therefore, the shortest

path (in terms of duration) between verticesA and C varies over time and removing a request

might cause an infeasibility (Figure 4.1) or increase the travel time of the solution (Figure

4.2(a)). Inserting a request might shorten the travel time of the solution (Figure 4.2(b)), where

it normally, when the triangular inequality holds, always increases the travel time. For our

solution without pre-calculating the shortest travel time between vertices A and C by given

each possible departure time at vertex A, we prevent a full and time-consuming feasibility

check and evaluation of the solution after every removal and insertion attempt, by storing for

each node of a given route, the earliest departure and latest arrival times. This reduces the

computational complexity of the feasibility check and evaluation of a solution fromO(n) time

to O(1) time, which enables an efficient checking and updating mechanism.
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Algorithm 3: Pseudo-code of the ALNS with SA
input : Removal operators D, insertion operators Ψ, initial temperature T , cooling rate κ
output: A feasible solution Xbest

1 Generate an initial solution by using the Greedy insertion algorithm (Section 4.4.2)
2 Initialize probability for each destroy operator d ∈ D and each insertion operator ψ ∈ Ψ (Section 4.4.3)
3 Let j be the iteration counter with initial value of j← 1
4 Xcurrent←Xbest←Xinit
5 repeat
6 Choose a removal operator d∗ ∈ D with probability ωd/

∑|D|
i=1 ωi (Section 4.4.3)

7 Let X∗∗new be the solution generated after using operator d∗ to Xcurrent (Section 4.4.4)
8 Let X∗new be the solution generated after the removal feasibility check of solution X∗∗new (Section

4.4.1)
9 Choose an insertion operator ψ∗ ∈ Ψ with probability ωψ/

∑|Ψ|
i=1 ωi (Section 4.4.3)

10 Let Xnew be the newly-generated solution after applying operator ψ∗ to X∗new (Section 4.4.5)
11 if obj(Xnew) > obj(Xcurrent) (Section 4.4.6) then
12 Xcurrent←Xnew
13 if obj(Xcurrent) > obj(Xbest) then
14 Xbest←Xcurrent

15 else
16 Let ν← e−(obj(Xnew)−obj(Xcurrent))/T

17 Generate a random number ε ∈ [0, 1]
18 if ε < ν then
19 Xcurrent←Xnew

20 T ← κT
21 Update probabilities using the adaptive probability adjustment procedure
22 j← j + 1

23 until the maximum number of iterations is reached or no improvement is found to Xbest after a
predefined number of iterations

For a route h =< v0, v1, v2, ..., vm >, the earliest departure edvi records the earliest time

the vehicle can depart from vi after serving all the previous nodes in the route including vi.

If Aij(t) is the arrival time to node j when departing from i at time t, and given that the

departure time at the depot equals 0 these values can be computed as follows:

edv0 = 0 (4.2)

edvi = max(Ai−1,i(edvi−1) + svi , evi + svi) ∀i = 1, ...,m (4.3)

Analogously, the latest arrival lavi is the latest time the vehicle can arrive at vi, so that it can

service all the subsequent nodes in the route including vi without violating the time window

constraints and capacity constraints. It is computed as
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[20,30]

[30,40]

[25,45]

10 10

25
A D

B

 Travel time increased 

after Removal

(a)

[20,30] [25,45]

10 10

25
A D

B

 Travel time decreased 

after Insertion

(b)

[30,40]

 Travel time of (A,B)

20 30

10

20

 Departure 

time at A

10

 Travel time of (B,D)

15

30 40  Departure 

time at B

 Departure 

time at A

25

20 30

15

 Travel time of (A,D)

Figure 4.2: Examples of time-dependent removal and insertion

lavm = lvm (4.4)

lavi = min(A−1
i,i+1(lavi+1)− svi , lvi) ∀i = 0, ...,m− 1 (4.5)

where A−1
i,j (t) is the departure time from i to reach j by time t.

According to Visser and Spliet [121], each node vi has an arrival time function, which

is nondecreasing piecewise linear function with a group of breaking points. Therefore,

whenever a request is removed from or inserted into route h, the optimal departure time

at the origin depot, 0, needs to be recalculated, because the arrival time functions for all nodes
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visited after the removal or insertion position needs to be updated. Therefore, a new arrival

time function of end depot 2n + 1 is derived by propagating the arrival time function to the

end of the route. This propagation needs to consider all the possible break points in the travel

and arrival time functions, which is computationally expensive. For instance, when node i is

inserted into a partial route < 0, j > and a new partial route is generated as < 0, i, j >. Let

[3, 8] and [7, 9] be the time windows of nodes i and j, respectively. We assume that the service

time of both nodes i and j equals 1 (si = sj = 1). In Figures 4.3 and Figure 4.4, we show how

to derive the ready time function at node j. We first derive the arrival time function at node

i (Figure 4.3(b)) by propagating the given travel time function of arc (0, i) such that all the

possible break points in Figure 4.3(a) need to be checked. Then the ready (Figure 4.3(c)) and

departure time functions (Figure 4.3(d)) of node i can be easily derived by checking its time

window and service time, respectively. Furthermore, we consider all the break points in both

the departure time function of node i (Figure 4.3(d)) and the travel time function of arc (i, j)

(Figure 4.4(a)) to derive the arrival time function of node j (Figure 4.4(b)). After checking the

time window and service time of node j, its ready (Figure 4.4(c)) and departure time functions

(Figure 4.4(d)) can also be easily derived.

Next, we set the latest departure time to not cause an infeasibility at depot 0 equal to 5 as

the estimate for the optimal departure time. It could be an efficient approximation for route

evaluation but cannot guarantee optimality. For instance, we first obtain the latest possible

departure time of 7 in the travel time function of arc (i, j) (Figure 4.4(a)) because lj = 8. The

latest ready time at node i is 7, by deducting its service time of 1. Thus, the latest departure

time at node 0 can be calculated to be 5 by checking the travel time function of arc (i, j) (Figure

4.3(a)). In conclusion, using two methods, we derive the optimal departure time at node 0 to

be 5 with minimum travel duration value 5. Of course, the earliest departure, latest arrival,

and real departure times of each node on route h need not be fully recomputed every time.

Because information is not changed before inserting or deleting a position, recalculation is

required only after that position.

In some cases, the approximate method might have a result different from that of the exact

method. Generally, the performance of the approximate method mainly depends on the travel

time function of each arc and number of visited nodes in the route. In the worst case scenario,

the approximate method is worse in determining the route duration than the exact method

with factor χ, which is equal to the largest ratio amongst all visited arcs of the longest travel

time and the shortest travel time in the travel time function (which is also equal to the fastest

speed in the speed profile divided by the slowest speed in the speed profile). This can be
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Figure 4.3: Examples of travel time functions propagating with route 0→ i

reasoned from the fact that, in the worst case, departure time is selected where all arcs are

traversed at times within a minimum speed time zone. However, in the optimal departure

time, all arcs might be traversed during the maximum speed time zones.

For instance, in Figure 4.5(a), one can see that the longest and shortest travel times have values

3 and 1, respectively. Therefore, factor χ is equal to 3. In the ready time function (see Figure

4.5(c)), it shows that the optimal departure time is 2, which leads to a travel duration of 1.

When using the latest departure time of 5, the travel duration equals 3, which is three times

worse than the travel duration given by optimal departure time 2. Moreover, it is likely that

the side effect of the approximate method will be leveraged out once more nodes are visited

in the route. For instance, Figure 4.6 shows that the travel duration equals 5.5 by using the

latest departure time 3.5. It is only 0.5 worse than the optimal travel duration of 5.

4.4.2 Initial solution construction

We developed a modified version of the sequential insertion heuristic (SIH), first introduced

by Solomon [104], to generate an initial feasible solution. All requests are initially stored

in a list L. The SIH begins by creating one route for each individual request Ri ∈ L. These

routes are sorted in the decreasing order of their objective values. Then, to diversify the search

space, the method randomly chooses K routes as the “seed” routes for further insertion in
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each run. The related requests are removed from L. In each subsequent step, SIH tries to

add one of the currently unserved requests in L into one of the existing routes, and its pickup

and delivery nodes are inserted at their most profitable positions (for more details, see Section

4.4.5). However, those requests that cannot be feasibly inserted in any of the routes or those

where the insertion deteriorates the objective value of the solution remain stored in list L.

Moreover, whenever a request Ri = (i, i + n) is added to route h, the earliest departure time

of each node after the insertion of node i, latest arrival time of each node before the insertion of

node i+n, and real departure time of each node in the route h need to be updated (see Section

4.4.1). This process is repeated until no request can be inserted to improve the objective value

of the solution.

4.4.3 Adaptive weight and score adjustment

To select the removal and insertion operators more effectively, as in the implementation of

Ropke and Pisinger [93], a roulette-wheel mechanism is used in our algorithm. Let D and Ψ

denote the sets of removal and insertion operators, respectively, and let d ∈ D be the removal

operator and ψ ∈ Ψ be the insertion operator. At the beginning, the weight of each removal

ωd and insertion operator ωψ is set equal to 1. In each iteration, the probability of choosing a

removal or insertion operator is calculated as ωd/
∑|D|
i=1 ωi and ωψ/

∑|Ψ|
i=1 ωi, respectively. Let
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sg denote a segment that includes a set of 100 iterations. During the iterations of a segment,

the weights of all removal and insertion operators remain fixed; however, they are updated at

the end of each segment as follows:

ωsg+1
d = ωsgd (1− ξ) + ξ

πd
βd

(4.6)

ωsg+1
ψ = ωsgψ (1− ξ) + ξ

πψ
βψ

(4.7)

where ξ is the adjustment parameter; πd and πψ are the resulting scores of operators d and ψ;

and βd and βψ represent the number of times the operator has been called in segment sg. To

let operators that are seldom selected in the previous segment still have a chance to be called

in the current segment, πd and πψ are set to 0 for all d ∈ D and ψ ∈ Ψ at the beginning of each

segment. Moreover, if a new solution is accepted at the end of each iteration, the scores πd

and πψ of the chosen removal and insertion operators d and ψ are updated by adding either

σ1, σ2, or σ3 according to the three different situations in Table 4.1.

Table 4.1: Adaptive adjustment of operator scores

Increment Conditions of the solution obtained by the chosen operators

σ1 A new best solution is obtained

σ2 A newly generated solution improves the current solution

σ3 A solution worse than the current solution is accepted

4.4.4 Removal stage

Seven removal operators are used in our ALNS heuristic algorithm. All operators are adapted

from or inspired by Shaw [100] or Røpke and Pisinger [93]. The removal stage mainly consists

of removing φ requests from the current solution and adding them to the so-called removal

list L, where φ is a random integer number between 1 and ρ ∗ n (ρ is the destroy rate and n is

the number of served requests in the solution). The general structure of the removal operators

is provided in Algorithm 4.

The removal operators used in our implementation are introduced below.

• Random Removal (RR): This operator randomly removes φ requests from the current

solution. The idea of randomly selecting requests helps to diversify the search space.
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Algorithm 4: Overall structure of removal operators
input : A feasible solution X and the number of requests to be removed φ
output: A partially destroyed solution Xp

1 Initialize removal list (L← ∅)
2 for φ iterations do
3 Apply removal operator to remove a request r (includes two nodes; pickup and delivery)
4 L← L ∪ r

• Worst Travel Duration Removal (WTR): This operator repeatedly removes φ requests.

The cost is considered to be the total travel duration between the pickup and delivery

nodes of a request with their prior and succeeding nodes within the given routes, i.e., it

removes request (i, i+ n)∗ = argmaxh∈NP {(ti+1 − ti−1) + (tj+1 − tj−1)}, where i− 1

and j− 1 are predecessors and i+ 1 and j+ 1 are successors of the pickup and delivery

nodes, respectively. Note that a large value of (ti+1− ti−1) + (tj+1− tj−1) could also be

caused by significant waiting times at i + 1 or j + 1; therefore, this difference does not

automatically represent the expected savings in duration.

• Early Departure Removal (EDR): For each request (i, i+n), this operator calculates the

deviation of the departure time ti and ti+n from the latest possible arrival time, and then

removes the request with the largest deviation (i.e., (i, i + n)∗ = argmaxi∈Np{|[lai −

ti] + [lai+n− ti+n]|}, where lax is the latest possible arrival time at node x, so that it can

service all the subsequent nodes in the route including x (for more details on lax-see

Section 4.4.1). The idea is to prevent long waits or delayed service start times.

• Least profit removal (LPR): Considering that profit is an essential part of the objective

function value of a solution, this operator aims to remove the φ requests with the least

assigned profits.

• Worst Removal (WR): This operator removes the φ requests one at a time by

determining which removal has the largest positive effect γ on the objective function

value. Note that, all removals could have a negative effect on the objective. In that

case the removal with the smallest negative effect is removed. The improvement or

deterioration γ in this case is computed as follows: given a solution, the γi of a request

(i, i + n) is the difference in the objective function between the current solution (with

(i, i+ n)) and the same solution without serving (i, i+ n).

• Route Removal (ROR): This operator removes a full route from the solution. It

randomly selects a route from the set of routes in the solution. It removes all nodes

from the selected route except 0 and 2n+ 1.
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• Shaw Removal (SR): The objective of the SR operator is to remove requests that are

similar in terms of certain aspects. The algorithm randomly selects a request r1 and

adds it to L. Let lr1,r2 = −1 if two nodes, one related to r1 (i.e., i or i + n) and the

other to r2 (i.e., j or j + n), are in the same vehicle route, and lr1,r2 = 1 otherwise.

This operator selects the request r∗ = argminj∈NP {Π1[di,j +di+n,j+n] + Π2[|ti− tj |+

|ti+n − tj+n|] + Π3lr1,r2 + Π4|qi − qj | + Π5|pi − pj |}, where Π1–Π5 are normalized

weights. The operator is applied φ times by selecting a request that is not yet added in

L and is the most similar to the last added request.

As mentioned in Section 4.4.1, the removal operator might make the partial solution infeasible.

Therefore, Algorithm 5 is used to check the feasibility of each route in the partial solution.

Moreover, if the partial solution is feasible, Algorithm 5 returns the earliest departure time

of each node in the partial solution. Otherwise, more requests are removed from the current

solution to make the solution feasible. Particularly, when route h leads to node i that has a

time window violation, node i and each node j ∈ NP ∪ ND after node i will be aborted,

which lead to a new route h∗. Moreover, if route h∗ contains incomplete served requests,

which means that only the pickup node is visited in route h∗, those pickup nodes are also

removed from route h∗.

Algorithm 5: Generic structure of route feasibility check and its earliest
departure time calculation

input : A route h, earliest departure time edv0 = 0 at depot 0
output: Boolean value B: TRUE if feasible, FALSE otherwise

1 B← TRUE
2 for each node vi and vi+1 in route h do
3 if B then
4 if (Qvi + qi+1 ≤Q) then
5 if (Avi,vi+1 (edvi ) < li) then
6 edvi+1 ←max{Avi,vi+1 (edvi ) + si+1, ei+1 + si+1}
7 else
8 B← FALSE

9 else
10 B← FALSE

11 else
12 Break

13 Return B
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4.4.5 Insertion stage

We used seven insertion operators in our ALNS algorithm. Similar to removal operators, all

operators are adapted from or inspired by Shaw [100] and Røpke and Pisinger [93]. With the

help of those insertion operators, the unserved requests in L can be inserted into the existing

routes if the insertion is feasible and improves the objective function value of the solution.

Moreover, to reduce the size of the neighborhood considered at every iteration of the insertion

stage, we adapt the evaluation scheme introduced by Cordeau and Laporte [21] to evaluate

the impact of inserting request Ri in one route. First, the best insertion position is determined

for the pickup node. Because adding a pickup node increases the profit and changes the

travel duration of a route, the difference in the objective function value is evaluated. Next,

holding the pickup node in its best position, the best insertion position is determined for the

delivery node. Because adding a delivery node only changes the travel duration of a route,

the insertion position of the delivery node that leads to minimal travel duration is selected.

This rule has a striking effect on computing times because it reduces the maximum number of

possible insertions involving request Ri from O(θ2) to O(θ), where θ is the number of nodes

in route h.

• Sequential Insertion (SI): This operator is based on the position of each unserved

request in the removal list L. It sequentially removes the unserved requests one by one

from the removal list L and inserts them into the best position of the existing routes.

Therefore, this operator first tries to insert the requests that cannot be served in the

solution in the previous iteration, and then it aims to insert the requests removed by the

removal operation in the current iteration.

• Greedy Insertion (GI): This operator repeatedly inserts a request (both pickup and

delivery nodes) in the best possible position of the routes. In each iteration, the

unserved request that best improves the objective function value is inserted at its best

insertion position. Let ∆(i, h,X) denote the difference in objective function value if

request Ri is inserted at its best position into route h of solution X , which is evaluated

by the procedure of Section 4.4.1. Now assume that ∆(i, 1, X) is associated with

the route where Ri can be inserted best. Then the request that will be inserted is

R∗i = argmaxi∈Np{∆(i, 1, X)}. Subsequently, the next iteration starts, and ∆(i, h,X)

value are recomputed for all the remaining unserved requests.

• Duration Greedy Insertion (DGI): The DGI operator works in a similar way as the GI

operator, except that only the insertion cost, which is measured as the travel duration,

is considered. Let f(X) be the total travel duration cost of solution X with request Ri
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served, and f(X
′
) represent the total traveling duration cost of solution X

′
without

request Ri. Therefore, f(X) − f(X
′
) is denoted as the difference between travel

duration costs with and without request Ri. Similar to the GI operator, this operator

also accepts the request that might deteriorate the objective function value of the

incumbent solution as long as the insertion is feasible. Compared with the GI operator

that considers the difference of the whole objective function, DGI only considers the

change in the travel duration.

• Regret Insertion (RI): The RI operator first calculates the best insertion ∆(i, 1, X) and

second best insertion ∆(i, 2, X) for each unserved request Ri. Next, a regret value for

each request Ri is measured as ∆(i, 1, X)−∆(i, 2, X), which is the difference between

the best and second best insertions. The request with the maximum regret value is

then removed from L and inserted first at the position where it generates the highest

objective value. Note that regrets of each request need to be recalculated after each

insertion because some insertion positions are no longer available.

• Sequential Insertion with Noise function (SIN): This operator is similar to the

Sequential Insertion but uses a degree of freedom in selecting the best place for a node.

This degree of freedom is achieved by modifying the profit of request Ri: Objnew =

Objactual + piµε, where pi is the profit of request Ri, µ is a noise parameter used for

diversification and ε is a random number between [−1, 1]. Objnew is calculated for each

request in L.

• Greedy Insertion with Noise function (GIN): This operator is an extension of the GI

operator and considers the same noise function as the SIN operator.

• Regret Insertion with Noise function (RIN): This operator is similar to the SI operator

and uses the same noise function as the SIN and GIN operators.

4.4.6 Acceptance and stopping criteria

To avoid the algorithm becoming trapped in a local optimum, SA is embedded in our ALNS

framework. In the algorithm, Xbest indicates the best solution found during the search,

Xcurrent denotes the current solution obtained at the beginning of an iteration, and Xnew

represents a temporary solution found at the end of the iteration that can be discarded or

become the current solution. The objective function value of solution X is denoted as obj(X).

In addition, a tabu list is used for Xcurrent to prevent cycling in the proposed algorithm.

This list prohibits the use of a specific set of solutions for several iterations if one of them

is used in recent iterations. More specifically, the new generated solution Xnew is retained
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in the tabu list at the end of each iteration. Then, Xnew is forbidden to be accepted as

Xcurrent in the following iterations. Therefore, the search does not travel around the local

optimum solution space. A solution Xnew is accepted if Xnew is a non-tabu solution and

obj(Xnew) > obj(Xcurrent), and accepted with probability e(obj(Xnew)−obj(Xcurrent))/T if

obj(Xnew) < obj(Xcurrent), where T is the temperature. The initial temperature is set at Tinit,

where Tinit is an initialization constant. The current temperature gradually decreases during

the algorithm as κT , where 0 < κ < 1 is a fixed parameter and generally close to 1 to achieve

slow cooling. The main idea of the SA is to accept worse solutions at the beginning to diversify

the search space, whereas the algorithm only accepts the improved solutions after several

iterations when the temperature is decreased. Our stopping criterion is 10,000 iterations in

total or 3,000 consecutive iterations without further improvement.

4.5 Test instances

Two classes of instances are used in this study. Both are adapted from the instances proposed

by Røpke and Cordeau [91]. Each class has four groups of instances (AA, BB, CC, and DD)

with different vehicle capacities and time windows. The single-vehicle instances are the

instances for the time-dependent capacitated profitable tour problem with time windows and

precedence constraints introduced by Sun et al. [109]. The multi-vehicle instances are based

on the instances for the time-dependent pickup and delivery problem with time windows

proposed by Sun et al. [110]. Because the data set in Sun et al. [110] only considers the

instances with up to 45 requests, we enrich this data set by creating six new instances for

each group having the number of requests ranging from 50 to 75. Moreover, to differentiate

these two classes of instances, each instance name has a format V tp n, where tp is the group

type and n is the number of considered request; if V = S, it belongs to the class of single-

vehicle instances, otherwise, when V = M , it represents the class of multi-vehicle instances.

The extra instances of this class are obtained by using the same mechanism as introduced

in Sun et al. [110]. Particularly, these two classes of instances are based on the same node

coordinates, vehicle capacity, time windows, and load quantities as the original instances in

Røpke and Cordeau [91]. In addition, for each single-vehicle instance, a profit of 40 units is

assigned to each request. For each multi-vehicle instance, a randomly generated profit in the

interval [50, 150] interval is assigned to each request.

To model the time-dependent travel times, as in Sun et al. [109], road congestion is handled

by a speed model consisting of different speed profiles. It is used to determine the travel time

between two nodes at different departure times. In our study, five types of speed profiles
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are considered (see Table 4.2): slow speed (SS), normal speed with morning peak (NSMP),

normal speed with evening peak (NSEP), fast speed with two peaks (FSTP) and high speed

(HS). To generate an instance, we randomly assign one of these speed profiles to each arc.

We refer the reader to Sun et al. [109] for detailed information regarding the explanation

of the different speed profiles. Furthermore, without loss of generality, it is assumed that

breakpoints are the same for all speed profiles because congestion tends to occur around the

same time regardless of the speed profile type. Each speed profile has four non-overlapping

time periods with constant speed, reflecting two congested periods and two periods with

normal traffic conditions.

Table 4.2: Speed Profiles

Congestion Morning Normal Evening Normal

description peak peak

Time periods 7 am-9 am 9 am-5 pm 5 pm-7 pm 7 pm-9 pm

1. SS 0.5 0.81 0.5 0.81

2. NSMP 0.67 1.33 0.88 1.33

3. NSEP 0.88 1.33 0.67 1.33

4. FSTP 0.85 1.5 0.85 1.5

5. HS 1.0 2.0 1.0 2.0

4.6 Performance of proposed ALNS

The algorithm described in this chapter is implemented in Java, using Eclipse SDK version

4.2.0. We performed experiments on a single thread of a server with four CPU’s (2.4 GHz/6

cores) and 64GB RAM. The following sections first present the parameters of the proposed

algorithm, followed by a series of experiments to determine the best set of parameters, and

then an assessment of the performance of the proposed algorithm.

4.6.1 Parameter tuning

Table 4.3 lists 15 parameters. As in Demir et al. [29] and Ghilas et al. [48], we group them

into three categories. The parameters to control the simulated annealing algorithm in Group I.

Group II includes the parameters that are related to the roulette wheel mechanism that decides

which operators to use in each iteration. Group III parameters are used in the removal and

insertion operators.

To identify a value for these parameters to enable the ALNS to find high-quality solutions,
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Table 4.3: Adaptive adjustment of operator scores

Group Notation Description Tuned Value

(I) Υ The total number of iterations 10000

T Initial temperature 200

κ Cooling rate 0.9995

(II) Υsg The number of iterations per segment 100

ξ Roulette-wheel parameter 0.1

σ1 A new best solution is obtained 5

σ2 A newly generated solution improves the current solution 3

σ3 A solution worse than the current solution is accepted 1

(III) ρ Destroy rate for removal operators 0.45

Π1 First Shaw parameter 0.2

Π2 Second Shaw parameter 0.25

Π3 Third Shaw parameter 0.1

Π4 Fourth Shaw parameter 0.2

Π5 Fifth Shaw parameter 0.25

µ Noise parameter 0.1

some parameter-tuning experiments are performed. All tests are performed on a tuning set

consisting of the following 23 instances: 14 instances from the single-vehicle instance class,

which belong to the BB group with the number of requests ranging from 10 to 75 (S BB10-

S BB75), and nine instances from the multiple-vehicle instance class, which also belong to the

BB group with the number of requests ranging from 10 to 50 (M BB10-M BB50). Moreover, for

each given combination of parameters, all instances from the tuning set are solved ten times.

To tune σ1, σ2, and σ3 introduced in Section 4.4.3, which are the control parameters used

in the roulette wheel mechanism, we run numerical tests on all instances from the tuning

set. There are four value combinations considered in this test: (5, 1, 3), (1, 3, 5), (1, 1, 1), and

(5, 3, 1). The comparison of these four different combinations is presented in Table 4.4, which

gives Gap (%), which is the gap between the best solution found by ALNS out of ten runs

and the best solution found by either the tailored labeling algorithm (Sun et al. [109]) or the

branch-and-price-based framework (Sun et al. [110]) (which is in most situations the optimal

solution). Moreover, as the proposed algorithm has randomized components, we also show

the standard deviations of the solutions with ten runs (STD) to show the robustness of the

proposed approaches.

The results presented in Table 4.4 show that even though the difference across all combinations

is relatively small, (5, 3, 1) performs the best overall in terms of both the solution quality
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and robustness of the algorithm. In contrast, (1, 3, 5) performs the worst in terms of the

quality of the found solutions and (5, 1, 3) performs the worst in terms of the robustness

of the algorithm. Therefore, based on this analysis, we chose to use (σ1, σ2, σ3)=(5, 3, 1) in

the rest of the numerical experiments. In this combination set, it rewards most when a new

best solution is found, and rewards least when an incumbent solution that is worse than the

current solution is accepted. Detailed instance-level results can be found in Table 10 in the

Appendix C.

Table 4.4: Tuning of roulette wheel mechanism parameters (σ1, σ2, σ3)

Problem type # Instances (σ1, σ2, σ3) Gap (%) STD Time (s)

BB group in single-vehicle instances 14 (5,1,3) 1.04 1.40 21.2

(1,3,5) 1.02 1.58 22.2

(1,1,1) 1.11 1.57 23.0

(5,3,1) 0.62 1.17 21.7

BB group in multi-vehicle instances 9 (5,1,3) 0.00 0.31 6.5

(1,3,5) -0.06 0.16 6.7

(1,1,1) -0.06 0.31 7.1

(5,3,1) -0.18 0.33 6.5

Average over 23 instances in BB group 23 (5,1,3) 0.63 0.97 15.4

(1,3,5) 0.60 1.02 16.1

(1,1,1) 0.65 1.08 16.8

(5,3,1) 0.34 0.84 15.8

To tune the cooling rate parameter κ, which controls the decrease in the speed of the

temperature in the simulated annealing algorithm, we test all instances from the tuning set

using three different values for κ: 0.95, 0.995, and 0.9995. A higher value of κ means that

the temperature is decreasing slower, resulting in a higher probability of accepting a worse

incumbent solution in an iteration. In Table 4.5, the comparison of the results obtained with

the three different cooling rate values is presented. The values of Gap (%) and STD (%) are the

same as explained in Table 4.4. Moreover, we also report Time(s), which describes the average

processing time in seconds of the 10 runs. Our results suggest that setting κ to 0.9995 performs

the best in terms of both the objective function value and the robustness of the algorithm.

