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Summary

E electrification of transport systems has risen as a promising approach to miti
gate environmental effects caused by CO2 emissions and to face the imminent

depletion of fossil fuel reserves. Achieving high energy efficiency is crucial for the
electrification of vehicles as it leads to a fuel consumption reduction for hybrid ve
hicles, whereas, for fully electric vehicles, it leads to an extension of the driving
range, which reduces range anxiety concerns and contributes to the adoption elec
tric vehicles in the market. An approach to achieve high energy efficiency is the
use of welldesigned vehicle energy management strategies.

Vehicle energy management strategies can be obtained by solving optimal con
trol problems (OCPs). This thesis focuses on solution methods for nonlinear (and
nonconvex) OCPs that emerge from energy optimization applications in vehicles.
Specifically, this dissertation discusses modeling approaches and formulations of
OCPs for vehicle energy management, global optimality of the solution, scalability
of the optimization algorithms and the effects of uncertainty during operation.

The first part of this thesis focusses on ecodriving, which aims to obtain en
ergy optimal velocity profiles. A detailed analysis of the related OCP shows that
it has a unique global optimal solution despite the inherent nonconvexity of the
problem formulation. This result is exploited to propose a sequential quadratic
program that efficiently finds the solution to the ecodriving problem. Addition
ally, the ecodriving problem formulation is extended to include cornering effects
by considering a low complexity model that purely relies in the geometry of the
vehicle and the road characteristics. Using a highfidelity model it is demonstrated
that the proposed formulation can improve energy savings up to approximately 8%
compared to traditional ecodriving approaches that do not considering cornering
effects. This part finalizes with the study of an energy optimal coordination of au
tonomous vehicles crossing intersections. The proposed formulation aims to obtain
the velocity profiles and the priority crossing order that minimize the aggregated
energy consumption subject to safety constraints. Simulation results showed that
coordinated autonomous vehicles can reduce energy consumption to approximately
16.2% compared to human driven vehicles with lack of coordination.

In the second part of this thesis, contributions are made to the complete vehicle
energy management (CVEM) framework. This framework aims to provide strategies
to operate all the energy consumers and producers present in the vehicle, which
includes all auxiliary systems, possibly in combination with ecodriving. When con
sidering CVEM without ecodriving, a powerbased modelling approach is taken,
in which the exchange of power between energy consumers and producers is de
scribed. This leads to a nonlinear OCP for which it can be shown that it has only
global solutions, even though these solutions might be nonunique. This result is
exploited to develop a distributed static optimization algorithm based on the Primal

v



vi Summary

Dual proximal operator splitting method, leading to a computationally efficient and
scalable algorithm that requires little tuning. Numerical examples show that this
method can be approximately 3 times faster than offtheshelf solvers and it can
solve problems with a 100 times larger time horizon.

An exploration to include uncertainty due to traffic conditions in the CVEM prob
lem by means of scenariobased optimization is also presented. In this case, the
CVEM framework is used in a receding horizon fashion, in which uncertain driv
ing conditions are represented as random constraints. Three methods for velocity
prediction in energy management strategies are studied, i.e., a method based on
(average) traffic flow information, a Gaussian process regression approach, and
the combination of both. Numerical examples show deviations from optimality of
approximately 0.75% to 1.79% for the proposed methods. Subsequently, an al
ternative modeling framework for CVEM is presented, which is based on a port
Hamiltonian approach. This description is suitable to obtain a systematic method
to formulate a decomposable OCP for CVEM. A physically insightful cost function
that describes the total energy consumption of the vehicle is proposed in terms of
internal energy and losses of each system connected to the network. Additionally,
it is demonstrated that ecodriving can be incorporated in the CVEM framework in
a single OCP formulation, which allows to break, in some degree, the strong de
pendence on a priori information of the driving cycle, i.e., the velocity profile for
a known trajectory in specific time interval. The solution to this unified problem
formulation is obtained combining a sequential quadratic programming approach
with dual decomposition. Numerical examples show an approximate improvement
of 4.7% in energy savings with respect to a nonunified approach.

The final part of the thesis provides experimental results. A shrinking horizon
approach to ecodriving for electric city buses is presented, where a reduction of
6.94% in energy consumption is achieved experimentally.
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1
Introduction

1.1. Motivation
Transportation has deeply influenced the evolution of our civilization. Indeed, eco
nomic activities and level of welfare fully depend on the transport of raw materials,
goods, people and services, and have a major impact on the organization and
structural planning of urban and rural areas, public health and the environment.
Unfortunately, the transportation has had a negative impact on the society and en
vironment. For instance, the transport sector was responsible for 14% of the global
𝐶𝑂2 emissions from fossil fuel consumption in 2014 [1], Cars and vans in Europe
contribute with 14% of the 𝐶𝑂2 emissions [2]. In 2016, it was estimated that 95%
of the global transportation energy was based on petroleum fuels [3]. This depen
dency on fossil fuels is also a sensitive factor that influences the geopolitical stability
since petroleum is a finite resource.

Over the last decades, the electrification of transport systems has been raised as
a promising approach to reduce the negative effects caused by the environmental
role of transportation and to face the imminent depletion of fossil fuels. In the ideal
scenario, where electricity consumed by electric transportation systems is produced
from renewable energy sources, it is expected that electric transportation will de
crease the high oil dependency of modern society [4]. There are also advantages
for less idealistic scenarios. For instance, the use of electric vehicles1 (EV) can at
tenuate the noise levels, increase safety and significantly reduce 𝐶𝑂2 emissions. In
Fig. 1.1, the full life cycle 𝐶𝑂2 emissions for petrol vehicles, diesel vehicles and EV
in Europe is presented. This analysis considers 𝐶𝑂2 emissions linked to driving use,
electricity production, and battery production. Remarkably, the 𝐶𝑂2 emissions of
EV, on average, is 3 times less than petrol and diesel cars. This has motivated
the introduction of more strict regulations on 𝐶𝑂2 emissions. For instance, the Eu
ropean Union fleetwide average emission target for new cars will pass from 130 𝑔
1Includes battery electric vehicles, plugin hybrid electric vehicles, solar electric vehicles and fuelcell
electric vehicles.

1
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Figure 1.1: Life cycle 𝐶𝑂2 emission for petrol vehicles, diesel vehicles and EV [5].
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Figure 1.2: Global stock of electric vehicles. Historical data [6] and predictions .

𝐶𝑂2/𝑘𝑚 to 95 𝑔 𝐶𝑂2/𝑘𝑚 in 2021 [2]. Therefore, manufacturers and consequently
the general public are actively stimulated to embrace EV in future years.

In recent years, the evolution of the market share for EV, i.e., the percentage of
EV related sales in relation to the total automotive market, has opened the door for
optimistic predictions about the future for electrified transportation. For instance,
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the European market share for EV increased 32% in the period from 2017 to 2018
[7] and by 2019 the growth was of 50% [6] with respect to the previous year. In the
Netherlands, the EV market share, was 6% in 2018 and by 2019, it reached 15% [6].
This encouraging tendency can be observed worldwide. For instance, in Fig. 1.2,
the global EV stock per year is depicted. Using the historical data from [6], it is
possible to estimate that by 2022 the global EV stock, i.e., number or registered EV,
will reach approximately 12 million electric vehicles worldwide. All these trends are
indicators that allow us to expect that by 2030 electrified transportation might reach
a stage of mass market adoption. Scientific research and engineering contributions
are at the basis of this development and have helped to accelerate the level of
acceptance and the electrification of transport in general. The major contributions
are not limited to the vehicles only, but extend to developments and improvements
in batteries, charging infrastructure, and truly impressive developments on energy
efficiency.

Even though electrified vehicles are entering the market, they have some dis
advantages over conventional vehicles. For instance, their inherently limited range
and slow charging times lead to range anxiety2. There are still many important
challenges to be considered to further improve the electrification of the automotive
sector, which as consequence contributes to reduce range anxiety concerns and
accelerate adoption of electrified vehicles in the market. Some of these challenges
are the degrading capacity of batteries to store energy, weather and traffic con
ditions that drastically affect the prediction of the remaining driving range, limited
number of charging stations and the timeconsuming charge process [10], [11].
As a response to challenges the following technological approaches are currently
being developed:

• Energy dense batteries.

• Extended fast charging infrastructure.

• Accurate driving range prediction.

• Use of lightweight and highly efficient components.

• Energy management strategies.

The use of energy dense batteries implies a range extension that alleviates the
range anxiety effects on the users [12]. Currently, Lithiumion (Liion) batteries
have been adopted as the market standard for electric vehicles, although their life
time depends on the operating conditions and they can lead to unsafe situations
(e.g., thermal runaway) when misused or due to manufacturinginduced malfunc
tioning. Significant advances in energy density are expected in the next 5 years
by the addition of silicon to the Liion batteries, the use of alternative chemistries,
introduction of additional energy storage elements such as supercapacitors, or the

2Range anxiety is defined as the concern (experienced by users) that the vehicle has insufficient energy
to reach the next charging station [7]. Range anxiety has been identified as one of the main reasons
that limits the penetration rate of EV in the market [8, 9].
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rise of solidstate batteries [13]. Unfortunately, the adoption of these technologies
by manufacturers will take longer and the economic impact is still unknown. On the
other hand, the extension of charging infrastructure and the development of fast
charging technologies aims to reduce the range anxiety by offering the user the
possibility to always have a reachable charging station where the charging process
is performed in a reduced time, which resembles the functionality of the current gas
stations. The changes needed in the grid to support a large number of fast charg
ing power stations are still being discussed [14]. Some estimations [15] indicated
that the market was too uncertain to expect a large scalerollout of fast charging
infrastructure. Nevertheless, the authors in [15] forecast that this scenario might
drastically change with a larger adoption of EV in the market. The use of light
weight components in the design of vehicles has been also been considered, e.g.,
[16]. The main goal is to improve the efficiency of the vehicle, which is translated
as range extension. Accurate driving range prediction and the use of energy is an
effective way mitigate range anxiety. Accurate predictions of the remaining driving
range relieves users’ concerns.

Finally, the use of energy management strategies aims to obtain an improved
efficiency during operation, which consequently extends the driving range of elec
trified vehicles. The main advantage to this approach is energy management strate
gies can, in most of the cases, be implemented in vehicles without requiring addi
tional hardware. Hence, the implementation cost is marginal. For these reasons,
energy management strategies that maximize the driving range have been a topic
of intensive research in the last years. In this dissertation, energy management
strategies are the main research topic and the main goal of this work is to:

Global Objective

Contribute to a clean mobility through accelerating the
adoption of electric vehicles in the market using energy
management strategies.

This research has been part of the European project EVERLASTING3, which aims
to extend the driving range of electric vehicles by securely exploiting the operating
conditions of a given battery technology combined with advanced energy manage
ment methodologies.

1.2. Overview of Energy Management Strategies
In this section, the basic concepts of vehicle energy management strategies, i.e.,
ecodriving and complete vehicle energy management are provided. Special em
phasis is put on its formulation as optimal control problems.

3The EVERLASTING aims to contribute to solve the issues of range anxiety, cost, reliability and safety of
EV battery systems by developing flexible, modular, costeffective battery management technologies
and energy management strategies.

https://everlasting-project.eu/project/work-package-3-extended-driving-range/
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1.2.1. Ecodriving
Ecodriving is an energy management strategy that takes advantage of the vehicle
inertia to minimize the energy consumption. In general, given an initial and final
point of a trajectory, ecodriving aims to find the optimal velocity profile that min
imizes the total energy consumed in the trajectory. This optimization process is
subject to the longitudinal vehicle dynamics, where the interaction between trac
tion forces and resistive forces is described. In this sense, ecodriving minimizes
the energy demanded by the vehicle to cover the desired trajectory and its imple
mentation has a direct effect on the driving behavior. This could lead to significant
improvements in energy savings, e.g., in [17] it has been reported that changes in
driving behavior could improve the energetic performance of the vehicle more than
30%. It is important to remark that under this definition, the problem of optimizing
the velocity profile is often formulated in isolation form the other subsystems in the
vehicle, i.e., electric battery, heating ventilation and air conditioning system, etc.
Ecodriving is generally considered as an optimal control problem [18].

1.2.2. Complete Vehicle Energy Management
Classic energy management strategies (EMS) have been mainly studied for hybrid
electric vehicles. These strategies aim at reducing the energy consumption by an
optimal distribution of power among the powertrain components, i.e., the battery,
internal combustion engine and electric machine. The Complete Vehicle Energy
Management (CVEM) concept was originally introduced in [19] as a holistic exten
sion to classic EMS in vehicles. Later, methodologies to solve the CVEM problem
in several automotive applications have been reported in [20–22]. The individual
optimization of energy consumption in all the subsystems of a vehicle is incapable
to produce a global energy efficient operation. This limitation is consequence of
neglecting the iteration that exists between all the energy consumers inside a ve
hicle. Hence, a holistic approach that optimizes energy consumption of all the in
terconnected subsystems in the vehicle is needed, which is the basis for the CVEM
concept.

The energy in the vehicle is transformed between different physical domains,
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e.g., chemical energy that is stored as fuel can transformed into electrical energy
by an electric generator unit; later, the produced electricity can be either trans
formed into mechanical energy to propel the vehicle or transformed into thermal
energy to modify the temperature of the cabin. For this reason, considering power
networks to describe the power iteration between the energy consumers is a useful
tool in the CVEM framework. The idea of general power network architecture is
presented in Fig. 1.3 and describes the conversion and interaction of power flows
between different energy domains [19]. The power network depicted in this figure
is composed by energy buffers and converters, which are represented by rhom
bus and rectangles respectively. The subsystems in the network are constituted
by a single converter or by an energy buffer and a converter that are directly con
nected (gray dashed line). The proposed network has a general configuration that
allows to easily describe specific vehicle topologies. The ideal features of CVEM are
consequences of its interconnected nature and are summarized bellow:

Ideal Features of CVEM

• Globally Optimal
The methods used to solve the CVEM problem should certify
the global optimality of the obtained solutions.

• Scalable
The methods to obtain energy management strategies
should be able to handle problem formulations that grow
in complexity, i.e., due to the additional subsystems in the
network or by considering large time horizons.

• Flexible
Updating or completely removing subsystems or its param
eters should not imply major changes in the problem formu
lation and in the methods that find the energy management
strategy.

1.2.3. Ecodriving and CVEMS as Optimal Control Problems

Both the ecodriving problem and the CVEM problem can be described as an optimal
control problems. The formulation of the problem depends on the application goals;
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words “energy management” and “automotive”).

however, it is possible to identify a general structure that is given by

min
𝜉(𝜏) ∫

𝜏𝑓

𝜏0
𝐽(𝜉(𝜏))d𝜏 (1.1a)

subject to D(𝜉(𝜏)) = 0, (1.1b)
H(𝜉(𝜏)) = 0, (1.1c)
N (𝜉(𝜏)) = 0, (1.1d)

b(𝜉(𝜏)) ≤ B(𝜉(𝜏)) ≤ b(𝜉(𝜏)), (1.1e)

where 𝜉(𝜏) is a time or space dependent vector of decision variables that normally
represent power, forces or even velocities in the vehicle. The cost function normally
describes the cumulative power consumed from the energy sources in the vehicle
over a driving cycle. The problem is subject to the dynamics of all the subsystems
(1.1b), the power definition for each converter in the network (1.1c) and to (1.1d)
that describes the power balance for all the nodes in the power network. Addition
ally, the optimal control problem (1.1) is bounded by (1.1e), which often represents
power, torque and even velocity bounds. Note that ecodriving can be formulated
as a special case of (1.1) that considers a single subsystems, i.e., the inertia of the
vehicle.

1.3. State of the Art
A large amount of energy management strategies (EMS) have been reported in the
last two decades. As can be seen in Fig. 1.4, the number of papers published in
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2019 is approximately three times larger than the amount of papers published in
2010; thus, showing the growing interest of EMS the automotive industry. For the
sake of simplicity, the literature that describes the state of the art in this research
is divided in four relevant groups that are detailed bellow.

1.3.1. Classic EMS
Traditionally, energy management problems are focused on controlling the power
split between the combustion engine and the electric machine of a hybrid electric
vehicle. By storing regenerative braking energy and shifting the operating points of
the combustion engine, a significant amount of fuel can be saved. In [23], [24, Ch.
4] optimization techniques for energy control on hybrid vehicles are summarized.
Additionally, the books [25, 26] present a complete introduction to this research
area. Classic EMS literature can be classified in ad hoc solutions and optimal control
approaches. Additionally, the optimal control approaches can be subdivided into
offline and online control problems.

Heuristic solutions
The set of EMS that are included in this classification are normally characterized
to be computationally fast, which make them suitable candidates for online imple
mentations. Historically, these type of approaches were the first to appear in EMS
literature [27, 28]. Fuzzy logic [29] and neural networks [30] are popular strategies
among this classification. The disadvantage of these strategies is that the perfor
mance of the systems is sensitive to changes in operation, and the global optimality
of the solution cannot be guaranteed. Nevertheless, some authors are have pro
posed solutions to properly recalibrate these strategies using dynamic programming
(DP) [31], thus obtaining an acceptable approximation of the global solution.

Offline optimal control problems
EMS under this category are normally used as benchmark solutions for specific
applications or configurations of the optimal control problem due to the fact that
global optimal solutions can be typically achieved. A representative technique in
this category is DP. For instance in [32], applying DP forces the convergence to
the global optimum of the energy management problem proposed. However, DP
has the inherent disadvantage that the computational burden increases with the
number of states.

Methods based on the Pontryagin’s Maximum Principle (PMP), see, e.g., [33, 34]
can handle computational complexity of multistate energy management problems.
In PMP, the problem is reduced to solving a twopoint boundary value problem,
which can be difficult to solve in the presence of state constraints. Moreover, the
global optimality of the solutions obtained can only be guaranteed if the formulation
of the optimal control problem is convex. Static optimization methods, contrary to
PMP, can easily obtain solutions taking into account state constraints in the problem
formulation. Additionally, these methods can guarantee global optimality of the
solution only for convex approximations of the energy management problems, e.g.,
see [35] and the references therein.
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Finally, it is important to remark that the EMS that belong to the offline optimal
control problems classification, need to have a priori complete information related
to driving cycle, i.e., velocity and road gradient.

Online optimal control problems
In this case, algorithms that requires a low computational effort are described.
For these methods, the requirement of a priori information related to the velocity
and road profile is relaxed, which normally leads to suboptimal solutions. In [36,
37] infinite horizon stochastic DP is used to obtain an EMS offline policy that is
implemented as a lookup table in a embedded system with a low computational
power.

A fast computational approach that is based on (approximations of) PMP is
known as the equivalent consumption minimization strategy (ECMS) [38]. In this
strategy, the energy consumption in the battery is transformed into an equivalent
fuel consumption, which is represented by a costate function related to the battery
energy. The costate can be estimated (which often leads to an approximations)
at every time instant, thus eliminating the necessity for the complete driving pro
file information in advance. Consequently, ECMS can be implemented online, but
updating the costate is a delicate task that often leads to suboptimal solutions.

Model predictive control (MPC) is also used to implement online EMS [39, 40].
A finitetime horizon prediction of the future energy consumption is used to cal
culate the optimal control strategy, from which only the first control decision is
implemented. A successive execution of this procedure obtains a suboptimal en
ergy management policy, that depending on the quality of the predictions and the
length of the receding horizon, can approximate well to the optimal solution.

1.3.2. CVEM Approaches
In general, the classic EMS approaches consider only a reduced set of subsystems,
i.e., the power interaction between the the internal combustion engine, electric
machine and batteries. This motivated the emergence of the CVEM concept, as
it was already discussed in Section 1.2.2. CVEM aims to extend classic EMS ap
proaches to incorporate more subsystems in the optimal control problem, which
brings, as consequence, improvements in energy savings. The extra degrees of
freedom added to the problem, makes CVEM appealing to be used in fully electric
vehicles, where the power split between the electric machine and the combustion
engine has disappeared.

CVEM was first proposed in [19] and a deep discussion about the difficulties
using classic EMS techniques to solve the CVEM problem was also presented. For
instance, DP can provide global optimal solutions to CVEM problems, however,
scalability becomes an issue due to the curse of dimensionality observed in this
technique. Similarly, the inherent set of state constraints presented in the CVEM
problem makes PMP approaches difficult to be used for this application. As a conse
quence, centralized and decentralized optimization approaches have been proposed
to satisfy the requirements imposed by the CVEM concept.

The research conducted within [20] has made some early attempts to incor
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porate auxiliaries into the classic EMS approaches. Due to the use of centralized
optimization methods and convexification techniques the optimal control formula
tions that lead to global optimality and scalability features for CVEM are satisfied
to some degree. However, the approaches reported are not flexible, i.e., the EMS
is not easily reconfigurable when new subsystems are introduced in the optimiza
tion problem due to the convexification procedure. Additionally, some of the results
presented in [20] have included the vehicle inertia in the energy management prob
lem, which was solved by proposing a convex reformulation of the problem in space
domain; in this case, the lack of flexibility is also an unsolved issue. The findings
presented in [21] use a gametheoretic approach to solve the CVEM problems in a
decentralized manner, where all the subsystems share a limited amount of informa
tion and are able to take some decisions autonomously. Online implementations
were obtained within this approach, where predicted information is not considered,
thus limiting the online implementation of the strategy. In this research, the in
clusion of battery wear and charging acceptance are promising research directions
that were not addressed. Moreover, an exploration of algorithms that converge to
a Nash’s equilibrium are still an open task in in this study.

Recent research has highlighted the relevance of taking into account the inter
actions between thermal management systems and energy management systems
to improve the energy efficiency in vehicles. For instance, considering the impact
in energy consumption of considering powertrain and battery thermal condition
ing or waste heat recovery systems could lead energy management strategies with
improved energy savings. This idea is known as integrated thermal and energy
management (ITEM). It can be seen as a specific case of the CVEM problem, where
a thermal subsystem is considered in the formulation. In [41], a detailed survey
on the state of the art on ITEM systems is presented. Along the same line, [42]
formulates the ITEM problem as a nonlinear optimal control problem that is solved
using a short horizon fast MPC in combination with a large shrinking horizon MPC
approach that obtains nearly optimal solutions.

Considering combined energy and emission management strategies for hybrid
vehicles [43] can be considered a case of the CVEM framework. In this case, the
interactions between the powertrain, combustion engine and aftertreatment system
is considered in order to achieve energy optimal operation that is compliant with
emission standards. The recent intentions to introduce zero emission zones in the
European union have reactivated the interest in combined energy and emission
management strategies.

A distributed optimization approach for CVEM is explored in [22] obtaining both
online and offline EMS implementations that are scalable and flexible for a large
number of subsystems (including on/off auxiliaries) in the vehicle. This approach
uses a dual decomposition to split a large and complex optimal control problem
into several simple problems related to the subsystems in the vehicle. These sub
problems iteratively share information with a central coordinator in order to achieve
an equilibrium that is represented by the optimal solution to the CVEM problem. The
offline formulations of the distributed optimization problem presented in [22] are
able to drastically reduce the simulation time compared to classic EMS. However,
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this approach requires a priori information of the driving profile and power con
sumption. Furthermore, there are open questions related to the numerical aspects
of the algorithms proposed to solve the distributed optimization problem, i.e., the
convergence of the algorithms proposed has not been formally proved. On the
other hand, the distributed optimization online formulation of the CVEM problem
uses finitetime horizon predictions in an MPC fashion to obtain a suboptimal so
lution. A disadvantage of the distributed optimization approach to CVEM is that
it solves a nonconvex problem for which is the global optimality of the solution
is not guaranteed. Moreover, it requires the subsystems to be modeled by linear
and (convex) quadratic models. This renders the distributed optimization approach
[22] not usable for the applications where nonlinear models are required. However,
particular extensions of the distributed optimization approach that include nonlin
ear models have already been explored. For instance, in [44], a nonlinear battery
ageing model has been introduced to the CVEM problem, while in [45], the inertia
of the vehicle is considered as an energy buffer and connected to CVEM. This has
shown the relevance of exploring nonlinear optimal control methods to solve CVEM
problems.

1.3.3. Ecodriving
In the aforementioned approaches, the vehicle velocity (and thereby the power
needed to propel the vehicle) is often assumed to be completely given a priori.
Still, the vehicle inertia, which is the largest energy buffer in the vehicle, can have
a large impact in energy savings and consequently in the extension of the driving
range. For instance, in [17] it has been reported that changes in driving behavior
could improve the energetic performance of the vehicle by more than 30% for
journeys with similar distance and time constraints. These promising improvements
in energy efficiency have contributed to the emergence of the ecodriving concept,
which aims to increase the energy efficiency of a vehicle by means of a convenient
selection of driving strategies; i.e. laws, technological implementations or simply
changes in the driver’s behavior. The problem of finding velocity profiles (in isolation
from the other subsystems in the vehicle) that minimize the energy consumed by
a vehicle in travelling to a specific destination in a fixed time has been considered
for conventional vehicles in [46–48], for hybrid electric vehicles by [49, 50], and for
electric vehicles by [51–55].

To solve the ecodriving problem, standard techniques used in optimal control
have been adopted. In [56, 57] dynamic programming (DP) has been used. Al
ternatively, Pontryagin’s minimum principle (PMP) has been used in [52, 58, 59]
and [51] to solve the optimal control problems presented. The main disadvantage
is that PMP only provides a necessary condition for optimality and cannot incorpo
rate state constraints easily. Nevertheless, in [60], PMP is used to obtain analytical
solutions to the specific scenarios of the ecodriving problems that can be used
for online implementation. For instance, in [61] analytical solutions are used on
a realtime eventtriggered MPC implementation providing highlevel driving mode
suggestions to the driver.

In [48, 49, 55] static nonlinear optimization techniques are used to solve the
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problem in the presence of state constraints. In order to guarantee that these
static optimization techniques and the methods based on PMP find global optimal
solutions, it is important to understand the structure of the ecodriving optimal
control problem. Unfortunately, the literature related to this topic is scarce. The
noticeable exception is [49], where the continuoustime optimal control problem is
approximated to a convex formulation. However, the possible loss of convexity in
the discretisation step (to arrive at a finite dimensional optimization problem) has
not been considered in [49]. Ecodriving solutions have been widely implemented
in EcoDriving Assistance Systems (EDAS). Depending on the method used to in
fluence the driving profile, the implementation of ecodriving solutions can be seen
as an advisory system, where the driver receives suggestions to adjust the driving
style to save energy consumption [61, 62] or as an adaptive cruise control (ACC)
system, where the vehicle controls the velocity [63].

1.3.4. Preview Information
The energy performance for real time implementations of classic EMS and CVEM
strategies strongly depends on the quality of the predictions that are used to solve
the optimal control problem. In the case of ecodriving, complete information re
lated to the driving profile is not necessary. However, this approach assumes no
obstacles in the path, e.g., traffic lights, intersections, vehicles, etc. This implies
that the performance of the real time ecodriving solutions can be improved us
ing accurate predictions of the environmental conditions that surround the vehicle.
Therefore, several methods to improve the preview information used in real time
vehicle energy management applications have been reported in literature.

In [48], traffic information is integrated into the energy management problem
as time and space varying velocity constraints that are updated every five minutes
by the Freeway Performance Measurement System [64]. Similarly, in [65], the
ecodriving problem is solved considering traffic conditions; the authors propose a
method to automatically create a velocity corridor from statistical data taken from
real operation. This velocity corridor is used to represent varying traffic flow. For
both of the previous approaches, the results presented are promising; however,
these methods are mainly applicable in highways where the influence of vehicles
and traffic lights of intersections are not significant for the overall performance.

In the last years, energy management in urban traffic environments has be
come a relevant research branch. For this case, the preview information is mainly
obtained by predictions based on data from sensors and communication networks,
e.g, vehicle to vehicle (V2V) or vehicle to infrastructure (V2I). Approaches to solve
the ecodriving problem for a road segment with several traffic lights have been
reported in [66, 67]. In [68, 69] energy optimal adaptive cruise controllers are pro
posed, this approaches uses sensor information and V2V communication to design
energy optimal velocity profiles constrained by the interaction with other vehicles
in urban environments.

Most of the cases previously described focus its attention on optimizing the
velocity profile neglecting the influence of other subsystems. Since, EMS require
the power request to be known in advance, obtaining accurate predictions of the
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power request is fundamental to obtain relevant energy savings in practice. To this
end, the use of stochastic optimal control methods have become a popular approach
to take into account the uncertainty present in real traffic conditions for EMS. These
strategies are typically obtained using Stochastic Dynamic Programming (SDP) [70],
which suffers from scalability problems known as the ”Curse of Dimensionality”, or
Stochastic MPC [71], which could become computationally demanding when the
number of subsystems considered in the control problem increases. Nevertheless,
the need to account for the presence of uncertainty is still an open topic to improve
the implementation capabilities of these EMS.

1.4. Research Questions
In this section, the research questions of this dissertation are stated. The state of
the art previously discussed shows that a large portion of the research conducted
has been devoted to classic energy management for automotive applications; an
other large amount of research has been devoted to to optimize the velocity profiles
of the vehicle, i.e., ecodriving. The dynamics that emerge from the integration of
additional subsystems into classic EMS has started to be explored in the CVEM
framework and it has shown significant improvements in energy efficiency.

Note that the classic EMS can be considered a subset as of CVEM strategies.
Moreover, by considering the inertia of the vehicle as an energy buffer, ecodriving
can be naturally incorporated in the CVEM framework, which eliminates the strong
dependence of classic EMS on a priori information of the driving cycle, i.e., the
velocity profile for a known trajectory in specific time interval. Unfortunately, this
implies the introduction of models with higher complexity in the CVEM formulation,
which requires to extend and design methodologies that are suitable to formulate
and solve nonlinear optimal control problems for CVEM. This research needs to also
focus on the ideal features of the CVEM framework, i.e., global optimality, scalability
and flexibility. Furthermore, anticipation and robustness of the strategies have to
be considered to maintain an energy efficient operation during uncertain traffic
scenarios. As a consequence, the following research question is posed:

Main Research Question

Can the current ecodriving and CVEM methods be im
proved by considering the integration of dynamical features
of the systems and the uncertainty of real traffic scenar
ios such that both higher energy savings and an adequate
computational performance are obtained?

Subquestions and Contributions
In this section, the main research question is subdivided in different branches,
where specific research subquestions will be posed. Moreover, the contributions
of this thesis will be linked to those subquestions and briefly discussed.
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B.1 Integrating dynamical systems of higher complexity in the CVEM
problem
The current modeling methodology in the CVEM framework aims to approx
imate the components as buffer, represented by linear dynamical systems,
connected to an energy converter, described as static quadratic nonlinearities
[22]. This approach is useful to obtain convex approximations of the CVEM
optimal control problem. However, it might introduce large errors if compo
nents represented by models with a higher complexity need to be integrated
in the CVEM problem, e.g., incorporating ecodriving in the CVEM framework.
This yields to the following subquestion.

Research Subquestion 1

What modelling frameworks are suitable to formulate
CVEM optimal control problems that consider components
represented with models of a higher complexity?

This subquestion is addressed in the following chapters:

• In Chapter 3, the traditional ecodriving optimal control problem formu
lation is extended to consider the effects of cornering. Specifically, an
approximation of the cornering effects that completely relies in the ge
ometry of the road is proposed and validated.

• In Chapter 4, the ecodriving problem formulation presented in Chapter 3
is extended to consider multiple fully autonomous vehicles crossing an
intersection. This modeling framework formulates the conflict resolution
problem as an optimal control problem, where the objective is to mini
mize energy consumption of all the vehicles, while avoiding collisions.

• In Chapter 7, a modelling approach based on PortHamiltonian systems
representations is presented. This physically insightful description pro
vides a systematic approach to formulate a decomposable optimal con
trol problem for CVEM. The advantages of this modeling framework are
highlighted in simulations that also validate the approach.

• Chapter 8 extends the current CVEM modelling framework to consider
systems with nonlinear dynamics. This is especially useful to integrate
ecodriving onto the CVEM formulations.

The use of richer models lead to nonlinear and possibly nonconvex optimal
control problem formulations for CVEM. Static optimization approaches are
suitable candidates to solve these nonlinear optimal control problems, since
these approaches lack the disadvantages of DP and PMP. This brings the fol
lowing research subquestion.
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Research Subquestion 2

What static optimization methods are appropiate to solve
the different configurations of ecodriving and nonlinear
CVEM optimal control problems?

The contributions linked to this subquestion are described in the following
list.

• In Chapter 2, Sequential Quadratic Programming (SQP) with an specific
Hessian approximation is used to solve the ecodriving optimal control
problem formulation.

• In Chapter 4, sequential mixedinteger quadratic programing is used to
solve the energy optimal coordination of fully autonomous vehicles cross
ing intersections.

• Chapter 5 presents a distributed optimization approach for largescale
CVEM problems based on a PrimalDual Proximal operator splitting method.

• Chapter 6 uses scenariobased optimization as part of a receding horizon
approach that solves the CVEM problem in presence of uncertainties for
the future power request.

• In Chapter 8, an SQP with Tikhonov regularization is used in combination
with a dual decomposition approach to solve a CVEM formulation that
integrates ecodriving.

• An advisory ecodriving system implementation is presented in Chap
ter 9, where the SQP approach proposed in Chapter 2 is used as part of
the shrinking horizon model predictive control implemented to solve the
ecodriving problem.

B.2 Higher effciency.
Energy management strategies with the highest possible energy efficiency
are global optimal solutions to optimal control problems. Therefore, global
optimality is an important feature of the CVEM framework [19]. In general,
ecodriving and CVEM optimal control problems formulations are nonconvex.
Therefore, there are no guarantees about global optimality of the solutions
obtained by static optimization methods. One possible path to overcome this
is to use convex relaxations. Unfortunately, this methods sometimes needs
strong assumptions on modelling or, simply, cannot be directly applied to some
configurations of the optimal control problem problem. This discussion leads
to the following subquestion.
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Research Subquestion 3

Under which conditions is it possible to provide guarantees
for the global optimality of the solutions to the ecodriving
and CVEM prolems?

The following contributions answer to this subquestion.

• Chapter 2 shows that the existence of a unique global optimal solution
to the ecodriving problem is guaranteed under physically realistic con
ditions.

• In Chapter 5, the conditions under which the existence of only multiple
global solutions to the CVEM problem are presented.

B.3 Scalability and flexibility
The distributed optimization approaches proposed in [22] have reported promis
ing results in terms of numerical performance for offline applications. These
methods make the CVEM flexible and scalable. Unfortunately, the conver
gence in several of the algorithms proposed has not been guaranteed. More
over, configuring the parameters of the algorithms to obtain satisfactory per
formance can be a cumbersome task. This opens the following research sub
question.

Research Subquestion 4

What optimization method with convergence guarantees
can lead to a simple implementation of CVEM strategies
maintaining an acceptable numerical performance?

This subquestion is addressed in Chapter 5, where a distributed optimiza
tion algorithm for nonconvex problems is presented. This algorithm is based
on a primaldual proximal splitting method and has theoretical convergence
guarantees. Moreover, it uses a spectral method to automatically select the
stepsizes of the distributed optimization algorithm at every iteration, which
drastically simplifies its implementation. The scalability and flexibility of this
method is demonstrated in a simulation study.

B.4 Anticipation and robustness
Real driving conditions are subject to uncertainty, thereby making the energy
management a challenging problem. The limitations in energy savings appear
as a consequence of the quality of the predictions in the power request. En
ergy management strategies need to be robust with respect to uncertainty of
the real traffic scenarios. For Ecodriving, achieving acceptable energy sav
ings under real driving conditions imply the necessity to anticipate for traffic
lights, intersections and the behavior of other vehicles. Nowadays, the access
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to historical data or direct information form other vehicles (V2V) or infrastruc
ture (I2V) provides new opportunities to exploit this information to improve
the energy savings in energy management implementations that consider real
driving scenarios. These new possibilities introduces anticipation and robust
ness features to the CVEM framework. Under this perspective the natural
research subquestion is the following.

Research Subquestion 5

Considering real driving conditions, what are the improve
ments in energy savings for ecodriving and CVEM strate
gies that exploit available preview information, i.e., histor
ical data and communication networks?

The contributions linked to this subquestion are summarized below.

• In Chapter 4, ecodriving is extended to solve a conflict resolution prob
lem for multiple autonomous vehicles crossing an intersection. In this
scenario, it is assumed that I2V and V2V communications provide all the
information required. The energy savings of this approach with respect
human driven vehicles are assessed through numerical simulations.

• In Chapter 6, the CVEM framework is employed in a receding horizon
fashion, in which random constraints represent realizations of the uncer
tain driving conditions. In this chapter, available preview information is
exploited in three methods for velocity prediction, i.e., a method based
on (average) traffic flow information, a method based on Gaussian pro
cess regression, and a method that combines both. The energy savings
that these approaches obtain are studied in simulation results.

1.5. Thesis Outline
A graphical representation of the structure of this dissertation is depicted in Fig. 1.5.
The thesis is divided in three main parts. Part I encompasses the contributions
related to ecodriving strategies. In Part II, CVEM strategies constitute the main
focus. In this part, the integration of CVEM and ecodriving is also considered.
Finally, Part III presents experimental results for an ecodriving strategy described
in Part I. Additionally, conclusions and recommendations of this thesis are presented
in Part III. An outline of the chapters contained in each part the thesis is given below.

Part I: Ecodriving
In Chapter 2, the existence of a unique global optimal solution for the ecodriving
problem is presented. This result is exploited to formulate a sequential quadratic
program that efficiently solves the ecodriving optimal control problem. This eco
driving formulation is extended in Chapter 3 to consider cornering effects in the
optimal control problem. The strategies obtained are validated in simulations using
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Figure 1.5: Outline of the theis. Arrows indicate “readbefore” relations.

a highfidelity vehicle model. In Chapter 4, the ecodriving formulation presented
in Chapter 3 is used as the basis to formulate an energy optimal conflict resolution
problem for autonomous vehicles crossing an intersection. The numerical results
presented in this chapter show that the optimized coordination of speed profiles
for each agent in the intersection has improved energy savings compared to the
uncoordinated case.
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Part II: CVEM and Ecodriving
Chapter 5 shows that the CVEM problem has only global optimal solutions. Taking
advantage of this finding, a distributed optimization algorithm for nonconvex prob
lems based on a PrimalDual operator splitting method is proposed. As a result of
splitting the time horizon and separating the components in the power network, the
algorithm breaksdown the complexity of the optimization problem to obtain an en
hanced numerical performance. Additionally, the implementation of the distributed
algorithm is simplified by an adaptive stepsize selection approach. In Chapter 6,
the uncertainty of real traffic scenarios is considered in the CVEM. The problem
is solved using a scenariobased optimization approach and several methods to
synthesize uncertainty from available data are explored. An alternative modeling
framework based on PortHamiltonian representations is presented in Chapter 7.
This approach allows the formulation of a physically insightful separable optimal
control problem. The modelling framework and problem formulation are validated
using numerical simulations. Finally, in Chapter 8 the CVEM framework is extended
to integrate ecodriving. The optimal control problem is solved by a combination of
sequential quadratic programing and dual decomposition. Numerical results show
improved energy savings with respect to a CVEM strategy without ecodriving.

Part III: Experimental Results and Conclusions
In Chapter 9, experimental results from a shrinking horizon approach for ecodriving
are presented. This implementation is used to successfully validate the results
presented in Chapter 2. Finally, conclusions and recommendations are discussed in
Chapter 10.
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2
A Global Optimal Solution to

the EcoDriving Problem

Ecodriving aims at minimizing the energy consumption of a vehicle by ad
justing the vehicle’s velocity. This can be formulated as an optimal control
problem and this chapter provides a detailed view on the global optimal so
lution to this problem. A method to reformulate and discretize the problem
avoiding the introduction of additional nonconvex terms is presented. Fur
thermore, physically realistic conditions are given that guarantee the exis
tence of the global optimal solution to the ecodriving problem. Subsequently,
a sequential quadratic programming algorithm is provided that allows find
ing the global optimal solution. Finally, two numerical examples are used to
illustrate how solutions of the ecodriving problem can be obtained.

This chapter is based on P.7.
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Improving energy efficiency of vehicles is an important topic of research for theautomotive industry. High energy efficiency is important for reducing fuel con
sumption and meeting emission legislation. Moreover, energy efficiency is also
supported by the functional argument of mitigating range anxiety of electric ve
hicles, i.e., giving a sufficiently large driving range for an electrical vehicle. The
problem of reducing the energy consumption of a vehicle over a certain drive cycle
can be formulated as an optimal control problem and its solution is often referred to
as an energy management strategy. Most of these energy management problems
are focused on controlling the power split between the combustion engine and the
electric machine of a hybrid electric vehicle [1, 2]. By storing regenerative braking
energy and shifting the operating points of the combustion engine, a significant
amount of fuel can be saved. A recent trend is to extend this energy management
system to incorporate more subsystems of the vehicle [3] or to consider emission
constraints in the optimal control problem [4].

In the aforementioned approaches, the vehicle velocity (and thereby the power
needed to propel the vehicle) is assumed to be fixed. Nevertheless, the vehicle
inertia, which is the largest energy buffer in the vehicle, can have a large impact in
energy savings and consequently in the extension of the driving range. For instance,
in [5] it has been reported that changes in driving behavior could improve the
energetic performance of the vehicle more than 30%. The promising improvements
in energy efficiency have contributed to the emergence of the ecodriving concept,
which aims to increase the energy efficiency of a vehicle by means of a convenient
selection of driving strategies, i.e. legal regulations, technological implementations
or simply changes in the driver behavior. Hence, it is clear that ecodriving is a broad
concept where government, manufacturers and users participate [6]. The problem
of optimizing the velocity profile has been considered for conventional vehicles in
[7], for hybrid electric vehicles by [8, 9], and for electric vehicles by [10, 11].

To solve the ecodriving problem, standard techniques used in optimal control
have been adopted, see [12] for a detailed overview of the recent literature. In
[13, 14], dynamic programming (DP) has been used to find a global solution to
this problem. Alternatively, Pontryagin’s minimum principle (PMP) has been used in
[10, 11, 15, 16]. The main disadvantages PMP are that it only provides a necessary
condition for optimality and that incorporating state constraints is not a simple task.
Therefore, in [7, 8, 17] static nonlinear optimization techniques are used to solve
the problem in the presence of state constraints. It remains unclear from the papers
that use static optimization techniques or PMP whether the solutions are, in fact,
globally optimal. Unfortunately, the literature related to this topic is scarce. The
noticeable exception is [8], where the continuoustime optimal control problem
is certified to be convex, which guarantees that the obtained solution is globally
optimal. However, [8] does not discuss the possible loss of convexity due to the
discretization process. This might occur, as it is demonstrated in this chapter.

This chapter aims to expose a detailed view of the global optimal solution to the
ecodriving problem. The results of this chapter can be used to certify optimality of
the results presented in the existing literature and in future works. The main con
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tributions presented in this chapter are threefold: Firstly, a method to reformulate
and discretize the problem is presented. This is initially done for a simplified case to
illustrate the nonconvexity of the problem and subsequently extended to the com
plete ecodriving problem. Secondly, a detailed analysis of the uniqueness of the
solution to the reformulated problem is used to obtain a set of mild conditions that
guarantee the global optimality of the solution. Thirdly, a sequential quadratic pro
gramming (SQP) method is employed to efficiently solve the ecodriving problem.
We expect our contribution to be used to certify the global optimality of methods
exciting in current literature, e.g., see examples and references in [12], as well as
in future works.

The content of this chapter is organized in seven sections. In Section 2.1, the
ecodriving problem is formulated as a continuoustime optimal control problem.
Section 2.2 discusses issues related to the preservation of convexity properties for
different discretization schemes. A reduction and discretization method and a con
dition to guarantee the the existence of a global solution to the ecodriving problem
are presented in Section 2.3. In Section 2.4, a SQP method to efficiently solve the
discrete time optimal control problem is proposed. Later, the solution of a numeri
cal ecodriving example is analysed in Section 2.5. Finally, Section 2.6 contains the
conclusions of this chapter.

2.1. ContinuousTime Problem Formulation
In this section, a continuoustime formulation of the ecodriving concept as an op
timal control problem is provided. Ecodriving aims at obtaining an optimal control
force 𝑢(𝑡) and velocity profile 𝑣(𝑡) that minimizes the integral of the power 𝑃(𝑣, 𝑢)
consumed by a vehicle while traveling during a given time interval [𝑡o, 𝑡𝑓] over a
given trajectory 𝑠(𝑡) ∈ [𝑠o, 𝑠𝑓] with known geographical characteristics, i.e., with
a given road grade 𝛼 ∶ [𝑠o, 𝑠𝑓] → [−𝜋2 , 𝜋2 ], where 𝛼(𝑠) is the grade at position 𝑠;
while being subject to longitudinal vehicle dynamics, nonnegative velocity bounds
𝑣(𝑡) ∈ [𝑣, 𝑣], and boundary conditions on position and velocity. This can be stated
in the form of the following optimal control problem:

min
𝑠(𝑡),𝑣(𝑡),𝑢(𝑡) ∫

𝑡𝑓

𝑡o
𝑃(𝑣(𝑡), 𝑢(𝑡))d𝑡 (2.1a)

subject to 𝑚 d𝑣
d𝑡 = 𝑢(𝑡) − 𝑓(𝑣(𝑡), 𝑠(𝑡)), (2.1b)
d𝑠
d𝑡 = 𝑣(𝑡), (2.1c)

𝑠(𝑡o) = 𝑠o, 𝑠(𝑡𝑓) = 𝑠𝑓 (2.1d)
𝑣(𝑡o) = 𝑣o, 𝑣(𝑡𝑓) = 𝑣𝑓 (2.1e)

𝑣 ≤ 𝑣(𝑡) ≤ 𝑣, (2.1f)

where (2.1b) represents the longitudinal vehicle dynamics, in which 𝑢(𝑡) is the
control force and 𝑓(𝑣, 𝑠) describes the aerodynamic drag, rolling resistance and
gravity forces as

𝑓(𝑣, 𝑠) = 𝜎𝑑𝑣2 + 𝑐𝑟𝑚𝑔 cos(𝛼(𝑠)) +𝑚𝑔 sin(𝛼(𝑠)), (2.2)
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In (2.1b) and (2.2), 𝑚 represents the combined mass of the vehicle and the inertia
of the driveline, 𝑔 ≈ 9.81[𝑚/𝑠2] is the gravitational constant, 𝑐𝑟 > 0 describes the
rolling force coefficient and 𝜎𝑑 = 1

2𝑐𝑑𝜌𝑎𝐴𝑓 with 𝑐𝑑 > 0 is the drag coefficient, in
which 𝜌𝑎 denotes the air density and 𝐴𝑓 is the frontal area of the vehicle.

The consumed power 𝑃(𝑣, 𝑢) can be obtained from different modeling approaches
that capture the energy consumption in the powertrain. In this chapter, it is as
sumed to be a quadratic function of the form

𝑃(𝑣, 𝑢) = 𝛽0𝑣2 + 𝛽1𝑣𝑢 + 𝛽2𝑢2, (2.3)

for some nonnegative parameters 𝛽0, 𝛽1 and 𝛽2. Equation (2.3) is a physically
realistic approximation, e.g., for electric motors due to the fact that the friction
and Ohmic losses are captured by the terms 𝛽0𝑣2 and 𝛽2𝑢2, respectively. The
optimal control problem (2.1) does not consider constraints on the control force 𝑢(𝑡)
nor constraints on propulsion power 𝑃(𝑣, 𝑢), as in (2.3). However, the results of
this chapter can be extended to include such constraints. Alternatively, constraints
on propulsion power can be incorporated by connecting the ecodriving to vehicle
energy management, as it was done in [8], and it will be done in Chapter 8, where
power constraints of powertrain components are present.

In general, (2.1) is a nonlinear optimal control problem that might have mul
tiple local solutions due to specific features of the vehicle model and road profile,
see (2.2). This implies that direct optimization methods or methods based on PMP
only provide candidate minima, which might not correspond to the global solution
to problem (2.1).

2.2. Convexity in Relation to Discretization
To illustrate that the solution methods for the control problem (2.1) can introduce
nonconvexity, which might complicate finding the global minimum, a simplified
version of problem (2.1) is considered in this section. Using this simplified example,
we will illustrate a possible reformulation of the problem as a convex optimal control
problem, which implies the existence of a unique solution. Because of the presence
of state constraints in (2.1), we will focus on discretetime approximations of the
optimal control, which might by itself introduce nonconvexity, even for specific
cases where the continuoustime problem (2.1) is convex.

For a simplified version of problem (2.1) used in this section, consider 𝛽0 = 0,
𝛽1 = 1 and 𝛽2 = 0 in (2.3), which corresponds to an electric motor with perfect
energy conversion and no friction and Ohmic losses. Constant velocity bounds
are also considered. Moreover, assume a flat road, meaning that 𝛼(𝑠) = 0 so
that the rolling friction is constant, i.e. cos(𝛼(𝑠)) = 1, and the gravitational force
has no effect on the longitudinal vehicle dynamics as sin(𝛼(𝑠)) = 0. Under these
assumptions, (2.1)(2.3) reduces to

min
𝑠(𝑡),𝑣(𝑡),𝑢(𝑡) ∫

𝑡𝑓

𝑡o
𝑢(𝑡)𝑣(𝑡) d𝑡. (2.4a)
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subject to (2.1c)(2.1f) and

𝑚 d𝑣
d𝑡 = 𝑢(𝑡) − 𝜎𝑑𝑣(𝑡)

2 − 𝑐𝑟𝑚𝑔. (2.4b)

The above optimization problem is nonconvex due to (2.4b), meaning that applica
tion of PMP or finite dimensional optimization methods cannot guarantee a global
optimal solution. We will show how this problem can be reformulated as a con
vex optimization problem, where we focus on discretetime approximations so that
static optimization methods can be applied.

2.2.1. Direct Discretization
In order to illustrate that caution should be taken when discretizing the optimal
control problem (2.4) with (2.1c)(2.1f), we show that direct discretization leads
to a nonconvex optimization problem. In an attempt to assess convexity of (2.4)
with (2.1c)(2.1f), we eliminate 𝑢(𝑡) by substituting the equality constraints (2.4b)
into the objective function (2.4a), thereby producing an equivalent optimization
problem. This procedure is a useful tool to analyse the convexity of the problem in
the feasible set, see, e.g., [18], and leads to

min
𝑠(𝑡),𝑣(𝑡) ∫

𝑡𝑓

𝑡o
𝑚 d𝑣

d𝑡 𝑣(𝑡) + 𝑐𝑟𝑚𝑔𝑣(𝑡) + 𝜎𝑑𝑣(𝑡)
3 d𝑡, (2.5)

subject to (2.1c)(2.1f).
In order to solve (2.5) subject to (2.1c)(2.1f), using direct optimization meth

ods, we can approximate the integral in the objective function using a forward
Euler discretization method at 𝑣𝑘 = 𝑣(𝑡𝑘) and 𝑠𝑘 = 𝑠(𝑡𝑘), i.e., at instances 𝑡𝑘,
𝑘 ∈ {0,… ,𝑁}, for some 𝑁 ∈ ℕ, where 𝑡𝑘+1 > 𝑡𝑘, 𝑡0 = 𝑡o, 𝑡𝑁 = 𝑡𝑓 and step size
𝜏𝑘 = 𝑡𝑘+1 − 𝑡𝑘 > 0. This leads to a forward Euler discretization of the objective
function in (2.5), given by

∑𝑁−1𝑘=0 𝜏𝑘 (𝑚 (𝑣𝑘+1−𝑣𝑘)𝜏𝑘 𝑣𝑘 + 𝜎𝑑𝑣3𝑘 + 𝑐𝑟𝑚𝑔𝑣𝑘) (2.6)

which can be rewritten as

1
2𝑚(𝑣

2
𝑓 − 𝑣2o ) +

𝑁−1

∑
𝑘=0

𝜏𝑘(𝜎𝑑𝑣3𝑘 + 𝑐𝑟𝑚𝑔𝑣𝑘) − 1
2𝑚(𝑣𝑘+1 − 𝑣𝑘)

2, (2.7)

using (2.1e). The last term in this expression is nonconvex, which is a direct con
sequence of the forward Euler discretization. It should be noted that this result is
independent of the step size 𝜏𝑘 and a similar conclusion can be drawn from the
application of a backward Euler method. This shows the loss of convexity when ap
plying discretetime approximations of the ecodriving problem (2.1). Higherorder
discrete approximations of (2.5) possibly lead to a convex optimization problem,
albeit at the cost of increased complexity. Instead, we will here reformulate the
optimal control problem (2.5) subject to (2.1c)(2.1f) in a way that introduction of
nonconvex terms is avoided, as will be shown below.
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2.2.2. ContinuousTime Reformulation
The reformulation of the simplified ecodriving problem is based on the observation
that, instead of discretizing the objective function directly, the first two terms in (2.5)
can be integrated over the boundary conditions (2.1d) and (2.1e) to obtain

min
𝑠(𝑡),𝑣(𝑡)

1
2𝑚(𝑣

2
𝑓 − 𝑣2o ) + 𝑐𝑟𝑚𝑔(𝑠𝑓 − 𝑠0) + ∫

𝑡𝑓

𝑡o
𝜎𝑑𝑣(𝑡)3 d𝑡, (2.8)

subject to (2.1c)(2.1f). The three terms in this objective function describe the
change in kinetic and potential energy of the vehicle over the complete trajectory,
and the loss due to rolling resistance, respectively. Since 𝑣o, 𝑠o, 𝑣𝑓 and 𝑠𝑓 are known,
these terms do not influence the optimal solution. Interestingly, the remaining term
describes the energy losses due to aerodynamic drag. Thus, the reduced expression
is discretized using a forward Euler approach, leading to

min
𝑠𝑘 ,𝑣𝑘

∑𝑁−1𝑘=0 𝜏𝑘𝜎𝑑𝑣3𝑘 , (2.9)

subject to 𝑠𝑘+1 = 𝑠𝑘 + 𝜏𝑘𝑣𝑘, (2.1d)(2.1f). The resulting discrete objective func
tion (2.9) is convex for 𝑣𝑘 > 0, which corresponds to the vehicle driving in forward
direction.

