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Liquid crystal networks combine the orientational order of liquid crystals with the elastic properties of polymer
networks, leading to a vast application potential in the field of responsive coatings, e.g., for haptic feedback,
self-cleaning surfaces, and static and dynamic pattern formation. Recent experimental work has further paved
the way toward such applications by realizing the fast and reversible surface modulation of a liquid crystal
network coating upon in-plane actuation with an AC electric field [Liu, Tito, and Broer, Nat. Commun. 8,
1526 (2017)]. Here, we construct a Landau-type theory for electrically-responsive liquid crystal networks and
perform molecular dynamics simulations to explain the findings of these experiments and inform on rational
design strategies. Qualitatively, the theory agrees with our simulations and reproduces the salient experimental
features. We also provide a set of testable predictions: the aspect ratio of the nematogens, their initial orientational
order when cross-linked into the polymer network, and the cross-linking fraction of the network all increase the
plasticization time required for the film to macroscopically deform. We demonstrate that the dynamic response
to oscillating electric fields is characterized by two resonances, which can likewise be influenced by varying
these parameters, providing an experimental handle to fine-tune device design.

DOI: 10.1103/PhysRevE.102.042703

I. INTRODUCTION

Liquid crystal networks (LCNs), such as nematic elas-
tomers, combine the orientational properties of liquid crystals
with the elastic properties of polymer networks by incorporat-
ing liquid crystalline mesogens into the cross-linked polymer
matrix [1]. The resulting coupling between the strain imposed
on the material and the orientation of the liquid crystalline
mesogens it contains introduces novel features that cannot
entirely be traced back to either of the LCN constituents [2].
Striking examples include large spontaneous deformations
upon a temperature-induced phase transition of the liquid
crystalline mesogens [3] and so-called “(semi-)soft” elasticity,
i.e., macroscopic deformation at (almost) no energetic cost by
reorientation of the liquid crystalline mesogens [4].

The theoretical description of these materials was pio-
neered by Warner and coworkers, who proposed a framework
combining classical elasticity theory with the Landau–de
Gennes theory for liquid crystals [5,6]. This was later ex-
panded upon to illustrate, among other things, the occurrence
of phase transitions and instabilities in LCNs [3,7,8], how
these materials respond to electric fields [9], and why they
display “soft” deformation modes if alignment, and the corre-
sponding symmetry-breaking, arises spontaneously [10–13].
Conversely, this view of “soft” deformations has been
challenged in the case of pre-stretched elastomers, where
symmetry arguments no longer apply, and in which case it is
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argued that the reduced elastic modulus results entirely from
nonlinear elasticity [14–19]. Warner and Terentjev provide a
comprehensive overview of the most important results in their
monograph [20].

A deeper understanding of LCNs has led to the rapid
development toward industrial applications of these materi-
als in (soft) actuators [21,22], surgical interventions [23–25]
and 3D printing shape-memory liquid crystal elastomers [26].
Most of these exploit the susceptibility of the mesogens to
external stimuli such as heat or electric fields [27]. Recently,
LCNs were also recognised as a prime candidate for stimuli-
responsive coatings due to their tunable dynamical behavior,
with envisaged applications in the fields of haptic feedback,
self-cleaning surfaces and finely controlled pixel-like defor-
mations (so-called voxels) [28,29]. Desirable properties for
these applications are a swift response and large susceptibility
to the applied stimulus.

Considerable work has already been done to develop
photoresponsive coatings [30,31], containing azobenzene
moieties that undergo a trans-to-cis interconversion under
illumination of appropriate wavelengths, as well as ther-
moresponsive coatings based on the isotropic-nematic phase
transition of the liquid crystal network [32–34]. Although
such coatings provide great versatility due to the possi-
bility of remote and dynamical actuation, the range of
pre-programmed topographical profiles and the timescale of
deformation remain limited. Recent work by Liu et al. pro-
poses an electrically-responsive LCN coating in an attempt to
mitigate these limitations [35], further paving the way toward
dynamical, finely-resolved control of topographic profiles. In
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their work, Liu et al. employ a transparent LCN film, su-
perimposed on an array of interdigitated comb electrodes.
The LCN consists, in addition to the polymer component, in
large part of two species of liquid-crystal mesogen, namely
(i) relatively immobile mesogens incorporated into the poly-
mer network as permanent crosslinks and (ii) end-on grafted
side-group mesogens. The latter of these have attached to
them a cyano group resulting in a strong permanent dipole
moment, whereas the former do not carry a permanent dipole
moment. Both mesogen species are present in approximately
equal amounts and are bound exclusively to the polymer
component, rather than to each other. The mesogens are
prepared with homeotropic alignment in the film, leading
to a pre-aligned network, dense in mesogenic component.
Upon in-plane actuation with an AC electric field in be-
tween the electrodes, perpendicular to the director field of
the mesogens, the authors report (i) the fast and reversible
formation of surface corrugations pre-programmed by the
electrode placement, (ii) a surface height modulation of up
to several percent in magnitude, and (iii) a clear depen-
dence of the modulation magnitude on the driving frequency.
Thus, based on purely in-plane stimuli an out-of-plane ex-
pansion of the LCN is observed. Follow-up experiments
by Van der Kooij et al. on the same experimental system
have since shown that there is a characteristic plasticization
time associated with the initial macroscopic deformation of
the LCN [36].

Although one might expect electrothermal or electrostric-
tive effects to play an important role here, it can be shown
that neither can adequately account for the magnitude of
the observed modulation [35–38]. Instead, Liu et al. ratio-
nalise the observed behavior by remarking that, upon in-plane
actuation by the electric field, the end-grafted liquid crys-
talline mesogens reorient slightly away from their as-prepared
homeotropic alignment, increasing their mutual excluded vol-
ume with the mesogens that cannot reorient as easily due
their incorporation in the background polymer network. This
increases the volume unavailable to the centers of mass of the
mesogens. Indeed, if the two elongated mesogens are oriented
perpendicularly to each other, then they effectively occupy
more volume than if their orientations are parallel, as was
already argued by Lars Onsager in the 1940s [39].

The physical picture that emerges is one of molecular
voids opening up following mesogen reorientation, an overall
volume increase, and subsequent viscoelastic relaxation of
that volume increase as a function of time by the filling in
of the voids by nonmesogenic (polymeric) material. These
molecular voids are often referred to as “free volume,” i.e.,
the total system volume minus the total hard-core volume of
the molecules comprising the film [35,36,40–42]. The result
of switching on an electric field perpendicular to the director
field of the mesogens is a transient macroscopic, transverse
expansion of the film by virtue of the high density of meso-
genic component in the LCN. Interestingly, an oscillating
electric field produces the largest expansion, which arguably
ties in with suppressing the viscoelastic relaxation of the host
polymer matrix.

Although the coarse-grained molecular dynamics (MD)
simulations of Liu et al. [35], which probe the orienta-
tional properties of the LCN on the molecular scale, make

it plausible that excluded volume indeed governs LCN ex-
pansion [35], a comprehensive theoretical framework remains
lacking. In particular, such a framework may prove invaluable
in informing on rational design strategies, by identifying ex-
perimentally relevant parameters dictating the effectiveness of
the LCN modulation, quantifying the qualitative understand-
ing we currently have based on simulations, and minimizing
costly trial and error in experiments. This last point is espe-
cially pressing, given the fact that research on the proposed
setup is ongoing and topical [36].

For this purpose we construct a time-dependent Landau–de
Gennes-type theory for bulk electrically responsive LCNs;
investigating the formation of spatial patterns only becomes
sensible if the bulk behavior is well-understood, and so is left
for future work. After noting the failure of the conventional
(neo-)classical theory of nematic elastomers to capture the
experimental phenomenology, we instead take the connection
between excluded volume and the LCN expansion as the basis
for our description. We design the model under the aspect of
completeness, rather than simplicity, in that we do not “strip
down” the theory to its bare minimum but aim for a compre-
hensive description of simulation and experimental results.
We subsequently compare the resulting static and dynamic
response with results from MD simulations building on earlier
work of one of us [35], which show qualitative agreement.
We demonstrate that the dynamic response to oscillating elec-
tric fields is characterized by two resonances, and that the
timescales governing the LCN actuation can be influenced by
varying experimental parameters, such as the aspect ratio of
the mesogens, the cross-linking fraction of the network, and
the degree of initial orientational order cross-linked into the
liquid crystal network. Finally, we link back to the work of
Liu et al. [35] and detail how our theory explains some of
their major findings.

The remainder of this paper is structured as follows. In
Sec. II, we construct an equilibrium model for our bulk LCN
and carry out MD simulations for comparison, focusing on the
static response of the LCN. We illustrate the qualitative agree-
ment between the two. Subsequently, we extend our model
to a time-dependent description in Sec. V, and qualitatively
validate the resulting dynamic response to turning on a DC
electric field by comparing with our simulations. We find that
there is a characteristic plasticization time associated with
the macroscopic deformation of the LCN, in accordance with
experimental findings [36], which we argue to depend on the
aspect ratio of the mesogens, the cross-linking fraction of the
network, and the degree of initial orientational order cross-
linked into the liquid crystal network. Next, in Sec. VI, we
demonstrate that the dynamic response to oscillating electric
fields is characterized by two resonances, corresponding to
two distinct modes of mesogen reorientation, and we find that
the associated timescales vary with the experimental param-
eters in the same manner as the plasticization time does. We
use this qualitative picture to explain how the expansion of
the LCN varies with the electric field strength and driving
frequency in the simulations and in the experiments carried
out by Liu et al. [35]. Finally, in Sec. VII, we summarize
our most important findings, and we provide suggestions for
simulations and experiments to further pave the way toward
industrial applications.
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II. MODEL INGREDIENTS

We describe our LCN by means of a Landau–de Gennes-
type theory, rooted in the symmetry of the underlying liquid
crystal. This provides a convenient avenue for constructing
a qualitative theory, without the need for in-depth knowl-
edge of the microscopic properties of the system at hand.
Since we aim for a bulk description we disregard spatial in-
homogeneities, and thus the theory operates on the level of
the correlation length of the system. Although the obvious
approach to modeling the LCN would be to subsequently
connect to classical elasticity theory, following Warner and
Terentjev [20], it turns out that such a model fails to reproduce
the experimental findings. Indeed, experiments show a marked
volume expansion, whereas the classical theory of nematic
elastomers predicts approximately volume preserving defor-
mations. We refer to Ref. [43] for further details. This suggests
the experimentally observed volume response does not follow
from the usual rubber elastic behavior, and it motivates us to
construct a model description based on the interplay between
excluded volume generation and the LCN expansion, rather
than on (nematic) rubber elasticity.