Therefore, in the following computational experiments, we chose to set the value of κ equal to

0.9995. Detailed instance-level results can be found in Table 11 in the Appendix C.

To tune the destroy rate parameter ρ, which controls the removal fraction of the removal

operators in each iteration, we run tests on all instances from the tuning set using three
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Table 4.5: Tuning of cooling rate parameter

Problem Type # Instance Cooling Rate (κ) Gap (%) STD (%) Time (s)

BB group in single-vehicle instances 14 0.95 1.42 2.59 17.5

0.995 1.35 2.19 18.

0.9995 0.62 1.17 23.2

BB group in multiple-vehicle instances 9 0.95 -0.14 0.56 5.9

0.995 -0.06 0.33 6.1

0.9995 -0.18 0.33 6.6

Average over 23 instances in BB group 23 0.95 0.81 1.80 13.0

0.995 0.80 1.46 13.9

0.9995 0.31 0.84 15.8

different destroy rates: 0.25, 0.35, and 0.45. A higher value of ρ means that more requests

are removed from the current solution in each iteration. The comparison is reported in Table

4.6. The meanings of Gap (%), STD, and Time(s) are the same as in Table 4.4. Our results

suggest that it is preferable to use a large value for ρ because ρ =0.45 generally leads to better

performance both in terms of solution quality and robustness of the algorithm. However,

this requires more processing time, particularly in the insertion stage as more requests were

removed and need to be inserted again. Based on this analysis, we decided to set ρ = 0.45 in

our computational experiments.

Table 4.6: Tuning of destroy rate parameter

Problem Type # Instance Destroy Rate (ρ) Gap (%) STD (%) Time (s)

BB group in single-vehicle instances 14 0.25 0.80 1.59 15.1

0.35 0.97 1.42 18.4

0.45 0.62 1.17 21.7

BB group in multiple-vehicle instances 9 0.25 -0.05 0.28 3.7

0.35 -0.09 0.28 5.4

0.45 -0.18 0.33 6.5

Average over 23 instances in BB group 23 0.25 0.47 1.08 10.7

0.35 0.56 0.97 13.3

0.45 0.31 0.84 15.8

120



An ALNS for the TD-PPDP-TW

4.6.2 Relative performances of operators

Figure 4.7 and 4.8 present the relative performances of the removal and insertion operators in

terms of the speed and solution quality, respectively. To this end, we solve all instances from

the tuning set. For each instance, we run our algorithm ten times. In Figure 4.7, Total time(s) is

the average time spent to run each operator, and Usage (%) reports the percentage of the total

iterations in which the operator is used. The results in Figure 4.7(a) show that all the removal

operators can be processed within 0.1 s and WR is the slowest removal operator owing to

its computational complexity. Figure 4.7(b) indicates that the frequencies of using different

removal operators do not significantly vary from one another. Compared with the removal

operators, the running times of the insertion operators (except SI) are significantly longer.

Moreover, Figure 4.7(c) shows that the times consumed by GI, DGI, and RI are higher than

those of the remaining insertion operators owing to the high usage of these three operators

(see Figure 4.7(d)).

 

(a)                                                                                                                          (b) 

 

(c)                                                                                                                         (d)                

Figure 4.7: Running time and percentage of usage of operators

Figure 4.8 exhibits the percentage of iterations for which insertion and removal operators

yielded a solution that was better than the best found solution and current solution for which

that particular operator was used. Figure 4.8(a) shows that RR is the best performing removal

operator to improve the best-found solution, whereas EDR, LPR, and WR perform better than
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the rest of the removal operators in terms of improving the current solution (see Figure 4.8(b)).

According to Figure 4.8(c) and (d), the best performing insertion operators are GI, DGI, and

RI. Note that some operators (viz., SIN and GIN) scarcely improve the best-found solution or

current solution. However, these operators are required to diversify the search and achieve a

better overall performance of the algorithm.

 

(a)                                                                                                                            (b) 

 

(c)                                                                                                                             (d)                           

Figure 4.8: Percentage improvement over best solutions found and current solutions achieved by
operators

4.6.3 Exact evaluation versus approximation

As mentioned in Section 4.4.1, an approximate route evaluation is proposed. To test the

effectiveness and efficiency of this proposed approximation, we implement an exact route

evaluation for our proposed ALNS. In Table 4.7, we compare the average performance of

our proposed ALNS using the exact route evaluation with the ALNS using the approximate

route evaluation. As discussed in Section 4.4.1, the approximate route evaluation can make

an error in estimating the optimal departure time leading to, at the most, two times longer

route duration for our specific instances (note that the largest relative difference in the speed

profiles of Table 4.2 is 200% for both profiles, NSMP and HS). However, the results show

that the solution quality is almost the same for both evaluation methods. For single-vehicle
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instances, the ALNS using the approximate route evaluation is, however, 2.5 times faster than

the ALNS using the exact route evaluation. For multi-vehicle instances, the ALNS using

approximate route evaluation can also save 50% of the processing time compared with the

ALNS using exact evaluation. Detailed instance-level results can be found in Table 13 and 14

in the Appendix C.

Table 4.7: Exact evaluation versus approximation

Instance Type ObjEE T imeEE ObjAE T imeAE

Single-Vehicle instances 398.58 138.70 397.21 54.61

Multi-Vehicle instances 2267.16 49.2 2266.83 31.6

ObjEE : Objective value of ALNS with Exact Evaluation.
ObjAE : Objective value of ALNS with Approximate Evaluation.
T imeEE (s): Processing Time of ALNS with Exact Evaluation.
T imeAE (s): Processing Time of ALNS with Approximate Evaluation.

4.6.4 Performance of proposed ALNS under various settings

We next present in Table 4.8 the average performance of our proposed ALNS when configured

to use different sets of operators. The results show that the ALNS configured to use all

operators has the best performance. Furthermore, all the proposed removal operators help

in improving the performance of the proposed ALNS. The ALNS with full machinery also

outperforms the traditional LNS without adaptive mechanism.

Table 4.8: Average performance of proposed ALNS under various settings

Settings Best Aver Time

LNS 1435.02 1415.70 67.61

ALNS without SIN, GIN and RIN 1438.25 1420.39 72.66

ALNS without GI 1436.32 1417.23 53.23

ALNS without RI 1433.61 1413.27 56.37

ALNS without SR 1432.53 1415.38 57.14

ALNS without WR 1440.05 1419.44 60.16

ALNS without RR 1433.14 1410.37 55.52

ALNS without WDR 1435.01 1418.64 63.18

ALNS without ROR 1438.45 1420.20 65.91

ALNS without EDR 1437.06 1419.07 65.41

ALNS without LPR 1439.32 1420.62 62.19

ALNS 1441.63 1418.73 65.55
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4.6.5 Impact of vehicle costs

In this section, we evaluate the performance of the proposed ALNS for various vehicle costs.

As can be seen in Figure 4.9, high vehicle costs lead to both fewer requests being served and

fewer vehicles used. This is due to the total collected profits not being able to compensate

for the high vehicle cost. In some special cases (e.g., M BB10), high vehicle costs lead to no

vehicles being used to serve requests. 
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Figure 4.9: Impact of vehicle costs

4.6.6 Performance on TD-PPDP-TW instances

In this section, we discuss the results on the two generated sets of TD-PPDP-TW instances

described in Section 4.5. All instances are solved ten times using the proposed ALNS

framework. The detailed results of these experiments are presented in Tables 4.9-4.12.

In Tables 4.9-4.10, we compare the results of the single-vehicle instances using our proposed

ALNS framework with the results obtained by Sun et al. [109]. In particular, Table 4.9 shows

the statistics of the single-vehicle instances that can be solved to optimality within 10 h by

using the tailored labeling algorithm in Sun et al. [109]; Table 4.10 presents the statistics of

the challenging instances that are solved by dynamic programming heuristic in Sun et al.

[109], because they are too difficult to be solved to optimality within the predefined time

limit. Column Best reports the optimal solution derived by the tailored labeling algorithm and

column Best(DPH) shows the best solution calculated by the dynamic programming heuristic

as in Sun et al. [109]. Columns Gap (%) and STD are the same as explained for Table 4.4. We

also present the processing times of the tailored labeling algorithm (T imeTL (s)), dynamic

programming heuristic T imeDPH (s), and proposed ALNS algorithm (T imeALNS (s)) in

seconds. The results given in Table 4.9 show that our ALNS heuristic is able to compete with

the exact method proposed in Sun et al. [109]. Although the exact method outperforms the

ALNS for instances up to 35 requests, the proposed ALNS needs significantly less processing
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time for instances with more than 35 requests. The average gap is less than 0.60%. The data in

Table 4.10 indicate that, for those challenging instances with up to 75 requests, the average gap

is not greater than 2.00% for the proposed ALNS heuristic. In particular, the performance of

the ALNS is better than the dynamic programming heuristics (see Table 4.10) for one instance

(S DD75). Our ALNS heuristic also needs significantly less processing time than the dynamic

programming heuristic.

Table 4.11 provides the results obtained for multi-vehicle instances considered in Sun et al.

[110]. For the exact method proposed by Sun et al. [110], the lower bound, best upper

bound, and the processing time of the exact method are reported in columns LB, BestUB,

and T imeexact(s), respectively. As for our proposed ALNS heuristic, the values of Best, STD,

T imeALNS(s), and Gap% are as described in Table 4.10. The results show that the ALNS

heuristic is able to compete with the exact branch-and-price-based algorithm proposed in

Sun et al. [110], because it obtained the optimal solutions in at least one out of the ten runs

for 22 of the 27 optimally solved instances by Sun et al. [110]. For instances that could

not find any solution or obtained sub-optimal solutions in Sun et al. [110], the proposed

ALNS is able to find better solutions within the imposed time limit, which is calculated as

100 ∗ (Best − BestUB)/BestUB. The average CPU time needed to solve those instances is

10.3 s, which is significantly shorter CPU time compared with the exact method proposed in

Sun et al. [110].

We present computational results of the multi-vehicle instances with 50 to 75 requests in Table

4.12. These instances are not considered in Sun et al. [110] due to the limited scalability of

the exact algorithm. Columns Best, STD, and T imeALNS(s) are self-explanatory. For each

instance, we also present the average objective function value of the ten runs (Avg.), number of

served requests (Served), and number of used vehicles (# Vehicle) in the best-found solution.

Based on the obtained results, the proposed ALNS is stable and computationally efficient. All

these instances are solved with a relatively small standard deviation (0.80% on average), and

the average processing time of these instances is less than 1 min (59.9 s).

Furthermore, the data in Table 4.9 and 4.10 show several single-vehicle instances with a

relatively high gap. One of the possible reasons for this is the profit distribution among the

requests. Compared with the multiple-vehicle instances with randomly generated profit in

interval [50, 150], a profit of 40 units is assigned to each request in the single-vehicle instances.

Therefore, the proposed algorithm gets easily stuck into local optima for several single vehicle

instances. We added two local search components to our proposed ALNS algorithm: one is
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Table 4.9: Computational results for challenge single-vehicle instances solved to optimality within 10 h
in Sun et al. [109]

Instance Best Gap (%) STD (%) TimeTL (s) TimeALNS (s)

S AA10 27.14 0.00 0.00 0.2 0.6
S BB10 39.26 0.00 0.00 0.2 0.6
S CC10 57.63 0.00 0.00 0.3 0.7
S DD10 85.88 0.00 0.00 0.3 0.7
S AA15 37.77 0.00 0.00 0.4 1.2
S BB15 99.58 0.00 0.00 0.5 1.6
S CC15 98.29 0.00 0.00 0.6 1.7
S DD15 99.05 0.00 0.00 0.6 1.7
S AA20 73.70 0.00 0.00 0.8 1.9
S BB20 138.05 0.00 0.00 2.0 2.6
S CC20 97.27 0.00 0.00 1.3 2.4
S DD20 182.14 0.00 0.00 2.1 4.1
S AA25 203.01 0.00 0.00 1.6 4.7
S BB25 147.88 0.00 0.00 2.3 4.8
S CC25 226.23 0.60 0.00 12.0 9.9
S DD25 250.16 0.00 2.37 199.7 13.9
S AA30 266.72 0.00 0.00 2.1 8.6
S BB30 274.45 0.00 3.73 2.8 7.4
S CC30 316.39 0.00 1.65 27.6 18.5
S DD30 343.65 0.00 1.04 80.4 24.6
S AA35 278.14 0.00 0.00 5.0 10.9
S BB35 337.55 3.09 0.00 1.0 7.1
S CC35 386.26 0.00 4.65 104.2 23.2
S DD35 410.19 0.00 3.29 338.2 28.9
S AA40 341.74 0.00 0.77 5.8 14.1
S BB40 326.82 0.00 0.00 10.0 10.5
S CC40 464.28 0.00 1.10 942.3 55.2
S DD40 490.92 4.16 1.08 4618.1 42.2
S AA45 361.57 0.00 0.33 5.6 26.0
S BB45 378.90 0.62 0.13 27.9 20.6
S CC45 497.68 0.00 1.42 3422.2 50.8
S DD45 540.17 0.78 3.87 7668.0 62.3
S AA50 430.41 0.00 3.44 9.5 31.1
S BB50 432.10 2.30 2.82 37.4 22.6
S CC50 519.60 0.68 2.64 13913.4 98.0
S DD50 610.07 0.00 3.61 21889.9 79.9
S AA55 436.05 0.00 2.02 18.7 52.0
S BB55 530.84 0.00 2.48 59.0 33.8
S CC55 581.50 0.00 1.87 28429.3 90.7
S AA60 505.02 1.00 0.48 31.7 43.3
S BB60 558.02 0.36 0.04 72.9 39.8
S AA65 576.39 1.43 0.84 30.2 103.6
S BB65 547.84 0.00 4.90 129.7 41.4
S AA70 606.68 0.00 1.19 39.1 86.3
S BB70 558.29 4.54 0.93 351.6 45.4
S AA75 715.53 3.19 0.85 257.6 161.9
S BB75 613.35 3.07 2.44 511.4 65.8

Average 342.56 0.55 1.19 1771.6 31.1
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Table 4.10: Computational results for challenge single-vehicle instances solved by dynamic programming
heuristic (Sun et al. [109])

Instance Best (DPH) Gap (%) STD (%) T imeDPH (s) T imeALNS (s)

S DD55 639.75 1.68 3.78 2754.4 94.2

S CC60 624.95 2.49 1.49 1840.4 165.5

S DD60 713.39 4.52 0.84 3879.8 147.6

S CC65 662.61 0.01 3.83 4054.8 142.9

S DD65 760.32 2.13 4.94 5853.2 170.5

S CC70 681.84 1.82 2.70 4859.0 195.6

S DD70 764.10 0.75 2.13 9581.9 238.5

S CC75 686.68 2.14 0.89 7159.9 153.2

S DD75 835.76 -1.21 3.26 15842.3 290.9

Average 707.71 1.59 2.65 6202.9 177.7

the well-known 2-opt mechanism, which considers exchanging the sequence of two nodes

already linked by a direct arc; the other is called replace, which removes one served request

from the route and replaces it by non-included requests if this replacement yields a higher

objective value. To keep the computational effort at a reasonable level, both of them are

called only at the end of each segment. Moreover, we also check all the feasible moves in

the incumbent neighborhood and keep the best one. One local search operator continues

to be used as long as an improvement is obtained. If there is no improvement, the unused

components are explored. The local search stops when the last local search operator yields no

improvement. In Table 1 in Appendix B, we compare the performances of the proposed ALNS

algorithm with and without these two local search components. We perform experiments on

those single-vehicle instances with gaps between 2% and 4.6%. It shows that additional local

search components barely have an impact on improving the performance of the proposed

ALNS algorithm.

4.6.7 Impact of time windows

For both classes of instances, the time windows of instances in the DD group are twice as wide

as those in the BB group. Because time windows affects the performance of the proposed

ALNS, we present the average performance of each removal and insertion operators for all

instances in the BB and DD groups of both classes. In particular, for each instance, we list

the total running time of each operator (Total time), the number of times that an operator is

used in the algorithm (# Number), the number of times an operator has improved the best

solution (# ImproveBest), the number of times an operator has improved the current solution
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(# ImproveCurrent), and the number of times an incumbent solution worse than the current

solution is accepted (# AcceptWorse). Note that these are average values calculated across

all BB and DD group instances up to 50 requests in Table 4.13 and 4.14, respectively. We

report the average performance of each operator for BB group and DD group instances with

50-75 requests in Table 4.15 and 4.16, respectively. The results show that the performances

of removal operators are almost the same for BB group instances (Table 4.13 and 4.15) and

DD group instances (Table 4.14 and 4.16). In contrast, compared with the instances of the BB

group, the insertion operators need more computation time for instances of the DD group.

Because the time windows considered in instances of the DD group are twice as wide as their

counterpart in instances of the BB group, the selected insertion operator needs to evaluate

more possible insert positions to get the best potential improvement during each iteration.

4.6.8 Significance of time-dependent travel times

We perform several experiments to demonstrate the advantages of considering time-

dependent travel time. Particularly, we generated three different time-independent cases

based on data given in Table 4.2, which are the slow- (TID-Slow), average- (TID-Average),

and fast-speed cases (TID-Fast) by using the lowest, average, and the fastest speeds of their

originally assigned speed profiles, respectively. For each setting, we present in Table 4.17

the objective function value of the best-found solution (Value), objective value of the best-

found solution under the time-dependent settings (TDobj), number of nodes in the best

found solution in which the time window constraints are violated under time-dependent

settings (# VioNum), the percentage of violation (VioRate (%)) (i.e., let # totalVisit be the total

number of pickup and delivery nodes visited in the best-found solution. Then V ioRate(%) =

100 ∗ #V ioNum/#totalV isit), lateness of the best-found solution (Lateness), the traveling

cost of the best-found solution (TravelCost) and total profits collected by the best-found

solution (Profits), assuming that the profit is still collected if the time window is violated. We

list the statistics related to the comparative results under the different speed profile settings in

Table 4.17. Note that these are average values calculated across the single-vehicle instances,

multi-vehicle instances, and all instances, respectively. Detailed, instance-level results can be

found in Table 15-20 in Apprendix C. We see that the best-found solution in the fast-speed case

(where it is assumed that the vehicle can always run on the fastest possible speed) is clearly

over-optimistic, which also meets the high risk of violating the time window constraints. In

contrary, the best-found solution in the slow-speed case is too conservative. Even though no

violation and penalty costs are generated, the quality of the best-found solution is significantly

worse than that of its counterpart under the time-dependent setting. The data in table also
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show that assuming a time-independent relation with the average speed as approximation for

the time-dependent variant is not working out. It leads to 3% of violated time windows and

more than 10% higher routing cost.

4.6.9 Alternative objective functions

In the preceding sections, we have only used the duration to represent the travel cost. This

follows the majority of the literature and makes it possible to compare against the optimal

solutions provided in Sun et al. [109] and Sun et al. [110]. We note that travel cost is dependent

on both duration (e.g., wage of driver) and distance (e.g., fuel consumption). We have

used duration only because distance is also highly correlated to this. However, we realize

that different companies have different weights for the variable cost in terms of distance

and duration costs. Therefore, in this section, we consider an alternative objective function

wherein the cost of a route is a weighted combination of its distance and duration. We report

in Tables 4.18 and 4.19 the performance of the ALNS when optimizing this objective function

under different weights (α is the weight given to duration, β is the weight given to distance)

on two different sets of instances. We note that we still use a fixed travel cost of 100 for using

a vehicle in the multiple vehicle setting.

Tables 4.18 and 4.19 show that the ALNS produces high-quality solutions in the same amount

of time regardless of the weights. As expected an objective that heavily weights distance

traveled leads to shorter routes with longer durations. In the original objective (alpha=1) the

vehicles have an average speed of 1074/732 = 1.47, whereas in the situation of a very low

weight for duration (alpha =0.1) this average speed goes dowen by more than 20% to 1.13.
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Table 4.11: Computational results for multi-vehicle instance considered in Sun et al. [110]

Exact ALNS

Instance LB BestUB T imeexact (s) Best STD (%) T imeALNS (s) Gap (%)

M AA10 262.66 262.66 0.3 262.66 0.00 0.9 0.0

M BB10 222.60 222.60 0.3 222.60 0.00 1.1 0.0

M CC10 372.37 372.37 1.5 372.37 0.00 0.6 0.0

M DD10 271.96 271.96 1.9 271.96 0.00 1.0 0.0

M AA15 520.81 520.81 3.4 520.80 0.00 0.9 0.0

M BB15 554.24 554.24 0.9 554.24 0.00 1.6 0.0

M CC15 684.31 684.31 14.3 684.31 0.00 1.9 0.0

M DD15 606.48 606.48 8.6 606.48 0.00 2.1 0.0

M AA20 706.36 706.97 47.0 706.36 0.24 3.3 0.1

M BB20 843.94 843.94 3.4 843.94 0.00 2.9 0.0

M CC20 964.99 964.99 23.5 965.00 0.00 4.5 0.0

M DD20 942.38 942.38 9.2 942.38 0.00 7.0 0.0

M AA25 1051.88 1052.68 65.8 1051.88 0.00 3.4 0.1

M BB25 1184.67 1184.67 14.3 1184.67 0.00 4.0 0.0

M CC25 1355.72 1355.72 214.6 1355.72 0.00 8.4 0.0

M DD25 1303.20 1303.20 210.0 1303.20 0.08 17.1 0.0

M AA30 1284.11 1284.11 4512.3 1279.92 1.13 5.6 0.3

M BB30 1506.89 1508.29 267.3 1506.89 0.37 6.3 0.1

M CC30 1689.39 1689.77 3544.1 1687.69 0.61 11.0 0.1

M DD30 1627.76 1629.33 9158.2 1627.75 0.35 24.4 0.1

M AA35 1656.81 1658.46 15804.2 1656.81 0.43 5.8 0.1

M BB35 1898.97 1898.97 138.5 1898.97 0.00 5.9 0.0

M CC35 2028.82 2030.72 26082.1 2027.52 0.18 17.2 0.2

M DD35 1960.66 2021.95 36000.0 1999.89 0.49 22.4 1.1

M AA40 1887.74 1889.57 433.4 1877.99 0.28 8.2 0.6

M BB40 2150.70 2150.70 523.1 2150.70 0.13 7.9 0.0

M CC40 2317.31 2356.45 36000.0 2337.87 0.34 25.2 0.8

M DD40 - - 36000.0 2288.32 0.63 29.7 -

M AA45 2259.00 2259.00 1170.0 2259.00 0.82 13.3 0.0

M BB45 2525.08 2525.08 257.9 2525.08 0.77 17.9 0.0

M CC45 - - 36000.0 2617.54 0.85 39.7 -

M DD45 2425.56 2703.40 36000.0 2644.57 0.61 29.0 2.2

Average 1302.25 1315.19 7578.4 1310.97 0.26 10.3 0.2
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Table 4.12: Computational results on multi-vehicle instances with 50-75 requests

Instance Best Avg. STD Time (s) Served # Vehicle

M AA50 2382.86 2368.04 0.76 19.1 43 2

M BB50 2811.01 2755.63 1.66 19.8 44 2

M CC50 2900.53 2887.15 0.44 53.2 49 3

M DD50 2981.62 2972.07 0.24 38.8 50 2

M AA55 2749.24 2661.57 1.82 25.4 47 2

M BB55 3022.66 3002.14 0.55 15.4 55 3

M CC55 3219.65 3176.46 1.10 65.7 54 3

M DD55 3307.22 3236.89 1.55 68.6 53 2

M AA60 2869.56 2870.09 0.18 32.5 57 3

M BB50 3316.43 3289.98 0.77 24.0 60 3

M CC60 3481.61 3446.79 0.54 81.7 60 3

M DD60 3510.05 3479.57 0.78 86.7 59 3

M AA65 3195.79 3168.67 0.29 35.0 61 4

M BB65 3463.66 3396.69 1.48 27.0 61 3

M CC65 3743.19 3716.17 0.62 85.9 63 3

M DD65 3738.84 3702.24 0.53 83.8 65 3

M AA70 3545.38 3540.92 0.22 45.9 67 3

M BB70 3765.20 3670.26 1.43 36.2 66 3

M CC70 4022.77 3957.91 1.36 117.6 70 3

M DD70 4091.04 4057.52 0.42 136.4 69 3

M AA75 3959.73 3937.51 0.29 50.4 72 3

M BB75 4049.40 3995.48 0.67 34.1 74 4

M CC75 4249.11 4228.19 0.54 134.5 73 4

M DD75 4330.78 4274.36 0.94 119.7 74 3

Average 3446.14 3408.01 0.80 59.9 60.25 2.92

Table 4.13: Average performance of each operator for all BB group instances (time window width 60) of
both classes with up to 50 requests

Removal RR WTR EDR LPR WR ROR SR

Total time 0.013 0.035 0.029 0.032 0.069 0.014 0.028

# Number 624.8 564.2 731.8 775.8 802.7 420.7 538.2

# ImproveBest 2.2 0.8 1.4 1.3 1.4 1.6 1.0

# ImproveCurrent 124.2 88.2 151.2 189.3 197.6 88.8 84.4

# AcceptWorse 237.1 218.7 344.1 327.9 348.3 129.8 174.9

Insertion SI GI DGI RI SIN DGIN RIN

Total time 0.215 2.595 2.619 2.827 0.171 1.447 1.488

# Number 478.6 818.8 829.4 868.6 389.3 527.6 546

# ImproveBest 0.7 2.4 2.3 2.9 0.3 0.5 0.7

# ImproveCurrent 68.4 213.4 218.7 242.4 32.1 71.0 77.6

# AcceptWorse 162.6 345.2 345.3 380.7 134.6 203.2 209.2
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Table 4.14: Average performance of each operator for all DD group (time window width 120) instances of
both classes with up to 50 requests

Removal RR WTR EDR LPR WR ROR SR

Total time 0.011 0.036 0.028 0.022 0.08 0.008 0.016

# Number 713.5 719.2 772.9 776.1 791.7 435.4 626.6

# ImproveBest 3.1 1.8 1.4 1.4 2.6 1.7 1.7

# ImproveCurrent 142.7 159.9 157.9 172.6 183.1 78.4 108.1

# AcceptWorse 206.1 210.3 271.1 271.9 258.1 106.4 158.6

Insertion SI GI DGI RI SIN DGIN RIN

Total time 0.437 6.987 6.927 7.190 0.188 2.018 2.221

# Number 574.8 1003.9 1019.3 1056.5 324.4 421.6 434.7

# ImproveBest 0.9 3.3 4.3 4.7 0.1 0.2 0.1

# ImproveCurrent 89.3 263.8 266.7 290.5 21.2 34.6 36.7

# AcceptWorse 159.3 322.9 332.2 345.4 80.3 118.7 123.7

Table 4.15: Average performance of each operator for all BB group (time window width 60) instances of
both classes with 55 requests to 75 requests