Hence, this simplified case shows that a direct discretization of the ecodriving
can lead to a nonconvex optimization problem, while a reformulated problem yields
a convex optimization problem after discretization. The ideas in this section will be
extended in the next section towards the complete ecodriving problem (2.1) to
prove the existence of a unique solution of the optimal control problem.

2.3. A Global Solution to the EcoDriving Problem
In this section, the ideas presented in Section 2.2 will be applied to problem (2.1),
without making the simplifications considered in Section 2.2.2. This allows an equiv
alent optimization problem of reduced complexity to be formulated, which can be
discretized using a forward Euler method without introducing additional nonconvex
terms. The structure of the reduced discretetime optimal control problem will be
exploited to prove that a unique global optimal solution exists under mild and real
istic conditions.

2.3.1. Reduction of the ContinuousTime Problem
Nonconvex optimization problems can show multiple local minima, therefore find
ing a global solution of the problem could be a cumbersome task. Nonconvexity
is not only a consequence of a discretization action, it can also be related to other
parameters of the nonlinear optimal control problem (2.1). For instance, (2.1a)
could be a nonconvex objective function, which occurs for particular values of 𝛽0,
𝛽1 and 𝛽2 that make (2.3) a nonconvex function. Moreover, a realistic road grade
𝛼(𝑠) might also introduce nonconvexity in the equality constraint (2.1b). As done
in the previous section, an equivalent optimal control problem will be obtained by
substituting the equality constraint (2.1b) into the objective function.
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Figure 2.1: Geometry of the road profile.

Adopting the basic ideas presented in Section 2.2, the continuoustime optimal
control problem (2.1) is reformulated into a convenient form given by

min
𝑎(𝑡),𝑠(𝑡),𝑣(𝑡)∫

𝑡𝑓

𝑡o
𝑃(𝑣(𝑡),𝑚𝑎(𝑡) + 𝑓(𝑣(𝑡), 𝑠(𝑡))) d𝑡 (2.10a)

subject to (2.1c)(2.1f) and
d𝑣
d𝑡 = 𝑎(𝑡), (2.10b)

where 𝑎(𝑡) is a new decision variable, which represents the vehicle acceleration,
and 𝑓(𝑣, 𝑠) is given by (2.2). It is important to remark that (2.10a) is obtained from
the substitution of (2.1b) into (2.1a), and its integrand is given by

𝑃(𝑣,𝑚𝑎 + 𝑓(𝑣, 𝑠)) =𝛽2(𝑚𝑔𝛾𝑔(𝑠) + 𝑐𝑑𝑣2 + 𝑐𝑟𝑚𝑔𝛾𝑟(𝑠) +𝑚𝑎)2

+ 𝛽1𝑣(𝑚𝑎 + 𝑐𝑑𝑣2 +𝑚𝑔𝛾𝑔(𝑠) + 𝑐𝑟𝑚𝑔𝛾𝑟(𝑠)) + 𝛽0𝑣2 (2.11)

in which 𝛾𝑔(𝑠) = sin(𝛼(𝑠)) and 𝛾𝑟(𝑠) = cos(𝛼(𝑠)). The relevance of (2.11) is that
it contains information of the longitudinal vehicle dynamics, where the majority of
the nonlinearities of the problem are embedded. This information and the structure
of the problem (2.10) with (2.1c)(2.1f) can be exploited to obtain a reduced, yet
equivalent, optimal control problem. The first step to achieve this goal is to observe
that

𝛾𝑔(𝑠) = dℎ
d𝑠 and 𝛾𝑟(𝑠) = d𝑠′

d𝑠 (2.12)

where ℎ(𝑠) is the given elevation profile and 𝑠′(𝑡) can be interpreted as the hori
zontal projection of 𝑠(𝑡). The validity of these expressions can be explained using
Fig. 2.1, where the relation between the elevation profile ℎ(𝑠) and the position 𝑠
can be observed. The geometry in this physical configuration shows that for any
specific point in the road, the change in elevation with respect to the displacement
is dℎ

d𝑠 = sin(𝛼(𝑠)), and d𝑠′
d𝑠 = cos(𝛼(𝑠)), respectively.

The next step is to remove the terms in the objective function (2.10a) that can
be solved in advance and have no contribution to the optimal control problem. In
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particular, consider the following terms from (2.10a):

𝐸𝐺 = ∫
𝑡𝑓

𝑡o
𝛽1𝑚(𝑎 + 𝑔𝛾𝑔(𝑠) + 𝑐𝑟𝑔𝛾𝑟(𝑠))𝑣 + 2𝛽2𝑚𝜎𝑑𝑣2𝑎 d𝑡

= ∫
𝑡𝑓

𝑡o
𝛽1𝑚 (𝑣 d𝑣d𝑡 + 𝑔 dℎ

d𝑠
d𝑠
d𝑡 + 𝑔𝑐𝑟 d𝑠

′
d𝑠

d𝑠
d𝑡 ) + 2𝛽2𝑚𝜎𝑑𝑣

2 d𝑣
d𝑡 d𝑡

= 1
2𝛽1𝑚(𝑣

2
𝑓 − 𝑣2o ) + 𝛽1𝑚𝑔(ℎ𝑓 − ℎo) + 𝛽1𝑚𝑔𝑐𝑟(𝑠′𝑓 − 𝑠′o)

+ 2
3𝛽2𝑚𝜎𝑑(𝑣

3
𝑓 − 𝑣3o ). (2.13)

The first equality in (2.13) is obtained by substitution of (2.1c), (2.10b) and (2.12),
and the second equality by solving the integral over the boundary conditions of the
problem. The first two terms shows that the total kinetic and potential energy of
the vehicle depend only on the velocities and elevations at the boundaries. In a
similar way, the last two terms demonstrate that part of the energy consumed by
the drag and rolling forces, respectively, are defined by the velocity and horizontal
displacement at the boundaries.

Since the value of (2.13) is given by the boundary conditions of the optimization
problem (2.10), it is possible to rewrite (2.10a) as

∫
𝑡𝑓

𝑡o
𝑃(𝑣,𝑚𝑎 + 𝑓(𝑣, 𝑠)) d𝑡 = ∫

𝑡𝑓

𝑡o
𝑃𝑅(𝑎, 𝑣, 𝑠)d𝑡 + 𝐸𝐺 , (2.14)

where

𝑃𝑅(𝑎, 𝑠, 𝑣) =𝛽0𝑣2 + 𝛽1𝜎𝑑𝑣3 + 2𝛽2𝑚2𝑔𝑎(𝛾𝑔(𝑠) + 𝑐𝑟𝛾𝑟(𝑠))
+ 𝛽2(𝑚𝑎)2 + 𝛽2(𝑚𝑔𝛾𝑔(𝑠) + 𝜎𝑑𝑣2 + 𝑐𝑟𝑚𝑔𝛾𝑟(𝑠))2. (2.15)

Removing the constant term 𝐸𝐺 from the objective function, thereby changing (2.11)
to (2.15) in the optimal control problem, does not change its optimal solution.

2.3.2. Unique Solution to the DiscreteTime Optimal Control
Problem

The reduced continuoustime optimal control problem obtained in the previous sec
tion can be discretized in order to make it solvable using static optimization meth
ods. In this section, it will be shown that the discretetime problem has a unique
solution under realistic conditions and an efficient method to obtain this global min
imum will be presented in Section 2.4.

In order to discretize the problem, we consider again a forward Euler discretiza
tion method and define 𝑎𝑘 = 𝑎(𝑡𝑘), 𝑣𝑘 = 𝑣(𝑡𝑘) and 𝑠𝑘 = 𝑠(𝑡𝑘) at instances 𝑡𝑘 = 𝑘𝜏+𝑡o,
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𝑘 ∈ K = {0,… ,𝑁}, with fixed step size 𝜏 = 𝑡𝑓−𝑡o
𝑁 , for some 𝑁 ∈ ℕ. This leads to

min
𝑎𝑘 ,𝑠𝑘 ,𝑣𝑘

∑𝑁−1𝑘=0 𝜏𝑃𝑅(𝑎𝑘 , 𝑠𝑘 , 𝑣𝑘) (2.16a)

subject to 𝑠𝑘+1 = 𝑠𝑘 + 𝜏𝑣𝑘 , (2.16b)
𝑣𝑘+1 = 𝑣𝑘 + 𝜏𝑎𝑘 , (2.16c)
𝑠0 = 𝑠o, 𝑠𝑁 = 𝑠𝑓 , (2.16d)
𝑣0 = 𝑣o, 𝑣𝑁 = 𝑣𝑓 , (2.16e)
𝑣 ≤ 𝑣𝑘 ≤ 𝑣 (2.16f)

The theorem below is the main results of this section and provides conditions
under which the optimal control problem (2.16) has a unique global minimum.

Theorem 2.3.1. Suppose optimization problem (2.16) is feasible. if 𝛽2 > 0 and if

𝑔𝜏2(d𝛾𝑔(𝑠𝑘)d𝑠 + 𝑐𝑟 d𝛾𝑟(𝑠𝑘)d𝑠 ) ≠ −1
for all 𝑘 ∈ {0,… ,𝑁 − 1}, then optimization problem (2.16) has a unique global
minimum.

Proof. The firstorder necessary conditions for optimality of (2.16) are given by
the socalled KaruhnKuhnTucker (KKT) conditions, see, e.g, [18]. Instrumental in
these KKT conditions is the Lagrangian

𝐿(𝑎𝑘 , 𝑠𝑘 , 𝑣𝑘 , 𝜅𝑘 , 𝜆𝑘 , 𝜇𝑘 , 𝜈𝑘) = ∑𝑁−1𝑘=0 𝛽0𝜏𝑣2𝑘 + 𝛽1𝜏𝜎𝑑𝑣3𝑘
+ 𝛽2𝜏(𝑚𝑎𝑘)2 + 𝛽2𝜏(𝑚𝑔𝛾𝑔(𝑠𝑘) + 𝜎𝑑𝑣2𝑘 + 𝑐𝑟𝑚𝑔𝛾𝑟(𝑠𝑘))2

+ 2𝛽2𝜏𝑚2𝑔𝑎(𝛾𝑔(𝑠𝑘) + 𝑐𝑟𝛾𝑟(𝑠𝑘)) + 𝜅𝑘+1(𝑠𝑘+1 − 𝑠𝑘 − 𝜏𝑣𝑘)
+ 𝜆𝑘+1(𝑣𝑘+1 − 𝑣𝑘 − 𝜏𝑎𝑘) + 𝜇𝑘(𝑣𝑘 − 𝑣) + 𝜈𝑘(𝑣 − 𝑣𝑘). (2.17)

Since all constraints are linear, a critical point, or stationary point, of (2.16) is char
acterized by

𝜕𝐿
𝜕𝑎𝑘 =2𝛽2𝑚

2𝜏(𝑎𝑘 + 𝑔𝛾𝑔(𝑠𝑘) + 𝑐𝑟𝑔𝛾𝑟(𝑠𝑘)) − 𝜆𝑘+1𝜏 = 0 (2.18a)

𝜕𝐿
𝜕𝑠𝑘 =2𝛽2𝜏𝑚𝑔(𝑚𝑎𝑘 +𝑚𝑔𝛾𝑔(𝑠𝑘) + 𝜎𝑑𝑣

2
𝑘 + 𝑐𝑟𝑚𝑔𝛾𝑟(𝑠𝑘))× (

d𝛾𝑔(𝑠𝑘)
d𝑠 + 𝑐𝑟 d𝛾𝑟(𝑠𝑘)d𝑠 )

+ 𝜅𝑘 − 𝜅𝑘+1 = 0 (2.18b)
𝜕𝐿
𝜕𝑣𝑘 =2𝛽0𝜏𝑣𝑘 + 3𝛽1𝜏𝜎𝑑𝑣

2
𝑘 + 4𝛽2𝜏𝜎𝑑𝑣𝑘(𝑚𝑔𝛾𝑔(𝑠𝑘) + 𝜎𝑑𝑣2𝑘 + 𝑐𝑟𝑚𝑔𝛾𝑟(𝑠𝑘)) − 𝜏𝜅𝑘+1

+ 𝜆𝑘 − 𝜆𝑘+1 + (𝜇𝑘 − 𝜈𝑘) = 0 (2.18c)

and 𝜕𝐿
𝜕𝜅𝑘 ,

𝜕𝐿
𝜕𝜆𝑘 described by (2.16b) and (2.16c) respectively for some Lagrange

multipliers 𝜅𝑘, 𝜆𝑘 and 𝜇𝑘 ⩾ 0, 𝜈𝑘 ⩾ 0, 𝑘 ∈ {0,… ,𝑁}, such that
𝜇𝑘(𝑣𝑘 − 𝑣) = 0 and 𝜈𝑘(𝑣 − 𝑣𝑘) = 0, (2.18d)

and 𝜅0, 𝜆0, 𝜅𝑁, and 𝜆𝑁 chosen such a way that (2.16d) and (2.16e) are satisfied.
Now rewriting (2.18a) as

𝑎𝑘 = 1
2𝛽2𝑚2 𝜆𝑘+1 − 𝑔𝛾𝑔(𝑠𝑘) − 𝑐𝑟𝑔𝛾𝑟(𝑠𝑘)), (2.19)
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and substituting this into (2.18b) yields

𝜅𝑘 = 𝜅𝑘+1 − 2𝛽2𝜏𝑚𝑔( 1
2𝑚𝛽2 𝜆𝑘+1 + 𝜎𝑑𝑣

2
𝑘)(

d𝛾𝑔(𝑠𝑘)
d𝑠 + 𝑐𝑟 d𝛾𝑟(𝑠𝑘)d𝑠 ). (2.20)

Substituting (2.19) into (2.16c) leads to a characterization of a critical point of (2.16),
given by

[𝑠𝑘+1𝑣𝑘+1] = [
𝑠𝑘 + 𝜏𝑣𝑘

𝑣𝑘 − 𝜏𝑔𝜙(𝑠𝑘) + 𝜏
2𝛽2𝑚2 𝜆𝑘+1] (2.21a)

and

[𝜅𝑘𝜆𝑘] = [
1 −𝜏𝑔 d𝜙

d𝑠𝑘
𝜏 1 ][𝜅𝑘+1𝜆𝑘+1] + [

0
1](𝜈𝑘 − 𝜇𝑘) − 𝜏Φ(𝑠𝑘 , 𝑣𝑘) (2.21b)

with

Φ(𝑠, 𝑣) = [ 2𝛽2𝑚𝑔2𝜎𝑑𝑣2 d𝜙
d𝑠𝑘

2𝛽0𝑣 + 3𝛽1𝜎𝑑𝑣2 + 4𝛽2𝜎𝑑𝑣 (𝜎𝑑𝑣2𝑘 +𝑚𝑔𝜙(𝑠𝑘))
] (2.21c)

and 𝜙(𝑠) = 𝛾𝑔(𝑠)+ 𝑐𝑟𝛾𝑟(𝑠). For this characterization, 𝜇𝑘 ≥ 0 and 𝜈𝑘 ≥ 0 can always
be uniquely chosen so that 𝜆𝑘 has the value needed to ensure 𝑣 ≤ 𝑣𝑘 ≤ 𝑣, while

satisfying (2.18d). Furthermore, since the matrix [1 −𝜏𝑔 d𝜙
d𝑠𝑘

𝜏 1 ] is full rank for every

𝑘 ∈ {0,… ,𝑁 − 1} by the hypothesis of the theorem, every pair (𝜅𝑁 , 𝜆𝑁) leads to a
unique trajectory of 𝜅𝑘 and 𝜆𝑘 , meaning that they can be uniquely chosen such
that (2.16d) and (2.16e) are satisfied if (2.16) is feasible.

The KKT conditions provide necessary conditions for optimality in the sense that
they characterize points that satisfy

∇𝐹(𝑥) 𝑑 ⩾ 0 (2.22)

for all feasible directions 𝑑 at 𝑥. In the above equation ∇𝐹(𝑥) is the gradient of the
objective function (2.16a), where 𝑥 = [𝑎0, … , 𝑎𝑁−1, 𝑠0, … , 𝑠𝑁−1, 𝑣0, … , 𝑣𝑁−1]⊤, and the
feasible directions 𝑑 at 𝑥 ∈ F are all vectors that satisfy 𝑥 + 𝛼𝑑 ∈ F for some 𝛼 > 0
and whereF = {𝑥∣ (2.16b)−(2.16f)}, which is a compact set. Points satisfying (2.22)
can in principle be minima, maxima or saddle points. Because of uniqueness of
the solutions to (2.21), the obtained critical point has to be a minimum. Indeed,
suppose the critical point would be a maximum or a saddle point, there would exist
at least one other 𝑥 that would satisfy the necessary conditions. In other words,
if 𝑥 is a saddle point or a maximum, it is possible to move away from this x and
lower the value of the objective function until the boundary of the feasible set F
would be reached. At this point, we would find another point 𝑥 that satisfies (2.22).
This contradicts the fact that there is only one critical point. Therefore, this unique
critical point has to be the global minimum, which completes the proof.

The result presented in Theorem 2.3.1 is unexpected since the optimization
problem (2.16) is nonconvex, which often implies the existence of multiple local
minima. The existence of a unique global solution to the ecodriving problem (2.16)
is important result that eliminates the necessity of using dynamic programming to
obtain globally optimal ecodriving strategies.
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Remark 2.3.1. The conditions presented in Theorem 2.3.1 are satisfied for many
realistic cases. For instance, 𝛽2 > 0 is always satisfied if Ohmic losses of the electric
motor are considered in the objective function. Moreover, standard road design
guidelines, e.g, [19], suggest curvatures that yield ∣d𝛾𝑔(𝑠𝑘)d𝑠 ∣≪ 1 and ∣d𝛾𝑟(𝑠𝑘)d𝑠 ∣≪ 1.

2.4. Solution to the EcoDriving Problem
In this section, we will propose an efficient numerical method for solving the optimal
control problem (2.16). The solution method we propose uses Sequential Quadratic
Programming (SQP). The effectiveness of SQP to solve constrained nonlinear opti
mization problems is the main reason for the large acceptance of this method. The
scent of this approach is to iteratively solve linearly constrained quadratic (QP) sub
problems, that are an approximation of the original problem evaluated in a previous
solution, until some convergence criterion is achieved [20]. The uniqueness of the
solution guarantees that the SQP algorithm finds the global minimum, provided that
the algorithm converges.

Since the objective function in (2.16) is nonconvex even after the reformu
lation and reduction presented in Section 2.3, we employ the results of [21] to
formulate a convex QP subproblem by making an approximation of the Hessian
matrix of (2.15), which is given by

𝐻 =
⎡⎢⎢⎢⎢⎢⎢⎣

𝜕2𝑃𝑅
𝜕𝑎2

𝜕2𝑃𝑅
𝜕𝑎 𝜕𝑠

𝜕2𝑃𝑅
𝜕𝑎 𝜕𝑣

𝜕2𝑃𝑅
𝜕𝑎 𝜕𝑠

𝜕2𝑃𝑅
𝜕𝑠2

𝜕2𝑃𝑅
𝜕𝑠 𝜕𝑣

𝜕2𝑃𝑅
𝜕𝑎 𝜕𝑣

𝜕2𝑃𝑅
𝜕𝑠 𝜕𝑣

𝜕2𝑃𝑅
𝜕𝑣2

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

ℎ11 ℎ12(𝑠) 0
ℎ12(𝑠) ℎ22(𝑎, 𝑠, 𝑣) ℎ23(𝑠, 𝑣)
0 ℎ23(𝑠, 𝑣) ℎ33(𝑠, 𝑣)

⎤⎥⎥⎥⎥⎥⎦
, (2.23)

in which we have omitted the arguments of the function 𝑃𝑅(𝑎, 𝑠, 𝑣) for compactness
of notation, and where

ℎ11 = 2𝛽2𝑚2, (2.24a)

ℎ12(𝑠) = 2𝛽2𝑚2𝑔(d𝛾𝑔(𝑠)d𝑠 + 𝑐𝑟 d𝛾𝑟(𝑠)d𝑠 ), (2.24b)

ℎ22(𝑎, 𝑠, 𝑣) = 2𝛽2𝑚𝑔(𝑚𝑔(d𝛾𝑔(𝑠)d𝑠 + 𝑐𝑟 d𝛾𝑟(𝑠)d𝑠 )
2 + (𝑚𝑎 +𝑚𝑔𝛾𝑔(𝑠) + 𝜎𝑑𝑣2 +𝑚𝑔𝑐𝑟𝛾𝑟(𝑠))

× (d
2𝛾𝑔(𝑠)
d𝑠2 + 𝑐𝑟 d

2𝛾𝑟(𝑠)
d𝑠2 )), (2.24c)

ℎ23(𝑠, 𝑣) = 4𝑚𝑔𝛽2𝜎𝑑𝑣(d𝛾𝑔(𝑠)d𝑠 + 𝑐𝑟 d𝛾𝑟(𝑠)d𝑠 ), (2.24d)

ℎ33(𝑠, 𝑣) = 4𝛽2𝜎𝑑𝑚𝑔(𝛾𝑔(𝑠) + 𝑐𝑟𝛾𝑟(𝑠)) + 2𝛽0 + 6𝛽1𝜎𝑑𝑣 + 12𝛽2𝜎2𝑑𝑣2. (2.24e)

Since ℎ22(𝑎, 𝑠, 𝑣) and ℎ33(𝑠, 𝑣) can become negative, we propose in this chapter to
use

�̂�(𝑠, 𝑣) = diag (2𝛽2𝑚2, 𝜖22, max(ℎ33(𝑠, 𝑣), 𝜖33)) , (2.25)

as a positive definite approximate Hessian in the SQP algorithm presented below,
in which 𝜖22, 𝜖33 are small positive numbers and ℎ33(𝑠, 𝑣) is given by (2.24e).
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The approximated Hessian matrix allow us to solve the ecodriving problem by
sequentially solving the following convex secondorder approximation of (2.15) as:

{𝑎𝑖+1𝑘 , 𝑠𝑖+1𝑘 , 𝑣𝑖+1𝑘 }𝑘∈K = argmin
𝑎𝑘 ,𝑠𝑘 ,𝑣𝑘

∑𝑁−1𝑘=0 𝜏𝑃𝑄𝑃(𝑎𝑘 , 𝑠𝑘 , 𝑣𝑘 , 𝑎𝑖𝑘 , 𝑠𝑖𝑘 , 𝑣𝑖𝑘), (2.26)

subject to (2.16b)(2.16f), where

𝑃𝑄𝑃(𝑎𝑘 , 𝑠𝑘 , 𝑣𝑘 , 𝑎𝑖𝑘 , 𝑠𝑖𝑘 , 𝑣𝑖𝑘) =

1
2 [

𝑎𝑘𝑠𝑘𝑣𝑘
]
⊤
�̂�(𝑠𝑖𝑘 , 𝑣𝑖𝑘) [

𝑎𝑘𝑠𝑘𝑣𝑘
] +
⎛
⎜
⎝
∇𝑃𝑅(𝑎𝑖𝑘 , 𝑠𝑖𝑘 , 𝑣𝑖𝑘) −

⎡⎢⎢⎢⎢⎣

𝑎𝑖𝑘
𝑠𝑖𝑘
𝑣𝑖𝑘

⎤⎥⎥⎥⎥⎦

𝑇

�̂�(𝑠𝑖𝑘 , 𝑣𝑖𝑘)
⎞
⎟
⎠
[
𝑎𝑘𝑠𝑘𝑣𝑘
] . (2.27)

In (2.27), ∇𝑃𝑅(𝑎𝑖𝑘 , 𝑠𝑖𝑘 , 𝑣𝑖𝑘) is the gradient of (2.15), and �̂�(𝑠𝑖𝑘 , 𝑣𝑖𝑘) the positive definite
approximated Hessian matrix given by (2.24), both evaluated at (𝑎𝑖𝑘 , 𝑠𝑖𝑘 , 𝑣𝑖𝑘), where
𝑖 indicates the iteration of the SQP algorithm. Convergence of the proposed SQP
approach is guaranteed due to the fact that the Hessian matrix (2.25) satisfies the
conditions for convergence presented in [21, Section 3.2]. Hence, the proposed
SQP algorithm terminates when the difference of reduced discrete objective func
tion (2.16a) between two successive iterations is lower than a tolerance Δ𝑇𝑜𝑙 > 0,
i.e.,

∣∑𝑁−1𝑘=0 𝜏(𝑃𝑅(𝑎𝑖+1𝑘 , 𝑠𝑖+1𝑘 , 𝑣𝑖+1𝑘 ) − 𝑃𝑅(𝑎𝑖𝑘 , 𝑠𝑖𝑘 , 𝑣𝑖𝑘))∣ ≤ Δ𝑇𝑜𝑙 .
Hence, obtaining the global minimizer to the ecodriving problem (2.16).

2.5. Numerical Examples
In this section, the SQP algorithm proposed in Section 2.4 is used to find the op
timal solution of two numerical examples of the ecodriving problem. First, the
benchmark problem for electric vehicles presented in [10] is solved. In the sec
ond example, conventional and ecodriving profiles are compared for a heavyduty
vehicle in order to show the potential savings obtained from ecodriving concept.

2.5.1. Benchmark Problem for Electric Vehicles
In this example, we revisit the numerical benchmark problem for ecodriving that
have been introduced in [10] and uses PMP to solve it. In this case, the input of the
longitudinal vehicle dynamics 𝑢 is describing the percentage of the maximum me
chanical torque produced by the electric motor. Moreover, The energy consumption
in this model considers a frictionless electric motor, i.e., 𝛽0 = 0. The effects of the
rolling force in the vehicle are assumed to be constant, i.e., 𝛾𝑟 = 1, while the effects
of the gravitational force are described by

𝛾(𝑠) = 𝑔𝛾𝑔(𝑠) = 𝑝0 + 𝑝1𝑠 + 𝑝2𝑠2 + 𝑝3𝑠3. (2.28)

It is important to note that the polynomial function 𝛾(𝑠) also embeds information
related to the road profile used in this example. In Table 2.1, the parameters
presented in [10] are translated to the ecodriving formulation proposed in this



2.5. Numerical Examples

2

41

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

Time [s]

s

v

u/

γ 

(a) Original formulation.

Time [s]
0 0.2 0.4 0.6 0.8 1

-10

-5

0

5

10

15

s

v

u/

γ 

(b) Including velocity contraints.

Figure 2.2: Global solution to the ecodriving problem [10].

chapter. Since the example of [10] is a numerical example, the parameters in
Table 2.1 and the optimal solution do not have a physical interpretation.

The method proposed in Section 2.4 returns an optimal solution that is depicted
in Fig. 2.2a. This solution shows the same features reported in [10]. In fact, the
final cost obtained using SQP is 1.2295×106, which differs only 0.0767% from the
results reported in [10], while having a similar computation time. Considering that
in this case 𝛽2 > 0, from Theorem 2.3.1, it is possible to conclude that the solution
is a global minimum of the problem. Using the SQP approach presented in this
chapter, velocity constraints can be easily added, as shown in Fig. 2.2b, which is
not straightforward using the PMPbased approach of [10].

2.5.2. Hybrid Electric HeavyDuty Vehicle
In this example, a hybrid electric heavyduty vehicle driving at a constant speed
is compared with an ecodriving strategy, where the velocity is allowed to change
between given bounds. The settings of the ecodriving problem used in this example
are summarized in Table 2.2 and the elevation profile is defined by

ℎ(𝑠) = 225cos( 3𝜋
21000𝑠 + 𝜋

4 ) + 225 [𝑚], (2.29)

which is depicted in Fig. 2.3 as a green surface.

𝑝0: 3 𝑣(𝑡o): 0 𝑚: 1 𝑡o: 0
𝑝1: 0.4 𝑣(𝑡𝑓): 0 𝑔: 1 𝑡𝑓: 1
𝑝2: −1 𝑠(𝑡o): 0 𝑐𝑟: 0.1 𝜏: 0.001
𝑝3: 0.1 𝑠(𝑡𝑓): 10 𝜎𝑑: 10−3 𝑣0(𝑡): 0

Table 2.1: EV parameters in [10].
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𝛽0: 0.292 𝑣(𝑡o): 70[𝑘𝑚/ℎ] 𝑚: 15950[𝑘𝑔] 𝑡o: 0[𝑠]
𝛽1: 1.005 𝑣(𝑡𝑓): 70[𝑘𝑚/ℎ] 𝑔: 9.81[𝑚/𝑠2] 𝑡𝑓: 1080[𝑠]
𝛽2: 2.652 × 10−4 𝑠(𝑡o): 0[𝑘𝑚] 𝑐𝑟: 0.1 𝑣: 80[𝑘𝑚/ℎ]
𝜏: 5[𝑠] 𝑠(𝑡𝑓): 21[𝑘𝑚] 𝜎𝑑: 3.1246 𝑣: 60[𝑘𝑚/ℎ]

Table 2.2: Parameters for the heavyduty vehicle example.

The constantspeed driving profile is described by a solid line in Fig. 2.3. In
this case, the total energy consumed by the vehicle is 3.0719 × 104[𝑘𝐽]. On the
other hand, the dashed line presented in Fig. 2.3 describes the optimal control force
𝑢 and velocity profile 𝑣 obtained as the global solution to the ecodriving optimal
control problem studied in this case. It can be noted that the velocity is reduced
when the vehicle is moving downhill. This means that potential and kinetic energy
are recovered, which implies that the total energy consumption is also reduced. To
be more specific, the total energy consumed by the vehicle under this strategy is
2.843×104[𝑘𝐽], which is approximately 7.44% lower than the energy consumed by
the vehicle driving at constant velocity.
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Figure 2.3: Global solution to the ecodriving problem.

2.6. Conclusions
In this chapter, a detailed study has been conducted on the global optimality of
the ecodriving optimal control problem. We have proposed to reformulate and
discretize the problem and have subsequently derived conditions that guarantee
the existence of the global solution to the ecodriving problem. Taking advantage
of these results, a SQP algorithm that efficiently solves the ecodriving problem has
been proposed. The methodologies and results were illustrated in two numerical
examples.
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3
EcoDriving for Energy

Efficient Cornering of Electric
Vehicles in Urban Scenarios

In this chapter, we propose a model for ecodriving that considers corner
ing effects. The proposed model purely relies on the geometric configuration
of the vehicle and road. Consequently, we propose an ecodriving optimal
control problem formulation that is suitable for both straight and curved tra
jectories in urban scenarios. Moreover, it can be applied for vehicles with
front wheel drive (FWD) or rear wheel drive (RWD). We use a case study for
an electric vehicle executing cornering maneuvers to validate the proposed
approach with a high fidelity vehicle model. Results show an approximated
improvement of 8% in energy savings with respect to traditional ecodriving
strategies, especially in trajectories with large curvatures.

This chapter is based on P.1.
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T he capability to extend driving range by reducing power demand demonstrated
by ecodriving techniques has positioned these approaches as strong tools al

leviate effects of range anxiety, e.g., the promising experimental results that will
be presented in Chapter 9. As indicated in the previous chapter of this thesis,
ecodriving is a selection of energy efficient driving strategies [1], which can be
obtained by solving an optimal control problem (OCP) that aims to find optimized
velocity profiles that reduce the total consumption of the vehicle, e.g., see also
[2]. This concept has been studied in terms of the energy source of the vehicle,
e.g., for conventional vehicles in [3], for hybrid electric vehicles will be presented in
Chapter 8, and for electric vehicles by [4]. Ecodriving has also been analyzed in
terms of the surrounding operational conditions. For urban scenario cases, [5] has
included traffic light information into the ecodriving formulation, [6] uses traffic
statistic data to create velocity corridors where solutions the ecodriving OCP lay,
and [7] considers the effects of the preceding vehicle in the problem formulation.
Interestingly, the literature about ecodriving for urban trajectories where cornering
is considered is scarce.

In [8], a highfidelity model is presented to calculate additional energy losses in
the tires during cornering of the vehicle. The results presented in this work have
shown that energy losses during cornering maneuvers should not be neglected.
Cornering losses become relevant during urban scenarios where the vehicle might
follow routes where several turning maneuvers are performed. Often, ecodriving
formulations that consider the road curvature include a constraint linked to the cen
tripetal acceleration, which indirectly limits the maximum velocity during cornering,
e.g., [9]. In this case, the cornering losses are not directly considered in the for
mulation. As a result, the solutions obtained are unlikely to be energy optimal
during the cornering maneuver. An interesting case is presented in [10], where a
dynamical vehicle model is used to describe a simplified model that can be used
to formulate an ecodriving OCP. Unfortunately, this description depends on cor
nering stiffness of the tires, which can show significant variations between vehicles
and tire conditions. Other approaches aim to achieve energy efficient cornering
by applying energy efficient torque vectoring to the vehicle [11]. Unfortunately,
these approaches partially neglect the ecodriving concept by only focusing on the
cornering maneuver itself.

In this chapter, we aim to bridge the gap observed in literature by extending the
ecodriving OCP formulation presented in the previous chapter to consider cornering
effects. In particular, our main contributions are the use of a kinematic bicycle model
to approximate the dissipative forces produced during cornering in the longitudinal
direction of the vehicle. This model purely depends on the geometry of the road
and the vehicle, which makes it suitable to be deployed in real applications where
the tire properties are often unknown. Thus, we propose a trajectory dependent
model for ecodriving that can be used for vehicles with front wheel drive (FWD)
and rear wheel drive (RWD). This allow us to formulate generalized ecodriving OCP
that is suitable to be used in urban routes.

The remainder of this chapter is organized as follows. In Section 3.1, the corner
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ing effects are approximated in a low complexity model for ecodriving applications.
Section 3.2, proposes an OCP formulation that takes advantages of the modeling
choice proposed in this chapter. Later, a case study for an electric vehicle perform
ing a cornering maneuver in an urban intersection is presented in Section 3.3. Here
we will validate our approach using a highfidelity model to calculate losses during
cornering and we will highlight the advantages of the proposed approach. Finally,
we will draw conclusions in Section 3.4.

3.1. A TrajectoryDependent Model for Ecodriving
In this section, we provide a general vehicle dynamical model to be used in the eco
driving optimal control problem proposed in this chapter. To this end, we analyze
the representations used for straight trajectories, which coincides with traditional
models used for ecodriving in the current literature. Later, we propose a gener
alized description of the dissipative forces for curved trajectories, which are often
present in urban scenarios. Finally, we show that the generalized models obtained
for curved trajectories can easily describe the dynamics for straight trajectories as
well.

The main objective of ecodriving strategies is to obtain energy optimal velocity
profiles. In general, the dynamical models considered in traditional ecodriving
approaches represent the longitudinal vehicle dynamics by the interaction between
the traction force in the longitudinal axis 𝐹𝑙(𝑡) and dissipative forces 𝐹𝑑(𝑡), i.e.,

𝑚𝑎 = 𝐹𝑙 − 𝐹𝑑 , (3.1)

where 𝑚 represents the equivalent mass of the vehicle, and 𝑎(𝑡) = d𝑣
d𝑡 is the vehicle

acceleration. The definition of 𝐹𝑑(𝑡) in (3.1) can vary depending on the trajectory
that the vehicle is describing. Specifically, we consider the cases for straight and
curved trajectories below.

3.1.1. Straight Trajectories
A traditional assumption for ecodriving problem formulations is that the vehicle
moves along a straight trajectory such that the dissipative force is given by

𝐹𝑑(𝑣, 𝑠) = 𝐹𝑎𝑖𝑟 + 𝐹𝑟𝑜𝑙𝑙+𝑔𝑟𝑎𝑣 = 𝜎𝑑𝑣2 +𝑚𝑔(𝑐𝑟 cos(𝛼(𝑠)) + sin(𝛼(𝑠))), (3.2)

where 𝑣(𝑡) represents the vehicle velocity, 𝑠(𝑡) describes displacement, 𝛼(𝑠(𝑡)) is
the road grade, 𝑔 is the gravitational acceleration, 𝑐𝑟 > 0 is the rolling resistance
coefficient, and 𝜎𝑑 = 1

2𝑐𝑑𝜌𝑎𝐴𝑓 with the aerodynamical drag coefficient 𝑐𝑑 > 0, air
density 𝜌𝑎 and frontal area of the vehicle 𝐴𝑓. In the righthand side of (3.2),
the term 𝐹𝑎𝑖𝑟 represents the force produced by aerodynamical drag, and the term
𝐹𝑟𝑜𝑙𝑙+𝑔𝑟𝑎𝑣 is the force connected to rolling resistance and gravity. These forces
are depicted in Fig. 3.1 for a straight trajectory case. Finally, by defining the total
traction force provided by the electric motor 𝐹𝑢(𝑡), we see that

𝐹𝑙 = 𝐹𝑢 (3.3)
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Figure 3.1: Forces on the londitudinal axis for both straight and curved trajectories.

Note that this relationship is independent of the drive configuration of the vehicle,
i.e., (3.3) holds for both RWD and FWD configurations.

The assumption of a straight trajectory is widely adopted in literature, see, e.g.,
[2] and the references therein. It is intuitive to validate this assumption for ve
hicles driving in highways, where trajectories with large curvature are not often
present. However, cornering actions are often needed during a typical urban tra
jectory. Moreover, the curvatures of these trajectories are significantly higher than
in highways, which is translated into a larger energy consumption that should not
be neglected, e.g., [8, 10].

3.1.2. Curved Trajectories
In this section we will include cornering effects in the model used for ecodriving
OCP in urban scenarios, i.e., assuming curved trajectories. The effect of corner
ing in terms of energy consumption has been discussed in [8], where a detailed
nonlinear model has been developed and validated experimentally. This model
describes additional tire slip losses during cornering. The results presented in the
aforementioned work show that the energy consumed as consequence of cornering
can be significant. In this section, we follow a simplified approach to approximate
the effects of cornering into a lowcomplexity model that will be used to formulate
the ecodriving OCP in Section 3.2.

Let us consider the curved trajectory observed in Fig. 3.1, which is characterized
by a positiondependent curvature function 𝐾(𝑠), where the curvature is defined as
the reciprocal of the radius 𝑅(𝑠), i.e.,

𝐾(𝑠) = 1
𝑅(𝑠) . (3.4)
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The radius 𝑅 is measured from the instantaneous center of rotation (ICR) to the
vehicle center of gravity (CG). We assume that the CG shown in Fig. 3.1 is located
at a distance 𝑙𝑟 from the rear wheel axle and a distance 𝑙𝑓 form the front wheel
axle. Moreover, the vehicle depicted in Fig. 3.1 has a front wheel steering angle
𝛿(𝑠) ∈ [−𝜋2 , 𝜋2 ].

In order to analyze the interaction of traction and dissipative forces in this case,
we use a kinematic bicycle model. Despite the simplicity of a kinematic bicycle
model, it can achieve similar results as a dynamical bicycle model for vehicle control
purposes [12]. The bicycle model considers that the two front and rear wheels
are respectively lumped into one single front and rear wheel, which in Fig. 3.1 are
represented in red color. Even thought the kinematic version of this model is strictly
true only for low lateral vehicle accelerations, applying this model to highvelocity
corners will result in an overestimate of the cornering energy, thereby making
the model quantitatively conservative. Moreover, we assume vehicles with front
wheelsonly steering systems, implying that the rear wheel will be aligned with the
longitudinal axis of the vehicle for the entire route. For the sake of simplicity, we
assume that the dissipative forces 𝐹𝑟𝑜𝑙𝑙 and 𝐹𝑎𝑖𝑟 are aligned with the longitudinal
axis of the vehicle. Note that the velocity of the vehicle 𝑣(𝑡) is tangential to the
trajectory and shows an angle 𝛽(𝑠(𝑡)) ∈ [−𝜋2 , 𝜋2 ] with respect to the longitudinal
axis, which is given by

𝛽(𝑠) = arcsin (𝑙𝑟𝐾(𝑠)) . (3.5)

The total centripetal force applied at CG and its projection into the longitudinal
vehicle axis are given by

𝐹𝑐(𝑣, 𝑠) =𝑚𝑣2𝐾(𝑠), (3.6)

and

𝐹𝑐𝑙(𝑣, 𝑠) = 𝐹𝑐(𝑣, 𝑠)cos(𝜋2 − 𝛽(𝑠(𝑡))) =𝑚𝑙𝑟𝑣
2𝐾(𝑠)2, (3.7)

respectively.
An analysis of the forces acting on the longitudinal axis of the vehicle shows

that for curved trajectories the total dissipative force in that direction is given by

𝐹𝑑(𝑣, 𝑠) = 𝐹𝑟𝑜𝑙𝑙+𝑔𝑟𝑎𝑣 + 𝐹𝑎𝑖𝑟 + 𝐹𝑐𝑙 . (3.8)

Note that projection of the centripetal force into the longitudinal axis (3.7) can be
physically interpreted as a lumped approximation in the longitudinal direction of the
lateral forces generated on the tires during cornering. From (3.2) and (3.7), it is
possible to rewrite (3.8) as

𝐹𝑑(𝑣, 𝑠) =𝑚𝑔(𝑐𝑟 cos(𝛼(𝑠)) + sin(𝛼(𝑠))) + (𝜎𝑑 +𝑚𝑙𝑟𝐾(𝑠)2)𝑣2. (3.9)

Unlike the approach in [10], the dissipating force introduced by cornering 𝐹𝑐𝑙 is
an approximation that only depends on the geometric configuration of the vehicle
and the road, which comes as a consequence of the use of a kinematic model. In
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Section 3.3, we will use a numerical example to show that the obtained approxima
tion, even though it is simple, properly captures the behavior of the vehicle during
cornering.

The traction force in the longitudinal direction 𝐹𝑙 depends on the drive config
uration of the vehicle, i.e., in a RWD configuration the total motor traction force
𝐹𝑢(𝑡) is directly applied directly to the longitudinal direction of the vehicle, while for
FWD case only a fraction of 𝐹𝑢(𝑡) is applied in the longitudinal direction. This idea
is depicted in Fig. 3.2, where the traction forces for the two drive configurations
are shown. It is clear to see that the traction force for a vehicle with RWD can
be described by (3.3). On the other hand, the traction force in the longitudinal
direction for a FWD vehicle depends on the steering angle as

𝐹𝑙(𝐹𝑢 , 𝑠) = 𝐹𝑢 cos(𝛿(𝑠)), (3.10)

where according to the kinematic bicycle model

𝛿(𝑠) = arctan( 𝑙𝑓 + 𝑙𝑟𝑙𝑟
tan (𝛽(𝑠))) . (3.11)

After substituting (3.5) into (3.11) and applying a composition of trigonometric
and inverse trigonometric functions, the traction force into the longitudinal direc
tion (3.12) can be reformulated as

𝐹𝑙(𝐹𝑢 , 𝑠) =
𝐹𝑢√

1 + (𝑙𝑓+𝑙𝑟)
2𝐾2(𝑠)

1–𝑙2𝑟𝐾2(𝑠)

. (3.12)

The projection of the centripetal force and the traction force in the direction of
motion allows us to generalize the longitudinal vehicle dynamics model (3.1) for
curved trajectories as

𝑚𝑎 = 𝐹𝑙(𝐹𝑢 , 𝑠) − 𝐹𝑑(𝑣, 𝑠), (3.13)

where 𝑎(𝑡) = d𝑣
d𝑡 is the acceleration in the tangential direction to the trajectory.

Considering that the forces are analyzed in the longitudinal axis of the vehicle, the
use of 𝑎(𝑡) instead of the longitudinal acceleration 𝑎𝑙(𝑡) in (3.13) is justified by a
small angle approximation such that 𝑎𝑙(𝑡) = 𝑎(𝑡)cos(𝛽(𝑠)) ≈ 𝑎(𝑡). Additionally
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in (3.13), 𝐹𝑑(𝑣, 𝑠) is given by (3.9), and 𝐹𝑙(𝐹𝑢 , 𝑠) is described by (3.3) and (3.12) for
vehicles with FWD and RWD, respectively. As a final observation, it should be noted
that taking 𝐾(𝑠) = 0 implies that the vehicle moves on a straight trajectory. For this
specific case, (3.9) is equivalent to (3.2), which represent the dissipating forces
for a straight trajectory. Similarly, for FWD vehicles (3.12) is equivalent to (3.3),
which describes the traction force in the longitudinal direction for vehicles driving
in straight trajectories. These observations show the generality of the proposed
models.

3.2. Optimal Control Problem
A continuoustime optimal control problem (OCP) formulation that represents the
ecodriving problem for urban city scenarios is provided in this section. In particular,
we will extend the ecodriving formulation proposed in [13] to include the corner
ing effects captured by the trajectory dependent models presented in the previous
section. Additionally, we discuss the differences between the OCP proposed in this
chapter and common approaches of ecodriving for cornering available in literature.

3.2.1. Problem Formulation
For a route with given curvature 𝐾(𝑠) and road grade 𝛼(𝑠), ecodriving aims to
minimize the aggregative power 𝑃(𝑣(𝑡), 𝐹𝑢(𝑡)) over a fixed period of time [𝑡o, 𝑡f]
required by a vehicle driving a trajectory 𝑠(𝑡) ∈ [𝑠o, 𝑠f], while being subject to
position dependent velocity and acceleration bounds 𝑣(𝑡) ∈ [𝑣(𝑠), 𝑣(𝑠)], 𝑎(𝑡) ∈
[𝑎(𝑠), 𝑎(𝑠)], respectively. Moreover, the vehicle longitudinal dynamics and initial
final conditions for position and velocity are considered. A mathematical formulation
of the ecodriving problem as an OCP is given by

min
𝑠(𝑡),𝑣(𝑡),𝑎(𝑡),𝐹𝑢(𝑡)

∫
𝑡𝑓

𝑡𝑜
𝑃(𝑣(𝑡), 𝐹𝑢(𝑡))d𝑡 (3.14a)

subject to 𝑚𝑎(𝑡) = 𝐹𝑙(𝐹𝑢(𝑡), 𝑠(𝑡)) − 𝐹𝑑(𝑣(𝑡), 𝑠(𝑡)), (3.14b)
d
d𝑡 𝑠(𝑡) = 𝑣(𝑡), (3.14c)
d
d𝑡𝑣(𝑡) = 𝑎(𝑡), (3.14d)

𝑠(𝑡o) = 𝑠o, 𝑠(𝑡f) = 𝑠f (3.14e)
𝑣(𝑡o) = 𝑣o, 𝑣(𝑡f) = 𝑣f (3.14f)

𝑎(𝑡)2 + 𝑣(𝑡)4𝐾(𝑠(𝑡))2 ≤ (𝜇𝑠𝑔)2, (3.14g)
𝑣(𝑠(𝑡)) ≤ 𝑣(𝑡) ≤ 𝑣(𝑠(𝑡)), (3.14h)
𝑎(𝑠(𝑡)) ≤ 𝑎(𝑡) ≤ 𝑎(𝑠(𝑡)), (3.14i)

where the power consumed by the electric motor and driveline at a given time
instant is

𝑃(𝑣, 𝐹𝑢) = 𝛽2𝐹2𝑢 + 𝛽1𝑣𝐹𝑢 + 𝛽0𝑣2 (3.15)

with positive coefficients 𝛽2 to penalize the Ohmic losses, 𝛽1 to describe effective
power consumed, and 𝛽0 that penalizes the friction losses in the electric motor. Note
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that the power consumption (3.15) considers regenerative braking. The longitudinal
vehicle dynamics are described by (3.14b) with the definitions provided for (3.13),
the time evolution of acceleration, velocity and position are described by (3.14d)
and (3.14c), and boundaries for position of velocity are represented by (3.14e)
and (3.14f), respectively. Finally, (3.14g) represents a constraint imposed on the
total acceleration of the vehicle, where 𝜇𝑠 > 0 is a friction coefficient dependent on
the characteristics of the tires and the road conditions. In order to give a physical
justification to (3.14g), let us note that the maximum friction force between the
road and tires is given by 𝐹𝑓𝑟𝑖𝑐 =𝑚𝜇𝑠𝑔. For safety reasons, is required to avoid the
vehicle to slip, which implies that the total force applied to the vehicle is lower than
the maximum friction force during normal operation, i.e.,

(𝑚𝑎(𝑡))2 + (𝑚𝑣(𝑡)2𝐾(𝑠(𝑡)))2 ≤ (𝑚𝜇𝑠𝑔)2, (3.16)

which can be simplified into (3.14g). The first term in the left hand side of (3.16)
represents the resultant force applied to the vehicle in the tangential direction of the
trajectory, and the second term is the centripetal force. Note that (3.14g) is mainly
relevant during cornering. During straight trajectories this constraint is inactive
because upper acceleration bound in (3.14i) is expected to satisfy 𝑎(𝑠) ≤ 𝜇𝑠𝑔.

3.2.2. Effects of Cornering
From the scarce literature about ecodriving approaches that consider cornering
effects, it is possible to note that often the OCP formulation includes a constraint
linked to the centripetal acceleration of the vehicle, see, e.g., [9], which is similar
to (3.14g). This type of hard constraint implicitly imposes a limit to the maximum
velocity during cornering. In the approach presented in this chapter, we improve
the representation of cornering effects by including those effects in longitudinal
vehicle dynamics, i.e., (3.14b). This specific modeling choice can be seen as a soft
constraint that highly penalizes the velocity while cornering. To this end, we will
use a simplified example that, without losing generality, allows us to observe the
effects of cornering in the OCP (3.14).

Let us consider a RWD vehicle, driving in a circular trajectory on a flat road,
i.e., 𝐾(𝑠) = 1

𝑅 and 𝛼(𝑠) = 0. It is possible to find an equivalent formulation fo the
OCP (3.14) by substituting (3.14b) into (3.14a) (see , e.g., [14, §4.1.3]), leading to

min
𝑠(𝑡),𝑣(𝑡),𝑎(𝑡) ∫

𝑡𝑓

𝑡𝑜
𝑃(𝑣(𝑡),𝑚𝑎(𝑡) + 𝐹𝑑(𝑣(𝑡), 𝑠(𝑡)))d𝑡 (3.17)

subject to (3.14c)(3.14i),
in which

𝑃(𝑣,𝑚𝑎 + 𝐹𝑑(𝑣, 𝑠)) = 𝛽2(𝑚(𝑎 + 𝑔𝑐𝑟) + (𝜎𝑑 +𝑚𝑙𝑟𝐾2)𝑣2)
2

+ 𝛽1𝑣(𝑚(𝑎 + 𝑔𝑐𝑟) + (𝜎𝑑 +𝑚𝑙𝑟𝐾2)𝑣2) + 𝛽0𝑣2. (3.18)

Thus, we can note the the term 𝑚𝑙𝑟𝐾2 drastically penalizes velocity in the new cost
function. This penalization, depends quadratically on the road curvature, which
implies that the optimal solution might show lower decelerations during cornering
maneuvers.
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Figure 3.3: Urban intersection considered in the case study.