As we are interested in explicitly modeling the volume
increase of the LCN upon actuation with an electric field, the
proper statistical ensemble for our theory is the isothermal-
isobaric ensemble. Although one would then expect the
relevant thermodynamic potential to be the Gibbs free-energy
density, this cannot hold true in our case because we must
treat the relative volume change of the LCN as a proper
order parameter in our Landau–de Gennes-type theory to
be able to extract useful information regarding its expan-
sion. Accordingly, the proper thermodynamic potential must
be a minimum with respect to this relative volume change,
which we denote η ≡ (V − V0)/V0, with V the system vol-
ume and V0 the initial volume prior to any deformation, in
thermodynamic equilibrium. With this stipulation in mind,
the relevant thermodynamic potential becomes the Gibbs free
energy per unit reference volume, which we denote g [44].
In what follows we do not write the usual pressure-volume
contribution to this free-energy density, as we are solely in-
terested in the case of the absence of any excess pressure p,
implying p = 0.

The material for which we aim to construct this thermody-
namic potential consists of three key components, those being
the polymer component and two distinct species of mesogen
schematically shown in Fig. 1, with the polymer component
indicated in blue (dark gray). To ensure the system is as
close to being a monodomain as possible, in the experiments
that inspired our work [35] the LCN is synthesized from
(di)acrylates of the forms =polymer-mesogen-polymer= and
=polymer-mesogen, which precludes macroscopic phase sep-
aration of the mesogens and the polymer component. This,
in part, motivates our bulk description from an experimental
point of view.

The focus of the model is explicitly on the two different
mesogen species—recall that the LCN is dense in mesogenic
component, and so effectively liquid crystalline itself—while
we largely neglect the viscoelastic properties of the polymer
network that experiments have shown result in the relaxation
of changes in the LCN volume [35,36]; we return to this

FIG. 1. Simulation snapshots visualizing the problem geometry.
Cross-linked mesogens are indicated in orange (gray), dipolar meso-
gens in green (light gray), and the main-chain polymer in blue (dark
gray). The colored dots drawn on the beads indicate binding sites,
which are used as adhesion points during in situ polymerization. The
mesogens are prepared with the director field along the y axis and
reorient upon actuation with an electric field along the x direction,
increasing the LCN volume.

below when we investigate the dynamical behavior of the
model.

One of the mesogen species incorporated in the LCN is
crosslinked into the polymer network on both ends, as indi-
cated in orange (gray) in Fig. 1, meaning such mesogens are
immobile and can because of that not significantly reorient
in response in an externally applied electric field. The other
mesogen species is grafted end on onto the polymer network,
as indicated in green (light gray) in Fig. 1, resulting in much
more mobile dangling side groups. This species has on top
of that attached to it a permanent dipole moment, ensuring
that it interacts more strongly with electric fields than the
cross-linked mesogens do. This suggests that the cross-linked
mesogens cannot respond strongly to any applied external
electric field, justifying our assumption that only the dipolar
mesogens effectively interact with electric fields. The inter-
action free energy of the dangling mesogens is quadratic in
the electric field E for nematic liquid crystals, by virtue of the
inversion symmetry of the nematic director. This proportional-
ity applies even for a collection of mesogens with a permanent
dipole moment, which formally breaks this inversion symme-
try, provided that the electric field is sufficiently weak, and
the nematic symmetry is not broken by polarization of the
mesogens [45].

In addition to the different response of the two types of
mesogen to electric fields, the model must also reflect the dif-
ferent ways in which the two mesogen species are connected
to the polymer network. In particular, if the cross-linked
mesogens reorient, for example, due to excluded-volume
interactions with neighboring dipolar mesogens, they are
subject to an elastic restoring force from the polymer net-
work. In contrast, reorientation of the dipolar mesogens is
impeded much less significantly by the polymer network,
because these mesogens are only connected to the network
by one end. To capture this asymmetry we assume that the
dipolar mesogens can reorient freely in the polymer net-
work, whereas the cross-linked mesogens are subject to a
harmonic spring potential centered about the orientations

042703-3



GUIDO L. A. KUSTERS et al. PHYSICAL REVIEW E 102, 042703 (2020)

that were cross-linked into the LCN during its preparation
in the absence of an electric field. Here, we refer specif-
ically to the degree of orientational order to which the
cross-linked mesogens have relaxed under the experimental
conditions [20].

The presence of two distinct mesogen species already sug-
gests we need, at the least, three order parameters in our
theory to model the volume expansion of the LCN result-
ing from any changes in the orientations of the mesogens
in response to the electric field. That is, in addition to the
aforementioned order parameter η to keep track of the relative
volume change, or, equivalently, the relative density change,
of the LCN, we also require two order parameters to inform
on the orientational properties of the cross-linked and dipolar
mesogens, respectively. The most general way to express such
orientational order is by means of the symmetric and traceless
tensor nematic order parameter Qi, j = 〈uiu j − δi, j/3〉, with
u the mesogen orientation unit vector and δi, j the Dirac δ.
This suggests the introduction of two tensor order parameters,
Q(c)

i, j and Q(d)
i, j , corresponding to the cross-linked and dipolar

mesogens, respectively, to describe the orientational order of
the different mesogen species.

In what follows we assume that the cross-linked meso-
gens, due to their inability to strongly respond to any applied
electric field, remain approximately uniaxial and along their
original director even if we apply the electric field perpen-
dicular to the director; below we illustrate that our MD
simulations justify this approximation. We then recover the
uniaxial tensor order parameter Q(C)

i, j = Sc(δi,yδ j,y − δi, j/3) for
the cross-linked mesogens, where we fix the director along
the y axis and Sc ≡ 3

2 〈cos2 θ〉 − 1
2 denotes the scalar nematic

order parameter, with θ the angle a test mesogen makes with
the director field and 〈 . . . 〉 an angular average. It is clear,
however, that the dipolar mesogens produce, in general, a
biaxial configuration if we apply the electric field perpendic-
ular to the director. Although the usual approach would be
to then write down the corresponding tensor nematic order
parameter in the biaxial form Q(d)

i, j = Sd (δi,yδ j,y − δi, j/3) +
P/3(δi,xδ j,x − δi,zδ j,z ), where the electric field along the x axis
produces a degree of biaxiality P = 3

2 〈sin2 θ cos 2φ〉, with φ

the angle a test mesogen makes with the electric field in the
x-z plane, our MD simulations motivate us to take a different
approach here.

From our MD simulations we learn that upon application
of an electric field perpendicular to the director field in which
both mesogen species are prepared, a clear division arises
between dipolar mesogens that align with the director field
and dipolar mesogens that align with the electric field. This is
presumably due to the presence of the cross-linked mesogens,
which remain ordered predominantly along the director field,
justifying our approximation of uniaxial order for this meso-
gen species. The excluded-volume interactions with these
mesogens must then be overcome by the dipolar mesogens
to align with the electric field. This finding motivates us to,
instead of describing the biaxial order of the dipolar meso-
gens collectively, separately describe the uniaxial order of
the collection of director-field-aligned dipolar mesogens and
the collection of electric-field-aligned dipolar mesogens. Note
that since we consider the director and the axis of biaxial order

FIG. 2. Schematic representation of the model mesogens. Cross-
linked mesogens are indicated with orange (dark gray) ellipsoids and
dipolar mesogens are indicated with green (light gray) ellipsoids.
The scalar nematic order parameters of the cross-linked mesogens,
S1, and the director-field-aligned dipolar mesogens, S2, are measured
along the y axis (dashed arrows), along which both mesogen species
are prepared. The scalar nematic order parameter of the electric-field-
aligned dipolar mesogens, S3, is measured along the x axis (dashed
arrow), along which the electric field is applied. The population
fraction f 2 denotes the fraction of dipolar mesogens that aligns with
the electric field.

as fixed, this does not in itself increase the rotational degrees
of freedom of the LCN.

We model the above by associating the collection
of nematic-director-field-aligned mesogens with a fraction
1 − f 2 of the dipolar mesogens and the collection of electric-
field-aligned dipolar mesogens with the remaining fraction f 2.
Treating f 2 as an order parameter in our model then allows us
to interpolate between these different populations of dipolar
mesogen, in effect signifying a bistable equilibrium between
the two. Here, the use of the quadratic form f 2 � 0 ensures
this fraction is always nonnegative; the constraint f 2 � 1 we
enforce by hand. We remark that, of course, taken together
these populations of dipolar mesogens again exhibit biaxial
order; the main advantage of treating this biaxial order as a
bistable equilibrium is the ability to also capture the interpo-
lation between the two populations, i.e., the reorientation of
the dipolar mesogens, which our MD simulations indicate to
be important.

The above suggests that we need not use two tensor ne-
matic order parameters, Q(c)

i, j and Q(d)
i, j , the latter of which is

in general biaxial, to describe the orientational order of the
cross-linked and dipolar mesogens, respectively. Instead, we
use three uniaxial tensor nematic order parameters for the ori-
entational order of the cross-linked mesogens, the collection
of director-field-aligned dipolar mesogens and the collection
of electric-field-aligned dipolar mesogens. Relabeling for ease
of reference, we denote these Q(1)

i, j , Q(2)
i, j , and Q(3)

i, j , respectively.
The former two have their director along the y axis, along
which both mesogen species are prepared, whereas the direc-
tor of the latter lies along the x axis, along which the electric
field is applied. We denote the corresponding scalar nematic
order parameters, as measured along their respective directors,
S1, S2, and S3, which are schematically shown in Fig. 2.

Although this implies that we can capture the orientational
order of the cross-linked and dipolar mesogens as Q(c)

i, j =
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Q(1)
i, j and Q(d)

i, j = (1 − f 2)Q(2)
i, j + f 2Q(3)

i, j , respectively, and the

global orientational order as Qi, j = (Q(c)
i, j + Q(d)

i, j )/2 on ac-
count of there being equal amounts of both in the network,
we will not construct our Landau theory in terms of the
invariants of these tensors. The reason for this is that since
these tensor nematic order parameters are defined along dif-
ferent axes, their explicit combination turns out to introduce
unphysical couplings. In particular, coupling terms promoting
cross-hatched, i.e., perpendicular, orientational order of the
different mesogen species and populations arise in the nematic
phase, in which we are interested [43]. The alternative we
follow here is to construct our model in terms of the invari-
ants of the individual tensor nematic order parameters of the
different mesogen species and populations we distinguish,
i.e., Q(1)

i, j , Q(2)
i, j , and Q(3)

i, j for the cross-linked mesogens, the
director-field-aligned dipolar mesogens and the electric-field-
aligned dipolar mesogens. A similar division of different types
of nematogens into populations was in fact already used by
Onsager as early as 1949 in his seminal work [39].