Removal RR WTR EDR LPR WR ROR SR

Total time 0.025 0.056 0.048 0.036 0.172 0.009 0.031

# Number 1010.8 1051.8 1338.8 1354.4 1300.3 456.1 816.6

# ImproveBest 6 2.2 2.2 4 4.3 1.9 3.6

# ImproveCurrent 107.7 105.4 176.5 206.7 188.8 52.8 72.5

# AcceptWorse 195.2 251.1 384.4 335.9 305 62.3 143.2

Insertion SI GI DGI RI SIN DGIN RIN

Total time 0.599 10.440 10.314 12.550 0.483 4.346 4.658

# Number 657 1453.6 1463.2 1804.8 486.5 713.7 750

# ImproveBest 1 5.1 6 10.6 0.2 0.6 0.7

#ImproveCurrent 40.7 218.4 212.9 310.9 22.2 49.3 56

# AcceptWorse 95.1 356.9 368.9 539.8 60.1 121.1 135.2
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Table 4.16: Average performance of each operator for all DD group (time window width 120) instances of
both classes with 55 requests to 75 requests

Removal RR WTR EDR LPR WR ROR SR

Total time 0.032 0.058 0.049 0.045 0.185 0.002 0.036

# Number 1159.4 1140.8 1287.4 1337.4 1261.2 564.0 877.9

# ImproveBest 8.6 3.1 2.0 4.6 4.1 2.1 4.4

# ImproveCurrent 134.1 135.9 162.5 197.5 171.5 58.7 109.3

# AcceptWorse 192.9 196.1 246.6 263.8 245.3 64.2 155.9

Insertion SI GI DGI RI SIN DGIN RIN

Total time 1.253 45.310 45.089 49.813 0.552 9.917 10.731

# Number 662.3 1760.4 1764.5 1970.1 324.9 571.7 574.2

# ImproveBest 1.4 7.2 7.1 12.6 0.1 0.3 0.2

# ImproveCurrent 36.3 262.9 267.9 336.5 9.7 27.5 28.7

# AcceptWorse 76.9 338.3 346.3 416.3 32.2 82.3 72.5

Table 4.17: Results under various speed settings

Speed Settings Value TDobj # VioNum VioRate (%) Lateness TravelCost Profits

Single-vehicle instances

TID-Slow 113.63 189.21 0 0.00 0.00 338.76 526

TID-Average 399.42 399.02 2 3.15 13.96 600.97 1001

TID-Fast 593.30 499.36 24 39.00 609.93 708.14 1210

TD 510.93 510.93 0 0.00 0.00 539.07 1050

Multi-vehicle instances

TID-Slow 2002.03 2252.67 0 0.00 0.00 1495.28 4065

TID-Average 2764.03 2728.21 3 2.74 31.35 1357.78 4344

TID-Fast 3033.26 2852.55 19 17.78 333.21 1281.00 4372

TD 2868.93 2868.93 0 0.00 0.00 1195.60 4320

All Instances

TID-Slow 1057.83 1220.94 0 0.00 0.00 917.02 2296

TID-Average 1581.73 1563.62 2 2.95 22.66 979.38 2673

TID-Fast 1813.28 1675.96 22 28.39 471.57 994.57 2791

TD 1689.93 1689.93 0 0.00 0.00 867.34 2685
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Table 4.18: Average performance of various alternative objective functions for all BB group instances

Optimized Vehicle Comp. Objective if solution is evaluated with different (α, β)

with (α, β) Obj. Dur. Dist. Profit cost Time (s) (1.0,0.0) (0.9,0.1) (0.8,0.2) (0.7,0.3) (0.6,0.4) (0.5,0.5) (0.4,0.6) (0.3,0.7) (0.2,0.8) (0.1,0.9) (1.0,1.0)

(1.0, 0.0) 1297.2 732.4 1074.1 2129.5 100.0 18.3 1297.2 1263.0 1228.8 1194.6 1160.5 1126.3 1092.1 1057.9 1023.8 989.6 223.1

(0.9, 0.1) 1263.2 730.5 1065.2 2127.2 100.0 19.8 1296.7 1263.2 1229.8 1196.3 1162.8 1129.4 1095.9 1062.4 1029.0 995.5 231.5

(0.8, 0.2) 1230.0 731.8 1059.0 2127.2 100.0 20.3 1295.5 1262.7 1230.0 1197.3 1164.6 1131.9 1099.1 1066.4 1033.7 1001.0 236.5

(0.7, 0.3) 1197.3 723.2 1032.4 2109.7 96.4 20.4 1290.1 1259.1 1228.2 1197.3 1166.4 1135.5 1104.6 1073.7 1042.8 1011.8 257.7

(0.6, 0.4) 1168.0 728.4 1006.4 2104.0 96.4 18.8 1279.2 1251.4 1223.6 1195.8 1168.0 1140.2 1112.4 1084.6 1056.7 1028.9 272.8

(0.5, 0.5) 1140.6 736.4 1000.4 2105.4 96.4 20.0 1272.7 1246.2 1219.8 1193.4 1167.0 1140.6 1114.2 1087.8 1061.4 1035.0 272.2

(0.4, 0.6) 1114.5 742.6 987.5 2100.5 96.4 19.2 1261.5 1237.0 1212.5 1188.0 1163.5 1139.0 1114.5 1090.1 1065.6 1041.1 274.0

(0.3, 0.7) 1090.3 765.1 988.8 2111.9 100.0 19.0 1246.8 1224.4 1202.1 1179.7 1157.4 1135.0 1112.6 1090.3 1067.9 1045.5 258.0

(0.2, 0.8) 1071.6 781.0 961.8 2097.3 100.0 19.3 1216.3 1198.2 1180.1 1162.1 1144.0 1125.9 1107.8 1089.7 1071.6 1053.6 254.5

(0.1, 0.9) 1056.1 834.0 938.4 2091.1 107.1 21.1 1150.0 1139.6 1129.1 1118.7 1108.3 1097.8 1087.4 1077.0 1066.5 1056.1 211.6

(1.0, 1.0) 516.3 320.8 466.9 1375.4 71.4 21.6 983.2 968.6 953.9 939.3 924.7 910.1 895.5 880.9 866.3 851.7 516.3

Table 4.19: Average performance of various alternative objective functions for all DD group instances

Optimized Vehicle Comp. Objective if solution is evaluated with different (α, β)

with (α, β) Obj. Dur. Dist. Profit cost Time (s) (1.0,0.0) (0.9,0.1) (0.8,0.2) (0.7,0.3) (0.6,0.4) (0.5,0.5) (0.4,0.6) (0.3,0.7) (0.2,0.8) (0.1,0.9) (1.0,1.0)

(1.0, 0.0) 1447.0 669.8 1055.4 2206.1 89.3 64.6 1447.0 1408.5 1369.9 1331.3 1292.8 1254.2 1215.7 1177.1 1138.5 1100.0 391.6

(0.9, 0.1) 1409.0 669.2 1041.8 2204.7 89.3 70.6 1446.3 1409.0 1371.7 1334.5 1297.2 1259.9 1222.7 1185.4 1148.1 1110.9 404.5

(0.8, 0.2) 1372.1 674.0 1036.0 2207.8 89.3 70.2 1444.6 1408.3 1372.1 1335.9 1299.7 1263.25 1227.3 1191.1 1154.9 1118.7 408.5

(0.7, 0.3) 1336.7 666.2 1005.1 2193.8 89.3 68.4 1438.3 1404.4 1370.6 1336.7 1302.8 1268.9 1235.0 1201.1 1167.2 1133.3 433.2

(0.6, 0.4) 1303.1 673.7 1002.9 2197.7 89.3 65.2 1434.8 1401.8 1368.9 1336.0 1303.1 1270.1 1237.2 1204.3 1171.4 1138.5 431.9

(0.5, 0.5) 1270.9 679.8 993.1 2196.6 89.3 66.5 1427.5 1396.2 1364.9 1333.5 1302.2 1270.9 1239.6 1208.2 1176.9 1145.6 434.4

(0.4, 0.6) 1241.2 684.7 975.1 2189.4 89.3 65.1 1415.5 1386.4 1357.4 1328.3 1299.3 1270.3 1241.2 1212.2 1183.2 1154.1 440.4

(0.3, 0.7) 1213.7 710.8 967.0 2193.1 89.3 65.1 1393.0 1367.4 1341.8 1316.1 1290.5 1264.9 1239.3 1213.7 1188.0 1162.4 426.0

(0.2, 0.8) 1189.5 726.4 963.0 2194.5 89.3 62.4 1378.9 1355.2 1331.5 1307.8 1284.2 1260.5 1236.8 1213.2 1189.5 1165.8 415.8

(0.1, 0.9) 1166.9 729.7 951.6 2185.6 89.3 61.4 1366.6 1344.4 1322.2 1300.0 1277.8 1255.6 1233.4 1211.2 1189.0 1166.8 414.9

(1.0, 1.0) 626.2 340.6 509.5 1551.4 75.0 62.8 1135.8 1118.9 1102.0 1085.1 1068.2 1051.3 1034.4 1017.5 1000.6 983.8 626.3
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4.7 Conclusions

We proposed a metaheuristic for the time-dependent profitable pickup and delivery problem

with time windows (TD-PPDP-TW). To derive high-quality solutions within a reasonable

computation time, we proposed techniques, such as approximate evaluation of objective

function values, tabu lists, and hybrid stopping criterion, to improve the basic ALNS method.

Moreover, seven tailored removal operators and 7 tailored insertion operators were designed

to cope up with the characteristics of the proposed problem. To the best of our knowledge,

this is the first time an ALNS has been proposed for a time-dependent pickup and delivery

problem.

To evaluate its performance, we applied the proposed ALNS to the TD-PPDP-TW. The

evaluation was based on solution quality and computation time on two classes of TD-PPDP-

TW instances from the literature. Compared with the solutions provided by exact and/or

heuristic methods in the literature, the proposed algorithm can generate promising results in a

reasonable amount of computation time. Regarding future work, Turkeš et al. [112] reviewed

the ALNS literature and carry out a meta-analysis to gain insights into the importance of

the adaptive layer in ALNS, recently. They conclude that, on average, the addition of an

adaptive layer in an ALNS has a very little positive impact. It would also be interesting to

evaluate the contribution of each components of our proposed ALNS. Moreover, additional

aspects may be considered such as a heterogeneous vehicle fleet, multiple vehicle depots,

and stochastic aspects (demands, customers and travel time). Investigation of a fair profit

reallocation scheme could also be an interesting research direction.
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Chapter 5

A scenario-based approach for the time-dependent

laundry routing problem with stochastic pickup

demands

“Always bear in mind that your own

resolution to succeed is more

important than any other.”

Abraham Lincoln

5.1 Introduction

Managing a reliable laundry program, to ensure full availability of clean textiles such as bed

sheets, linens, blankets and curtains, has always been a complicated, time consuming and

costly task for most hotels and restaurants. Most hospitality firms outsource this process to

a commercial laundry provider. In addition to cleaning linens, the laundry business has to

arrange the logistical processes (e.g., the collection of dirty laundry and the delivery of clean

linen to the customers) as efficiently as possible.

Many laundry service providers work with weekly (or twice a week) schedules. As an

example, in week A, the dirty laundry of that week is collected. Then it is cleaned during

the week, and during week B, the clean laundry is brought back to the customer (e.g., hotel)

and at that same time the dirty laundry of week B is collected. In these systems, the amount

of clean linen to be delivered is known. However, most of the time it is not known beforehand

how much dirty linen has to be picked up as this varies depending on, for example, the

number of reservations the hotel or restaurant had during the past week. However, the

laundry service provider can make predictions based on historic pick up volumes. Another

interesting feature is that while the number of items picked up and delivered is, on average,
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the same, the volume of dirty linen is typically greater than that of clean, folded linen.

In this chapter, we examine the operations of a laundry service provider. Its main objective is

to deliver the known amount of clean textiles to hotels and restaurants while also collecting

the unknown amount of used textiles from the same customers in the most efficient way. The

pickup quantity of each hotel or restaurant is considered stochastic, but the laundry service

provider can make a reasonable prediction based on each restaurant’s or hotel’s historical

performance. Each restaurant or hotel indicates a time window in which they want to be

served, which is dependent on when their (cleaning) staff is present to handle the exchange

of textiles. It can happen that, when a vehicle of the laundry service arrives at one customer’s

location, the actual quantity of textile to pick up minus its delivery volume exceeds the

remaining vehicle capacity. In that case, certain types of recourse actions must be taken. In

this chapter, the effectiveness of multiple recourse actions is investigated. For example, the

vehicle can return to the depot to unload all dirty textiles before resuming service. Due to the

additional travel times generated by these recourse actions, time windows of the remaining

customers along the planned delivery route may be violated.

At the same time, with the increasing volume of freight transport and limited road capacity,

road congestion has become a big challenge in almost all modern cities. Therefore, travel times

are fluctuating over the course of the day. In this study, we also intend to improve the pickup

and delivery efficiency of a laundry service provider while considering these varying travel

times on the road network. In order to capture the variation of the travel time during a day,

we model it as a time-dependent travel time with a step-wise speed function assigned to each

edge linking two nodes.

The scientific contributions of this chapter are summarized as follows:

• We consider a laundry delivery service by taking stochastic pickup demands into

account and introduce a two-stage stochastic programming formulation to the time-

dependent laundry (pickup and delivery) routing problem considering stochastic

pickup demands.

• To handle the uncertainty in the pickup demands of each request, we propose a sample

average approximation method together with an adaptive large neighborhood search

(ALNS) algorithm. Moreover, four different types of recourse policies are considered to

reduce the number of failures caused by pickup demand uncertainty.

• A number of computational experiments are performed, and a comparison with a pure
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deterministic solution approach shows that on average more than 50 % cost savings can

be achieved by using a stochastic solution approach.

The remainder of this chapter is organized as follows. The relevant literature of the existing

work is presented in Section 5.2. We provide a detailed problem description and describe four

recourse actions in Section 5.3. A two-staged mathematical formulation for our problem is

introduced in Section 5.4, followed by the solution methods described in Section 5.5. In Section

5.6, we report the test instances and the corresponding computational results, respectively.

Finally, Section 5.7 concludes the chapter with the main findings and brief discussion of future

research questions.

5.2 Literature review

The time-dependent laundry routing problem with stochastic pickup demands (TDLRPSPD)

studied in this chapter generalizes the vehicle routing problem with simultaneous pickup

and delivery (VRPSPD) introduced by Min [73] by extending it with time windows, time-

dependent travel time, and stochastic demands. It also has its roots in the stochastic routing

and time-dependent routing literature. In this section, we briefly review the related literature.

Many different heuristic methods have been proposed to solve the VRPSPD. Dethloff [31]

proposed an extension of the cheapest insertion heuristic to the VRPSPD. Several tabu

search algorithms for VRPSPD were proposed in Montané and Galvao [76], Chen and

Wu [17], Bianchessi and Righini [12], and Crispim and Brandão [24]. Later on, Ai and

Kachitvichyanukul [1], Gajpal and Abad [43], and Subramanian et al. [106] proposed several

population-search-based heuristics to solve VRPSPD. Besides heuristic solution methods,

the VRPSPD has also been solved by exact methods. A branch-and-price method for the

VRPSPD was designed by Dell’Amico et al. [28] to solve instances with up to 40 customers.

Subramanian et al. [107] and Subramanian et al. [108] proposed a branch-and-cut algorithm

and a branch- cut-and-price method, respectively, which are both capable of solving instances

with up to 100 customers.

Only a few researchers have considered time window constraints in the VRPSPD. Angelelli

and Mansini [2] introduced this problem and developed a branch-and-price algorithm to solve

it. This approach was able to obtain optimal solutions on small-sized instances with up to 20

customers. Mingyong and Erbao [74] and Wang and Chen [124] proposed genetic algorithms

for the vehicle routing problem with simultaneous pickup and delivery and time windows
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(VRP-SPD-TW). A parallel simulated annealing method was introduced for VRP-SPD-TW by

Wang et al. [123]. Liu et al. [68] developed a metaheuristic based on iterated local search

for VRP-SPD-TW. To strengthen the search, they applied an adaptive neighborhood selection

mechanism embedded into the improvement steps and the perturbation steps of iterated

local search, respectively. Their results showed that the proposed approach outperformed

the previous methods. Interested readers are referred to Battarra et al. [11] and Koç et al. [61]

for more details.

In the real world, routing problems usually include one or several uncertain elements.

According to Oyola et al. [80], demand, the presence of customers, travel times, service

time and profit are sometimes modeled as stochastic in the routing literature. The problem

discussed in this chapter is one variant of the vehicle routing problem with stochastic

demands, which has been well studied in the literature. Overviews of the research in this

area can be found in Gendreau et al. [47] and Henchiri et al. [53]. Only a few articles have

considered routing problems with both time windows and stochastic demands. Chang [16]

proposed a two-stage stochastic programming with recourse model for the VRPTWSD. In the

first stage, a set of a priori delivery routes is planned. The actual customer demands are then

revealed in the second stage. A detour-to-depot recourse policy is deployed in cases of route

failures. The objective is to plan a set of a priori delivery routes that minimize the carrier’s

expected total cost, which is composed of the deterministic cost of the first-stage solution, the

expected cost of recourse actions in the second stage, and the expected penalty cost for time

window violations. Lei et al. [65] also formulated a two-stage stochastic programming with

recourse model for the VRPTWSD to minimize the carrier’s expected total cost. Recently,

Zhang et al. [131] studied the VRPTWSD by taking account of on-time delivery issue and

different recourse policies. Three probabilistic models have been proposed for the VRPTWSD

to address on-time delivery from different perspectives.

Recent literature offers a few contributions to the VRPSPD with stochastic demands.

Dimitrakos and Kyriakidis [32], Minis and Tatarakis [75], and Pandelis et al. [81] studied the

single-vehicle case of the VRPSPD with stochastic demands, such that the vehicle followed

a predefined customer sequence and returned to the depot whenever failure occurred.

Wollenberg et al. [126] presented a two-stage stochastic programming model with recourse

as well as an L-shaped based algorithm to the single vehicle case of the VRPSPD with

stochastic demands, while the visiting sequence of a customer needs to be decided. For the

multiple-vehicles case, Zhu and Sheu [133] investigated the generation of a priori routes for

vehicles that simultaneously pick up and deliver items with stochastic demands. A failure-

140



A scenario-based approach for the TDLRPSPD

specific cooperative recourse strategy is proposed to tackle the potential failures. Under this

strategy, a pair of vehicles is scheduled to serve customers sequentially: a lead vehicle and a

partner vehicle. If the lead vehicle fails, it resumes its route to serve its remaining assigned

customers. The partner vehicle assists the lead vehicle in completing its service after finishing

its own assigned customer service. Therefore, the traveling cost can be reduced by vehicle

cooperation. But this strategy is not applicable to our problem. In the time-dependent laundry

routing with stochastic pickup demands, each customer has a chosen time window to be

served. Untimely response to the failure influences customer service satisfaction level and

consequently reduces market share. Furthermore, the existing literature considers only the

single commodity situation. In contrast, our problem considers to pickup and delivery of

multiple commodities because most restaurants and hotels prefer to use textiles with their

own logos (such as uniforms). A logo provides a unique identity, which plays a vital role in

the amplification of a hotel or restaurant’s brand-recognition value.

Besides, the literature related to VRPSPD with other uncertainties is also limited. Zhang

et al. [132] studied the VRPSPD with stochastic travel time. However, they did not take into

account the time window constraints, and a new scatter search approach was proposed for it

by incorporating a new chance-constrained programming method. Shi et al. [101] modeled a

home health care routing problem as VRP-SPD-TW with stochastic travel and service times.

A stochastic simulation method and a simulated annealing algorithm were integrated to solve

this problem. In Table 5.1, there is a summary of surveyed papers dealing with the VRPTWSD

and the VRPSPD with uncertainties.

Table 5.1: Summary of papers dealing with the VRPTWSD and the VRPSPD with uncertainties

Author Time Pickup and Stochastic/TD Recourse Probability Evaluation

Windows Delivery Travel time Action Distribution

Chang [16] 3 7 7/7 DTD Discrete uniform Analytically

Lei et al. [65] 3 7 7/7 DTD Poisson Analytically

Zhang et al. [131] 3 7 7/7 DTD, PR Discrete uniform Analytically

Dimitrakos and Kyriakidis [32] 7 3 7/7 DTD Normal Analytically

Minis and Tatarakis [75] 7 3 7/7 DTD Normal Analytically

Pandelis et al. [81] 7 3 7/7 DTD Normal Analytically

Wollenberg et al. [126] 7 3 7/7 DTD Normal Analytically

Zhu and Sheu [133] 7 3 7/7 CP Discrete uniform Analytically

Zhang et al. [132] 7 3 3/7 DTD Discrete uniform Analytically

Shi et al. [101] 3 3 3/7 CCP Discrete uniform Simulation

This chapter 3 3 7/3 OS, DTD, RO, PR Poisson Simulation

Additionally, limited literature has addressed time-dependent routing with uncertainty. Most

of it considers time constraints in the context of stochastic time-dependent travel times.

However, several assumptions are needed to make the analytical calculation computationally

tractable. For instance, the distribution of the arrival time is assumed to be known before
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the planning (e.g., gamma distribution by Taş et al. [111]), which may not hold in real life.

Therefore, in this chapter, we consider only time-dependent travel time. Lecluyse et al.

[64] applied queueing theory to consider a vehicle routing problem with stochastic time-

dependent travel times (VRP-STT). A tabu search procedure was developed to minimize

the weighted sum of the mean and the standard deviation of the total travel time. Nahum

and Hadas [78] developed a chance-constrained model for the VRP-STT. They designed an

efficient savings algorithm. In this procedure, simulation was used to estimate each route’s

probability of being the quickest. The objective function values of the solutions yielded by

this algorithm were on average 10% higher than optimal solutions. Taş et al. [111] studied a

vehicle routing problem with stochastic time-dependent travel times and soft time windows.

A mathematical model was developed to consider both efficiencies for service and reliability

for customers. A tabu search and an ALNS were both derived to solve the problem. Verbeeck

et al. [118] considered the stochastic time-dependent orienteering problem with time windows

(S-TDOP-TW), a stochastic version of an ant colony optimization algorithm was specifically

developed for this problem. Moreover, three prominent complications and an estimation

algorithm were also introduced to calculate the departure and arrival time distribution.

Xiang et al. [127] studied a dynamic dial-a-ride problem considering stochastic and time-

dependent travel speed regarding the transport of the elderly, disabled people or patients

other than freight requests (DARP-STT). A fast heuristic was introduced, and several intensive

computational simulations were used to evaluate the solutions. Another similar work was

presented by Schilde et al. [98], and historical accident data were used to deduce the stochastic

deviations of the time-dependent travel speeds. Moreover, a dynamic stochastic variable

neighborhood search and a multiple scenario approach were introduced. To the best of our

knowledge, this chapter is the first attempt to consider the stochastic demands under the

context of a deterministic time-dependent routing problem. In Table 5.2, there is a summary

of all the problem variants discussed above.

Table 5.2: Summary of related problems

Problem Time Pickup and Stochastic Stochastic Time- Recourse
type Windows Delivery Travel time Demand dependent Action

VRPSD 3 DTD, PR
VRPTWSD 3 3 DTD
VRPSPD 3

VRP-SPD-TW 3 3

VRP-STT 3 3

DARP-STT 3 3 3

S-TDOP-TW 3 3 3

TDLRPSPD 3 3 3 3 OS, DTD, RO, PR
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5.3 Problem description

The problem discussed in this chapter is defined on a graph G = (V,A), where V =

N ∪{0, n+ 1} is the set of nodes and A is the set of all feasible arcs. Nodes 0 and n+ 1 denote

the origin and destination depot of the vehicle, and other nodes N = {1, ..., n} represent the

requests. These requests are served by a fleet of homogeneous vehicles with capacity Q. A

service time si is incurred when visiting a request i ∈ N . Each request i ∈ N is associated with

a time window [ei, li] during which the delivery and pickup should take place. The vehicle

has to wait until time ei but is allowed to arrive later than time li. If a driver arrives at node

i later than its latest service start time li, a proportional penalty cost must be paid and the

parameter β is the cost for one unit of time window violation. Moreover, each request has

two types of demands: a non-negative and deterministic volume di to be delivered and a non-

negative and stochastic volume p̃i to be collected. p̃i is assumed as an independent random

variable with a Poisson distribution. The actual pickup demand of each request i is revealed

only when a vehicle arrives. For each arc (i, j) ∈ A, a speed profile is associated, that divides

the planning horizon into time zones, and each time zone has a constant speed. We assume

that these time-dependent travel speeds are known from historical data. Let τij(t) represent

the time-dependent travel time for each arc (i, j) ∈ A, which depends on the departure time

t at node i. The set of feasible arcs can be described as A = {(i, j) ∈ V × V : i 6= j and

ei + si + τij(ei + si) ≤ lj}.

In this problem, a failure may occur when a vehicle arrives at a request location and the

revealed pickup demand minus its delivery demand exceeds the remaining vehicle capacity.

This causes a failure that requires a recourse action. In this paper, we consider the following

four recourse opportunities:

• Outsourcing (R0): In this case, a vehicle starts from the origin depot 0, serves its

assigned requests following a predefined sequence, and returns to the destination depot

n + 1. Whenever, this vehicle is out of its capacity to perform the pickup operation, it

will only perform the delivery. The unmet pickup demand is assumed to be served by

an outsourced service at a certain cost, which depends on the amount of unmet pickup

demand (see Figure 5.1(a));

• Detour-to-depot (R1): Assume that if a vehicle arrives at a request n3, it first satisfies

delivery demand D3. If its remaining capacity is not enough to pick up the revealed

pickup demand P3 of request n3, the vehicle returns to the depot to unload its collected

pickup quantities. After unloading at the depot, the vehicle resumes service at the

143



Chapter 5

request n3 where the failure occurred (see Figure 5.1(b));

• Reschedule the customers (R2): Similar to R0, requests are visited following the

predefined sequence. If, when serving a request, its revealed pickup demand exceeds

the remaining capacity of the vehicle after satisfying the delivery demand of this

request, then the pickup demands will be completely skipped. Once all the requests are

visited by following the predefined sequence, the requests with unmet pickup demands

will be re-visited (see Figure 5.1(c)). More specifically, those requests are inserted after

the given route in a greedy order by favoring customers that increase the sum of the

routing cost and recourse cost the least;
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Figure 5.1: An example of different recourse actions

• Preventive policy (R3): Inspired by Yang et al. [129], a preventive replenish policy is

also developed for our problem. Under the preventive replenish policy, a vehicle may

return to the depot to unload before a failure occurs. After serving one customer (see

Figure 5.1(d)), the vehicle decides whether or not to return to the depot to unload based

on the amount of its remaining capacity and the estimated pickup demands of the next
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customer. If this remaining capacity is smaller than a certain value (e.g., 25th percentile

of the pickup demands distribution in a scenario sample set.), then the vehicle returns

to the depot to unload; otherwise it proceeds directly to the next customer along the

planned route. Similar toR1, the vehicle also returns to the depot to unload its collected

pickup quantities, if a failure occurs after the pickup demand of a request is observed.