3.3. Case Study
In this section, we study an electric vehicle executing a cornering maneuver in an
urban environment with different curvatures. The advantages of the model and
OPC formulation presented in this chapter are highlighted in this example. To this
end, we will contrast the results with traditional ecodriving approaches. Moreover,
we will show the relevance of the proposed approach using an experimentally val
idated highfidelity model to calculate the instantaneous power and total energy
consumption produced during the cornering maneuvers analyzed.

Let us consider an electric vehicle with RWD and parameters listed in Table 3.1.
The vehicle executes a cornering maneuver on an urban intersection as is depicted
in Fig. 3.3, which curvature is defined as

𝐾(𝑠) =
⎧⎪⎪⎨⎪⎪⎩

1
𝑅 for 𝑠𝑐o ≤ 𝑠 ≤ 𝑠𝑐f ,
0 otherwise;

(3.19)

where 𝑠𝑐o is the position where the corner begins and 𝑠𝑐f is the final corner position.
The curvature (3.19), will be specified for three different scenarios that are detailed
in Table 3.2.

The OCP (3.14) is formulated using the parameters in Table 3.1. To find the
solutions of this OCP, we discretize the problem (3.14) and solve a static optimization
problem. It is important to remark that this chapter focuses on the modeling and
OPC formulation rather than in the methodology to find the solution. However, the
interested reader can follow the methodology detailed in Chapter 2 of this thesis.
The optimal solutions to (3.14) are depicted in Fig. 3.4 as velocity and acceleration
profiles for each scenario considered in the case study. Note that the vertical lines
depicted in both profiles indicate the initial and final positions of the curved section
of the trajectory. It can be observed that the vehicle decelerates before entering
the curved section of the trajectory. When the vehicle enters the curved section
of the trajectory the deceleration rate is reduced and approximately at halfway
along the curved section the vehicle begins accelerating. As soon as the vehicle
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Table 3.1: Vehicle and OCP parameters

Par. Value Units Par. Value Units
𝑚 15000 [𝑘𝑔] 𝜎𝑑 3.24625 [𝑁𝑠2/𝑚2]
𝑐𝑟 0.007 − 𝜇𝑠 0.35 −
𝛽0 0.292 [𝑤𝑠2/𝑚2] 𝛽1 1.005 −
𝛽2 2.652e4 [𝑤/𝑁2] 𝑠0 0 [𝑚]
𝑠f 150 [𝑚] 𝑣0 30 [𝑚/𝑠]
𝑣f 35 [𝑚/𝑠] 𝑣 60 [𝑚/𝑠]
𝑣 0 [𝑚/𝑠] 𝑎 0.2g [𝑚/𝑠2]
𝑎 0.2g [𝑚/𝑠2]

Table 3.2: Parameters for different scenarios.

𝑅 𝑠𝑐o 𝑠𝑐f
12 [𝑚] 70 [𝑚] 70+𝑅𝜋/2 [𝑚]
14 [𝑚] 70 [𝑚] 70+𝑅𝜋/2 [𝑚]
17 [𝑚] 70 [𝑚] 70+𝑅𝜋/2 [𝑚]

leaves the curved section of the trajectory the acceleration is immediately increased.
Interestingly, the differences between scenarios considered is clearly observed in
the velocity profiles, where at higher curvatures lower velocities are observed in
the curved section of the trajectory. This result is expected because velocity is
highly penalized for high curvatures in the road. This effect has been discussed in
Section 3.2.2.

In order to highlight the advantages of our general approach, we compare the
optimal solution to the OCP (3.14) with a traditional ecodriving OCP formulation.
Specifically, a traditional OCP considers the constraint (3.14g), but the cornering
effects in (3.14b) are neglected. In Fig. 3.5, the optimal velocity and acceleration
profiles for traditional and general ecodriving formulations are presented for the
specific scenario where 𝑅 = 14 [𝑚]. Note that the velocity profile of the traditional
approach shows constant velocity during the curved section of the road, which also
indicates zero acceleration during that section. This is expected since traditional
ecodriving strategies avoids changes in acceleration to reduce energy consump
tion. As a consequence, the vehicle crosses the curved section with the maximum
possible velocity, which is defined by constrain (3.14g). On the other hand, the
optimal strategy obtained by the general approach proposed in this chapter shows
lower velocities during the curved section, which is connected to the velocity being
penalized by the curvature of the road. This causes nonzero longitudinal acceler
ation in the curved section.

The effects of both strategies in terms of power consumption can be observed
in in Fig. 3.6, where the instantaneous cumulative power consumption produced
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Figure 3.4: Optimal solutions to the OCP (3.14) for different curvatures.

by these two strategies is depicted. Here, we use the experimentally validated
highfidelity model from [8] to calculate the cornering losses, in combination with
instantaneous power consumed by the inertia, aerodynamical drag, rolling resis
tance, and electric machine losses. As expected, the main difference between both
strategies are observed in the curved section of the trajectory. For the traditional
strategy, the power losses due to cornering and electric machine losses are con
stant during the curved section, while the general strategy indicates virtually no
electric machine losses during the first half of the curved trajectory. This shows
that the cornering maneuver obtained form the general strategy is more energy ef
ficient than the traditional counterpart. This observation is reinforced by simulations
performed on the rest of the scenarios considered in this case study.

In Fig. 3.7, we present the cumulative energy obtained by using the traditional
and general strategies for scenarios with three different curvatures, and in Table 3.3,
we summarize the total energy calculated with the highfidelity model for each case
and strategy. The trend observed from these results indicates that the general
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Figure 3.5: Comparison for OCP formulations for cornering scenario with 𝑅 = 14 [𝑚].

Table 3.3: Comparison of energy consumption between strategies.

Scenario Tot. Energy Tot. Energy Diff.
(Traditional) (General) %

𝑅 = 12 [𝑚] 820.2 [𝑘𝐽] 757.6 [𝑘𝐽] 8.26
𝑅 = 14 [𝑚] 687.5 [𝑘𝐽] 658.2 [𝑘𝐽] 4.45
𝑅 = 17 [𝑚] 574.2 [𝑘𝐽] 573.4 [𝑘𝐽] 0.14

strategy proposed in this chapter is able to improve the energy efficiency of the
vehicle for all the considered scenarios. In fact, the proposed ecodriving strategy
saves a larger amount of energy for scenarios with larger curvatures, while for
roads with small curvature the total consumption of the general strategy tends
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Figure 3.6: Velocity and energy losses for a cornering scenario with 𝑅 = 14[𝑚].
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Figure 3.7: Cumulative energy consumption for different scenarios and ecodriving strategies.



3

58 3. EcoDriving for Energy Efficient Cornering

to approximate to the traditional approach. This is a consistent result since our
OCP formulation resembles traditional ecodriving formulations when roads with no
curvature are considered, as has been discussed in Section 3.1.2. Remarkably, in
Fig. 3.7, it is possible to see that a higher energy efficiency of the proposed strategy
mainly comes from a reduction of the energy losses in the electric machine. This
shows that, in general, considering cornering effects in the OCP formulation results
into an improved operation of the electric machine instead of a reduction of the
losses due to cornering.

3.4. Conclusions
A model that approximates cornering forces into the longitudinal axis of the vehi
cle has been proposed in this chapter. The simplicity of this model relies on the
geometry of the vehicle and the road, making it unnecessary to identify specific
tire parameters. Based on this model, we have proposed a general ecodriving
optimal control problem formulation that can be used for both straight and curved
trajectories. Moreover, it can be used for front wheel drive and rear wheel drive
configurations of the vehicle. The advantages of the proposed OCP have been an
alyzed on a case study, where the use of a highfidelity model have allowed not
only to validate the proposed model and OCP formulation, but also to show the
improvements of this approach with respect to traditional approaches found in cur
rent literature. The results have shown that the use of the general OCP formulation
proposed in this chapter yields to an improvement energy savings for cornering
maneuvers in trajectories with large curvatures, which are approximately up to 8%
larger than traditional ecodriving strategies.
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4
Energy Optimal Coordination
of Fully Autonomous Vehicles

in Urban Intersections

This chapter provides an energy optimal solution to conflict resolutions be
tween autonomous vehicles crossing an urban intersection. The ecodriving
formulation presented in Chapter 3 is extended to include conflict resolu
tion constraints in the optimal control problem formulation. The objective
is to minimize energy consumption of all the vehicles, while avoiding colli
sions. A static optimization approach is used to find solutions to the optimal
control problem. In particular, a sequential mixedinteger quadratically con
strained program is proposed. Simulations results show that the AVs can
take advantage of the available information through infrastructuretovehicle
or vehicletovehicle communication to anticipate the driving scenarios and,
consequently, coordinate the intersection crossing order and obtain the opti
mal velocity profiles that minimize the overall energy consumption at the in
tersection. The research outcome underlines the benefits of using available
information to improve energy savings by anticipation of the driving condi
tions.

This chapter is based on P.2.
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T echnological developments in the automotive industry have enabled the pos
sibility to create communication networks between the different agents of an

urban intersection, e.g., communication infrastructuretovehicle (I2V) and vehicle
tovehicle (V2V). The exploitation of this information leads to new advances in
terms of autonomous operation of vehicles, which brings improvements to safety,
comfort and energy savings. In fact, electric autonomous vehicles (AV) can play a
principal role since they have shown advantages in terms of being environmentally
friendly and energy efficient [1–3]. For instance, as shown in [4], fully automated
road transport systems will lead to energy consumption reductions of 55% − 66%.
In this chapter, we will explore the energy saving that can be achieved in an ur
ban intersection, where fully autonomous vehicles with complete information of the
driving scenario are coordinated.

The topic of coordination of vehicles along an intersection has been addressed in
the literature from different perspectives. For instance, [5] proposes a decentralized
problem formulation where each agent solves a local optimization problem. How
ever, the intersection decision order considers heuristics for priority assignments,
which might lead to an energy suboptimal solution. In [6], a schedulingbased
approach is proposed, where the authors focus on the feasibility of a crossing se
quence where a supervisory controller acts, when necessary, to maintain safety.
Unfortunately, this approach does not guarantee an energy optimal solution. On
the other hand, optimal control problem formulations allow the use of explicit perfor
mance objectives such as energy efficiency. However, while it is frequently stated
that energy minimization is the goal, this target is commonly not explicitly included
in the cost function [7–9]. In [10], an economic model predictive control formu
lation is proposed using an objective function which directly captures both energy
consumption and travel time. However, rearend collision avoidance is not taken
into account, i.e., scenarios where multiple vehicles proceed in the same direction
after crossing the intersection.

This chapter proposes an approach which aims to fill the gap noticed in the
literature by proposing an optimal control problem (OPC) formulation that provides
an energy optimal solution to intersection conflict scenarios. Specifically, the eco
driving modelling framework presented in Chapter 2 and Chapter 3 is the basis for
the OPC formulation considered in this chapter, where multiple vehicles considered
and constraints that consider safety while crossing and leaving the intersection are
included. The proposed energy optimal coordination problem is solved using a
sequential mixedinteger quadratically constrained program. The energy savings
of the proposed approach are highlighted in simulations where the energy optimal
coordinated strategies are compared to scenarios with uncoordinated humandriven
vehicles crossing the intersection.

The remainder of this chapter is organized as follows. Section 4.1 provides
a description of the energy optimal coordination problem and in Section 4.2 the
associated optimal control problem is formulated. Simulation results are given in
Section 4.3, in which the relevance of energyoptimal vehicle coordination strategies
is shown. Finally, conclusions are drawn in section 4.4.
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4.1. Problem Framework
In this chapter, the energy optimal coordination of an urban intersection scenario
of 𝑁𝑉 AVs is solved.Each vehicle 𝑛 ∈ NV ∶= {1, ..., 𝑁𝑣} follows a predefined route
such that a collision could occur if no control action is applied. The desired route
of each AV is considered to be given in advance, i.e., by using a highlevel path
planning algorithm, which is outside the scope of this study. Hence, the objective
is to control the velocity of each vehicle along its trajectory such that the energy
consumption is minimized and the vehicle positions are mutually exclusive, i.e, a
control agent will modify the desired velocity profiles of the vehicles in order to let
them cross safely while minimizing energy losses.

Specifically, a fourway perpendicular intersection is considered in this analysis.
This configuration represents a typical urban intersection and allows to perform
analysis on complex intersection scenarios, which will be observed in Section 4.3.
Nevertheless, the work carried out in this chapter can be adapted for scenarios with
different cross angles and different number of road segments, the second one at
the cost of an increase of the number of variables. Finally, all vehicles are consid
ered to be equipped with V2V, V2I communication systems and at most one vehicle
per lane is approaching the intersection, i.e., cases with multiple vehicles reaching
the intersection from the same direction are not taken into account. This last as
sumption reduces the problem complexity as it excludes rearend collisions before
the intersection joint, outside the purpose of this work. However, this simplifica
tion can be removed effortlessly imposing a minimum distance constraint between
vehicles reaching the intersection from the same lane.

4.1.1. Mapping from 2D to 1D
The geometry of the intersection is depicted in Fig. 4.1a, where we define as
intersection zone (IZ) the area where two or more routes might intersect, i.e.,
where a side collision could occur. The IZ is defined by a set of four coordi
nates IZ = {(𝑥𝐼𝑙 , 𝑦𝐼𝑙 )}𝑙∈{1,..,4} with respect to the absolute Cartesian coordinate
system 𝑂𝑋𝑌 which define the edges of the IZ, where the superindex 𝐼 refers to
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. Moreover, the absolute position of the 𝑁𝑣 vehicles is defined with
respect to 𝑂𝑋𝑌 and the initial and final conditions on position and velocity are
known and defined as Po𝑛 ∶= {(𝑥o𝑛 , 𝑦o𝑛)}𝑛∈NV , P f𝑛 ∶= {(𝑥f𝑛 , 𝑦f𝑛)}𝑛∈NV , 𝑉o𝑛, 𝑉f𝑛, for all
𝑛 ∈ NV , respectively. The relative position of each vehicle with respect to each
other is defined through a 𝑜𝑛𝑥𝑛𝑦𝑛 coordinate system, coplanar to the absolute one
and rigid to the associated vehicle 𝑛, for all 𝑛 ∈ NV . The motion of each AV in the
twodimensional space can be described by the following equations of motion:

d
d𝑠𝑛 𝑥𝑛 = cos𝜃𝑛 (4.1a)
d
d𝑠𝑛 𝑦𝑛 = sin𝜃𝑛 (4.1b)
d
d𝑠𝑛 𝜃𝑛 = 𝐾𝑛 (4.1c)

where 𝜃𝑛 defines the orientation of the vehicle with respect to the initial configura
tion, and derivatives are taken with respect to the trajectory 𝑠𝑛 (see Fig. 4.1b).
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(a) Crossroad schematic & conflict graph definition (b) Vehicle’s trajectory definition

Figure 4.1: Intersection and trajectory schemes.

To simplify the analysis and the mathematical formulation that will be detailed
in Section 4.2, the trajectory of each vehicle is considered to be straight, however
still keeping the curvature information of the vehicle as shown in Fig. 4.2. This for
mulation allows to simplify the problem into a single dimensional formulation, while
still having knowledge of which vehicle is performing a turning maneuver inside the
IZ. Finally, in order to define the vehicles and intersection information with respect
to an absolute onedimensional reference system, the information defined for each
vehicle 𝑛 on the respective trajectory 𝑠𝑛 are mapped to the absolute coordinate 𝑠∗
as shown in Fig. 4.2, setting 𝑆𝑜1 = 𝑆𝑜2 = ... = 𝑆𝑜𝑁𝑣 = 𝑆𝑜.

The single dimension coordinate reformulation is justified from the fact that
vehicle’s trajectories are imposed and cannot be modified and therefore, the tan
gential velocity, which is the variable desired to be regulated, can be modified just
in terms of intensity, i.e., its modulus can be varied but not its direction. There
fore, using a 1D framework will allow to ease the problem formulation, reducing
the number of control variables, which will need to be defined just with respect to
the single dimensional trajectory coordinate 𝑠∗. On the other hand, the price that
has to be paid is that 2D trajectory information has to be converted into a single
dimension first, which however do not represent a limitation for the application,
since the computational time is not substantial.

4.1.2. Conflicting Points
Two vehicles crossing the intersection define a conflicting point (CP) if their trajec
tory intersects. Therefore, for each vehicle 𝑗 ∈ NV we define a set

A𝑗 = {𝑛 ∈ NV ∣ ∥[ 𝑥𝑛(𝑠1)𝑦𝑛(𝑠1) ] − [
𝑥𝑛(𝑠2)
𝑦𝑛(𝑠2) ]∥ = 0}

for some 𝑠1, 𝑠2 ∈ R+. Moreover, since the CP for vehicle 𝑛 with vehicle 𝑗 coincides
with the CP of vehicle 𝑗 with vehicle 𝑛, in order to remove redundant CPs, the
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Figure 4.2: Definition of a global onedimensional reference

conflicting points set is defined as CP = {(𝑖, 𝑗) ∈ NV ×NV ∶ 𝑖 ∈ A𝑗 ,with 𝑗 > 𝑖}.

4.2. Optimal Control Problem Formulation
In the previous section, we have presented a representation for the vehicle co
ordination problem as a onedimensional motion, in which possible conflicts are
represented by conflicting points. This representation will be used to define the
energy optimal vehicle coordination problem, which is formulated as an optimal
control problem in this section. The problem can be seen as an extension of the
ecodriving problem presented in Chapter 3 towards multiple vehicles, while at the
same time i) including additional constraints representing the avoidance of con
flicts on the intersection, ii) avoiding rearend collisions. Note that in this modelling
framework energylosses during cornering are considered.

The objective in the ecodriving problem, as discussed in Chapter 2 and Chap
ter 3, is to minimize the power 𝑃(𝑡) required from a vehicle in order to cover a given
distance 𝑆f − 𝑆o over a provided time interval 𝑡f − 𝑡o, knowing the velocity and ac
celeration bounds 𝑣(𝑡) ∈ [𝑣, 𝑣], 𝑎(𝑡) ∈ [𝑎, 𝑎], respectively, the boundary conditions
on position and velocity and subject to longitudinal vehicle dynamics.

4.2.1. Intersection Constraint
As introduced in Section 4.1.2, a conflicting point is defined between each pair of
AVs for which the trajectories intersect. Mathematically, if we consider AVs as point
masses, in order to prevent collisions between vehicles, the condition 𝑆𝑖(𝑡) ≠ 𝑆𝑗(𝑡)
has to hold for all (𝑖, 𝑗) ∈ CP and for all 𝑡 ≥ 0. However, since the trajectories of two
vehicles can cross only inside the intersection, the constraint needs to be active just
when one of the two vehicles resides inside the intersection and can be disregarded
if at least one of the two vehicles has already left the intersection zone. Moreover,
since each vehicle has a length and a width, the aforementioned constraint does not
guarantees safety and, hence, it has to be modified to accommodate for the length
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Figure 4.3: Conflicting Quadrant definition

of the vehicles. Thus, we consider to divide the IZ in four quadrants as shown in
Fig. 4.3 and we define a conflicting quadrant 𝐶𝑄𝑖𝑗 ∀(𝑖, 𝑗) ∈ CP.

Furthermore, we consider that each vehicle can reside entirely in one quadrant.
Therefore, for each pair (𝑖, 𝑗) ∈ CP we define two bounds 𝑆𝑗𝑖 , 𝑆

𝑗
𝑖 which define the

beginning and the end respectively of the 𝐶𝑄𝑖𝑗 for vehicle 𝑖 and, similarly for vehicle
𝑗, 𝑆𝑖𝑗 , 𝑆

𝑖
𝑗. In Fig. 4.3 an example is given in order to clarify the concept. Therefore,

in order to guarantee a collision free scenario, the constraints have been defined
as

𝑆𝑖𝑗𝛿𝑖,𝑗 ≤ 𝑠𝑗 ≤ 𝑆𝑖𝑗(1 − 𝛿𝑖,𝑗) + 𝑆
𝑓
𝑗 𝛿𝑖,𝑗 (4.2a)

for all (𝑖, 𝑗) ∈ CP and 𝑆𝑗𝑖 ≤ 𝑠𝑖(𝑡)≤ 𝑆𝑗𝑖 , where 𝛿𝑖,𝑗 ∈ {0, 1} is the intersection deci
sion variable (IDV) which will decide the crossing order between the two vehicles.
Specifically, The binary IDV will enforce vehicle 𝑗 to leave the intersection before
vehicle 𝑖 if 𝛿𝑖,𝑗 = 1, or await until vehicle 𝑖 has exit the intersection if 𝛿𝑖,𝑗 = 0.

4.2.2. RearEnd Constraint
In the case where two or more vehicles proceed in the same direction after crossing
the intersection, an additional constraint has to be imposed to prevent rearend
collisions. In order to prevent collisions among vehicles 𝑖 and 𝑗, with 𝑖, 𝑗 ∈ NV and
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𝑖 ≠ 𝑗. This can be imposed by requiring that either

𝑠𝑟,𝑖(𝑡) − 𝑠𝑟,𝑗(𝑡) ≥ 𝜖 if 𝑠𝑟,𝑖(𝑡) > 𝑠𝑟,𝑗(𝑡), for 𝑡 ≥ 𝑡f𝐼,𝑖 , (4.3a)

or

𝑠𝑟,𝑗(𝑡) − 𝑠𝑟,𝑖(𝑡) ≥ 𝜖 if 𝑠𝑟,𝑗(𝑡) > 𝑠𝑟,𝑖(𝑡), for 𝑡 ≥ 𝑡f𝐼,𝑖 , (4.3b)

holds, in which 𝑠𝑟,𝑖(𝑡) = 𝑠𝑖(𝑡) − 𝑆f𝐼,𝑖 and 𝑠𝑟,𝑗(𝑡) = 𝑠𝑗(𝑡) − 𝑆f𝐼,𝑗 are the positions of the
vehicles measured from exit point of the IZ, 𝑡f𝐼,𝑖 being the time instant at which
the 𝑖th vehicle exits the IZ and 𝜖 is a positive constant that guarantees a safety
distance among the two vehicles. Note that (4.3) can be expressed as the product
between the two inequalities, leading to the following nonconvex quadratic inequal
ity constraint:

(𝑠𝑟,𝑖(𝑡) − 𝑠𝑟,𝑗(𝑡))2 ≥ 𝜖2 (4.4)

As a remark, (4.4) has to be active only for those vehicle which proceed in the same
direction and just when the 𝑖th vehicle exits the intersection. Therefore, (4.4) is
required for all (𝑖, 𝑗) ∈RE = {(𝑖, 𝑗) ∶ 𝑠𝑖(𝑡𝑖) = 𝑠𝑗(𝑡𝑗)} for some 𝑡𝑖 , 𝑡𝑗 ∈ ℝ+ and 𝑡𝑖 ≥ 𝑡𝑓𝐼,𝑖.

4.2.3. Dynamical Model
Typically, traditional ecodriving formulations neglect lateral dynamics and only con
sider longitudinal vehicle dynamics defined by the difference between the traction
force in the longitudinal direction 𝐹𝑢(𝑡) and the dissipative forces which, for a ve
hicle proceeding on a trajectory with no slope, are the aerodynamical drag force
𝐹𝑎𝑖𝑟 and rolling resistance 𝐹𝑟𝑜𝑙𝑙. Therefore, the vehicle dynamics are defined by
Newton’s second law as

𝑚𝑢 = 𝐹𝑢 − 𝜎𝑑𝑣2
±
𝐹𝑎𝑖𝑟

−𝑚𝑔𝑐𝑟
²
𝐹𝑟𝑜𝑙𝑙

(4.5)

where 𝑚 represents the equivalent mass of the vehicle, and 𝑢(𝑡) = 𝑑𝑣
𝑑𝑡 is the vehicle

acceleration. 𝑣(𝑡) defines the vehicle velocity, 𝑔 ≈ 9.81𝑚/𝑠2 is the gravitational
acceleration constant, 𝑐𝑟 is the rolling force coefficient and 𝜎𝑑 = 1

2𝑐𝑑𝜌𝑎𝐴𝑓, with 𝜎𝑑
the drag coefficient, 𝜌𝑎 the air density and 𝐴𝑓 the frontal area of the vehicle. As
discussed in Chapter 3, this model is not suitable for cornering maneuvers, since
it neglects the effects of the friction force which has a substantial impact on the
energy losses. Therefore, along the lines of Chapter 3, we consider the following
dynamical model

𝑚𝑢 = 𝐹𝑢 − 𝜎𝑑𝑣2 −𝑚𝑔𝑐𝑟 −𝑚𝐾𝑣2 cos𝛼 (4.6)

where the last term on the right hand side represents the component of the friction
force 𝐹𝑓𝑟 acting on the longitudinal direction of the vehicle.

In this chapter, a kinematic bicycle model as depicted in Fig. 4.4 is considered,
i.e., the velocity vectors at points 𝐴 and 𝐵 are aligned with the longitudinal direction
of the front and rear wheels, respectively, which is a reasonable assumption for low
vehicle motion speed (≤ 5 𝑚/𝑠), [11]. Moreover, we assume rearwheel traction
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Figure 4.4: Bicycle Model; Kinematics of lateral vehicle motion

vehicles with frontwheelsonly steering systems, implying that the rear wheel will
be aligned with the longitudinal axis of the vehicle for the entire route. On the other
hand, the front wheel is able to change orientation and his steering angle is defined
by 𝛿𝑓 ∈ (−𝜋2 , 𝜋2 ). The radius of curvature 𝑅 is defined from the instantaneous center
of rotation 𝑂 and the center of gravity 𝐶. We assume 𝐶 to be located at a distance
𝑙𝑟 , 𝑙𝑓 from the rear and front wheel axis, respectively. The friction force supplies
the centripetal force 𝐹𝑐 which is applied in 𝐶, and points toward 𝑂 as depicted in
Fig. 4.4. Note that the velocity vector of the vehicle is tangential to the trajectory
and forms an angle 𝛽 with respect to the longitudinal vehicle axis given by

𝛽 = arcsin (𝑙𝑟𝐾) (4.7)

Therefore, the component acting on the longitudinal axis of the vehicle can be
obtained as

𝐹𝑓𝑟 = 𝐹𝑐 cos(𝜋2 − 𝛽) =𝑚𝑙𝑟𝑣
2𝐾2 (4.8)

As a remark, (4.8) can be used also for vehicles with straight trajectories since the
term related to friction force will vanish due to his dependency on 𝐾.

4.2.4. Cost Function Extension
In Chapter 2 and Chapter 3 the objective of the ecodriving problem is to mini
mize the power consumption 𝑃(𝑡) of a vehicle, which is assumed to be a quadratic
function of the form

𝑃(𝑣, 𝐹𝑢) = 𝛽0𝑣2 + 𝛽1𝑣𝐹𝑢 + 𝛽2𝐹2𝑢 (4.9)

for some nonnegative parameters 𝛽0,𝛽1, and 𝛽2. The quadratic form is a realistic
assumption for EVs since it properly captures the losses due to mechanical friction
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and Ohmic heating. The dynamical model of the vehicle (4.6) is substituted in (4.9)
in order to obtain a simplified yet equivalent formulation. Thus, the cost function
for a generic AV becomes:

𝑃(𝑣, 𝑠, 𝑢)=𝛽0𝑣2+𝛽1𝜂(𝑠)𝑣3+𝛽2(𝑚𝑢)2+𝛽2(𝜂(𝑠)𝑣2+𝑐𝑟𝑚𝑔)2 (4.10)

with 𝜂(𝑠) = 𝜎𝑑 +𝑚𝑙𝑟𝐾(𝑠)2.
The goal of our problem is to minimize the global energy consumption of 𝑁𝑣

AVs approaching from multiple lanes. We therefore take the cost function of the
optimal control problem as the arithmetic sum of the cost function defined for each
vehicle, i.e.,

𝑃({𝑣𝑛 , 𝑠𝑛 , 𝑢𝑛}𝑛∈NV ) = ∑
𝑛∈N𝑣

𝑃(𝑣𝑛 , 𝑠𝑛 , 𝑢𝑛) (4.11)

in which every vehicle can have different 𝛽0,𝑛, 𝛽1,𝑛 and 𝛽2,𝑛, according to (4.10).

4.2.5. Cornering Constraint
The introduction of a further restriction while cornering arises from the desire to
guarantee safe driving conditions for all the vehicles involved in the intersection
control problem. As introduced in Section 4.2.3, in order to make a turn, the cen
tripetal force needs to be applied to the vehicle. However, in order to avoid vehicle’s
slip, the total force applied to the vehicle must be lower than the maximum friction
force during normal operation defined as

(𝑚𝑢(𝑡))2 +𝑚2𝑣(𝑡)4𝐾(𝑠(𝑡))2 ≤ (𝑚𝜇𝑠𝑔)2 (4.12)

where the terms in the lefthand side of (4.12) represent the resultant force applied
to the vehicle in the tangential direction and the centripetal force, respectively, and
the term on the righthand side is the maximum friction force, with 𝜇𝑠 > 0 being the
friction coefficient.

4.2.6. Optimal Control Problem
After introducing and motivating all the constraints required for energy optimal
coordination of 𝑁𝑣 AVs crossing an intersection, we can now formalize this problem
as the following optimal control problem:



4

70 4. Energy Optimal Coordination of Vehicles in Intersections

min
𝑠𝑛(𝑡),𝑣𝑛(𝑡),𝑢𝑛(𝑡),𝛿𝑖,𝑗(𝑡)

∫
𝑡𝑓

𝑡𝑜
∑
𝑛∈N𝑣

𝑃(𝑣𝑛(𝑡), 𝑠𝑛(𝑡), 𝑢𝑛(𝑡))d𝑡 (4.13a)

s.t. d
d𝑡 𝑠(𝑡) = 𝑣(𝑡), d

d𝑡𝑣(𝑡) = 𝑢(𝑡) (4.13b)

𝑠𝑛(𝑡o) = 𝑆o𝑛 , 𝑠𝑛(𝑡f) ≥ 𝑆f𝑛 (4.13c)

𝑣𝑛(𝑡o) = 𝑉o𝑛 , 𝑣𝑛(𝑡f) = 𝑉f𝑛 (4.13d)
𝑣𝑛 ≤ 𝑣𝑛(𝑡) ≤ 𝑣𝑛 (4.13e)
𝑢𝑛 ≤ 𝑢𝑛(𝑡) ≤ 𝑢𝑛 (4.13f)

𝑢𝑛(𝑡)2 + 𝑣𝑛(𝑡)4𝐾2𝑛 ≤ (𝜇𝑠,𝑛𝑔)2 for all 𝑆o𝐼,𝑛≤𝑠𝑛(𝑡)≤𝑆f𝐼,𝑛 (4.13g)

𝑆𝑖𝑗𝛿𝑖,𝑗(𝑡) ≤ 𝑠𝑗(𝑡) ≤ 𝑆𝑖𝑗[1 − 𝛿𝑖,𝑗(𝑡)] + 𝑆f𝑗𝛿𝑖,𝑗(𝑡), for all (𝑖, 𝑗) ∈ CP

and 𝑆𝑗𝑖 ≤𝑠𝑖(𝑡)≤𝑆
𝑗
𝑖 (4.13h)

(𝑠𝑖(𝑡) − 𝑠𝑗(𝑡) − 𝑆f𝐼,𝑖 + 𝑆f𝐼,𝑗)2 ≥ 𝜖2, for all (𝑖, 𝑗) ∈RE and 𝑠𝑖(𝑡) ≥ 𝑆f𝐼,𝑖 (4.13i)

where (4.13a) is defined as in (4.11), the time evolution of velocity and position are
defined by (4.13b), (4.13c) and (4.13d) define initial and final conditions on posi
tion and velocity, respectively, and boundary conditions on velocity and acceleration
are defined by (4.13e) and (4.13f), respectively. Equation (4.13g) defines a con
straint imposed on the overall acceleration of the vehicle which has been obtained
from (4.12). As a remark, (4.13g) becomes inactive when the vehicle is proceeding
on a straight trajectory (𝐾𝑛 = 0), since it is assumed that 𝑢 ≤ 𝜇𝑠𝑔. Finally, (4.13h)
define the intersection constraint and (4.13i) prevents rearend collisions. As a last
remark, notice that in order to not force the crossing order between vehicles pro
ceeding toward the same direction, the condition on the final position in (4.13c)
has to be imposed in terms of inequality constraint.

4.2.7. Solution Method
The optimal control problem (4.13) belongs to the nonlinear mixedinteger pro
gramming category of problems, since (4.13g) is nonlinear and because the con
trol inputs of the problem, 𝑢𝑛(𝑡) and 𝛿𝑖,𝑗(𝑡), are continuous and discrete, respec
tively. In order to solve the optimal control problem using a static optimization
technique, (4.13) has been discretized at times 𝑡𝑘 = 𝑘𝜏 + 𝑡0, 𝑘 ∈ K = {0, ..., 𝐾 − 1}
with time step 𝜏 = 𝑡𝑓−𝑡0

𝐾 using a forward Euler discretization method. Since the ob
jective function (4.13a) is nonconvex and the constraint (4.13g) is nonlinear, the
discretetime optimal control problem can be seen as a mixedinteger nonconvex
nonlinear programming problem.

A common approach to solving nonlinear programs is the use of sequential
quadratic programming (SQP) algorithms. For instance in [12], a modified SQP
method that can deal with mixedinteger nonconvex formulations. The algorithm
is stabilized by a trust region method and uses Broyden–Fletcher–Goldfarb–Shanno
(BFGS) updates to approximate the hessians of the functions. In this chapter, we
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Figure 4.5: Intersection Scenario (𝐼𝑠) Definition

follow a similar idea by formulating a sequential mixedinteger quadratically con
strained quadratic programming approach. Specifically, we sequentially solve a
mixed integer quadratic program with quadratic constraints (MIQCQP), taking ad
vantage of the MIQCQP routines of the commercial solver CPLEX [13]. This MIQCQP
is obtained from linearized version of the constraint (4.13g) and a secondorder
convex approximation of the cost function (4.13a).

It should be mentioned that we proposed this sequential mixedinteger quadrat
ically constraint program as pragmatic and easily implementable approach to assess
the benefits of the optimal control problem formulation discussed in this chapter.
Although we are unable to provide more insight about its convergence properties,
we observed an stable behavior for the extensive numerical simulations we per
formed, i.e., (at least locally) an optimal solution was always obtained.

4.3. Simulation Study
In this section, several simulations are reported in order to show the benefits of
relying the energy optimal coordinated strategy proposed in this chapter. First, we
compare how uncoordinated humandriven vehicles (HDVs) and coordinated AVs
resolve intersection conflicts and show the benefits in terms of energy and time
savings. Subsequently, a comparison between different intersections configurations
is made in order to present additional remarks on the proposed control problem
studied in this chapter.

4.3.1. Coordinated AVs strategies versus uncoordinated HDVs
In order to show the benefits that coordinated strategies for AVs can exhibit in
terms of energy savings and reduced travel time, a comparison has been made
between two equal intersection scenarios, one considering coordinated AVs and the
other with HDVs. For this analysis, we consider a fourway intersection scenario
where vehicles follow 𝑉𝑙 predefined trajectories 𝑎𝑙 with 𝑙 ∈ {1, ..., 4} to cross the
intersection. The trajectories 𝑎𝑙 are enumerated considering their starting point in
an anticlockwise manner starting at the left, as depicted in Fig. 4.5. Moreover,
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Table 4.1: Additioal energy savings of the coordinated AVs compared to HVDV, time required by all HDVs
to cross the intersection and coordinated AVs crossing order

Cases Additional energy Required crossing AVs intersection
savings for AVs [%] time for HDVs [𝑠] crossing order

1 6.6 27.4 𝑉4 − 𝑉1 − 𝑉2
2 16.2 29.7 𝑉1 − 𝑉4 − 𝑉2
3 11.2 23.6 𝑉4 − 𝑉1 − 𝑉2
4 10.8 23.6 𝑉1 − 𝑉4 − 𝑉2
5 14.4 22.6 𝑉4 − 𝑉2 − 𝑉1

in order to indicate the trajectory of each vehicle, as seen in Fig. 4.5, for each
𝑙 ∈ {1, ..., 4} we have

𝑎𝑙 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if there is no vehicle entering,
1 if a vehicle aims to cross the intersection in a straigth trajectory,
2 if the vehicle plans a left turn,
3 if the vehicle plans a right turn,

(4.14)

such that the Intersection Scenario (𝐼𝑠) is defined as the vector 𝐼𝑠 = [𝑎1, 𝑎2, 𝑎3, 𝑎4].
The intersection scenario 𝐼𝑠 = [1, 2, 0, 1] depicted in Fig. 4.6 (bottomleft corner)

is considered for this analysis, where we study 5 cases with different initial and
final conditions for the involved vehicles. All the cases of this scenario are solved
for both the coordinated AVs and for he HDVs. For the HDVs, the crossing order is
predefined by traffic laws. For instance, the road code (in Europe) defines that in
the event of potential trajectory intersection between vehicles right of way priority
is applied, i.e., the vehicles whose right side is free can enter the intersection, and
at most one vehicle at a time can reside in the intersection. Therefore, for the
considered intersection the scenario 𝐼𝑠, the vehicles 𝑉1 and 𝑉4 need to stop before
the intersection while vehicle 𝑉2 crosses first. Later, the vehicle 𝑉1 crosses followed
by vehicle 𝑉4. For the sake of simplicity, describe the intersection crossing order
for HDVs is as 𝑉2 − 𝑉1 − 𝑉4. It should be mentioned that velocity profiles for the
turning 𝑉2, which does not stop at the intersection, was defined using a third order
polynomial model proposed in [14]. This model provides stochastic speed profiles
of freeflowing left and right turning vehicles. On the other hand, for the HDVs
𝑉1 and 𝑉4 that follow a straight trajectories with a stop before the intersection, the
acceleration and deceleration profiles are described a a quadratic and an exponential
functions, respectively. These descriptions are obtained from the models proposed
in [15, Table 6].

Table 4.1 summarizes the results of the comparison between AVs and HDVs
for the proposed 𝐼𝑠 with the different initial and final condition cases. This table
presents the additional energy savings obtained by the coordinated AVs with respect
to to the HDVs, total time time required by the HDVs to cross the intersection
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Figure 4.6: Position, velocity profiles & order resolution of 𝐼𝑠 = [1, 2, 0, 1]

and cover their trajectories, and the coordinated crossing order of the coordinated
AVs. The results show that the energy savings achieved by the coordinated AVs
can be up to 16.2% more than the HDVs. Moreover, note that, contrary to the
HDVs, the crossing order of the AVs is not predetermined and changes from case
to case. Since crossing order for HDVs is predefined by the traffic rules, it often
leads to inefficient solutions in terms of time and energy consumption. This results
highlights the role of coordination to achieve a reduced energy consumption in the
intersection. Table 4.1 also shows the time required in the different cases from the
HDVs to reach the respective final destinations. Note that for the coordinated AVs
this time is fixed a priori, which for this analysis has been chosen as 15[𝑠]. As we
can observe, AVs can be approximately be up to 2 times faster than HDVs resolving
the crossing conflict, which shows the advantage of using coordinated strategies to
reduce the waiting times at intersections.
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Table 4.2: Total energy consumption, computational time and number of iterations for Different Inter
section scenarios (𝐼𝑠)

𝐼𝑠 Energy Computational Number of
consumption [𝑀𝑊] time [𝑠] iterations

[3, 0, 0, 0] 5.26 1.52 5
[1, 1, 0, 0] 7.07 5.56 3
[1, 2, 0, 0] 7.91 15.8 6
[2, 2, 0, 0] 9.64 94.01 33
[1, 0, 0, 2] 8.71 15.4 2
[1, 0, 0, 3] 8.95 10.24 5
[1, 1, 0, 2] 11.6 176.59 6
[1, 2, 0, 1] 10.8 19.71 7
[1, 1, 1, 1] 14.3 24.3 5

4.3.2. Mutiple scenarios for Coordinated AVs
In this section, we discuss the differences between multiple scenarios where coor
dinated AVs are crossing an intersection. We will make emphasis in the features
of the optimal velocity profiles and priority crossing order obtained for scenarios
that differ on the predefined trajectories and the number of AVs approaching the
intersection. To do so, let us compare the bottomleft corner of Fig. 4.6 with the
bottomleft corner of Fig. 4.7. As can be seen, in both scenarios two vehicles follow
a straight trajectory while a third one makes a left turn. However, the vehicles
arrival directions are different. The initial and final conditions for vehicles coming
from the same direction are equal. As can be noticed comparing the position plots
between the two cases (Fig. 4.64.7 top), the distances covered from the vehicles
vary in order to obtain the optimal solution for the different cases. Moreover, it can
be noticed that even though the vehicles are coming from the same direction in
both cases, the different trajectories affect the intersection resolution order in the
two scenarios (Fig. 4.64.7 bottom). It should be mentioned that even though the
two scenarios are similar to each other, the computational time differs significantly.
Solving the scenario depicted in in Fig. 4.6 takes approximately 20[𝑠], while fot the
case in Fig. 4.7 the required computational time is 120[𝑠]. This difference in the
computational performance is explained by higher complexity of of the last case,
where rearend collision avoidance constraints are considered in the optimal control
problem formulation.

To be more specific, note that (4.13) is solved as a sequential mixedinteger
quadratically constrained program, in which successive quadratic approximations
of the nonlinear mixedinteger programs are solved. In the case of Fig. 4.6, the
quadratic constraint (4.13i) is inactive, while for Fig. 4.7, the quadratic constraint
(4.13i) is active between vehicle 𝑉4 and 𝑉1 since they aim to proceed towards
the same direction. This leads to a significantly higher computational complexity.
Lastly, in order to give a deeper understanding on how the solutions will change
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Figure 4.7: Position, velocity profiles & order resolution of 𝐼𝑠 = [1, 1, 0, 2]

depending on the scenarios and the differences in computational performance, Ta
ble 4.2 reports the total energy consumption of the vehicles crossing the intersec
tion, the time required to compute the solution and the number of iterations to
achieve convergence for different intersection scenarios (𝐼𝑠) defined accordingly to
Fig. 4.5 as previously explained.

4.4. Conclusions
In this chapter, we have proposed and optimal control problem formulation to find
energy optimal coordination strategies for AVs crossing an intersection. The pro
posed optimal control problem has been obtained as an extension of the ecodriving
problem presented in Chapter 2 and Chapter 3 to consider multiple vehicles cross
ing an intersection. For each vehicle, the proposed formulation, aims to obtain the
velocity profiles and the priority crossing order that minimize the aggregated energy
consumption subject to safety constraints. The combinatorial nature of the energy
optimal conflict resolution problem has been handled using a sequential mixed inte
ger program. Simulation results have shown that coordinated autonomous vehicles
can reduce energy consumption to approximately 16.2% compared to human driven
vehicles with lack of coordination.
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5
Global Solutions to the

Complete Vehicle Energy
Management Problem via

PrimalDual Operator
Splitting

Complete Vehicle energy Management (CVEM) aims to minimize the energy
consumption of all subsystems in a vehicle. We consider the case where the
subsystems consist of energy buffers with linear dynamics and/or energy
converters with quadratic power losses. In this chapter, we show the exis
tence of only global solutions for the CVEM OCP and propose a reformulation
of this problem such that it can be decomposed in terms of components and
time intervals, so that it can be solved using a Primal Dual Proximal split
ting algorithm for nonconvex optimization problems. Moreover, we propose
the use of a spectral method to automatically select the stepsizes of the dis
tributed optimization algorithm at every iteration. It is shown that the reg
ularization properties of this algorithm allow solving CVEM cases that were
difficult using other approaches as dual decomposition. Finally, we present
a case study for a parallelhybrid vehicle where we illustrate the features of
our method and highlight its numerical performance.

Parts of this chapter have been published in P.5 and S.1.
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T he automotive industry has been largely involved in research that aims at find
ing efficient operation through a coordinated split of power flows among the

powertrain components to provide the required power to the wheels, i.e., energy
management strategies. Besides the energy savings, energy management strate
gies can bring additional advantages. For instance, for hybrid vehicles, an energy
efficiency operation leads to lower emissions, while the main motivation to improve
efficiency of electric vehicles is that it will extend the range of the vehicle and
thereby mitigating range anxiety and enabling acceptance of electrified vehicles
by the users [1], [2]. An energy management strategy (EMS) is the solution to
an optimal control problem (OCP), for which, modelling frameworks and solution
methods have been studied in [3–6]. As discussed in Chapter 1, a recent trend in
this research area is to consider all the energy consumers inside the vehicle and
this concept is known as Complete Vehicle Energy Management (CVEM) [7]. CVEM
requires the OCP to be scalable, as it requires a larger number of subsystems to be
connected to the power network compared to earlier solutions for EMS.

The difficulties that appear as a consequence of using classic EMS methods
to solve the CVEM problem have been mentioned in [7]. For instance, dynamic
programming can provide global optimal solutions to CVEM problems. However,
scalability becomes an issue due to the “curse of dimensionality” inherent to dy
namic programming. Similarly, state constraints, which are normally present in the
CVEM problem, make Pontryagin’s maximum principle approaches difficult to be
used for this application. As a consequence, static optimization techniques have
emerged as tractable approaches to tackle the CVEM problem, see, e.g., [8, 9]. In
particular, [10] has incorporated the control of auxiliary systems into the EMS and
[11] has used convex relaxations to guarantee optimality of the solution. However,
due to the use of centralized optimization methods, those approaches are not flex
ible in the sense that subsystems cannot be easily added or removed. Similarly,
[12, 13] uses convex formulations that consider nonlinear losses to study in detail
the numerical performance of the static optimization algorithms used in predictive
control for energy management strategies. In [12], a solver based on alternating
direction method of multipliers (ADMM) is used to solve energy management prob
lems with horizons up to 1000 time steps. Remarkably, the solution times obtained
are 3 orders of magnitude less than the commercial solvers used as benchmark.
An extension to this ADMM solver is presented in [14] to solve energy manage
ment problems that consider on/off engine decisions. The research presented in
[15] uses a gametheoretic approach to solve the CVEM problems in a decentralized
manner, where all the subsystems share a limited amount of information and are
able to take some decisions autonomously. Unfortunately, global optimality of the
centralized OCP is not guaranteed in this case.

A static distributed optimization approach for CVEM is presented in [16, 17].
The method proposed in these papers are scalable and flexible. The main idea is
to use dual decomposition to split the original OCP into several simpler problems
related to interconnected subsystems. As a result, the computation time is dras
tically reduced and adding and/or removing subsystems becomes easy. However,
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several open questions exist related to numerical aspects of the algorithms pro
posed to solve the distributed optimization problem. For instance, [16] proposes
a secondorder dual update for which the convergence of the algorithm has not
been formally proven. Additionally, the approach requires the introduction of the
concept of “sum of losses” to describe separable optimal control problems that are
suitable for dual decomposition. Unfortunately, this artifact can be difficult to adapt
to some configurations of the CVEM OCP. In [16], the subsystems are described
with linear dynamics and quadratic energy conversion models. In cases where
some of the components present an energy conversion model is almost linear, the
distributed optimization approaches become ill conditioned, causing the algorithm
to have difficulties to converge.

In [18], we have presented an alternative version of this work, where we pro
posed a static optimization algorithm based on ForwardBackward splitting meth
ods. In this contribution, we claimed the existence of only global solutions to the
CVEM problem, however, we did not formally prove this important result. Addi
tionally, the proposed methodology allows only parallelization of the optimization
problem in terms of the subsystems considered in the power network, which lim
its the scalability of the optimization problem when large time horizon lengths are
considered in the formulation.

In this chapter, we design an efficient algorithm with convergence guarantee
for the CVEM problem, based on the Primal Dual (PD) Proximal operator splitting
method [19]. We show that the nonconvex CVEM problem only has global optimal
solutions. Then, by taking advantage of the globality of the solutions, we apply the
PD splitting method to the CVEM problem to obtain a distributed static optimization
algorithm. The convergence of the proposed algorithm relies on a recent result
on nonconvex optimization problems [19]. Remarkably, the method we propose
introduces regularization that prevents illconditioning of the optimization problem.
This means that convergence is possible even if linear models and quadratic models
are mixed to describe the power consumption of the vehicle subsystems. We also
extend the parallelization capabilities of this method by introducing the possibility
to split the time horizon into several time intervals. Breaking the complexity of the
problem allow us to find global optimal solutions for large scale CVEM problems.
Finally, we use spectral methods [20] to propose an adaptive stepsize selection
approach for the optimization algorithm that drastically simplifies its implementa
tion.

The chapter is organized as follows. In Section 5.1, we present the general
CVEM problem as a nonconvex OCP, and we show that it has only global solutions.
Additionally, the CVEM problem is cast into a numerically wellbehaved formula
tion that is suitable for splitting in terms of components and time intervals. In
Section 5.2, we reformulate the optimization problem as a saddlepoint problem,
whose solution can be written as finding the zero of a certain setvalued operator.
Consequently, a PrimalDual splitting method is used to design a distributed opti
mization algorithm with adaptive stepsize selection. In Section 5.3, we illustrate
the algorithm on a case study for a parallelhybrid vehicle to highlight the features
of our method. Finally, we draw conclusions in Section 5.4.
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Nomenclature
ℝ denotes the set of real numbers, ℝ+ the set of nonnegative real numbers, and
ℝ ∶= ℝ ∪ {+∞} the set of extended real numbers. For 𝑎, 𝑏 ∈ ℝ, a significant
strict inequality that is denoted by 𝑎 ≪ 𝑏 implies that 𝑎 is much less than 𝑏. The
matrices 0 and 1 denote matrices with all elements equal to 0 and 1, respectively,
and the matrix I denotes the identity matrix. To improve clarity, we sometimes
add the dimension of these matrices as subscript. Furthermore, diag(𝐴1,⋯, 𝐴𝑁)
denotes a blockdiagonal matrix with matrices 𝐴1,⋯, 𝐴𝑁 on the diagonal. Given 𝑁
vectors 𝑥1, … , 𝑥𝑁 ∈ ℝ𝑛, we denote col({𝑥𝑖}𝑖∈{1,…,𝑁}) = [𝑥⊤1 , … , 𝑥⊤𝑁]⊤. The short hand
notation {𝑥𝑝,𝑞} is used to denote {𝑥𝑝,𝑞}𝑝∈P ,𝑞∈𝑄.

Given a set S ⊆ ℝ𝑛, the mapping 𝚤𝑆 ∶ ℝ𝑛 → {0, +∞} denotes the indicator
function satisfying 𝚤𝑆(𝑥) = 0 if 𝑥 ∈ 𝑆 and 𝚤𝑆(𝑥) = ∞ if 𝑥 ∉ 𝑆, and setvalued
mapping N𝑆 ∶ ℝ𝑛 ⇉ ℝ𝑛 denotes the normal cone operator satisfying N𝑆(𝑥) =
{𝑣 ∈ ℝ𝑛 ∣ sup𝑧∈𝑆 𝑣⊤(𝑧 − 𝑥) ≤ 0} if 𝑥 ∈ 𝑆 and N𝑆(𝑥) = ∅ if 𝑥 ∉ 𝑆. The map
ping proj𝑆 ∶ ℝ𝑛 → 𝑆 for a closed set 𝑆 ⊆ ℝ𝑛 denotes the projection onto 𝑆, i.e.,
proj𝑆(𝑥) = argmin𝑦∈𝑆 ∥𝑦 − 𝑥∥2, where ∥ ⋅ ∥ is the usual euclidean norm in ℝ𝑛.