Clearly, the invariants that comprise our model must also
give rise to interactions between the different mesogen species
and order parameters. Broadly speaking, these interactions
come in two flavors: mesogen-mesogen interactions and
mesogen-volume interactions. The first of these couple the
orientational properties of the cross-linked mesogens to those
of the dipolar mesogens via excluded-volume-like interac-
tions. This has the effect of promoting the alignment between
the different mesogen species, as their mutual excluded vol-
ume is smallest when they align. Assuming identical rod-like
shapes for both mesogens with length L and diameter D,
the mutual excluded volume of two mesogens is proportional
to L2D + O(LD2), we expect the same dependence on the
dimensions of the mesogens for this interaction [39]. A similar
argument can be made if we increase the cross-linking fraction
of the network, while keeping the total amount of mesogens
constant, i.e., if we increase the fraction of mesogens that are
fully cross-linked into the polymer network at the expense of
dipolar mesogens. Then, any dipolar mesogen will have an
increased number of immobile cross-linked mesogens as its
neighbors. This makes it increasingly difficult for the electric
field to overcome the excluded-volume interactions of the
dipolar mesogen with its neighbors to induce reorientation.
Thus, the excluded-volume mesogen-mesogen interactions
must be stronger in this case, at least regarding the reorienta-
tion of the dipolar mesogens. We remark that the reverse effect
of any cross-linked mesogen interacting with a decreasing
number of dipolar mesogens is much less significant. The
reason for this is that these mesogens are fully cross-linked
into the polymer network and cannot respond strongly to the
applied electric field.

The second type of interaction between order parameters
we incorporate couples the orientational properties of the
mesogens to the volume increase of the LCN. This inter-
action is closely related to the excluded-volume interactions
discussed above, as in sufficiently dense mesogenic systems
the excluded volume generated upon mesogen reorientation
contributes to the total volume of the system. To reflect this,
we associate configurations in which the different mesogen
species become increasingly aligned with a volume decrease,

whereas the volume increases if the mesogens become orien-
tationally disordered.

Taken together, the above ingredients define a Gibbs free
energy per unit reference volume for our model as a function
of the following order parameters: (i) the relative volume
change of the LCN, η, (ii) the tensor nematic order param-
eters Q(1)

i, j , Q(2)
i, j , and Q(3)

i, j for the cross-linked mesogens, the
director-field-aligned dipolar mesogens and the electric-field-
aligned dipolar mesogens, and (iii) the population fraction f 2.
Note that since the tensor nematic order parameters are all
presumed to be uniaxial, with fixed directors, all information
on the magnitude of orientational order is encapsulated in the
associated scalar nematic order parameters S1, S2, and S3, in
terms of which we express our model below.

III. THEORY

Taking all the contributions described in the section above
into account, our model Gibbs free energy per unit reference
volume becomes

g =
12∑

i=1

gi, (1)

where we will discuss the form of each contribution gi in turn.
The first three contributions correspond simply to the free
energy associated with each mesogen species or population,
according to

g1 = gLdG(S1), g2 = (1 − f 2)gLdG(S2), g3 = f 2gLdG(S3).
(2)

Here,

gLdG(Si ) = 1
2 AS2

i − 1
3 BS3

i + 1
4CS4

i , i = 1, 2, 3, (3)

denotes the standard Landau–de Gennes free-energy density
for uniaxial nematic liquid crystals, with A, B,C phenomeno-
logical coefficients, as follows from a power series expansion
in terms of TrQ(i)n

, where Tr denotes the trace operator and

the series is truncated after n = 4 [27,46].
Although the phenomenological coefficient A is gener-

ally taken to depend explicitly on temperature, to reflect
the temperature-induced isotropic-nematic phase transition,
we are currently not interested in modeling this depen-
dence. In fact, prior simulations and experiments suggest the
temperature-dependent behavior of the LCN is significantly
more complicated than can be expected from a simple Lan-
dau theory [35,36]; our own MD simulations confirm this.
Instead, we choose A such that the configuration in which
the LCN is prepared, given by S1 = S2 = S0, f 2 = 0, and
η = 0 minimizes the total free-energy Eq. (1) in the absence
of an electric field. Here, S0 denotes the as-prepared scalar
nematic order parameter, the value of which we specify fur-
ther below by comparing with the simulations, and the value
of S3 matters not as there are no electric-field-aligned dipolar
mesogens in the absence of an electric field. As will become
apparent below, this statement is identical to choosing A such
that S0 minimizes Eq. (3), since the remaining contributions
to the free energy are automatically minimized under these
conditions. This effectively eliminates A from our model de-
scription in favor of S0.
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We stress that the above should not be interpreted as us
neglecting entropy by making the temperature dependence of
our theory implicit; we are just not interested in probing this
explicitly. The effect is merely cosmetic: all parameters in our
theory carry, to a greater or lesser extent, a temperature depen-
dence, and so have associated with them, in a coarse-grained
fashion, entropy.

Finally, note that in Eq. (2) the free-energy contribution
of Eq. (3) is multiplied by factors of (1 − f 2) and f 2 for the
free energy associated with the director-field-aligned dipolar
mesogens g2 and the electric-field-aligned dipolar mesogens
g3, ensuring only the fraction of dipolar mesogens that is in a
given population contributes to its free energy. As we presume
there to be equal amounts of the cross-linked and dipolar
mesogens, reflecting the experimental work of Liu et al. [35],
their free energies bear equal weight.

The next contribution encodes the interaction of the dipo-
lar mesogens with the electric field, which, on symmetry
grounds, must be proportional to the product of the electric
field E with the electric susceptibility tensor � of said meso-
gens, according to −E � E . Since the electric susceptibility
of the dipolar mesogens is closely related to their orientational
order, this contribution takes the form [27,46]

g4 = − f 2HS3, (4)

where H ∝ |E |2 acts only on the electric-field-aligned dipolar
mesogens, not the director-field-aligned dipolar mesogens.
This is because the electric field is applied perpendicular to
the director field, and so the associated contribution to the free
energy is small due to the low susceptibility of the mesogens
along this axis. For this reason H actually represents a rel-
ative value, rather than an absolute one. This approximation
is also in line with the philosophy of the model, in which
we have two populations of dipolar mesogens, which order
along perpendicular axes. Indeed, a similar coupling between
S2 and H would promote orientational order of the director-
field-aligned dipolar mesogens perpendicular to, rather than
along, their prescribed director axis.

The difference in how the different mesogen species in-
teract with their surroundings is underscored by the elastic
restoring force from the polymer network the cross-linked
mesogens are subject to. The corresponding contribution
penalizes any deviation from the orientational properties
the cross-linked mesogens were prepared with in the ab-
sence of an electric field, given by Q(1) = Q(0), with Q(0)

the uniaxial tensor nematic order parameter corresponding
to the as-prepared configuration of the LCN. The lowest-
order tensor invariant that achieves this effect is of the form
Tr(Q(1) − Q(0) )

2
, resulting in the expression

g5 = 1
2κ (S1 − S0)2, (5)

which acts as a harmonic spring, with κ a phenomenological
spring constant, exercising a restoring force that pulls the
orientational order parameter of the cross-linked mesogens S1

back toward the orientational order S0 they had, when relaxed
under the experimental conditions prior to the application of
an electric field. Although technically not identical, as noted
before, S0 can be thought of in similar terms as the orien-

tational order of the cross-linked mesogens when they were
cross-linked into the polymer network.

We follow a similar procedure in writing down the
excluded-volume-like interactions between the different
mesogen species, but now substituting Q(0) with Q(2) and Q(3),

to yield

g6 = 1
2 (1 − f 2)λ(S1 − S2)2, g7 = 1

2 f 2λ
(
S2

1 + S1S3 + S2
3

)
,

(6)

where the former indicates interactions between cross-
linked mesogens and director-field-aligned dipolar mesogens,
whereas the latter concerns interactions between cross-linked
mesogens and electric-field-aligned dipolar mesogens. Here,
λ is a phenomenological parameter, which, as argued before,
we expect to scale with the mesogen dimensions as L2D, and
to increase upon increasing the cross-linking fraction of the
network.

The first term in Eq. (6) is reminiscent of Eq. (5), act-
ing as a harmonic spring penalizing misalignment between
the different mesogen species. The second, however, looks
markedly different, although it follows from exactly the same
procedure and achieves the same effect. The reason for this
is that the director for the electric-field-aligned dipolar meso-
gens lies along the electric field, along the x axis, rather than
the director field, along the y axis, yielding Tr(Q(1) − Q(3) )

2 ∝
(S2

1 + S1S3 + S2
3 ) instead.

We point out that we do not explicitly incorporate
excluded-volume-like interactions between the different pop-
ulations of dipolar mesogen because this would, again,
promote orientational order of these populations perpendic-
ular to their assigned director, undermining the philosophy
of the model. Instead, the excluded-volume-like interactions
between the different populations of dipolar mesogen are
mediated by the population fraction f 2, such that if the ori-
entational mismatch between the two becomes sufficiently
stringent, the population fraction adjusts to mitigate this. This
feature is already included qualitatively in Eq. (6). The scep-
tical reader may take comfort in the fact that including a cross
term between the different populations of dipolar mesogens
does not significantly alter the qualitative behavior of the
model, provided that the associated coupling constant remains
moderate (results not shown).

As already announced, the interaction between the ori-
entational order of the mesogens and the relative volume
increase, or, equivalently, the density decrease, of the LCN
is closely related to the excluded volume of the mesogens
in our model. However, instead of penalizing misalignment
between the mesogens, we must now penalise the volume of
the LCN when the mesogens become increasingly aligned.
Thus, instead of constructing the invariants of the difference
between tensor order parameters we now take their sums
Tr(Q(1) + Q(2) )

2
and Tr(Q(1) + Q(3) )

2
, resulting in the contri-

butions

g8 = (1 − f 2)ξη(S1 + S2)2, g9 = f 2ξη
(
S2

1 − S1S3 + S2
3

)
,

g10 = −ξη
(
4S2

0

)
. (7)

Here, we have multiplied the various contributions by the
volume order parameter η to ensure the proper effect on the
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system volume, ξ is a phenomenological coefficient and we
have again separated the contributions associated with the
different populations of dipolar mesogen apparent from g8 and
g9. We ignore explicit cross terms, as we did before, to ensure
the model remains internally consistent. The final contribu-
tion shown in Eq. (7) ensures the orientational order of the
mesogens is measured relative to the initial configuration by
subtracting from the contributions g8 and g9 their counterparts
with S1 = S2 = S0 and f 2 = 0.

Finally, we must ensure that the free energy of Eq. (1) is
bounded from below, which leads us to add the additional
terms

g11 = 1
2 B1 f 4, g12 = 1

2 B0η
2, (8)

representing bulk-modulus-like terms in the population frac-
tion f 2 and the relative volume increase η. Note that,
technically, the former is not required to keep the free energy
bounded from below since we constrain 0 � f 2 � 1. How-
ever, we do need it to allow f 2 to take intermediate values
between 0 and 1 upon minimizing Eq. (1) with respect to all
order parameters.

Although the model we present here focuses on a bulk sys-
tem, the same framework can be used to analyze the formation
of spatial patterns, by including (square) gradient terms in all
order parameters (cross terms vanish, to lowest order, on sym-
metry grounds). We have carried out a preliminary analysis on
a nonlocal extension of the current theory, which shows that
free volume permeates the LCN from the top in the thin-film
geometry used in the experiments of Liu et al. [35]; this is in
accordance with additional MD simulations we have carried
out. We hope to present our results in a future publication [47].