5.4 A two-stage stochastic model

In this section, we will introduce a two-stage stochastic model to capture the stochastic

elements of the TDLRPSPD. Several assumptions are made in this section: (1) requests’ pickup

demands are the only stochastic elements, and other elements such as requests’ delivery

demands and locations of requests are deterministic; (2) a request’s pickup demand can be

split if a failure happens; (3) a request’s actual pickup demand is only revealed when the

vehicle arrives at that request’s location.

Conceptually, planning decisions are made in two stages. The first stage decides upon the

serving sequence of each route by its own transport resource. Its objective is to plan a set of

a priori pickup and delivery routes which minimize the expected routing cost. In the second-

stage, when realizations of the random variables are revealed, recourse actions are used to

compute the additional cost that must be added to the set of routes derived in the first stage.

Moreover, in this problem, each request i ∈ N must be visited exactly once in the intended

routing plan. However, if unexpected high pickup loads are observed, recourse actions need

to take place and a second visit to a customer is allowed.

First, let ω = (pωi )i∈N be a random variable vector, where pωi is the stochastic pickup demand

for request i. pωi is defined with a probability distribution function and the real demand value

is only known when the vehicle arrives at the customer. Let pi denote the expected pickup

demands of request i. As a result, a route failure may occur along a route if the total collected

pickup demands plus remaining delivery demands exceed the vehicle capacity.

In addition, throughout this chapter, the following variables are used:

• tki : If vehicle k serves request node i, the departure time of vehicle k at node i;

• yki : If vehicle k serves request node i, the value is 1; otherwise, it is equal to 0;

• xkij : If vehicle k travels directly from node i to node j, the value is 1; otherwise, it is equal

to 0;
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• Dk
i : If vehicle k serves request node i, the amount of remaining delivery volume carried

by vehicle k when departing from node i;

• P ki : If vehicle k serves request node i, the amount of the collected pickup volume carried

by vehicle k when departing from node i.

Then the two-stage stochastic model can be formulated as follows:

min
x
{
∑
k∈K

[ct(t
k
n+1 − tk0) + Zyk0 ] + β

∑
k∈K

∑
i∈N

[(tki − (li + si)y
k
i ]+ + E[T (x,ω)]} (5.1)

subject to

∑
j∈N

xk0j = yk0 ∀k ∈ K, (5.2)

∑
i∈N

xki,n+1 = ykn+1 ∀k ∈ K, (5.3)

yk0 ≤ 1 ∀k ∈ K, (5.4)

yk0 = ykn+1 ∀k ∈ K, (5.5)∑
k∈K

∑
i∈N∪{0}

xkij =
∑
k∈K

ykj ∀j ∈ N,∀k ∈ K, (5.6)

∑
k∈K

ykj = 1 ∀j ∈ N,∀k ∈ K, (5.7)

∑
i∈N∪{0}

xkif −
∑

j∈N∪{n+1}

xkfj = 0 ∀f ∈ N,∀k ∈ K, (5.8)

Dk
i + P ki ≤ Q ∀i ∈ V, ∀k ∈ K, (5.9)

P k0 = Dk
n+1 = 0 ∀k ∈ K, (5.10)

Dk
0 =

∑
i∈N

yki di ∀k ∈ K, (5.11)

P kn+1 =
∑
i∈N

yki pi ∀k ∈ K, (5.12)

Dk
i − dj ≤ Dk

j +M(1− xkij) ∀i, j ∈ V, ∀k ∈ K, (5.13)

P ki + pj ≤ P
k
j +M(1− xkij) ∀i, j ∈ V, ∀k ∈ K, (5.14)

tki + τij(t
k
i ) + sj ≤ tkj +M(1− xkij) ∀i, j ∈ V, ∀k ∈ K, (5.15)

tki ≥ (ei + si)y
k
i ∀i ∈ V, ∀k ∈ K, (5.16)
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Dk
i , P

k
i ≥ 0 ∀i ∈ V, ∀k ∈ K, (5.17)

xkij , y
k
i ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ K (5.18)

The objective function (5.1) minimizes the sum of the total expected routing cost and the

recourse costs. In the recourse function, x is the vector of routing decisions and the realization

of random pickup demands is described by ω. Constraints (5.2)-(5.5) guarantee that the route

of each vehicle k starts from the origin depot and ends at the destination depot if vehicle k is

used. Constraints (5.6)-(5.7) ensure that every request is served at most once in the first stage.

Constraints (5.8) are classical flow conservation constraints. Constraints (5.9) ensure that the

sum of the remaining delivery load plus the expected collected pickup load of vehicle k is

lower than the vehicle capacity, when departing from node i. Constraints (5.10) ensure each

vehicle leaves the depot when the pick-up load is null and returns to the depot with all their

deliveries distributed. Constraints (5.11) guarantee that each vehicle leaves the depot fully

loaded with the products to be distributed. Constraints (5.12) guarantee that when vehicles

return to the depot they are fully loaded with the expected pickup quantities. Constraints

(5.13)-(5.14) establish that if arc (i, j) is visited by vehicle k, then the quantity to be delivered by

the vehicle has to decrease by dj while the quantity pickup has to increase by pj . Constraints

(5.15) ensure its departure times from locations respect travel and service times. Constraints

(5.16) ensure that the departure time at each node of the request i is larger than its earliest

service start time ei plus its service time si. Finally, Constraints (5.17) are non-negative

conditions, while Constraints (5.18) are binary constraints.

However, the two-stage stochastic model with the preventive policy (R3) is slightly different

from its counterparts with other recourse actions. This is because, for each request i, we

use an estimate of the pickup demands p̂i rather than using pi. Under the preventive policy

(R3), a vehicle can return to the depot to unload, if the amount of its remaining capacity is

smaller than the estimated pickup demands of the next customer. Let Dk
0 (i) be the amount

of remaining delivery volume carried by vehicle k when vehicle k departs from request i and

returns to the depot 0 to unload. As a result, we formulate the problem as follows:

min
x
{
∑
k∈K

[ct(t
k
n+1 − tk0) + Zyk0 ] + β

∑
k∈K

∑
i∈N

[(tki − (li + si)y
k
i ]+ + E[T (x,ω)]}
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subject to (5.2)-(5.3), (5.6)-(5.18), with the following extra constraints:

yk0 ≤ 2 ∀k ∈ K, (5.19)

ykn+1 ≤ 1 ∀k ∈ K, (5.20)

Dk
i ≤ Dk

0 (i) +M(1− xki0) ∀i ∈ V, ∀k ∈ K, (5.21)

Q− (Dk
i + P ki ) ≥ dj + q̂j +M(1− xkij) ∀i, j ∈ V, ∀k ∈ K, (5.22)

yk0 ∈ {0, 2} ∀i ∈ V, ∀k ∈ K. (5.23)

Constraints (5.19)-(5.20) ensure that, in the first stage, origin depot 0 is not allowed to be

visited more than twice but the destination depot n + 1 can only be visited at most once.

Constraints (5.21) guarantee that, if vehicle k travels back to the origin depot 0, the amount of

its delivery volume when departing from 0 equals its counterpart at its previous visited node

i. Constraints (5.22) ensure that, after serving node i, the remaining capacity of vehicle k is

larger than the sum of delivery demands dj and estimated pickup demands p̂j .

The second-stage recourse cost E[T (x,ω)] depends on the considered recourse action. If a

failure occurs, skipping some requests’ pickup demands is allowed by using outsourcing

policy (R0). We introduce a new decision variable λωi , which equals 1 if the pickup demands

of request i are skipped and equals 0 if the pickup demands of request i are collected in the

second stage solution. Let α be the penalty per unit of pickup demands that are not collected.

The second stage cost of using R0 can be expressed as:

T (x,ω) = α
∑
i∈N

piλ
ω
i (5.24)

While, for the rest of recourse actions (R1, R2, and R3), a request i served by vehicle k is

allowed to be visited twice, if failures occur. A real departure time tkωi is derived in the second

stage. Moreover, for each vehicle k, the real departure time from the depot tkω0 in the second

stage is equal to the expected departure time tk0 . Let R(x,ω) be the travel cost increase on∑
k∈K ct(t

k
n+1 − tk0), which can be expressed as:
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R(x,ω) =
∑
k∈K

ct((t
kω
n+1 − tkω0 )− (tkn+1 − tk0))

=
∑
k∈K

ct((t
kω
n+1 − tk0)− (tkn+1 − tk0))

=
∑
k∈K

ct(t
kω
n+1 − tkn+1) (5.25)

Similarly, the total penalty cost for time window violations for all requests in the second stage,

can be expressed as β
∑
k∈K

∑
i∈N [(tkωi − (li + si)y

k
i ]+. Let W (x,ω) be the increase on the

total penalty cost for time window violations, which can be expressed as:

W (x,ω) = β
∑
k∈K

∑
i∈N

{[(tkωi − (li + si)y
k
i ]+ − [(tki − (li + si)y

k
i ]+} (5.26)

Therefore, the second stage cost of using R1, R2 or R3 is then:

T (x,ω) = min{R(x,ω) +W (x,ω)} (5.27)

5.5 Solution methodology

In this section, we describe our solution methodology for the time-dependent laundry routing

with stochastic pickup demands.

5.5.1 The sample average approximation method

The sample average approximation method (SAA) is a well-known sampling-based technique

to solve stochastic discrete optimization problems. Instead of summing over all possible

scenarios, we use Monte Carlo Sampling to sample a subset of scenarios according to the

given probabilities. Following the procedure of Kleywegt et al. [60], the proposed problem

is repeatedly solved M times by the SAA method in order to obtain statistical estimates

of upper and lower bounds of the objective value and estimates of the variances of these

bounds. More specifically, in each iteration, a set of scenarios Ω is introduced to estimate
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E[T (x,ω)] and to approximate the optimal solution by the average objective value over those

scenarios 1
|Ω|

∑
ω∈Ω T (x, ω). Then, a new set Ω

′
of scenarios is used to evaluate the optimality

gap between the solution found before and the true optimal solution of the associated SAA

problem. Normally, the sample size Ω
′

is chosen much larger than Ω (Ω � Ω
′
). Since Ω is

used in the optimization to find the candidate solution, having a large set slows down the

procedure a lot, and Ω
′

is just used to evaluate the objective function value of the candidate

solution, which is in general much faster.

After solving these associated M separate SAA problems, M objective function values, say

v1, ..., vM and M candidate solutions x̂1...x̂M are provided. Therefore, the average of the

optimal objective values obtained in M iterations, described as x̂Ω, and its corresponding

variance is shown as follows:

v̂MΩ =
1

M

M∑
m=1

vmΩ (5.28)

σ2
v̂MΩ

=
1

M(M − 1)

M∑
m=1

(vmΩ − v̂Ω)2 (5.29)

It is well-known that v̂MΩ provides a statistical estimate for a lower bound on the optimal value

of the original problem. Moreover, for any feasible solution x̂ ∈ X , its objective function value

provides an upper bound that can be estimated using the set Ω
′

of newly generated scenarios.

This estimated upper bound is denoted as v̂Ω
′ (x̂). Thus, its value and corresponding variance

are shown as below:

v̂Ω
′ (x̂) =

1

|Ω′ |
∑
ω∈Ω

′

vω(x̂) (5.30)

σ2
Ω
′ (x̂) =

1

|Ω′ |(|Ω′ − 1|)
∑
ω∈Ω

′

(vω(x̂)− v̂Ω
′ (x̂))2 (5.31)

The quality of x̂ can be evaluated by calculating the SAA gap εSAA(Ω,Ω
′
) and its associated

variance σ2
εSAA(Ω,Ω

′
)

as follows:
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εSAA(Ω,Ω
′
) = v̂Ω − v̂Ω

′ (x̂) (5.32)

σ2
εSAA(Ω,Ω

′
)

= σ2
v̂Ω

+ σ2
Ω
′ (x̂) (5.33)

If the optimality gap and the variance of the gap estimator are sufficiently small, the generated

solution is accepted. The detailed SAA procedure is described as follows (Algorithm 6):

Algorithm 6: The SAA procedure
input : Number of iterations M , initial sample size for solution generation |Ω| and sample size

solution evaluation for |Ω′ | such that |Ω′ | � |Ω|
output: Candidate solution x̂∗

1 Generate a sample set Ω
′
.

2 for Iteration m = 1→M do
3 Generate a sample set Ω and apply ALNS to solve the SAA problem by considering all the scenarios

ω ∈ Ω. The objective value vmΩ and the solution x̂m are obtained.
4 Determine the upper bound v̂mΩ of the solution x̂m and its associated variance σ2

v̂mΩ
by (5.28) and

(5.29) respectively.
5 Update the solution x̂∗ that has the best value of the upper bound v̂Ω and variance σ2

v̂Ω
after m

iterations.
6 Update the lower bound v̂

Ω
′ (x̂∗) and its associated variance σ2

Ω
′ (x̂
∗) using (5.30) and (5.31)

respectively.
7 Calculate the SAA gap εSAA(Ω,Ω

′
) and its corresponding variance σ2

εSAA(Ω,Ω
′
)

by (5.32) and

(5.33).
8 Return the best solution x̂∗

5.5.2 The ALNS heuristic

We tailored the ALNS algorithm described in Chapter 4 to solve the SAA problems of the

time-dependent laundry routing problem with stochastic pickup demands, as discussed in

Section 5.5.1 (for more details, see Algorithm 7). In particular, most of the effort in tailoring the

algorithm is the objective function evaluation. The performance of the algorithm is enhanced

by adapting several operators in a stochastic setting.

We introduced seven removal operators in Chapter 4. Except for Least Profit Removal (LPR)

and Worst Travel Duration Removal (WTR), the rest of them can be used for this problem.

These five removal operators can be categorized as deterministic removal operators and

stochastic removal operators. The deterministic removal operators include Random Removal

(RR), Early Departure Removal (EDR), and Route Removal (ROR). For more details, the reader

is referred to Chapter 4. The stochastic removal operators consist of Shaw Removal (SR) and
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Worst Removal (WR).

• Worst Removal (WR): This operator removes several requests one at a time by

determining which removal has the largest positive effect on the expected objective

function value. Given a solution, the cost of a node i is the difference in the objective

function between the current solution with i and the same solution without serving i.

• Shaw Removal (SR): The objective of the SR operator is to remove nodes that are similar

in terms of certain aspects. The algorithm randomly selects a node i and adds it to L.

Let lij = −1 if node i and node j are in the same vehicle route, and lij = 1 otherwise.

This operator selects the node j∗ = argminj∈N {Π1dij + Π2|ti− tj | + Π3lij + Π4|di−

dj | + Π5|p̄i − p̄j |}, where Π1–Π5 are normalized weights, p̄i and p̄j is the expected

pickup demands of node i and j given the probability distribution, respectively.

Algorithm 7: Pseudo-code of the ALNS with SA
input : Removal operators D, insertion operators Ψ, initial temperature T , cooling rate κ
output: A feasible solution Xbest

1 Generate an initial solution by using the Greedy insertion algorithm
2 Initialize probability for each destroy operator d ∈ D and each insertion operator ψ ∈ Ψ
3 Xcurrent←Xbest←Xinit
4 repeat
5 Choose a removal operator d∗ ∈ D with probability ξd/

∑|D|
i=1 ξi and apply it to Xcurrent to get

the partially destroyed solution Xd
6 Choose an insertion operator ψ∗ ∈ Ψ with probability ξψ/

∑|Ψ|
i=1 ξi and apply it to Xd to get a new

solution Xnew
7 if obj(Xnew) > obj(Xcurrent) then
8 Xcurrent←Xnew
9 if obj(Xcurrent) > obj(Xbest) then

10 Xbest←Xcurrent

11 else
12 Let ν← e(obj(Xnew)−obj(Xcurrent))/T

13 Generate a random number ε ∈ [0, 1]
14 if ε < ν then
15 Xcurrent←Xnew

16 T ← κT
17 Update probabilities using the adaptive probability adjustment procedure
18 j← j + 1

19 until the maximum number of iterations is reached or no improvement is found after a predefined number
of iterations

Instead of evaluating the objective function value, all the insertion operators, presented in

Chapter 4, are naturally adapted to compute the changes in routing and recourse costs over

|Ω| scenarios at every iteration. In particular, for a given routing solution, we calculate the

change in the routing and recourse cost of the modified solution include i and its counterpart
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where i is not served (removed) on the sample set Ω.

5.6 Computational results

This section presents the results of computational experiments performed to assess the

performance of the proposed methodology. We first describe the instance characteristics

and the parameters used in Section 5.6.1. In Section 5.6.2, we test the preventive policy

with different expected pickup demands. In Section 5.6.3, we assess the value of stochastic

information and compare different recourse policies. The impact of different outsourcing cost

is presented in Section 5.6.4.

5.6.1 Data and experimental setting

To the best of our knowledge, this chapter is the first study of this specific vehicle routing

problem in the laundry business. There are no benchmark instances to evaluate the

performances of our SAA-based approaches. Therefore, we adapt the existing benchmark

instances from Wang and Chen [124] to consider stochastic pickup demands and time-

dependent travel times. These instances are generated by revising the benchmark problems of

the vehicle routing problem with time windows from Solomon [104]. They are divided into six

classes that differ by the geographical distribution of the customers (R1, R2, C1, C2, RC1 and

RC2). The customers are clustered in the C type instances, and randomly distributed in the R

type instances. In RC type instances, the customers are partly clustered and partly randomly

distributed. Moreover, Type 1 instances have narrow time windows and Type 2 instances

have large time windows. All instances have 100 customer vertices and we also generate 25

and 50 customer instances by just considering the first 25 and 50 vertices in the benchmark

instances. In total, we have 54 instances for experiments. Moreover, the coordinates and

delivery demand of each vertex are the same as in the benchmark instances from Solomon

[104] and Wang and Chen [124]. The pickup demand of each vertex is generated according

to a Poisson distribution having a mean value equal to the pickup demand from Wang and

Chen [124]. However, the vehicle capacity in the instances from Wang and Chen [124] was too

large for our problem, and the failure probability was too small so that failure would rarely

occur. Suppose, for each vertex i, the mean value of its pickup demand is denoted as p̄i. The

realization of its pickup demand is rarely over 2p̄i in the generated scenarios set, because it

follows the Poisson distribution. Therefore, we have reduced the capacity of the vehicle while

ensuring that maxi∈N{2p̄i} ≤ Q.
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Road congestion is handled by a so-called speed model which consists of different speed

profiles. It is used to determine the travel time between two nodes at a specific departure

time. This speed model for the laundry routing problem with stochastic pickup demands is

based on the speed model of Verbeeck et al. [117] for the TDOP and Dabia et al. [25] for the

TDVRPTW. Furthermore, without loss of generality, we assume that breakpoints are the same

for all speed profiles as congestion tends to happen around the same time regardless of the

speed profiles’ type. Each speed profile has four non-overlapping time periods with constant

speed, reflecting two congested periods and two periods with normal traffic conditions. To

generate an instance, we consider five speed profiles (see Table 5.3) and randomly assign one

of these speed profiles to each arc.

Table 5.3: Speed Profiles

Congestion Morning Normal Evening Normal

description peak peak

Time periods 7 am-9 am 9 am-5 pm 5 pm-7 pm 7 pm-9 pm

1.SS 0.5 0.81 0.5 0.81

2.NSMP 0.67 1.33 0.88 1.33

3.NSEP 0.88 1.33 0.67 1.33

4.FSTP 0.85 1.5 0.85 1.5

5.HS 1.0 2.0 1.0 2.0

The parameters used in the computational experiments are given in Table 5.4. The ALNS-

specific parameters are assigned the same values as in Chapter 4 for solving the deterministic

TDPPDPTW. The settings used also worked well on the laundry routing problem with

stochastic pickup demands. We assume a driving time unit equals 1 unit of cost. Moreover,

we assume that every unit of outsourced pickup demand corresponds to 100 units of violation

cost. Moreover, we consider 40 units of cost per unit of time window violation.

Table 5.4: Parameters used in the methodology

Notation Definition Value

|Ω′ | The size of the large set of scenarios 10000

|Ω| The size of the small set of scenarios 60

α Cost for outsourcing 100

β Cost for time window violation 40

Z fix cost of vehicle 100

M Number of SAA iterations 10

Kleywegt et al. [60] mentioned that both, |Ω
′
| and |Ω|, need to be chosen in a way to consider

the trade-off between solution quality and computational complexity of the SAA problems.
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Hence, to evaluate the SAA gap in our computational experiments, we used |Ω
′
| = 10,000.

This value proved to be a good estimate for a related routing problem (i.e., Production Routing

Problem under Demand Uncertainty) (Adulyasak et al., 2015). In addition, we consider |Ω| =

60. Li et al. [67] shows that this value is a good trade-off between solution quality and CPU

time of the SAA problem, considering a Dial-a-Ride Problem with Stochastic Travel Times and

Stochastic Customers.

5.6.2 The test of preventive policy using different expected pickup demands

Under the preventive policy, the vehicle returns to the depot if the probability for a failure

at the next customer is higher than a certain percentage. For each customer i, we take

the 5th percentile, 10th percentile, 25th percentile, 50th percentile and 75th percentile of the

pickup demand distribution in the scenario sample set |Ω
′
| as the expected pickup demands,

respectively. If the remaining capacity is below the difference of the expected pickup demands

and delivery demands, the driver returns directly to the depot and then resumes the service

along the planned route. The comparative results are presented in Table 5.5. The columns

“Obj.” describe the costs of the objective function values. We also report the CPU time in

seconds in the T ime(s) columns. It shows that using the 25th percentile of the pickup demand

distribution (i.e. the probability of failure should be larger than 75%) performs the best in most

of the 25 requests instances, except instances cdp102-25, cdp202-25 and rcdp202-25. In contrast

the 75th percentile of the pickup demands value performs the worst. This indicates that the

preventive policy becomes ineffective, if the expected pickup demands are too conservative

(in the 75th percentile you return to the depot if there is a 25% probability of failure). The

driver then would return to the depot more often than usual, which would be unnecessary in

most of the scenarios. In addition, preventive policy also becomes ineffective, if the expected

pickup demands underestimated the real pickup demands (in the 5th percentile you return to

the depot only if there is a 95% probability of failure).
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Table 5.5: Comparison of using different expected pickup demands in preventive policy

5th 10th 25th 50th 75th

Instances Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

cdp101-25 2831.5 35.2 2831.8 34.9 2831.8 33.6 2833.3 41.3 2839.2 47.5

cdp102-25 2753.7 77.9 2753.9 86.3 2745.6 84.5 2757.9 84.0 2761.0 92.9

cdp103-25 2751.0 218.9 2750.4 216.4 2747.3 217.9 2770.6 238.0 2766.7 231.4

cdp201-25 3044.6 52.5 3043.6 22.4 3043.6 54.6 3047.3 27.2 3045.7 26.4

cdp202-25 2828.3 173.9 2828.3 167.5 2828.3 156.0 2828.0 200.6 2827.4 176.3

cdp203-25 2827.9 209.4 2827.9 225.2 2827.9 225.4 2833.8 203.7 2828.2 280.6

rcdp101-25 1498.3 55.4 1490.7 49.1 1490.7 48.9 1513.3 76.7 1547.1 51.4

rcdp102-25 1442.7 71.4 1442.7 66.1 1450.3 68.3 1473.5 104.3 1490.7 100.1

rcdp103-25 1494.2 98.1 1442.3 101.4 1424.7 94.4 1480.6 125.7 1489.8 122.9

rcdp201-25 1705.3 114.2 1705.3 125.1 1705.3 119.7 1761.5 147.4 1778.6 160.6

rcdp202-25 1531.9 149.5 1536.8 185.1 1278.2 167.9 1259.1 87.3 1271.5 100.7

rcdp203-25 1346.2 198.0 1344.8 193.9 1360.7 182.1 1397.3 189.1 1388.5 236.1

rdp101-25 1708.3 28.9 1708.3 29.2 1708.3 24.5 1708.3 34.0 1708.3 34.4

rdp102-25 1413.8 40.5 1413.8 43.9 1413.8 46.5 1416.6 50.3 1421.8 54.3

rdp103-25 1283.5 65.0 1248.4 61.5 1242.7 65.5 1243.1 82.7 1243.9 80.9

rdp201-25 1382.6 85.4 1402.6 74.9 1362.6 87.5 1402.6 90.9 1482.1 84.5

rdp202-25 1245.1 210.3 1245.1 196.4 1245.1 201.1 1265.3 240.5 1271.5 240.5

rdp203-25 1213.6 295.1 1210.4 319.7 1211.3 326.8 1238.5 311.5 1235.7 315.0

Average 1905.7 121.1 1901.5 122.2 1884.4 122.5 1901.7 129.7 1911.0 135.4
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5.6.3 The value of a stochastic solution and recourse policy comparison

To assess the value of stochastic information, we obtain a stochastic solution Xs using our

SAA framework, as well as a deterministic solution Xd, in which all uncertain pickup

demands are replaced by their expected values. The average results over three runs of the

SAA algorithm are presented. Detailed, instance-level results can be found in the Appendix

in Tables 21-24. Next, we compare the routing costs (first stage), as well as the recourse costs

(second stage) for both solutions. The expected recourse cost for a solution is obtained through

Algorithm 2, using a large scenario sample size |Ω
′
| =10000. We first compare Xd with Xs

using recourse R0 − R3 on instances with different size. The average performance of all the

instances with 25, 50 and 100 requests is summarized in Table 5.6. Then, we compare the

average performance of different recourse actions on instances with different types (cdp, rcdp

and rdp) in Table 5.7. The columns “Deterministic” summarize the results obtained from the

feasible and deterministic solutions found by the ALNS proposed in Chapter 4. The columns

“Stochastic” summarize the results obtained by applying the proposed SAA algorithm to the

TDLRPSPD. We also show the percentage improvement in columns Imp(%) obtained by our

SAA over the deterministic ALNS.

As can be observed in Table 5.6 and Table 5.7, the total costs of the deterministic solutions

are significantly higher than the costs of the stochastic solutions. By using our proposed

SAA approach, compared to the deterministic solutions, the overall average cost reduction

of 54.7%, 54.1%, 54.2% and 50.9% can be realized by using R0, R1, R2 and R3, respectively.

The differences in first-stage routing costs are small but the second-stage routing costs make a

significant difference. The main changes stem from vehicle-customer assignment decisions

and the sequence of service. Moreover, note that the first stage cost of the deterministic

solution, xd, is independent of the used recourse action. However, its second-stage cost

changes due to its dependency on different recourse policies.