For a function 𝜓 ∶ ℝ𝑛 → ℝ with dom(𝜓) ∶= {𝑥 ∈ ℝ𝑛 ∣ 𝜓(𝑥) <∞}, the subdifferen
tial setvalued mapping 𝜕𝜓 ∶ dom(𝜓)⇉ ℝ𝑛 is defined as 𝜕𝜓(𝑥) ∶= {𝑣 ∈ ℝ𝑛 ∣ 𝜓(𝑧) ≥
𝜓(𝑥) + 𝑣⊤(𝑧 − 𝑥) for all 𝑧 ∈ dom(𝜓)}. In case 𝜓 is continuously differentiable, the
subgradient is equal to its gradient, i.e., 𝜕𝜓(𝑥) = ∇𝜓(𝑥).

5.1. CVEM as Optimal Control Problem
In this section, we first discuss a mathematical description of a power network
model for CVEM. Later, we will formulate the discretetime OCP for CVEM, which
will turn out to be nonconvex, and we will show that all the solutions to this non
convex OCP are global optimal solutions. Finally, we will propose convenient equiv
alent formulations of the problem that will be exploited in Section 5.2 to find an
optimization algorithm based on operator splitting techniques.

5.1.1. Power Network Model for CVEM
The CVEM problem aims to minimize the energy consumption for a network of sub
systems 𝑚 ∈ M ∶= {1,… ,𝑀}, where 𝑀 is the total number of subsystems. These
subsystems are composed of a combination of an energy converter, possibly with
an energy buffer. For instance, considering a battery, the capacity of storing energy
is modeled as an energy buffer, while the power losses produced during the trans
formation of chemical energy into electrical energy in the battery are represented
by an energy converter.

A power network for CVEM is schematically depicted in Fig. 5.1. We assume
that the network topology is such that the energy buffers are always connected
to energy converters by the power input 𝑢𝑚,𝑘. Furthermore, the converters are
connected to each other according to a specific topology via the network nodes
𝑗 ∈ J ∶= {1,… , 𝐽}, where 𝐽 is the total number of nodes in the network. In this case,
power outputs 𝑦𝑚,𝑘 and inputs 𝑢𝑚,𝑘 of the converters could be directly connected
to a network node. Every node 𝑗 ∈ J can have a known exogenous load signal 𝑣𝑗,𝑘
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Figure 5.1: Power network for CVEM.

given for each time instant 𝑘.
Note that, the power network has a tree structure topology, which means that

every subsystem is connected to only one node, and two consecutive nodes are
always bridged by an individual power converter. Moreover, only converters can
be connected directly to a network node. These simple principles observed in in
Fig. 5.1 are the fundamental blocks that can be found in more complicated network
topologies. A formal description of these ideas are presented in the following section
as part of the modelling and OCP formulation proposed in this chapter.

5.1.2. Optimal Control Problem
The CVEM problem is an OCP that aims to minimize the total aggregated energy
consumption of the components over a time horizon K ∶= {0, 1,… ,𝐾−1}, while con
sidering the interaction of all the components interconnected in the power network.
Thus, the OCP is given by

min
{𝑦𝑚,𝑘 ,𝑢𝑚,𝑘 ,𝑥𝑚,𝑘 ,𝑧𝑚,𝑘}

∑
𝑘∈K

∑
𝑚∈M

𝑎𝑚𝑦𝑚,𝑘 + 𝑏𝑚𝑢𝑚,𝑘 , (5.1a)

where for every subsystem𝑚 ∈M the (scalar) outputs of the converter are denoted
as 𝑦𝑚,𝑘 ∈ ℝ , 𝑢𝑚,𝑘 ∈ ℝ are the (scalar) inputs, 𝑥𝑚,𝑘 ∈ ℝ𝑛𝑥𝑚 are the states and
𝑧𝑚,𝑘 ∈ ℝ𝑛𝑧𝑚 are the outputs of the energy buffer, while 𝑎𝑚 ∈ ℝ+ and 𝑏𝑚 ∈ ℝ are
coefficients to define the cost function. A typical objective in CVEM is to minimize
the fuel consumption, in which case assume the subsystem 𝑚 = 1 corresponds to
the combustion engine and 𝑢1,𝑘 denotes the chemical fuel power flow at time 𝑘 ∈ K.
In this case, only 𝑏1 = 1, while all other 𝑎𝑚 and 𝑏𝑚 are zero.

The cost function in (5.1a) is to be minimized subject to a quadratic equality
constraint that describes the inputoutput behavior of each converter, i.e.,

𝑦𝑚,𝑘 = 1
2𝑞2,𝑚𝑢

2
𝑚,𝑘 + 𝑞1,𝑚𝑢𝑚,𝑘 + 𝑞0,𝑚 , (5.1b)

where 𝑞0,𝑚 ∈ ℝ, 𝑞1,𝑚 ∈ ℝ and (positive) 𝑞2,𝑚 ∈ ℝ+ are efficiency coefficients of the
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converter 𝑚 ∈M, and subject to the linear system dynamics of the energy buffer

𝑥𝑚,𝑘+1 = 𝐴𝑚𝑥𝑚,𝑘 + 𝐵𝑚𝑢𝑚,𝑘 + 𝐸𝑤𝑚,𝑘 , (5.1c)
𝑧𝑚,𝑘 = 𝐶𝑚𝑥𝑚,𝑘 +𝐷𝑚𝑢𝑚,𝑘 + 𝐹𝑤𝑚,𝑘 , (5.1d)

that needs to hold for all 𝑘 ∈ K and for all 𝑚 ∈M, with appropriate matrices. In
(5.1c) and (5.1d), 𝑤𝑚,𝑘 ∈ ℝ𝑛𝑤𝑚 are known state and output disturbances for the
energy buffer. Moreover, the initial state 𝑥𝑚,0 of the storage device is assumed to
be given and its inputs and outputs are subject to

𝑢𝑚 ≤ 𝑢𝑚,𝑘 ≤ 𝑢𝑚 , (5.1e)
𝑧𝑚 ≤ 𝑧𝑚,𝑘 ≤ 𝑧𝑚 , (5.1f)

where for all𝑚 ∈M the given input and output bounds are respectively 𝑢𝑚 , 𝑢𝑚 ∈ ℝ
and 𝑧𝑚 , 𝑧𝑚 ∈ ℝ𝑛𝑧𝑚 . Note that the inequalities in (5.1e) and (5.1f) are interpreted
elementwise. In [16], it has been shown that quadratic static models for energy
converters and linear dynamical models for buffers are an adequate approximation
to describe typical components in CVEM.

The interaction between the subsystems in the power network is given by the
power balance at each node 𝑗 ∈ J . We distinguish between energy conserving
nodes, given by

∑
𝑚∈M

𝑐𝑗,𝑚𝑦𝑚,𝑘 + 𝑑𝑗,𝑚𝑢𝑚,𝑘 + 𝑣𝑗,𝑘 = 0, (5.1g)

for 𝑗 ∈ J𝑐 = {1, 2,… , 𝐽𝑐} and energy dissipating nodes

∑
𝑚∈M

𝑐𝑗,𝑚𝑦𝑚,𝑘 + 𝑑𝑗,𝑚𝑢𝑚,𝑘 + 𝑣𝑗,𝑘 ≤ 0, (5.1h)

for 𝑗 ∈ J𝑑 = {𝐽𝑐 + 1, 𝐽𝑐 + 2,… , 𝐽}. Here, J𝑐 ∩ J𝑑 = ∅ and J𝑐 ∪ J𝑑 = J . In these
expressions, 𝑐𝑗,𝑚 is 1 if the correspondent power signal 𝑦𝑚,𝑘 is connected to the
node 𝑗 and 0 otherwise. The constant 𝑑𝑗,𝑚 is −1 if the respective power signal 𝑢𝑚,𝑘 ,
flows into node 𝑗,it is 1 if the power flows out of node 𝑗, and 0 if the respective
signal is not connected to the node. It should be noted that dissipating nodes (5.1h)
exist, e.g., because mechanical braking can be modeled as a power dissipation in
a node. Finally, the following assumption on the network topology is considered in
this chapter.

Assumption 5.1.1. For all the nodes 𝑗 ∈ J , the tree structure topology of the
power network satisfies the following conditions:
(A1) For all 𝑚 ∈M, 𝑐𝑗,𝑚 = 1 implies 𝑑𝑗,𝑚 = 0 for the same 𝑗 ∈ J .

(A2) For all 𝑚 ∈M, 𝑑𝑗,𝑚 ∈ {−1, 1} implies 𝑐𝑗,𝑚 = 0 for the same 𝑗 ∈ J .

(A3) For at least one 𝑚 ∈M, 𝑐𝑗,𝑚 = 1. ◻
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This assumption formalizes the main features of the power network described
in the previous section, i.e, every subsystem is connected to only one node, two
consecutive nodes are always bridged by an individual power converter, and only
converters are connected directly to a network node. Moreover, Assumption 5.1.1
implies that the network topology can represented by a full row rank matrix, this is
an important implication that will will be discussed in Section 5.1.5.

5.1.3. Global Solutions to the Nonconvex CVEM Problem
The OCP (5.1) is nonconvex due to (5.1b). This might cause that solvers get stuck
in a local minimum. In this section, we show that all (local) solutions to (5.1) are
global solutions under very mild conditions.

To show this, we relax the equality constraint (5.1b) to an inequality constraint,
i.e.,

1
2𝑞2,𝑚𝑢

2
𝑚,𝑘 + 𝑞1,𝑚𝑢𝑚,𝑘 + 𝑞0,𝑚 − 𝑦𝑚,𝑘 ≤ 0 (5.1b’)

for 𝑚 ∈M and 𝑘 ∈ K, allowing us to define a relaxed OCP
min

{𝑦𝑚,𝑘 ,𝑢𝑚,𝑘 ,𝑥𝑚,𝑘 ,𝑧𝑚,𝑘}
∑𝑘∈K∑𝑚∈M 𝑎𝑚𝑦𝑚,𝑘+𝑏𝑚𝑢𝑚,𝑘

s.t. (5.1b’), (5.1c)−(5.1h).
(5.2)

The discretetime OCP (5.2) is convex, thus every locally minimal solution to (5.2) is
globally minimal. The optimal value of the original problem (5.1) and of the convex
relaxation (5.2) satisfies

𝑝𝐶𝑅 ≤ 𝑝𝑁𝐶 , (5.3)

where 𝑝CR and 𝑝NC denote the optimal value of the convex relaxation (5.2) and
the nonconvex OCP (5.1) respectively, because the convex relaxation has a larger
feasible set due to (5.1b’).

The next theorem shows that for this particular OCP and its relaxation, it holds
that, 𝑝CR = 𝑝NC and that (5.2) always has a solution that satisfies (5.1b’) with
equality, thus it satisfies (5.1b) and solves (5.1).

Theorem 5.1.1. Assume that the bounds 𝑢𝑚, 𝑢𝑚, 𝑧𝑚 and 𝑧 for all 𝑚 ∈M are
finite and that there exists at least one feasible point {𝑢𝑚,𝑘 , 𝑧𝑚,𝑘 , 𝑥𝑚,𝑘 , 𝑦𝑚,𝑘} for (5.2)
with strict inequalities (5.1b’), (5.1e) and (5.1f). Then, an optimal solution to (5.2)
exists that satisfies (5.1b’)with equality, 𝑝CR = 𝑝NC, and (5.1) only has global optimal
solutions.

Proof. The fact that the bounds 𝑢𝑚 and 𝑢𝑚 are finite for all 𝑚 ∈ M means that
the optimal solution to the convex relaxation is finite, while a feasible point exists
for (5.2) with strict inequalities (5.1b’) and (5.1e), means that strong duality holds
(due to Slater’s constraint qualification [21, §5.2.3]).

We will now use strong duality to show that (5.2) always has a solution that
satisfies (5.1b’) with equality. The dual problem of (5.2) is given by

max
{𝜅𝑚,𝑘 ,𝜇𝑚,𝑘}

min
{𝜔𝑚,𝑘}

∑
𝑘∈K

∑
𝑚∈M

𝐿𝑚.𝑘(𝜔𝑚,𝑘 , 𝜅𝑚,𝑘) +∑
𝑗∈J

𝜇𝑗,𝑘(𝑐𝑗,𝑚𝑦𝑚,𝑘 + 𝑑𝑗,𝑚𝑢𝑚,𝑘 + 𝑣𝑗,𝑘)

+ 𝚤Ω({𝜔𝑚,𝑘},{𝜅𝑚,𝑘},{𝜇𝑗,𝑘}), (5.4)
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with 𝜔𝑚,𝑘 = col(𝑢𝑚,𝑘 , 𝑥𝑚,𝑘 , 𝑧𝑚,𝑘) and

𝐿𝑚,𝑘(𝜔,𝜅) = 𝑎𝑚𝑦 + 𝑏𝑚𝑢 + 𝜅(𝑞2,𝑚𝑢2 + 𝑞1,𝑚𝑢 + 𝑞0,𝑚 − 𝑦). (5.5)

In (5.4), 𝚤Ω is the indicator function of the set

Ω ∶= {{𝜔𝑚,𝑘},{𝜅𝑚,𝑘},{𝜇𝑗,𝑘} ∣(5.1c)(5.1f), 𝜅𝑚,𝑘 ≥ 0 and 𝜇𝑗,𝑘 ≥ 0
are satisfied ∀ 𝑚 ∈M ∀ 𝑗 ∈ J𝑑}. (5.6)

The stationary conditions with respect to 𝑦𝑚,𝑘 (one of the necessary conditions for
optimality) are given by

𝑎𝑚 − 𝜅𝑚,𝑘 +∑
𝑗∈J

𝜇𝑗,𝑘𝑐𝑗,𝑚 = 0. (5.7)

Substituting (5.7) into (5.5) yields that 𝑦𝑚,𝑘 disappears for the Lagrangian function
in (5.4). Therefore, any 𝑦𝑚,𝑘 satisfying (5.1b’) leads to the same optimal value,
meaning that 𝑦𝑚,𝑘 can be freely chosen so that (5.1b’) is satisfied with equality.
Since the relaxed OCP (5.2) only has global solutions, and some of the global optimal
solutions are feasible for (5.1), we have that 𝑝𝐶𝑅 = 𝑝𝑁𝐶 and (5.1) only has global
optimal solutions.

5.1.4. An Equivalent Formulation of the CVEM OPC
In this subsection, we will reformulate the OCP (5.1) into an equivalent form. This
new formulation introduces a set of useful features that will be later exploited by
the optimization algorithm presented in Section 5.2. The reformulation of (5.1)
considers five main steps that are described and justified as follows:

1. Substitution of the quadratic equality constraint (5.1b) into (5.1a), (5.1g),
(5.1h). This substitution aims to reduce the number of decision variables by
the elimination of 𝑦𝑚,𝑘 from the OCP.

2. Conversion of the inequality constraint (5.1h) into an equality constraint using
slack variables 𝑠𝑗,𝑘, with 𝑗 ∈ J and 𝑘 ∈ K, of which some are constrained to
zero. This allows for a unified treatment of (5.1g) and (5.1h) in the form of
(5.8e), where (5.1g) is satisfied due to (5.8f). This simplifies formulation of
the algorithm that will be proposed in Section 5.2.

3. Introduction of quadratic penalty terms associated to the equality constraints
(5.1g) and (5.1h). This is done without removing these constraints. The
resulting Lagrangian function of the OCP can be seen as an augmented La
grangian function. The advantage of this formulation is that it introduces
regularization to the optimization procedure, thereby improving the conver
gence properties of the algorithm [22, §3.2.1, §4.2].
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4. Splitting of the time horizon to provide additional degrees of freedom to
the distributed optimization algorithm proposed in Section 5.2. To this end,
the horizon K is divided into 𝐿 time intervals K𝓁 ∶= {𝐾𝓁−1, ..., 𝐾𝓁 − 1} for all
𝓁 ∈ L ∶= {1,… , 𝐿}, with 𝐾0 = 0 and 𝐾𝐿 = 𝐾. This yields that K = ⋃𝓁∈LK𝓁. To
arrive at a separable OPC, we introduce the auxiliary variables �̃�𝑚,𝐾𝓁−1 that
allows rewriting (5.1c) as (5.8b) and (5.8c). The auxiliary variable �̃�𝑚,𝐾𝓁−1
is both the initial condition for the interval K𝓁 and the final condition of the
previous interval, i.e., (5.8d). Also, (5.8d) is added to the cost function (5.8a)
as a quadratic penalty.

5. Introduction of a vanishing penalty 𝜈𝓁,𝑚(⋅) ∈ ℝ that appears in response to
the existence of multiple global solutions in the OCP. This additional term in
the cost function aims to guide the optimization algorithm to a region where
an optimal solution with desired features might exists. The penalty term is
nonpermanent and it will be chosen so that vanishes after some iterations
of the algorithm, which implies that the solutions of the original OCP are not
modified.

The equivalent OCP obtained as a result of the previous steps is given by

min
{𝑢𝑚,𝑘 ,𝑥𝑚,𝑘 ,𝑧𝑚,𝑘 ,𝑠𝑗,𝑘 ,�̃�𝑚,𝐾𝓁−1}

∑
𝓁∈L

∑
𝑘∈K𝓁

( ∑
𝑚∈M

(𝑝𝑚(𝑢𝑚,𝑘) + 𝜈𝑚(𝑢𝑚,𝑘 , 𝑥𝑚,𝑘 , 𝑧𝑚,𝑘))

+∑
𝑗∈J

𝜎𝑗
2 (∑

𝑚∈M
𝑟𝑗,𝑚(𝑢𝑚,𝑘)+ 12𝑠

2
𝑗,𝑘)

2
) +∑

𝓁∈L
∑
𝑚∈M

𝜌𝑚
2 ∥𝑥𝑚,𝐾𝓁−1− �̃�𝑚,𝐾𝓁−1∥

2

(5.8a)

s.t. (5.1d), (5.1e), (5.1f),
𝑥𝑚,𝑘+1=𝐴𝑚𝑥𝑚,𝑘 + 𝐵𝑚𝑢𝑚,𝑘 + 𝐸𝑤𝑚,𝑘 , for all 𝑘 ∈ K ⧵ {𝐾0, … ,𝐾𝐿−1} and 𝑚∈M, (5.8b)

𝑥𝑚,𝐾𝓁−1+1 = 𝐴𝑚�̃�𝑚,𝐾𝓁−1 + 𝐵𝑚𝑢𝑚,𝐾𝓁−1 + 𝐸𝑤𝑚,𝐾𝓁−1 , for all 𝓁 ∈ L and 𝑚 ∈M, (5.8c)
𝑥𝑚,𝐾𝓁−1 − �̃�𝑚,𝐾𝓁−1 = 0, for all 𝓁 ∈ L and 𝑚 ∈M, (5.8d)

∑
𝑚∈M

𝑟𝑗,𝑚(𝑢𝑚,𝑘) + 1
2𝑠

2
𝑗,𝑘 = 0, for all 𝓁 ∈ L and 𝑗 ∈ J , (5.8e)

𝑠𝑗,𝑘 = 0, for all 𝓁 ∈ L and 𝑗 ∈ J𝑐; (5.8f)

where 𝜎𝓁,𝑗 ∈ ℝ+ are coefficients that weight the penalty terms in (5.8a). Further
more,

𝑝𝑚(𝑢) = 𝑎𝑚(12𝑞2,𝑚𝑢
2 + 𝑞1,𝑚𝑢 + 𝑞0,𝑚) + 𝑏𝑚𝑢, (5.9)

𝑟𝑗,𝑚(𝑢) = 𝑐𝑗,𝑚(12𝑞2,𝑚𝑢
2 + 𝑞1,𝑚𝑢 + 𝑞0,𝑚) + 𝑑𝑗,𝑚𝑢 + 𝑣𝑗 . (5.10)

It should be noted that constraint (5.8f) acts only on the energy conserving nodes
J𝑐, which means that the equality constraint (5.1g) is embedded in (5.8e) for this
formulation.
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5.1.5. Reformulation as a Static Optimization Problem
n this subsection, we will rewrite the OCP (5.8) into a static optimization problem
that is suitable to be solved with the operator splitting technique presented in Sec
tion 5.2. To reformulate the OCP (5.8) as a static optimization problem, we define
the following vectors

u𝓁,𝑚 = col({𝑢𝑚,𝑘}𝑘∈K𝓁) ∈ ℝ𝐾𝓁 , (5.11a)

x𝓁,𝑚 = col(�̃�𝑚,𝐾𝓁−1 ,{𝑥𝓁,𝑚,𝑘+1}𝑘∈K𝓁) ∈ ℝ(𝐾𝓁+1)𝑛𝑥𝑚 , (5.11b)

z𝓁,𝑚 = col({𝑧𝑚,𝑘}𝑘∈K𝓁) ∈ ℝ𝐾𝓁𝑛𝑧𝑚 , (5.11c)

w𝓁,𝑚 = col({𝑤𝑚,𝑘}𝑘∈K𝓁) ∈ ℝ𝐾𝓁𝑛𝑤𝑚 , (5.11d)

s𝓁,𝑗 = col({𝑠𝑗,𝑘}𝑘∈K𝓁) ∈ ℝ𝐾 , (5.11e)

v𝓁,𝑗 = col({𝑣𝑗,𝑘}𝑘∈K𝓁) ∈ ℝ𝐾 , (5.11f)

for all 𝓁 ∈ L, 𝑚 ∈M and 𝑗 ∈ J . This notation allows us to write (5.8b), (5.8c) and
(5.1d) in compact form as

Γ𝓁,𝐴𝑚x𝓁,𝑚 + Γ𝓁,𝐵𝑚u𝓁,𝑚 + Γ𝓁,𝐸𝑚w𝓁,𝑚 = 0 (5.12a)
−z𝓁,𝑚 + Γ𝓁,𝐶𝑚x𝓁,𝑚 + Γ𝓁,𝐷𝑚u𝓁,𝑚 + Γ𝓁,𝐹𝑚w𝓁,𝑚 = 0 (5.12b)

with matrices

Γ𝓁,𝐴𝑚 =[
𝐴𝑚 −I𝑛𝑥𝑚

⋱ ⋱
𝐴𝑚 −I𝑛𝑥𝑚

]∈ℝ𝐾𝓁𝑛𝑥𝑚×(𝐾𝓁+1)𝑛𝑥𝑚 , (5.13a)

Γ𝓁,𝐵𝑚 =I𝐾𝓁 ⊗𝐵𝑚 , (5.13b)
Γ𝓁,𝐸𝑚 =I𝐾𝓁 ⊗𝐸𝑚 , (5.13c)

Γ𝓁,𝐶𝑚 = [I𝐾𝓁 ⊗𝐶𝑚 0𝐾𝓁𝑛𝑧𝑚×𝑛𝑥𝑚] , (5.13d)

Γ𝓁,𝐷𝑚 =I𝐾𝓁 ⊗𝐷𝑚 , (5.13e)
Γ𝓁,𝐹𝑚 =I𝐾𝓁 ⊗𝐹𝑚 . (5.13f)

The bounds (5.1e), (5.1f) are rewritten as

1𝑢𝑚 ≤ u𝓁,𝑚 ≤ 1𝑢𝑚 , (5.14a)
1⊗𝑧𝑚 ≤ z𝓁,𝑚 ≤ 1⊗𝑧𝑚 , (5.14b)

and, for all 𝑚 ∈M, the initial conditions are given by

x0,𝑚 = 𝑥𝑚,0. (5.15)

The linking constraints (5.8d) are given by

Ξ𝑓𝓁−1,𝑚x𝑚,𝓁−1−Ξ𝑜𝓁,𝑚x𝓁,𝑚 = 0, (5.16)

for all 𝑚 ∈M and 𝓁 ∈ L, with selection matrices
Ξ𝑜𝑚,𝓁 = [I𝑛𝑥𝑚 0𝑛𝑥𝑚×𝐾𝓁𝑛𝑥𝑚] ,
Ξ𝑓𝑚,𝓁 = [0𝑛𝑥𝑚×𝐾𝓁𝑛𝑥𝑚 I𝑛𝑥𝑚] ,
Ξ𝑓0,𝑚 = I𝑛𝑥𝑚 ;

(5.17)
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Note that for the sake of simplicity, we have not considered final state conditions in
the OPC formulation (5.1) and consequently in the equivalent formulations. How
ever, note that they can be easily introduced by adding a constraint of the form
Ξ𝑓𝑚,𝐿x𝐿,𝑚 = 𝑥𝑚,𝐾.

Now, by exploiting (5.11)  (5.14), we rewrite the discretetime OCP (5.8) as
the following static optimization problem

min
{u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚 ,s𝓁,𝑗}

∑
𝓁∈L
( ∑
𝑚∈M
(𝑃𝓁,𝑚(u𝓁,𝑚) + 𝝂𝓁,𝑚(u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚)

+ 𝜌𝓁,𝑚
2 ∥Ξ

𝑓
𝓁−1,𝑚x𝓁−1,𝑚−Ξ𝑜𝓁,𝑚x𝓁,𝑚∥22)

+∑
𝑗∈J𝑐

𝜎𝓁,𝑗
2 ∥ ∑

𝑚∈M
𝑅𝓁,𝑚,𝑗(u𝓁,𝑚) + 1

2s
2
𝓁,𝑗∥

2

2
) (5.18a)

s.t. Ξ𝑓𝓁−1,𝑚x𝓁−1,𝑚−Ξ𝑜𝓁,𝑚x𝓁,𝑚 = 0, for all 𝑚 ∈M and 𝓁∈L, (5.18b)

∑
𝑚∈M

𝑅𝓁,𝑚,𝑗(u𝓁,𝑚) + 1
2s

2
𝓁,𝑗 = 0, for all 𝑗∈J and 𝓁∈L, (5.18c)

s𝓁,𝑗 = 0, for all 𝑗∈J𝑐 and 𝓁∈L, (5.18d)
{u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚}∈𝛀𝓁,𝑚 , for all 𝑚∈M and 𝓁∈L; (5.18e)

where

𝑃𝓁,𝑚(u)= 1𝑇𝐾 (𝑎𝑚𝐲𝓁,𝑚(u)+𝑏𝑚u) , (5.19a)
𝑅𝓁,𝑚,𝑗(u)= 𝑐𝑗,𝑚𝜻𝓁,𝑚(u)+𝑑𝑗,𝑚u+v𝓁,𝑗 , (5.19b)

and

𝛀𝓁,𝑚={{u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚} ∣ satisfy (5.12) and (5.14)}, (5.19c)

in which

𝐲𝓁,𝑚(u)=(12𝑞2,𝑚diag(u)+𝑞1,𝑚1𝐾𝓁)u+𝑞0,𝑚1𝐾𝓁 . (5.20)

This convenient reformulation shows a nonconvex static optimization problem that
will be used to design a parallelizable algorithm to solve the CVEM problem (5.1),
based on the PD operator splitting method [19, Algorithm1.1].To this end, the static
optimization problem (5.18) should satisfy some regularity conditions or constraint
qualification (CQ). For a complete survey of CQ for nonlinear programming see [23,
24]. In the following lemma, we present conditions to guarantee that (5.8) satisfies
a linear independence CQ (LICQ) under some mild conditions.

Lemma 5.1.1. The feasible set of the discrete optimal control problem (5.8) sat
isfies LICQ, if the following conditions hold:

(I) For all 𝑚 ∈M the bounds on 𝑢𝓁,𝑚,𝑘 in (5.1e) satisfy

𝑢𝑚 > −
𝑞1,𝑚
𝑞2,𝑚 or 𝑢𝑚 < −𝑞1,𝑚𝑞2,𝑚 . (5.21a)
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(II) The optimal input powers 𝑢∗𝑚,𝑘 satisfy

𝑢𝑚 < 𝑢∗𝑚,𝑘 < 𝑢𝑚 , (5.21b)

for all 𝓁 ∈ L, 𝑘 ∈ K𝓁 and at least one 𝑚 ∈M𝑗 ⊆M, whereM𝑗 is the set of
subsystems that interact at the node 𝑗 ∈ J .

Proof. We will show that the optimization problem (5.8) satisfies LICQ, if the con
ditions in the lemma are satisfied. This means that the KKT conditions hold at
the critical points of the optimization problem. For this, let us define the vector
u = col({u𝓁,𝑚}) and x0, x, z, w, s, v in a similar manner. Additionally, consider
the matrix 𝚪𝐴 = diag({Γ𝓁,𝐴𝑚}) and 𝚪𝐵 to 𝚪𝐹 in the same way. Furthermore, we
define

𝚯2 = diag({1𝐾𝓁𝑐𝑗,𝑚𝑞2,𝑚}), (5.22a)
𝚯1 = diag({1𝐾𝓁(𝑐𝑗,𝑚𝑞1,𝑚 + 𝑑𝑗,𝑚)}), (5.22b)
𝚯0 = diag({1𝐾𝓁𝑐𝑗,𝑚𝑞0,𝑚}), (5.22c)

𝚵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝚵𝑜1
𝚵𝑓1 −𝚵𝑜2

⋱ ⋱
𝚵𝑓𝐿−1 −𝚵𝑜𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (5.22d)

𝚵𝟎 = [𝚵
𝑓
0
0 ] , (5.22e)

with block diagonal matrices 𝚵𝑓𝓁 = diag({Ξ
𝑓
𝓁,𝑚}𝑚∈M) and 𝚵𝑜𝓁 = diag({Ξ𝑜𝓁,𝑚}𝑚∈M).

Without loss of generality, for this analysis, we will consider the absence of con
straints on the final states. Herewith, the active constraints of the static optimization
problem (5.18) can be written as

𝚪𝐴x + 𝚪𝐵u + 𝚪𝐸w = 0 (5.23a)
−Z + 𝚪𝐶x + 𝚪𝐷u + 𝚪𝐹w = 0 (5.23b)

𝚵0x0 + 𝚵x = 0 (5.23c)
x0 − col({𝑥𝑚,0}) = 0 (5.23d)

1
2𝚯2diag(u)u+𝚯1u+Θ0+ 12diag(s)s+v = 0 (5.23e)

𝝓u(u − col({1𝐾𝓁𝑢𝑚})) = 0 (5.23f)

𝝓u( −u + col({1𝐾𝓁𝑢𝑚})) = 0, (5.23g)

𝝓z(z − col({1𝐾𝓁 ⊗𝑧𝑚})) = 0, (5.23h)

𝝓z( − z + col({1𝐾𝓁 ⊗𝑧𝑚})) = 0, (5.23i)

where the matrices 𝝓u and 𝝓z select the active upper bounds, while the active
lower bounds are linked to the matrices 𝝓u and 𝝓z. These matrices have rows with
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single nonzero entries to indicate an active constraints. The gradient of (5.23) with
respect to decision variables {u,x0,x,z,s} reads as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝚪𝐵 𝚪𝐴 0 0
𝚪𝐷 𝚪𝐶 I 0
0 𝚵 0 0

𝚯2diag(u) +𝚯1 0 0 diag(s)
𝝓u 0 0 0
−𝝓u 0 0 0
0 0 𝝓z 0
0 0 −𝝓z 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.24)

If (5.24) is full row rank, the static optimization problem (5.18) satisfy LICQ. To
describe the conditions that guarantee linear independent rows in (5.24), we will
assume a worst case scenario, where all the network constraints are active (i.e.,
s = 0). Initially, we only consider the case where the inequalities that describe the
bounds on u are inactive, i.e., 𝝓u and 𝝓z disappear from (5.24). In this scenario,
equation (5.24) is full row rank if 𝚯2diag(u) +𝚯1 ≠ 0, which is equivalent to

𝑐𝑗,𝑚(𝑞2,𝑚𝑢𝓁,𝑚,𝑘 + 𝑞1,𝑚) + 𝑑𝑗,𝑚 ≠ 0 (5.25)

for all 𝑘 ∈ K𝓁 and 𝑚 ∈M, 𝑗 ∈ J and 𝓁 ∈ L. It follows from Assumption (5.1.1)
that 5.25 can be reduced to

𝑞2,𝑚𝑢𝓁,𝑚,𝑘 + 𝑞1,𝑚 ≠ 0, (5.26)

which holds if condition (I) of this lemma is satisfied.
For the case, where active inequality bound constraints exist, equation (5.24)

has linearly independent rows if the following matrix has full row rank

⎡⎢⎢⎢⎢⎢⎣

Θ2diag(u) +𝚯1
𝝓u
−𝝓u

⎤⎥⎥⎥⎥⎥⎦
. (5.27)

This occurs if condition (I) of this lemma is satisfied and if all the subsystems inter
acting at each node 𝑗 ∈ J are not simultaneously operating on its power bounds.
Note that, for a given node 𝑗 in the network and discretetime instant 𝑘, condi
tion (II) of this lemma guarantees that al least one subsystem does not operate
on its bounds. Consequently, if conditions (I) and (II) in of this lemma hold, the
complete Jacobian of the feasible set (5.23) has linearly independent rows and the
optimization problem (5.8) satisfies LICQ. This completes the proof.

Condition (I) to guarantee LICQ of optimization problem (5.18) presented in this
lemma can be tested a priori via a simple inspection of the power bounds for all the
subsystems. For realistic applications, it typically holds that ∣𝑞2,𝑚∣ ≪ ∣𝑞1,𝑚∣, which
suggests that (5.21a) is a mild condition. On the other hand, condition (II) can be
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verified a posteriori. This condition is satisfied for many real scenarios cases, and in
practice, this condition does not limit the performance of optimization algorithm pro
posed in Section 5.2.2. The satisfaction of LICQ by the optimization problem (5.18)
indicates that its critical points are regular. The result presented in Lemma 5.1.1 and
the equivalence of the discretetime optimal control problems (5.1) and the static
optimization problem (5.18) will be exploited in the following section to show that
the static optimization algorithm, proposed in this chapter, obtains global minimiz
ers of the OCP (5.1). The aforementioned equivalence between the formulations
(5.1) and (5.18) is presented in the following lemma.

Lemma 5.1.2. The optimization problems (5.1) and (5.18) have the same nec
essary conditions for optimality and the same global minimizers if the vanishing
penalty satisfies 𝜈𝓁,𝑚(𝑢𝓁,𝑚,𝑘 , 𝑥𝓁,𝑚,𝑘 , 𝑧𝓁,𝑚,𝑘) = 0. (5.28)

for all 𝓁 ∈ L, 𝑚 ∈M and 𝑘 ∈ K𝓁.

Proof. Since the static optimization problem (5.18) is an equivalent formulation of
the discretetime OCP (5.8), it remains to demonstrate that the steps made to
reformulate (5.1) into (5.8) do not modify the original set of minimizers. The
elimination and introduction of decision variables detailed in step 1) and step 4),
respectively, are justified in [21, §4.1.3]. The introduction of slack variables and
quadratic penalties for the augmented Lagrangian formulation detailed in steps
2),3) and 4), respectively, are supported by [21, §4.1.3], [22, §3.2.1, §3.3.2].
Moreover, if (5.28) holds, the cost function of the formulations (5.1) and (5.8) are
equivalent. Hence, the set of minimizers of (5.1),(5.8) and (5.18) are the same.
Finally, from Theorem 5.1.1 we conclude that the minimizers of (5.18) are global,
because the minimizers of (5.1) are global.

This result indicates that the vanishing penalty 𝜈𝓁,𝑚 does not modify the OCP
if (5.28) is satisfied. The optimization algorithm presented in Section 5.2.2, uses
the vanishing penalty term to steer its iterations towards a solution with some
desired features. Since, this penalty is designed to disappear after certain number of
iterations, the results of Lemma 5.1.2 can be used to show that the aforementioned
optimization algorithm obtains solutions to the original OCP (5.1).

5.2. A primaldual algorithm for CVEM
In the previous section, we showed that the CVEM problem (5.1) only has global
solutions, thus solvers cannot get stuck in local minima. Moreover, it was demon
strated that (5.18) is an equivalent formulation to (5.1). In this section, we will
take advantage of the previous results to propose a method to solve the static
optimization CVEM problem (5.18) using an operator splitting approach.

5.2.1. Saddlepoint Problem and KKT Conditions
Operator splitting methods [25, §26] and [26, 27] can be used to find zeros of (set
valued) mappings. In constrained optimization theory, these splitting methods are
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used to find the points that satisfy the KKT conditions of a saddlepoint problem. In
particular, constraints (5.18e) will be embedded in the optimization problem using
indicator functions, which will yield to nonsmooth nonconvex saddlepoint prob
lem. In doing so, the KKT conditions of the static optimization problem (5.18) can
be represented as a setvalued mapping, which is shown in this subsection, so that
(candidate) minimizers can be found using operator splitting methods.

To formulate the aforementioned saddlepoint problem in compact form, we
define the vector of primal variables

𝝌 = col({𝝎𝓁,s𝓁}𝓁∈L), (5.29)

where s𝓁 = col({s𝓁,𝑗}𝑗∈𝐽) and

𝝎𝓁 =col({𝝎𝓁,𝑚}𝑚∈M), (5.30a)

with

𝝎𝓁,𝑚 = col(u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚). (5.30b)

Additionally, the vector of dual variables is defined as

𝝍 = col({𝝀𝓁, 𝝁𝓁}𝓁∈L), (5.31)

with 𝝀𝓁 = col({𝝀𝓁,𝑗}𝑗∈𝐽) and 𝝁𝓁 = col({𝝁𝓁,𝑚}𝑚∈M) where 𝝀𝓁,𝑗 ∈ ℝ𝐾𝓁 and 𝝁𝓁,𝑚 ∈
ℝ𝑛𝑥𝑚 are Lagrange multipliers. Herewith, we cast the static optimization problem
(5.18) as the following saddlepoint problem

max
𝝍

min
𝝌

H(𝝌) +Q(𝝌,𝝍) (5.32)

with a nonsmooth convex function

H(𝝌)=∑
𝓁∈L
( ∑
𝑚∈M

𝚤Ω𝓁,𝑚(𝝎𝓁,𝑚) +∑
𝑗∈J𝑐

𝚤{0}(s𝓁,𝑗)), (5.33)

where 𝚤{0}(⋅) and 𝚤Ω𝓁,𝑚(⋅) are the indicator functions corresponding to (5.18d)
and (5.18e), respectively. Moreover,

Q(𝝌,𝝍)=∑
𝓁∈L
( ∑
𝑚∈M

𝑃𝓁,𝑚(u𝓁,𝑚)+𝝂𝓁,𝑚(u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚)

+∑
𝑗∈J
(𝜎𝓁,𝑗2 ∥∑

𝑚∈M
𝑅𝓁,𝑚,𝑗(u𝓁,𝑚)+ 12s

2
𝓁,𝑗∥

2

2
+ 𝝀⊤𝓁,𝑗( ∑

𝑚∈M
𝑅𝓁,𝑚,𝑗(u𝓁,𝑚) + 1

2s
2
𝓁,𝑗)))

+∑
𝓁∈L
( ∑
𝑚∈M

𝜌𝓁,𝑚
2 ∥Ξ

𝑓
𝓁−1,𝑚x𝓁−1,𝑚−Ξ𝑜𝓁,𝑚x𝓁,𝑚∥22 + 𝝁⊤𝓁,𝑚(Ξ

𝑓
𝓁−1,𝑚x𝓁−1,𝑚−Ξ𝑜𝓁,𝑚x𝓁,𝑚)),

(5.34)
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is a differentiable function. The specific design of the nonsmooth cost function
of (5.32) is connected to the splitting algorithm that will be presented in Sec
tion 5.2.2. Namely, the linear part of the feasible set is expressed as indicator
functions while the nonlinear and possibly nonconvex part of the problem (5.18)
is embedded in the continuously differentiable function (5.34). The linear part of
the feasible set is also separable for every 𝓁 ∈ L and 𝑚 ∈M, which will make the
algorithm parallelizable.

The KKT conditions of the static optimization problem (5.18) are the same KKT
conditions of the saddlepoint problem (5.32) and can be expressed in compact
form as 0 ∈ 𝜕H(𝝌) + ∇Q(𝝌,𝝍), with

𝜕H(𝝌) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

col({NΩ𝓁,𝑚(𝝎𝓁,𝑚)})
col({N{0}(s𝓁,𝑗)}𝓁∈L,𝑗∈J𝑐)

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.35a)

∇Q(𝝌,𝝍) = [ ∇𝝌Q−∇𝝍Q]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

col({F𝓁,𝑚(u𝓁,u𝓁,𝑚 ,x𝓁−1,𝑚 ,x𝓁,x𝓁+1,𝑚 ,z𝓁,𝑚 ,s𝓁,𝑗 , 𝝀𝓁, 𝝁𝓁−1,𝑚 , 𝝁𝓁,𝑚)})
col({𝐆𝓁,𝑗(u𝓁,s𝓁,𝑗 , 𝝀𝓁,𝑗)}𝓁∈L,𝑗∈J𝑐)
col({𝐆𝓁,𝑗(u𝓁,s𝓁,𝑗 , 𝝀𝓁,𝑗)}𝓁∈L,𝑗∈J𝑑)

col({−Λ𝓁,𝑗(u𝓁,s𝓁,𝑗)})
col({−Υ𝓁,𝑚(x𝓁−1,𝑚 ,x𝓁,𝑚)})

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(5.35b)

where

F𝓁,𝑚(u𝓁,u𝓁,𝑚 ,x𝓁−1,𝑚 ,x𝓁,x𝓁+1,𝑚 ,z𝓁,𝑚 ,s𝓁,𝑗 , 𝝀𝓁, 𝝁𝓁−1,𝑚 , 𝝁𝓁,𝑚) = ∇𝝂(u𝓁,𝑚 ,x𝓁,𝑚 ,z𝓁,𝑚)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∇𝑃𝓁,𝑚(u𝓁,𝑚)+∑
𝑗∈J𝑐

∇𝑅𝓁,𝑚(u𝓁,𝑚)(𝝀𝓁,𝑗+𝜎𝓁,𝑗Λ𝓁,𝑗(u𝓁,s𝓁,𝑗))

Φ𝓁,𝑚(x𝓁−1,𝑚 ,x𝓁,𝑚 ,x𝓁,𝑚 , 𝝁𝓁,𝑚 , 𝝁𝓁+1,𝑚)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.36a)

𝐆𝓁,𝑗(u𝓁,𝐬𝓁,𝑗 ,𝝀𝓁,𝑗) = diag(𝐬𝓁,𝑗)(𝝀𝓁,𝑗 + 𝜎𝓁,𝑗Λ𝓁,𝑗(u𝓁,s𝓁,𝑗)), (5.36b)

Λ𝓁,𝑗(u𝓁,s𝓁,𝑗)= ∑
𝑚∈M

𝑅𝓁,𝑚(u𝓁,𝑚) + 1
2s

2
𝓁,𝑗 , (5.36c)

Υ𝓁,𝑚(x𝓁−1,𝑚 ,x𝓁,𝑚) = Ξ𝑓𝓁−1,𝑚x𝓁−1,𝑚−Ξ𝑜𝓁,𝑚x𝓁,𝑚 (5.36d)



5.2. A primaldual algorithm for CVEM

5

95

in which

∇𝑃𝓁,𝑚(u) =𝑎𝑚1𝐾𝓁∇y𝓁,(u)+𝑏𝑚1𝐾𝓁 , (5.37a)
∇𝑅𝓁,𝑚(u) =𝑐𝑗,𝑚∇y𝓁,𝑚(u)+𝑑𝑗,𝑚I𝐾𝓁 , (5.37b)
∇𝐲𝑚(u) =𝑞2,𝑚diag(u) + 𝑞1,𝑚1𝐾𝓁 , (5.37c)

Φ𝓁,𝑚(x̂,x, x̃, 𝝁, �̃�) = − (Ξ𝑜𝓁,𝑚)⊤(𝝁 + 𝜌𝓁,𝑚Υ𝓁,𝑚(x̂,x))
+ (Ξ𝑓𝓁+1,𝑚)⊤(�̃� + 𝜌𝓁+1,𝑚Υ𝓁+1,𝑚(x, x̃)) (5.37d)

and ∇𝝂(𝝎𝓁) is the gradient of the vanishing penalty function.
In (5.35), we characterized the KKT conditions related to the static optimization

problem (5.18). Under certain regularity conditions, the points {𝝌∗, 𝝍∗} satisfying
0 ∈ 𝜕H(𝝌∗) + ∇Q(𝝌∗, 𝝍∗) provide candidate minima of the optimization prob
lem (5.18), see [22, §3.3.1] and [28] for a detailed discussion on this topic. In the
theorem below, we formally state that 0 ∈ 𝜕H(𝝌∗) + ∇Q(𝝌∗, 𝝍∗) leads to global
minimizers to the discrete OCP (5.1).

Theorem 5.2.1. Suppose that the conditions of Lemma 5.1.1 and Lemma 5.1.2
are satisfied, and the feasible sets Ω𝓁,𝑚 for all 𝑚 ∈ M and 𝓁 ∈ L are compact.
Then, globally optimal solutions {𝑢∗𝑚,𝑘 , 𝑥∗𝑚,𝑘 , 𝑧∗𝑚,𝑘 , 𝑦∗𝑚,𝑘} to the discretetime opti
mal control problem (5.1) can be obtained from points {𝝌∗, 𝝍∗} satisfying 0 ∈
𝜕H(𝝌∗) + ∇Q(𝝌∗, 𝝍∗).

Proof. From Lemma 5.1.1, we observe that if condition (5.21) is satisfied, the
static optimization problem (5.18) satisfies LICQ. Furthermore, note that finite
bounds on 𝑢𝑚,𝑘 in (5.1e) imply that sets Ω𝓁,𝑚 are compact for all 𝑚 ∈ M and
𝓁 ∈ L. Then, from [22, §3.3.1] the points {𝝌∗, 𝝍∗} satisfying the KKT conditions
0 ∈ 𝜕H(𝝌∗) + ∇Q(𝝌∗, 𝝍∗) are critical points of optimization problem (5.18). The
primal part 𝝌∗ of those critical points can be used to recover a solution
{𝑢∗𝓁,𝑚,𝑘 , 𝑥∗𝓁,𝑚,𝑘 , 𝑧∗𝓁,𝑚,𝑘 , 𝑠∗𝓁,𝑗,𝑘} of OCP (5.8). Finally, as a consequence of the equiva
lence of the formulations (5.1), (5.8) and (5.18) shown in Lemma 5.1.2, we can
conclude that the globally optimal solution {𝑢∗𝑚,𝑘 , 𝑥∗𝑚,𝑘 , 𝑧∗𝑚,𝑘 , 𝑦∗𝑚,𝑘} to OCP (5.1) can
be obtained from critical points {𝝌∗, 𝝍∗}.

5.2.2. A PrimalDual Proximal Splitting Algorithm
In this section, we use the PrimalDual (PD) proximal splitting method presented
in [19, Algorithm 1.1], which will be used to find points col(𝝌∗, 𝝍∗) satisfying 𝟎 ∈
𝜕H(𝝌∗) + ∇Q(𝝌∗, 𝝍∗), thereby finding global minimizers of the optimal control
problem (OCP) in (5.1). It should be noted that for convex optimization problems,
this PD splitting leads to the widely used Chambolle–Pock method [29, 30] , while
recent extensions of the PD splitting method show its application to solve non
convex problems [31], [32].

To solve the nonconvex and nonsmooth saddle point problem (5.32), we apply
the primaldual splitting method presented in [19]. This leads to the following
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iteration that is described in compact form as

𝝌𝑖+1 = (I +𝜶𝑖𝜕𝐇)−1(𝝌𝑖 −𝜶𝑖∇𝝌𝐐(𝝌𝑖 , 𝝍𝑖)), (5.38a)

�̂�𝑖+1 = 𝝌𝑖+1 +𝜷(𝝌𝑖+1 − 𝝌𝑖), (5.38b)

𝝍𝑖+1 = 𝝍𝑖 + 𝜸𝑖∇𝝍𝐐(�̂�𝑖+1, 𝝍𝑖)); (5.38c)

where the superscript 𝑖 ∈ {1, 2,…} denotes the 𝑖th iteration. The diagonal matrices
with positive entries 𝜶 and 𝜸 indicate the primal and dual step sizes of the algorithm,
respectively. Moreover, 𝜷 is a diagonal matrix with positive entries that represents
the overrelaxation factor. Note that (5.38) is a modified GaussSeidel iteration with
three steps that, respectively, represent the primal updates, the overrelaxation
step, the dual updates. The modification introduced by the overrelaxation step
aims to accelerate the convergence of the algorithm. In (5.38a), the term (I +
𝜶𝜕𝐇)−1 is a monotone operator since the subdifferential 𝜕𝐇 contains only normal
cones of convex sets. The resolvent of this monotone operator is as a projection,
i.e., see [33, Example 23.4] for more details. Interestingly, this projection can be
efficiently implemented as a constrained least squares problems. Additionally, it
should be noted from (5.35) that both, the gradient ∇𝐐 as well as subdifferential
𝜕𝐇, are highly structured. This allows for a parallelizable approach that is fully
detailed in Algorithm 1, which employs Algorithm 1a and Algorithm 1b.

The three steps presented in (5.38) are also explicitly detailed in Algorithm 1.
Note that STEP 1 and STEP 3 are linked to Algorithm 1a and Algorithm 1b, which
aim to automatically select stepsizes and regularization factors at every iteration.
This is motivated by the high level of parallelization of Algorithm 1, which implies
that a large set of stepsizes need to be chosen. Manually selecting the stepsizes so
as to obtain good performance, is a nontrivial process that is often done manually.
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Algorithm 1: PrimalDual Splitting

Initialization
For all 𝓁 ∈ L:

• Select the positive scalar stepsizes 𝛼0𝑢𝓁,𝑚 , 𝛼0𝑥𝓁,𝑚 , 𝛼0𝑧𝓁,𝑚 for all 𝑚 ∈M such that

𝜶0𝜔𝓁,𝑚 = diag(𝛼
0
𝑢𝓁,𝑚I𝐾𝓁 , 𝛼

0
𝑥𝓁,𝑚I𝑛𝑥𝑚(𝐾𝓁+1), 𝛼

0
𝑧𝓁,𝑚I𝑛𝑧𝑚𝐾𝓁);

𝛼0𝑠𝓁,𝑗 for all 𝐽 ∈ J𝑑, 𝛾
0
𝜆𝓁,𝑗 for all 𝐽 ∈ J and 𝛾0𝜇𝓁,𝑚 for all 𝑚 ∈M.

• Select the positive scalar overrelaxation factors 𝛽𝑢𝓁,𝑚 , 𝛽𝑥𝓁,𝑚 , 𝛽𝑧𝓁,𝑚 for all 𝑚 ∈
M such that

𝜷𝜔𝓁,𝑚 = diag(𝛽𝑢𝓁,𝑚I𝐾𝓁 , 𝛽𝑥𝓁,𝑚I𝑛𝑥𝑚(𝐾𝓁+1), 𝛽𝑧𝓁,𝑚I𝑛𝑧𝑚𝐾𝓁);
and 𝛽𝑠𝓁,𝑗 for all 𝐽 ∈ J𝑑.

• Select the positive scalar regularization factors 𝜎0𝓁,𝑗, 𝜍𝓁,𝑗 for all 𝑗 ∈ J𝑑 and 𝜌0𝓁,𝑚,
𝜚𝓁,𝑚 for all 𝑚 ∈M.

• Set initial values for 𝝎0
𝓁,𝑚 ∈ Ω𝓁,𝑚 for all 𝑚 ∈ M, s0𝓁,𝑗 ∈ ℝ𝐾𝓁 for all 𝑗 ∈ J𝑑,

s𝑖𝓁,𝑗 = 0𝐾𝓁×1 for all 𝑗 ∈ J𝑐 and 𝑖 ∈ ℕ, 𝝀0𝓁.𝑗 ∈ ℝ𝐾𝓁 for all 𝑗 ∈ J , 𝝁𝓁,𝑚 ∈ 𝑅𝑛𝑥𝑚 for
all 𝑚 ∈M.