It is clear that the model outlined above in principle
requires for a very large parameter space to be explored,
potentially giving rise to very rich behavior (see also below).
However, the parameter space can be significantly reduced by
scaling the theory to make it dimensionless. To this end, we
introduce the set of scaled scalar nematic order parameters
si ≡ Si/(B2/2C), with i = 1, 2, 3, and the scaled free vol-
ume order parameter η̃ ≡ η/(ξB2/B0C2), where we leave the
population fraction f 2 unchanged; these order parameters are
subject to the scaled electric field strength h ≡ H/(B3/27C2).
This procedure reduces the set of phenomenological parame-
ters characterizing our model to the parameter combinations
κ̃ ≡ κ/(B2/C), associated with the the elastic coupling of
the cross-linked mesogens to the polymer network, λ̃ ≡
λ/(B2/C), associated with the excluded-volume interactions
between the different mesogen species, ζ ≡ ξ 2/B0C, asso-
ciated with the coupling between the orientational order of
the mesogens and the LCN volume, B̃1 ≡ B1/(B4/C3), corre-
sponding to the bulk-modulus free-energy penalty associated
with the population fraction f 2, and s0 ≡ S0/(B/2C), which
represents the initial degree of orientational order, crosslinked
into the network. Recall that we eliminate the phenomenolog-
ical coefficient A from the model description by demanding
that the initial configuration, with S1 = S2 = S0, f 2 = 0 and
η = 0, minimizes the free-energy density per unit reference
volume Eq. (1) in the absence of an electric field, implying
that A = BS0 − CS2

0 . The result of this scaling procedure is
a universal curve for the theory in terms of the scaled or-
der parameters s1, s2, s3, f 2, and η̃, dependent only on the

set of scaled parameters κ̃ , λ̃, ζ , B̃1, and s0, as well as the
scaled electric field strength h. We stress that this already
significantly reduces the model parameter space, and refer
to Appendix B for a discussion on a fully “stripped-down”
version of the model that captures the most important physics
and results, though it lacks the more subtle aspects of the full
theory required to complete the picture.

Although the parameter space available to the scaled theory
is still significant, extensive numerical tests, carried out by nu-
merically minimizing the scaled free energy per unit reference
volume Eq. (1) using the “fsolve” root-finding algorithm in
the programming language Python, show that there is a broad
range of parameter values that produce the key features of
the results of both our MD simulations and the experiments
(results not shown). We point out that in carrying out the min-
imization procedure, we fix the value of order parameters that
exceed their permitted value range, i.e., 0 � f 2 � 1. Although
a similar constraint applies to the scalar nematic order param-
eters −1/2 � Si � 1, with i = 1, 2, 3, we cannot explicitly
enforce this constraint for their scaled counterparts si, since
the effective values of the scaling coefficients B and C are
unknown for the LCN under consideration. For the purpose of
this paper we focus on parameter values representative of the
regimes described above.

Before we present the corresponding equations of state, we
first pause to elucidate the simulation protocol for our coarse-
grained MD simulations, as these will serve as a reference for
the theory in the remainder of this paper. In our simulations,
we work in terms of the fundamental Lennard-Jones units for
distance D, energy E , mass M and time T =

√
MD2/E . The

electric field strength is expressed in terms of
√
E/(4πε0D3),

with ε0 the vacuum permittivity.
We use the HOOMD-blue package (v2.1.1) to simulate the

liquid crystal network within the isothermal-isobaric (N pT )
ensemble [48,49], using periodic boundary conditions. Sam-
ple snapshots of the simulation model are shown in Fig. 1. As
stated above, these simulations aim only to examine bulk be-
havior of the LCN. Thus, the simulation box size need only be
chosen to be sufficiently large to capture the correlation length
for structural perturbations (primarily void creation) caused
by actuation of a given dipolar mesogen. This length scale
is rather small, being only on the order of several mesogens
in size at most. Our chosen simulation box size encompasses
hundreds of these correlation volumes, as visually evident in
Fig. 1.

As visualized in Fig. 1, we represent the polymer main-
chain [blue (dark gray)] as strings of particles, held together
by harmonic bonds

Ubond(r) = 1
2 k(r − r0)2, (9)

with k = 1110 E/D2 and r0 = 0.9D [50], acting on their
distance of separation r. In addition, we represent the cross-
linked mesogens [orange (gray)] and the dipolar mesogens
[green (light gray)] as collections of five particles held to-
gether by stiff harmonic bonds with k = 5000E/D2 and r0 =
0.5D, and kept in a rodlike shape by harmonic potentials,

Uang(θ ) = 1
2 kθ (θ − π )2, (10)
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with kθ = 200 E/rad2, acting on the angle θ between three
particles. Note that the stiff rodlike connectivity for the
Lennard-Jones beads composing each mesogen results in an
effective angle-dependent mesogen-mesogen intermolecular
potential, which stabilizes the nematic phase.

Our simulations contain 70 polymer main-chains, each 50
particles long, 1166 mesogens of both species, and we in-
corporate no explicit or implicit solvent. Finally, all particles
interact with each other by means of Lennard-Jones interac-
tions,

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
+ ULJ,0, (11)

with ε = 1 E and σ = 1D, which are cut off at rc = 2.5D;
ULJ,0 is chosen such that ULJ(rc) = 0.

To generate an initial condition for our simulated LCN, a
virtual polymerization of the initial ingredients (polymer main
chains + mesogens) is carried out in situ. The polymerization
kinetics are irrelevant for our purposes here; the objective is
only to obtain a representative (in terms of a realistic density
and topology) cross-linked LCN by the end of the procedure,
for use in the subsequent perturbation simulations.

The in situ polymerization is done by assigning binding
sites to the polymer main-chain particles [shown as green
(light gray) dots in Fig. 1], and assigning to the terminal
particles of both mesogen species the binding partner [shown
as orange (gray) dots in Fig. 1]. The cross-linked mesogens
contain binding partners on either end, whereas the dipo-
lar mesogens only contain a binding partner on one end.
To enforce one-to-one binding of binding sites and binding
partners, as we discussed is the case in the experiments of
Liu et al. [35], we introduce first a repulsive inverse power
potential,

Upow(r) = 4ε
(σ

r

)12
+ Upow,0, (12)

which is cut off at rc = 2.5D, and Upow,0 is chosen such that
Upow(rc) = 0. This potential acts on pairs of binding sites and
pairs of binding partners (both with σ = 0.9D and ε = 1 E),
as well as on pairs containing both a binding site and a binding
partner and pairs of the Lennard-Jones particles themselves
(both with σ = 0.6D and ε = 1 E). We next add a strongly
attractive Gaussian potential,

UGauss(r) = εsite exp

[
−1

2

(
r

σsite

)2]
, (13)

with εsite = −500 E , σsite = 0.2D, and cutoff length rc = 3D,
acting only on pairs containing both a binding site and a
binding partner. Finally, to achieve the desired degree of
mesogen alignment during crosslinking, equal and opposite
unity charges q = 1

√
4πε0ED are added to the ends of both

the cross-linked and the dipolar mesogens, and a dummy
electric field E is applied along the x axis. The electric field
strength can be varied to change the degree of mesogen align-
ment and the charges serve only to couple to the electric field;
no Coulombic interactions between the dipoles are taken into
account.

We then crosslink the system in the presence of the dummy
electric field by repeatedly performing short simulations in

the NV E ensemble and permanently connecting overlapping
binding sites and partners. This process is repeated until a
desired fraction of the binding sites (85%, in our case) has
been permanently bound to a partner. Here, the stoichiometry
is such that there are on average two bonds to a mesogen of
either species for every three particles on the polymer main-
chain, emulating the experimental system, dense in mesogenic
component. Following this, all binding sites and partners, as
well as the associated potentials Upow and UGauss, are removed
from the simulation.

After crosslinking, the LCN is equilibrated in the N pT
ensemble in the presence of the dummy electric field, using
the Martyna-Tobias-Klein barostat-thermostat [51], with tem-
perature and pressure coupling constants set to unity. We use
T = 0.35 E/kB for the temperature, p = 1 E/D3 for the pres-
sure, dt = 0.001T for the time step size, and we equilibrate
for 104 time steps. Subsequently, the charges are removed
from the cross-linked mesogens, which are inert in our sim-
ulations, and we carry out a second N pT equilibration for
104 time steps in the absence of the dummy electric field.
The “built-in” nematic order persists due to two key factors:
(i) the rather high volume fraction of mesogens relative to
polymer segments, and (ii) the existence of steric constraints,
stemming from the dense connectivity of the network. This
yields the initial configuration of the LCN for the simulations
presented in this paper, for which we use a total simulation
time of 300T . We remark that we ensure that the simulation
results are not particular to a specific realization by carrying
out the procedure described above multiple times and each
time introducing random distortions (permanent bonds) dur-
ing the crosslinking process, resulting in different random
network topologies for the LCN. For further details regarding
the simulation protocol, we refer to Refs. [35,52].

This concludes a discussion of our theory. We now present
our equations of state.

IV. EQUATIONS OF STATE

Figure 3 shows the results of a numerical minimization of
Eq. (1), scaled as described in the previous section, compared
with the phase diagram we obtain from our MD simulations.
The figure illustrates good qualitative agreement between the-
ory (a, c), where we show a single universal curve for the
chosen parameter values, and simulations (b, d), where we
show results for three randomly polymerized network topolo-
gies. Indeed, focusing first on the orientational properties of
the LCN (a, b), we find for increasing electric field strength: (i)
no to weak response to variations in the electric field strength
for both mesogen species below a critical field strength, (ii) a
critical field strength beyond which the response to variations
in the electric field strength is strong, and (iii) saturation of the
orientational order. This last regime is colored green (gray)
in Fig. 3 and corresponds to a saturated population of field-
aligned dipolar mesogens, i.e., f 2 = 1, where we enforce the
constraint f 2 � 1 by hand. Recall that a similar constraint for
the scalar nematic order parameters si, with i = 1, 2, 3, cannot
be enforced because these have been scaled with coefficients
of which the values are unknown.