Table 5.6 shows that preventive policy (R3) outperforms the other three recourse policies

among the instances within 50 requests since the objective value of using R3 is the lowest.

In contrast, R0 and R1 are the worst policies for instances with 25 requests and 50 requests.

However, for instances with 100 requests, the customer reschedule policy (R2) outperforms

the other three recourse policies. R3 is the worst policy among the instances with 100 requests,

which is an interesting finding.
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Table 5.6: Average comparison of the results on the instances with different size

Instances Deterministic Stochastic
Size 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

R0 25 1853.6 2750.1 4603.7 1911.7 25.5 1937.1 110.2 48.8
50 3673.6 8132.6 11806.2 3882.2 75.3 3957.5 418.8 57.5
100 6888.8 11802.8 18691.6 7283.2 172.9 7456 1679.8 57.7

Aver. 4138.7 7561.8 11700.5 4359 91.2 4450.2 736.3 54.7

R1 25 1853.6 2462.0 4315.6 1885.4 31.4 1916.8 42.2 40.2
50 3673.6 11304.0 14977.6 3853.9 114.2 3968.2 528.5 58.6
100 6888.8 16591.0 23479.8 7264.7 237.4 7502.0 2085.3 63.3

Aver. 4138.7 10119.0 14257.7 4334.7 127.7 4462.3 885.3 54.1

R2 25 1853.6 2148.6 4002.1 1898.0 31.7 1929.6 139.5 39.3
50 3673.6 10002.0 13675.6 3851.8 94.7 3946.5 600.6 60.4
100 6888.8 21862.1 28751.0 7190.4 252.4 7442.8 2157.7 62.8

Aver. 4138.7 11337.6 15476.2 4313.4 126.2 4439.6 965.9 54.2

R3 25 1853.6 2006.2 3859.8 1868.5 15.8 1884.4 122.5 37.2
50 3673.6 10283.7 13957.3 3823.1 77.8 3901.0 559.3 55.6
100 6888.8 14102.3 20991.1 7189.6 324.8 7514.3 2135.2 59.8

Aver. 4138.7 8797.4 12936.0 4293.7 139.5 4433.2 939.0 50.9
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Table 5.7 shows that R1, R2 and R3 outperform the other three recourse policies among the

C type instances, the RC type instances and R type instances, respectively. In contrast, R2

performs the worst in C type instances and R type instances. For RC type instances, R0 is the

worst recourse policy.

We also confirm that preventive policy R3 outperforms the policy R1 and R2, if the selected

expected pickup demands are less conservative. In the extreme case, policyR3 is degenerated

to policy R1, when the expected pickup demands are set as 0. Moreover, policy R2 is more

sensitive to time window violation cost. If the failure happens too early, instead of re-visiting

after serving the rest of the customers, it is better to re-visit as soon as possible to decrease the

time window violation cost.

Table 5.7: Average comparison of the results on the instances with different type

Instances Deterministic Stochastic
Type 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

R0 C 6591.6 6525.4 13117.0 6741.3 39.6 6780.9 860.0 40.6
RC 2997.0 10845 13842.0 3392.5 151.5 3544 662.1 70.7
R 2827.4 5315.1 8142.5 2943.4 82.5 3025.8 686.2 52.7

Aver. 4138.7 7561.8 11700.5 4359 91.2 4450.2 736.3 54.7

R1 C 6591.6 8521.3 15112.9 6707.8 44.7 6752.5 1024.4 40.9
RC 2997.0 15903.9 18900.9 3373.3 228.6 3601.9 847.8 70.1
R 2827.4 5931.8 8759.2 2922.9 109.7 3032.6 783.8 51.3

Aver. 4138.7 10119.0 14257.7 4334.7 127.7 4462.3 885.3 54.1

R2 C 6591.6 21856.7 28448.3 6742.9 113.5 6856.3 1076.7 57.0
RC 2997.0 7511.6 10508.7 3264.3 165.4 3429.7 877.0 58.0
R 2827.4 4644.4 7471.8 2933.0 99.9 3032.9 944.1 47.5

Aver. 4138.7 11337.6 15476.2 4313.4 126.2 4439.6 965.9 54.2

R3 C 6591.6 6471.6 13063.2 6696.2 158.8 6855.0 1106.7 34.7
RC 2997.0 14748.4 17745.4 3287.8 182.2 3470.0 851.2 68.2
R 2827.4 5172.1 7999.6 2912.5 81.6 2994.1 859.1 49.1

Aver. 4138.7 8797.4 12936.0 4298.8 140.9 4439.7 939.0 50.6

5.6.4 The impact of different outsourcing costs

To show the impact of different outsourcing costs, we also conducted experiments on all the

54 instances by using R0 with α = 100. A comparison between R0 with two different α and

the other three recourse policies with β = 40 is provided in Table 5.8. We provide the total

number of instances in which the objective function value of the stochastic solution derived by

policy R0 is better than the objective function values of the other recourse policies in column

“#better(R0)”. We also count the number of instances such that using R0 is outperformed

by the other policy in column “#worse(R0)”. The results show that the outsourcing unit
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cost (α = 500) is relatively higher than the time window violation cost (β = 100). If we

decrease the outsourcing unit cost to 100 (α = 100), the outsourcing policy R0 becomes the

most attractive policy compared to other three policies.

Table 5.8: The comparison between R0 with different α and other policies with β = 40

Comparison #better(R0) #worse(R0)

α = 500 R0 vs. R1 23 30

β = 40 R0 vs. R2 28 25

R0 vs. R3 20 33

α = 100 R0 vs. R1 39 14

β = 40 R0 vs. R2 47 6

R0 vs. R3 32 21

5.7 Conclusions and future work

We addressed a practical transportation problem in the laundry business, where pickup

demand uncertainty is also taken into consideration. We modeled the problem as a two-stage

stochastic problem and implemented a hierarchical, scenario-based sample approximation

method, in combination with the ALNS heuristic algorithm, to take travel time uncertainty

into account. Moreover, four types of recourse policies are considered. The computational

results on instances with up to 100 requests reveal that, compared to a pure deterministic

solution approach using expected pickup demands, cost savings of on average more than

50% can be achieved, which indicates significant reduction in expected operational costs.

Although some interesting results were obtained, ample opportunities exist for future work.

One extension could involve modeling the uncertainty of the customer presence and customer

service time into this problem. Besides, our approach assumes that the underlying probability

distributions of data are precisely known beforehand. In reality, the exact probability

distribution of historical data is not known. Another direction could be using a robust scenario

approach to solve this problem.
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Conclusion

“Therefore, just as water retains no

constant shape, so in warfare there

are no constant conditions.”

Sun Tzu

.

At the moment of writing this chapter, the whole world is under the pressure of the global

prevalence of the COVID-19 epidemic. It fundamentally affects global logistics on a scale

unseen in recent times. On the one hand, more restricted customs regulations result in

longer waiting times at the border, and movement restrictions lead to lack of capacity for

last-mile fulfillment, which brings in more challenges for logistics organizations. On the

other hand, amid COVID-19 impact, many countries are experiencing supply pressure due

to panic buying by consumers. E-commerce companies also continue to meet the increasing

demand for daily supplies by the consumers. For instance, the Walmart Grocery application

hit all-time-high downloads in the United States (Reportlinker [87]). As a result, logistics

providers need to look for innovative and effective transportation solutions to respond to new

conditions and sustain their business operations. We all believe the COVID-19 emergency

will pass eventually. However, finding a balance between consumers’ delivery expectations

and maintaining profitability will still be one of the biggest challenges for most e-commerce

companies and logistical retailers in the pro-COVID era.

In addition, in classical route planning the travel time between two customers is assumed to

be a constant value, such as a distance metric or an average travel-time estimate throughout a

day. This assumption is too simplistic to accurately model travel times because planners have

to take into account congestion issues. The travel time between two customers can often vary

significantly during the day due to external factors such as traffic congestion or rush hours.
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Therefore, this motivates modeling time-dependent travel times, which means that the travel

time between two customers depends on the departure time at the first customer. This leads

to a more realistic vehicle trip planning process.

Therefore, in this thesis, we investigated two variants of the vehicle routing problem with

time windows that consider time-dependent travel times. One is the time-dependent pickup

and delivery problem with time windows, which also considers different degrees of flexibility

of the customers selection and departure times. The other one is the time-dependent laundry

routing problem, which also models the uncertainty of pickup demands. Throughout this

thesis we assumed that each link in the network is assigned with a time-dependent travel

time function and we have full knowledge of this function which results from the predictable

traffic congestion. We further assumed that the first-in-first-out property is respected, which

means, for every link, a vehicle that departs earlier must arrive earlier than a vehicle that

departs at a later moment on the same link.

The remainder of the chapter is organized as follows. In Section 6.1, we respond to the research

questions we proposed in Chapter 1 by discussing the main conclusions from Chapters 2-5.

In Section 6.2, we highlight the general directions for future research.

6.1 Discussion

Research question 1. Which exact and heuristic methods are effective to manage pickup and

delivery service under time-dependent environment?

In Chapters 2 and 3, different models and exact algorithms were proposed to solve the

problem. More specifically, an arc-based mixed-integer program (MIP) was first presented

for a single-vehicle problem in Chapter 2, which was extended to multiple-vehicle problems

in Chapter 3. Then, a tailored labeling algorithm and a branch-and-price based framework

were proposed in Chapters 2 and 3, respectively. As expected, these two exact algorithms

performed significantly better than did directly solving the proposed MIP with optimization

software (i.e., Gurobi 5.6). The tailored labeling algorithm was capable of solving single-

vehicle problem instances with up to 150 locations (75 pickup and delivery requests)

to optimality. The branch-and-price-based framework was able to solve multiple-vehicle

problem instances with up to 45 freight requests (90 locations). However, the arc-based

formulation could determine optimal solutions for single-vehicle instances with up to 30

requests and could not find optimal solutions for multiple-vehicle instances with 20 or 25
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requests.

In Chapter 2, we also developed a restricted dynamic programming heuristic to reduce the

computation time needed to solve large-size instances. According to the obtained results,

32 instances out of the 34 instances could be solved to optimality in short computation

time. Moreover, in Chapter 4, we developed an adaptive large neighborhood search (ALNS)

heuristic for one variant of the multiple-vehicle problem studied in Chapter 3. We made ten

removal and five insertion operators, which were adapted or inspired from the literature.

Instances with up to 75 requests (150 locations) were solved quickly.

Research question 2. What are the benefits and advantages of taking fluctuating travel times

into account while planning the routes in pickup and delivery services?

We performed several experiments to demonstrate the advantages of considering time-

dependent travel time in Chapter 4. Particularly, we generated three different time-

independent solution approaches, the slow- (TID-Slow), average- (TID-Average), and fast-

speed (TID-Fast) cases by using the lowest, average, and fastest speeds of their originally

assigned speed profiles, respectively, as the estimated fixed speed during the day. We saw that

the best-found solution in the fast-speed case (where it is assumed that the vehicle can always

run on the fastest possible speed) was clearly over-optimistic, which also met the high risk of

violating the time window constraints. On the contrary, the best-found solution in the slow-

speed case was too conservative. Even though no violation and penalty costs were generated,

the quality of the best-found solution was significantly worse than that of its counterpart

under the time-dependent setting. The results also showed that assuming a constant travel-

time relation with the average speed as approximation of the fixed speed during the day did

not work out. It led to 3% of violated time windows and more than 10% higher routing cost

than in cases in which time-dependent travel times were considered in the route optimization

phase.

Research question 3. What is the value of different degrees of flexibility in pickup and

delivery service when fluctuating travel times are considered?

In Chapter 2, we studied four variants of the time-dependent pickup and delivery problem

with time windows and considered different degrees of flexibility in driver start time and

requests selection. Moreover, we derived relationships between objective function values

of optimal solutions, such that the objective function values of the variant with the least
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flexibility were smaller than the values of its counterpart with more flexibility. We next

quantified the relative differences in these objective function values. Specifically, for instances

wherein the variant with the least flexibility could be solved to optimality, we calculated

the percentage improvement in objective function value for a given variant with respect to

the variant with the least flexibility. Moreover, we showed that the variant with the most

flexibility led to a significant increase in profits. This suggests that there is significant value

for a carrier in moving away from publishing a fixed schedule to which they must adhere.

We also saw that no relationship can be derived between variants with different types of

flexibility, as sometimes one yields a higher objective function value and sometimes the other.

We also noted that there seems to be a correlation between the number of requests and these

differences. The larger the number of requests, the smaller the gains associated with adding

flexibility.

Research question 4. Is a pickup and delivery service still efficient and effective when

information regarding pickup demand is uncertain during the planning process?

Finally, in Chapter 5, we investigated an important process for the commercial laundry

business, where the pickup demands are uncertain at the moment of planning, given

corresponding distributions. The pickup demands depend on how many customers a hotel

or restaurant had in the previous days, and the amount is not known to the laundry

provider untill the moment it arrives at the hotel or restaurant. We developed a two-stage

stochastic programming with recourse model for this problem. We also extended the ALNS

algorithm proposed in Chapter 4 of this thesis and embedded it into a sample average

approximation method to obtain a heuristic solution. The ALNS operators were updated to

account for stochastic elements of the problem. We solved instances with up to 100 requests.

Moreover, four types of recourse policies were proposed. Compared to a pure deterministic

solution approach using expected pickup demands, the computational results showed that

cost savings of on average more than 50% can be achieved.

6.2 Further research directions

The research presented in this thesis can be extended in multiple directions. In this thesis,

we made several simplifying assumptions because of the enormous complexity of real-

life systems and limited computing resources available to tackle real-life problems. For

instance, we considered time-dependent travel times, which excels at capturing recurrent

traffic situations such as daily rush hours. However, we did not model rare events such as
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large unexpected traffic jams. In general, the empirical data are not sufficient to measure the

real probability distribution of these events. Thus, robust optimization or distributionally

robust optimization can be used to consider both uncertain and time-dependent travel times

and the development of appropriate algorithms could be an interesting direction for further

research.

In three of the four chapters we focused on operational decision support tools for static

problems, in which all the required information, such as available vehicles and customers’

location and demands, are entirely known before carrying out service. However, in the actual

service process, many unexpected events (e.g., presence of the customers or drivers) may lead

to difficulties in executing a static plan. Thus, considering dynamic aspects of the problem and

developing fast and efficient algorithms could be an interesting research question. In addition,

such dynamic algorithms may be used as recourse actions within methodologies focused on

stochastic variants of the problem.

From a methodological point of view, the exact algorithm presented in Chapters 2 and 3 can

be improved by adding appropriate valid inequalities to tighten the lower bound. In addition,

because most of the processing effort is spent in solving the pricing problem, stronger valid

dominance criteria need to be determined to speed-up the algorithm.

Moreover, recent years have seen a huge surge in information and data collection while

logistics operations are carried out. This data-rich operating environment calls for data-driven

approaches while conducting pickup and delivery services. New transport planning and

scheduling systems will be developed using big data to forecast delivery routes (for tactical

planning) and using real-time traffic information and availability of unloading zones (for

operational planning) for planning and scheduling.

In addition, to make urban transportation more efficient and sustainable, investing in more

environmentally friendly and safe modes of transportation such as electric vehicles (EVs) is

becoming a necessity. In fact, EVs now represent a credible alternative to more conventional

engines. However, EVs are currently facing several weaknesses related to limited driving

range, long charging times, the availability of a charging infrastructure, and high purchasing

costs. Therefore, the models given in Chapter 2, 3 and 5 can be extended by integrating

operational considerations associated with EVs.
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Appendix A: Mathematical formulation

Similar to the mathematical formulation proposed in Sun et al. [110], yki , i ∈ N , is denoted as

a binary variable set to 1 if node i is visited by vehicle k; 0 otherwise. xkij , i ∈ N , is a binary

variable set to 1 if arc (i, j) is traversed by vehicle k; 0 otherwise. The cost per unit of route

duration is denoted ct. We also define Qki , i ∈ N, k ∈ K as a non-negative integer that is an

upper bound on the amount of capacity at node i. Therefore, we formulate the TD-PPDP-TW

as the following mixed-integer program:

max
∑
k∈K

[
∑
i∈NP

piy
k
i − ct(tk2n+1 − tk0)− Zyk0 ] (1)

subject to

∑
j∈NP

xk0j = yk0 ∀k ∈ K, (2)

∑
i∈ND

xki,2n+1 = yk2n+1 ∀k ∈ K, (3)

∑
k∈K

ykj ≤ 1 ∀j ∈ NP ∪ND, (4)

∑
j∈N\{0}

xkij −
∑

j∈N\{0}

xkn+i,j = 0 ∀i ∈ NP ,∀k ∈ K, (5)

∑
i∈N\{2n+1}

xkij = ykj ∀j ∈ NP ∪ND, (6)

∑
i∈N\{2n+1}

xkif −
∑

j∈N\{0}

xkfj = 0 ∀f, i, j ∈ NP ∪ND, ∀k ∈ K, (7)

tki + τij(t
k
i ) + sj ≤ tkj +M(1− xkij) ∀i, j ∈ NP ∪ND, ∀k ∈ K, (8)

tkn+i ≥ tki ∀i ∈ NP , ∀k ∈ K, (9)

(ei + si)y
k
i ≤ tki ≤ (li + si)y

k
i ∀i ∈ N,∀k ∈ K, (10)

Qki + qj ≤ Qkj +M(1− xkij) ∀i, j ∈ N,∀k ∈ K, (11)

max{0, qi} ≤ Qki ≤ min{Q,Q+ qi} ∀i ∈ N,∀k ∈ K, (12)

xkij , y
k
i ∈ {0, 1} ∀i, j ∈ N,∀k ∈ K. (13)

Constraints (2) and (3) guarantee that the route of vehicle k starts from the origin depot and

ends at the destination depot if vehicle k is used. Constraints (4)-(6) ensure that every request
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is served at most once, and its pickup and delivery nodes are visited by the same vehicle.

respectively. Flow conservation is confirmed by Constraints (7). Constraints (8) ensure the

departure time from each location respects travel time and service time. Constraints (9) ensure

that the pickup node is visited before the delivery node for each request. Constraints (10)

ensure that the departure time at each node of the request should be within the given time

window (if the request is served). Constraints (11) and (12) are capacity constraints of vehicles.
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Appendix B: Potential improvement by local search
Table 1: Improvement by local search

Without Local search With Local search

Instance Best Gap(%) Time (s) Gap(%) Time (s)

S BB35 337.55 3.09 7.1 3.09 7.3

S DD40 490.92 4.16 42.2 2.62 46.6

S BB50 432.1 2.30 22.6 2.30 22.9

S DD65 760.32 2.13 170.5 2.61 173.9

S BB70 558.29 4.54 45.4 4.76 45.9

S CC70 681.84 1.82 195.6 3.45 197.7

S AA75 715.53 3.19 161.9 3.19 165.4

S BB75 613.35 3.07 65.8 3.24 68.8

S CC75 686.68 2.14 153.2 0.80 163.0

Average 586.29 2.94 96.0 2.90 99.1
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Table 2: Results of solving the Ω(Fix,All) and Ω(Fix, Prof) using Gurobi

Ω(Fix,All) Ω(Fix, Prof)

Instances LB UB Time Gap(%) LB UB Time Gap(%)

AA10 110.92 110.92 194.5 0 110.92 110.92 203.1 0

BB10 156.61 156.61 18.0 0 156.61 156.61 108.9 0

CC10 157.36 157.36 527.2 0 224.62 224.62 950.4 0

DD10 497.70 497.70 6076.7 0 206.39 206.39 1311.9 0

AA15 315.31 1076.49 36000.0 241 421.03 1018.00 36000.0 142

BB15 369.74 369.74 6042.0 0 516.61 516.61 2380.3 0

CC15 563.36 1118.00 36000.0 98.5 563.36 1157.14 36000.0 105

DD15 497.70 497.70 5519.1 0 541.46 1156.00 36000.0 113

AA20 331.09 1458.00 36000.0 340 659.21 1458.00 36000.0 121

BB20 580.75 884.61 36000.0 52.3 789.17 879.15 36000.0 11.4

CC20 658.96 1640.00 36000.0 149 810.96 1640.00 36000.0 102

DD20 905.48 1640.00 36000.0 81.1 871.48 1640.00 36000.0 88.2

AA25 776.93 1922.00 36000.0 147 1023.01 1922.00 36000.0 87.9

BB25 885.49 1959.02 36000.0 121 1169.59 1940.17 36000.0 65.9

CC25 - 2122.00 36000.0 - 1210.71 2122.00 36000.0 75.3

DD25 - 2122.00 36000.0 - 1165.66 2122.00 36000.0 82

Average 23648.6 87.9 25059.7 62.1
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Table 3: Results of solving the Ω(Flex,All) and Ω(Flex, Prof) using Gurobi

Ω(Flex,All) Ω(Flex, Prof)

Instances LB UB Time Gap(%) LB UB Time Gap(%)

AA10 256.92 256.92 390.9 0 262.66 262.66 938.8 0

BB10 211.66 211.66 51.8 0 222.60 222.60 42.0 0

CC10 372.37 522.43 36000.0 40.3 372.37 574.00 36000.0 54.1

DD10 197.04 197.04 31402.6 0 271.96 378.92 36000.0 39.3

AA15 517.09 1021.84 36000.0 97.6 520.81 1018.00 36000.0 95.5

BB15 420.42 834.57 36000.0 98.5 554.24 918.00 36000.0 65.6

CC15 593.08 1118.00 36000.0 88.5 684.31 1157.30 36000.0 69.1

DD15 467.80 1112.44 36000.0 138 606.48 1156.00 36000.0 90.6

AA20 668.68 1458.00 36000.0 118 706.36 1458.00 36000.0 106

BB20 703.46 1350.95 36000.0 92 843.94 1445.59 36000.0 71.3

CC20 856.99 1640.00 36000.0 91.4 964.99 1640.00 36000.0 69.9

DD20 - 1640.00 36000.0 - 870.12 1640.00 36000.0 88.5

AA25 992.54 1922.00 36000.0 93.6 1051.75 1922.00 36000.0 82.7

BB25 918.17 2022.00 36000.0 120 1184.67 2023.66 36000.0 70.8

CC25 738.25 2122.00 36000.0 187 1269.14 2122.00 36000.0 67.2

DD25 992.48 2122.00 36000.0 114 1129.80 2122.00 36000.0 87.8

Average 31240.3 85.26 31561.3 66.15
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Table 4: Detailed computational results for the Ω(Fix,All)

Instance LB RootUB BestUB Time Gap(%) Branches Cuts Served

AA10 110.92 110.92 110.92 0.6 0.00 1 0 10

BB10 156.61 156.61 156.61 0.4 0.00 1 0 10

CC10 157.36 157.36 157.36 0.7 0.00 1 0 10

DD10 91.70 91.70 91.70 1.0 0.00 1 0 10

AA15 315.31 315.31 315.31 2.3 0.00 1 5 15

BB15 369.73 369.73 369.73 1.7 0.00 1 5 15

CC15 563.36 563.36 563.36 4.7 0.00 1 0 15

DD15 497.70 497.70 497.70 2.5 0.00 1 0 15

AA20 331.09 331.09 331.09 390.9 0.00 1 55 20

BB20 580.74 580.74 580.74 201.8 0.00 2 75 20

CC20 687.57 862.89 688.14 3457.6 0.08 126 30 20

DD20 905.48 905.48 905.48 10.8 0.00 1 0 20

AA25 776.93 776.93 776.93 7.6 0.00 1 90 25

BB25 1018.25 1023.33 1018.25 557.7 0.00 3 55 25

CC25 1079.42 1233.22 1080.46 10672.4 0.10 1101 15 25

DD25 992.71 1138.53 1075.18 36000.0 7.67 561 5 25

AA30 966.29 1096.22 966.29 1021.3 0.00 19 35 30

BB30 1393.12 1393.12 1393.12 83.7 0.00 1 120 30

CC30 1450.51 1622.67 1455.38 36000.0 0.33 39 0 30

DD30 1005.95 1599.88 1503.48 36000.0 33.09 42 0 30

AA35 1419.48 1510.69 1419.48 2304.1 0.00 1139 50 35

BB35 1843.79 1843.79 1843.79 33.6 0.00 1 10 35

CC35 1635.02 2008.12 1941.69 36000.0 15.79 51 0 35

DD35 673.79 1975.92 1975.92 36000.0 65.90 1 0 35

AA40 1685.98 1687.32 1687.32 1034.5 0.08 1 15 40

BB40 2000.09 2020.92 2001.84 637.0 0.09 4 225 40

CC40 1446.21 2305.85 2305.85 36000.0 37.28 1 0 40

DD40 - 2276.72 - 36000.0 - - 0 -

AA45 1927.92 2088.80 2074.39 36000.0 7.06 358 0 45

BB45 2391.44 2448.23 2393.71 3505.3 0.09 43 0 45

CC45 1656.90 2606.69 2606.69 36000.0 36.44 1 0 45

DD45 - 2564.44 - 36000.0 - - 0 -

? LB: the lower bound, RootUB: the root upper bound, BestUB: the best
upper bound within the time limit, Time: the processing time in seconds,
Gap%: gap, Branches: number of branches considered in the algorithm
and Served: the number of served requests in the lower bound solution.
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Table 5: Detailed computational results for the Ω(Fix, Prof)

Instance LB RootUB BestUB Time Gap(%) Branches Served

AA10 110.92 110.92 110.92 0.2 0.00 1 10

BB10 156.61 156.61 156.61 0.2 0.00 1 10

CC10 224.62 224.62 224.62 0.4 0.00 1 7

DD10 206.39 206.39 206.39 0.6 0.00 1 7

AA15 421.03 421.03 421.03 1.0 0.00 1 14

BB15 516.61 516.61 516.61 1.2 0.00 1 13

CC15 563.36 563.36 563.36 3.7 0.00 1 15

DD15 621.36 621.36 621.36 1.8 0.00 1 14

AA20 659.21 659.21 659.21 3.9 0.00 1 16

BB20 789.17 789.17 789.17 2.6 0.00 1 17

CC20 888.96 888.96 888.96 12.5 0.00 1 19

DD20 905.48 905.48 905.48 10.5 0.00 1 20

AA25 1023.01 1023.01 1023.01 4.2 0.00 2 22

BB25 1169.59 1169.59 1169.59 4.3 0.00 1 19

CC25 1296.93 1296.93 1296.93 26.9 0.00 1 23

DD25 1284.99 1284.99 1284.99 74.2 0.00 1 22

AA30 1196.72 1204.55 1196.72 263.2 0.00 2 23

BB30 1471.75 1471.75 1471.75 23.1 0.00 1 22

CC30 1615.59 1650.49 1615.59 409.9 0.00 1 26

DD30 1591.88 1613.11 1591.88 1203.9 0.00 1 27

AA35 1569.12 1587.34 1569.12 120.2 0.00 27 33

BB35 1843.79 1891.99 1843.79 295.7 0.00 36 35

CC35 1903.91 2019.04 1945.01 36000.0 2.11 187 34

DD35 1880.32 1988.88 1920.44 36000.0 2.09 11 27

AA40 1811.67 1811.67 1811.67 525.5 0.00 22 37

BB40 2110.83 2133.10 2110.83 238.5 0.00 13 37

CC40 2120.81 2258.60 2183.52 36000.0 2.87 1215 36

DD40 - 2279.46 - 36000.0 - - -

AA45 2193.08 2195.61 2193.08 265.3 0.00 4 41

BB45 2509.95 2509.95 2509.95 73.0 0.00 1 42

CC45 2228.02 2618.63 2618.63 36000.0 14.92 1 38

DD45 - 2567.93 - 36000.0 - 1 -
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Table 6: Detailed computational results for the Ω(Flex,All)