Iterate until convergence:
STEP 1: Primal update. For all 𝓁 ∈ L,
if 𝑖 > 1 then go to Algorithm 1a

𝝎𝑖+1
𝓁,𝑚 = projΩ𝓁,𝑚(𝝎

𝑖
𝓁,𝑚−𝜶𝑖𝜔𝓁,𝑚F𝓁,𝑚(u

𝑖
𝓁,u𝑖𝓁,𝑚 ,x𝑖𝓁−1,𝑚 ,x𝑖𝓁,x𝑖𝓁+1,𝑚 ,z𝑖𝓁,𝑚 ,s𝑖𝓁,𝑗 , 𝝀𝑖𝓁, 𝝁𝑖𝓁−1,𝑚 , 𝝁𝑖𝓁,𝑚)),
for all 𝑚 ∈M

s𝑖+1𝓁,𝑗 = s𝑖𝓁,𝑗 − 𝛼𝑖𝑠𝓁,𝑗𝐆𝓁,𝑗(u
𝑖
𝓁, 𝐬𝑖𝓁,𝑗 , 𝝀𝑖𝓁,𝑗), for all 𝑗 ∈ J𝑑

STEP 2: Overrelaxation. For all 𝓁 ∈ L,
�̂�𝑖+1
𝓁,𝑚 = 𝝎𝑖+1

𝓁,𝑚 +𝜷𝜔𝓁,𝑚(𝝎𝑖+1
𝓁,𝑚 −𝝎𝑖

𝓁,𝑚), for all 𝑚 ∈M
ŝ𝑖+1𝓁,𝑗 = s𝑖+1𝓁,𝑗 + 𝛽𝑠𝓁,𝑗(s𝑖+1𝓁,𝑗 − s𝑖𝓁,𝑗), for all 𝑗 ∈ J𝑑

STEP 3 : Dual update. For all 𝓁 ∈ L,
if 𝑖 > 1 then go to Algorithm 1b

𝝀𝑖+1𝓁,𝑗 = 𝝀𝑖𝓁,𝑗 + 𝛾𝑖𝜆𝓁,𝑗𝚲𝓁,𝑗(û
𝑖+1
𝓁 , ŝ𝑖+1𝓁,𝑗 ), for all 𝑗 ∈ J

𝝁𝑖+1𝓁,𝑚 = 𝝁𝑖𝓁,𝑚+𝛾𝑖𝜇𝓁,𝑚𝚼𝓁,𝑚(x̂
𝑖+1
𝓁,𝑚 , x̂𝑖+1𝓁+1,𝑚), for all 𝑚∈M
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Algorithm 1a: Selection of primal stepsizes.

For all 𝑚 ∈M:

Δ𝝎𝑖
𝓁,𝑚 = 𝝎𝑖

𝓁,𝑚 −𝝎𝑖−1
𝓁,𝑚

ΔF𝑖𝓁,𝑚 = F𝓁,𝑚(u𝑖𝓁,u𝑖𝓁,𝑚 ,x𝑖𝓁−1,𝑚 ,x𝑖𝓁,x𝑖𝓁+1,𝑚 ,z𝑖𝓁,𝑚 ,s𝑖𝓁,𝑗 , 𝝀𝑖𝓁, 𝝁𝑖𝓁−1,𝑚 , 𝝁𝑖𝓁,𝑚)
−F𝓁,𝑚(u𝑖+1𝓁 ,u𝑖−1𝓁,𝑚 ,x𝑖−1𝓁−1,𝑚 ,x𝑖−1𝓁 ,x𝑖−1𝓁+1,𝑚 ,z𝑖−1𝓁,𝑚 ,s𝑖−1𝓁,𝑗 , 𝝀𝑖−1𝓁 , 𝝁𝑖𝓁−1,𝑚 , 𝝁𝑖−1𝓁,𝑚)

Ξ𝑢 = [ I𝐾𝓁 0 0 ]
Compute 𝛼𝑖𝑢𝓁,𝑚 using Algorithm 2 with inputs Ξ𝑢Δ𝝎𝑖

𝓁,𝑚and Ξ𝑢ΔF𝑖𝓁,𝑚)
Ξ𝑥 = [ 0 I𝑛𝑥𝑚(𝐾𝓁+1) 0 ]

Compute 𝛼𝑖𝑥𝓁,𝑚 using Algorithm 2 with inputs Ξ𝑥Δ𝝎𝑖
𝓁,𝑚and Ξ𝑥ΔF𝑖𝓁,𝑚

Ξ𝑧 = [ 0 0 I𝑛𝑧𝑚𝐾𝓁 ]
Compute 𝛼𝑖𝑧𝓁,𝑚 using Algorithm 2 with inputs Ξ𝑧Δ𝝎𝑖

𝓁,𝑚and Ξ𝑧ΔF𝑖𝓁,𝑚
𝜶𝑖𝜔𝓁,𝑚 = diag(𝛼

𝑖
𝑢𝓁,𝑚I𝐾𝓁 , 𝛼

𝑖
𝑥𝓁,𝑚I𝑛𝑥𝑚(𝐾𝓁+1), 𝛼

𝑖
𝑧𝓁,𝑚I𝑛𝑧𝑚𝐾𝓁)

For all 𝑗 ∈ J𝑑:

Δs𝑖𝓁,𝑗 = s𝑖𝓁,𝑗 − s𝑖−1𝓁,𝑗

Δ𝐆𝑖𝓁,𝑗 = 𝐆𝓁,𝑗(u𝑖𝓁, 𝐬𝑖𝓁,𝑗 , 𝝀𝑖𝓁,𝑗)−𝐆𝓁,𝑗(u𝑖−1𝓁 , 𝐬𝑖−1𝓁,𝑗 , 𝝀𝑖−1𝓁,𝑗 )

Compute 𝛼𝑖𝑠𝓁,𝑗 using Algorithm 2 with inputs Δs𝑖𝓁,𝑗and Δ𝐆𝑖𝓁,𝑗

Algorithm 1b: Selection of dual stepsizes and regularization factors.

For all 𝑗 ∈ J :

Δ𝝀𝑖𝓁,𝑗 = 𝝀𝑖𝓁,𝑗 − 𝝀𝑖−1𝓁,𝑗

Δ𝚲𝑖𝓁,𝑗 = Λ𝓁,𝑗(û𝑖+1𝓁 , ŝ𝑖+1𝓁,𝑗 ) − Λ𝓁,𝑗(û𝑖𝓁, ŝ𝑖𝓁,𝑗)
Compute 𝛾𝑖𝜆𝓁,𝑗 using Algorithm 2 with inputs Δ𝝀𝑖𝓁,𝑗and Δ𝚲𝑖𝓁,𝑗

𝜎𝑖𝓁,𝑗 = 𝜍𝓁,𝑗𝛾𝑖𝜆𝓁,𝑗

For all 𝑚 ∈M:

Δ𝝁𝑖𝓁,𝑚 = 𝝁𝑖𝓁,𝑚 − 𝝁𝑖−1𝓁,𝑚

Δ𝚼𝑖𝓁,𝑚 = 𝚼𝓁,𝑚(x̂𝑖+1𝓁,𝑚 , x̂𝑖+1𝓁+1,𝑚) − 𝚼𝓁,𝑚(x̂𝑖𝓁,𝑚 , x̂𝑖𝓁+1,𝑚)
Compute 𝛾𝑖𝜇𝓁,𝑚 using Algorithm 2 with inputs Δ𝝁𝑖𝓁,𝑚and Δ𝚼𝑖𝓁,𝑚

𝜌𝑖𝓁,𝑚 = 𝜚𝓁,𝑚𝛾𝑖𝜇𝓁,𝑚



5.2. A primaldual algorithm for CVEM

5

99

Essentially, Algorithm 1a and Algorithm 1b feed information from the current and
past iterations to Algorithm 2, which is in charge of calculating the optimal step
sizes. We will postpone the discussion of Algorithm 2 for following section. However,
it is important to remark the adaptive nature of this scheme, which provides step
sizes at every iteration that depend on the previous evolution of the iterations.
Additionally, it should be noted that an adaptive selection of overrelaxation factors
is not considered in our methodology. However, in Section 5.2.4 we will provide
guidance to manually choose this factors.

In [18], a forward backward splitting algorithm to find solutions of problem (5.1)
was presented. This algorithm does not have an overrelaxation step and the primal
and primal variables are updated in parallel. On the contrary, Algorithm 1 shows a
GaussSeidel type of iteration. Moreover, Algorithm 1 uses horizon splitting to in
crease the scalability the method. Finally, the algorithm presented in [18], considers
fixed stepsizes, which makes the tuning process of the algorithm a timeconsuming
task. Algorithm 1, considers stepsizes that are selected at every iteration, which
from a practical viewpoint, improves the numerical performance and reduces the
complexity of implementing the algorithm. Interestingly, the optimization algorithm
presented in [18] can be retrieved by selecting −1 for the diagonal entries of the
matrix 𝜷 in (5.38).

In [19, Theorem 4.2], weak convergence of the algorithm to a critical point
is provided under some rules for steplength selection. Unfortunately, conver
gence rates under overrelaxation of Algorithm 1 can not be obtained since the
nonsmooth function 𝐇(𝝌), that describes the linear feasible set of (5.18), is not
strongly convex (see [19, Theorem 4.4]).

5.2.3. Adaptive Stepsize Selection
The amount of parameters to tune in Algorithm 1 grows proportionally with the
number of parallel iterations that the setting of algorithm considers. Moreover, the
performance of the algorithm depends directly on these parameters. This could
make the tuning process of Algorithm 1 a cumbersome task, i.e., if several sub
systems are considered in the network and/or when a long time horizon is split in
many smaller intervals.

In this section, we aim to reduce the complexity of selecting stepsizes and regu
larization factors for the distributed optimization algorithm proposed in the previous
section by the use of a spectral method commonly known as BarzilaiBorwein (BB)
methods. In [20], a complete review of of the BB method for large scale uncon
strained optimization methods is presented. In fact, this method is directly linked to
the class of optimization techniques known as Spectral Gradient methods, e.g, [34].
Recently, it has also been adopted in the context of forward backward splitting al
gorithms [35]. However, to our understanding, this work is the first to present the
an adaptive BB method in connection with a primaldual algorithm for a nonconvex
constrained optimization problem. The main idea behind the adaptive stepsize se
lection use information from the current and previous iteration to calculate the next
“optimal” stepsize. Note, that this optimality of the stepsize assumes that the
iterations of the algorithm belong to a quadratic approximation of the smooth func
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tion 𝐐(𝝌,𝝍). For a concise but insightful explanation of this concept the readers
can refer to [35, §4.1]. Moreover, we need to remark that our stepsize selection
algorithm is a minor modification of the methodology described in [35, §4.1]. The
adaptive stepsize method proposed in this chapter is presented in the following
algorithm.

Algorithm 2: Adaptive stepsize selection

Inputs:
Δ𝝃𝑖, ΔΓ 𝑖

Output:
Stepsize 𝜏𝑖
Initialization:
Set the upper stepsize bound 𝜏 > 0 and lower stepsize bound 𝜏 > 0.

Find

𝜏𝑖𝑠 =
(Δ𝝃𝑖)⊤(Δ𝝃𝑖)
(Δ𝝃𝑖)⊤(ΔΓ 𝑖)

, 𝜏𝑖𝑚 =
(Δ𝝃𝑖)⊤(ΔΓ 𝑖)
(ΔΓ 𝑖)⊤(ΔΓ 𝑖)

,

𝜏𝑖𝑝 =
⎧⎪⎪⎨⎪⎪⎩

𝜏𝑖𝑚 if 𝜏𝑖𝑚 > 2𝜏𝑖𝑠 ,
𝜏𝑖𝑠 − 1

2𝜏𝑖𝑚 , otherwise,

𝜏𝑖 =
⎧⎪⎪⎨⎪⎪⎩

𝜏𝑖𝑝 if 𝜏 ≤ 𝜏𝑖𝑝 ≤ 𝜏
𝜏𝑖−1 otherwise.

The first step in Algorithm 2 is to calculate a large stepsize 𝜏𝑖𝑠, and small step
size 𝜏𝑖𝑚, that are know as the steepest descent stepsize and the minimum residual
stepsize, respectively. The steepest descent stepsize aims to generate a sufficient
reduction of the cost in the next iteration, while the minimum residual stepsize
tries to obtain a favorable descending direction. In the second step of Algorithm
2, a selection between the two possible step sizes is performed. This is achieved
using the adaptive rule presented in [36]. The final step of the algorithm is to
guarantees that the stepsizes remain within the predefined bounds. This is an
important step since the optimization problem is nonconvex, which implies that
the stepsizes could become negative. In case that the bounds are violated, the
last valid stepsize is used.

5.2.4. Implementation Remarks
Even though Algorithm 2 updates the stepsizes automatically, still the bounds on
these stepsizes need to be specified. Consequently, some manual tuning is needed
although the number of bounds is much smaller than the number of stepsizes
(which can change for every iteration). Therefore, we provide a set of heuristics
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rules to setup the Algorithm 1 and Algorithm 2. These rules have been obtained
from experience after extensive simulations. As mentioned before, the parameters
that need to be tunned are the upper and lower bounds for the stepsizes in Al
gorithm 2 and the regularization factors in Algorithm 1. In most of the cases, it is
enough set only two sets of common upper and lower stepsize bounds, i.e., step
size bounds primal variables and stepsize bounds for dual variables. Moreover, the
lower bounds for both groups can be the same with a value that is almost zero.
On the other hand, the upper bound for the group of primal variables could often
be set approximately four orders of magnitude higher to the upper bound for the
group of dual variables.

As observed in Algorithm 1b, the selection of regularization factors is automated
by linking them to the dual stepsizes with the coefficients 𝜍𝓁,𝑗, 𝜚𝓁,𝑚. Often, satis
factory results can be obtained by choosing

𝜍𝓁,𝑗 = 𝜚𝓁,𝑚 = 𝛿, (5.39)

for all 𝓁 ∈ L, 𝑚 ∈M and 𝑗 ∈ J , with 𝛿 < 20. Our methodology does not consider
the selection of overrelaxation factors. In fact, from simulations we have observed
that its effect in the numerical performance of the algorithm can overruled by the
adaptive step selection. Nevertheless, choosing small overrelaxation steps can
marginally improve the number of iterations than the algorithm takes to converge.

In case that a vanishing penalty is required, it is often convenient to an introduce
an attenuation coefficient that is inversely proportional to the number of iterations.
Moreover, to satisfy the condition of Lemma 5.1.2, the vanishing penalty take a zero
value after a certain number of iterations. We provide an example of this design
guidelines in Section 5.3.4. Finally, it is important to remark that these guidelines
have obtained after numerically conditioning the optimization problem (5.18) , i.e.,
scaling the problem such that all primal variables at a similar order of magnitude.

5.3. Numerical Results
In this section, we present a detailed numerical analysis of the proposed solution
approach to the CVEM problem. Using the methods presented in Section 5.2 to
solve the CVEM problem for a parallelhybrid vehicle will allow us to highlight the
advantages of our approach with respect to a commercial solver in terms of the
optimal solutions obtained, computation time and scalability. We will also highlight
the existence of only global solutions and demonstrate how to steer the iterations
of Algorithm 1 to find optimal solutions with specific features. Moreover, we will
explore the scalability capabilities of the algorithm to solve a problem using a large
horizon, which enable us to observe the links of between level of parallelization,
computation time and number of iterations.

5.3.1. CVEM for a Parallelhybrid Vehicle
For the simulation study presented below, we consider a CVEM OCP for a parallel
hybrid electric vehicle that consists of an internal combustion engine (ICE), an
electric machine (EM), a highvoltage battery (HVB), a mechanical compressor
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Figure 5.2: Power network topology for a parallelhybrid vehicle.

(COMP) and a heat ventilation and air conditioning (HVAC) system. For nota
tional convenience, we use the set M = {ice, em, hvb, comp, hvac}, instead of
M = {1, 2, 3, 4, 5}, and the set J = {a, b, c}, instead of J = {1, 2, 3}. Note that
this case study considers components that often are considered the main energy
consumers in a vehicle. The power network for this configuration is presented
in Fig. 5.2. There exist tree nodes J that describe the mechanical and electri
cal power balance in the vehicle. These nodes are bridged by the EM and the
COMP, which act as power converters to transform power between the electrical
and mechanical domains. The power network also contains exogenous signals that
represent the power consumed by auxiliary subsystems 𝑣𝑎,𝑘 = 1.5[𝑘𝑊] and the
traction power request 𝑣𝑏,𝑘 = 𝑦𝑟𝑒𝑞,𝑘, which is presented in Fig. 5.3. Note that node
𝑐 does not have any external disturbance, i.e., 𝑣𝑐,𝑘 = 0[𝑘𝑊]. The presence of
the mechanical braking power 𝑦𝑏𝑟,𝑘 ≤ 0 in node 𝑏 implies that it is a dissipative
node, thus J𝑐 = {𝑎, 𝑐} and J𝑑 = {𝑏}. By selecting, 𝑐𝑐,𝑐𝑜𝑚𝑝 = 𝑑𝑏,𝑖𝑐𝑒 = 𝑑𝑎,𝑒𝑚 = −1,
𝑐𝑎,ℎ𝑣𝑏 = 𝑐𝑏,𝑒𝑚 = 𝑐𝑐,ℎ𝑣𝑎𝑐 = 𝑑𝑎,𝑐𝑜𝑚𝑝 = 1 and all other coefficients as zero, the power
network is described by

𝑦ℎ𝑣𝑏,𝑘 + 𝑦𝑒𝑚,𝑘 + 𝑢𝑐𝑜𝑚𝑝 + 𝑣𝑎,𝑘 = 0,
−𝑢𝑖𝑐𝑒,𝑘 − 𝑢𝑒𝑚,𝑘 + 𝑣𝑏,𝑘 = −𝑦𝑏𝑟,𝑘 ≤ 0,

𝑦ℎ𝑣𝑎𝑐,𝑘 − 𝑦𝑐𝑜𝑚𝑝,𝑘 + 𝑣𝑐,𝑘 = 0.
(5.40)

Considering a sampling time of 5[𝑠] and a discretetime horizon 𝐾 = {1,… , 216},
the time span for this example is about 18[𝑚𝑖𝑛]. Initially, we will consider a single
time interval L = {1}, which implies K = K1. For the sake of simplicity, we will omit
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Figure 5.3: Power request.

the subindex 𝓁 in the notation. Under this considerations, the discretetime buffers
are described by 𝐴𝑚 =𝐵𝑚 =𝐶𝑚 =𝐷𝑚 =𝐸𝑚 =𝐹𝑚 =0 for all 𝑚 ∈ {ice, em, comp}. The
HBV has been modelled using an equivalent circuit approach, where we consider
the charging current to be positive. In this case, we have 𝐴ℎ𝑣𝑏 = 1, 𝐵ℎ𝑣𝑏 = 0.1102 ,
𝐶ℎ𝑣𝑏 = 0.2, 𝐷ℎ𝑣𝑏 = 𝐸ℎ𝑣𝑏 = 𝐹ℎ𝑣𝑏 = 0, with initial and final conditions respectively given
by 𝑥ℎ𝑣𝑏,0 = 𝑥ℎ𝑣𝑏,𝐾 = 264.29, which correspond to initial and final states of charge
𝑧ℎ𝑣𝑏,0 = 𝑧ℎ𝑣𝑏,𝐾 = 52.86[%]. The COMP and the HVAC are part of a datadriven model
that uses a HammersteinWeiner structure with a quadratic and an affine inputs, and
an affine output. This model has a dependency on the environment temperature
that, in this case, is assumed to be constant 𝑇𝑎𝑚𝑏 = 5[○𝐶]. The specific structure
of this datadriven model was adapted to the CVEM framework by considering the
quadratic input nonlinearity as the COMP subsystem, while the HVAC is represented
by a discretetime dynamical system described by

𝐴ℎ𝑣𝑎𝑐 =
⎡⎢⎢⎢⎢⎢⎣

0.0080 10.6807 0.0361
0.0007 0.9898 0.0005
−0.0002 0.0017 0.9990

⎤⎥⎥⎥⎥⎥⎦
, 𝐵ℎ𝑣𝑎𝑐 =

⎡⎢⎢⎢⎢⎢⎣

0.9260
0.0972
0.2354

⎤⎥⎥⎥⎥⎥⎦
,

𝐶ℎ𝑣𝑎𝑐 = [0.0373 −0.4035 −0.0118], 𝐷ℎ𝑣𝑎𝑐 = 0.0075,
𝐸ℎ𝑣𝑎𝑐 = diag(1, 1, 1, 0), 𝐹ℎ𝑣𝑎𝑐 = [0 0 0 1], (5.41)

with an external disturbance 𝑤ℎ𝑣𝑎𝑐,𝑘 = [4.4851 0.4096 − 0.0052 2.6499]⊤ for all
𝑘 ∈ K and initial condition 𝑥ℎ𝑣𝑎𝑐,0 = [−305 −24.5 −1342]⊤, which corresponds to
and intital cabin temperature 𝑧ℎ𝑣𝑎𝑐,0 ≈ 17[○𝐶]. The considered case study aims to
minimize the energy consumed by the ICE, which corresponds to 𝑎𝑖𝑐𝑒 = 1 while the
other 𝑎𝑚 and all 𝑏𝑚 are zero. Finally, the parameters that describe the power con
verters are given in Table 5.1, while the input and output bounds of the dynamical
systems are detailed in Table 5.2.

Finally, it should be noted that the simplicity of the power request presented in
Fig. 5.3 allows us to highlight the main functionalities of our optimization algorithm.
Later, we will propose a more challenging and longer power request that will be used
to discuss the performance of our methods, specially highlighting its capabilities to
deal with large scale CVEM problems.
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Table 5.1: Parameters for the power converters.

𝑚 𝑞𝑚,2 𝑞𝑚,1 𝑞𝑚,0
ice 0 1 0
em 2 × 10−5 2.52 19
hvb 1.67 × 10−3 1 0
comp 1.78 × 10−2 −0.93 0.43
hvac 0 1 0

Table 5.2: Input and output bounds.

𝑚 𝑢𝑚 [𝑘𝑊] 𝑢𝑚 [𝑘𝑊] 𝑧𝑚 𝑧𝑚
ice 0 310  
em −210 210  
hvb −92.4 92.4  
comp 0 15 33.33[%] 100[%]
hvac −15 15 16.8[○𝐶] 19[○𝐶]

5.3.2. Multiple Global Optimal Solutions
The OCP discussed in this case study has been solved using the following four
approaches:

• PD: Algorithm 1 with static stepsizes presented in Table 5.3. Specifically,
we neglect the adaptive stepsize selection in this approach by ignoring the
calls to Algorithm 1a ans Algorithm 1b. Thus, the initial stepsizes remain
unmodified for all the iterations of Algorithm 1.

• AdPD1, AdPD2: Algorithm 1 in combination with the adaptive step
size selection scheme described by Algorithm 1. The configuration for this
two approaches follows the guidelines presented in Section 5.2.4 to obtain
the parameters given in Table 5.4. Moreover, we consider the stepsizes,
overrelaxation and regularization factors presented in Table 5.3 as the initial
parameters in these approaches.

• CPLEX: Commercial solver CPLEX [37] that solves a convexified version of
the OCP, where the equality constraints in (5.40) are relaxed into inequalities.
This convexification allows to formulate the CVEM problem as a quadratically
constrained linear program that can be directly solved by CPLEX. Note that
the convex relaxation considered here is a consequence of Theorem 5.1.1 and
guarantees that the solutions given by this approach attain the global cost.
However, the convex relaxation can lead to solutions that are not physically
realizable, which will discussed in the following paragraphs.

The existence of multiple global solutions can be observed in the in Fig. 5.4,
where the solutions obtained by the different approaches are presented. The dif
ferences between the solutions are specially notorious in the time instants where
breaking power 𝑦𝑏𝑟 is different from zero. The way in which power can be dissipated
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Table 5.3: Stepsizes, overrelaxation and regularization factors for PD.

𝛼𝑢𝑖𝑐𝑒 = 300 𝛽𝑢𝑖𝑐𝑒 = 10−8 𝛾𝑎 = 10−3
𝛼𝑢𝑒𝑚 = 10 𝛽𝑢𝑒𝑚 = 10−8 𝛾𝑏 = 10−4
𝛼𝑢ℎ𝑣𝑏 = 100 𝛽𝑢ℎ𝑣𝑏 = 10−8 𝛾𝑐 = 10−3
𝛼𝑢𝑐𝑜𝑚𝑝 = 10 𝛽𝑢𝑐𝑜𝑚𝑝 = 10−8 𝜎𝑎 = 10−2
𝛼𝑢ℎ𝑣𝑎𝑐 = 30 𝛽𝑢ℎ𝑣𝑎𝑐 = 10−8 𝜎𝑏 = 10−3
𝛼𝑠𝑏 = 2 𝛽𝑠𝑏 = 10−8 𝜎𝑐 = 10−2

Table 5.4: Stepsize bounds and regularization coeffcients for AdPD1 and AdPD2.

AdPD1 AdPD2
Primal 𝜏 100 150
Primal 𝜏 10−8 10−8
Dual 𝜏 10−2 7.5 × 10−3
Dual 𝜏 10−8 10−8
𝛿 15 16

is not unique. As a consequence, the multiplicity of solutions appears naturally here
and is propagated to all the other power profiles. Note that the OPC of this case
study and its optimal solutions satisfy the conditions of Lemma 5.1.1, thus, from
Theorem 5.2.1 we can conclude that the obtained solutions are global. In fact,
the optimal cost obtained by all the approaches is 9.97[𝐿/100 𝑘𝑚]. This is also
consistent with the ICE input power depicted in Fig. 5.4, where all the approaches
obtain the same power profile.
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Figure 5.4: Multiple global optimal solutions: Input power profiles for the ICE and the HVB, braking
power and cabin temperature.

In Fig. 5.5, the power balance at node 𝑎 is presented. Here, it can be noted that
the solution obtained by CPLEX does not satisfy the power balance with equality.
This is a consequence of the convex relaxation used in this approach, where the
network equalities were changed into inequalities. Although the solution obtained
by CPLEX has the correct global cost and the ICE power profile is the same as
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Figure 5.5: Optimal power at the electrical node 𝑎 for the different solution approaches. The CPLEX
approach does not satisfy the power balance with equality.

the other approaches, we cannot guarantee that the power profiles for the rest of
subsystems are physically realizable.

5.3.3. Effects of the Adaptive Stepsize Selection
The use of the adaptive stepsize selection described in Algorithm 2 directly simpli
fies in the implementation of Algorithm 1. This can be observed from the number
of parameters selected to implement the approach PD and the adaptive approaches
AdPD1 and AdPD2. In particular, from Table 5.3 and Table 5.4, we observe that
PD needs to select 18 parameters AdPD1 and AdPD2 only need to choose 5
parameters. Moreover, if the time horizon is split in more intervals, the number of
parameters needed in PD will drastically increase while for AdPD1 and AdPD2
this number will remain the same.

An additional advantage of the adaptive implementations is that, for most of the
cases, they could achieve a better numerical performance than implementations
with static stepsizes. This is observed in Fig. 5.6, where the convergence of the
approaches PD, AdPD1 and AdPD2 is given in terms of the evolution of the merit
function

𝜑 =∑
𝑘∈K

𝑢𝑖𝑐𝑒,𝑘 + ∥𝑦ℎ𝑣𝑏,𝑘 + 𝑦𝑒𝑚,𝑘 + 𝑢𝑐𝑜𝑚𝑝 + 𝑣𝑎,𝑘∥2 + ∥−𝑢𝑖𝑐𝑒,𝑘 − 𝑢𝑒𝑚,𝑘 + 𝑣𝑏,𝑘 − 𝑦𝑏𝑟,𝑘∥

+ ∥𝑦ℎ𝑣𝑎𝑐,𝑘 − 𝑦𝑐𝑜𝑚𝑝,𝑘 + 𝑣𝑐,𝑘∥ (5.42)

with respect to the number of iterations. The convergence of PD algorithm is
smooth compared ADPD1 and ADPD2. However, PD is takes a significant num
ber of additional iterations to converge. This is also observed in Table 5.5, where the
computation time of AdPD1 and AdPD2 is approximately one order of magnitude
lower than the convergence time for PD. These results do not necesarily imply that
using the adaptive stepsize selection presented Algorithm 2 automatically leads to
a better performance. However, in this analysis we highlight that the use of Al
gorithm 2 could simplify the implementation of the optimization method described
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Figure 5.6: Convergence of the approches PD, AdPD1 and AdPD2 using to merit function 𝜑. The
approahes with adaptive stepsizes need less iterations to converge.

Table 5.5: Convergence results in therms of cost, number of iterations and computation time for the
approaches PD, AdPD1 and AdPD2.

Cost [l/100 km] Iterations Time [s]
PD 9.97 1918 246.9

AdPD1 9.97 249 30.11
AdPD2 9.97 427 49.90

in Algorithm 1, by reducing the number of tuning parameters, and achieve good
performance.

5.3.4. Selection of Optimal Solutions
In practice, some specific solutions can be preferred among the set of all possible
global solutions of the CVEM OCP. For instance, a smooth power profile for the HVB
could be beneficial for reducing battery aging. This motivates the necessity of a tool
to steer the iterations of Algorithm 1 towards a desired solution. This tool is the
vanishing penalty function introduced in Section 5.1.4. To illustrate this concept,
we will use the guidelines given in Section 5.2.4 to define the following vanishing
penalty function

𝝂(u𝑖ℎ𝑣𝑏) =
⎧⎪⎪⎨⎪⎪⎩

1
𝑖 𝝑(u𝑖ℎ𝑣𝑏), if 𝑖 ≤ 150;
0, otherwise, (5.43)

where 𝑖 represents the 𝑖th iteration of the algorithm and 𝜗(⋅) is a function that
captures specific features in the desired solution. For our analysis, we will use the
following cases:

• 𝓁1norm: Considering 𝜗(uℎ𝑣𝑏) = 0.5 ∥uℎ𝑣𝑏∥1, the vanishing penalty function
(5.43) stimulates the existence of peaks in the HVB power profile.
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Figure 5.7: Selection of solutions using vanishing penalties. The 𝓁1norm case depicts a power profiles
with larger peaks while 𝓁2norm case shows a smooth power profiles.

• 𝓁𝟐norm: Considering 𝜗(uℎ𝑣𝑏) = 2.5 ∥uℎ𝑣𝑏∥22, a smooth power profile in the
HVB is expected.

Note that (5.43) systematically reduces its magnitude with each iteration until it
completely vanishes. At this point, we recover the original optimization problem
(5.1) and the current iteration of algorithm might be close enough to the domain
of attraction of the desired solution, thus converging to it. The solutions for the
two vanishing penalties considered in this analysis are depicted in Fig. 5.7, where
the expected properties for the 𝓁1norm and 𝓁2norm cases are observed in the
HVB power profile. Interestingly, the penalties also have similar effects on power
profiles, e.g., the braking power.

5.3.5. Horizon Splitting
In this section, we will illustrate the functionality of the horizon splitting feature
introduced in Section 5.1.4. Although splitting the horizon directly affects the nu
merical performance of the method proposed in this chapter, we will leave this
discussion Section 5.3.6. We split the discretetime horizon into 𝐿 = 3 intervals of
similar length such that K = ⋃𝓁∈LK𝓁 with L = {1, 2, 3}. For more details, refer to
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Figure 5.8: Horizon splitting: Input power profiles for the ICE and the HVB, braking power and cabin
temperature for 3 time intervals.

step 4 in Section 5.1.4. We consider the settings of AdPD1 presented in Table 5.4
to solve the OPC described under this configuration and ist solutions are depicted
in Fig. 5.8. Here, the optimal power and temperature profiles show smooth transi
tions between the time intervals. As expected, the global optimal cost obtained is
9.77[𝐿/100𝑘𝑚], which is equal to the cost reported in Section 5.3.2 for the formu
lation that considers a single time interval. This is also consistent with the optimal
ICE power profile depicted in Fig. 5.8, which shows virtually the same curve pre
sented in Fig. 5.4. The multiplicity of global solutions is also noted by comparing
the HVB power, the braking power the cabin temperature shown in Fig. 5.8 with
the profiles presented in Fig. 5.4.

5.3.6. Scalability and Numerical Performance
The main focus of the analysis presented in this section is the scalability of the
methods presented in this chapter. In particular, we will compare the scalability
of the approaches AdPD1 and CPLEX. To this end, we will consider a realistic
power request with large time horizon to solve the parallelhybrid vehicle CVEM
problem described in Section 5.3.1. This will also allow us to discuss the numer
ical performance of the implementation AdPD1 under different horizon splitting
configurations.

In Fig. 5.9, the power request considered in this analysis is depicted. This
power request has been obtained from a real driving cycle that describes a vehicle
travelling form Rotterdam to Strasbourg and it contains 23808 data points sampled
at 1[𝑠]. It should be noted that the dynamical representations of the HVB and the
HVAC have been discretized with a sampling time of 1[𝑠] to be compatible with the
power request considered in this analysis. We will compare the computation time
of AdPD1 with a single time interval, i.e. 𝐿 = 1, with respect to CPLEX for for
different horizon lengths 𝐾.

The results depicted in Fig. 5.10 indicate that the computation time of CPLEX
has a polynomial growth while AdPD1 shows a linear tendency. Interestingly,
CPLEX was not able to provide solutions for horizons lager than 320[𝑠], as it is
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Figure 5.9: Power request considered for scalability and numerical performance analysis. The power
request is a 6.6 hours profile obtained from a vehicle travelling from Rotterdam to Strasbourg.

Table 5.6: Computational performace: CPLEX vs. AdPD1

CPLEX AdPD1
𝐾 [s] Cost Time [s] Cost Time [s]
60 11.45 111.45 14
120 11.26 4 11.26 25
180 14.58 12 14.60 24
240 12.32 52 12.35 27
300 11.17 107 11.17 55
320 10.94 200 10.95 58
360   10.66 79

presented in Table 5.6. This limitation is due to memory usage. Specifically, in this
example, we use the quadratically constrained quadratic programming solver from
CPLEX [37], which consumes a large amount of memory to encode the complete
set of quadratic power network constraints. On the contrary, AdPD1 solves a
sequence of coordinated smaller subproblems for each subsystem, which is favor
able in terms of memory use. Moreover, these subproblems are constrained least
squares programs with highly structured linear feasible sets, which can be solved
very efficiently.

In Table 5.7, we complete the scalability analysis of AdPD1 for the rest of
the power request cycle considered in this example. Observe that this approach
exhibits a linear trend in the computation time with respect to the horizon length
for horizons bellow 10000[𝑠]. Moreover, it should be noted that for horizon lengths
larger than 1000[𝑠], the reported performance was achieved by splitting the time
horizon into several intervals. It is important to remark that in this analysis, we
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Figure 5.10: Computational perfrmance: CPLEX vs. AdPD.

have solved a large scale CVEM problem over a time horizon of approximately 7[ℎ].
The largescale optimization problem has more than 4×105 decision variables and
was solved using a basic desktop computer. This clearly illustrates the advantage
of splitting the time horizon.

Splitting the horizon into several intervals helps to breakdown the complex
ity of the optimization problem into several simpler subproblems. Algorithm 1 was
designed to obtain highly structured coordinated subproblems, which bring as con
sequence improvement in the numerical performance of the algorithm. However,
finding the ideal number of splitting intervals is nontrivial. A large number of in
tervals implies a large number of subproblems and the coordination among them
could become a bottleneck in Algorithm 1.

We will illustrate this idea by fixing the horizon length at 3000[𝑠] and solving the
CVEM problem with a different number of time splitting intervals. In Fig. 5.11, we
present the results in terms of computation time and number of iterations. Note that
the number of iterations tend to increase proportionally to the number of intervals
used. However, this tendency is not observed for the computation time. From
Fig. 5.11, we observe that the ideal splitting has 3 or 4 intervals. For the cases
with one and two intervals, a higher computation time is observed although the
number of iterations is lower. This is expected since the subproblems are larger
for those cases, therefore, consuming more computation time. On the other hand,
for the cases with a number of intervals larger than 5, the number of iterations
and also the computation time are larger. In those cases, the subproblems are
smaller but the coordination between a larger number of subproblems takes more
iterations and consequently the computation time also increases. The previous
results show the advantage of decomposing the time horizon for large scale CVEM
problems. However, the choice of the number of splitting intervals should be made
with caution.
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Table 5.7: Scalability of AdPD1

𝐾 [s] Cost Time [s] Iterations Intervals
360 10.66 79 541 1
420 10.29 39 198 1
480 10.04 42 174 1
540 9.85 66 229 1
600 9.74 88 278 1
700 9.46 68 172 1
800 9.07 112 213 1
1000 9.82 108 243 3
2000 9.22 267 234 3
3000 9.06 592 212 3
6000 8.74 2100 185 3
10000 8.85 2867 384 10
23808 9.03 30126 1807 30
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Figure 5.11: Computational perfrmance of AdPD1 for different number of time intervals with
K=3000[s].
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5.4. Conclusions
In this chapter, we have developed scalable and flexible optimization methods for
solving nonconvex CVEM problem. By analyzing the inherent structure of OCP, we
have proved that the nonconvex CVEM problem only has global optimal solutions
under mild conditions. We exploited this result in order to propose a reformula
tion of the CVEM problem that is separable in terms of interconnected subsystems
and time intervals. The proposed formulation has been addressed using Primal
Dual Splitting method to obtain a distributed optimization algorithm. The proposed
algorithm breaks down the complexity of the problem into several simpler highly
structured coordinated subproblems, which has brought as consequence an im
proved scalability and computation time compared to the early work presented
in [18]. Spectral methods have been be used to automatically select the stepsizes
of the optimization algorithm at every iteration, which has not only simplified the
implementation process but it also has provided a reduced computation time for
convergence of the algorithm.

The regularization properties of our formulation allowed us to solve a CVEM
problem for a parallelhybrid vehicle case study that presents almost linear power
losses, which was cumbersome with approaches like dual decomposition. Further
more, we solved the CVEM for large horizon to demonstrate the scalability of the
algorithm and its numerical performance. Specifically, this method as been able to
solve the CVEM problem approximately 3 times faster than the CPLEX implemen
tation and it has solved the problem with a 100 times larger time horizon. The
results obtained have demonstrated that the methodology presented in this work
can be used to solve large scale CVEM problems. Moreover, since we have pro
vided guarantees for the global optimality of solutions obtained by the algorithm,
this methodology could be used to create benchmarks for CVEM strategies without
the necessity of rely to dynamic programing approaches.
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6
TrafficAware Vehicle Energy
Management Strategies via

ScenarioBased Optimization

This chapter explores the development of trafficaware energy management
strategies by means of scenariobased optimization. This is motivated by
that fact that real driving conditions are subject to uncertainty, thereby mak
ing the realtime optimization of the energy consumption of a vehicle to be a
challenging problem. In order to deal with this situation, we employ the cur
rent framework of complete vehicle energy management in a receding horizon
fashion, in which we consider random constraints representing realizations
of exogenous signals, i.e., the uncertain driving conditions. Additionally, we
study three methods for velocity prediction, i.e., a method based on (average)
traffic flow information, a method based on Gaussian process regression,
and a method that combines both. The proposed strategy is tested with real
traffic data using a case study of the power split in a serieshybrid electric
vehicle. The behavior of the battery, control inputs and fuel consumption gen
eratedwith the resulting strategies are compared against the optimal solution
from offline optimization and a receding horizon strategy with perfect predic
tion of the future, For the considered case, the use of a Gaussian process
regression and the traffic speed achieves near optimal fuel consumption.

This chapter is based on P.3.
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E nergy management strategies (EMS) typically require the driving cycle to be
known a priori. Unfortunately, the driving cycle is affected by the presence of

uncertain driving conditions, e.g., traffic congestion, varying speed limits and differ
ent driving styles. Therefore, limiting the performance of realtime implementations
of energy management strategies. Alternatively, stochastic optimal control meth
ods provide noticeable extensions for Trafficaware Energy Management Strategies
(TaEMS), i.e., strategies that take into account the uncertainty present in real traf
fic conditions. These strategies are typically obtained using Stochastic Dynamic
Programming (SDP) [1], which suffers from scalability problems known as ”Curse
of Dimensionality”, or Stochastic MPC [2], which could become computationally
demanding when the number of subsystems considered in the control problem in
creases. Nevertheless, the need to account for the presence of uncertainty is still
an open topic to improve the implementation capabilities of these EMS.

In this chapter, we use the recent developments of scenariobased optimiza
tion [3–5] to extend the CVEM framework presented in Chapter 5 of this thesis.
This aims to achieve a tractable method for trafficaware complete vehicle energy
management, in which an intuitive tradeoff can be made between computational
complexity and robustness depending on the number of scenarios considered. Fur
thermore, the proposed method has the potential of using distributed optimization
techniques to improve its implementation capabilities (although this will not be ad
dressed in this chapter). In addition, we propose the use of Gaussian Processes
Regression for this TaEMS to generate multiple predictions of the future driving
situations, i.e., sample random scenarios, which are combined with traffic flow in
formation to provide longterm speed predictions.

This chapter is organized as follows: In Section 6.1, the general vehicle en
ergy management problem formulation is presented and extended as an uncertain
optimal control problem. A description of the prediction methods for trafficaware
vehicle energy management is included in Section 6.2. Section 6.3 presents the
case study considered in this chapter and the simulation results obtained are de
tailed in Section 6.4. Finally, conclusions are presented in Section 6.5.

6.1. TrafficAware Vehicle Energy Management
In this section, we present the mathematical formulation describing the optimal
control problem arising from the CVEM framework in a receding horizon fashion.
Additionally, an extension of the resulting RecedingHorizon Optimal Control Prob
lem (RHOCP) in the context of scenariobased optimization is introduced to account
for uncertain factors affecting a vehicle, i.e., the uncertain power request caused
by, e.g., unknown driving conditions.

6.1.1. Receding Horizon Optimal Control Problem
In general, the CVEM problem aims to define the optimal energy flows between the
subsystems in the power network of a vehicle over a prediction horizon 𝑘 ∈ K =
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{0, 1,… ,𝐾 − 1} given the measurements at time step 𝑡 ∈ ℕ represented by

min
{𝑢𝑚,𝑘∣𝑡 ,𝑦𝑚,𝑘∣𝑡 ,𝑥𝑚,𝑘∣𝑡}

∑
𝑚∈M

∑
𝑘∈K

𝑎𝑚,𝑘𝑦𝑚,𝑘∣𝑡 + 𝑏𝑚,𝑘𝑢𝑚,𝑘∣𝑡 (6.1a)

where 𝑥𝑚,𝑘∣𝑡 ∈ ℝ𝑛𝑚 are the states, 𝑢𝑚,𝑘∣𝑡 ∈ ℝ are scalar inputs and 𝑦𝑚,𝑘∣𝑡 ∈ ℝ are
scalar outputs of the converter of subsystem 𝑚 ∈M = {1,… ,𝑀}, and the coeffi
cients 𝑎𝑚,𝑘 ∈ ℝ+0, 𝑏𝑚,𝑘 ∈ ℝ define the desired cost metric based on the energy
consumed by each subsystem at time instant 𝑘 + 𝑡. For instance, setting all coeffi
cients to zero apart from 𝑎1,𝑘 and assuming that 𝑚 = 1 corresponds to the combus
tion engine results in a fuel consumption minimization, where 𝑦1,𝑘∣𝑡 represents the
chemical fuel power flow and 𝑎1,𝑘 can be either a constant or variable coefficient,
e.g., sampling time. Note that the subscript [⋅]⋅∣𝑡 will be dropped for clarity of the
notation as the terms {𝑢, 𝑦, 𝑥,𝑤} throughout this chapter define predictions at time
𝑘 + 𝑡 given information of time 𝑡 ∈ ℕ and 𝑘 ∈ K.

The minimization of (6.1a) is subject to a set of constraints describing the behav
ior of the vehicle’s power network and the exchanges of power in it (Fig. 6.1a shows
a general network structure). First, we consider quadratic equality constraints that
define the inputoutput behavior of the converter in each subsystem

𝑦𝑚,𝑘 = 1
2𝛾2,𝑚𝑢

2
𝑚,𝑘 + 𝛾1,𝑚𝑢𝑚,𝑘 + 𝛾0,𝑚 (6.1b)

with 𝛾2,𝑚 ∈ ℝ+, 𝛾1,𝑚 ∈ ℝ and 𝛾0,𝑚 ∈ ℝ being coefficients that define the efficiency
of converter 𝑚 ∈M. Furthermore, the network presents different states that are
being controlled, imposing constraints based on the linear system dynamics of the
energy buffers

𝑥𝑚,𝑘+1 = 𝐴𝑚,𝑘𝑥𝑚,𝑘 + 𝐵𝑚,𝑘𝑢𝑚,𝑘 (6.1c)

with 𝛾2,𝑚 ∈ ℝ+, 𝛾1,𝑚 ∈ ℝ and 𝛾0,𝑚 ∈ ℝ being coefficients that define the efficiency
of converter 𝑚 ∈M. Furthermore, the network presents different states that are
being controlled, imposing constraints based on the linear system dynamics of the
energy buffers

𝑥𝑚,𝑘+1 = 𝐴𝑚,𝑘𝑥𝑚,𝑘 + 𝐵𝑚,𝑘𝑢𝑚,𝑘 (6.1d)

in which 𝑥𝑚,𝑘 ∈ ℝ𝑛𝑚 and 𝑢𝑚,𝑘 ∈ ℝ denote the predicted states and inputs, respec
tively, of subsystem 𝑚 ∈ M, and where the initial states 𝑥𝑚,0 are known. The
admissible states and inputs are subject to constraints, i.e.,

𝑥𝑚,𝑘 ∈ X𝑚 and 𝑢𝑚,𝑘 ∈ U𝑚 (6.1e)

Moreover, the interconnections of subsystems are described by J = {1,… , 𝐽} nodes
and no direct interactions between them are considered, i.e., each subsystem can
be connected only to a node, resulting in the power balances

𝑔𝑗(𝑦𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝑤𝑗,𝑘) ≤ 0 (6.1f)
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(a) Power network structure (b) Powertrain topology

Figure 6.1: CVEM diagrams.

for all 𝑗 ∈ J and 𝑘 ∈ K, in which:

𝑔𝑗(𝑦𝑚,𝑘 ,𝑢𝑚,𝑘 ,𝑤𝑗,𝑘)=∑
𝑚∈M

𝑐𝑗,𝑚𝑦𝑚,𝑘+𝑑𝑗,𝑚𝑢𝑚,𝑘+𝑤𝑗,𝑘 (6.1g)

In (6.1f), 𝑤𝑗,𝑘 are exogenous signals acting on each node, e.g., the power re
quest from the driver or the auxiliaries. Generally for EMS, it is assumed that these
exogenous signals are known in advance or can be perfectly predicted. However,
this might not be always true, as they are generated by the environment or external
factors, e.g., the driver. Therefore, we can consider that these unknown exogenous
signals have a stochastic nature, turning the CVEM problem (6.1) into a Stochas
tic RHOCP. Even though different methods can be used to solve this problem, we
make use of the scenario approach [3] to solve the resulting uncertain RHOCP in
a computationally advantageous way as presented in the remainder of this section
(Detailed information on the CVEM framework can be found in Chapter 5).

6.1.2. Stochastic RHOCP
Before presenting the scenario approach, let us consider a stochastic extensions to
problem (6.1) accounting for the unknown exogenous signals 𝑤𝑗,𝑘 in nodes 𝑗 ∈ J .
In particular, we can post the resulting CVEM problem as the following chance
constrained RHOCP

min
{𝑢𝑚,𝑘 ,𝑦𝑚,𝑘 ,𝑥𝑚,𝑘}

∑
𝑚∈M

∑
𝑘∈K

𝑎𝑚,𝑘𝑦𝑚,𝑘 + 𝑏𝑚,𝑘𝑢𝑚,𝑘 (6.2a)

subject to (6.1b)  (6.1e), and

𝑃𝑟{𝑔𝑗(𝑦𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝑤𝑗,𝑘) ≤ 0} ≥ 1 − 𝜖𝑗 (6.2b)

where the parameters 𝜖𝑗 are acceptable infeasibility levels and the functions 𝑔𝑗 are
defined as in (6.1f). Here, the need to guarantee that the chanceconstraints (6.2b)
will hold for any realization of 𝑤𝑗,𝑘 becomes a major restriction, since the distribu
tions of these exogenous signals might be unknown and, even if they are known,
the solution could be more conservative and lead to an undesired performance.
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6.1.3. ScenarioBased TrafficAware Energy Management
In order to deal with the characteristics of the chanceconstrained formulation in the
previous section, we make use of the scenario approach [3] instead. This method
ology for datadriven optimization aims to solve the resulting chanceconstrained
RHOCP by means of a deterministic approximation that considers only a finite num
ber of realizations of the unknown exogenous signals 𝑤𝑗,𝑘, where taking more sam
ples into account increases the chances of satisfying (6.1f), thereby providing a
tuning knob to balance robustness versus performance of the scenario solution.
This allows to achieve a computationally tractable problem when multiple subsys
tems are considered, in comparison to classic stochastic EMS based on SDP [1].
With this in mind, the power balances (6.2b) in problem (6.2) can be replaced by a
deterministic set of randomly sampled constraints (scenarios), leading to what we
refer to as scenariobased TaEMS.

Now, following the scenario approach and the results in [4, 5], we introduce
some definitions and assumptions required for the scenariobased RHOCP:

1. The uncertainties 𝑤𝑗,𝑘 of each node are contained in a single variable 𝑤𝑘 =
[𝑤1,𝑘 , … ,𝑤𝐽,𝑘]⊺ which is a random variable with (maybe unknown) probability
measure Pr and support set W.

2. A sequence of variables {𝑤[𝜄]0 , … ,𝑤[𝜄]𝐾−1}, where 𝜄 ∈ I is the 𝜄− 𝑡ℎ realization of
the uncertainty 𝑤𝑘 over the prediction horizon defining the scenario 𝑤[𝜄].

3. Enough independent and identically distributed (i.i.d.) samples 𝑤[𝜄] can be
obtained at every time instant, giving a set of scenarios I = {1,… , 𝐼}.

4. The scenariobased RHOCP problem has a feasible solution for every 𝑤[𝜄].
With this definitions, the resulting scenariobased TaEMS problem is given by

min
{𝑢𝑚,𝑘 ,𝑦𝑚,𝑘 ,𝑥𝑚,𝑘}

∑
𝑚∈M

∑
𝑘∈K

𝑎𝑚,𝑘𝑦𝑚,𝑘 + 𝑏𝑚,𝑘𝑢𝑚,𝑘 (6.3a)

subject to

𝑦𝑚,𝑘 = 1
2𝛾2,𝑚𝑢

2
𝑚,𝑘 + 𝛾1,𝑚𝑢𝑚,𝑘 + 𝛾0,𝑚 (6.3b)

𝑥𝑚,𝑘+1 = 𝐴𝑚,𝑘𝑥𝑚,𝑘 + 𝐵𝑚,𝑘𝑢𝑚,𝑘 (6.3c)
𝑥𝑚,𝑘 ∈ X𝑚 , 𝑢𝑚,𝑘 ∈ U𝑚 (6.3d)

and
𝑔𝑗(𝑦𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝑤[𝜄]𝑗,𝑘) ≤ 0, (6.3e)

for all 𝜄 ∈ I and 𝑗 ∈ J , and 𝑘 ∈ K, 𝑚 ∈M.
It is important to remark that assumption 4 which is linked to [5, Assumption 5],

seems to be restrictive for our application. In practice, the infeasibility of the con
straints implies that the vehicle cannot provide enough power to satisfy the power
balance at some time instant. This might lead to reduced drivability / user comfort
and not to problems with vehicle safety. Moreover, as it is also discussed in [5], the
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feedback action is expected correct this in the future iterations of the receding hori
zon control. A possible approach to enforce feasibility during the implementation
of this approach is to relax the inequality (6.3e) as

𝑔𝑗(𝑦𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝑤[𝜄]𝑗,𝑘) ≤ 𝜖,

where 𝜖 ≥ 0 is an auxiliary decision variable that is penalized in the cost function
(6.3a).