The same qualitative features hold for the concomitantly
generated free volume (c, d), albeit with a decrease in volume
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FIG. 3. Equations of state for the scaled theory (a), (c) and MD
simulations (b), (d) as a function of electric field strength. Panels
(a) and (b) show the orientational order parameter for the cross-
linked (dashed lines) and dipolar mesogens (solid lines), measured
along the electric field axis. Panels (c) and (d) show a measure for the
concomitantly generated free volume. Theory: Black curves denote
stable solutions and green (gray) curves indicate stable solutions
with saturated population of electric-field-aligned dipolar mesogens
f 2 = 1. We denote the scaled scalar nematic order parameter, mea-
sured along the electric field axis, s, the scaled free volume order
parameter η̃ and the scaled electric field strength

√
h ∝ |E |. The

explicit scalings for these, as well as for our model parameters,
are given in the main text at the end of Sec. III. The values we
use for our scaled model parameters are κ̃ = 1.0 for the elastic
coupling of the cross-linked mesogens to polymer network, λ̃ = 0.4
for the excluded-volume-like coupling constant, ζ = 0.03 for the
mesogen-volume coupling constant, B̃1 = 5.0 for the bulk-modulus-
like free-energy penalty for the population fraction f 2 and s0 = 3.0
for the initial degree of orientational order, crosslinked into the
network. Simulations: the percentage volume increase is measured
relative to the undeformed configuration prior to the application of
the electric field. We work in terms of fundamental Lennard-Jones
units, at fixed temperature T = 0.35 and fixed pressure p = 1.0, with
time steps dt = 0.001 and total simulation time tsim = 300.0; see the
end of Sec. III for further details. Different colors denote different
random network topologies and lines are guides to the eye.

in the final regime rather than the saturation of the orienta-
tional order. This last feature, which gives rise to a maximum
in the free volume curve, follows directly from the orienta-
tional order at the corresponding electric field strength: the
maximum occurs at the point of maximum global orienta-
tional disorder. We attribute the slight decrease in volume we
find in our simulations at very weak electric field strengths (d)
to the initial configuration in our simulations corresponding
to a local minimum of the free energy, rather than the global
free-energy minimum. This is because relaxation of the LCN
to thermodynamic equilibrium occurs on timescales slower
than those accessible in our simulations; prior simulations
and experiments also hint at this slow relaxation [35,36]. If
we subsequently apply a weak electric field to this initial
configuration, which is stable on the simulation timescales
in the absence of an electric field, then we help the system

to relax to a configuration with a lower free energy by de-
creasing its volume slightly. Noting that we do not aim to
capture this last feature explicitly within the model, we find
that the mechanism of free volume generation, on which the
theoretical model is based, qualitatively explains simulation
results and shows good qualitative agreement.

Although the static behavior of the model we show here
serves as a proof of concept, supporting the role of excluded
volume in driving the LCN to expand upon actuation, we still
lack some key features of the simulations and the experiments.
Most notably, the static model neglects the viscoelastic relax-
ation of the polymer network, which ensures the volume of
the LCN relaxes as a function of time, if we apply a constant
electric field. Accordingly, to achieve a steady-state volume
increase of the LCN in the simulations and the experiments,
alternating electric fields are used to continually actuate the
LCN before it relaxes viscoelastically [35,36]. In what fol-
lows, we will be interested in how our model parameters, and
in particular those that are experimentally accessible, influ-
ence the response of the LCN to alternating electric fields.
To this end, we dedicate the next section to dynamics, where
we first ensure our model dynamics properly reflects the vis-
coelastic relaxation of the LCN in response to the application
of a constant electric field.

V. DYNAMICS

The equilibrium model we describe in the previous sections
can also be used to investigate the dynamical behavior of the
LCN, by complementing it with a set of differential equations
governing the temporal behavior of the order parameters. To
this end, however, it is important to recall that the model,
represented by Eq. (1), neglects the viscoelastic relaxation
of the LCN, which is known to play an integral role in the
volume expansion dynamics observed in the simulations and
the experiments [35,36]. This viscoelastic relaxation is also
the reason that AC actuation is needed to achieve steady-state
LCN modulation in the simulations and the experiments, as
the response following DC actuation simply relaxes. Thus,
to connect with simulations and experiments, the dynamical
equations characterizing the model must be adapted to ac-
count for this. For the nonconserved order parameters under
consideration, the simplest form the associated differential
equations can take describes relaxational dynamics [53], ac-
cording to

∂τψ = −�ψ

[
∂g

∂ψ
+ γ η〈τ 〉ηδψ,η

]
+ θψ . (14)

Here, τ denotes time, ψ represents the relevant order param-
eter, i.e., S1, S2, S3, f or η, �ψ denotes the associated kinetic
coefficient, which “hides” the dissipative physics that facili-
tates decreasing the (free) energy upon varying the relevant
order parameter, and θψ represents a Gaussian noise term,
which ensures that the fluctuation-dissipation theorem is sat-
isfied [54]. The first term in brackets represents the mean-field
dynamics following from the free-energy density shown in
Eq. (1), whereas the second term effectively corrects for the
viscoelastic relaxation of the LCN, i.e., it ensures the free
volume order parameter η̃ relaxes as a function of time. Here
γ is a phenomenological constant, 〈τ 〉η denotes the ensemble-
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averaged time the free volume has existed for, and δψ,η the
Kronecker δ. Note that this last term provides an effective
dynamical coupling between the different order parameters
that is of a non-free-energetic nature.

Formally, the inclusion of this relaxational term implies
that at thermodynamic equilibrium there cannot exist any
nonzero free volume. However, by virtue of the afore-
mentioned slow relaxation of the LCNs under considera-
tion [35,36], we do not expect full relaxation to thermo-
dynamic equilibrium to occur on the available timescales.
Instead, in our MD simulations the temporal evolution of the
system stops upon reaching some locally stable configuration.
A similar construction for the scaled theory can be achieved
by stopping the model dynamics after some time τstop, shorter
than the timescale required for full relaxation to thermody-
namic equilibrium, has passed. This construction can be used
to show that the qualitative features of the phase diagram
in Fig. 3 remain unchanged following the addition of free
volume relaxation, provided that the system cannot fully relax
to thermodynamic equilibrium on the used timescales [43].

In addition, although the Gaussian noise term θψ plays
an integral part in the dynamics of some systems [55–59],
here we limit ourselves to mean-field dynamics by setting
θψ = 0. This is justified, as the phase diagram we report on
in Fig. 3 does not explicitly show any free-energy barriers,
the absence of which we verified by scanning over the space
of initial configurations. This indicates there are no kinetic
traps, and that the LCN ends up in the proper equilibrium
configuration regardless of noise. Thus, in what follows we
suffice with explicitly solving only the deterministic part of
Eq. (14). We again nondimensionalize the newly introduced
(kinetic) parameters, and choose values within a broad regime
� f < �S1 < �S2 = �S3 < �η exhibiting the key features of
simulation and experimental findings. Here, we choose our
scalings such that the scaled kinetic coefficient for the free
volume �̃η̃ = 1, i.e., we measure time relative to the dynamics
of the scaled free volume order parameter η̃. We refer to
Appendix A for the full scaling procedure.

Figure 4 shows the numerical solution of Eq. (14) for the
scaled free volume order parameter η̃ if we turn on a DC elec-
tric field at τ = 0, compared with our MD simulations. This
illustrates that the response to a DC electric field is remarkably
similar for theory and simulations, both showing a sharp rise
in free volume followed by its relaxation. A striking difference
between the two, however, is the theoretical prediction of a
pseudo lag time for free volume creation; this corresponds to
the time required for a significant population of field-aligned
dipolar mesogens to form and thus for stable actuation. We
stress that this is by no means an actual lag time, as expo-
nential growth of the free volume order parameter η̃ starts as
soon as the electric field is turned on; this is not visible in
Fig. 4 due to the linear scale. This finding already hints at the
effective driving frequency range being limited by the intrinsic
timescales of the LCN. Although this feature is absent from
the MD simulations, in recent experimental work Van der
Kooij et al. report on a similar timescale that they associate
with the plasticization of the polymer network [36]. In what
follows we shall also refer to the pseudo lag time as such.

A possible explanation for the absence of the plasticization
time from our MD simulations, which are small compared to

FIG. 4. Time traces of the generated free volume for the scaled
theory (a) and MD simulations (b). The dashed line (a) indicates a
short-time approximation obtained by linearizing the theory. Theory:
we denote the scaled free volume order parameter η̃, the scaled
time τ̃ = τ/[ξ 2/�ηB2

0C] and we apply a scaled electric field strength√
h = 18. See Appendix A for the full scaling procedure for these,

as well as for our model parameters. Parameter values used: κ̃ = 1.0,
λ̃ = 0.4, ζ = 0.03, B̃1 = 5.0, s0 = 3.0, δ f (0)2 = 10−16 for the ini-
tial fraction of field-aligned dipolar mesogens, γ̃ = 0.001 for the
free volume relaxation parameter, and �̃s1 = 0.05, �̃s2 = �̃s3 = 0.1,
�̃ f = 0.01 and �̃η̃ = 1.0 for the scaled kinetic coefficients. Simu-
lations: we work in terms of fundamental Lennard-Jones units, at
fixed temperature T = 0.35 and fixed pressure p = 1.0, with time
steps dt = 0.001 and electric field strength E = 30.0; see the end of
Sec. III for further details.

the experimental system, is that fluctuations in our simulations
may not be small. In this case the instability plasticizing the
LCN is forced, such that we are unable to temporally resolve
the existence of a plasticization time. The importance of such
fluctuations in plasticizing the LCN is illustrated in the para-
graphs below, where we more strongly connect our theoretical
findings regarding this plasticization time with experiments.

To further substantiate the experimental relevance of the
predicted plasticization time, and to illustrate the importance
of fluctuations in plasticizing the LCN, we estimate the
short-time relaxation dynamics by linearizing the dynamical
Eq. (14) in the observables S1, S2, S3, f 2, and η. That is, we
expand about the initial configuration S1 = S0 + ε δS1, S2 =
S0 + ε δS2, S3 = S0 + ε δS3, f 2 = ε (δ f )2, and η = ε δη, with
ε � 1, and solve the set of dynamical equations up to O(ε).
The resulting exponential solution for the scaled free volume
η̃ is indicated by the dashed curve in Fig. 4. We find that the
plasticization time roughly corresponds to the time required
to saturate the field-aligned population of dipolar mesogens
f 2 = 1 in the short-time approximation. The estimate then
reads

τp ≈ − 1

� f S0

1

2H − 3λS0
log δ f (0), (15)

where δ f (0)2 � 1 denotes the initial fraction of field-aligned
dipolar mesogens. From the divergence of Eq. (15) at H =
3λS0/2 it is apparent that we recover a critical field strength,
as was also the case for the phase diagram in Fig. 3. Above
this critical field strength τp > 0, and so fluctuations in f 2

spontaneously grow under the influence of the electric field.
Conversely, below the critical field strength τp < 0, indicating
that fluctuations relax as a function of time.
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Notably, Eq. (15) explicitly shows the dependence of the
plasticization time on experimentally accessible parameters.
Although the dependence on the electric field strength H is
straightforward to interpret, by noting that it exerts a torque
on the dipolar mesogens to induce reorientation, Eq. (15) also
suggests that decreasing the orientational order cross-linked
into the network, S0, generally decreases the plasticization
time. Similarly, the dependence on the parameter λ, which
scales with the magnitude of excluded volume interactions,
suggests that a decrease in plasticization time can be achieved
by decreasing the liquid crystalline mesogen aspect ratio or
the cross-linking fraction.

Finally, Eq. (15) clearly indicates that some initial disor-
der is important in driving free volume generation, as for a
perfectly aligned initialization δ f (0) → 0 the plasticization
time diverges τp → ∞. Although in experiments and simu-
lations the initial configuration is naturally characterised by
small random fluctuations of the order parameters around the
equilibrium values, in the theory we enforce this by setting
δ f (0) > 0.

