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“There is a theory which states that if ever anybody discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable...

Douglas Adams

”





Summary

As a topic, quantum simulations and computing has been around since the 1980’s,
but recent years have seen a lot of progress towards the development of actual
physical quantum devices. This thesis provides an introduction to quantum com-
puting for the layman as well an overview of the current state and near future of
the field. This future will be dominated by so-called NISQ devices, noisy quan-
tum devices that are able to provide the insights and experience needed for the
eventual development of fault tolerant universal quantum computers. The thesis
explains in some detail why the universal quantum computer is to physicists, what
the sirens’ song were to Odysseus, a luring call, promising a future so bright and so
plentiful that no man can resist it.

The thesis continues in the following chapter by delving into the realm of Rydberg
physics i.e. the physics of highly excited atoms. Here core concepts such as scal-
ing relations, interactions blockade, facilitation and crystallization are explained
using toy models and minimal examples. This chapter also provides introduc-
tions into some of the methods used in conducting the research behind this thesis,
namely stochastic variation and Monte Carlo simulation. While these methods
are perhaps well known to some, the treatment here is specific to the following
chapters.

Chapters 3 and 4 are primarily concerned with theoretical treatment of construct-
ing quantum hardware, i.e. physical objects that can perform quantum simulation
or quantum computation. These chapters show that it is theoretically possible to
confine spatially extended Rydberg atoms in very tight magnetic traps and that
it is possible to make such trapped Rydberg atoms interact via phonons in a way,
which is directly analogous to the interaction between ions in the well established
Mølmer-Sørensen gate. These results are useful as an offset for future research,
since they hold the promise of scalable quantum devices with small dependence
on the temperature of the quantum hardware, thereby reducing system noise and
improving the quality of the quantum operations performed.

Chapters 5 and 6 are primarily concerned with characterizing systems that we
want to investigate in a full quantum simulation but are also simple or simplified
enough that we can make predictions on the quantum behavior of the systems.
These papers predict the quantum behavior of Rydberg atoms excited in ge-
ometries with reduced dimensionality. These chapters make predictions on a
variety of different phenomena, such as crystalization, the quantum Debye length
and insulator conductor crossover, which could be investigated using quantum
simulation.

Future research into this topic, based on the contents of this thesis, will hopefully
cooperate and experimentally validate the results presented here. The fields of
quantum simulation and computing are in rapid development and much progress
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towards demonstrating quantum supremacy has been made during the time of
work on this thesis. The future is bright and perhaps quantum devices are just
around the corner, ready to change the fundamentals of computation in ways,
we cannot even imagine, yet.
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1Entering the Age of Quantum Simulation and
Computing

In the late 1800’s physics seemed to many a completed discipline, with the
only improvements being in precision. However the theory was, in the words
of Lord Kelvin, obscured by two clouds [Tho10]. One, the constant speed of
electromagnetic waves predicted by Maxwell’s equation, led to Einstein’s theories
of relativity. The other, the so-called ultraviolet catastrophe, was solved by Max
Plank and led to the development of quantum mechanics. Problems in quantum
mechanics are notoriously difficult to solve and only a few problems can be solved
exactly or by hand.

Various methods have been developed to approximately solve complex quan-
tum problems such as perturbation theory and the variational principle, but even
solving these approximated problems can be prohibitively difficult. Exact simula-
tions with all degrees of freedom included are limited to describe a few quantum
particles in full detail. Usually we reduce the complexity of the problem by truncat-
ing state space, reducing the number of effective degrees of freedom, applying
mean field theory or using semi-classical approaches, where only certain parts
of the problem are solved within the quantum formalism and the rest is treated
classically.

These methods have been developed over many years and have historically
been very successful, but for some quantum systems, especially the strongly cor-
related systems, the classical computational resources are insufficient to keep up
with the exponential scaling in the degrees of freedom of the required resources.
For such systems, we have no useful description and thus understanding. Of-
ten these systems are of extreme interest both from a technological/application
viewpoint, but also on a fundamental level of understanding.

Luckily, the way forward has been laid out in the 1980’s, where Richard Feynman
claimed (1982) that in order to simulate quantum systems, we need a device,
which does not only simulate the rules of quantum mechanics, but obeys them;
a quantum simulator [Fey82]. Such a device, developed to efficiently solve a
specific quantum mechanical problem, has a Hamiltonian, which can be tuned
to model a variety of related model Hamiltonians, too complicated to currently
be simulated. Such systems can be a stepping stone to solve a wide range of
outstanding quantum problems, like high Tc superconductors or protein folding.

1.1 Quantum computing for the layman

Devices to aid computation have been made since ancient times, with some of
the earliest examples (apart from fingers or other body parts) including the abacus
and, of course, the Antikythera Mechanism, by some considered the world’s oldest
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(analogue) computer, from around 100 BCE [Fre06]. In Europe devices of such
complexity were not seen again until the late Middle Ages. The Antikythera Mech-
anism, however, was nowhere near a Turing complete programmable computer
that honour is usually given to Charles Babbage’s Analytical Engine proposed in
1837 [GC10, Cop17]. This all mechanical machine was never built (there are,
however, ongoing efforts) and the programmable computers would not be real-
ized until the first digital computers were conceptualized by Alan Turing [Tur37]
and built in the first half of the 20th century [Cop17]. Even if Babbage’s Analytical
Engine had been built the first digital computer was not only more powerful, but
also cheaper and smaller. The advent of digital computers was made possible
by the preceding development of the vacuum tube. Later the transistor and in-
tegrated circuits made vacuum tubes obsolete and today’s digital computer is
millions of times as powerful as the first computers. Today we are entering a new
era. Hopefully, once again we will be able to construct devices that are millions
of times more powerful than those currently available, at relatively low cost and
size, namely quantum computers.