From (6.3), we make use of the results in [4] to address the selection of the
number of scenarios required for a particular feasibility level. To this end, let us
define the probability of constraint violation

𝑉𝑗,𝑘(𝑦∗𝑚,𝑘 , 𝑢∗𝑚,𝑘) = 𝑃𝑟{𝑔𝑗(𝑦∗𝑚,𝑘 , 𝑢∗𝑚,𝑘 , 𝑤
[𝜄]
𝑗,𝑘) > 0} (6.4)

where 𝑢∗𝑚,𝑘 , 𝑦∗𝑚,𝑘 refer to the scenario solution. It has been shown in [3] and [4]
that 𝑉𝑗,𝑘(𝑦∗𝑚,𝑘 , 𝑢∗𝑚,𝑘) is bounded by a Beta distribution B(𝜌𝑗 , 𝐼 − 𝜌𝑗 + 1), such that

𝑃𝑟𝐼{𝑉𝑗,𝑘(𝑦∗𝑚,𝑘 , 𝑢∗𝑚,𝑘) > 𝜖𝑗} ≤ B(𝜌𝑗 , 𝐼 − 𝜌𝑗 + 1) (6.5)

where 𝜌𝑗 is the support rank of the constraint in node 𝑗 and 𝑃𝑟𝐼 is the 𝐼−𝑡ℎ product
of 𝑃𝑟 for the sampled scenarios. Here, we make use of the results in [4] instead
of considering the number of decision variables as in the classic scenario approach
presented in [3]. This is favorable as only a reduced number of the decision vari
ables in problem (6.3) is affected by (6.3e) at every step on the prediction horizon
𝑘 regardless of the number of sampled scenarios.

From this formulation, we aim to find the minimum number of samples re
quired to satisfy the original chance constraint, as the more samples are drawn, the
more conservative the solution becomes. Nevertheless, given that new samples are
drawn at each time step, we consider a bound on the expected violation probability
𝔼𝐼[𝑉𝑗,𝑘(𝑦∗𝑚,𝑘∣𝑡 , 𝑢∗𝑚,𝑘∣𝑡)] ≤ 𝜖𝑗, which leads to a sample size of 𝜖𝑗 ≤ 𝜌𝑗/(𝐼 + 1). This
result follows from the integration of (6.5), which can be interpreted as the proba
bility that the 𝐼+1 sample becomes a support constraint, i.e., the solution obtained
with the scenarios I does not satisfy the power balances 𝑔𝑗(⋅) ≤ 0 (see [3–5] for
further details and proofs).

6.2. Scenario Generators
In order to make predictions of the unknown traffic conditions, and thus the ex
ogenous signals 𝑤𝑗,𝑘, we present the three velocity prediction methods used in this
work, e.g., predictions based on GPS/eHorizon data, predictions using a Gaussian
Process Regression (GPR) model, and a mixed generator that combines both the
GPS and the GPR model.

6.2.1. GPS / eHorizon Methods
First, we consider that the vehicle has access to traffic information through a Global
Positioning System (GPS) or an electronic horizon (eHorizon), which are devises
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available in today’s vehicles. Here, the average traffic speed is calculated based on
the traffic flow through a particular section of the road as follows:

𝑣𝜂𝑎𝑣𝑔,𝑡𝑤 = 1
𝑃𝜂

𝑃𝜂

∑
𝑝=1

𝑣𝑝𝑡𝑤 ,

where 𝜂 are the road sections and 𝑃𝜂 is number of vehicles passing through a
particular road section during a time window, e.g., an update frequency between 1
to 5 minutes, as is usually done in mapping and traffic management systems [6, 7].
Here, the generation of speed predictions assumes that the vehicle will follow the
latest traffic speed recorded depending on the road section where it is located.

6.2.2. Gaussian Process Regression
Since the average traffic speed only provides a deterministic estimate of the traf
fic situation, a probabilistic model to forecast the future speed of the vehicle is
proposed in this section. In particular, we propose to use a Gaussian Process Re
gression model [8]. The selection of this nonparametric model is motivated by
the remarkable prediction capabilities achieved with machine learning methods in
[9–11] and, at the same time, its particular ability to provide a direct measure for
the uncertainty of the predictions. For our application, the GPR model is employed
as a predictor for a Nonlinear AutoRegressive Model (NARGP), which results in
regressing a function z𝑘 = f(q𝑘) + e𝑘 with a feature vector q𝑘 = {𝑣𝑘−𝑝, … , 𝑣𝑘} that
predicts the future speed z𝑘 = {𝑣𝑘+1}. Additionally, e𝑘 ∼ N (0, 𝜎2𝑛) is a noise term
acting on the output of the function and f ∼ GP(𝜇, 𝑘𝑒𝑟) is a GPR defined with a prior
distribution with 𝜇 = 0, a kernel function 𝑘𝑒𝑟, e.g., squared exponential, Matérn,
etc, and a set of hyperparameters Θ. Furthermore, the definition of these hyper
parameters is done by minimizing the negative loglikelihood function on training
data D = {(𝑞𝑛 , 𝑧𝑛) ∣ 𝑛 = {1,… ,𝑁}}, see [8] for further details.

Once the NARGP is fully defined, we obtain a model that allows us to generate
random samples from the posterior distribution, such that

𝑣𝑘+1 ∼ 𝑃𝑟(𝑧∗∣D, 𝑞∗) = N (𝑓𝑝𝑜𝑠𝑡 , 𝑘𝑒𝑟𝑝𝑜𝑠𝑡 + 𝜎2𝑛 ; Θ) (6.6a)

in which

𝑓post = 𝑘𝑒𝑟⊺(𝑞∗)(𝑘𝑒𝑟 + 𝜎2𝑛I)−1z (6.6b)

𝑘𝑒𝑟post = 𝑘𝑒𝑟(𝑞∗, 𝑞∗) − 𝑘𝑒𝑟⊺(𝑞∗)(𝑘𝑒𝑟 + 𝜎2𝑛I)−1𝑘𝑒𝑟(𝑞∗) (6.6c)

with z the output training data, I the identity matrix and points 𝑞∗, 𝑧∗ referring
to a test input and output, respectively. For this method, we consider a naive
approach to generate the predictions over the horizonK, neglecting the propagation
of uncertainty to simplify the process and avoid intractable predictions with large
speed changes.

Although predicting over multiple time steps ahead with the NARGP results
in predictions at uncertain inputs, i.e., regressing the prediction of 𝑣𝑘+1 that is a
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random variable, we only consider a naive approach to generate the predictions
over the prediction horizon K, since it simplifies the prediction process and avoids
large speed changes which might result in intractable predictions.

6.2.3. Mixed Generator Approach
Given that long prediction horizons lead to a better performance of the EMS [12],
a combination of the velocity prediction methods is considered in this work in order
to exploit the benefits of each method, e.g., account for the uncertainty in a short
term and preserve the preview of the traffic situation given by the average traffic
speed. This combination is motivated by the fact that most of the maneuvers in
car following or traffic situations require a very short time (see [10] and references
therein) and the possible mismatch between the traffic speed and the individual
speed profiles. At the same time, it is known that machine learning methods tend
to incur in large prediction errors when the prediction horizon length increases, as
these methods are not able to account for longterm traffic dependencies [11]. In
fact, most of the methods present in the literature are restricted to predictions of 10
seconds in the future and, therefore, the integration of external information could
lead to substantial fuel savings while generating more robust solutions against the
actions of the driver.

6.3. Case Study Description
In this section, we present a case study is based on a series hybrid vehicle. The rel
ative simplicity of this will allow us to evaluate the potential of the proposed TaEMS
formulation. We will start by presenting the RHOCP formulation, followed by the
selection of the sample size and the explanation of the power request determina
tion.

6.3.1. Receding Horizon Optimal Control Problem
The case study in this chapter considers a serieshybrid electric vehicle (SHEV),
which powertrain topology is represented as the network of energy buffers de
picted in Fig. 6.1b with 𝑚 = {𝑒𝑔𝑢, ℎ𝑣𝑏, 𝑒𝑚}. In this figure, EGU stands for En
gine/Generator Unit, with 𝑦𝑒𝑔𝑢 being the fuel consumption and 𝑢𝑒𝑔𝑢 the power
supplied by the EGU to the power network. Furthermore, 𝑢ℎ𝑣𝑏 and 𝑦ℎ𝑣𝑏 define the
electric power coming from the HighVoltage Battery (HVB) and 𝑥ℎ𝑣𝑏 represents
the stored energy in the battery. Besides this subsystems, the Electric Motor (EM)
provides 𝑦𝑒𝑚, which represents the (unknown) power request defined by the driver.
Note that 𝑦𝑒𝑚 propels the vehicle when being positive and brakes the vehicle when
being a negative value.

The node interconnecting the elements in the network defines a power balance
as in (6.1f), where the parameters 𝑐ℎ𝑣𝑏 = 1, 𝑑𝑒𝑔𝑢 = −1 and 𝑐𝑒𝑚 = 1 are specified
according to the flow direction of the power for each subsystem and all the others
are set to zero. On top of this, an external braking signal 𝑦𝑏𝑟 is introduced to
account for the mechanical braking that dissipates the excess of energy in the
powertrain and 𝑥ℎ𝑣𝑏,0 = 𝑥ℎ𝑣𝑏,𝐾 is included in (6.3d). According to the problem
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Table 6.1: Powertain model coefficients

EGU
𝛾2,𝑒𝑔𝑢 = 2 ⋅ 10−5 𝛾1,𝑒𝑔𝑢 = 2.52 𝛾0,𝑒𝑔𝑢 = 19
𝑢𝑒𝑔𝑢 = 210 [kW] 𝑢𝑒𝑔𝑢 = 0 [kW]

HVB
𝛾2,ℎ𝑣𝑏 = 1.671 ⋅ 10−3 𝛾1,ℎ𝑣𝑏 = −1 𝛾0,ℎ𝑣𝑏 = 0
𝑢ℎ𝑣𝑏 = 92.4 [kW] 𝑢ℎ𝑣𝑏 = −92.4 [kW] 𝑥ℎ𝑣𝑏,0 = 11988 [kJ]
𝑥ℎ𝑏𝑣 = 22680 [kJ] 𝑥ℎ𝑏𝑣 = 7560 [kJ] 𝑥ℎ𝑣𝑏,𝐾 = 11988 [kJ]

formulation in Section 6.1.1, the task of reducing the fuel consumed by the SHEV
is described by the cost function (6.1a) with 𝑎𝑒𝑔𝑢,𝑘 = 𝜏𝑘 and all the remaining
parameters 𝑎𝑚,𝑘 = 𝑏𝑚,𝑘 = 0, as they do not contribute to the objective of the problem
and where 𝜏𝑘 is the sampling interval along the prediction horizon K. In this case,
𝑦𝑒𝑚,𝑘 is considered to be an uncertain consequence of the driver actions and only
the power request 𝑦𝑒𝑚,0 is known at the current time step 𝑡, which is a realistic
assumption given the onboard sensors in today’s vehicles. Furthermore, Table 6.1
presents the parameters defining the powertrain in this case study.

By substituting (6.3b) for the EGU in (6.3a) and considering the case study’s pa
rameters, the problem can be reformulated as a Quadratically Constrained Quadratic
Program (QCQP) which can be efficiently solved with specialized solvers, e.g., CPLEX
[13], resulting in

min
{𝑢𝑚,𝑘}

∑
𝑘∈𝐾

𝜏𝑘(12𝛾2,𝑒𝑔𝑢𝑢
2
𝑒𝑔𝑢,𝑘 + 𝛾1,𝑒𝑔𝑢𝑢𝑒𝑔𝑢,𝑘 + 𝛾0,𝑒𝑔𝑢) (6.7a)

subject to

1
2𝛾2,ℎ𝑣𝑏𝑢

2
ℎ𝑣𝑏,𝑘 + 𝛾1,ℎ𝑣𝑏𝑢ℎ𝑣𝑏,𝑘 − 𝑢𝑒𝑔𝑢,𝑘

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝑔𝑞𝑐𝑞𝑝

+𝛾0ℎ𝑣𝑏 ≤ −𝑦
[𝜄]
𝑒𝑚,𝑘 (6.7b)

for all 𝜄 ∈ I and

Φ𝑥ℎ𝑣𝑏,0 − Γuℎ𝑣𝑏 ∈ Xℎ𝑣𝑏 (6.7c)
𝑢𝑚,𝑘 ∈ U𝑚 (6.7d)

with 𝑘 ∈ K, 𝑚 ∈ {𝑒𝑔𝑢, ℎ𝑣𝑏} and uℎ𝑣𝑏 = [𝑢ℎ𝑣𝑏,0, … , 𝑢ℎ𝑣𝑏,𝐾−1]⊤. Note that (6.7c) is
obtained by substituting (6.3c), for the HVB, in (6.3e). This eliminates the state
variables through a prediction model as is generally done in linear MPC formulations.
Note that this problem is convex since 𝛾2,𝑚 > 0, leading to a direct definition of the
sample size for the scenariobased RHOCP.

6.3.2. Sample Size for Scenariobased RHOCP
Since the power balance (6.7b) is present for every prediction of time 𝑘 + 𝑡, given
information at time 𝑡, the problem has 𝐾 scenario constraints and affect only the
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particular inputs at that stage in horizon K. Therefore, it is straightforward to
define the support rank of the scenario constraint and specify the required sample
size. In this case, the support rank of (6.7b) is calculated as in [4] and given by
𝜌 = 𝑑 − L = 2, leading to an expected violation probability 𝔼𝐼[𝑉𝑗,𝑘(𝑢∗𝑚,𝑘)] ≤ 2

𝐼+1 ,

where 𝑉𝑗,𝑘(𝑢∗𝑚,𝑘) = 𝑃𝑟{𝑔𝑞𝑐𝑞𝑝 + (𝛾0ℎ𝑣𝑏 + 𝑦
[𝜄]
𝑒𝑚,𝑘) > 0}. In this case study, we have

defined a sample size of 𝐼 = 119 implying a theoretical bound of 𝜖 ≤ 2/120 ≈ 1.66%.
This percentage can be interpreted as the times when the vehicle will not provide
enough power to follow the commands of the driver.

6.3.3. Power Request Definition
Given that the scenario generators forecast possible velocity profiles {𝑣1, … , 𝑣𝐾+1},
the power request is considered as the mechanical power 𝑦𝑒𝑚,𝑘 = 𝑣𝑘𝑢𝑒𝑚,𝑘, where
a power limit 𝑦𝑒𝑚 = 𝑢𝑒𝑔𝑢 + 𝑦ℎ𝑣𝑏 is defined and the traction force 𝑢𝑒𝑚,𝑘 required to
follow each profile is calculated using an inverted vehicle dynamics model, given
by:

𝑦𝑒𝑚,𝑘 = 𝑣𝑘
𝜎𝑢 (

𝑣𝑘+1−𝑣𝑘
𝜏𝑘 + 𝜎𝑣𝑣2𝑘 + 𝜎𝑟 + 𝑔 sin(𝜃(𝑠𝑘))) (6.8)

where 𝜎𝑟 = 𝑔𝑐𝑟, 𝜎𝑢 = 1
𝑚 , 𝜎𝑣 = 1

2𝑚𝑐𝑑𝜌𝑎𝐴𝑓 and 𝜃 define the rolling resistance, inverse
of the mass, aerodynamic drag and the road slope, respectively. The definition
and values of these coefficients for the vehicle in this case study can be found in
Table 6.2 and a flat road is considered, i.e., 𝜃 = 0.

6.4. Simulation Results
In order to analyse the performance of the scenario generators and the TaEMS for
the power split problem, we first describe the particular characteristics considered in
the simulations and, subsequently, we present results obtained with each method.
Here, the solutions of the TaEMSs are compared to the optimal performance given
by an offline benchmark and an online solution with perfect prediction of the future
driving cycle. Additionally, we assess the benefits of hybridization under uncertain
predictions by including the fuel consumption that would be generated if the power
request was only covered by the EGU.

For this case study, we used the traffic data set from the Mobile Century field
experiment [7], which was a project carried out over a 16 km section of the Inter
state 880 highway in California to evaluate the use of GPSenabled smartphones for
accurate traffic information systems. The data was recorded from 10:00 to 18:00
and includes a traffic congestion event around 10:30 from where the driving cycles
to evaluate the proposed TaEMS are taken (the reader is referred to [7] for further
information and descriptions of the data used).

For implementation, we use a moving average filter with a Gaussian window to
smooth intractable speed changes present in the predictions from the traffic speed
or large noise realizations in the NARGP samples.
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Table 6.2: Vehicle coefficients

Parameter symbol Value
Frontal drag area 𝐴𝑓 7.5400 [𝑚2]
Drag coefficient 𝑐𝑑 0.7
Rolling resistance 𝑐𝑟 0.007

Air density 𝜌𝑎 1.1840
Mass 𝑚 15950 [kg]

Gravitational acceleration 𝑔 9.81 [𝑚/𝑠2]

6.4.1. GPS / eHorizon Method
In order to replicate the information supplied by a GPS, we have divided the road in
100 segments and have considered a time window 𝑡𝑤 = 300 seconds according to
the update frequency in [7]. We consider that the vehicle has access to the average
speed relative to the current time relative to the driving cycle, e.g., at 10:43 a.m.
the information obtained at 10:40 a.m. is known and an update is available at 10:45
a.m.

6.4.2. Gaussian Process Regression
For this probabilistic velocity prediction method, the training data D was composed
by real driving cycles taken from the Mobile Century data set starting before 10:30
a.m., and the HWFET, LA92 short and EPA standard driving cycles in order to pro
vide more dynamic data to the model. Furthermore, the kernel function used in
this work is the Matérn52 function, see, e.g., [8]. This selection was motivated by
the fact that the real driving cycles present long braking patterns, which were not
properly captured when using a squared exponential function due to its smooth
ness characteristics. Additionally, the total number of lags in the NARGP was set
to 5, since it was observed that longer dependencies did not provide a substantial
improvement of the predictions.

As an example, the mean predictions generated with the NARGP for Test Cy
cle 1 are shown in Fig. 6.2, where the top plot presents the prediction accuracy
with different prediction horizons and the trajectories for 10 seconds of prediction
are shown in the bottom plot. As it can be seen, when the predictions are made
for short periods of time, e.g., 10 seconds, 95% of the errors are smaller than 1
m/s, which is acceptable for the development of energy management strategies.
Nevertheless, these errors present an increasing trend when generating a velocity
forecast for longer horizon lengths, as only short term correlations are captured
from the training data and translated to the predictions while no information of the
upcoming traffic is provided to the NARGP. Besides this, the NARGP occasionally
generates wrong braking predictions, e.g., predictions around second 1100, but
such errors are mitigated by the presence of multiple random samples that result
in a more cautious use of the battery.
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Figure 6.2: NARGP predictions for Test Cycle 1. Top: Error of the predicted mean vs. prediction horizon
length. Bottom: Predicted mean speed with 𝐾 = 10 seconds.

6.4.3. Prediction Horizon Length
In order to establish an appropriate length of the prediction horizon, the fuel con
sumption obtained with the GPS and the NARGP predictions were evaluated. Ta
ble 6.3 presents the fuel consumption with a perfect prediction, the scenario solution
with the NARGP and the average traffic speed (GPS), where the offline benchmark
and the EGUonly case (i.e., not using the battery) give the range of possible sav
ings. It can be seen that a longer prediction horizon results in a lower consumption
since it allows a larger deviation from the final state constraint imposed in the
problem. For Test Cycle 1 and Test Cycle 2, the GPS captures the braking pattern
accurately, leading to an appropriate use of the battery compared to the NARGP,
where the battery is mainly used after the charging event due to prediction errors,
see Fig. 6.3. Regarding the third test, the GPS incurs in a higher consumption with
longer predictions, while the NARGP leads to better fuel economy. This is due to
a softer deceleration that deviates from the traffic flow and, as seen in the perfect
prediction case, reduces the advantage of a long horizon compared to the other
tests.

6.4.4. Mixed Scenario Generator
As shown before, the NARGP is capable of producing accurate predictions when
a short horizon is specified but fails to anticipate longer braking events, causing
a higher fuel consumption. For this reason, and as a reference point with the
literature, a horizon length of 10 seconds was selected to generate random speed
profiles. After these predictions are made, the average traffic speed is used to
complete the remaining part of the prediction horizon assuming that the driver
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Table 6.3: Impact of prediction horizon on fuel consumption for the individual methods

Method
Horizon Fuel Consumption per Relative Fuel
Length Test Cycle Consumption
[seconds] [l]/100[km] Increase [%]

1 2 3 1 2 3
Offline  21.104 24.666 20.310   
EGUonly  23.390 26.222 21.978 10.83 6.31 8.21

Perfect
Prediction

20 22.101 25.689 20.872 4.72 4.15 4.79
30 21.759 25.327 20.625 3.10 2.68 3.76
60 21.166 24.748 20.362 0.29 0.33 1.20
120 21.121 24.684 20.322 0.08 0.07 0.97

NAR−GP

20 22.951 25.731 21.282 8.75 4.32 4.79
30 22.795 25.482 21.074 8.01 3.31 3.76
60 22.312 25.353 20.553 5.72 2.79 1.20
120 22.006 25.160 20.506 4.27 2.00 0.97

GPS

20 22.718 25.836 20.973 7.65 4.74 3.26
30 22.444 25.459 20.889 6.35 3.21 2.85
60 22.084 25.003 20.618 4.64 1.37 1.52
120 21.702 24.947 20.766 2.83 1.14 2.25

follows the GPS after 10 seconds in order to keep the preview of the future traffic
conditions and provide more freedom for the usage of the battery.

Finally, since longer horizons have a large impact in the computation time due
to the increment of constraints and decision variables in the RHOCP, we incorpo
rate the variable stepsize approach proposed in [12] since, as indicated by the
authors, coarser predictions of the future have minor impacts in the fuel savings
while noticeably reducing the computation complexity of the problem. We consider
(𝜏1, … , 𝜏𝐾) = (1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 40) as the stepsize sequence used to gen
erate longterm predictions, where the specific sequence follows the suggestion in
[12], such that the total length of the predictions is 120 seconds.

The resulting fuel savings obtained with the mixed scenario generator are re
ported in Table 6.4, where we present the fuel consumed with ‘full mixed’ scenario
generator (i.e., with constant step sizes 𝜏𝑘 = 1 for all 𝑘 ∈ K), the ‘variable mixed’

Table 6.4: Fuel consumption of TaEMS with mixed scenarios and GPS information

Method
Fuel Consumption per Relative Fuel

Test Cycle Consumption
[l]/100[km] Increase [%]

1 2 3 1 2 3
Full Mixed 21.674 24.851 20.804 2.70 0.75 2.44

Variable Mixed 21.852 25.109 21.247 3.54 1.79 4.62
Variable GPS 22.220 25.423 21.136 5.29 3.06 4.07
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Figure 6.3: Trajectory of the energy stored in the battery for Test Cycle 2 (battery limits are shown as
dashed lines)

scenario generator (i.e., with variable step sizes, as explained above) and applying
the same variable step size sequence only to the average traffic speed, i.e., ‘variable
GPS’. Here, the last column presents the increment of fuel consumption relative to
the optimal savings of the offline benchmark. Moreover, the state trajectory and
the signals acting on the powertrain node in Test Cycle 2 are shown in Fig. 6.4.

From Table 6.4, it can be seen that the proposed TaEMS provides a slight im
provement when the full predictions of the mixed scenario generator are considered
in comparison to the GPSbased predictions. Nevertheless, the main advantage is
observed when the decision variables are reduced by means of the variable se
quence 𝜏𝑘. In this case, we see that the fuel savings decreased as shown in [12] but
the incorporation of multiple predictions leads to a better fuel economy, consuming
only 0.75% more than the optimal solution in Test Cycle 2 when full predictions are
used and 1.79% with the sampling sequence 𝜏𝑘. On the other hand, the negative
effect of faulty predictions is also visible, as the consumption increases due to the
mismatch of the longterm predictions in Test Cycle 3.



6.5. Conclusions

6

131

200 400
Time [s]

2

4

6

x hv
b [k

W
h]

Offline Perfect Prediction GPS Mixed SG

200 400
Time [s]

0

100

200

u eg
u [k

W
]

200 400
Time [s]

-100

-50

0

50

y hv
b [k

W
]

200 400
Time [s]

-150

-100

-50

0

y br
 [k

W
]

Figure 6.4: State trajectory and node signals from the TaEMSs using sequence 𝜏𝑘 in Test Cycle 2 (dashed
lines: limits).

6.5. Conclusions
In this chapter, a trafficaware energy management strategy that accounts for un
certain driving conditions has been developed. This strategy is based on the solution
to a scenariobased optimal control problem used in a receding horizon fashion. The
scenariobased approach reduces the probability of running out of energy during
a driving mission. Different alternatives to include traffic information for the gen
eration of scenarios have been explored, achieving a deviation of 0.75% from the
optimal consumption with a suitable mix of the available information and 1.79%
using variable stepsize predictions. Nevertheless, the need of accurate traffic data
becomes an essential factor for this TaEMS, however, such quality of information
was provided by the traffic behavior in the highway situation considered.
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7
A PortHamiltonian Approach
to Complete Vehicle Energy

Management: A Battery
Electric Vehicle Case Study

In this chapter, we present a modelling approach to vehicle energy manage
ment based on PortHamiltonian systems representations. We consider a
network of interconnected portHamiltonian systems that describes the pow
ertrain components and auxiliaries in the vehicle. This description is suitable
to obtain a systematic approach to formulate a decomposable optimal control
problem for Complete Vehicle Energy Management. A physically insightful
cost function that describes the total energy consumption of the vehicle is
proposed in terms of internal energy and losses of each system connected
to the network. Taking advantage of the modularity of the proposed formu
lation, we use a distributed optimization algorithm to find solutions to the
energy management problem. To illustrate this modelling methodology, we
consider a case study in which the energy consumption of a battery electric
vehicle is optimized.

This chapter is based on P.4.
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I n the current literature related to vehicle energy management, the modellingand the optimal control problem (OCP) formulation are mainly obtained by ap
plying powerbased approaches like [1–3] or the one presented in Chapter 5. The
main idea of these approaches is to describe the behavior of the interconnected
subsystems in a network, in terms of power interactions. In other words, each
subsystem is represented by an energy buffer connected to a power converter.
The buffer stores energy and it is modeled as a linear dynamical system, which of
ten resembles an integrator. The power converter represents energy consumption
and is modeled as a static nonlinear function, normally approximated to a quadratic
function using measurements.

However, powerbased approaches are difficult to use when the optimization
variables cannot be easily described in terms of power. For instance, in Chapter 8
and in [4] attempts are made to unify CVEM and ecodriving (finding energy optimal
velocity profiles). In this case, velocity becomes a decision variable and describ
ing it in terms of power is a nontrivial task. Other disadvantage of powerbased
approaches is that it is difficult to constrain physical variables that describe power
in the model. For instance, imposing constraints on the battery power do not nec
essarily imply that the solution of the OCP is physically realizable. Power in the
battery is described as the product of voltage and current, thus an optimal solution
that satisfies power constraints not necessarily satisfies the bounds on voltage and
current. Additionally, powerbased approaches do not always allow for an intuitive
formulation of decomposable OCP, which are useful when distributed optimization
techniques are applied to approximate solutions. For instance, in [2] the concept of
‘sum of losses’ is introduced to formulate a separable OCP for CVEM. Unfortunately,
this concept is not always simple to apply.

In this chapter, we propose an alternative modelling framework based on inter
connected portHamiltonian (pH) systems, e.g. see [5, 6] and references therein,
aiming to overcome the previously discussed limitations of powerbased approaches.
In this modelling approach, each subsystem is represented as a dissipative dynami
cal system that inherently describes energy losses and changes of internal energy in
the subsystem. The main contributions of this work are twofold. First, we propose
to use pH representations to model networks for CVEM applications, thus unifying
the powerbased concepts of energy buffers and power converters in a single dy
namical model, i.e., in terms of internal energy and losses. Second, a systematic
approach is proposed to formulate a decomposable OCP for CVEM, which is useful
when distributed static optimization techniques are considered to solve the CVEM
OPC.

The remainder of this chapter is organized as follows. In Section 7.1, we briefly
introduce the pH modelling theoretical background and use these concepts to model
CVEM networks. In Section 7.2, we take advantage of the pH modelling approach to
formulate decomposable OCP for CVEM. The pH methodology for CVEM is applied
to a case study of a battery electric vehicle presented in Section 7.3. Finally, the
conclusions are drawn in Section 7.4.
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Figure 7.1: PortHamiltonian subsystem 𝚺𝑚

7.1. PortHamiltonian Modelling for CVEM
The main objective of this section is to present the pH modelling framework for
energy management applications. Specifically, we adapt the pH framework to the
holistic philosophy of CVEM presented in [7]. To achieve this, we briefly discuss
the main concepts of pH representations. Later, the main features of networks of
interconnected subsystems for CVEM are translated into a compatible description
with pH models.

7.1.1. PortHamiltonian Representation
From a modelling perspective, a pH representation is a portbased modelling ap
proach that considers a pair of conjugated variables in each port, whose product
represents power. This has been depicted in Fig. 7.1, where a generic graphical
representation of a twoport pH system is presented. Although in literature, there
is a large number of possible pH representations, in this chapter we will only focus
on linear inputstateoutput models with a direct feedthrough term.

Consider a linear subsystem𝑚 ∈M ∶= {1,… ,𝑀}, where𝑀 is the total number of
interconnected subsystems in the network. The internal energy of the𝑚 subsystem
is expressed as a quadratic function given by

H𝑚(𝑥𝑚) = 1
2𝑥

⊤
𝑚𝑄𝑚𝑥𝑚 , (7.1)

where 𝑥𝑚 ∈ ℝ𝑛 represents the state vector and 𝑄𝑚 ∈ ℝ𝑛×𝑛 is a symmetric positive
semidefinite matrix, which is called energy matrix. This energy function is used in
an inputstateoutput with feedthrough term pH representation [6],[5, §4] of the
𝑚 subsystem, and is given by

d𝑥𝑚
d𝑡 = (𝐽𝑚 − 𝑅𝑚)𝑄𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑚 (7.2a)

𝑦𝑚 = (𝐵𝑚 + 2𝑃𝑚)⊤𝑄𝑚𝑥𝑚 + (𝑀𝑚 + 𝑆𝑚)𝑢𝑚 (7.2b)

where 𝑢𝑚 ∈ ℝ2 and 𝑦𝑚 ∈ ℝ2 are the system input and output, respectively, given
by

𝑢𝑚 = [ 𝑢
in
𝑚

𝑢out𝑚
] and 𝑦𝑚 = [ 𝑦

in
𝑚

𝑦out𝑚
] . (7.3)

In (7.2), 𝐽𝑚 ∈ ℝ𝑛×𝑛 is a skew symmetric matrix known as the interconnection matrix,
and 𝑅𝑚 ∈ ℝ𝑛×𝑛 is a positive semidefinite matrix known as dissipation matrix.
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The portHamiltonian model (7.2) satisfies the following power balance equation
[5, §4]

𝜕H𝑚
𝜕𝑡 (𝑥𝑚) = − [

𝑥𝑚
𝑢𝑚]

⊤
𝐿𝑚 [𝑥𝑚𝑢𝑚] + 𝑦

⊤
𝑚𝑢𝑚 . (7.4)

in which

𝐿𝑚 ∶= [𝑄𝑚𝑅𝑚𝑄𝑚 𝑄𝑚𝑃𝑚
P⊤𝑚𝑄𝑚 𝑆𝑚 ] . (7.5)

In case that 𝐿𝑚 ⪰ 0, passivity of the system is guaranteed [8, §7.1]. Furthermore,
an energy balance can be described by reorganizing and integrating both sides
of (7.4) over the interval [𝑡0, 𝑡𝑓], hence obtaining

Δ𝐸𝑚 = 𝐸in𝑚 + 𝐸out𝑚 = ΔH𝑚 +L𝑚 (7.6)

with

Δ𝐸𝑚 = ∫
𝑡𝑓

𝑡0
𝑦⊤𝑚𝑢𝑚 d𝑡 = ∫

𝑡𝑓

𝑡0
𝑦in𝑚𝑢in𝑚 d𝑡 + ∫

𝑡𝑓

𝑡0
𝑦out𝑚 𝑢out𝑚 d𝑡

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝐸in𝑚+𝐸out𝑚

(7.7a)

ΔH𝑚 =H𝑚(𝑥𝑚(𝑡𝑓)) −H𝑚(𝑥𝑚(𝑡0)) (7.7b)

L𝑚 = ∫
𝑡𝑓

𝑡0
[𝑥𝑚𝑢𝑚]

⊤
𝐿𝑚 [𝑥𝑚𝑢𝑚] d𝑡 (7.7c)

where Δ𝐸𝑚 represents the net supplied energy to the 𝑚 subsystem, ΔH𝑚 is the
change on internal energy and L𝑚 describes the total energy losses. Moreover, let
us define the set of source subsystems

S ∶= {𝑚 ∈M ∣𝐸in𝑚 = 0}, (7.8a)

the set of consumers
C ∶=M ⧵ S , (7.8b)

and the set of terminal subsystems

T ∶= {𝑚 ∈M ∣𝐸out𝑚 = 0}. (7.8c)

A physical example of a source subsystem, which only has an output port, is chem
ical energy stored in a battery. On the other hand, mechanical brake is a physical
example of a terminal system, which has only an input port.

7.1.2. Portbased Network Topology
Interconnections of pH systems have been studied in [9], where a methodology
has been proposed to describe networks of pH systems with the final goal to per
form stability analysis. Although in this chapter, we consider some ideas from the
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work presented in [9], we will deviate from this approach to propose a special
ized description of network topologies that capture specific features found in CVEM
applications.

A tree structure portbased network topology is presented in Fig. 7.2, where
each subsystem 𝑚 ∈M is depicted by a gray square. The interconnection between
subsystems takes place through junctions 𝑗 ∈ J ∶= {1,… , 𝐽}, where 𝐽 ∈ ℕ is the total
number junctions in the network. These junctions are power preserving intercon
nections that are described in terms of the conjugated input output variables as
follows

∑
𝑚∈M

𝑎𝑗,𝑚𝑢in𝑚𝑦in𝑚 + 𝑏𝑗,𝑚𝑢out𝑚 𝑦out𝑚 = 0, for all 𝑗 ∈ J , (7.9)

where 𝑎𝑗,𝑚 = 1 if the input port of subsystem 𝑚 is connected to junction 𝑗, and
𝑎𝑗,𝑚 = 0 otherwise. Similarly, 𝑏𝑗,𝑚 = 1 if the output port of subsystem𝑚 is connected
to junction 𝑗, and 𝑏𝑗,𝑚 = 0 otherwise.

In CVEM networks, there is a type of junction that can be decomposed into an
additive node and an equality node. A physical interpretation of these type of nodes
is observed in electrical interconnections between subsystems, e.g., Kirchhoff’s law
of currents can be seen as an additive node, while Kirchhoff’s law of voltages as
an equality node. Let us define the set of all the decomposable junctions in the
network J𝑛 ∶= {1,… , 𝐽𝑛}, where 𝐽𝑛 ≤ 𝐽 is the total number of these type of junctions
in the network. Thus, the power preserving equation (7.9) can be rewritten as

∑
𝑚∈M

[𝑎𝑗,𝑚 0]𝑢𝑚 + [0 𝑏𝑗,𝑚]𝑦𝑚 = 0, (7.10a)

[𝑎𝑗,𝑚 0]𝑦𝑚 − [0 𝑏𝑗,𝑚]𝑢𝑚 = 0 for all 𝑚 ∈M, (7.10b)
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for all 𝑗 ∈ J𝑛. Note that (7.10a) and (7.10b) are referred as additive node and an
equality nodes, respectively.

Another type of power preserving interconnections observed in CVEM networks
are power junctions. The power junction artifact introduced in this framework obeys
the necessity to resemble the functionality of DCDC converters in CVEM networks.
It is well known that DCDC converters can be represented as nonlinear pH sys
tems, e.g., see [10]. In fact, from steadystate approximations of the models pro
posed in [10], under the assumption that the DCDC converter is lossless, it is
possible to prove that DCDC converters satisfy (7.9). In order to keep consistent
notation, we rewrite (7.9) as

∑
𝑚∈M

𝑦⊤𝑚 [
𝑎𝑗,𝑚 0
0 𝑏𝑗,𝑚]𝑢𝑚 = 0, (7.11)

for all 𝑗 ∈ J𝑝; with J𝑝 ∶= {𝐽𝑛 + 1,… , 𝐽} the set of all power junctions in the network.

7.2. Optimal Control Problem for pH CVEM
In this section, we first provide a general formulation for a continuoustime optimal
control problem (OCP) for the pH CVEM modelling approach described in the pre
vious section. Subsequently, we propose a physically insightful cost function that
enables decomposability of the proposed pH OCP for CVEM. Finally, we present a
discretetime OCP for pH CVEM.

The main objective of CVEM is to minimize the total energy consumed by a
network of interconnected subsystems over a fixed time interval, subject to the
dynamical behavior of each subsystem and bounds on the respective inputs, outputs
and states. From a mathematical perspective, this goal can be described as an OCP.
Hence, a general formulation of the pH OCP for CVEM is given by

min
{𝑥𝑚 ,𝑢𝑚 ,𝑦𝑚}𝑚∈M

J ({𝑥𝑚 , 𝑢𝑚 , 𝑦𝑚}𝑚∈M) (7.12a)

subject to: (7.2), (7.10), (7.11),
𝑥𝑚 ≤ 𝑥𝑚 ≤ 𝑥𝑚 , (7.12b)
𝑢𝑚 ≤ 𝑢𝑚 ≤ 𝑢𝑚 , (7.12c)
𝑦𝑚 ≤ 𝑦𝑚 ≤ 𝑦𝑚 , (7.12d)

for all 𝑚 ∈ M and all 𝑡 ∈ [𝑡0, 𝑡𝑓]. Note that (7.12a) represents a general cost
function that aims to describe the total energy consumed by the subsystems in the
network. We propose a physically insightful and decomposable cost function for
the OCP (7.12) below.

7.2.1. Power Consumption in pH CVEM
The physical interpretation provided by pH models in terms of internal energy and
energy losses of the subsystems can be exploited to formulate a sensible description
of the energy consumed in the network. In particular, we could aim to maximize the
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internal energy in each source subsystem, which implies minimizing consumption,
i.e., see (7.7b). This can be described by (7.12) if the cost function is defined as

J ({𝑥𝑚 , 𝑢𝑚 , 𝑦𝑚}𝑚∈M) = ∑
𝑚∈S
−ΔH𝑚(𝑥𝑚 , 𝑢𝑚 , 𝑦𝑚). (7.13)

Note that the minus sign in (7.13) is necessary because (7.12) is defined as a
minimization problem.

Interestingly, by decomposing the cost function (7.13) it is possible to obtain an
equivalent expression that can be interpreted as minimizing the aggregated internal
energy of all the consumers and the energy losses of all the subsystems. In order
to see this, let us recall that power preserving interconnections are considered for
all the junctions 𝑗 ∈ J in the network. Therefore, by integrating (7.9) for a given
time interval we obtain the following energy balance

∑
𝑚∈M

𝑎𝑗,𝑚𝐸in𝑚 + 𝑏𝑗,𝑚𝐸out𝑚 = 0, (7.14)

for all 𝑗 ∈ J . Hence, it is possible to follow a recursive procedure where we substi
tute (7.6) into (7.13) to obtain the partially expanded function

J = ∑
𝑚∈S
L𝑚 − 𝐸out𝑚 = ∑

𝑚∈S
L𝑚 − 𝑏𝑚,𝑗𝐸out𝑚 , (7.15a)

for some node 𝑗 ∈ J where the subsystem 𝑚 is connected. By substituting (7.14)
into (7.15a), and subsequently (7.6) in the the resultant expression we obtain

J = ∑
𝑚∈S

⎛
⎜
⎝
L𝑚 +∑

𝑛∈C
𝑎𝑛,𝑗𝐸in𝑛

⎞
⎟
⎠

= ∑
𝑚∈S

⎛
⎜
⎝
L𝑚 +∑

𝑛∈C
𝑎𝑛,𝑗 (ΔH𝑛 +L𝑛 − 𝐸out𝑛 )

⎞
⎟
⎠
. (7.15b)

The recursive expansion of this cost function ends with terminal subsystems in each
branch of the tree network. Hence, the complete expansion of (7.13) is given by

J = ∑
𝑚∈M

L𝑚 +∑
𝑛∈C

ΔH𝑛 , (7.16)

which implies that maximization of internal energy is equivalent to minimizing the
losses of all subsystems and the internal energy of only the consumers in the net
work. These results not only show the importance of pH formulations to obtain
physically insightful interpretations of cost functions, but also open the door to ob
tain possible equivalent cost functions that could be beneficial for specific solution
methods used to solve the CVEM OCP (7.12), e.g., see [2] and the optimization
method presented in Chapter 5.
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7.2.2. Discretization
The use of static optimization techniques to approximate solutions of (7.12) in a
finitetime horizon requires the discretization of this OCP. It is important to remark
that we are aware that there are no conclusive results about preservation of the
discretetime energy balance equation under interconnection of discretetime pH
systems. Although promising results can be found in literature, e.g., [11, 12], we
will neglect this issue in this work.

To arrive at a discretetime OCP, (7.12) is discretized at times 𝑡𝑘 = 𝑘𝛿𝑡 + 𝑡0,
𝑘 ∈ K = {0,… ,𝐾 − 1}, with time step 𝛿𝑡 = 𝑡𝑓−𝑡0

𝐾 for some 𝐾 ∈ ℕ using the forward
Euler discretization method. This leads to

min
{𝑥𝑚,𝑘 ,𝑢𝑚,𝑘 ,𝑦𝑚,𝑘}𝑚∈M,

𝑘∈K

∑
𝑚∈M

𝑒𝑚ΔĤ𝑚 + L̂𝑚 (7.17a)

subject to the discretetime dynamical model

𝑥𝑚,𝑘+1 = (𝐼 + 𝛿𝑡(𝐽𝑚 − 𝑅𝑚)𝑄𝑚)𝑥𝑚,𝑘 + 𝛿𝑡𝐵𝑚𝑢𝑚,𝑘 , (7.17b)

𝑦𝑚,𝑘 = (𝐵𝑚 + 2𝑃𝑚)⊤𝑄𝑚𝑥𝑚,𝑘 + (𝑀𝑚 + 𝑆𝑚)𝑢𝑚,𝑘 , (7.17c)

discretetime versions of (7.10), (7.11), and {𝑥𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝑦𝑚,𝑘} ∈ Ω𝑚 for all 𝑚 ∈M
and 𝑘 ∈ K, where

Ω𝑚 ∶={𝑥𝑚,𝑘 ∈ ℝ𝑛 , 𝑦𝑚,𝑘 ∈ ℝ2, 𝑢𝑚,𝑘 ∈ ℝ2∣ (7.12b), (7.12c) and (7.12d) hold}. (7.17d)

Note that (7.17a) is an equivalent formulation of the cost function (7.16), where
𝑒𝑚 = 1 if 𝑚 ∈ C and 𝑒𝑚 = 0 otherwise. This indicates that the cost function (7.17a)
penalizes changes of internal energy only for the set of energy consumers. The
discretized versions of internal energy and losses are given respectively by

ΔĤ𝑚 = 1
2𝑥

⊤
𝑚,𝐾𝑄𝑚𝑥𝑚,𝐾 − 1

2𝑥
⊤
𝑚,0𝑄𝑚𝑥𝑚,0, (7.18a)

L̂𝑚 = 𝛿𝑡 ∑
𝑘∈K
[𝑥𝑚,𝑘
𝑢𝑚,𝑘
]
⊤
𝐿𝑚 [𝑥𝑚,𝑘

𝑢𝑚,𝑘
] . (7.18b)

The advantage of the pH framework exposed in this chapter lays in the possibility
to formulate decomposable problems by expanding the cost function in terms of
internal energy and losses of the subsystem in the network. Therefore, distributed
static optimization techniques can be easily adapted to find solutions of the discrete
OCP (7.17).

7.3. Case Study: Battery Electric Vehicle
The pH CVEM framework described in Section 7.1 and the associated OCP of Sec
tion 7.2 are illustrated in a case study presented in this section. We consider a Bat
tery Electric Vehicle (BEV), whose topology is depicted in Fig. 7.3. A highvoltage
battery (HVB) is connected via a DCDC converter to an electric machine (EM). The
mechanical part in this driveline yields a power balance between the requested



7.3. Case Study: Battery Electric Vehicle

7

141

Vhvb

Ihvb

Battery

Freq

vreq

vbr

Fbr

vem

Fem

Electric

High Voltage

Machine

n

Power

Junction

Mechanical

Junction

DC/DC

Vem

Iem

Mechanical
Brake

Driveline

Power 

Request

Electric

Circuit
Source

Voc

Ihvb

Figure 7.3: CVEM portbased configuration for a battery electric vehicle.

propulsion power and the mechanical braking power. Even though this configu
ration is simple, it allows to illustrate the proposed modelling approach for CVEM
and the solution method. Moreover, it should be noted that this case study con
siders electrical, mechanical and thermal subsystems. This highlights the flexibility
of the pH CVEM approach to preserve the physical variables linked to each physical
domain.

In the remainder of this section, we provide details for modelling the topology
presented in Fig. 7.3 and formulate an OCP for CVEM. Later, we discuss the connec
tions between powerbased and pH OCP formulations highlighting the advantages
of the approach proposed in this chapter. Finally, simulations results for this case
study are presented and analyzed.

7.3.1. Modelling
In the topology presented in Fig. 7.3, it is possible to observe the physical conju
gated variables that describe the power preserving interconnection between sub
systems. We will use these variables to define the inputoutput ports for each
subsystem. Additionally, the pH models for the subsystems will be obtained from
firstprinciple models and described in terms of the pH representation given in Sec
tion 7.1.1.

The set M is the set of interconnected subsystems for the BEV considered in
this case. For the sake of readability, we useM = {𝑣𝑠, 𝑒𝑐, 𝑒𝑚, 𝑏𝑟, 𝑟𝑒𝑞} instead of
a enumerated set to denote battery voltage source, battery electric circuit, elec
tric machine, mechanical brake and power request, respectively. Note that 𝑣𝑠 is a
source subsystem, while 𝑏𝑟 and 𝑟𝑒𝑞 are terminal subsystems. Similarly, J𝑛 = {1}
represents the mechanical node in the topology, while J𝑝 = {2} is the power junc
tion of the network, which corresponds to the DCDC converter.

HighVoltage Battery
We consider an equivalent circuit model with constant open circuit voltage 𝑉𝑜𝑐 and
internal resistance 𝑅ℎ𝑣𝑏 in this chapter. The voltage and current in the terminals are
denoted as 𝑉ℎ𝑣𝑏 and 𝐼ℎ𝑣𝑏, respectively. The pH formulation of the HVB is constituted
of subsystems 𝑣𝑠 and 𝑒𝑐, which represent an ideal lossless voltage source and the
internal resistance of the battery, respectively. The input and output ports and the
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states of the aforementioned subsystems are defined as

𝑢𝑣𝑠 = [ 0
−𝐼ℎ𝑣𝑏] , 𝑦𝑣𝑠 = [ 0𝑉𝑜𝑐] , 𝑢𝑒𝑐 = [

𝑉𝑜𝑐
𝐼ℎ𝑣𝑏] , 𝑥𝑒𝑐 = SoC, 𝑦𝑒𝑐 = [ 𝐼ℎ𝑣𝑏−𝑉ℎ𝑣𝑏] , (7.19a)

where SoC denotes the HVB stateofcharge. Note that these definitions indicate
that the interconnection between the voltage source 𝑣𝑠 and the electric circuit 𝑒𝑐
is power preserving, i.e., 𝑦out𝑣𝑠 𝑢out𝑣𝑠 + 𝑦in𝑒𝑐𝑢in𝑒𝑐 = 0. Therefore, the pH models of the
subsystems in the HVB are given by

𝑄𝑒𝑐 = 𝐽𝑒𝑐 = 𝑅𝑒𝑐 = 0, 𝑃𝑒𝑐 = [0 0] , 𝐵𝑒𝑐 = [0 − 1
𝑞ℎ𝑣𝑏 ] 𝑀𝑒𝑐 = [

0 1
−1 0] , 𝑆𝑒𝑐 = [

0 0
0 𝑅ℎ𝑣𝑏] ,

(7.19b)

where 𝑞ℎ𝑣𝑏 denotes the HVB capacity. Numerical values for the parameters asso
ciated to the HVB are given in Table 7.1.

Electric Machine
The HVB is connected to an EM through an ideal DCDC convertor represented by
junction J𝑝. The pH formulation for the EM is defined using

𝑢𝑒𝑚 = [𝑉𝑒𝑚𝐹𝑒𝑚] , 𝑥𝑒𝑚 = [
𝐿𝐼𝑒𝑚

𝑔𝑟
𝑟𝑤 𝐼𝑚𝑣𝑒𝑚

] , 𝑦𝑒𝑚 = [ 𝐼𝑒𝑚−𝑣𝑒𝑚] , (7.20a)

where 𝑉𝑒𝑚, 𝐼𝑒𝑚 denotes the voltage and current in the EM, respectively; 𝐹𝑒𝑚 is
the propulsion force and 𝑣𝑒𝑚 the longitudinal velocity. Additionally, the positive
constants 𝐿, 𝐼𝑚, 𝑟𝑤 and 𝑔𝑟 denote the electric inductance, moment of inertia, wheel
radius and total gear ratio, respectively. These definitions allow the pH model of
the EM to be defined using

𝑄𝑒𝑚 = [
1
𝐿 0
0 1

𝐼𝑚
] , 𝐽𝑒𝑚 = [ 0 𝜅𝑉+𝜅𝜏

2
−𝜅𝑉+𝜅𝜏2 0 ] , 𝑃𝑒𝑚 =𝑀𝑒𝑚 = 𝑆𝑒𝑚 = [0 0

0 0] ,

𝐵𝑒𝑚 = [
1 0
0 − 𝑟𝑤𝑔𝑟

] , 𝑅𝑒𝑚 = [ 𝑅𝑒 𝜅𝑉−𝜅𝜏
2𝜅𝑉−𝜅𝜏

2 𝛽 ] , (7.20b)

Table 7.1: HighVoltage Battery (HVB) parameters

Variable Value Definition Observations
𝑉𝑜𝑐 658 open circuit voltage [𝑉]
𝑅ℎ𝑣𝑏 0.33 series resistance [Ω]
𝑞ℎ𝑣𝑏 180 capacity of the battery [𝐴ℎ]
𝐼ℎ𝑣𝑏 800 minimum current [𝐴]
𝐼ℎ𝑣𝑏 800 maximum current [𝐴]
𝑉ℎ𝑣𝑏 400 minimum voltage [𝑉]
𝑉ℎ𝑣𝑏 1000 maximum voltage [𝑉]
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Table 7.2: Driveline parameters

Variable Value Definition Observations
𝑅𝑒 1 equivalent resistance [Ω]
𝐿 2 equivalent inductance [𝐻]
𝐼𝑒 99.68 equivalent axle inertia [𝑘𝑔 𝑚2]
𝛽 1.1e03 friction coefficient (rotational) [𝑁𝑚 𝑠/𝑟𝑎𝑑)]
𝜅𝜏 4.2175 torque constant [𝑁𝑚/𝐴]
𝜅𝑉 4.27 backelectromotive constant [𝑉𝑠/𝑟𝑎𝑑]
𝑟𝑤 0.5715 wheel radius [𝑚]
𝑔𝑟 6.1 gear ratio [−]
𝐼𝑒𝑚 600 minimum current [𝐴]
𝐼𝑒𝑚 600 maximum current [𝐴]
𝑉𝑒𝑚 0 minimum voltage [𝑉]
𝑉𝑒𝑚 1000 maximum voltage [𝑉]

where 𝑅𝑒, 𝜅𝑉, 𝜅𝜏 and 𝛽 are positive constants that denote the equivalent electric
resistance, backelectromotive constant, torque constant and damping coefficient,
respectively. In Table 7.2, numerical values of the driveline parameters used for
this case study are presented.