Instance LB RootUB BestUB Time Gap(%) Branches Cuts Served

AA10 256.92 256.92 256.92 0.5 0.00 1 0 10

BB10 211.66 211.66 211.66 0.5 0.00 1 0 10

CC10 372.37 372.37 372.37 1.0 0.00 1 0 10

DD10 197.04 197.04 197.04 1.8 0.00 1 0 10

AA15 517.09 517.09 517.09 3.1 0.00 1 5 15

BB15 420.41 420.42 420.42 2.6 0.00 1 5 15

CC15 684.31 684.31 684.31 7.9 0.00 1 0 15

DD15 540.76 540.76 540.76 10.2 0.00 1 0 15

AA20 668.68 668.68 668.68 6.7 0.00 1 10 20

BB20 705.68 705.68 705.68 44.9 0.00 1 60 20

CC20 900.45 961.90 901.24 1204.4 0.07 73 0 20

DD20 932.60 932.60 932.60 13.6 0.00 1 0 20

AA25 1032.34 1032.34 1032.34 12.7 0.00 1 10 25

BB25 1071.91 1085.12 1071.91 571.1 0.00 3 65 25

CC25 1298.40 1344.70 1299.63 5409.3 0.03 19 0 25

DD25 1235.69 1296.89 1236.73 2559.1 0.07 36 0 25

AA30 1175.56 1178.74 1178.74 36000.0 0.27 1 75 30

BB30 1483.97 1483.97 1483.97 41.2 0.00 1 25 30

CC30 1689.39 1711.53 1689.78 25103.9 0.00 4 0 30

DD30 1361.70 1669.71 1669.71 36000.0 18.45 1 0 30

AA35 1571.87 1610.55 1610.55 36000.0 2.40 1 40 35

BB35 1897.79 1897.79 1897.79 27.5 0.00 1 5 35

CC35 1925.26 2048.17 1945.01 36000.0 1.02 1 0 35

DD35 1893.00 2082.59 2082.59 36000.0 9.10 1 0 35

AA40 1791.66 1810.23 1810.23 36000.0 0.10 1 0 40

BB40 2058.63 2072.87 2059.81 3987.1 0.06 9 5 40

CC40 - 2347.11 2347.11 36000.0 - 1 0 -

DD40 2585.33 2589.86 2588.20 36000.0 0.11 1 0 45

AA45 2101.25 2190.45 2182.90 36000.0 3.74 29 0 45

BB45 2455.72 2474.87 2457.44 3593.0 0.07 3 0 45

CC45 - 2664.00 2664.00 36000.0 - 1 0 -

DD45 - 2698.68 2698.68 36000.0 - 1 0 -
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Table 7: Detailed computational results for the Ω(Flex, Prof)

Instance LB RootUB BestUB Time Gap(%) Branches Served

AA10 262.66 262.66 262.66 0.3 0.00 1 9

BB10 222.60 222.60 222.60 0.3 0.00 1 8

CC10 372.37 372.37 372.37 1.5 0.00 1 10

DD10 271.96 271.96 271.96 1.8 0.00 1 6

AA15 520.81 547.43 520.81 3.4 0.00 2 14

BB15 554.24 554.24 554.24 1.0 0.00 1 12

CC15 684.31 684.31 684.31 14.5 0.00 1 15

DD15 606.48 606.48 606.48 9.6 0.00 1 12

AA20 706.36 743.31 706.36 47.0 0.09 57 18

BB20 843.94 848.79 843.94 3.4 0.00 3 15

CC20 964.99 964.99 964.99 24.6 0.00 1 18

DD20 942.38 942.38 942.38 9.6 0.00 1 17

AA25 1051.88 1074.07 1051.88 65.8 0.08 19 22

BB25 1184.67 1203.89 1184.67 14.3 0.00 2 19

CC25 1355.72 1362.03 1355.72 214.6 0.00 3 22

DD25 1303.20 1324.21 1303.20 210.0 0.00 2 21

AA30 1284.11 1331.86 1284.11 4651.8 0.00 1905 28

BB30 1506.89 1569.83 1506.89 267.3 0.09 59 27

CC30 1689.39 1722.56 1689.44 3544.1 0.02 8 30

DD30 1627.76 1686.20 1629.26 9158.2 0.10 36 24

AA35 1656.81 1684.16 1658.46 15804.2 0.10 2175 33

BB35 1897.79 1925.87 1897.79 138.5 0.00 13 35

CC35 2028.82 2050.13 2030.72 26082.1 0.09 36 34

DD35 1960.66 2099.28 2021.95 36000.0 3.03 131 31

AA40 1887.74 1892.81 1889.57 433.4 0.10 12 37

BB40 2150.70 2154.69 2150.70 523.1 0.00 9 37

CC40 2317.31 2356.45 2356.45 36000.0 1.66 1 37

DD40 - 2370.77 - 36000.0 - 1 -

AA45 2259.00 2268.92 2259.00 1170.0 0.01 4 41

BB45 2525.08 2525.08 2525.08 257.9 0.00 1 42

CC45 - 2664.79 - 36000.0 - 1 -

DD45 2425.56 2703.40 2703.40 36000.0 10.28 1 40
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Table 8: The objective improvement of other 3 variants compare to Ω(Fix,All)

Instance Ω(Fix,All)(Value) Ω(Fix, Prof)(%) Ω(Flex,All)(%) Ω(Flex, Prof)(%)

AA10 110.919 0.00 131.63 136.81

BB10 156.608 0.00 35.15 42.14

CC10 157.355 42.75 136.64 136.64

DD10 91.695 125.08 114.88 196.59

AA15 315.306 33.53 64.00 65.17

BB15 369.735 39.72 13.71 49.90

CC15 563.355 0.00 21.47 21.47

DD15 497.695 24.85 8.65 21.86

AA20 331.091 99.10 101.96 113.34

BB20 580.745 35.89 21.51 45.32

CC20 687.57 29.29 30.96 40.35

DD20 905.483 0.00 3.00 4.08

AA25 776.928 31.67 32.87 35.39

BB25 1018.25 14.86 5.27 16.34

CC25 1079.42 20.15 20.29 25.60

DD25 992.712 29.44 24.48 31.28

AA30 966.289 23.85 21.66 32.07

BB30 1393.12 5.64 6.52 8.17

CC30 1450.51 11.38 16.47 16.47

DD30 1005.95 58.25 35.36 61.81

AA35 1419.48 10.54 10.74 16.72

BB35 1843.79 0.00 2.93 2.99

CC35 1635.02 16.45 17.75 24.09

DD35 673.79 179.07 180.95 190.99

AA40 1685.98 7.45 6.27 11.97

BB40 2000.09 5.54 2.93 7.53

CC40 1446.21 46.65 - 60.23

DD40 1927.92 - 34.10 -

AA45 1928.64 13.71 8.95 17.13

BB45 2391.44 4.96 2.69 5.59

CC45 1656.90 34.47 - -

DD45 - - - -
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Table 9: Performance of the exact framework on instances of Røpke and Cordeau [91]. Gap represents the
% difference of our optimal (or best found, in case the time limit of 36000 seconds is exceeded) solution
compared to the optimal solution of Røpke and Cordeau [91].

Røpke and Cordeau [91] Our Framework

Instance Time (s) Gap (%) Time (s)

AA30 7 0 593

BB30 6 0 342

CC30 11 0 415

DD30 25 0 7178

AA35 16 0 1058

BB35 18 0 2559

CC35 59 0 2208

DD35 765 0 17243

AA40 13 0 11723

BB40 19 0 2617

CC40 255 0 17414

DD40 161 * 36000

AA45 16 0 11060

BB45 46 0 35077

CC45 176 32 36000

DD45 525 * 36000

Average 132 13593

? = no feasible solution found within 36000 seconds.
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Table 10: Detailed results for tuning of the roulette wheel mechanism parameters (σ1, σ2, σ3)

(5,1,3) (1,3,5) (1,1,1) (5,3,1)

Instance Best G (%) S (%) T (s) G (%) S (%) T (s) G (%) S (%) T (s) G (%) S (%) T (s)

S BB10 39.26 0.01 0.00 0.6 0.01 0.00 0.6 0.01 0.00 0.6 0.01 0.00 0.6

S BB15 99.58 0.00 0.00 1.3 0.00 0.00 1.4 0.00 0.00 1.4 0.00 0.00 1.6

S BB20 138.05 0.00 0.00 2.6 0.00 0.00 2.6 0.00 2.30 2.4 0.00 0.00 2.6

S BB25 147.88 0.00 0.00 4.7 0.00 3.12 4.5 0.00 3.05 6.2 0.00 0.00 4.8

S BB30 274.45 0.00 3.37 6.6 0.00 2.67 6.2 0.00 3.37 6.7 0.00 1.77 7.4

S BB35 337.55 3.09 0.94 7.2 3.09 2.74 8.2 3.09 0.00 7.4 3.09 1.32 7.1

S BB40 326.82 0.00 0.00 9.6 0.00 0.00 10.9 0.00 0.00 11.6 0.00 0.00 10.5

S BB45 378.90 0.62 0.24 18.3 0.62 0.09 19.1 0.62 0.03 19.1 0.62 0.11 20.6

S BB50 432.10 2.30 3.44 25.3 2.30 2.83 23.0 2.30 3.22 28.0 0.00 3.04 22.6

S BB55 530.84 0.00 2.78 27.5 0.00 2.78 26.9 0.00 2.51 35.1 0.00 2.39 33.8

S BB60 558.02 0.36 1.43 34.2 0.36 1.91 32.9 0.36 1.43 42.2 0.00 0.75 39.8

S BB65 547.84 0.17 5.32 45.6 0.00 2.10 52.7 0.00 2.75 60.9 0.00 3.90 41.4

S BB70 558.29 4.76 0.42 49.4 4.76 0.72 44.4 5.31 1.77 44.1 1.70 1.36 45.4

S BB75 613.35 3.20 1.65 63.4 3.20 3.21 77.1 3.80 1.58 56.6 3.20 1.69 65.8

M BB10 222.60 0.00 0.00 0.7 0.00 0.00 0.6 0.00 0.00 0.7 0.00 0.00 0.6

M BB15 554.24 0.00 0.00 1.6 0.00 0.00 1.4 0.00 0.00 1.4 0.00 0.00 1.5

M BB20 843.94 0.00 0.00 2.7 0.00 0.00 2.6 0.00 0.00 2.9 0.00 0.00 3.2

M BB25 1184.67 0.00 0.00 4.3 0.00 0.00 4.0 0.00 0.00 4.1 0.00 0.00 4.1

M BB30 1506.89 0.75 0.00 5.7 0.75 0.00 6.0 0.75 0.00 6.8 0.00 0.37 6.4

M BB35 1898.97 0.00 0.36 5.2 0.00 0.24 4.8 0.00 0.31 5.1 0.00 0.00 4.2

M BB40 2151.24 0.00 0.00 7.0 0.00 0.00 7.5 0.00 0.11 7.4 0.00 0.13 7.7

M BB45 2525.08 0.00 0.48 15.7 0.00 0.49 14.1 0.00 0.78 14.7 0.00 0.77 15.5

M BB50 2767.25 -0.74 1.97 15.8 -1.25 0.68 19.5 -1.25 1.54 20.5 -1.58 1.66 15.4

G (%) : Gap (%)
S (%) : STD (%)
T (s): Time (s)

Table 11: Detailed results for tuning of cooling rate parameter

κ = 0.95 κ = 0.995 κ = 0.9995

Instance Best Gap (%) STD (%) Time (s) Gap (%) STD (%) Time (s) Gap (%) STD (%) Time (s)

S BB10 39.26 0.01 0.00 1.0 0.01 0.00 0.7 0.01 0.00 0.6

S BB15 99.58 0.00 0.00 1.7 0.00 0.00 1.8 0.00 0.00 1.6

S BB20 138.05 0.00 7.62 3.2 0.00 6.62 2.6 0.00 0.00 2.6

S BB25 147.88 0.00 6.03 4.6 0.00 5.19 4.5 0.00 0.00 4.8

S BB30 274.45 0.00 3.37 5.9 0.00 4.56 6.5 0.00 1.77 7.4

S BB35 337.55 3.09 2.74 6.0 3.09 0.00 7.0 3.09 1.32 7.1

S BB40 326.82 0.00 0.00 8.8 0.00 0.00 9.6 0.00 0.00 10.5

S BB45 378.90 0.62 0.26 16.6 0.62 0.02 16.4 0.62 0.11 20.6

S BB50 432.10 2.30 3.29 18.2 2.30 3.72 19.3 0.00 3.04 22.6

S BB55 530.84 5.05 4.87 26.5 5.05 0.87 27.5 0.00 2.39 33.8

S BB60 558.02 0.00 0.15 29.9 0.00 1.47 33.2 0.00 0.75 39.8

S BB65 547.84 0.00 5.46 35.3 0.00 5.26 42.4 0.00 3.90 41.4

S BB70 558.29 4.76 0.75 34.7 4.03 1.40 40.8 1.70 1.36 45.4

S BB75 613.35 4.03 1.78 53.1 3.80 1.60 52.8 3.20 1.69 65.8

M BB10 222.60 0.00 0.00 0.7 0.00 0.00 0.6 0.00 0.00 0.6

M BB15 554.24 0.00 0.00 1.8 0.00 0.00 1.7 0.00 0.00 1.5

M BB20 843.94 0.00 0.00 3.2 0.00 0.00 3.3 0.00 0.00 3.2

M BB25 1184.67 0.00 0.87 3.6 0.00 0.00 3.8 0.00 0.00 4.1

M BB30 1506.89 0.00 0.91 4.1 0.75 0.00 6.1 0.00 0.37 6.4

M BB35 1898.97 0.00 0.48 4.0 0.00 0.39 4.0 0.00 0.00 4.2

M BB40 2151.24 0.00 0.00 6.1 0.00 0.55 5.7 0.00 0.13 7.7

M BB45 2525.08 0.00 0.84 13.9 0.00 0.93 11.3 0.00 0.77 15.5

M BB50 2767.25 -1.25 1.97 15.9 -1.25 1.09 17.9 -1.58 1.66 15.4
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Table 12: Detailed results for tuning of destroy rate parameter

0.25 0.35 0.45

Instance Best Gap (%) STD (%) Time (s) Gap (%) STD (%) Time (s) Gap (%) STD (%) Time (s)

S BB10 39.26 0.01 0.00 0.6 0.01 0.00 0.6 0.01 0.00 0.6

S BB15 99.58 0.00 0.00 1.2 0.00 0.00 1.4 0.00 0.00 1.6

S BB20 138.05 0.00 0.00 1.8 0.00 0.00 2.4 0.00 0.00 2.6

S BB25 147.88 0.00 2.57 4.2 0.00 0.00 4.7 0.00 0.00 4.8

S BB30 274.45 0.00 2.95 5.3 0.00 3.18 6.1 0.00 1.77 7.4

S BB35 337.55 3.09 0.94 5.7 3.09 0.94 6.9 3.09 1.32 7.1

S BB40 326.82 0.00 0.00 7.7 0.00 0.00 8.6 0.00 0.00 10.5

S BB45 378.90 0.62 0.18 13.6 0.62 0.10 18.5 0.62 0.11 20.6

S BB50 432.10 2.30 3.28 13.2 2.30 3.28 17.5 0.00 3.04 22.6

S BB55 530.84 0.00 3.63 20.1 0.00 3.02 28.9 0.00 2.39 33.8

S BB60 558.02 0.00 1.47 21.4 0.36 2.71 25.4 0.00 0.75 39.8

S BB65 547.84 0.00 4.18 35.0 0.00 4.03 39.8 0.00 3.90 41.4

S BB70 558.29 1.83 1.50 31.9 4.07 1.15 41.5 1.70 1.36 45.4

S BB75 613.35 3.38 1.60 49.9 3.17 1.42 55.8 3.20 1.69 65.8

M BB10 222.60 0.00 0.00 0.6 0.00 0.00 0.6 0.00 0.00 0.6

M BB15 554.24 0.00 0.00 1.2 0.00 0.00 1.4 0.00 0.00 1.5

M BB20 843.94 0.00 0.00 2.3 0.00 0.00 2.7 0.00 0.00 3.2

M BB25 1184.67 0.00 0.00 2.8 0.00 0.00 3.3 0.00 0.00 4.1

M BB30 1506.89 0.75 0.00 4.4 0.75 0.00 5.3 0.00 0.37 6.4

M BB35 1898.97 0.00 0.42 2.1 0.00 0.39 3.9 0.00 0.00 4.2

M BB40 2151.24 0.00 0.00 3.6 0.00 0.00 6.4 0.00 0.13 7.7

M BB45 2525.08 0.04 0.79 8.1 0.00 0.60 10.9 0.00 0.77 15.5

M BB50 2767.25 -1.25 1.32 8.2 -1.58 1.48 14.3 -1.58 1.66 15.4

Table 13: Exact evaluation versus approximation for single-vehicle instances

Instance ObjEE TimeEE ObjAE TimeAE Instance ObjEE TimeEE ObjAE TimeAE

S AA10 27.14 1.8 27.14 0.6 S AA45 361.58 65.3 361.58 26.0

S BB10 39.26 2.1 39.26 0.6 S BB45 376.57 48.0 376.57 20.6

S CC10 57.63 1.8 57.63 0.7 S CC45 497.69 112.0 497.69 50.8

S DD10 85.88 2.3 85.88 0.7 S DD45 535.98 151.3 535.98 62.3

S AA15 37.77 3.7 37.77 1.2 S AA50 430.41 87.5 430.41 31.1

S BB15 99.58 4.3 99.58 1.6 S BB50 422.15 65.7 422.15 22.6

S CC15 98.29 4.3 98.29 1.7 S CC50 516.08 203.0 516.08 98.0

S DD15 99.05 5.4 99.05 1.7 S DD50 614.09 208.2 614.09 79.9

S AA20 73.70 7.9 73.70 1.9 S AA55 436.05 129.9 436.05 52.0

S BB20 138.05 7.1 138.05 2.6 S BB55 530.84 106.0 530.84 33.8

S CC20 97.27 7.9 97.27 2.4 S CC55 581.50 213.9 581.50 90.7

S DD20 182.14 7.9 182.14 4.1 S DD55 629.01 221.7 629.01 94.2

S AA25 203.01 13.7 203.01 4.7 S AA60 499.97 127.1 499.97 43.3

S BB25 147.88 15.2 147.88 4.8 S BB60 555.99 112.0 555.99 39.8

S CC25 226.23 23.3 224.88 9.9 S CC60 609.38 278.7 609.38 165.5

S DD25 250.16 25.1 250.16 13.9 S DD60 713.29 418.6 713.29 142.9

S AA30 266.72 25.1 266.72 8.6 S AA65 568.15 189.8 568.15 103.6

S BB30 274.45 19.6 274.45 7.4 S BB65 547.84 128.0 547.84 41.4

S CC30 316.39 39.9 316.39 18.5 S CC65 632.63 340.3 632.63 147.6

S DD30 343.65 49.0 343.65 24.6 S DD65 744.15 319.8 744.15 170.5

S AA35 278.14 29.1 278.14 10.9 S AA70 606.68 295.4 606.68 86.3

S BB35 337.55 35.5 327.11 7.1 S BB70 532.96 367.5 532.96 45.4

S CC35 386.26 76.7 386.26 23.2 S CC70 669.44 522.4 669.44 195.6

S DD35 410.19 91.3 410.19 28.9 S DD70 758.39 493.8 758.39 238.5

S AA40 341.74 54.1 341.74 14.1 S AA75 710.35 338.3 692.68 161.9

S BB40 326.82 39.6 326.82 10.5 S BB75 611.39 200.1 594.49 65.8

S CC40 464.29 118.8 464.29 55.2 S CC75 681.60 505.4 671.98 153.2

S DD40 490.92 130.2 470.52 42.2 S DD75 845.91 674.8 845.91 290.9

Average 398.58 138.7 397.21 54.61

ObjEE : Objective value of ALNS with Exact Evaluation.
ObjAE : Objective value of ALNS with Approximate Evaluation.
T imeEE (s): Processing Time of ALNS with Exact Evaluation.
T imeAE (s): Processing Time of ALNS with Approximate Evaluation.
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Table 14: Exact route evaluation versus approximate route evaluation for multi-vehicle instances

Instance ObjEE TimeEE ObjAE TimeAE Instance ObjEE TimeEE ObjAE TimeAE

M AA10 262.66 1.3 262.66 0.9 M AA45 2259.00 31.4 2259.00 13.3

M BB10 222.60 1.6 222.60 1.1 M BB45 2525.08 31.1 2525.08 17.9

M CC10 372.37 1.9 372.37 0.6 M CC45 2626.80 58.7 2617.54 39.7

M DD10 271.96 3.8 271.96 1.0 M DD45 2644.57 53.1 2644.57 29.0

M AA15 520.80 2.4 520.80 0.9 M AA50 2385.28 38.1 2382.86 19.1

M BB15 554.24 4.2 554.24 1.6 M BB50 2811.01 27.9 2811.01 19.8

M CC15 684.31 4.6 684.31 1.9 M CC50 2905.82 68.9 2900.53 53.2

M DD15 606.48 7.1 606.48 2.1 M DD50 2981.62 52.7 2981.62 38.8

M AA20 706.36 9.2 706.36 3.3 M AA55 2749.24 57.0 2749.24 25.4

M BB20 843.94 9.1 843.94 2.9 M BB55 3022.66 33.1 3022.66 15.4

M CC20 965.00 14.1 965.00 4.5 M CC55 3219.65 99.1 3219.65 65.7

M DD20 942.38 15.2 942.38 7.0 M DD55 3307.22 124.1 3307.22 68.6

M AA25 1051.88 8.3 1051.88 3.4 M AA60 2869.56 42.6 2869.56 32.5

M BB25 1184.67 11.4 1184.67 4.0 M BB60 3316.43 46.7 3316.43 24.0

M CC25 1355.72 22.1 1355.72 8.4 M CC60 3481.61 84.6 3481.61 81.7

M DD25 1303.20 53.6 1303.20 17.1 M DD60 3510.05 134.0 3510.05 86.7

M AA30 1279.92 13.8 1279.92 5.6 M AA65 3195.79 53.0 3195.79 35.0

M BB30 1506.89 22.7 1506.89 6.3 M BB65 3463.66 56.5 3463.66 27.0

M CC30 1689.40 18.9 1687.69 11.0 M CC65 3743.19 111.4 3743.19 85.9

M DD30 1627.75 54.3 1627.75 24.4 M DD65 3738.84 105.3 3738.84 83.8

M AA35 1656.81 16.3 1656.81 5.8 M AA70 3545.38 64.1 3545.38 45.9

M BB35 1898.97 11.1 1898.97 5.9 M BB70 3765.20 66.6 3765.20 36.2

M CC35 2027.52 27.9 2027.52 17.2 M CC70 4022.77 157.1 4022.77 117.6

M DD35 2000.10 39.2 1999.89 22.4 M DD70 4091.04 141.9 4091.04 136.4

M AA40 1877.99 17.9 1877.99 8.2 M AA75 3959.73 67.7 3959.73 50.4

M BB40 2150.70 18.9 2150.70 7.9 M BB75 4049.40 57.0 4049.40 34.1

M CC40 2337.87 60.8 2337.87 25.2 M CC75 4249.11 207.7 4249.11 134.5

M DD40 2288.32 41.2 2288.32 29.7 M DD75 4330.78 172.3 4330.78 119.7

2267.16 49.2 2266.83 31.6

ObjEE : Objective value of ALNS with Exact Evaluation.
ObjAE : Objective value of ALNS with Approximate Evaluation.
T imeEE (s): Processing Time of ALNS with Exact Evaluation.
T imeAE (s): Processing Time of ALNS with Approximate Evaluation.
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Table 15: Slow-speed case for single-vehicle instances

Instance TIDobj TDobj Travel Cost Profit VioCost VioRate # Vio Total Time (s)

S AA30 27.35 73.07 46.93 120 0.00 0.00 0 6 2.28

S BB30 23.84 53.04 106.96 160 0.00 0.00 0 8 2.06

S CC30 12.16 62.64 57.36 120 0.00 0.00 0 6 3.42

S DD30 40.72 96.10 63.90 160 0.00 0.00 0 8 3.94

S AA35 72.20 109.63 370.37 480 0.00 0.00 0 24 3.98

S BB35 47.82 105.09 374.91 480 0.00 0.00 0 24 3.43

S CC35 39.28 115.26 84.74 200 0.00 0.00 0 10 4.60

S DD35 44.37 135.87 384.13 520 0.00 0.00 0 26 4.64

S AA40 46.36 112.42 407.58 520 0.00 0.00 0 26 6.18

S BB40 49.16 139.50 99.50 160 0.00 0.00 0 8 4.32

S CC40 49.75 142.61 337.40 480 0.00 0.00 0 24 9.51

S DD40 93.72 192.04 287.96 480 0.00 0.00 0 24 9.56

S AA45 73.22 135.87 384.13 520 0.00 0.00 0 26 5.59

S BB45 63.76 102.14 297.86 400 0.00 0.00 0 20 6.32

S CC45 84.69 180.62 99.38 280 0.00 0.00 0 14 13.12

S DD45 85.52 196.16 323.84 520 0.00 0.00 0 26 14.86

S AA50 119.12 168.92 391.09 560 0.00 0.00 0 28 10.31

S BB50 62.512 111.26 328.74 440 0.00 0.00 0 22 6.27

S CC50 132.79 200.19 519.81 720 0.00 0.00 0 36 19.53

S DD50 165.87 274.49 325.51 600 0.00 0.00 0 30 15.01

S AA55 111.18 193.46 406.54 600 0.00 0.00 0 30 12.91

S BB55 111.87 177.10 302.90 480 0.00 0.00 0 24 9.25

S CC55 132.53 232.73 487.27 720 0.00 0.00 0 36 18.25

S DD55 135.06 233.67 326.33 560 0.00 0.00 0 28 21.42

S AA60 105.80 157.50 402.50 560 0.00 0.00 0 28 11.29

S BB60 125.41 184.04 335.96 520 0.00 0.00 0 26 11.28

S CC60 176.45 282.07 477.93 760 0.00 0.00 0 38 24.43

S DD60 189.39 305.40 414.60 720 0.00 0.00 0 36 35.73

S AA65 161.25 210.58 389.42 600 0.00 0.00 0 30 12.73

S BB65 106.75 166.91 313.09 480 0.00 0.00 0 24 10.37

S CC65 185.53 307.72 492.28 800 0.00 0.00 0 40 33.11

S DD65 212.71 333.17 346.83 680 0.00 0.00 0 34 37.81

S AA70 184.51 255.57 384.43 640 0.00 0.00 0 32 19.69

S BB70 83.85 136.03 503.97 640 0.00 0.00 0 32 14.85

S CC70 178.33 248.27 551.73 800 0.00 0.00 0 40 39.67

S DD70 248.57 393.76 326.24 720 0.00 0.00 0 48 46.28

S AA75 175.74 248.50 391.50 640 0.00 0.00 0 32 20.75

S BB75 126.79 166.17 473.83 640 0.00 0.00 0 32 14.80

S CC75 179.30 252.12 547.88 800 0.00 0.00 0 40 33.48

S DD75 280.09 376.74 383.26 760 0.00 0.00 0 38 40.30

Average 113.63 189.21 338.76 526 0.00 0.00 0.00 26.60 15.43

185



Appendix C

Table 16: Average-speed case for single-vehicle instances

Instance TIDobj TDobj Travel Cost Profit VioCost VioRate # Vio Total Time (s)