This establishes the dynamical response of our model LCN
upon the application of a constant electric field. Below we
extend this discussion to alternating electric fields, which are
of most direct interest for future experiments and applications.

VI. AC ACTUATION

The characteristic plasticization time is also relevant when
applying an AC electric field H ∝ (|E | cos 2πωτ )2, with ω

the driving frequency and τ the time, as illustrated by Fig. 5.
Figure 5(a) shows, for a given electric field strength, how the
steady-state free volume varies as a function of the driving
frequency. This yields two temporally separated resonances
for free volume generation: a low-frequency resonance (blue
circles) and a high-frequency resonance (red squares).

Figure 5(b) shows how these resonance frequencies vary
as a function of the electric field strength (colored sym-
bols), as compared to the numerically evaluated plasticization
time [solid black curve; the dashed line shows the estimate
Eq. (15)]. We again observe no response below the criti-
cal field strength, followed by two distinct regimes: “low”
driving frequencies dominate at low field strengths (blue cir-
cles) and “high” driving frequencies dominate at high field
strengths (red squares). Note that we do not show the low-
frequency resonance for high electric field strengths because
it is completely dominated by the high-frequency resonance
there, i.e., it is completely absorbed into the high-frequency
resonance and no longer detectable. The same holds for the
high-frequency resonance at low electric field strengths.

The existence of two resonances implies two coupled pro-
cesses must underlie our findings: mesogen reorientation and
the response of the volume to this reorientation. This claim is
supported by the fact that the two distinct resonances persist
even if we fix the nematic scalar order parameters to their
as-prepared values S1 = S2 = S3 = S0, indicating the fraction
f 2 and the free volume order parameter η dictate the most
important dynamics. In fact, some of the most salient results
we find can be reproduced based on a “minimal” version of
our theory, governed only by the order parameters f 2 and η,
as presented in Appendix B. Although the nonlinear nature of

FIG. 5. Resonance frequencies for steady-state free volume gain
as a function of electric field strength (a), (b) and the corresponding
microscopic mechanisms (c), (d). (a) Steady-state gain in the scaled
free volume order parameter η̃ as a function of the scaled driving fre-
quency ω̃ = ω[ξ 2/�ηB2

0C], for a scaled electric field strength
√

h =
7; the colored symbols denote resonance frequencies. (b) Scaled
resonance frequencies ω̃ as a function of the scaled electric field√

h ∝ |E | in the regimes of low electric field strength (blue circles)
and high electric field strength (red squares). The filled symbols
correspond to the field strength used in panel (a). The black curve
denotes the numerically evaluated plasticization time at the same
field strength (divided by 4 to correct for oscillation of the AC electric
field), with the corresponding estimate Eq. (15) indicated with the
dashed line. See Appendix A for the full scaling procedure and see
Fig. 4 for the used parameter values. (c, d) Schematic representation
of the reorientation of the dipolar mesogens during a full oscillation
of the electric field in the low-field regime (c) and the high-field
regime (d). The dipolar mesogens are indicated by filled ellipsoids,
with the dashed outlines denoting their previous orientation. The
corresponding response of the free volume order parameter, which
is also an important aspect of the resonances, is not shown. See the
main text for an explanation.

the model, even if stripped down to its basics, has not allowed
us to analytically estimate the resonance frequencies in a
meaningful way, a qualitative comparison of the resonance
frequencies with the plasticization time yields additional in-
sights. Indeed, despite the low-frequency resonance occurring
on slightly slower timescales than the plasticization time, and
the high-frequency resonance occurring on significantly faster
timescales, both exhibit the qualitative trends apparent from
Eq. (15) upon variation of the model parameters. This pro-
vides an experimental handle to influence the resonant driving
frequency.

We further probe the origin of these two resonances by
investigating the temporal evolution of the fraction of field-
aligned dipolar mesogens f 2 [43], which indicates that in
the low-frequency regime the dipolar mesogens follow the
electric field. That is, for each cycle of the electric field, the
dipolar mesogens completely reorient to align with the field
when its magnitude is high, and fully relax when the field
strength passes through zero. This behavior is combined with
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the dynamics of the free volume order parameter η, which de-
scribes how the volume dynamically “wraps itself around” the
space that is freed up by mesogen reorientation, to yield the
resonance. Figure 5(c) schematically illustrates the described
low-frequency resonance dynamics, where we show only the
response of the mesogen orientation to the electric field for
visual clarity. This visualizes the low-frequency resonance
dynamics of the order parameter f 2, but not that of the free
volume order parameter η.

Conversely, the high-frequency regime corresponds to fre-
quencies too fast for the dipolar mesogens to follow. Instead,
upon turning on the electric field, the dipolar mesogens start
to reorient to align with the field. However, before the reori-
entation is complete, the electric field has already decreased
in magnitude significantly and passes through zero, and the
dipolar mesogens relax briefly in response to this. Then, as
the oscillation continues, the electric field strength increases
again, and in response the dipolar mesogens reorient a bit fur-
ther than on the previous cycle. This “pumping” of the dipolar
mesogens by the electric field continues until a steady state
of reorientation and (partial) relaxation is achieved. Again,
the resonance results from a combination of this behavior
with the dynamics of the free volume order parameter η.
Figure 5(c) schematically illustrates the high-frequency res-
onance dynamics, where we again show only the response of
the mesogen reorientation to the electric field, which visual-
izes the dynamics of the order parameter f 2, for visual clarity.

To more strongly link these different mechanisms to ex-
perimentally verifiable predictions, we subsequently perform
a simultaneous sweep over both electric field strength and
driving frequency, as Fig. 6 shows. Focusing first on Fig. 6(a),
which shows a range of driving frequencies encompassing
the resonances for both mechanisms, we again recover two
regimes. At low field strengths low-frequency actuation yields
the greatest free volume generation, whereas at high field
strengths high-frequency actuation yields optimal results. We
remark that Liu et al. have performed similar sweeps in their
MD simulations, shown in Fig. 6(b) [35], which show the
same separation into two distinct regimes as a function of
field strength. This suggests that the competition between two
different mechanisms for free volume generation also plays an
important role in the MD simulations.

Figure 6(c), alternatively, shows the theoretical prediction
for the same sweep but over a narrower range of driving
frequencies. As for a sufficiently narrow range of driving
frequencies one effectively probes only a single mechanism,
the result shows a single, monotonic regime. The trend we ob-
serve here is in line with experimental results reported by Liu
et al., shown in Fig. 6(d), suggesting that the experimentally
used range of driving frequencies is too narrow to observe the
different mechanisms for free volume generation that we pre-
dict. Note, in addition, that a qualitative comparison between
Figs. 6(c) and 6(d) allows for a rough mapping of the model
onto experimentally used electric field strengths.

Thus, from an experimental point of view the model pre-
dicts, on the one hand, that broadening the range of driving
frequencies gives rise to nonmonotonic behavior as a function
of the driving frequency. This leads to two distinct regimes
dominated by different physics, namely reorientation and
complete relaxation of the dipolar mesogens at low electric

FIG. 6. Steady-state free volume gain as a function of electric
field strength and driving frequency for theory (a), (c), MD sim-
ulations (b), and experiments (d). Theory: we denote the scaled
free volume order parameter η̃, the scaled driving frequency ω̃ =
ω[ξ 2/�ηB2

0C] and the scaled electric field strength
√

h ∝ |E |. See
Appendix A for the full scaling procedure and see Fig. 4 for the used
parameter values. Simulations are in terms of fundamental Lennard-
Jones units, at fixed temperature T = 0.35 and fixed pressure p =
1.0, with time steps dt = 0.001, total simulation time tsim = 10.0
and the driving frequency f in terms of (100 × dt )−1; see the end
of Sec. III and Ref. [35] for further details. Panels (b) and (d) are
reprinted from Ref. [35] under a Creative Commons Attribution 4.0
International License http://creativecommons.org/licenses/by/4.0/.

field strengths and “pumping” of the dipolar mesogens at
high electric field strengths. On the other hand, the model,
in accordance with MD simulations, suggests that increasing
the electric field strength leads to saturation of the free volume
generation at a given driving frequency.

VII. CONCLUSION AND OUTLOOK

In summary, we have constructed a Landau-type theory
based on the principle of excluded-volume-driven free volume
generation, which shows strong qualitative agreement with
our own but also previous MD simulations. In particular, we
show that under the influence of a static electric field the
orientational order of both cross-linked and dipolar mesogens
saturates gradually, and that this gives rise to a maximum in
the associated free-volume curve. Subsequently extending the
model to include dynamics, we find that the most important
model features are captured in terms of the reorientation of the
dipolar mesogens, expressed through the population fraction
f 2, and the response of the free volume to this reorientation,
expressed through the free volume order parameter η. Al-
though a “stripped-down” version of the model based solely
on these two order parameters, as detailed in Appendix B,
fails to reproduce the aforementioned equations of state, it
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is sufficient to explain the predictions regarding dynamics
discussed above in the context of the full theory.

To sum these up, we predict: (i) the existence of a plas-
ticization time associated with macroscopic volume gain; a
finding reinforced by experiments [36], (ii) the inverse de-
pendence of this plasticization time on the liquid crystalline
mesogen aspect ratio, the cross-linking fraction and the ini-
tial orientational order cross-linked into the network, (iii) the
existence of two resonances upon AC actuation of the LCN,
which correspond to two competing mechanisms that oper-
ate at different frequencies and dominate at different electric
field strengths, and (iv) the proportionality of both resonance
frequencies to the liquid crystalline mesogen aspect ratio, the
cross-linking fraction and the initial orientational order cross-
linked into the network.

Comparing our Landau-theoretical framework with the re-
sults reported by Liu et al. [35], we can (v) rationalize their
observation of two distinct regimes in the MD simulation data,
(vi) postulate that the absence of a second regime in their
experiments is due to a limited range of driving frequencies,
and (vii) predict that the AC response of the LCN saturates at
high electric field strengths. Accordingly, we propose follow-
up experiments in which the liquid crystalline mesogen aspect
ratio, cross-linking fraction and the initial orientational order
cross-linked into the network are varied, and the range of
driving frequencies and field strengths widened. This would
not only allow for a verification of the theory, but also po-
tentially provide concrete experimental handles to optimize
the design of LCNs in industrial applications, paving the way
toward LCN-based devices in the fields of haptic feedback,
self-cleaning surfaces and pattern formation.
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APPENDIX A: SCALING PROCEDURE

Throughout this paper we use the following scaling proce-
dure. Although the scalings used for the static model are also
given in the main text, here we briefly reiterate these for ease
of reference. First, we introduce the substitutions

si = Si/S+, i = 0, 1, 2, 3

a = A/A+,

h = H/H ,

η̃ = η/(ξB2/B0C
2), (A1)

where S+ = B/2C and A+ = B2/4C denote the spinodal of
the nematic liquid crystal, and H = B3/27C2 is the criti-
cal field strength. In addition, we scale the parameters κ̃ ≡
κ/(B2/C), ζ ≡ ξ 2/B0C, and λ̃ ≡ λ/(B2/C), which repre-
sent the magnitude of the effective coupling to the polymer
network, the coupling to the free volume and the excluded-
volume-like coupling terms. Finally, we scale the parameter

B̃1 ≡ B1/(B4/C3), associated with the bulk-modulus-like
term in f 2. As noted in the main text, we choose the phe-
nomenological constant a = 2s0 − s2

0 such that the initial
configuration s1 = s2 = s3 = s0, f 2 = 0 and η̃ = 0 coincides
with the free-energy minimum in the absence of an electric
field, h = 0. This eliminates a as a parameter in our model in
favor of s0, and leaves us, for a given field strength h, with
the set of parameters κ̃, λ̃, ζ , B̃1, and s0 characterizing the
equilibrium properties of the model. The free-energy density
g of Eq. (1) accordingly becomes g = g̃(κ̃, λ̃, ζ , B̃1, s0)B4/C3,
with g̃ a dimensionless free-energy density.