Mechanical Brake
The function of this subsystem is to dissipate all the power provided to it. It is
considered as a terminal subsystem and its ports are defined as

𝑢𝑏𝑟 = [𝑣𝑏𝑟0 ] , 𝑦𝑏𝑟 = [
𝐹𝑏𝑟
0 ] , (7.21)

where 𝐹𝑏𝑟 ≥ 0 is the mechanical braking force and 𝑣𝑏𝑟 denotes the longitudinal
velocity of the vehicle. Note that a complete description of the subsystem is not
necessary because we are only interested in its consumption. Thus, the terms that
describe internal energy and losses for the mechanical brake subsystem in the cost
function (7.16) can be replaced by the total energy consumed by the subsystem,
i.e.,

ΔH𝑏𝑟 +L𝑏𝑟 = ∫
𝑡𝑓

𝑡0
𝑦⊤𝑏𝑟𝑘𝑢𝑏𝑟d𝑡. (7.22)

Power Request
This subsystem describes the power required by the vehicle to travel a certain period
of time with a given longitudinal velocity profile 𝑣𝑟𝑒𝑞 and traction force 𝐹𝑟𝑒𝑞. It is
considered a terminal subsystem, whose ports are defined as

𝑢𝑟𝑒𝑞 = [𝑣𝑟𝑒𝑞0 ] , 𝑦𝑟𝑒𝑞 = [
𝐹𝑟𝑒𝑞
0 ] . (7.23)
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Figure 7.4: Requested traction force and longitudinal velocity.

The requested force and velocity profiles used in this case study are shown in
Fig. 7.4. In this case, a complete description of the subsystem is not provided,
because its behavior is already given. However, to preserve consistency in the cost
function formulation (7.16), the terms that describe internal energy and losses are
replaced by the total power consumed by the subsystem, i.e.,

ΔH𝑟𝑒𝑞 +L𝑟𝑒𝑞 = ∫
𝑡𝑓

𝑡0
𝑦⊤𝑟𝑒𝑞𝑢𝑟𝑒𝑞d𝑡. (7.24)

Interconnections
The set J = J𝑛∪J𝑝 = {1, 2} contains the two junctions in network topology depicted
in Fig. 7.3. This junctions are described by

𝑏𝑒𝑚,1 = 𝑎𝑏𝑟,1 = 𝑎𝑟𝑒𝑞,1 = 1, (7.25a)
𝑏𝑒𝑐,2 = 𝑎𝑒𝑚,2 = 1, (7.25b)

and zero for the remaining coefficients.

7.3.2. Optimal Control Problem
After describing pH representations for all the subsystems and its interconnections,
the procedure to formulate a CVEM OCP for this case study is reduced to a sim
ple substitution. In particular, a continuoustime CVEM OCP for this case study is
obtained by substituting (7.19)(7.25) into (7.12) and (7.16). Similarly, substitut
ing (7.19)(7.25) into (7.17) and (7.18) generates a discretetime OCP.

Interestingly, for this case study it is also possible to find and equivalent OCP us
ing a powerbased approach. For instance, let us consider the modelling framework
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Figure 7.5: State of charge and braking force.

presented in Chapter 5. In this approach, the source subsystem is represented as
a linear system that describes the accumulation of energy, and the conversion of
power in all subsystems is defined by a quadratic function of the form

𝑃𝑜𝑢𝑡 = 1
2𝛾2𝑃

2
𝑖𝑛 + 𝛾1𝑃𝑖𝑛 + 𝛾0, (7.26)

where 𝑃𝑜𝑢𝑡, 𝑃𝑖𝑛 represent the power in the input and output ports of the subsys
tem, respectively. To illustrate the connection between the powerbased approach
in Chapter 5 with the pH framework proposed in this chapter, let us consider the
EM model described by (7.2) and (7.20) in steady state. After some algebraic ma
nipulations and by defining 𝑃𝑜𝑢𝑡 = 𝑉𝑒𝑚𝐼𝑒𝑚 and 𝑃𝑖𝑛 = 𝐹𝑒𝑚𝑣𝑒𝑚, it is possible to obtain

𝛾2 =
𝑅𝑒𝑟2𝑤

𝜅2𝑉𝑔2𝑟𝑣2𝑒𝑚
, 𝛾1 =

2𝑅𝑒𝛽
𝜅2𝑉

+ 𝜅𝜏𝜅𝑉
, 𝛾0 = (

𝑅𝑒𝛽2
𝜅2𝑉
+ 𝜅𝜏𝛽𝜅𝑉

) 𝑔
2
𝑟
𝑟2𝑤
𝑣2𝑒𝑚 . (7.27)

Hence, considering that the longitudinal velocity 𝑣𝑒𝑚 is given, (7.26) describes only
a static relation between input and output powers. Performing a similar procedure
in the rest of the subsystems of this example allows us to obtain an equivalent OCP
that has power in the inputoutput ports of the subsystems as decision variables.

The advantage of this formulation is that if static optimization methods are used
to obtain solutions, the number of decision variables is lower than in the portbased
case. However, this framework fails to describe problems of higher complexity and
extensions are needed. For instance, Chapter 8 will present and attempt to extend
the modelling framework described in Chapter 5 to unify the optimization of velocity
profiles, i.e., ecodriving, and CVEM for the subsystems of a vehicle. Using the pH
framework for CVEM presented in this chapter, the integration of ecodriving and
CVEM is natural. In fact, it is equivalent to include the longitudinal vehicle dynamics
as an additional subsystem in the portbased network.
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Figure 7.6: Battery voltage.
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Figure 7.7: Battery current.

7.3.3. Simulation Results
We use the approach presented in Chapter 5 to find a solution to the discretetime
OCP obtained from the substitution of (7.19)(7.25) into (7.17) and (7.18). In this
case, we use a sampling time 𝛿𝑡 = 1[𝑠] and a horizon of length 𝐾 = 990. The results
obtained using the pHbased approach described in this chapter are compared to
a powerbased benchmark where all the mechanical braking power is zero, which
means that the energy produced by deceleration of the vehicle is completely stored
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in the HVB. In Fig. 7.5, the SoC and the mechanical braking force can be observed
as function of time for both the powerbased approach as well as the pHbased
approach. The final SoC corresponding to the optimal solution is 0.0717% higher
than the benchmark solution, which implies energy savings of 4.896% for the given
power request. Interestingly, the optimal solution still requires some mechanical
braking. This clearly shows that the optimal solution selects efficient operational
points for the subsystems, instead of only trying to recover as much mechanical
energy as possible.

Physical insight about the HVB operation for both cases can be observed in
Fig. 7.6 and Fig. 7.7, where the behavior of battery voltage and current, is respec
tively depicted for both approaches. Note that regions where the voltage in the
battery terminals increases correspond to negative currents in the HVB. This im
plies charging the battery, which is also observed in Fig. 7.5. An advantage of the
pH CVEM framework proposed in this chapter is that it is possible to give inde
pendent treatment to each conjugated variable in the port of the subsystems, i.e.,
setting independent constraints to each variable. For this study case, the constrains
on the voltage and current of the HVB aim to capture the charge acceptance phe
nomenon in the battery. This is not directly possible in powerbased approaches
because voltage and current are combined as power in a single decision variable.
Along the same lines, it should be mentioned that the pHbased approach allows
only positive voltages in the electric machine (EM). If this constraint is neglected,
the pHbased approach obtains the same solution as the powerbased approach.
This causes the differences in the solutions reported for this case study. This also
shows that power based approaches could provide solutions that are no physically
realizable.

7.4. Conclusions
We have proposed a systematic modelling approach to describe CVEM networks
in terms of interconnected pH systems representations. This is an alternative to
powerbased approaches for CVEM and has allowed us to unify the concepts of
energy storage and losses directly in the dynamical models of the subsystems. We
have highlighted the relevance of the pH framework in terms of formulation of a
physically insightful decomposable OCP. Moreover, the extra freedom obtained by
describing power in terms of conjugated variables has opened the door to include
additional physical phenomena as constraints in the OCP. Numerical simulations of
a case study for a battery electric vehicle have shown that the pHbased approach
to CVEM presented in this chapter improves the energy savings approximately 4.9%
with respect to the powerbased approach used in the case study. Moreover, it has
been observed that powerbased approaches could provide solutions that are not
physically realizable.
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8
Complete Vehicle Energy

Management and Ecodriving

In this chapter, we integrate the ecodriving problem into the Complete Ve
hicle Energy Management (CVEM) framework. To this end, we solve the
ecodriving problem using a Sequential Quadratic Programming (SQP) algo
rithm with Thikhonov regularization. We will further show that the SQP al
gorithm can be embedded in a distributed optimization approach, allowing
it to be used for Complete Vehicle Energy Management (CVEM), incorporat
ing optimal control of the vehicle’s auxiliary systems, in combination with
ecodriving. We consider two case studies for the ecodriving problem. The
first case study concerns the optimal control of a FullElectric Vehicle, which
has one control input and two states and is solved with the SQP algorithm.
The second case study lays a foundation for CVEM with ecodriving, where
we will solve an energy management problem with ecodriving for a Series
Hybrid Electric Vehicle, which has three control inputs and three states, using
the aforementioned SQP algorithm and dual decomposition.

This chapter is based on P.8.
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H ybrid electric vehicles offer the potential to reduce fuel consumption of a vehicle
by adding an electric motor with a highvoltage battery to the powertrain. This

allows braking energy to be recuperated and allows the combustion engine to work
at a more efficient operating point. In energy management, supervisory control is
used to determine the optimal power flow between the electric machine and the
combustion engine. A recent trend is to extend the energy management problem
to incorporate more auxiliary devices, such as a refrigerated semitrailer or a climate
control system [1], engine thermal management [2], battery thermal management
[3], battery ageing [4, 5]. Integrating all the vehicle energy consumers into the
energy management problem is referred to as Complete Vehicle Energy Manage
ment (CVEM) in [6]. The rationale behind this is that the auxiliaries also consume a
considerable amount of energy. However, in all these vehicle energy management
problems, the vehicle speed is assumed to be given, while most of the power gen
erated by the powertrain is used for propelling the vehicle. Therefore, optimizing
the speed of a vehicle over a certain trajectory, thereby allowing for an optimal con
version of potential energy from the road profile into kinetic energy of the vehicle,
can lead to a considerable energy consumption reduction. In this chapter, we refer
to this latter problem as the ecodriving problem.

In Vehicle Energy Management (VEM), global optimal solutions are typically
achieved using Dynamic Programming (DP) [7], see e.g., [8]. However, DP has the
inherent disadvantage that the computational burden increases with the number of
states. Optimization methods based on the Pontryagin’s Maximum Principle (PMP),
see, e.g., [4, 9] can handle computational complexity of multistate energy man
agement problems. In PMP, the problem is reduced to solving a twopoint boundary
value problem, which can be difficult to solve in the presence of state constraints.
Static optimization methods guarantee a global optimal solution for convex approx
imations of the energy management problems, e.g., [10]. To increase scalability
of the static optimization problem to allow for a large number of auxiliary systems,
distributed optimization approaches have been proposed in [1, 11] for complete
vehicle energy management. Using a dual decomposition, a large optimal control
problem is split up into several smaller optimal control problems. A disadvantage of
the convex optimization approach to vehicle energy management of [1, 11] is that it
requires the powertrain components to be described by (convex) quadratic models.
This renders the distributed optimization approach not usable for the ecodriving
problem, as the longitudinal vehicle dynamics is nonlinear. However, a particular
extension of the distributed optimization approach of [1, 11] towards a nonlinear
battery ageing model has been made in [5], showing its ability to handle nonlinear
convex models as well.

Some of the above mentioned optimization methods have been applied to the
ecodriving problem, e.g. PMP in [12, 13], DP in [14, 15], and static optimization in
[16]. The approaches based on PMP and DP suffer from their inherent difficulties,
i.e., incorporating state constraints in PMP and more dynamics in DP, while the
approach based on (convex) static optimization [16] applies an Euler discretization
to a continuous time optimal control problem. As the problem is formulated as
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a secondorder cone program, some of the powertrain components can only be
modeled using (piecewise) linear functions. Furthermore, convexity might be lost
after applying the Euler discretization, as it was shown in Chapter 2.

In this chapter, we will propose to solve the nonlinear (and possibly nonconvex)
ecodriving problem using an alternative static optimization approach to the one
presented in Chapter 2, which will be later easily extended to consider the CVEM
framework. To handle the nonlinearity and nonconvexity of the resulting optimal
control problem, we employ a Sequential Quadratic programming (SQP) algorithm
[17, 18]. The SQP algorithm is similar in nature to the algorithm in [19], where the
hessians are approximated to accelerate convergence, however we take advantage
of the problem structure and further eliminate the state variables as is often done in
MPC. Furthermore, we will show that the presented SQP algorithm can be embed
ded in the distributed optimization approach of [1, 11], allowing it to be used for
complete vehicle energy management, incorporating optimal control of the vehicle’s
auxiliary systems, in combination with ecodriving. We will benchmark our solution
strategy on a Full Electric Vehicle (FEV) problem presented in [13], which solves
the problem using PMP, and solve the problem using SQP. We show the advantage
of SQP over the PMP approach used in [13], as state constraints can be very eas
ily added in our proposed approach. Furthermore, we demonstrate the combined
ecodriving problem with the powersplit control of a series hybrid powertrain, as
was also considered in [16].

The outline of this chapter is as follows. Section 8.1 gives the problem formu
lation used in this chapter for the ecodriving problem. Section 8.2 presents the
sequential quadratic programming algorithm. Section 8.3 considers the CVEM with
ecodriving problem for the SEHV case study. In Section 8.4, we will show the re
sults for the FEV benchmark case study and the serieshybrid electric vehicle case
study. Finally, conclusions are drawn in Section 8.5.

8.1. Ecodriving Problem formulation
In this section, we formulate the ecodriving problem. Moreover, we will propose
a discretetime formulation of the problem and we will show that this leads to a
nonconvex optimization problem. We define the ecodriving problem as minimizing
traction power over a certain trajectory:

min
𝑣(𝑡),𝑠(𝑡),𝑢(𝑡)∫

𝑡𝑓

𝑡0
𝑃trac(𝑣(𝑡), 𝑢(𝑡))d𝑡, (8.1a)

where 𝑣 is speed, 𝑢 is the mechanical force, 𝑡0 and 𝑡𝑓 are the initial and final time
respectively. In this chapter, we assume

𝑃trac(𝑣, 𝑢) = 1
2𝛾2𝑢

2 + 𝛾1𝑢𝑣 + 1
2𝛾0𝑣

2, (8.1b)

where 𝛾2, 𝛾1 and 𝛾0 are parameters. The model (8.1b) is a reasonable model for
electric motors, because 𝑣2 is related to friction losses and 𝑢2 is related to dynamic
losses of the traction motor. The objective function in (8.1a) is minimized subject



8

152 8. EcoDriving and CVEM

to (8.1b) and the longitudinal dynamics of the vehicle, given by

⎧⎪⎪⎨⎪⎪⎩

d𝑣(𝑡)
d𝑡 = 𝜎𝑢𝑢(𝑡) − 𝜎𝑣𝑣(𝑡)2 − 𝜎𝑟 − 𝑔 sin(𝛼(𝑠(𝑡))),

d𝑠(𝑡)
d𝑡 = 𝑣(𝑡),

(8.1c)

for 𝑡 ∈ [𝑡0, 𝑡𝑓], and to lower and upper bounds on 𝑣 and 𝑢, i.e.,

𝑣(𝑡) ≤ 𝑣(𝑡) ≤ 𝑣(𝑡), 𝑢(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢(𝑡), (8.1d)

for 𝑡 ∈ [𝑡0, 𝑡𝑓], and 𝑣(𝑡0), 𝑠(𝑡0), 𝑣(𝑡𝑓) and 𝑠(𝑡𝑓) given. In (8.1c), 𝛼 is the road
slope, 𝜎𝑟 = 𝑔𝑐𝑟, 𝜎𝑢= 1

𝑚 and 𝜎𝑣 = 1
2𝑚𝑐𝑑𝜌𝑎𝐴𝑓. The coefficients 𝑚, 𝑔, 𝑐𝑑, 𝜌𝑎, 𝐴𝑓 and

𝑐𝑟 are the vehicle’s mass, gravitational acceleration, aerodynamic drag coefficient,
air density, frontal drag area and rolling resistance coefficient respectively.

To arrive at a finite dimensional optimization problem, we discretize (8.1) using a
forward Euler discretization, and arrive at a discretetime nonlinear optimal control
problem of the form:

min
𝑥𝑘 ,𝑢𝑘

∑
𝑘∈K

1
2[

𝑥𝑘𝑢𝑘 ]
⊤𝐻𝑘[ 𝑥𝑘𝑢𝑘 ] + 𝐹⊤𝑘 [

𝑥𝑘𝑢𝑘 ], (8.2a)

subject to state dynamics,

𝑥𝑘+1 =𝑓(𝑥𝑘 , 𝑢𝑘), (8.2b)

and state constraints and input constraints,

𝑥𝑘 ≤ 𝑥𝑘 ≤ 𝑥𝑘 , 𝑢𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑘 , (8.2c)

for 𝑘 ∈ K = {0, 1,… ,𝐾 − 1}, where 𝐾 = 𝑡𝑓−𝑡0
𝜏 is the optimization horizon with 𝑥0, 𝑥𝐾

given and 𝜏 > 0, which is chosen such that 𝜏𝑡𝑓 ∈ ℕ, is the step size. To arrive at a
discretetime approximation of (8.1), we choose

𝑥𝑘 = [ 𝑣𝑘𝑠𝑘 ], 𝐻𝑘 = 𝜏[
𝛾0 0 𝛾1
0 0 0
𝛾1 0 𝛾2

], 𝐹𝑘 = [
0
0
0
], (8.3a)

and

𝑓(𝑥𝑘 , 𝑢𝑘) = [𝑣𝑘+𝜏(𝜎𝑢𝑢𝑘−𝜎𝑣𝑣
2
𝑘 −𝜎𝑟−𝑔 sin(𝛼(𝑠𝑘)))

𝑠𝑘 + 𝜏𝑣𝑘 ] . (8.3b)

An electric machine, represented by (8.1b), typically has a close to linear input
output behavior, such that 𝛾1 ≈ 1, 𝛾0 ≪ 1 and 𝛾2 ≪ 1, as the power losses are
small generally. This might cause (8.2) with (8.3) to be a nonconvex optimization
problem, i.e., 𝐻𝑘 ⪰̸ 0. However, (8.2) may still be convex in the feasible domain,
i.e., where the constraints (8.2b)  (8.2c) are satisfied. In Chapter 2, it is shown
that due to the discretization step to arrive at (8.2), the discretized problem is
nonconvex even in the feasible domain for any sampling time 𝜏 > 0. Even though
this nonconvexity of the discretized problem, a global solution can be expected due
to the results presented in Chapter 2.
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8.2. SQP Approach to Ecodriving
In this section, we will present a Sequential Quadratic Programming (SQP) algorithm
to solve the nonlinear optimal control problem (8.2). SQP aims at solving a non
linear optimization problem by sequentially solving linearly constrained quadratic
programs (LCQP), which are formed, e.g., by approximating the objective function
with a quadratic equation and linearizing the constraints. In the SQP algorithm
that we will present below, we take advantage of the fact that the states are ex
pressed as functions of the input, by linearizing the state equations and substituting
these into the objective function and constraints, and arrive at a static optimization
problem.

8.2.1. Sequential Quadratic Programming Algorithm
In this section, we will present an algorithm to solve (8.2) based on SQP and prove
that solving the SQP algorithm yields a solution to (8.2), provided that the solution
converges. In particular, we will solve (8.2) by recursively solving

{𝑥𝑖+1𝑘 , 𝑢𝑖+1𝑘 }𝑘∈K = argmin
𝑥𝑘 ,𝑢𝑘

∑
𝑘∈K

1
2[

𝑥𝑘−𝑥𝑖𝑘
𝑢𝑘−𝑢𝑖𝑘

]
⊤
𝑅𝑘[ 𝑥𝑘−𝑥

𝑖
𝑘

𝑢𝑘−𝑢𝑖𝑘
] + (𝐻𝑘[ 𝑥

𝑖
𝑘

𝑢𝑖𝑘
] + 𝐹𝑘)

⊤[ 𝑥𝑘𝑢𝑘 ], (8.4a)

subject to linearized state dynamics,

𝑥𝑘+1 =𝑓(𝑥𝑖𝑘 , 𝑢𝑖𝑘) + ∇𝑓(𝑥𝑖𝑘 , 𝑢𝑖𝑘)[
𝑥𝑘−𝑥𝑖𝑘
𝑢𝑘−𝑢𝑖𝑘

], (8.4b)

and state constraints and input constraints,

𝑥𝑘 ≤ 𝑥𝑘 ≤ 𝑥𝑘 , 𝑢𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑘 , (8.4c)

for all 𝑘 ∈ K and 𝑖 ∈ ℕ, and for given 𝑥0, 𝑥𝐾 as well as some suitably well chosen
{𝑥0𝑘 , 𝑢0𝑘}𝑘∈K, such that a feasible solution exists for the next iteration of the SQP
subproblem (8.4). Thus, we have formed the SQP subproblem (8.4) by linearizing
the state equations (8.2b), and linearizing the objective function (8.2a) and adding
an 𝑅𝑘 ⪰ 0 to ensure a convex objective function in (8.4a), which can be regarded
as a proximal or Thikonov regularization. The matrix 𝑅𝑘 can be chosen to warrant
that the SQP subproblem (8.4) is strictly convex in its control variables {𝑢𝑘}𝑘∈K and
converges. We note that by choosing 𝑅𝑘 = 𝐻𝑘, the SQP objective function (8.4a)
becomes exactly the original objective function (8.2a). The SQP algorithm can be
terminated when, e.g.,

∣𝐽𝑖+1 − 𝐽𝑖 ∣ ≤ Δtol, (8.5a)

in which Δtol is a certain specified tolerance, and

𝐽𝑖 =∑
𝑘∈K

1
2[

𝑥𝑖𝑘
𝑢𝑖𝑘
]
⊤
𝐻𝑘[𝑥

𝑖
𝑘

𝑢𝑖𝑘
]+𝐹⊤𝑘 [

𝑥𝑖𝑘
𝑢𝑖𝑘
]+𝜈∑

𝑘∈K
∣𝑥𝑖𝑘+1−𝑓(𝑥𝑖𝑘 , 𝑢𝑖𝑘)∣ (8.5b)
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is the optimal cost at iteration 𝑖, which can be considered as a merit function for
the SQP approach (8.4). In (8.5b) 𝜈 ≥ 0 is chosen such that infeasible solutions to
the SQP subproblem (8.4) at iteration 𝑖 return a higher cost than optimal feasible
solutions. Note that in this SQP approach, we allow infeasible solutions at iteration
𝑖, and as the algorithm converges, i.e., ∣𝐽𝑖+1 − 𝐽𝑖 ∣ → 0, feasibility is obtained in the
limit. Also note that as the state and input constraints (8.4c) are automatically
satisfied with a solution to the SQP (8.4), and thus there is no contribution from
these inequality constraints to the merit function (8.5b).

We can prove that when the SQP problem has converged, i.e. 𝑥𝑖+1𝑘 = 𝑥𝑖𝑘 and
𝑢𝑖+1𝑘 = 𝑢𝑖𝑘 for all 𝑘 ∈ K, the firstorder necessary conditions for optimality, i.e., the
socalled KarushKuhnTucker (KKT) conditions [20], for (8.4) are identical to the
KKT conditions of (8.2). The KKT conditions use the notion of a Lagrangian, which
for (8.2) is given by,

𝐿({𝑥𝑘 , 𝑢𝑘 , 𝜆𝑘 , 𝜇𝑘}) =∑
𝑘∈K

1
2[

𝑥𝑘𝑢𝑘 ]
⊤𝐻𝑘[ 𝑥𝑘𝑢𝑘 ] + 𝐹𝑘[

𝑥𝑘𝑢𝑘 ]

+∑
𝑘∈K

𝜇⊤𝑘+1(𝑥𝑘+1 − 𝑓(𝑥𝑘 , 𝑢𝑘)) + 𝜆⊤𝑘ℎ(𝑥𝑘 , 𝑢𝑘), (8.6)

where ℎ(𝑥, 𝑢) = [ (𝑥−𝑥)⊤ (𝑥−𝑥)⊤ (𝑢−𝑢)⊤ (𝑢−𝑢)⊤ ]⊤. For a local optimal solution {𝑥∗𝑘 , 𝑢∗𝑘}𝑘∈K,
there exist {𝜆∗𝑘 , 𝜇∗𝑘}𝑘∈K that satisfy stationarity of the Lagrangian, i.e.,

𝐻𝑘[𝑥
∗
𝑘

𝑢∗𝑘
] + 𝐹𝑘 + [𝜇

∗
𝑘
0 ] − ∇𝑓(𝑥

∗
𝑘 , 𝑢∗𝑘)⊤𝜇∗𝑘+1 + ∇ℎ(𝑥∗𝑘 , 𝑢∗𝑘)⊤𝜆∗𝑘 = 0, (8.7a)

and primal feasibility and complementarity slackness of the constraints, i.e.,

𝑥∗𝑘+1 − 𝑓(𝑥∗𝑘 , 𝑢∗𝑘) = 0 (8.7b)
0 ≤ 𝜆∗𝑘⊥ − ℎ(𝑥∗𝑘 , 𝑢∗𝑘) ≥ 0, (8.7c)

where the notation 0 ≤ 𝑎⊥𝑏 ≥ 0 indicates 𝑎, 𝑏 ≥ 0, 𝑎⊤𝑏 = 0. Similarly, the necessary
conditions for optimality of (8.4) are given by a stationarity condition, i.e.,

𝑅𝑘[𝑥
∗
𝑘−𝑥𝑖𝑘

𝑢∗𝑘−𝑢𝑖𝑘
]+𝐻𝑘[ 𝑥

𝑖
𝑘

𝑢𝑖𝑘
]+𝐹𝑘 + [ 𝜇

∗
𝑘
0 ] − ∇𝑓(𝑥

𝑖
𝑘 , 𝑢𝑖𝑘)⊤𝜇∗𝑘+1 + ∇ℎ(𝑥∗𝑘 , 𝑢∗𝑘)⊤𝜆∗𝑘 = 0, (8.8a)

and primal feasibility and complementary slackness of the constraints, i.e.,

𝑥∗𝑘+1 − 𝑓(𝑥𝑖𝑘 , 𝑢𝑖𝑘) + ∇𝑓(𝑥𝑖𝑘 , 𝑢𝑖𝑘)[
𝑥∗𝑘−𝑥𝑖𝑘
𝑢∗𝑘−𝑢𝑖𝑘

] = 0, (8.8b)

0 ≤ 𝜆∗𝑘⊥ − ℎ(𝑥∗𝑘 , 𝑢∗𝑘) ≥ 0. (8.8c)

We observe that when 𝑥∗𝑘 = 𝑥𝑖+1𝑘 = 𝑥𝑖𝑘 and 𝑢∗𝑘 = 𝑢𝑖+1𝑘 = 𝑢𝑖𝑘 the KKT conditions (8.8)
and (8.7) are equal. Thus, we can find (local) solutions of (8.2) by solving the
SQP (8.4), provided that the iterates converge, in the sense that 𝑥𝑖+1𝑘 → 𝑥𝑖𝑘 and
𝑢𝑖+1𝑘 → 𝑢𝑖𝑘 for all 𝑘 ∈ K when 𝑖 → ∞.
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Figure 8.1: Topology.

It should be mentioned that the main difference with the approach presented
in Chapter 2 lies in the OCP formulation for the ecodriving problem. In Chapter 2,
the ecodriving problem is reformulated to eliminate only the nonlinear dynamics
by substituting them in the cost. As consequence, the OCP has already a linear
feasible set, thus, avoiding the linearization of the feasible set performed in the
approach presented in this section. Although both approaches obtain similar nu
merical performance, the approach presented in this chapter allows a more intuitive
extension to the CVEM problem with ecodriving, since it preserves quadratic forms
in the cost function.

8.3. Complete Vehicle EnergyManagement with Eco
driving

As a case study for Complete Vehicle Energy Management (CVEM) with ecodriving,
we consider a serieshybrid electric vehicle, consisting of an electric motor (EM),
enginegenerator unit (EGU) and a highvoltage battery (HVB). The topology is
shown in Fig. 8.1, in which 𝑦𝑒𝑔𝑢 and 𝑢𝑒𝑔𝑢 denote the ICE’s fuel and mechani
cal power, respectively, 𝑦ℎ𝑣𝑏 and 𝑢ℎ𝑣𝑏 the battery’s electrical and stored chemical
power, 𝑦𝑏𝑟𝑘 is an artificial braking power exerted at the interconnection of the sub
systems, 𝑢𝑒𝑚 and 𝑦𝑒𝑚 the EM’s mechanical force and electrical power, respectively,
𝑥ℎ𝑣𝑏 denotes the battery state of energy and 𝑥𝑒𝑚 = [ 𝑣𝑠 ], denotes the states speed
𝑣 and distance traveled 𝑠 of the vehicle. In this case, the main goal is to minimize
fuel consumption, given by

∑
𝑘∈K

𝜏𝑦𝑒𝑔𝑢,𝑘 , (8.9a)

subject to the dynamics and inputoutput behavior of the converters in Fig 8.1, and
the power balance at interconnection of the subsystems, i.e.,

𝑦𝑒𝑚,𝑘 − 𝑢𝑒𝑔𝑢,𝑘 − 𝑦ℎ𝑣𝑏,𝑘 = 𝑦𝑏𝑟𝑘 ≤ 0, (8.9b)
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for all 𝑘 ∈ K. We use the constraint (8.9b) and energy balance constraint of the
HVB, i.e.,

∑
𝑘∈K

𝜏𝑢ℎ𝑣𝑏 = 𝑥ℎ𝑣𝑏,𝐾 − 𝑥ℎ𝑣𝑏,0 = 0 (8.9c)

to rewrite (8.9a) as a ‘sum of losses’, i.e.,

𝜏 ∑
𝑘∈K

𝑦𝑒𝑔𝑢,𝑘−𝑢𝑒𝑔𝑢,𝑘+𝑢ℎ𝑣𝑏,𝑘−𝑦ℎ𝑣𝑏,𝑘+𝑦𝑒𝑚,𝑘−𝑦𝑏𝑟𝑘,𝑘 . (8.9d)

By substituting (8.9b) and (8.9c) into (8.9d), we retrieve the original objective func
tion (8.9a). In this section, we solve the CVEM problem by formulating it as a convex
SQP problem and then apply dual decomposition as presented in [1].

8.3.1. Optimal Control Problem
The objective is to minimize fuel consumption, for which we use the equivalent fuel
consumption (8.9d), which may be written as

min
𝑢𝑚,𝑘 ,𝑦𝑚,𝑘

∑
𝑚∈M

∑
𝑘∈K

𝑎𝑚𝑢𝑚,𝑘 + 𝑏𝑚𝑦𝑚,𝑘 (8.10a)

where 𝑢𝑚,𝑘 ∈ ℝ and 𝑦𝑚,𝑘 ∈ ℝ are the (scalar) inputs and outputs of the converter
in subsystem 𝑚 ∈ M = {𝑒𝑚, 𝑒𝑔𝑢, ℎ𝑣𝑏} at time instant 𝑘 ∈ K. The optimization
problem (8.10a) is to be solved subject to an equality constraint describing the
quadratic inputoutput behavior of each converter, i.e.,

𝑦𝑚,𝑘 = 1
2[

𝑥𝑚,𝑘
𝑢𝑚,𝑘 ]

⊤𝐻𝑚[ 𝑥𝑚,𝑘
𝑢𝑚,𝑘 ] + 𝐹⊤𝑚[

𝑥𝑚,𝑘
𝑢𝑚,𝑘 ] + 𝑒𝑚 (8.10b)

for all 𝑘 ∈ K,𝑚 ∈M, and subject to the system dynamics of the states in subsystem
𝑚 ∈M, i.e.,

𝑥𝑚,𝑘+1 = 𝑓𝑚(𝑥𝑚,𝑘 , 𝑢𝑚,𝑘) (8.10c)

for all 𝑘 ∈ K where the initial state 𝑥𝑚,0 and final state 𝑥𝑚,𝐾 of the energy storage
device are assumed to be given, and the input 𝑢𝑚,𝑘 is subject to linear inequality
constraints, i.e.,

𝑢𝑚,𝑘 ≤ 𝑢𝑚,𝑘 ≤ 𝑢𝑚,𝑘 , (8.10d)

for all 𝑘 ∈ K, 𝑚 ∈M and the state 𝑥𝑚,𝑘 is subject to linear inequality constraints,
i.e.,

𝑥𝑚,𝑘 ≤ 𝑥𝑚,𝑘 ≤ 𝑥𝑚,𝑘 , (8.10e)

for all 𝑘 ∈ K and 𝑚 ∈M. Finally, the optimization problem is solved subject to a
linear inequality constraint describing the interconnection of the subsystems given
by (8.9b), which we write as

∑
𝑚∈M

𝑐𝑚𝑢𝑚,𝑘 + 𝑑𝑚𝑦𝑚,𝑘 = 𝑦𝑏𝑟𝑘,𝑘 ≤ 0, (8.10f)
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for all 𝑘 ∈ K, where 𝑐𝑚 , 𝑑𝑚 ∈ ℝ. Note that we have left out the term −𝑦𝑏𝑟𝑘,𝑘
in (8.10a), as 𝑦𝑏𝑟𝑘,𝑘 for all 𝑘 ∈ K is already given by the inequality (8.10f), which
renders 𝑦𝑏𝑟𝑘,𝑘 as an implicit decision variable. To have that (8.10a) corresponds
to (8.9d), we choose

𝑎𝑒𝑔𝑢=𝑏ℎ𝑣𝑏 =−𝜏, 𝑎ℎ𝑣𝑏 =𝑏𝑒𝑔𝑢=𝑏𝑒𝑚=𝜏, 𝑎𝑒𝑚=0, (8.11a)

and to have that (8.10f) corresponds to (8.9b), we choose

𝑐𝑒𝑔𝑢=𝑑ℎ𝑣𝑏 =−1, 𝑑𝑒𝑚=1, 𝑐ℎ𝑣𝑏 =𝑐𝑒𝑚=𝑑𝑒𝑔𝑢=0. (8.11b)

Finally, we assume in this chapter that the coefficients for the inputoutput behavior
of the converters in (8.10b) are given by

𝐻𝑒𝑚=[
𝛾𝑒𝑚,0 0 𝛾𝑒𝑚,1
0 0 0

𝛾𝑒𝑚,1 0 𝛾𝑒𝑚,2
], 𝐹𝑒𝑚=[

0
0
0
], 𝑒𝑒𝑚=0,

𝐻ℎ𝑣𝑏 =[0 0
0 𝛾ℎ𝑣𝑏,2], 𝐹ℎ𝑣𝑏 =[ 0

𝛾ℎ𝑣𝑏,1], 𝑒ℎ𝑣𝑏 =𝛾ℎ𝑣𝑏,0,
𝐻𝑒𝑔𝑢=𝛾𝑒𝑔𝑢,2, 𝐹𝑒𝑔𝑢=𝛾𝑒𝑔𝑢,1, 𝑒𝑒𝑔𝑢=𝛾𝑒𝑔𝑢,0,

(8.11c)

for some parameters 𝛾𝑚2 , 𝛾𝑚1 , 𝛾𝑚0 , 𝑚 ∈ M, the state dynamics for the EM are
given by

𝑓(𝑥𝑒𝑚,𝑘 , 𝑢𝑒𝑚,𝑘) = [
𝑣𝑘+𝜏(𝜎𝑢𝑢𝑒𝑚,𝑘−𝜎𝑣𝑣2𝑘 −𝜎𝑟−𝑔 sin(𝛼(𝑠𝑘)))

𝑠𝑘 + 𝜏𝑣𝑘 ], (8.11d)

and the battery state of energy is given by

𝑓ℎ𝑣𝑏(𝑥ℎ𝑣𝑏,𝑘 , 𝑢ℎ𝑣𝑏,𝑘)=𝑥ℎ𝑣𝑏,𝑘−𝜏𝑢ℎ𝑣𝑏,𝑘 . (8.11e)

8.3.2. SQP Formulation
To form a convex SQP formulation, we propose to relax the (nonconvex) quadratic
inputoutput behavior of the converters (8.10b) to a convex quadratic approxima
tion by linearizing (8.10b) around [(𝑥𝑖𝑚,𝑘)

⊤ (𝑢𝑖𝑚,𝑘)
⊤]⊤ and adding a convex quadratic

part, i.e.,

𝑦𝑚,𝑘≈ 1
2([

𝑥𝑘𝑢𝑘]−[
𝑥𝑖𝑘
𝑢𝑖𝑘
])⊤𝑅𝑚([𝑥𝑘𝑢𝑘]−[

𝑥𝑖𝑘
𝑢𝑖𝑘
])+(𝐻𝑚[𝑥

𝑖
𝑘

𝑢𝑖𝑘
]+𝐹𝑚)⊤[𝑥𝑘𝑢𝑘]+𝑒𝑚 , (8.12)

for all 𝑘 ∈ K and 𝑚 ∈M, where the matrix 𝑅𝑚 ⪰ 0 is chosen such that (8.12) is
convex. We note that the approximation error disappears when 𝑥𝑚,𝑘 → 𝑥𝑖𝑚,𝑘, 𝑢𝑚,𝑘 →
𝑢𝑖𝑚,𝑘, and by choosing 𝑅𝑚 = 𝐻𝑚, we retrieve the original quadratic equation (8.10b).
By substituting (8.12) into (8.10a) and (8.10f) and linearizing the dynamics (8.10c),
we arrive at the convex SQP subproblem

{𝑥𝑖+1𝑚,𝑘 , 𝑢𝑖+1𝑚,𝑘}𝑘∈K,𝑚∈M = argmin
𝑥𝑚,𝑘 ,𝑢𝑚,𝑘

∑
𝑚∈M

∑
𝑘∈K

1
2𝑏𝑚([

𝑥𝑘𝑢𝑘][
𝑥𝑖𝑘
𝑢𝑖𝑘
])⊤𝑅𝑚([𝑥𝑘𝑢𝑘][

𝑥𝑖𝑘
𝑢𝑖𝑘
])

+ (𝑏𝑚𝐻𝑚[𝑥
𝑖
𝑘

𝑢𝑖𝑘
]+𝑏𝑚𝐹𝑚 + [ 0𝑎𝑚])

⊤[𝑥𝑘𝑢𝑘] + 𝑏𝑚𝑒𝑚 , (8.13a)
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subject to the linearized state dynamics, i.e.,

𝑥𝑚,𝑘+1 − 𝑓𝑚(𝑥𝑖𝑚,𝑘 , 𝑢𝑖𝑚,𝑘) − ∇𝑓𝑚(𝑥𝑖𝑚,𝑘 , 𝑢𝑖𝑚,𝑘)([
𝑥𝑘𝑢𝑘]−[

𝑥𝑖𝑘
𝑢𝑖𝑘
]) = 0, (8.13b)

for all 𝑘 ∈ K, 𝑚 ∈M, and subject to linear inequality constraints, i.e.,

𝑥𝑚,𝑘 ≤ 𝑥𝑚,𝑘 ≤ 𝑥𝑚,𝑘 , 𝑢𝑚,𝑘 ≤ 𝑢𝑚,𝑘 ≤ 𝑢𝑚,𝑘 (8.13c)

for all 𝑘 ∈ K, 𝑚 ∈M, and further subject to the convex quadratic inequality con
straint specifying the interconnection of the subsystems

∑
𝑚∈M

1
2𝑑𝑚([

𝑥𝑘𝑢𝑘]−[
𝑥𝑖𝑘
𝑢𝑖𝑘
])⊤𝑅𝑚([𝑥𝑘𝑢𝑘]−[

𝑥𝑖𝑘
𝑢𝑖𝑘
]) + (𝑑𝑚𝐻𝑚[𝑥

𝑖
𝑘

𝑢𝑖𝑘
]+𝑑𝑚𝐹𝑚 + [ 0𝑐𝑚])

⊤[𝑥𝑘𝑢𝑘]+𝑑𝑚𝑒𝑚 ≤ 0,

(8.13d)

for all 𝑚 ∈M.

8.3.3. Dual Decomposition
Note that (8.13a) subject to (8.13b) and (8.13c) is entirely separable, and the only
complicating constraint is (8.13d), which is the constraint that acts on all compo
nents 𝑚 ∈M. Therefore, we propose to decompose (8.13) via dual decomposition
by augmenting the objective function with the constraint (8.13d), which results in
the socalled ’partial Lagrangian’:

𝐿({𝑥𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝜆𝑘}) =∑
𝑘∈K

∑
𝑚∈M

1
2([

𝑥𝑘𝑢𝑘 ][
𝑥𝑖𝑘
𝑢𝑖𝑘
])⊤𝑅𝑚,𝑘([ 𝑥𝑘𝑢𝑘 ][

𝑥𝑖𝑘
𝑢𝑖𝑘
])

+ (�̂�𝑚,𝑘[
𝑥𝑖𝑘
𝑢𝑖𝑘
] + 𝐹𝑚,𝑘)

⊤[ 𝑥𝑘𝑢𝑘 ] + 𝐸𝑚,𝑘 , (8.14a)

in which,

𝑅𝑚,𝑘 = (𝑏𝑚 + 𝑑𝑚𝜆𝑘)𝑅𝑚 ,
�̂�𝑚,𝑘 = (𝑏𝑚 + 𝑑𝑚𝜆𝑘)𝐻𝑚 ,
𝐹𝑚,𝑘 = (𝑏𝑚 + 𝑑𝑚𝜆𝑘)𝐹𝑚 + (𝑎𝑚 + 𝑐𝑚𝜆𝑘)[ 01 ],
𝐸𝑚,𝑘 = (𝑏𝑚 + 𝑑𝑚𝜆𝑘)𝑒𝑚 , (8.14b)

where 𝜆𝑘 ≥ 0 ∈ ℝ𝑁 is a Lagrange multiplier. The partial Lagrange dual function is
then given by

𝑔({𝜆𝑘})= min
𝑥𝑚,𝑘 ,𝑢𝑚,𝑘

𝐿({𝑥𝑚,𝑘 , 𝑢𝑚,𝑘 , 𝜆𝑘}) = ∑
𝑚∈M

𝑔𝑚({𝜆𝑘}) + 𝐸𝑚,𝑘 , (8.15a)

subject to (8.13b)(8.13d), with

𝑔𝑚({𝜆𝑘})= min
𝑥𝑚,𝑘 ,𝑢𝑚,𝑘

∑
𝑘∈K

1
2([

𝑥𝑘𝑢𝑘][
𝑥𝑖𝑘
𝑢𝑖𝑘
])⊤𝑅𝑚,𝑘([𝑥𝑘𝑢𝑘][

𝑥𝑖𝑘
𝑢𝑖𝑘
]) + (�̂�𝑚,𝑘[

𝑥𝑖𝑘
𝑢𝑖𝑘
]+𝐹𝑚,𝑘)

⊤[𝑥𝑘𝑢𝑘],

(8.15b)
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subject to (8.13b) and (8.13c), the dual problem for each component. Note that
for the components whose dynamics 𝑓𝑚(𝑥𝑚,𝑘 , 𝑢𝑚,𝑘) are linear and 𝑅𝑚 = 𝐻𝑚 yields a
convex dual problem (8.15b), SQP is not needed to solve the dual problem, as they
can be solved as a QP problem. Typically, 𝑔𝑒𝑔𝑢 and 𝑔ℎ𝑣𝑏 are both QP problems and
𝑔𝑒𝑚 is an SQP problem that can be solved through the approach given in Section 8.3.
However, it may still be beneficial to apply regularization to the other components,
since it may improve convergence properties, as we will show in Section 8.4. The
dual problem is given by

max
𝜆𝑘

𝑔({𝜆𝑘}) = 𝑑∗, (8.16)

subject to (8.13b) and (8.13c), where 𝑑∗ is defined as the dual optimal solution.
The dual problem (8.16) gives a lower bound on the primal optimal value 𝑝∗ of
problem (8.13), i.e.,

𝑑∗ ≤ 𝑝∗. (8.17)

The dual problem equals the primal problem, i.e. 𝑑∗ = 𝑝∗, if problem (8.13) is
convex and the constraints satisfy Slater’s constraint qualifications[20]. As we have
formed a convex SQP subproblem (8.13) and assume that the Slater’s constraint
qualifications are satisfied for this problem formulation, we have that 𝑑∗ = 𝑝∗ in our
SQP and dual decomposition approach. We maximize the dual problem (8.16) with
a steepest ascend method, i.e.,

𝜆𝑖+1𝑘 =max{0, 𝜆𝑖𝑘+𝜌𝑘( ∑
𝑚∈M

𝑐𝑚𝑢𝑖+1𝑚,𝑘+𝑑𝑚𝑦𝑖+1𝑚,𝑘)}, (8.18)

for all 𝑘 ∈ K, where 𝜌𝑘 ≥ 0 is chosen small enough such that the dual problem
converges. A proof of converge of the dual decomposition(without SQP) is given
in [11], however, in our approach, note that in 1 iteration, we solve both the SQP
subproblem (8.13) as well as update the Lagrangian multiplier 𝜆𝑘 for all 𝑘 ∈ K. This
may violate the proof given in [11], although we have found that as long as 𝑅𝑚 for
all 𝑚 ∈M are well chosen, this is the fastest way to let the dual problem converge.
Furthermore, in [11], a more complex update rule is proposed to maximize the dual
problem (8.16), which may further improve convergence. The dual problem (8.16)
is terminated similarly to the SQP (8.4), i.e, it is terminated under the condition
that

∣𝐽𝑖+1 − 𝐽𝑖 ∣ ≤ Δtol, (8.19a)

in which Δtol is a certain specified tolerance, and

𝐽𝑖 =∑
𝑘∈K

𝜏𝑦𝑒𝑔𝑢,𝑘+𝜈1∑
𝑘∈K

max{0, ∑
𝑚∈M

𝑐𝑚𝑢𝑖𝑚,𝑘+𝑑𝑚𝑦𝑖𝑚,𝑘}

+𝜈2 ∑
𝑚∈M

∑
𝑘∈K
∣𝑥𝑖𝑚,𝑘+1−𝑓(𝑥𝑖𝑚,𝑘 , 𝑢𝑖𝑚,𝑘)∣, (8.19b)
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Figure 8.2: Results of the FEV case study.

where 𝜈1 ≥ 0 and 𝜈2 ≥ 0 are penalty parameters. The merit function (8.19b)
has a cost term that defines the fuel consumption, a penalty term related to the
violation of the state equality constraints (8.10c), and a penalty term related to the
augmented inequality constraint (8.10f). Indeed, these two constraints are the only
constraints that may be violated at iteration 𝑖 of the dual problem (8.16), and thus
have a contribution in the merit function (8.19b). This concludes the SQP and dual
decomposition approach presented in this section, where by formulating (8.10) as
a convex SQP subproblem (8.13), we could form the dual problem (8.16), which
solves the vehicle energy management problem (8.10).

8.4. Results
In this section, we show the results of two simulation studies where the Ecodriving
problem is present. In the first simulation study, we will use the SQP approach
presented in Section 8.2 to replicate the results of the Ecodriving problem for
a fullelectric vehicle (FEV) detailed in [13]. In the second simulation study, we
consider an energy management problem for a serieshybrid electric vehicle, and
solve this with the approach presented in Section 8.3. The results of this simulation
are comparable to the results presented in [16], yet not exactly the same, due to
slightly different models that are used.

Table 8.1: Full Electric Vehicle Parameters

𝑝0 = 3 𝑣(𝑡0) = 0 𝜎𝑟 = 0.1 𝛾0 = 0
𝑝1 = 0.4 𝑣(𝑡𝑓) = 0 𝜎𝑣 = 10−3 𝛾1 = 103
𝑝2 = −1 𝑠(𝑡0) = 0 𝜎𝑢 = 1 𝛾2 = 2×103
𝑝3 = 0.1 𝑠(𝑡𝑓) = 10 𝑡0 = 0 𝑡𝑓 = 1
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Figure 8.3: FEV case study with state constraints. The black dotted line represents the maximum speed
constraint.

8.4.1. Full Electric Vehicle
The full electric vehicle simulation study as presented in [13] has a powertrain
consisting of an electric motor (EM) and a highvoltage battery (HVB). However, in
this case study, the HVB is not considered, i.e., it is assumed that the HVB has infinite
energy storage and no power limitations, which makes it a simple but representative
example for ecodriving. Furthermore, the optimal control problem given in [13]
does not consider input and state constraints. This follows from the fact that [13]
applies Pontryagin’s Maximum Principle, in which it is hard to introduce state and
input constraints. We solve the ecodriving problem presented in [13] using the
discretization approach as presented in Section 8.1, with 𝜏 = 0.0005, and SQP, as
presented in Section 8.2. We also show that with the SQP approach, adding state
and input constraints becomes trivial. In Fig. 8.2, the results of the FEV simulation
study, without state and input constraints are shown, in which we see that the initial
and final state constraint are satisfied. We further note that the speed curve is not
symmetrical, due to the road profile; close to where the slope is steepest, speed
is maximized, as is expected. The cost as defined by the discretetime objective
function by the merit function (8.5b) is 𝐽 = 1227247.8, which differs by 0.1% to
the cost obtained in [13]. This small difference may be caused due to numerical
inaccuracies and the finite sampling time. It is interesting to note that since global
optimality and uniqueness of the solution is guaranteed form Chapter 8, the solution
obtained with this approach is identical the solutions the presented in [13]. As an
illustration to the ease of adding state and input constraints, in Fig. 8.3, the results
of the simulation study with a maximum speed constraint of 12 m/s are shown.
We observe that with a cost of 𝐽 = 1511796.5, by adding this constraint, the cost
becomes higher than without state constraints, as is expected.
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8.4.2. SeriesHybrid Electric Vehicle
In this simulation study, we consider the SeriesHybrid Electric Vehicle (SEHV) case
study presented in Section 8.3. We solve the case study in a ‘forward’ and ‘back
ward’ simulation using the approach presented in Section 8.3. The term ‘forward’
and ‘backward’ refer to way in which the longitudinal vehicle dynamics differen
tial equations (8.1c) are treated. That is, in ‘backward’ simulation, the differential
equations are treated as ‘quasistatic’ equations, i.e., the states 𝑣 and 𝑠 are given a
priori and in ‘forward’ simulation, the differential equations are treated ‘dynamically’,
i.e., the states remain decision variables. We will refer to ‘forward’ optimization as
solving the vehicle energy management problem with ecodriving (8.10), and re
fer to ‘backward’ optimization as solving (8.10) as an energy management problem
without ecodriving, where the vehicle trajectory information, i.e. speed 𝑣𝑘 and dis
tance 𝑠𝑘 for all 𝑘 ∈ K, are given. We further solve the ‘forward’ optimization problem
with the SQP (8.13), although without applying dual decomposition, which leads to
a Quadratically Constrained Quadratic Program (QCQP), which we will refer to as
the ‘direct’ method, to validate the dual decomposition method. We refer to the
SQP and dual decomposition approach presented in Section 8.3 as the ‘distributed’
method. To show additional capabilities of the SQP approach, we show an example
where we introduce timevarying minimum and maximum speed constraints.

We base our case study on the work done in [16], in which a convex opti
mization approach is taken to solve the SEHV case study, where it is formulated
a secondorder cone program. Due to the chosen problem formulation, the au
thors in [16] have opted for a piecewise linear EM model, linear EGU model and
a quadratic HVB model. Furthermore, the authors in [16] define the optimization
problem in the space domain, for which the physical interpretation of some parts
of their problem formulation is not easy to understand. As we have defined the
SEHV case study in the time domain, we do not face this issue. To have somewhat
comparable results, we fit the parameters of our quadratic EM model using a least
squares fitting tool. We further approximate the linear EGU model with a quadratic
EGU model by choosing the quadratic coefficient 𝛾𝑒𝑔𝑢,2 in (8.11c) sufficiently small.
The parameters used for the simulation study are shown in Table 8.2. We remark
here that the upper and lower bounds for the state and input variables specified in
Table 8.2 are defined for all 𝑘 ∈ K.