S AA30 165.39 186.72 373.28 560 0.00 0.00 0 28 9.95

S BB30 231.66 243.73 516.27 760 23.78 10.53 4 38 5.46

S CC30 204.23 273.12 486.88 760 0.00 0.00 0 38 11.13

S DD30 254.05 281.01 518.99 800 0.00 0.00 0 40 12.18

S AA35 234.15 246.05 553.95 800 0.00 0.00 0 40 9.06

S BB35 245.11 253.23 506.77 760 28.57 5.26 2 38 9.09

S CC35 297.52 302.95 657.06 960 0.00 0.00 0 48 15.30

S DD35 310.30 343.86 536.14 880 0.00 0.00 0 44 18.45

S AA40 267.46 242.09 597.92 880 0.00 0.00 0 44 10.51

S BB40 247.57 241.34 518.66 760 32.52 5.26 2 38 11.08

S CC40 364.91 349.23 690.78 1040 0.00 0.00 0 52 27.27

S DD40 351.18 396.27 523.73 920 0.00 0.00 0 46 40.30

S AA45 261.42 302.78 657.22 960 0.00 0.00 0 48 18.56

S BB45 318.38 307.69 572.31 880 14.59 11.36 5 44 13.81

S CC45 394.12 371.31 668.69 1040 3.19 3.85 2 52 41.85

S DD45 385.90 378.79 581.22 960 0.00 0.00 0 48 44.77

S AA50 312.99 312.61 607.39 920 4.30 4.35 2 46 28.67

S BB50 304.46 307.92 572.08 880 48.23 6.82 3 44 20.23

S CC50 395.01 456.75 543.25 1000 0.00 0.00 0 50 51.67

S DD50 458.96 440.42 639.58 1080 0.00 0.00 0 54 71.92

S AA55 328.56 311.37 608.64 920 2.97 4.35 2 46 32.49

S BB55 393.77 401.14 518.86 920 6.66 4.35 2 46 24.36

S CC55 464.49 444.17 675.83 1120 36.32 7.14 4 56 61.16

S DD55 456.20 470.63 569.37 1040 0.00 0.00 0 52 92.50

S AA60 426.49 429.51 610.49 1040 41.47 7.69 4 52 30.41

S BB60 404.30 414.52 585.48 1000 28.99 4.00 2 50 27.25

S CC60 483.38 471.43 688.57 1160 22.18 3.45 2 58 62.39

S DD60 544.17 533.22 666.78 1200 0.00 0.00 0 60 86.89

S AA65 474.49 452.13 627.87 1080 0.00 0.00 0 54 42.31

S BB65 406.72 385.10 574.90 960 19.94 4.17 2 48 27.08

S CC65 549.37 503.70 656.27 1160 1.85 1.72 1 58 113.61

S DD65 600.72 559.33 720.67 1280 28.00 3.13 2 64 124.07

S AA70 496.28 503.10 576.90 1080 40.70 7.41 4 54 74.95

S BB70 440.08 417.37 622.63 1040 46.48 9.62 5 52 34.75

S CC70 572.02 530.37 709.63 1240 16.99 4.84 3 62 138.22

S DD70 613.68 579.54 700.46 1280 13.17 1.56 1 64 141.01

S AA75 534.31 528.40 631.60 1160 25.96 5.17 3 58 83.05

S BB75 512.12 522.41 597.59 1120 11.18 3.57 2 56 50.87

S CC75 577.63 570.34 709.66 1280 60.36 6.25 4 64 116.81

S DD75 693.23 695.50 664.50 1360 0.00 0.00 0 68 206.60

Average 399.42 399.03 600.97 1001 13.96 3.15 1.58 50.05 51.05
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Table 17: Fast-speed case for single-vehicle instances

Instance TIDobj TDobj Travel Cost Profit VioCost VioRate # Vio Total Time (s)

S AA30 289.39 274.86 525.14 800 32.658 20 8 40 8.84

S BB30 343.43 282.34 637.66 920 336.303 45.652 21 46 9.76

S CC30 336.13 156.62 723.38 880 16.305 4.545 2 44 19.54

S DD30 383.33 279.62 760.38 1040 236.087 17.308 9 52 15.81

S AA35 328.11 264.39 615.61 880 9.801 2.273 1 44 13.57

S BB35 390.98 318.44 641.56 960 610.639 66.667 32 48 10.89

S CC35 467.00 370.92 709.08 1080 127.74 20.37 11 54 26.25

S DD35 355.70 348.52 731.48 1080 252.31 20.37 11 54 22.24

S AA40 377.38 302.78 657.22 960 0.00 0 0 48 18.49

S BB40 408.97 376.82 543.18 920 602.903 56.522 26 46 16.86

S CC40 545.58 446.33 753.67 1200 235.197 18.333 11 60 51.93

S DD40 540.32 431.01 728.99 1160 54.171 3.45 2 58 49.78

S AA45 408.23 367.87 592.14 960 191.025 33.333 16 48 33.54

S BB45 449.33 397.16 562.84 960 243.443 31.25 15 48 17.12

S CC45 594.72 482.30 757.70 1240 336.518 24.194 15 62 49.83

S DD45 577.65 497.76 662.24 1160 0 0 0 58 56.40

S AA50 492.87 390.43 729.57 1120 907.049 60.714 34 56 31.14

S BB50 515.30 359.04 620.96 1080 690.957 62.963 34 54 32.15

S CC50 614.53 514.02 765.98 1280 488.48 34.375 22 64 99.73

S DD50 702.26 602.83 757.17 1360 602.456 33.824 23 68 91.03

S AA55 524.00 426.26 733.74 1160 892.799 58.621 34 58 48.43

S BB55 604.99 549.23 650.77 1200 215.616 31.667 19 60 39.94

S CC55 666.69 560.51 759.49 1320 663.48 39.394 26 66 107.10

S DD55 741.57 632.57 807.43 1440 1339.48 45.833 33 72 114.91

S AA60 586.28 487.04 712.96 1200 351.002 43.333 26 60 51.11

S BB60 625.00 563.43 636.57 1200 459.565 51.667 31 60 34.53

S CC60 717.75 616.76 783.24 1400 804.671 40 28 70 113.95

S DD60 793.13 684.03 795.97 1480 1233.6 43.243 32 74 143.98

S AA65 674.70 568.79 711.21 1280 756.415 59.375 38 64 73.52

S BB65 627.91 553.94 646.06 1200 713.036 58.333 35 60 37.54

S CC65 773.64 665.18 774.82 1440 456.123 25 18 72 116.13

S DD65 904.52 800.84 799.16 1600 1212.63 42.5 34 80 167.50

S AA70 688.11 612.83 707.17 1320 436.245 50 33 66 91.07

S BB70 641.38 541.41 698.59 1240 688.515 50 31 62 61.36

S CC70 820.10 716.18 803.82 1520 1537.35 63.158 48 76 211.48

S DD70 879.60 623.15 736.85 1360 1150.89 70.588 48 68 188.76

S AA75 799.34 695.15 744.85 1440 1692.00 80.555 58 72 142.87

S BB75 728.73 623.15 736.85 1360 1150.89 70.588 48 68 88.67

S CC75 842.20 729.81 790.19 1520 966.33 39.473 30 76 166.76

S DD75 971.12 860.21 819.79 1680 1702.49 40.476 34 84 249.10

Average 593.30 499.36 708.14 1210 609.93 39.00 24.43 60.50 73.09
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Table 18: Slow-speed case for multi-vehicle instances

Instance TIDobj TDobj Travel Cost Profit VioCost VioRate # Vio # Vehicle Time (s)

M AA30 913.82 1064.52 1065.48 2330 0.00 0.00 0 2 2.45

M BB30 1084.27 1187.94 986.06 2374 0.00 0.00 0 2 2.58

M CC30 1078.09 1322.74 923.26 2446 0.00 0.00 0 2 4.40

M DD30 1094.40 1203.06 936.95 2340 0.00 0.00 0 2 5.37

M AA35 1170.41 1335.06 1050.94 2586 0.00 0.00 0 2 3.47

M BB35 1284.00 1409.99 934.01 2544 0.00 0.00 0 2 3.52

M CC35 1362.11 1532.81 1065.19 2798 0.00 0.00 0 2 5.19

M DD35 1379.91 1556.71 899.29 2656 0.00 0.00 0 2 7.45

M AA40 1302.93 1451.34 1334.66 3086 0.00 0.00 0 3 6.35

M BB40 1480.23 1603.69 1498.31 3402 0.00 0.00 0 3 3.84

M CC40 1604.67 1924.07 1095.94 3320 0.00 0.00 0 3 12.24

M DD40 1538.77 1690.47 1061.53 2952 0.00 0.00 0 2 9.33

M AA45 1604.85 1728.93 1413.07 3442 0.00 0.00 0 3 5.44

M BB45 1698.30 1841.30 1382.70 3524 0.00 0.00 0 3 7.10

M CC45 1840.54 2188.09 1207.91 3696 0.00 0.00 0 3 13.74

M DD45 1846.18 2006.99 1127.01 3334 0.00 0.00 0 2 14.26

M AA50 1723.29 1865.52 1716.48 3882 0.00 0.00 0 3 7.28

M BB50 1954.60 2077.66 1482.34 3860 0.00 0.00 0 3 7.31

M CC50 1967.79 2279.75 1346.25 3926 0.00 0.00 0 3 13.62

M DD50 2103.49 2432.29 1519.71 4352 0.00 0.00 0 17.84

M AA55 1962.41 2157.16 1716.84 4174 0.00 0.00 0 3 9.46

M BB55 2148.61 2252.67 1481.33 4034 0.00 0.00 0 3 9.46

M CC55 2190.90 2724.70 1357.30 4482 0.00 0.00 0 4 22.71

M DD55 2322.67 2599.76 1400.24 4300 0.00 0.00 0 3 31.02

M AA60 2128.77 2332.19 1695.82 4328 0.00 0.00 0 3 11.79

M BB60 2270.92 2478.17 1743.83 4622 0.00 0.00 0 4 12.76

M CC60 2380.84 2830.19 1689.81 4920 0.00 0.00 0 4 23.36

M DD60 2451.71 2866.04 1455.97 4622 0.00 0.00 0 3 23.65

M AA65 2362.42 2511.32 2186.69 5098 0.00 0.00 0 4 15.78

M BB65 2257.14 2390.30 1935.71 4726 0.00 0.00 0 4 14.96

M CC65 2517.84 2951.70 1652.30 5004 0.00 0.00 0 4 29.31

M DD65 2650.74 3112.04 1763.96 5276 0.00 0.00 0 4 30.90

M AA70 2621.73 2799.95 2194.05 5394 0.00 0.00 0 4 18.42

M BB70 2427.93 2594.72 1889.28 4884 0.00 0.00 0 4 16.43

M CC70 2730.36 3311.02 1616.98 5328 0.00 0.00 0 4 31.18

M DD70 2919.48 3353.15 1742.85 5496 0.00 0.00 0 4 40.55

M AA75 2920.93 3161.56 2240.44 5802 0.00 0.00 0 4 24.42

M BB75 2707.49 2985.15 1932.85 5318 0.00 0.00 0 4 20.41

M CC75 2987.55 3406.59 2129.41 6036 0.00 0.00 0 5 45.33

M DD75 3088.30 3585.34 1938.66 5924 0.00 0.00 0 4 32.17

Average 2002.03 2252.67 1495.28 4065 0.00 0.00 0.00 3.15 15.42
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Table 19: Average-speed case for multi-vehicle instances

Instance TIDobj TDobj Travel Cost Profit VioCost VioRate # Vio # Vehicle Time (s)

M AA30 1325.96 1274.58 927.42 2502 24.12 6.90 4 3 3.59

M BB30 1430.83 1409.47 902.53 2512 0.00 0.00 0 2 3.89

M CC30 1586.90 1625.03 720.97 2546 0.00 0.00 0 2 9.59

M DD30 1521.90 1497.23 680.77 2278 0.00 0.00 0 1 19.80

M AA35 1695.80 1672.84 1165.16 3038 14.24 4.41 3 2 4.53

M BB35 1580.09 1620.88 1043.12 2864 0.00 0.00 0 2 3.99

M CC35 1952.04 1926.17 893.83 3020 0.00 0.00 0 2 13.41

M DD35 1878.16 1886.46 975.55 3062 0.00 0.00 0 2 12.00

M AA40 1862.18 1779.77 1256.23 3236 13.85 1.39 1 2 9.26

M BB40 2092.19 2049.55 1092.45 3342 20.49 5.41 4 2 8.54

M CC40 2232.45 2224.43 947.57 3372 0.00 0.00 0 2 22.71

M DD40 2193.58 2188.86 1047.14 3436 0.00 0.00 0 2 19.48

M AA45 2183.60 2077.04 1280.96 3558 4.27 2.50 2 2 10.91

M BB45 2368.30 2368.92 1025.08 3594 112.21 12.50 10 2 14.31

M CC45 2526.68 2420.04 1187.96 3808 26.39 2.27 2 2 27.72

M DD45 2514.14 2539.16 1110.84 3850 0.00 0.00 0 2 20.24

M AA50 2386.74 2336.33 1509.67 4146 18.68 5.21 5 3 12.92

M BB50 2649.81 2598.14 1345.86 4244 72.25 7.14 7 3 13.27

M CC50 2487.20 2888.31 1287.23 4213 0.00 0.00 0 3 53.70

M DD50 2894.99 2877.78 1178.22 4256 0.00 0.00 0 2 45.65

M AA55 2715.24 2628.63 1583.37 4512 110.23 7.69 8 3 18.80

M BB55 2935.70 2869.30 1436.70 4606 53.39 5.66 6 3 14.54

M CC55 3054.51 2937.97 1338.03 4576 3.21 1.92 2 3 45.30

M DD55 3108.87 2968.36 1367.64 4536 28.89 1.89 2 2 47.97

M AA60 2955.86 2831.07 1860.93 4992 64.75 6.03 7 3 26.37

M BB60 3206.82 3162.21 1491.79 4954 62.46 3.51 4 3 25.83

M CC60 3291.42 3377.33 1246.67 4924 0.00 0.00 0 3 45.33

M DD60 3347.42 3362.66 1399.34 5062 0.00 0.00 0 3 54.37

M AA65 3289.72 3224.84 1839.16 5364 124.09 5.47 7 3 32.03

M BB65 3268.49 3241.58 1754.42 5396 50.91 3.85 5 4 25.58

M CC65 3555.25 3434.19 1619.81 5354 34.95 3.13 4 3 72.67

M DD65 3560.63 3400.23 1673.77 5374 18.36 0.78 1 3 75.90

M AA70 3637.35 3586.97 1825.03 5712 37.14 4.41 6 3 33.06

M BB70 3517.17 3422.56 1821.44 5644 70.22 2.99 4 4 36.83

M CC70 3818.56 3858.81 1551.19 5710 0.00 0.00 0 3 95.02

M DD70 3889.32 3917.36 1556.64 5774 0.00 0.00 0 3 70.59

M AA75 3994.22 3930.98 1857.02 6088 165.10 5.48 8 3 40.30

M BB75 3847.42 3750.28 1887.72 6038 107.07 7.75 11 4 36.40

M CC75 4042.21 3813.29 1926.71 6140 16.60 1.37 2 4 111.91

M DD75 4161.67 4148.74 1695.26 6144 0.00 0.00 0 3 77.46

Average 2764.03 2728.21 1357.78 4344 31.35 2.74 2.88 2.65 32.89
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Table 20: Fast-Speed case for multi-vehicle instances

Instance TIDobj TDobj Travel Cost Profit VioCost VioRate # Vio # Vehicle Time (s)

M AA30 1428.60 1297.47 904.53 2502 120.79 15.52 9 3 6.47

M BB30 1614.41 1532.91 643.09 2276 475.11 58.00 29 1 8.37

M CC30 1712.09 1623.33 660.68 2384 0.00 0.00 0 1 18.73

M DD30 1769.13 1650.92 761.08 2512 142.28 12.07 7 1 16.19

M AA35 1793.67 1624.82 1137.18 3062 13.87 5.71 4 3 6.17

M BB35 1977.19 1889.29 972.71 3062 8.42 2.86 2 2 5.86

M CC35 2107.42 2014.59 847.41 3062 0.00 0.00 0 2 17.72

M DD35 2093.21 1867.75 994.25 3062 103.97 7.14 5 2 17.98

M AA40 2053.81 1928.32 1307.68 3436 181.93 17.50 14 2 8.93

M BB40 2283.68 2175.31 1060.69 3436 404.53 41.25 33 2 8.96

M CC40 2429.10 2214.50 1021.50 3436 56.81 2.50 2 2 24.84

M DD40 2369.63 2192.79 1043.21 3436 419.27 21.25 17 2 32.31

M AA45 2456.77 2318.50 1299.50 3818 60.88 6.82 6 2 11.76

M BB45 2685.81 2570.70 1045.30 3816 320.78 32.95 29 2 14.20

M CC45 2774.93 2620.23 1029.77 3850 320.26 14.44 13 2 41.28

M DD45 2719.30 2563.60 1086.40 3850 110.52 4.44 4 2 35.60

M AA50 2655.40 2510.81 1373.19 4084 326.41 23.40 22 2 22.62

M BB50 2935.83 2817.76 1112.24 4130 448.84 37.23 35 2 22.15

M CC50 2995.87 2835.74 1050.26 4086 264.90 13.54 13 2 29.32

M DD50 3078.65 2961.31 1116.69 4278 0.00 0.00 0 2 52.70

M AA55 3108.05 2941.80 1398.20 4540 812.67 33.96 36 2 30.93

M BB55 3179.00 3032.31 1259.69 4592 578.09 41.51 44 3 24.55

M CC55 3289.18 3028.50 1347.51 4676 31.58 1.82 2 3 60.82

M DD55 3404.65 3188.51 1287.49 4676 86.30 2.73 3 2 69.35

M AA60 3240.73 3017.67 1682.33 5000 119.31 10.35 12 3 32.25

M BB60 3482.70 3312.55 1415.45 5028 264.80 17.80 21 3 31.13

M CC60 3600.29 3263.30 1498.70 5062 64.46 1.67 2 3 73.56

M DD60 3684.32 3525.28 1336.72 5062 453.77 11.67 14 2 100.74

M AA65 3488.66 3310.81 1621.19 5232 665.85 35.48 44 3 37.57

M BB65 3661.17 3444.13 1523.87 5268 1126.93 48.39 60 3 35.46

M CC65 3845.22 3625.95 1448.05 5374 170.56 3.13 4 3 92.97

M DD65 3950.15 3705.71 1444.29 5350 450.43 19.05 24 2 88.42

M AA70 3809.69 3611.81 1862.19 5774 491.17 19.29 27 3 50.49

M BB70 3907.50 3731.73 1576.27 5608 973.67 43.94 58 3 43.33

M CC70 4153.91 3942.42 1531.58 5774 304.87 6.43 9 3 126.65

M DD70 4195.36 3858.55 1615.45 5774 86.38 3.57 5 3 106.67

M AA75 4219.23 3937.34 1936.66 6204 1077.59 30.67 46 3 57.55

M BB75 4217.97 4022.65 1611.35 5934 865.78 37.68 52 3 61.47

M CC75 4470.72 4182.44 1679.56 6162 282.08 6.08 9 3 113.90

M DD75 4487.25 4207.98 1696.02 6204 642.42 19.33 29 3 123.14

Average 3033.26 2852.55 1281.00 4372 333.21 17.78 18.63 2.38 44.08
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Table 21: Comparison with a Deterministic Method by using R0

Deterministic Stochastic

Instances 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

cdp101-25 2811.6 555.7 3367.3 2867.4 5.8 2873.1 41.4 14.7

cdp102-25 2749.9 281.9 3031.8 2769.8 3.2 2773.0 78.1 8.5

cdp103-25 2734.3 2927.8 5662.1 2841.6 25.8 2867.4 168.8 49.4

cdp201-25 3035.6 240.6 3276.3 3040.4 0.2 3040.6 41.6 7.2

cdp202-25 2812.1 4020.4 6832.5 2834.3 0.4 2834.7 130.0 58.5

cdp203-25 2789.3 991.5 3780.8 2819.1 8.8 2827.8 225.8 25.2

rcdp101-25 1355.3 3500.3 4855.5 1499.8 102.6 1602.5 51.5 67.0

rcdp102-25 1318.1 6139.1 7457.1 1494.8 11.2 1506.0 82.1 79.8

rcdp103-25 1330.4 4437.1 5767.5 1474.3 45.3 1519.6 119.2 73.7

rcdp201-25 1644.8 3818.4 5463.2 1769.2 37.6 1806.8 126.8 66.9

rcdp202-25 1445.9 4458.4 5904.3 1301.2 5.6 1306.8 74.7 77.9

rcdp203-25 1296.7 2537.9 3834.6 1402.2 77.9 1480.0 208.5 61.4

rdp101-25 1708.3 0.0 1708.3 1708.3 0.0 1708.3 39.6 0.0

rdp102-25 1406.3 17.3 1423.6 1406.3 17.3 1423.6 62.3 0.0

rdp103-25 1210.5 2733.4 3943.9 1223.1 43.0 1266.1 69.1 67.9

rdp201-25 1337.6 2382.1 3719.7 1415.6 4.2 1419.8 80.5 61.8

rdp202-25 1232.7 4486.9 5719.7 1299.1 4.8 1303.9 168.5 77.2

rdp203-25 1144.9 5973.7 7118.6 1243.9 64.9 1308.8 215.5 81.6

cdp101-50 5644.5 4705.4 10349.9 5703.0 13.3 5716.3 127.3 44.8

cdp102-50 5585.1 3633.1 9218.2 5696.0 28.8 5724.8 308.7 37.9

cdp103-50 5548.1 1711.7 7259.8 5685.4 7.3 5692.7 560.5 21.6

cdp201-50 5807.3 5555.5 11362.8 5947.2 3.4 5950.6 241.6 47.6

cdp202-50 5605.3 10181.9 15787.2 5753.1 11.9 5765.0 601.3 63.5

cdp203-50 5591.3 8992.5 14583.8 5700.0 6.2 5706.1 907.1 60.9

rcdp101-50 2793.1 14887.4 17680.5 3278.9 138.2 3417.1 139.1 80.7

rcdp102-50 2705.8 14095.5 16801.3 3185.7 212.9 3398.5 209.8 79.8

rcdp103-50 2683.7 19016.8 21700.4 3308.5 133.2 3441.7 309.5 84.1

rcdp201-50 3164.8 10452.2 13617.0 3625.8 76.0 3701.8 413.8 72.8

rcdp202-50 2846.0 17333.5 20179.5 3354.7 205.9 3560.6 693.6 82.4

rcdp203-50 2786.8 17458.7 20245.5 3171.5 267.9 3439.4 812.1 83.0

rdp101-50 3054.0 226.2 3280.2 3082.9 5.4 3088.3 82.7 5.9

rdp102-50 2549.5 967.8 3517.3 2571.3 23.6 2594.9 140.0 26.2

rdp103-50 2821.7 2150.5 4972.2 2361.9 31.4 2393.3 173.1 51.9

rdp201-50 2497.8 3161.8 5659.6 2616.5 10.4 2626.9 321.4 53.6

rdp202-50 2284.4 5681.1 7965.5 2451.1 74.5 2525.6 616.5 68.3

rdp203-50 2155.8 6174.7 8330.5 2386.4 105.4 2491.8 881.1 70.1

cdp101-100 11432.0 8288.1 19720.1 12051.56 85.7 12137.26 447.9 38.5

cdp102-100 11332.8 8355.7 19688.5 11665.86 81.4 11747.25 1137.7 40.3

cdp103-100 11257.7 13277.0 24534.6 11375.03 142.4 11517.48 2157.9 53.1

cdp201-100 11500.4 7714.2 19214.6 11617.83 61.9 11679.69 1158.8 39.2

cdp202-100 11235.1 17086.9 28322.1 11545.95 106.5 11652.47 2771.9 58.9

cdp203-100 11175.8 18937.5 30113.3 11429.31 120.7 11549.98 4383.1 61.6

rcdp101-100 4330.1 708.5 5038.6 4347.98 13.7 4361.68 448.41 13.4

rcdp102-100 3959.4 16650.6 20610.0 5492.51 281.5 5773.97 650.3 72.0

rcdp103-100 4977.1 15603.0 20580.1 5543.96 225.1 5769.01 1118.9 72.0

rcdp201-100 5532.6 9054.9 14587.6 5971.84 132.6 6104.47 1485.2 58.2

rcdp202-100 5026.8 18732.0 23758.8 5608.89 370.8 5979.64 2260.7 74.8

rcdp203-100 4749.3 16325.3 21074.6 5232.3 389.4 5621.68 2713.9 73.3

rdp101-100 5294.4 4394.2 9688.5 5383.81 65.0 5448.82 436.67 43.8

rdp102-100 4651.6 10494.6 15146.2 4977.5 172.8 5150.26 526.7 66.0

rdp103-100 4350.1 8943.2 13293.3 4459.31 258.4 4717.71 821.1 64.5

rdp201-100 4640.5 13411.9 18052.3 5016.54 172.8 5189.34 1464.6 71.3

rdp202-100 4289.5 8967.5 13256.9 4660.1 144.8 4804.92 2304.1 63.8

rdp203-100 4263.9 15504.6 19768.6 4716.91 286.2 5003.1 3948.8 74.7

Average 4138.7 7561.8 11700.5 4359.0 91.2 4450.2 736.3 54.7
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Table 22: Comparison with a Deterministic Method by using R1