If we subsequently consider the mean-field dynamics as a
function of the time τ , described by Eq. (14), reprinted here
for ease of reference,

∂τψ = −�ψ

[
∂g

∂ψ
+ γ η〈τ 〉ηδψ,η

]
, (A2)

with 〈τ 〉η the ensemble-averaged time the free volume has
existed for and δψ,η the Kronecker δ, then we introduce a
new set of parameters: the kinetic coefficients �ψ , with ψ =
S1, S2, S3, f , η, and the phenomenological constant γ , which
represents the viscoelastic relaxation of the LCN. Starting
with the kinetic coefficients �ψ , we can choose a convenient
scaling by recognizing that all order parameter scalings are of
the form ψ̃ = ψ/ψref, where ψref = S+, S+, S+, 1, ξB2/B0C2

indicates the relevant scaling. Writing the nondimensional-
ized free-energy density g̃ = gC3/B4 and scaling the time
τ̃ = τ/τ0 with some as of yet unspecified reference time τ0,
then allows us to recast the set of dynamical Eq. (A2) in the
dimensionless form

∂τ̃ ψ̃ = −τ0�ψ

ψ2
ref

B4

C3

[
∂ g̃

∂ψ̃
+

(
γ η2

refτ0
C3

B4

)
η̃〈τ̃ 〉η̃δψ̃,η̃

]
. (A3)

From Eq. (A3), we read off the effective kinetic coefficients
�̃ψ̃ = τ0�ψB4/ψ2

refC
3 that apply to the scaled order param-

eters ψ̃ . This suggests a sensible choice for the reference
time is to set τ0 = ξ 2/�ηB2

0C, such that we have �̃η̃ = 1, i.e.,
we measure time relative to the dynamics of the scaled free
volume order parameter η̃. This leaves us with the following
set of scaled kinetic coefficients:

�̃s1 = (�S1/�η )/
(
C2B2

0/4B2ξ 2
)
,

�̃s2 = (�S2/�η )/
(
C2B2

0/4B2ξ 2
)
,

�̃s3 = (�S3/�η )/
(
C2B2

0/4B2ξ 2),
�̃ f = (� f /�η )/

(
C4B2

0/B4ξ 2
)
,

�̃η̃ = 1. (A4)

We remark that this timescale is identically used to scale the
driving frequency ω̃ = ωτ0 for AC actuation, and allows us
to also evaluate the scaled phenomenological constant γ̃ =
γ /(�ηB4

0C/ξ 4), which completes the scaling procedure.

APPENDIX B: “MINIMAL” LANDAU–DE GENNES MODEL

1. “Minimal” model

The most intuitive understanding of our theory can be
reached by considering a “minimal” model that contains the
most important physics, reflects some of the most salient
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results, but lacks the more subtle aspects of the full model
needed to fully reconcile the theory with simulations and
experiments. As alluded to in the main text, the crucial model
ingredients are mesogen reorientation and the response of
the volume to this reorientation. This suggests a “minimal”
description of our model can be achieved as a function of only
the population order parameter, f 2, and the free volume order
parameter, η, by fixing all scalar nematic order parameters to
their as-prepared values S1 = S2 = S3 = S0. This significantly
simplifies the model free-energy density (per unit reference
volume) to read

g − g0 = f 2
(

3
2λS0 − H

)
S0 + 1

2 B1 f 4 + 1
2 B0η

2 − 3ξS2
0η f 2,

(B1)
with g0 an unimportant, for our purposes, reference value of
the free energy encompassing the frozen-in degrees of free-
dom of our model. As discussed in the main text, λ and ξ are
phenomenological coupling coefficients, and B1 and B0 are
bulk-modulus-like coefficients. Note that in writing Eq. (B1),
we have already reduced the number of model parameters to
four, excluding the as-prepared scalar nematic order parame-
ter S0 and the electric field strength H .

Crucially, the free-energy Eq. (B1) can be minimized ana-
lytically, resulting in the equilibrium solution f 2 = η = 0 for
H < 3

2λS0, and

f 2 = S0
H − 3

2λS0

B1 − 9ξ 2S4
0/B0

, η = 3ξS3
0

H − 3
2λS0

B1B0 − 9ξ 2S4
0

, (B2)

for H � 3
2λS0. This immediately makes apparent there exists

a critical field strength Hcrit = 3
2λS0 below which there is no

response to the electric field; this is identical to what we found
in the main text. In addition, the field strength at which the
population fraction saturates, f 2 = 1, evaluates to

Hsat = 3

2
λS0 + B0B1 − 9ξ 2S4

0

B0S0
. (B3)

Here, the first term clearly represents the critical field strength,
whereas the second term comprises of both the additional field
strength needed to saturate f 2 in the absence of a free-volume
coupling, as well as the free-volume correction.

The above characteristics can be straightforwardly related
to the free volume as well, by remarking that Eq. (B2) shows
that the equilibrium behavior of η̃ is enslaved to that of f 2,
effectively decreasing the free-energy penalty associated with
increasingly large electric-field-aligned populations of dipolar
mesogens, f 2 > 0.

The observant reader will notice that—if the system is in
thermodynamic equilibrium—the above allows us to “inte-
grate out” the free volume degree of freedom. This yields a
free-energy density expressed entirely in terms of the popula-
tion fraction f 2, according to

gR − gR,0 = f 2

(
3

2
λS0 − H

)
S0 + 1

2

(
B1 − 9ξ 2S4

0

B0

)
f 4,

(B4)
where the coefficient B1 is now renormalized to account
for free-volume effects. We remark that Eq. (B4) maps our
“minimal” model onto the Landau theory for a simple Ising
ferromagnet: the population fraction f 2 plays the role of the
(squared) magnetization, and the electric field strength H

plays the role of the temperature. Although our “minimal”
model is a bit more complicated than this—we must still con-
strain the population fraction 0 � f 2 � 1, and it only makes
physical sense to resolve the “squared magnetization” f 2 in
lieu of the “magnetization” f —the analogy is not entirely
unexpected; the phase behavior of a paranematic liquid crys-
tal, if expanded around the critical field strength, can also be
mapped exactly onto the Ising ferromagnet [60].

Despite the qualitative insight that Eq. (B4) provides into
the equilibrium behavior of the “minimal” model, it is only
valid under the express assumption of thermodynamic equi-
librium, and so unsuitable for describing dynamics; the main
focus of our work. As a result, to further reduce the parameter
space, and with it the complexity, of the “minimal” model, the
only avenue left to us is scaling the theory, identical to the
procedure carried out in the main text (see Appendix A), to
yield

g̃ − g̃0 = + f 2

2

(
3

4
λ̃s0 − 1

27
h

)
s0 + 1

2
B̃1 f 4

+ 1

2
ζ η̃2 − 3

4
ζ s2

0η̃ f 2. (B5)

Here, the newly introduced tildes and lowercase symbols de-
note scaled quantities, and ζ replaces ξ and B0 as a measure
for the coupling strength between the orientational order of the
mesogens and the LCN volume. The reader will note that the
scaled model now features only two order parameters, f 2 and
η̃, three model parameters, λ̃, B̃1, ζ , as well as the (scaled) as-
prepared scalar nematic order parameter, s0, and the (scaled)
electric field strength, h. We remark that if we investigate
dynamics using the “minimal” model, we must also add two
scaled kinetic coefficients, �̃ f and �̃η̃, as well as the scaled
phenomenological coefficient γ̃ , which addresses free-volume
relaxation, to this list. Analogous to the procedure carried
out in the main text, the corresponding mean-field dynamical
equations read

∂τ̃ f = −�̃ f

[
∂ (g̃ − g̃0)

∂ f

]
,

(B6)

∂τ̃ η̃ = −�̃η̃

[
∂ (g̃ − g̃0)

∂η̃
+ γ̃ η̃〈τ̃ 〉η̃

]
,

with τ̃ the (scaled) time and 〈τ̃ 〉η̃ the ensemble-averaged
(scaled) time the (scaled) free volume has existed for. In what
follows we detail the results that can be extracted from this
scaled “minimal” theory, as compared with our full theory.

2. Results

To illustrate to what extent the “minimal” model captures
our most important results, here we reproduce Figs. 3–6 of the
main text based on the free-energy Eq. (B5). We discuss these
figures sequentially below.

Figure 7 (cf. Fig. 3 in the main text) shows the equations of
state of the “minimal” model (left), as compared with our MD
simulations (right). As discussed above, the “minimal” model
captures both the critical field strength and the saturation field
strength predicted by the full theory. However, as can be seen
from the Fig. 7(a), the “minimal” model lacks any response
of the cross-linked mesogens (dashed curve), as well as the
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FIG. 7. Equations of state for the scaled “minimal” theory (a),
(c) and MD simulations (b, d) as a function of electric field strength.
(a) and (b) show the orientational order parameter for the cross-
linked (dashed lines) and dipolar mesogens (solid lines), measured
along the electric field axis. Panels (c) and (d) show a measure
for the concomitantly generated free volume. Theory: Black curves
denote stable solutions and green curves indicate stable solutions
with saturated population of electric-field-aligned dipolar mesogens
f 2 = 1. We denote the scaled scalar nematic order parameter, mea-
sured along the electric field axis, s, the scaled free volume order
parameter η̃ and the scaled electric field strength

√
h ∝ |E |. The

explicit scalings for these, as well as for our model parameters, are
given in the main text at the end of Sec. III. The values we use for
our scaled model parameters are λ̃ = 0.4 for the excluded-volume-
like coupling constant, ζ = 0.03 for the mesogen-volume coupling
constant, B̃1 = 5.0 for the bulk-modulus-like free-energy penalty for
the population fraction f 2 and s0 = 3.0 for the initial degree of
orientational order, crosslinked into the network. Simulations: the
percentage volume increase is measured relative to the undeformed
configuration prior to the application of the electric field. We work
in terms of fundamental Lennard-Jones units, at fixed temperature
T = 0.35 and fixed pressure p = 1.0, with time steps dt = 0.001
and total simulation time tsim = 300.0; see the end of Sec. III in the
main text for further details. Different colors denote different random
network topologies and lines are guides to the eye. (To be compared
with Fig. 3 in the main text; the range plotted here for the scaled free
volume order parameter η̃ is larger than in the main text.)

gradual saturation of the orientational order of the dipolar
mesogens (solid curve), shown by the full theory and our MD
simulations.