Table 8.2: Series Hybrid Electric Vehicle Parameters

𝛾𝑒𝑚,0 = 0.5856 𝑚 = 15950 kg 𝑠𝐾 = 21000 m
𝛾𝑒𝑚,1 = 1.005 𝑔 = 9.81 m/s2 𝑥ℎ𝑣𝑏,0 = 11988 kJ
𝛾𝑒𝑚,2 = 5.052×10−4 𝑐𝑑 = 0.7 𝑥ℎ𝑣𝑏,𝐾 = 𝑥ℎ𝑣𝑏,0
𝛾𝑒𝑔𝑢,0 = 38 𝑐𝑟 = 0.0007 𝑣𝑘 = 22.22 m/s
𝛾𝑒𝑔𝑢,1 = 2.52 𝐴𝑓 = 7.54 m2 𝑣𝑘 = 16.67 m/s
𝛾𝑒𝑔𝑢,2 = 2×10−5 𝜌𝐴 = 1.184 kg/m2 𝑥ℎ𝑣𝑏,𝑘 = 22680 kJ
𝛾ℎ𝑣𝑏,0 = 0 𝑣0 = 19.44 m/s 𝑥ℎ𝑣𝑏,𝑘 = 7560 kJ
𝛾ℎ𝑣𝑏,1 = −1 𝑣𝐾 = 𝑣0 𝑢ℎ𝑣𝑏,𝑘 = 92.4 kW
𝛾ℎ𝑣𝑏,2 = 1.671×10−3 𝑠0 = 0 m 𝑢ℎ𝑣𝑏,𝑘 = −92.4 kW
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The simulations are done for 1080 s over a distance of 21km with a step size 𝜏
= 5 s, which gives an optimization horizon 𝐾 = 216. In ‘backward’ optimization, the
speed is given by a constant speed of 𝑣𝑘 = 70 km/h for all 𝑘 ∈ K, and in ‘forward’
optimization the initial and final velocity are given, while over the trajectory the
speed is allowed to vary by 70 ± 10 km/h. We choose 𝑅ℎ𝑣𝑏 = 𝐻ℎ𝑣𝑏 for the HVB dual
problem 𝑔ℎ𝑣𝑏, as it has a convex quadratic objective function and linear constraints.
As the EGU dual problem 𝑔𝑒𝑔𝑢 also has a convex quadratic objective function and
linear constraint, it may be solved as a QP problem, and thus we may choose
𝑅𝑒𝑔𝑢 = 𝐻𝑒𝑔𝑢. However, we will show that, because the quadratic term 𝐻𝑒𝑔𝑢 is small
in magnitude for the dual problem 𝑔𝑒𝑔𝑢, it is beneficial to tune 𝑅𝑒𝑔𝑢 ⪰ 0, such that
convergence of the dual problem (8.16) is improved. The EM dual problem 𝑔𝑒𝑚
has a nonconvex quadratic objective function and nonlinear constraints, and thus
we are restricted to choose an 𝑅𝑒𝑚 ⪰ 0. Specifically, we choose 𝑅𝑒𝑚 = 0.02[ 0 0

0 𝐼 ].
As initial conditions for the ‘forward’ optimization, we choose the solutions of the
‘backward’ optimization. For the termination of the dual problem (8.16), we choose
𝛿tol = 10−3 in (8.19a) and 𝜈1 = 103, 𝜈2 = 104 for the penalty parameters of the
merit function. In Fig. 8.4, the simulation results for ‘backward’ and ‘forward’ opti
mization using the ‘distributed’ method, and ‘forward’ optimization using the ‘direct’
method are given. It can be seen that the results for ‘forward’ optimization using
the ‘direct’ method and ‘distributed’ method are almost the same, which validates
the dual decomposition approach. In the ‘forward’ optimization results, we see that
between 0 and 2 km, where the slope becomes negative, the vehicle reaches the
lower speed bound. This action allows the available potential energy from the road
profile, between 2 and 13 km, to be maximally converted to kinetic energy; the
vehicle speed is maximized in this interval. After 13 km, the road gradient becomes
positive and speed is minimized such that the final speed constraint is met. There
fore, we can see that as a result of having the speed as a decision variable, in the
‘forward’ case, the EGU may provide less power over the course of the trajectory,
and noticeably less braking power is applied, when it is compared to the ‘backward’
case. The fuel consumption of the ‘backward’ and ‘forward’ simulation cases are
23.41 l/100 km and 22.31 l/100 km respectively. Thus, by including the ecodriving
problem into the vehicle energy management problem, approximately 4.7 % de
crease in fuel consumption is achieved. This is compared to the fuel consumption
obtained in [16], which are 24.35 l/100 km and 23.98 l/100 km for the ‘backward’
and ‘forward’ case respectively. This is a 1.54 % decrease in fuel consumption
between the ‘backward’ and ‘forward’ case. We may explain this difference in fuel
consumption savings largely due to the different models used.

Finally, the convergence of the combined SQP and dual decomposition approach
presented in Section 8.3 is shown in Fig 8.5. We see that the number of itera
tions for the dual problem (8.16) is greatly reduced by tuning 𝑅𝑒𝑔𝑢, even though
𝑅𝑒𝑔𝑢 = 𝐻𝑒𝑔𝑢 = 2×10−5 yields a convex problem. Specifically, The dual prob
lem (8.16) converges after 1003 iterations with 𝑅𝑒𝑔𝑢 = 0.002 and converges after
around 21000 iterations with 𝑅𝑒𝑔𝑢 = 𝐻𝑒𝑔𝑢. We refer to convergence as the point
where the dual problem may be terminated according to the tolerance specified
by (8.19a), although we have not terminated the dual problem at these specified
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Figure 8.4: Backwards vs forwards optimization. The dotted lines represent minimum and maximum
state constraints.

iterations for the purpose of illustration. This shows the additional advantage of
regularization, which is the potential to improve convergence, whereas we have
used regularization for the EM dual problem 𝑔𝑒𝑔𝑢 to enforce convexity. However,
from Fig. 8.5 we also see that we sacrifice robustness for speed of convergence
by choosing 𝑅𝑒𝑔𝑢 = 0.002, where its graph shows more unstable behavior. How
ever, this is not an issue as long as the required tolerances are reached for the
termination of the dual problem.

8.5. Conclusions
In this chapter, we have unified the ecodriving and CVEM in a single optimal con
trol problem formulation. This has broken the dependency of CVEM on a power
request known a priori, and it has improved the energy savings that the isolated
ecodriving approach can provide. The solutions to this problem have obtained us
ing a scalable distributed optimization algorithm, which is based on a Sequential
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Figure 8.5: Convergence of the SQP and dual decomposition approach.

Quadratic Programming (SQP) algorithm with Thikonov regularization embedded
in a dual decomposition scheme. We have done so by formulating a CVEM with
ecodriving problem as a convex SQP problem, and applying dual decomposition
to solve a dual problem. We have considered two case studies for the ecodriving
problem. In the first case study, we have solved the ecodriving problem for a Full
Electric Vehicle using the SQP algorithm and have shown that the algorithm yields
a very similar result as the benchmark problem set in [13], and shown that adding
state constraints is trivial using SQP. In the second case study, we have solved an
energy management problem with ecodriving for a SeriesHybrid Electric Vehicle
with the SQP algorithm and dual decomposition. We have shown that using our ap
proach, we have had the opportunity to use more representable powertrain models
than in [16], and as a result have the potential to save more fuel by incorporating
ecodriving to the energy management problem.
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9
A Shrinking Horizon

Approach to Ecodriving for
Electric City Buses:
Implementation and

Experimental Results

This chapter presents an efficient shrinking horizon implementation to solve
the ecodriving problem. The efficient implementation is demonstrated on
a case study of a fully electric bus, driving on an innercity public trans
port route. Because the bus drives on designated bus lanes, meaning that
it has little interaction with other traffic, and because it has frequent and
predictable stops, this case will have a good energy consumption savings
potential. An energy consumption reduction of 11.43% is achieved on a simu
lation study for the case that the vehicle is fully autonomous and a reduction
of 6.94% is achieved experimentally for the case that the driver is ‘coached’
using a driver assistance system.

This chapter is based on P.6.

171
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E codriving aims to find a velocity profile that minimizes the energy consumption
of a vehicle covering a given route on a fixed amount of time. In Chapter 2, the

ecodriving problem was formulated as an optimal control problem (OCP) and it was
shown that it as only a global optimal solution. Moreover, a sequential quadratic
program (SQP) was used to find the solution to the ecodriving OCP. The results
were presented only using a simulation study. In this chapter, the problem formu
lation and optimization method proposed in Chapter 2 are used to design an online
shrinking horizon implementation of ecodriving. Moreover, experimental results
that shows its potential to reduce the energy consumption are presented. As a
case study, a fully electric citybus is used on an innercity public transport route.
We consider an ideal scenario for ecodriving, where the city bus drives on desig
nated lanes, meaning that it has no interaction with other traffic, and has frequent
and predictable stops.

First, an efficient online implementable algorithm of the solution strategy de
scribed in Chapter 2 is presented. In this efficient algorithm, the solution to the
statespace model is substituted into the objective function and constraints, as is
often done in modelpredictive control, leading to a significant reduction of the
number of decision variables, when compared to the formulation presented in Chap
ter 2. This implementation is also be used in a socalled shrinking horizon fashion.
A shrinking horizon is needed because at every time instant, the optimal control
input is recomputed for a shorter time horizon, due to the fact that the time and
distance to the next bus stop is smaller than during the previous time instant. We
will present two results: the first being a simulation study for the case that the ve
hicle speed is exactly controlled (i.e., assuming a fully automated vehicle), and the
second being an experimental study for the case that the driver is ‘coached’ using
a driver assistance system that interacts with the driver through a humanmachine
interface. Both studies will show that the energy consumption of the bus can be
reduced significantly.

The remainder of this chapter is organized as follows. In Section 9.1, the eco
driving and the solution strategy of Chapter 2 are briefly summarized. In Sec
tion 9.2, the realtime shrinking horizon implementation of this solution strategy
is presented. Section 9.3 presents simulation results for the case that the vehicle
speed is controlled in an automated fashion. Section 9.4 presents experimental
results in case the driver is coached using a driver assistance system. Finally, con
clusions are drawn in Section 9.5.

9.1. EcoDriving Control Problem

In this section, we introduce the continuoustime ecodriving problem and the
discretetime solution approach presented in [1]. This solution approach will serve
as a basis for our proposed efficient realtime implementation.
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9.1.1. ContinuousTime Formulation
Let us revisit the ecodriving problem of Chapter 2. In ecodriving, we aim to
minimize the total energy consumed by a vehicle over a given time interval [𝑡0, 𝑡𝑓]
and trajectory 𝑠(𝑡) ∈[𝑠0, 𝑠𝑓] for a road grade 𝛼(𝑠)∈[−𝜋2 , 𝜋2 ], which depends on the
position 𝑠. This can be formulated as a continuoustime Optimal Control Problem
(OCP) given by

min
𝑠(𝑡),𝑣(𝑡),𝑢(𝑡) ∫

𝑡𝑓

𝑡0
𝑃(𝑣(𝑡), 𝑢(𝑡))𝑑𝑡 (9.1a)

subject to 𝑚𝑑𝑣
𝑑𝑡 = 𝑢(𝑡) − 𝜎𝑑𝑣

2 −𝑚𝑔𝛾(𝑠), (9.1b)
𝑑𝑠
𝑑𝑡 = 𝑣(𝑡), 𝑑𝑣

𝑑𝑡 = 𝑎(𝑡), (9.1c)

𝑠(𝑡0) = 𝑠0, 𝑣(𝑡0) = 𝑣0, (9.1d)
𝑠(𝑡𝑓) = 𝑠𝑓 , 𝑣(𝑡𝑓) = 𝑣𝑓 , (9.1e)
𝑣 ≤ 𝑣(𝑡) ≤ 𝑣, (9.1f)
𝑎 ≤ 𝑎(𝑡) ≤ 𝑎, (9.1g)

where (9.1b) represents the longitudinal vehicle dynamics of a vehicle with mass
𝑚, aerodynamic drag coefficient 𝜎𝑑 and rolling resistance and gravity forces, with
gravitational constant 𝑔, where the latter two are combined in

𝛾(𝑠) = 𝑐𝑟 cos(𝛼(𝑠)) + sin(𝛼(𝑠)), (9.2)

where 𝑐𝑟 describes the rolling force coefficient. Furthermore, the nonnegative
velocity is bounded by (9.1f). In (9.1g), we have also included bounds on the ac
celeration, which can be done without compromising the uniqueness of the solution
claimed by [1]. As in Chapter 2 of this thesis, the consumed power in the driveline
is assumed to be a quadratic function given by

𝑃(𝑣, 𝑢) = 𝛽0𝑣2 + 𝛽1𝑣𝑢 + 𝛽2𝑢2, (9.3)

where 𝛽0, 𝛽1 and 𝛽2 are nonnegative parameters that describe the contribution of
Ohmic and mechanical friction loses in the power consumption.

9.1.2. Discretization
As in Chapter 2 of this thesis, the OCP (9.1) is discretized at times 𝑡𝑘 = 𝑘𝜏 + 𝑡0,
𝑘 ∈ K = {0,… ,𝑁}, with time steps 𝜏 = 𝑡𝑓−𝑡0

𝑁 , for some 𝑁 ∈ ℕ using a forward
Euler discretization method. Additionally, the nonlinear equality constraint (9.1b)
is included in the objective function (9.1a), resulting a Quadratic Programming (QP)
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problem, given by

min
{𝑎𝑘 ,𝑠𝑘 ,𝑣𝑘}𝑘∈K

𝑁−1

∑
𝑘=0

𝜏𝑃(𝑎𝑘 , 𝑠𝑘 , 𝑣𝑘) (9.4a)

subject to 𝑠𝑘+1 = 𝑠𝑘 + 𝜏𝑣𝑘 , (9.4b)
𝑣𝑘+1 = 𝑣𝑘 + 𝜏𝑎𝑘 , (9.4c)
𝑠0 = 𝑠𝑜 , 𝑣0 = 𝑣𝑜 , (9.4d)
𝑠𝑁 = 𝑠𝑓 , 𝑣𝑁 = 𝑣𝑓 , (9.4e)
𝑣 ≤ 𝑣𝑘 ≤ 𝑣, (9.4f)
𝑎 ≤ 𝑎𝑘 ≤ 𝑎, (9.4g)

where 𝑎𝑘 = 𝑎(𝑡𝑘), 𝑣𝑘 = 𝑣(𝑡𝑘) and 𝑠𝑘 = 𝑠(𝑡𝑘), and

𝑃(𝑎𝑘 , 𝑠𝑘 , 𝑣𝑘) =𝛽0𝑣2𝑘 + 𝛽1𝑣𝑘 (𝑚𝑎𝑘 + 𝜎𝑑𝑣2𝑘 +𝑚𝑔𝛾(𝑠𝑘))
+ 𝛽2 (𝑚𝑎𝑘 + 𝜎𝑑𝑣2𝑘 +𝑚𝑔𝛾(𝑠𝑘))

2
(9.5)

represents the driveline power consumption, now dependent on the acceleration,
position and velocity of the vehicle.

9.1.3. Sequential Quadratic Programming for Ecodriving
The uniqueness and global optimality of the solution to the discretetime OCP (9.4)
has been formally shown in Chapter 2. Moreover, it was suggested that Sequential
Quadratic Programming (SQP) is a suitable approach to obtain the solution.

In this chapter, we employ the SQP approach presented in Chapter 2. Like in
any SQP approach, a nonlinear program is solved by iteratively solving QP approx
imations of the nonlinear program. For the OCP (9.4), this leads to

{a𝑖+1,x𝑖+1} = argmin
a,x

∑
𝑘∈K

𝜏 𝑃𝑄𝑃(a,x,a𝑖 ,x𝑖) (9.6)

subject to (9.4b) − (9.4g),

for all 𝑘 ∈ K, with 𝑃𝑄𝑃(a,x,a𝑖 ,x𝑖), a secondorder approximation of (9.5), given by

𝑃𝑄𝑃(a,x,a𝑖 ,x𝑖) = 1
2 [
a
x]

⊤
Ĥ [ax] +

⎛
⎝
[G

𝑖
a

G𝑖
x
]
⊤
− [a

𝑖

x𝑖]
⊤
Ĥ
⎞
⎠
[ax] , (9.7)

where the superscript 𝑖 refers to the solution of the 𝑖th iteration of the SQP algo



9.2. RealTime Implementation

9

175

rithm, and

a = [𝑎0, … , 𝑎𝑁−1]
⊤ ∈ ℝ𝑁 , (9.8)

x = [𝑠0, 𝑣0, … , 𝑠𝑁−1, 𝑣𝑁−1]
⊤ ∈ ℝ2𝑁 , (9.9)

Ĥ = diag (Ĥa, Ĥx) ∈ ℝ3𝑁×3𝑁 , (9.10)

Ga = [𝜕𝑃(𝑎0 ,𝑠0 ,𝑣0)𝜕𝑎0 , … , 𝜕𝑃(𝑎𝑁−1 ,𝑠𝑁−1 ,𝑣𝑁−1)𝜕𝑎𝑁−1 ]
⊤
∈ ℝ𝑁 , (9.11)

Gx = [𝜕𝑃(𝑎0 ,𝑠0 ,𝑣0)𝜕𝑠0 , 𝜕𝑃(𝑎0 ,𝑠0 ,𝑣0)𝜕𝑣0 , … , 𝜕𝑃(𝑎𝑁−1 ,𝑠𝑁−1 ,𝑣𝑁−1)𝜕𝑠𝑁−1 , 𝜕𝑃(𝑎𝑁−1 ,𝑠𝑁−1 ,𝑣𝑁−1)𝜕𝑣𝑁−1 ]
⊤
∈ ℝ2𝑁 .

(9.12)

In (9.10), the Hessian matrix is approximated to a diagonal positive definite matrix
[1], given by

Ĥa = 2𝛽2𝑚2I𝑁 ∈ ℝ𝑁×𝑁 , (9.13)

Ĥx = diag(𝜖𝑠 ,max(ℎ𝑣0 , 𝜖𝑣), … 𝜖𝑠 ,max(ℎ𝑣𝑁−1 , 𝜖𝑣)) ∈ ℝ2𝑁×2𝑁 , (9.14)

in which I𝑛∈ℝ𝑛×𝑛 is a 𝑛dimensional identity matrix, 𝜖𝑠 and 𝜖𝑣 are small positive
numbers that guarantee the positive definiteness of the Hessian matrix, and

ℎ𝑣𝑘 = 2𝛽0 + 6𝛽1𝜎𝑑𝑣𝑘 + 4𝛽2𝜎𝑑 (𝑚𝑔𝛾(𝑠𝑘) + 3𝜎𝑑𝑣2𝑘) . (9.15)

The gradients of the power consumption (9.5) are considered in (9.11) and (9.12),
where

𝜕𝑃(𝑎𝑘 ,𝑠𝑘 ,𝑣𝑘)
𝜕𝑎𝑘 =2𝛽2𝑚2 (𝑔𝛾(𝑠𝑘)+𝑎𝑘) , (9.16)

𝜕𝑃(𝑎𝑘 ,𝑠𝑘 ,𝑣𝑘)
𝜕𝑠𝑘 =2𝛽2𝑚𝑔 𝜕𝛾(𝑠𝑘)

𝜕𝑠𝑘 (𝑚𝑎𝑘+𝑚𝑔𝛾(𝑠𝑘)+𝜎𝑑𝑣
2
𝑘), (9.17)

𝜕𝑃(𝑎𝑘 ,𝑠𝑘 ,𝑣𝑘)
𝜕𝑣𝑘 =2𝛽0𝑣𝑘+3𝛽1𝜎𝑑𝑣2𝑘+4𝛽2𝜎𝑑𝑣𝑘(𝑚𝑔𝛾(𝑠𝑘)+𝜎𝑑𝑣2𝑘). (9.18)

The QP iterations (9.6) repeat until its solution converges. We consider the algo
rithm to have converged if

∥[a
𝑖

x𝑖] − [
a𝑖−1
x𝑖−1]∥2

≤ 𝜌, (9.19)

where, ∥⋅∥2 is the 2norm operator, 𝑖 and 𝑖−1 represent the current and previous QP
solutions, respectively, and 𝜌 ∈ ℝ is a given nonnegative convergence tolerance.

This approach provides a tractable solution to the ecodriving OCP (9.4). In the
next section, we will modify this method to obtain a realtime implementation for
the ecodriving problem.

9.2. RealTime Implementation
To arrive at a realtime implementable algorithm, the computation time needs to be
low, such that solutions can be obtained in a shorter time than the sampling period
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used in the embedded system. In this section, we will modify the SQP method
presented in the previous section to reduce the computation time by means of a
reduction on the number of decision variables and the application of a shrinking
horizon approach that uses a previous solution as warmstart for the next optimiza
tion problem. This reduction of the number of decision variables does not affect
the solution (and its optimality).

9.2.1. Improving Computational Efficiency
In this section, we will reduce the number of decision variables by eliminating the
state x in (9.6). This leads to a significant reduction of the computation time,
because the computation time of the QP subproblems scales cubically with the
number of decision variables [2]. By eliminating the state 𝑥𝑘 = [𝑠𝑘 𝑣𝑘]⊤ from the
QP problems an improvement of the computation time is expected by a factor of
33 = 27, when compared to [1].
In order to reduce the number of decision variables, the longitudinal motion of
the vehicle described by the equality constraints (9.4b)(9.4d) can be recast as a
prediction model for instants 𝑘∈K as

x = Φ𝑥0 + Γa, (9.20)

where Φ∈ℝ2𝑁×2 and Γ∈ℝ2𝑁×𝑁 are defined by

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2
𝐴
𝐴2
⋮

𝐴𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02 02 … 02
𝐵 02 … 02
𝐴𝐵 𝐵 … 02
⋮ ⋮ ⋱ ⋮

𝐴𝑁−2𝐵 𝐴𝑁−3𝐵 … 02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.21)

with

𝐴 = [1 𝜏
0 1] , 𝐵 = [0𝜏] , (9.22)

and 0𝑛 a 𝑛dimensional column vector with all entries zero. For 𝑘 = 𝑁, the final
state given by (9.4e) can be expressed as the following equality constraint

[𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 … 𝐵]a = 𝑥𝑁 − 𝐴𝑁𝑥0. (9.23)

By substituting (9.10) and (9.20) into (9.7), we remove the dependency on the state
x in (9.7). After removing the constant terms (which do not change the solution),
we obtain

PQP(a,a𝑖) = 1
2a

⊤ (Ĥ𝑖
a + Γ⊤Ĥ𝑖

xΓ)a + (G𝑖⊤
a − a𝑖

⊤
Ĥ𝑖
a + (G𝑖⊤

x − a𝑖⊤Γ⊤Ĥ𝑖
x)Γ)a, (9.24)

where Ĥ𝑖
a and Ĥ𝑖

x are the approximated Hessian respect to acceleration and state,
respectively, evaluated in the 𝑖th iteration of the SQP algorithm.
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Using the above notation, we obtain the following QP problem with acceleration
a as the only decision variable

{a𝑖+1} = argmin
a

∑
𝑘∈K

𝜏 PQP(a,a𝑖) (9.25a)

subject to (9.23),
𝑣 − ΞΦ𝑥0 ≤ ΞΓa ≤ 𝑣 − ΞΦ𝑥0, (9.25b)
1𝑁𝑎 ≤ a ≤ 1𝑁𝑎, (9.25c)

where the constraint (9.25b) is obtained by substituting (9.20) in (9.4f) for all 𝑘 ∈ K
and considering v = Ξx, with a selection matrix Ξ = 𝐼𝑁 ⊗ [0 1] ∈ ℝ𝑁×2𝑁, in which
the operator ⊗ denotes the Kronecker product. Besides, the constraint (9.25c) is
directly obtained from (9.4g) for all 𝑘 ∈ K and considering 1𝑛 ∈ ℝ𝑛, a 𝑛dimensional
column vector with all entries one.

The QP subproblem (9.25) is sequentially solved until it converges, thus finding
the global optimal solution to the discrete optimal control ecodriving problem (9.4),
with the corresponding convergence criteria defined by

∣∣a𝑖 − a𝑖−1∣∣2 ≤ 𝜌. (9.26)

In practice, a smaller number of decision variables let the optimization problem
converges with fewer iterations, which might lead to an additional reduction in
computation time.

9.2.2. Considerations for Realtime Implementation
In order to achieve further improvements in terms of computation time, we use
an efficient QP solver with warmstart and a shrinking horizon approach. Shrinking
horizon works in a similar way as receding horizon, also known as modelpredictive
control. At every time instant 𝑘, the full optimization problem (9.25) is solved over
the horizon 𝑁 using the actual state 𝑥𝑘 as initial value. This leads to a sequence of
optimal control inputs a, where only the first 𝑎0 is implemented at time instant 𝑘.
Now at time 𝑡𝑘+1 the process repeats, but in contrary to receding horizon control,
the control horizon𝑁 now becomes 1 time step shorter. The use of shrinking horizon
for ecodriving of buses is motivated by the fact that we only need to optimize the
vehicle speed until the next bus stop and at every recomputation of the optimal
control inputs, the next bus stop becomes nearer.

The fact that the control horizon shrinks makes the optimization problem time
dependant. In particular, at time instant 𝑘, the ecodriving problem has to be solved
over the discretetime set K𝑘 = {𝑘,… ,𝑁}. This causes the QP subproblem at time
𝑘 to become

{a𝑖+1} = argmin
a

∑
𝑘∈K𝑘

𝜏 PQP(a,a𝑖) (9.27)

subject to (9.23), (9.25b), (9.25c)
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where 𝑁 has become 𝑁−𝑘 in (9.23) and the matrices in (9.25b) and (9.25c) are
modified similarly. The Hessian and gradient matrices in the SQP algorithm also
need to be modifiedmutatis mutandis. The shrinking of the horizon is repeated until
𝑁−𝑘 < 𝑁min for some 𝑁min to avoid unnecessary computations in the last iterations,
where not much energy consumption improvement is expected. For this, we apply
the first step of the predicted solution, and the remaining part is provided to the
solver as initial guess for the next iteration.

9.3. Simulation Study for Electric City Buses
Innercity public transportation buses, sometimes drive through exclusive lanes to
arrive and depart from stops at well defined times. This makes this scenario to
have high predictability, which makes it highly suitable for the implementation of
ecodriving approaches.

In this section, we will analyze the performance of the solution to ecodriving
problem, presented in Section 9.2.1, in the context of electric city buses. The first
part of this section shows an identification approach to obtain a controloriented
model for the power consumption of the driveline in an electric bus, which can be
used in the realtime optimal ecodriving problem of Section 9.2. Later, this model
is used to obtain an optimal velocity profile for an specific driving route and finally,
ideal energy savings are calculated with respect to a benchmark velocity profile,
that has been obtained from real data logged from a bus driving on a segment of
2.5[𝑘𝑚] between two bus stops, where the elevation between the highest and the
lowest point is less than one meter. Hence, the grade 𝛼(𝑠) is considered zero for
all 𝑠 and the rest of its features are given in Table 9.1.

9.3.1. Identification of the Power Consumption Model
The OCP (9.4) considers a simplified controloriented power consumption model
defined by (9.5). For the identification of this model, several realizations over the
2.5[𝑘𝑚] predefined route are used. This leads to a set of velocity profiles {𝑣𝑗𝑘},
where 𝑗 ∈J ={1,… , 𝐽} represents the 𝑗th realization of the velocity profile. These
velocity profiles are then simulated on a highfidelity (hifi) vehicle model to obtain
power consumption profiles {𝑃𝑗𝑘 } for each given velocity profile. This data can
be used to find the parameters 𝛽0, 𝛽1 and 𝛽2 in (9.5) by solving the following
constrained leastsquares problem

{𝛽0, 𝛽1, 𝛽2} = argmin∑
𝑗∈J

∑
𝑘∈K
∥𝑃(𝑎𝑗𝑘 , 𝑠𝑗𝑘 , 𝑣𝑗𝑘) − 𝑃𝑗𝑘 ∥22

subject to 𝛽0 > 0, 𝛽1 > 0 and 𝛽2 > 0, (9.28)

Table 9.1: Route characteristics.

ℎ(𝑠) ∶ 0[𝑚] 𝑠(𝑡𝑓) ∶ 2.756[𝑘𝑚] 𝑡𝑓 ∶ 211[𝑠]
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Figure 9.1: High fidelity and identified control models.

where 𝑃(𝑎𝑗𝑘 , 𝑠𝑗𝑘 , 𝑣𝑗𝑘) is defined in (9.5). It is important to remark that the hifi ve
hicle model is a validated model. Fig. 9.1b depicts the normalized vehicle power
consumption, based on a real velocity profile that is shown in Fig. 9.1a. The power
consumption described by the hifi model is represented by the dotted red line,
while the blue line is obtained by identifying the three unknown parameters on the
simplified consumption model (9.5).

Although the identified model shows a considerable error with respect to hifi
model, it is capable to describe a general trend in its behavior. In the last part of
this section, we will show that this feature is enough to produce accurate solutions
in term of energy savings.

9.4. Assisted Driving Experimental Results
In this section, we will discuss the experimental results obtained by using a driv
ing assistance system that ‘coaches’ the driver to follow the optimal velocity profile
obtained as a solution to the ecodriving problem (9.27). First, we provide details
about the case study analysed in this section. Second, the Human Machine Inter
face (HMI) used to provide visual feedback to the driver is described; and finally,
experimental results for the case study are provided and discussed.
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Battery
Electric 

Motor

Wheel speed sensors

Voltage and current sensors

Figure 9.2: Sensors ustilized in the experimatal set up.

9.4.1. Case Study
The experiments have been conducted in the previously selected road, with a dis
tance of 2.5[𝑘𝑚] that should be covered in 200[𝑠], considering a real speed limit
of 60[𝑘𝑚/ℎ]. During the experiments, it was registered wind velocity of 30[𝑘𝑚/ℎ],
approximately matching the road direction. The power train layout presented in
Fig. 9.2 shows the location of the sensors used for in the experimental setup.
The information provided by the wheel speed sensors and the voltage and battery
sensors are read in the through a CAN bus. The power consumed by the vehicle
is obtained trough direct measurements of the voltage and current at the battery
terminals. The baseline for energy savings is generated by the driver covering the
selected road, with the knowledge of velocity bounds and initial and final states.
This is compared to the energy consumed while providing visual feedback to the
driver and expressed as a percentage ratio of energy savings.

Two drivers have performed the experiments during one day, driving the same
bus in both directions. During the experiments, all noncritical safety auxiliary sys
tems where turned off to avoid interference with the results. The power consump
tion and velocity profiles have been recorded with a sample rate of 1[𝐻𝑧] for data
postprocessing.

9.4.2. HumanMachine Interface
The HumanMachine Interface (HMI) provides visual feedback to the driver at a
specific frequency, based on the solution to the realtime implementation of the
ecodriving problem (9.27). The HMI updating frequency should take into account
the speed of reaction of the driver. In practice, we the update the HMI at 0.1[𝐻𝑧],
which is a frequency considerably smaller than the one used for the realtime im
plementation of (9.27), i.e. 0.5[𝐻𝑧].

In this case, an external computer manages the HMI that has been developed
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(a) Increase velocity (b) Correct velocity (c) Decrease velocity

Figure 9.3: HumanMachine Interface for velocity feedback

Table 9.2: Experimental energy savings

Wind direction Driver Energy Average Standard
savings deviation

Headwind Driver 1 1.27% 3.18% 1.09%
Driver 2 5.09% 1.17%

Tailwind Driver 1 12.70% 10.70% 1.19%
Driver 2 8.70% 2.78%

Total Average 6.94%

in Vector CANoe [3] and depicted in Fig. 9.3. Denoting 𝑣ref as the optimal speed
and 𝑣dvr the current speed, the HMI is updated according to the following rules:

• Increase speed (Fig. 9.3a) : 𝑣𝑑𝑣𝑟 < 𝑣ref − 1[km/h].

• Keep current speed (Fig. 9.3b): 𝑣ref − 1[km/h] ≤ 𝑣dvr ≤ 𝑣ref + 1[km/h].

• Decrease speed (Fig. 9.3c): 𝑣dvr > 𝑣ref + 1[km/h].

9.4.3. Experimental Results
In this section, we will experimentally determine the amount of energy that eco
driving is able to save. Subsequently, we will compare this results with simulations
in the hifi model with the velocity profiles generated experimentally.

While performing the experiments, a wind velocity of 30[𝑘𝑚/ℎ] was registered,
with a direction approximately matching the selected road. Hence, the experimental
ecodriving energy savings are separated for headwind and tailwind driving, and
shown in Table 9.2. In average, we obtained 6.94% of energy savings.

Note that the percentages in Table 9.2 were obtained from 20 experiments per
formed by the two drivers, i.e., four experiments for each wind direction, plus the
corresponding baselines. The velocity profiles of two experiments with its base
lines are depicted in Fig. 9.4, one for each driver with the specified wind direction.
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Table 9.3: Simulated energy savings

Wind direction Driver Energy savings Average

Headwind Driver 1 6.48% 6.89%Driver 2 7.29%
Tailwind Driver 1 17.50% 15.96%Driver 2 14.42%

Total Average 11.43%

Here, the blue dotted line represents the baseline and the red line shows the driver
behavior when receiving ecodriving feedback.

Tailwind driving saves more energy than headwind. In this case, the difference
is approximately a factor of three (see Table 9.2). The difference in energy savings
between the drivers can be explained by their own driving style and experience, as
well as random disturbances, e.g., changes in intensity and direction of the wind,
temperature variations, traffic conditions, etc.

The experimental velocity profiles were logged by Vector CANoe and used as
input to the hifi vehicle model. Using the same baseline for each driver and wind
direction, the simulated energy savings are shown in Table 9.3. Tables 9.2 and 9.3
show correlation between experimental and simulated energy savings, verifying that
the hifi vehicle model has been validated. Note that in both cases the ecodriving
solution to (9.27) reduces the energy consumption.
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Figure 9.4: Experimental velocity profiles
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The mismatch between the simulated energy savings presented in Table 9.2 and
the experimental energy savings shown in ables 9.2 is due model uncertainty. Note
that the power consumption model (9.3) has a low accuracy since the coefficients
𝛽0, 𝛽1 and 𝛽2 are approximated as constant values. However, these coeffcients
are dependent on the motor torque and angular velocity. The use of models that
consider this dependency will definitely improve the accuracy of the simulations.
However, it is also increase the complexity of the optimal control problem, which is
inconvenient for realtime implementation. In practice, the simple model that was
used in the experiments was able to produce satisfactory experimental results.

The variability of the energy savings obtained by the different drivers (Table 9.2)
was an expected result. We can see the drivers as the actuators of for ecodriving
closedloop control system. Using different actuators with the same control pro
duces different performance in the closedloop system. This clearly shows that
the drivers play an important role for saving energy for this application. Possible
method to mitigate this dependency are driver’s training, improved human machine
interfaces (possibly including haptic feedback), semiautonomous assistance, etc.

9.5. Conclusions
This chapter has presented an efficient shrinking horizon implementation to solve
the ecodriving OCP. The implementation has been demonstrated on a case study of
a fully electric bus, driving on an innercity public transport route. We have shown
that the computational performance can be reduced significantly using the pro
posed implementation. Furthermore, a energy consumption reduction of 11.43%
is achieved on a simulation study for the case that the vehicle is fully autonomous
and a reduction of 6.94% is achieved experimentally for the case that the driver
is ‘coached’ using a driver assistance system. The obtained results are promising
in terms of energy savings by providing feedback to the driver and, at the same
time, it has become evident that better results can be achieved by improving the
accuracy when following the ecodriving feedback.
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10
Conclusions and

Recommendations

In this final chapter, the research questions proposed in Chapter 1 are explic
itly answered by conclusions linked to the contributions made in the chap
ters of this thesis. Additionally, recommendations for future research will be
given. Finally, the possible implications of the contributions of this thesis will
be discussed.
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T he use of energy management strategies to improve energy efficiency of elec
trified vehicles is a promising and easily implementable approach that could

accelerate the adoption of electric vehicles in the market and, consequently, con
tribute to clean mobility. This has motivated the development of nonlinear optimal
optimal control methods for energy management strategies in this thesis. In this
work, we have divided energy management strategies into two groups that are
complementary in some degree. The first group is ecodriving, this approach aims
to obtain the optimal velocity profile that minimizes the energy consumption of the
vehicle. The second group is Complete Vehicle Energy Management (CVEM), which
assumes a given velocity profile (or equivalently a given power request) to obtain
the optimal powersplit among all the subsystems of the vehicle that minimizes the
energy consumption.

This chapter is organized as follows. In Section 10.1, the research questions
proposed in Chapter 1 are explicitly answered by conclusions linked to the contri
butions made in the chapters of this thesis. Recommendations for future research
are provided in Section 10.2. Finally, the possible implications of the contributions
made in this thesis are discussed in Section 10.3.

10.1. Conclusions
For the sake of readability, the research questions presented in Chapter 1 will be
repeated in the following paragraphs. Bellow each question, the conclusions of this
thesis that address the respective question are detailed.

Main Research Question

Can the current ecodriving and CVEM methods be im
proved by considering the integration of dynamical features
of the systems and the uncertainty of real traffic scenar
ios such that both higher energy savings and an adequate
computational performance are obtained?

This question has been analysed in four different branches, where additional
subquestions were posed. These branches are detailed below.

B.1 Integrating dynamical systems of higher complexity in the CVEM
problem

Research Subquestion 1

What modelling frameworks are suitable to formulate
CVEM optimal control problems that consider components
represented with models of a higher complexity?

The following contributions have addressed this subquestion:
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• In Chapter 3, the traditional ecodriving optimal control problem formu
lation, which often aims to minimize the energy consumption of a vehicle
driving on a straight trajectory, has been extended to consider the energy
losses that appear while cornering. We deviated from the more common
approach to solve cornering effects by limiting centripetal acceleration of
the vehicle. Instead, we have proposed a model that approximates cor
nering forces into the longitudinal axis of the vehicle. The main feature
of this model is its simplicity, since it depends only on the geometry of
the vehicle and the road. This has eliminated the necessity to estimate
parameters that can be dependent on operational operational conditions,
i.e., the slip angle. The proposed modeling framework has been used to
formulate a general ecodriving optimal control problem formulation that
can be used for vehicles driving in both straight and curved trajectories.
The proposed modelling framework and optimal control problem formu
lation have been validated using a highfidelity model. Furthermore,
simulation results have shown improved energy savings for cornering
maneuvers in trajectories with large curvatures, which are approximately
8% larger than traditional ecodriving strategies.

• In Chapter 4, we have proposed an energy optimal strategy to coordinate
fully autonomous vehicles crossing an intersection. We have demon
strated that the ecodriving problem can be extended such that, for each
vehicle in the intersection, it obtains velocity profiles and the intersec
tion crossing order that minimizes the total consumption of energy in the
intersection, while avoiding collisions.

• An alternative modelling framework for CVEM based on interconnected
portHamiltonian systems has been proposed in Chapter 7. In this ap
proach, the subsystems in the vehicle have been represented as dis
sipative dynamical systems that inherently describe energy losses and
changes of internal energy in the subsystem. Thus, we have unified the
powerbased concepts of energy buffers and power converters in a single
dynamical model. Additionally, a systematic approach to formulate a de
composable optimal control problem for CVEM has been proposed, which
is useful for distributed static optimization. Simulation results, where the
powerbased and the portHamiltonian approaches were compared, have
shown the advantages of the proposed modeling framework. Moreover,
it has been shown that the extra freedom obtained by describing power
in terms of conjugated variables can capture additional physical features
that are impossible with powerbased approaches.

• In Chapter 9, we have extended the traditional CVEM modelling frame
work to consider subsystems with energy buffers described by nonlinear
dynamics and power converters defined by quadratic functions depen
dent on the states and inputs of the subsystems. This framework has
enabled the integration of the ecodriving and CVEM problems into a sin
gle optimal control problem formulation. This has allowed us to break, in
some degree, the strong dependency on a priori information of the driv
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ing cycle that traditional CVEM formulations have. Numerical simulations
for a serieshybrid electric vehicle have shown that including ecodriving
into the CVEM problem, can approximately decrease energy consumption
by 4.7% with respect to a CVEM approach without ecodriving.

Research Subquestion 2

What static optimization methods are appropiate to solve
the different configurations of ecodriving and nonlinear
CVEM optimal control problems?

The contributions linked to this subquestion are described in the following
list.

• In Chapter 2, we have proposed to solve the ecodriving optimal control
problem using a sequential quadratic program with a positive definite
Hessian approximation, which was obtained from the diagonal elements
of the real Hessian matrix. The convergence of the proposed algorithm
has been guaranteed since the proposed Hessian approximation satisfies,
at every iteration, the theoretical conditions required for convergence of
sequential quadratic programs. Consequently, in Chapter 9, we have
demonstrated that this optimization method can be used for online im
plementations of ecodriving. This optimization method was used as the
basis for a shrinking horizon implementation that solves the ecodriving
problem for a fully electric bus driving a typical city route. Experimental
results have shown energy savings of approximately 7% when the driver
is assisted by the ecodriving strategy to follow the energy optimal ve
locity profile.

• In Chapter 4, an energy optimal strategy to coordinate autonomous ve
hicles crossing an intersection was proposed. For each vehicle, the pro
posed formulation, aims to obtain the velocity profiles and the intersec
tion crossing order that minimize the aggregated energy consumption
subject to safety constraints. The combinatorial nature of the energy
optimal conflict resolution problem has been handled using a sequential
mixed integer program.

• In Chapter 5, the interconnected nature of CVEM problem was used to
propose a separable optimal control problem formulation. The highly
structured optimal control problem has been addressed using a primal
dual proximal splitting method to obtain a distributed optimization algo
rithm for largescale nonconvex CVEM problems.

• In Chapter 6, we have presented a CVEM stochastic optimal control prob
lem, where realizations of the uncertain driving conditions have been
introduced as random constraints in the CVEM formulation. Solutions
to this CVEM problem have been obtained using a scenariobased opti
mization approach in a receding horizon fashion. Thus, we have shown
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that this is a tractable method, in which an intuitive tradeoff can be
made between computational complexity and robustness depending on
the number of scenarios considered.

• In Chapter 8, to achieve the integration of the ecodriving and CVEM
problems, we proposed an extension of the CVEM framework that al
lows for nonlinear dynamics. The nonconvex and nonlinear integrated
optimal control problem has been solved using a sequential quadratic
program with Tikhonov regularization in combination with a dual de
composition approach. Hence, we have obtained a scalable optimization
method with satisfactory convergence that solves the integrated eco
driving and CVEM problem.

B.2 Higher effciency

Research Subquestion 3

Under which conditions is it possible to provide guarantees
for the global optimality of the solutions to the ecodriving
and CVEM prolems?

The following contributions answered this subquestion.

• In Chapter 2, the ecodriving optimal control problem, which is inher
ently nonconvex, has been analyzed in detail. After, a convenient refor
mulation and discretization of the problem, a set of physically realistic
conditions that guarantee the existence of a unique solution were found.
Consequently, we have demonstrated that the solution to the ecodriving
optimal control problem is globally optimal.

• In Chapter 5, a deep analysis of the highly structured CVEM optimal
control problem has been presented. Taking advantage of obtained in
sights, we have proven the existence of only multiple global solutions to
the CVEM problem under realistic operational conditions.

B.3 Scalability and flexibility

Research Subquestion 4

What optimization method with convergence guarantees
can lead to a simple implementation of CVEM strategies
maintaining an acceptable numerical performance?

This subquestion was addressed in Chapter 5, where the CVEM problem has
been conveniently reformulated such that it is separable in terms of intercon
nected subsystems and time intervals. A Primal Dual Splitting method has
been applied to the reformulated problem to obtain a flexible distributed op
timization algorithm. This algorithm breaks down the complexity of the prob
lem into several simpler highly structured coordinated subproblems, which
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has brought a satisfactory scalability as a consequence. Moreover, the im
plementation of the algorithm has been simplified using spectral methods
to automatically select the stepsizes of the optimization algorithm at every
iteration. This also has provided a reduced computational time for the con
vergence of the algorithm. Numerical examples have shown that this method
can be approximately 3 times faster than offtheshelf solvers and it can solve
problems with a 100 times larger time horizon. The results obtained have
demonstrated that the methodology presented in this work can be used to
solve largescale CVEM problems, thus highlighting the scalability of the algo
rithm.

B.4 Anticipation and robustness

Research Subquestion 5

Considering real driving conditions, what are the improve
ments in energy savings for ecodriving and CVEM strate
gies that exploit available preview information, i.e., histor
ical data and communication networks?

The contributions linked to this subquestion are summarized below.

• In Chapter 4, an energy optimal coordination of autonomous vehicles
crossing intersection was studied. In this case, we assumed that I2V and
V2V communications provide complete information about of the driving
conditions to all the vehicles. Simulation results for this ideal scenario
have shown that coordinated autonomous vehicles can reduce energy
consumption to approximately 16.2% compared to human driven vehicles
without coordination.

• In Chapter 6, the uncertainty produced by reallife conditions has been
considered to formulate stochastic optimal control problems for energy
management. Solutions to this CVEM problem, known as trafficaware
energy management strategies, have been obtained using a scenario
based optimization approach in a receding horizon fashion. Different
alternatives to include traffic information for the generation of scenarios
have been explored, i.e., method based on (average) traffic flow infor
mation, a method based on Gaussian process regression, and a method
that combines both. Simulation results of a case study that considers
serieshybrid vehicle have shown a deviation of 0.75% from the optimal
consumption with a suitable mix of the available information and 1.79%
using variable stepsize predictions.

10.2. Recommendations for Future Research
In this thesis, solution methods for nonlinear optimal control problems that emerge
from ecodriving and CVEM applications have been studied. In particular, this the
sis has contributed to formulate modeling approaches, to prove global optimality
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of the solutions, to enhance the scalability of the optimization algorithms and to
exploit preview information in the energy management problems to generate antic
ipative and robust strategies. In this section, some recommendations for possible
extensions to the aforementioned topics are given.

10.2.1. Validation of CVEM in a Vehicle Prototype
Part II of this thesis has been devoted to study methods for CVEM formulations.
Unfortunately, all these promising approaches have been only validated using nu
merical simulations. An experimental validation using a prototype vehicle will pro
vide better insight of the online implementability of the proposed approaches and it
will allow to asses the energy savings that could be achieved. It would be specially
interesting to use the methods presented in Chapter 2 and Chapter 6, to explore
the advantages and limitations of an online CVEM implementation that handles the
uncertainty in the traffic scenarios. Another promising exploration is the extension
of the experimental case study presented in Chapter 9 to consider the integrated
ecodriving and CVEM problem formulated in Chapter 8.

10.2.2. Online Parameter Estimation
online implementation of energy management strategies in a receding horizon fash
ion require knowledge of future disturbances that might affect parameters of the
subsystems models, e.g., the ambient temperature could induce changes in the
heat and ventilation system model, or alter the rolling resistance coefficient, thus,
directly affecting the power request. Therefore, online parameter estimation could
become an interesting path to explore, in which parameters that have a large impact
on the CVEM strategy could be automatically updated during operation.

10.2.3. Generation of Largescale Benchmarks for EnergyMan
agement Strategies.

Evaluating the performance of online and offline methods for solving energy man
agement requires the use of benchmarks. Traditionally, benchmarks for energy
management strategies are generated using dynamic programing. However, due
to the “curse of dimensionality”, this approach might not be usable by energy man
agement problem formulations with contain a significant number of states and a
large time horizon. Taking advantage of the proved global optimality of the solu
tion and the scalable optimization method presented in Chapter 2 and Chapter 5,
it is possible to generate relevant benchmarks for largescale energy management
problems, which, to the best of the author’s understanding, are scarce in the liter
ature.

10.2.4. Possible Global Optimal Solutions to the Integrated
Ecodriving and CVEM Problems

The advantages of integration ecodriving and CVEM problems have been high
lighted in Chapter 8. Unfortunately, the optimal control problem is nonconvex,
therefore, global optimality of the solutions cannot be directly guaranteed. More
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over, this optimal control problem formulation contains a significant number of
states, which limits the use of dynamic programming approaches to obtain global
solution to the problem. This motivates the necessity to conduct a deeper analysis
on the optimal control problem formulation for integrated ecodriving and CVEM
problems. Some light in this path is provided by the fact that the global optimal
ity of the solutions to ecodriving and CVEM have been proved independently in
Chapter 2 and Chapter 5, respectively. Moreover, numerical results of the case
study presented in Chapter 8 have shown the same cost for multiple solutions. This
empirical evidence might imply that the integrated ecodriving and CVEM optimal
control problem has only global solutions.

10.2.5. Distributed OptimizationMethods for PortHamiltonian
CVEM

The portHamiltonian modelling framework for CVEM introduced in Chapter 7 inter
connects each subsystem through ports, in which, a pair of conjugated variables
represents power. For instance, the portHamiltonian representation of an elec
tric battery considers the current and the voltage at the terminals as conjugated
variables, of which the product describes the power provided by the battery. The
relevance of this physically insightful modelling framework has been highlighted
in Chapter 7. Moreover, it has been shown that the CVEM optimal control prob
lem can be separable, which allows the use of distributed optimization methods to
solve the problem. However, the optimization method for portHamiltonian meth
ods have not been addressed in detail. Scalability of the optimization methods is
an important topic to consider, since the portHamiltonian framework introduces a
larger number of decision variables. Therefore, distributed optimization approaches
are interesting candidates to be applied to this framework. Numerical conditioning
of the optimization problem could be an additional topic of interest. The CVEM
problem can consider subsystems with slow and fast dynamics that could yield to
illconditioned formulations. Therefore, systematic methodologies to solve this lim
itation are needed.

10.2.6. CVEM with On/off Auxiliaries
The CVEM approaches proposed in Part II of this thesis consider subsystems that
are manipulated through a bounded input signal. In practice, many auxiliary sub
systems in the vehicle can be only controlled by on/off actions. Therefore, it be
comes attractive to explore modelling approaches and solution methods for non
linear CVEM optimal control methods with mixed integer decisions variables. A
solution strategy along the lines of Chapter 4 could be considered.

10.2.7. Optimal Component Sizing
In order to be cost effective, the components of a vehicle should be carefully dimen
sioned. A large portion of literature has only focused in dimensioning the power
train components for hybrid vehicles. However, the holistic nature of the CVEM
framework could be applied to component sizing problems. This might imply the
necessity to use highly scalable optimization methods and to solve multiobjective
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optimization problems that optimize the component size for all the subsystems in
the vehicle for higher energy efficiency and reduced production cost.

10.2.8. Ecorouting, Ecodriving and CVEM
Ecorouting aims to plan an energy efficient route for a vehicle. In literature ,this
approach has been widely explored. However, the integration with ecodriving has
recently appeared. Finding the energy optimal route and velocity profile is a chal
lenging problem that promises big rewards in terms of energy savings. This could
be further extended by considering CVEM in the problem formulation. Offline so
lutions to study the achievable performance and simplifications of the problem for
online implementation is an important research direction, where modelling frame
works and optimization methods need to be explored.

10.2.9. CVEM for Fleets
The CVEM framework used in this dissertation could be extended to include cooper
ation as one its main features. A group of vehicles could potentially be coordinated
to increase the collective energy savings. For instance, energy efficient platooning is
a promising application where the collaboration between vehicles not only increases
energy savings, but also reduces the operational cost. Another example is travel
scheduling for a fleet of electric buses where considering ecorouting, ecodriving
and CVEM concepts can be used to obtain an energy optimal travelling schedule tha
maximizes the driving range of the whole fleet. Solving the conceptual and techni
cal challenges of these aforementioned applications might yield important research
directions for the future of energy management strategies.

10.3. Implications
The contributions made in this dissertation have implications in the future research
paths of energy management strategies, which have been implicitly discussed in
the previous section. The certifications for global optimality of the solutions to eco
driving and CVEM, presented in Chapter 2 and Chapter 5, eliminate the necessity
to use dynamic programming approaches to find global solutions to these prob
lems, thus, opening the path to easily generate benchmarks for largescale energy
management problems. The main contribution of this thesis is the extension of
the CVEM framework as a globally optimal, highly scalable, anticipative and robust
approach for energy management strategies. This has paved the way for future
explorations where “cooperation” can be incorporated into the CVEM framework
for interconnected (and possibly autonomous) vehicles.
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