Deterministic Stochastic

Instances 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

cdp101-25 2811.6 20.7 2832.3 2811.6 20.7 2832.3 14.8 0.0

cdp102-25 2749.9 272.6 3022.5 2742.4 28.9 2771.4 31.2 8.3

cdp103-25 2734.3 479.7 3214.0 2745.4 62.9 2808.3 66.0 12.6

cdp201-25 3035.6 15.9 3051.6 3040.4 5.3 3045.7 8.0 0.2

cdp202-25 2812.1 10542.0 13354.1 2828.2 0.2 2828.4 52.7 78.8

cdp203-25 2789.3 6581.0 9370.2 2793.8 35.5 2829.3 74.0 69.8

rcdp101-25 1355.3 6065.5 7420.8 1499.8 81.0 1580.8 20.2 78.7

rcdp102-25 1318.1 4851.7 6169.8 1491.7 31.8 1523.5 34.3 75.3

rcdp103-25 1330.4 6646.7 7977.1 1457.0 59.6 1516.6 40.2 81.0

rcdp201-25 1644.8 1559.7 3204.5 1660.5 106.2 1766.7 50.7 44.9

rcdp202-25 1445.9 1253.7 2699.6 1279.1 13.0 1292.1 34.1 52.1

rcdp203-25 1296.7 968.4 2265.2 1407.4 10.9 1418.3 64.6 37.4

rdp101-25 1708.3 0.0 1708.3 1708.3 0.0 1708.3 10.4 0.0

rdp102-25 1406.3 20.7 1427.0 1404.3 21.0 1425.2 18.7 0.1

rdp103-25 1210.5 2058.5 3269.0 1232.2 11.6 1243.8 24.3 62.0

rdp201-25 1337.6 1196.4 2533.9 1361.3 3.6 1364.9 29.2 46.1

rdp202-25 1232.7 1049.0 2281.8 1238.6 63.7 1302.3 73.1 42.9

rdp203-25 1144.9 734.6 1879.5 1235.8 8.7 1244.4 113.3 33.8

cdp101-50 5644.5 3084.7 8729.1 5652.3 89.9 5742.3 109.6 34.2

cdp102-50 5585.1 3886.0 9471.1 5606.7 63.2 5669.9 304.1 40.1

cdp103-50 5548.1 2799.6 8347.7 5629.3 9.3 5638.6 614.3 32.5

cdp201-50 5807.3 1755.8 7563.1 5892.0 45.9 5937.9 267.1 21.5

cdp202-50 5605.3 12196.8 17802.2 5745.5 17.8 5763.3 851.1 67.6

cdp203-50 5591.3 2311.3 7902.6 5699.9 1.5 5701.4 1333.4 27.9

rcdp101-50 2793.1 39582.4 42375.6 3306.4 286.0 3592.4 167.4 91.5

rcdp102-50 2705.8 36273.2 38979.0 3269.5 349.5 3618.9 258.9 90.7

rcdp103-50 2683.7 32025.4 34709.1 3292.1 273.8 3565.8 441.3 89.7

rcdp201-50 3164.8 4572.1 7736.9 3446.7 266.9 3713.6 563.8 52.0

rcdp202-50 2846.0 17563.3 20409.2 3130.3 229.3 3359.6 858.2 83.5

rcdp203-50 2786.8 18130.9 20917.8 3267.1 132.9 3400.0 1296.6 83.7

rdp101-50 3054.0 139.4 3193.4 3090.0 62.4 3152.4 73.7 1.3

rdp102-50 2549.5 3565.8 6115.3 2582.1 24.3 2606.4 126.8 57.4

rdp103-50 2821.7 8711.2 11533.0 2381.7 33.5 2415.2 179.6 79.1

rdp201-50 2497.8 7435.6 9933.4 2604.0 39.5 2643.5 338.8 73.4

rdp202-50 2284.4 4879.3 7163.7 2410.7 99.6 2510.3 752.8 65.0

rdp203-50 2155.8 4559.0 6714.8 2364.6 30.8 2395.3 975.2 64.3

cdp101-100 11432.0 23287.5 34719.5 11807.3 46.0 11853.3 430.9 65.9

cdp102-100 11332.8 18464.8 29797.5 11539.2 55.2 11594.4 1252.6 61.1

cdp103-100 11257.7 4691.7 15949.4 11441.1 58.6 11499.7 2053.6 27.9

cdp201-100 11500.4 27033.4 38533.7 11835.0 59.6 11894.6 1542.5 69.1

cdp202-100 11235.1 12524.0 23759.2 11460.8 66.0 11526.8 3480.3 51.5

cdp203-100 11175.8 23436.7 34612.6 11470.1 137.5 11607.7 5953.1 66.5

rcdp101-100 4330.1 1505.0 5835.1 4319.8 9.0 4328.8 378.9 25.8

rcdp102-100 3959.4 9473.2 13432.6 5683.2 663.0 6346.3 779.5 52.8

rcdp103-100 4977.1 32729.6 37706.7 5425.8 319.4 5745.2 1340.1 84.8

rcdp201-100 5532.6 31982.1 37514.8 6043.4 364.9 6408.4 1957.1 82.9

rcdp202-100 5026.8 21963.1 26990.0 5679.6 349.6 6029.2 3010.2 77.7

rcdp203-100 4749.3 19123.2 23872.5 5060.4 567.8 5628.2 3965.3 76.4

rdp101-100 5294.4 6565.2 11859.6 5330.1 244.0 5574.2 298.3 53.0

rdp102-100 4651.6 22036.2 26687.8 4966.3 231.3 5197.6 507.1 80.5

rdp103-100 4350.1 17349.8 21699.9 4685.8 282.4 4968.2 858.6 77.1

rdp201-100 4640.5 8397.9 13038.3 4979.2 320.0 5299.2 1844.6 59.4

rdp202-100 4289.5 7681.5 11971.0 4441.2 348.2 4789.4 2822.2 60.0

rdp203-100 4263.9 10392.6 14656.5 4595.6 150.0 4745.6 5061.2 67.6

Average 4138.7 10119.0 14257.7 4334.7 127.7 4462.3 885.3 54.1
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Table 23: Comparison with a Deterministic Method by using R2

Deterministic Stochastic

Instances 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

cdp101-25 2811.6 2790.7 5602.2 2867.4 25.3 2892.6 43.9 48.4

cdp102-25 2749.9 2064.9 4814.9 2769.4 8.7 2778.1 105.1 42.3

cdp103-25 2734.3 449.0 3183.3 2763.3 94.2 2857.5 301.8 10.2

cdp201-25 3035.6 73.7 3109.3 3040.4 9.4 3049.9 25.8 1.9

cdp202-25 2812.1 13933.3 16745.4 2834.3 5.9 2840.2 128.6 83.0

cdp203-25 2789.3 1182.6 3971.9 2793.8 30.8 2824.6 242.7 28.9

rcdp101-25 1355.3 3164.0 4519.3 1506.7 94.2 1600.9 63.7 64.6

rcdp102-25 1318.1 1817.7 3135.8 1480.7 37.5 1518.2 100.7 51.6

rcdp103-25 1330.4 2863.4 4193.8 1454.8 44.3 1499.1 148.9 64.3

rcdp201-25 1644.8 4109.7 5754.5 1761.1 34.2 1795.3 186.2 68.8

rcdp202-25 1445.9 348.1 1794.0 1243.9 37.6 1281.5 96.4 28.6

rcdp203-25 1296.7 1093.7 2390.4 1408.9 23.0 1431.9 229.2 40.1

rdp101-25 1708.3 0.0 1708.3 1708.3 0.0 1708.3 40.9 0.0

rdp102-25 1406.3 20.7 1427.0 1404.3 20.7 1425.0 65.9 0.1

rdp103-25 1210.5 879.8 2090.3 1227.0 9.9 1236.9 79.5 40.8

rdp201-25 1337.6 2133.5 3471.1 1394.9 40.6 1435.5 94.5 58.6

rdp202-25 1232.7 822.7 2055.4 1271.7 23.0 1294.8 211.1 37.0

rdp203-25 1144.9 926.5 2071.44 1232.6 30.6 1263.2 346.5 39.0

cdp101-50 5644.5 6910.7 12555.2 5755.1 8.0 5763.1 159.8 54.1

cdp102-50 5585.1 4451.3 10036.4 5635.7 102.3 5738.0 380.3 42.8

cdp103-50 5548.1 12726.2 18274.3 5635.3 28.5 5663.8 751.4 69.0

cdp201-50 5807.3 29848.5 35655.9 5910.0 35.9 5945.9 317.3 83.3

cdp202-50 5605.3 34968.6 40573.9 5788.2 8.5 5796.7 723.3 85.7

cdp203-50 5591.3 1297.9 6889.2 5695.0 30.3 5725.3 1120.1 16.9

rcdp101-50 2793.1 19019.8 21812.9 3279.1 193.9 3473.0 218.1 84.1

rcdp102-50 2705.8 11634.4 14340.2 3339.8 143.6 3483.4 291.3 75.7

rcdp103-50 2683.7 10655.2 13338.8 3292.9 158.4 3451.2 516.3 74.1

rcdp201-50 3164.8 2449.9 5614.6 3506.7 136.8 3643.5 717.3 35.1

rcdp202-50 2846.0 5506.4 8352.4 3081.0 266.8 3347.8 1202.6 59.9

rcdp203-50 2786.8 9128.6 11915.4 3042.4 268.8 3311.2 1535.2 72.2

rdp101-50 3054.0 111.3 3165.4 3064.3 41.0 3105.3 110.3 1.9

rdp102-50 2549.5 2085.1 4634.6 2579.0 14.4 2593.4 171.2 44.0

rdp103-50 2821.7 4760.4 7582.2 2329.8 56.8 2386.7 228.0 68.5

rdp201-50 2497.8 13484.6 15982.5 2606.1 43.5 2649.6 542.9 83.4

rdp202-50 2284.4 5265.3 7549.7 2469.4 48.6 2518.0 919.9 66.6

rdp203-50 2155.8 5732.5 7888.2 2322.7 119.3 2441.9 905.5 69.0

cdp101-100 11432.0 63259.7 74691.6 11842.0 215.8 12057.8 551.2 83.9

cdp102-100 11332.8 35467.3 46800.1 11753.9 180.1 11934.0 1508.6 74.5

cdp103-100 11257.7 26952.6 38210.3 11517.1 63.4 11580.4 2315.7 69.7

cdp201-100 11500.4 72271.0 83771.3 11754.5 247.6 12002.0 1552.8 85.7

cdp202-100 11235.1 65057.3 76292.4 11649.8 608.7 12258.5 3381.7 83.9

cdp203-100 11175.8 19715.4 30891.2 11366.6 339.0 11705.6 5770.1 62.1

rcdp101-100 4330.1 669.0 4999.1 4337.2 28.6 4365.8 150.6 12.7

rcdp102-100 3959.4 1938.7 5898.1 3924.1 39.6 3963.6 939.3 32.8

rcdp103-100 4977.1 16084.7 21061.8 5511.9 486.5 5998.3 1457.5 71.5

rcdp201-100 5532.6 21379.7 26912.3 6097.7 325.6 6423.2 1941.6 76.1

rcdp202-100 5026.8 12160.2 17187.0 5354.3 399.4 5753.7 3073.4 66.5

rcdp203-100 4749.3 11186.5 15935.8 5134.6 258.9 5393.5 2918.3 66.2

rdp101-100 5294.4 6666.1 11960.5 5518.1 34.0 5552.1 150.6 53.6

rdp102-100 4651.6 12453.8 17105.4 5131.4 183.9 5315.3 749.8 68.9

rdp103-100 4350.1 10699.8 15049.9 4660.3 119.5 4779.8 917.8 68.2

rdp201-100 4640.5 6109.7 10750.2 4894.6 251.4 5146.1 2350.8 52.1

rdp202-100 4289.5 5583.8 9873.2 4544.1 153.3 4697.3 2922.8 52.4

rdp203-100 4263.9 5863.3 10127.2 4435.2 607.5 5042.7 6185.4 50.2

Average 4138.7 11337.6 15476.2 4313.4 126.2 4439.6 965.9 54.2
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Table 24: Comparison with a Deterministic Method by using R3

Deterministic Stochastic

Instances 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

cdp101-25 2811.6 20.2 2831.8 2811.6 20.2 2831.8 33.6 0.0

cdp102-25 2749.9 155.3 2905.2 2742.7 2.9 2745.6 84.5 5.5

cdp103-25 2734.3 253.2 2987.5 2736.8 10.5 2747.3 217.9 8.0

cdp201-25 3035.6 9.0 3044.6 3035.6 8.0 3043.6 54.6 0.0

cdp202-25 2812.1 8726.1 11538.2 2823.3 5.0 2828.3 156.0 75.5

cdp203-25 2789.3 4080.0 6869.3 2793.8 34.1 2827.9 225.4 58.8

rcdp101-25 1355.3 5023.0 6378.2 1488.4 2.3 1490.7 48.9 76.6

rcdp102-25 1318.1 4142.4 5460.5 1444.9 5.4 1450.3 68.3 73.4

rcdp103-25 1330.4 6265.8 7596.2 1371.0 53.7 1424.7 94.4 81.2

rcdp201-25 1644.8 1385.1 3029.8 1678.1 27.2 1705.3 119.7 43.7

rcdp202-25 1445.9 1136.3 2582.2 1263.5 14.8 1278.2 167.9 50.5

rcdp203-25 1296.7 446.3 1743.0 1329.1 31.6 1360.7 182.1 21.9

rdp101-25 1708.3 0.0 1708.3 1708.3 0.0 1708.3 24.5 0.0

rdp102-25 1406.3 10.5 1416.8 1404.3 9.5 1413.8 46.5 0.2

rdp103-25 1210.5 1849.4 3059.9 1227.0 15.7 1242.7 65.5 59.4

rdp201-25 1337.6 1114.0 2451.5 1361.3 1.3 1362.6 87.5 44.4

rdp202-25 1232.7 993.0 2225.7 1244.3 0.8 1245.1 201.1 44.1

rdp203-25 1144.9 502.1 1647.0 1169.7 41.6 1211.3 326.8 26.5

cdp101-50 5644.5 1806.8 7451.3 5708.9 5.8 5714.8 114.1 23.3

cdp102-50 5585.1 2718.3 8303.4 5611.2 19.0 5630.2 306.7 32.2

cdp103-50 5548.1 1426.1 6974.2 5601.6 13.3 5614.9 555.4 19.5

cdp201-50 5807.3 1643.9 7451.3 5911.9 18.8 5930.8 259.9 20.4

cdp202-50 5605.3 11743.7 17349.0 5736.4 70.7 5807.1 872.3 66.5

cdp203-50 5591.3 2116.3 7707.6 5622.1 52.2 5674.3 1365.1 26.4

rcdp101-50 2793.1 35753.9 38547.0 3238.9 198.6 3437.5 146.5 91.1

rcdp102-50 2705.8 35027.3 37733.1 3171.9 189.5 3361.4 225.1 91.1

rcdp103-50 2683.7 30727.4 33411.1 3176.1 199.5 3375.6 415.2 89.9

rcdp201-50 3164.8 3889.4 7054.2 3512.7 175.4 3688.1 605.7 47.7

rcdp202-50 2846.0 16701.4 19547.4 3199.2 71.6 3270.8 1003.8 83.3

rcdp203-50 2786.8 15962.2 18749.0 3066.0 165.2 3231.2 1358.7 82.8

rdp101-50 3054.0 89.3 3143.4 3050.8 62.7 3113.5 76.6 0.9

rdp102-50 2549.5 3216.8 5766.4 2590.0 17.9 2607.9 162.1 54.8

rdp103-50 2821.7 7815.5 10637.2 2330.7 92.8 2423.5 178.1 77.2

rdp201-50 2497.8 6739.8 9237.6 2561.0 27.1 2588.1 365.5 72.0

rdp202-50 2284.4 3796.7 6081.1 2387.9 9.6 2397.6 874.5 60.6

rdp203-50 2155.8 3931.4 6087.2 2338.6 11.6 2350.2 1182.6 61.4

cdp101-100 11432.0 16921.3 28353.3 11706.9 395.1 12102.0 546.3 57.3

cdp102-100 11332.8 10554.3 21887.1 11653.5 46.7 11700.2 1251.3 46.5

cdp103-100 11257.7 2794.2 14051.8 11425.3 135.8 11561.1 2113.9 17.7

cdp201-100 11500.4 21278.8 32779.2 11606.0 1479.5 13085.4 1685.7 60.1

cdp202-100 11235.1 9883.8 21118.9 11528.8 204.9 11733.7 4124.8 44.4

cdp203-100 11175.8 20357.5 31533.3 11471.2 314.1 11785.3 5942.9 62.6

rcdp101-100 4330.1 1419.4 5749.4 4363.0 92.4 4455.4 161.6 22.5

rcdp102-100 3959.4 8585.1 12544.4 3916.4 103.1 4019.5 319.0 68.0

rcdp103-100 4977.1 31167.5 36144.6 5651.5 286.5 5938.0 1428.1 83.6

rcdp201-100 5532.6 30037.7 35570.3 6154.4 522.3 6676.7 2190.2 81.2

rcdp202-100 5026.8 20979.8 26006.7 5606.2 735.5 6341.7 3254.5 75.6

rcdp203-100 4749.3 16821.2 21570.5 5277.5 362.1 5639.6 3502.6 73.9

rdp101-100 5294.4 6058.3 11352.7 5379.9 188.5 5568.4 199.6 51.0

rdp102-100 4651.6 18601.1 23252.7 5016.3 319.6 5336.0 574.1 77.1

rdp103-100 4350.1 15619.3 19969.4 4633.7 252.8 4886.5 949.6 75.5

rdp201-100 4640.5 6862.2 11502.7 4919.6 93.0 5012.6 2342.0 56.4

rdp202-100 4289.5 6900.9 11190.4 4616.2 128.1 4744.3 2668.6 57.6

rdp203-100 4263.9 8998.4 13262.4 4485.8 185.6 4671.3 5178.3 64.8

Average 4138.7 8797.4 12936.0 4293.7 139.5 4433.2 939.0 50.9
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Table 25: Comparison with a Deterministic Method by using R0 with α =100

Deterministic Stochastic

Instances 1st 2nd Obj. 1st 2nd Obj. Time (s) Imp (%)

cdp101-25 2811.6 124.2 2935.7 2867.4 1.4 2868.8 38.6 2.3

cdp102-25 2749.9 611.0 3360.9 2766.5 1.2 2767.8 83.8 17.6

cdp103-25 2734.3 722.5 3456.8 2842.1 5.8 2847.9 179.4 17.6

cdp201-25 3035.6 53.5 3089.1 3040.4 0.1 3040.5 25.8 1.6

cdp202-25 2812.1 885.9 3698.0 2834.3 0.1 2834.4 126.0 23.4

cdp203-25 2789.3 451.5 3240.7 2793.8 8.5 2802.3 201.9 13.5

rcdp101-25 1355.3 799.6 2154.8 1492.1 30.4 1522.5 48.0 29.3

rcdp102-25 1318.1 1037.4 2355.5 1474.6 7.1 1481.7 69.1 37.1

rcdp103-25 1330.4 1547.7 2878.2 1453.7 12.0 1465.7 94.3 49.1

rcdp201-25 1644.8 1203.9 2848.6 1730.8 38.4 1769.2 136.8 37.9

rcdp202-25 1445.9 975.2 2421.1 1235.2 62.8 1298.0 64.7 46.4

rcdp203-25 1296.7 555.9 1852.7 1414.6 28.8 1443.4 170.7 22.1

rdp101-25 1708.3 0.0 1708.3 1708.3 0.0 1708.3 32.9 0.0

rdp102-25 1406.3 4.2 1410.5 1406.3 4.2 1410.5 57.3 0.0

rdp103-25 1210.5 695.9 1906.4 1223.1 10.6 1233.6 77.3 35.3

rdp201-25 1337.6 273.0 1610.6 1350.0 12.6 1362.6 96.2 15.4

rdp202-25 1232.7 802.5 2035.2 1298.6 1.3 1299.9 185.8 36.1

rdp203-25 1144.9 1067.8 2212.7 1228.9 21.7 1250.6 211.8 43.5

cdp101-50 5644.5 715.4 6359.9 5774.8 0.8 5775.5 144.8 9.2

cdp102-50 5585.1 1444.3 7029.4 5650.7 52.0 5702.7 263.0 18.9

cdp103-50 5548.1 1541.8 7089.8 5573.9 32.1 5606.0 730.6 20.9

cdp201-50 5807.3 1424.3 7231.6 5912.2 9.4 5921.6 276.8 18.1

cdp202-50 5605.3 1988.1 7593.4 5736.3 15.8 5752.0 626.6 24.2

cdp203-50 5591.3 1392.7 6984.0 5721.0 7.8 5728.8 843.5 18.0

rcdp101-50 2793.1 4010.3 6803.5 3170.8 192.1 3362.9 166.7 50.6

rcdp102-50 2705.8 3472.7 6178.5 3176.3 65.0 3241.3 258.6 47.5

rcdp103-50 2683.7 3752.1 6435.8 3218.9 67.1 3286.0 336.5 48.9

rcdp201-50 3164.8 1849.9 5014.7 3459.6 83.5 3543.1 458.6 29.3

rcdp202-50 2846.0 3499.7 6345.7 3267.9 57.0 3324.9 645.5 47.6

rcdp203-50 2786.8 4176.2 6963.0 3177.3 64.7 3242.0 964.0 53.4

rdp101-50 3054.0 16.8 3070.8 3064.0 5.9 3069.9 78.4 0.0

rdp102-50 2549.5 446.0 2995.5 2571.9 15.4 2587.3 171.6 13.6

rdp103-50 2821.7 741.2 3562.9 2313.8 40.8 2354.5 192.7 33.9

rdp201-50 2497.8 1877.7 4375.5 2570.7 41.8 2612.4 344.0 40.3

rdp202-50 2284.4 1233.6 3518.0 2423.0 37.5 2460.5 606.4 30.1

rdp203-50 2155.8 1914.1 4069.9 2368.1 38.4 2406.5 842.6 40.9

cdp101-100 11432.0 3652.1 15084.0 11863.0 28.9 11891.9 459.2 21.2

cdp102-100 11332.8 3098.5 14431.3 11494.5 31.8 11526.3 1235.8 20.1

cdp103-100 11257.7 3229.0 14486.7 11354.9 75.9 11430.7 2101.2 21.1

cdp201-100 11500.4 4044.7 15545.0 11840.3 27.7 11867.9 1090.1 23.7

cdp202-100 11235.1 3009.2 14244.3 11450.4 39.3 11489.7 2735.9 19.3

cdp203-100 11175.8 3284.6 14460.4 11469.7 17.8 11487.5 4154.1 20.6

rcdp101-100 4330.1 89.1 4419.2 4352.0 0.9 4352.9 162.7 1.5

rcdp102-100 3959.4 524.7 4484.1 3926.1 5.6 3931.7 227.7 12.3

rcdp103-100 4977.1 3963.9 8941.0 5340.5 250.3 5590.8 1000.0 37.5

rcdp201-100 5532.6 4304.8 9837.5 5836.7 254.1 6090.8 1382.2 38.1

rcdp202-100 5026.8 3920.5 8947.3 5584.1 258.9 5843.0 2150.3 34.7

rcdp203-100 4749.3 3617.8 8367.1 5152.2 217.3 5369.5 2949.7 35.8

rdp101-100 5294.4 952.2 6246.5 5374.6 33.9 5408.5 138.7 13.4

rdp102-100 4651.6 3027.0 7678.6 4945.9 72.1 5018.1 522.7 34.6

rdp103-100 4350.1 2618.9 6969.0 4534.7 107.0 4641.7 766.1 33.4

rdp201-100 4640.5 2342.5 6983.0 4933.5 129.8 5063.3 1536.6 27.5

rdp202-100 4289.5 2207.3 6496.7 4551.6 84.1 4635.6 1801.7 28.6

rdp203-100 4263.9 3433.2 7697.1 4573.5 243.0 4816.5 3224.3 37.4

Average 4138.7 1826.4 5965.1 4294.3 54.7 4348.9 694.3 26.6
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Summary

In this thesis, we investigate short-haul freight transportation solutions for efficient and

effective pickup and delivery services considering time-dependent travel times, from an

operational and tactical planning perspective. The thesis is composed of four chapters.

In Chapter 2, we introduce the time-dependent capacitated profitable tour problem with

time windows and precedence constraints and formally describe it as an arc-based mixed-

integer program (MIP). Firstly, the proposed MIP is solved using an optimization software,

considering small-size instances with up to 60 locations (30 pickup and delivery requests). To

tackle larger instances, a tailored labeling algorithm is proposed. Several dominance criteria

are also introduced to discard unpromising labels. Our computational results demonstrate

that the algorithm can solve instances with up to 150 locations (75 pickup and delivery

requests) to optimality. Additionally, we present a restricted dynamic programming heuristic

to improve the computation time. This heuristic does not guarantee optimality but is able to

find the optimal solution for 32 instances out of the 34 instances.

Chapter 3 studies a family of time-dependent pickup and delivery problems with time

windows, extending the problem in Chapter 2 to the multiple vehicle cases. We aim to

optimize the service of a transportation provider under two dimensions of operational

flexibility. In the first, we consider problems wherein the transportation service provider can

choose the transportation requests it serves in order to maximize profit. In the second, we

consider problems wherein they can take advantage of periods of light traffic by dictating to

drivers when their routes should begin. We also consider problems wherein these flexibilities

are not present. We propose an exact solution approach for solving problems from this family

that is based upon branch and price, wherein columns are generated via a tailored labeling

algorithm. We augment the framework with adaptations of various speed-up techniques from

the literature, including limited-memory subset-row cuts and route enumeration. With an

extensive computational study, we assess the effectiveness of the proposed framework and

the impact of the adapted techniques. We show that small to medium-size instances, with up

to 45 freight requests (90 locations), can be optimally solved by the proposed exact algorithm.

In Chapter 4, we focus on the time-dependent profitable pickup and delivery problem with

time windows. As one variant of problem studied in Chapter 3, it allows all routes start at
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a flexible departure time and handles only the profitable requests. Moreover, we propose

an adaptive large neighborhood search algorithm (ALNS). The general idea of ALNS is to

iteratively improve a given solution by first partially deteriorating it and then repairing it. A

destroy operator and an insertion operator are used, respectively. We use a total of ten removal

and five insertion operators. Each operator is selected based on its past performance during

the search process. Results of an extensive computational study show that the algorithm can

quickly find high-quality solutions on instances with up to 75 transportation requests (150

locations). We also conduct a study of the impact on profits when explicitly recognizing traffic

congestion during planning operations.

Chapter 5 investigates a more realistic representation of real-life applications, a time-

dependent laundry routing problem with stochastic pickup demands (TDLRPSPD). As one

of the most important possesses in laundry business, efficient laundry pickup and delivery

will result in reduction in cost, time and improvement in service quality. It ultimately

results in customers loyalty, economic efficiency and gain of a competitive advantage over

competitor. However, the literature on this problem is quite limited. A two-stage stochastic

programming with recourse is presented for this problem. We also propose a sample average

approximation method together with an adaptive large neighborhood search algorithm to

tackle this problem. Several experiments are conducted to show the effectiveness of our

solution approach. Computational results on instances with up to 100 requests reveal that a

cost savings of on average more than 50% can be achieved compared with a pure deterministic

solution approach using expected pickup demands, if pickup demands uncertainty is taken

into consideration during the planning process.

Conclusions are drawn in Chapter 6. We also discuss several possible directions for future

research following the concepts presented in this thesis.
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