Moreover, both the full theory [Fig. 3(c) in the main text]
and our MD simulations [Fig. 7(d)] predict the equilibrium
volume of the LCN to decrease upon increasing the electric
field strength in the high-field-strength regime where the ori-
entational order saturates. This feature, which Fig. 7(d) shows
is absent from the “minimal” model, yields a maximum in
the free volume curve and results from the LCN becoming
increasingly aligned along the electric-field axis, rather than
becoming increasingly orientationally disordered. We remark
that in the “minimal” model neither can occur beyond the
saturation field strength, as we have frozen the degrees of
freedom associated with the scalar nematic order parameters
S1, S2, and S3.

FIG. 8. Time traces of the generated free volume for the scaled
“minimal” theory (a) and MD simulations (b). The dashed line
(a) indicates a short-time approximation obtained by linearizing the
theory. Theory: we denote the scaled free volume order parameter η̃,
the scaled time τ̃ = τ/[ξ 2/�ηB2

0C] and we apply a scaled electric
field strength

√
h = 18. See Appendix A for the full scaling pro-

cedure for these, as well as for our model parameters. Parameter
values used: λ̃ = 0.4, ζ = 0.03, B̃1 = 5.0, s0 = 3.0, δ f (0)2 = 10−16

for the initial fraction of field-aligned dipolar mesogens, γ̃ = 0.001
for the free volume relaxation parameter, �̃ f = 0.01 and �̃η̃ = 1.0
for the scaled kinetic coefficients. Simulations: we work in terms
of fundamental Lennard-Jones units, at fixed temperature T = 0.35
and fixed pressure p = 1.0, with time steps dt = 0.001 and electric
field strength E = 30.0; see the end of Sec. III in the main text for
further details. (To be compared with Fig. 4 in the main text; the
range plotted here for the scaled free volume order parameter η̃ is
larger than in the main text.)

It is worth pointing out that fixing the scalar nematic
order parameters S1 = S2 = S3 = S0 only increases the free
volume in the manner described above at high electric field
strengths, where the electric-field-aligned dipolar mesogens
tend to dominate the global degree of orientational disorder.
At low electric field strengths (but above the critical field
strength) the reverse effect occurs, as the slight changes in
the scalar nematic order parameters that would be induced
by the electric field tend to increase the global degree of
orientational disorder in this regime. The “minimal” model
misses out on this potential free volume gain by freezing the
associated degrees of freedom.

Figure 8 (cf. Fig. 4 in the main text) shows the volume
increase of the LCN as a function of time for the “mini-
mal” model (a) and our MD simulations (b). It is clear from
Fig. 8(a) that the “minimal” model retains the prediction of a
plasticization time. The associated analytical short-time esti-
mate (dashed curve), given by Eq. (15) in the main text, is also
unchanged for the “minimal” model, and fits the results well.
Note that, since Fig. 8 falls in the high-electric-field-strength
regime, the values shown here for the scaled free volume
order parameter are higher than those depicted in the main
text.

Figure 9 (cf. Fig. 5 in the main text) illustrates the re-
sponse of the LCN as a function of the driving frequency
of an alternating electric field H ∝ (|E | cos 2πωτ )2, with ω

the driving frequency and τ the time. Figures 9(a) and 9(b)
indicate that the “minimal” model, like the full theory, exhibits
two resonance frequencies: a low-frequency resonance domi-
nant at low electric field strengths (blue) and a high-frequency
resonance dominant at high electric field strengths (red). We
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FIG. 9. Resonance frequencies for steady-state free volume gain
as a function of electric field strength (a), (b) and the corresponding
microscopic mechanisms (c), (d). (a) Steady-state gain in the scaled
free volume order parameter η̃ as a function of the scaled driving fre-
quency ω̃ = ω[ξ 2/�ηB2

0C], for a scaled electric field strength
√

h =
7; the colored symbols denote resonance frequencies. (b) Scaled
resonance frequencies ω̃ as a function of the scaled electric field√

h ∝ |E | in the regimes of low electric field strength (blue circles)
and high electric field strength (red squares). The filled symbols
correspond to the field strength used in panel (a). The black curve
denotes the numerically evaluated plasticization time at the same
field strength (divided by 4 to correct for oscillation of the AC
electric field), with the corresponding estimate Eq. (15) (in the main
text) indicated with the dashed line. See Appendix A for the full
scaling procedure and see Fig. 7 for the used parameter values.
(c, d) Schematic representation of the reorientation of the dipolar
mesogens during a full oscillation of the electric field in the low-field
regime (c) and the high-field regime (d). The dipolar mesogens are
indicated by filled ellipsoids, with the dashed outlines denoting their
previous orientation. The corresponding response of the free volume
order parameter, which is also an important aspect of the resonances,
is not shown. See the main text for an explanation. (To be compared
with Fig. 5 in the main text; the range plotted here for the scaled free
volume order parameter η̃ is unchanged from the main text.)

already anticipated and alluded to this in the main text by not-
ing that the resonances are dictated by two coupled processes:
mesogen reorientation and the response of the volume to this
reorientation; these results support this claim.

In addition, as is the case for the full theory, the two
resonance frequencies correspond to two distinct mechanisms
for free volume generation, namely reorientation and com-
plete relaxation of the dipolar mesogens [Fig. 9(c)] at low
electric field strengths and “pumping” of the dipolar mesogens
[Fig. 9(d)] at high electric field strengths.

Finally, it is understood that Fig. 9(a) depicts a frequency
sweep at relatively low electric field strength,

√
h ≈ 7.1,

hence why the values shown for the free volume order param-
eter are slightly lower than those reported in the main text.

Figure 10 (cf. Fig. 6 in the main text) shows simultaneous
sweeps over both the driving frequency and the electric field
strength for the “minimal” model (a), (c), and for the MD
simulations (b) and experiments (d) reported by Liu et al. [35].

FIG. 10. Steady-state free volume gain as a function of electric
field strength and driving frequency for “minimal” theory (a), (c),
MD simulations (b) and experiments (d). Theory: we denote the
scaled free volume order parameter η̃, the scaled driving frequency
ω̃ = ω[ξ 2/�ηB2

0C] and the scaled electric field strength
√

h ∝ |E |.
See Appendix A for the full scaling procedure and see Fig. 8 for
the used parameter values. Simulations are in terms of fundamen-
tal Lennard-Jones units, at fixed temperature T = 0.35 and fixed
pressure p = 1.0, with time steps dt = 0.001, total simulation time
tsim = 10.0 and the driving frequency f in terms of (100 × dt )−1; see
the end of Sec. III in the main text and Ref. [35] for further details.
Panels (b) and (d) reprinted from Ref. [35] under a Creative Com-
mons Attribution 4.0 International License http://creativecommons.
org/licenses/by/4.0/. (To be compared with Fig. 6 in the main text;
the range plotted here for the scaled free volume order parameter η̃

is larger than in the main text.)

Focusing first on Figs. 10(a) and 10(b), we conclude that
both the “minimal” model and the MD simulations exhibit
two distinct regimes: at low electric field strengths low driv-
ing frequencies yield the greatest volume change, whereas at
high electric field strengths high driving frequencies yield the
greatest volume change. This is consistent with the results
obtained from the full theory, reported in the main text, and
suggests that a competition between two distinct mechanisms
also underlies the MD simulations.

Next, we investigate Figs. 10(c) and 10(d), which show
a narrower frequency range for the “minimal” model
[Fig. 10(c)], as compared with the experimental results of Liu
et al. [Fig. 10(d)] [35]. Just as with the full theory discussed
in the main text, the “minimal” model exhibits a single mono-
tonic regime when probed on a sufficiently narrow frequency
range, similar to the experiments shown in Fig. 10(d). Ac-
cordingly, the “minimal” model supports the hypothesis that
the experimentally used range of driving frequencies is too
narrow to observe the full behavior predicted by theory and
simulations.

Another point of note for Fig. 10 is the saturation of the
free volume at high electric field strengths apparent from
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the “minimal” model [Figs. 10(a) and 10(c)] and the MD
simulations [Fig. 10(b)]. This is again consistent with the
full theory discussed in the main text, and supports the pre-
diction that the experimentally measured modulation will
saturate at electric field strengths higher than those shown in
Fig. 10(d).

Finally, the range of values plotted for the scaled free
volume order parameter in Fig. 10 is larger than that shown in
the main text, because the “minimal” model predicts a greater
free volume gain than the full theory for high electric field
strengths, as discussed above.

3. Conclusion

In conclusion, we summarize the salient features of the MD
simulations and the experiments, the predictions we provide
in the main text, and which of these we can reproduce using
the “minimal” model (for the remainder, the full theory is
required). Starting with the response of the LCN to a static
electric field, our MD simulations show that (i) the orienta-
tional order of both the cross-linked and the dipolar mesogens
saturates gradually as a function of the electric field strength,
and that (ii) this gives rise to a maximum in the associated
free-volume curve. The “minimal” model fails to capture ei-
ther of these features.

Upon investigating the dynamical response of the LCN,
the “minimal model does, however, capture (iii) the exis-
tence of a plasticization time associated with macroscopic
volume gain, which is observed in experiments but absent
from our MD simulations. As is the case for the full the-

ory, the “minimal” model provides an analytic estimate for
this plasticization time [which remains unchanged, and is
given by Eq. (15) in the main text], allowing us to pre-
dict that (iv) the plasticization timescales inversely with the
liquid crystalline mesogen aspect ratio, the cross-linking frac-
tion and the initial orientational order cross-linked into the
network.

Under the influence of an oscillating electric field, the
“minimal” model also predicts (v) the existence of two res-
onances, which correspond to two competing mechanisms
that operate at different frequencies and dominate at different
electric field strengths, and (vi) the proportionality of both
resonance frequencies to the liquid crystalline mesogen aspect
ratio, the cross-linking fraction and the initial orientational
order cross-linked into the network. This is in accordance with
the full theory.

Comparing our “minimal” model to the MD simulations
reported by Liu et al. [35] [see Figs. 10(a) and 10(b)], we re-
produce (vii) their observation of two distinct regimes, which
we can rationalize in terms of the aforementioned competing
mechanisms. Moreover, upon narrowing down the range of
driving frequencies, we are left with only a single regime,
in accordance with their experimental results [see Figs. 10(c)
and 10(d)]. This leads us to postulate that (viii) the absence
of a second regime in their experiments is due to a limited
range of driving frequencies. Finally, (ix) the MD simulations
by Liu et al. show a saturation of the free volume under the
influence of an oscillating electric field, which our “minimal”
model reproduces. This leads us to predict that (x) the AC
response of the LCN saturates at high electric field strengths
in experiments as well.
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