To understand why quantum computers will potentially improve our compu-
tational capabilities, it is important to first understand the limitations of current
computers, which we shall call classical computers henceforth. On the most ba-
sic level, the inner workings of a classical computer are essentially just switches,
known as transistors. Currents going through these transistors represent the data,
in units called bits, and are either turned off, denoted by 0 or turned on, denoted
by 1. Classical computers use these switches to perform three logical operations
on the bits, one is a single bit operation, which negates a single bit, ie. changing
its value from 0 to 1 or vice versa, called the NOT-gate. The two other operations
are two bit operations, they output one bit for two input bits. One gate, called the
AND-gate for obvious reasons, takes two inputs, each having a value of either 1
or 0, and outputs the value 1 if and only if both inputs have value 1, otherwise the
output value is 0. The other gate, called the OR-gate, outputs value 0 if and only
if both inputs have value 0, otherwise the output value is 1. In reality, computer
chips only implement one type of logic gate, a so-called universal gate, since any
of the three logic gates can be broken down into sequences consisting entirely
of either NAND (not-AND) gates or NOR (not-OR) gates [Raj11]. This is known as
NAND-logic or NOR-logic respectively, and has the benefits of smaller and faster
circuits [Raj11].

A quantum computer, on the other hand, works with so-called qubits, which obey
quantum mechanical rules. This means that we have to adapt our notation

0→ |0〉
1→ |1〉. (1.1.1)

Do not worry about the meaning of "|" and "〉". It is simply how we tell that
something is a quantum property, and not just a number, we call this notation a
ket and the reverse 〈 | a bra. We need to distinguish the notation of the state from
the binary value it represents, since a qubit is not restricted to one of these qubit
states1, but (can) have a fraction of each, known as a superposition state. We

1In this chapter, "qubit state" means |0〉 or |1〉, not the (general) state of the qubit.
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write such a superposition state like this

|ψ〉 = a0|0〉+ a1|1〉 (1.1.2)

where a0 and a1 are complex numbers satisfying the condition |a0|2 + |a1|2 = 1,
called coefficients. The numbers are complex since the superposition is not just
some fraction of each qubit state, but the different components can have different
phases, meaning that the coefficients do not have to add up to any specific
number or even a real number. When we perform a quantum algorithm, and
want to know the result, we have to measure what state the qubit is in. And this
is where the proverbial shoe pinches. If we imagine a quantum algorithm, with
ψ from eq. (1.1.2) as its output state, and measure the qubit to figure this out, the
state collapses to either |0〉 or |1〉, and we only ever get one of these two answers.
If we do this many times, we can figure out the probability of getting |0〉, which is
|a0|2. (Of course this also works for finding the probability of getting |1〉.) So what
is all the fuss about? What can a quantum computer do that a normal computer
can’t?

Flip−→

Figure 1.1: Heads (left) and tails (right) of a Danish 5 kroner coin. Flipping the coin
changes the side facing up from heads to tails or vice versa.

To answer this, let us make an example. Imagine a game you play against a
friend, where your friend hides a coin in a box and the two of you now take turns
at either flipping the coin or not, see Figure 1.1, or not flipping the coin without the
other knowing, whether the coin is flipped or not. After you both have had the
chance to flip the coin, you open the box and see who won; heads: your friend
wins, tails: you win. It is easy to see that you both have a 50% chance of winning,
see Table 1.

Table 1: Outcome of coin flip game, "H" is heads, "T" is tails, "F" denotes a flip and
"-" no flip. The outcome is half heads, half tails.

Initial H H H H T T T T
Your move F F - - F F - -
Friends move F - F - F - F -
Outcome H T T H T H H T

So far, so good; a computer can easily model this, and indeed you can design
a computer program to play this game fairly, with the coin being modelled by
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a single bit. But if your friend is unsatisfied with his odds, he might want to try
something different, like a quantum coin, where you could model the coin with a
qubit.

This does not change the rules of the game or, in itself, the probabilities of the
different outcomes. Let us say that if the quantum coin is heads, the qubit state
is |0〉 and if the quantum coin is tails, the qubit state is |1〉. Flipping the quantum
coin is no different from flipping the regular coin, see Figure 1.1

|0〉 Flip−−→|1〉

|1〉 Flip−−→|0〉. (1.1.3)

However, your friend is both sneaky and acutely aware of the possibilities of the
quantum world, and he places the quantum coin, not in one of the two qubit
states, but in a superposition of them

|Coin〉 =
1√

2
(|0〉+ |1〉) , (1.1.4)

by means of something called a Hadamard operation. Think of it like putting the
coin on its edge, see Figure 1.2, but keep in mind that the outcome is dependent
on what axis you rotate the coin around. If you try to flip this state

|Coin〉 =
1√

2
(|0〉+ |1〉) Flip−−→ 1√

2
(|1〉+ |0〉) = |Coin〉, (1.1.5)

it does not change, and no matter what you do, see Figure 1.2, and your friend can
simply turn the quantum coin to heads, using the same Hadamard operation. Now,
if you try to look if your friend has placed the quantum coin in the superposition
state, it collapses into one of the two qubit states (think of it as the coin falling over,
see Figure 1.2), and you will see heads half the time and tails half the time. So
you cannot detect, whether your friend is cheating or not except, of course, that
he wins all the time.

While, perhaps, a bit frivolous in terms of effort spent to win a simple game,
this illustrates a key difference between a classical computer and a quantum
computer. The ability to put the qubit in a superposition state, and thereby change
the rules of the game, is the strength of the quantum computer. The quantum
computer can create and carry out algorithms on superposition states, without
collapsing the superposition state into one of the qubit states. However, the
quantum computer has one more trick up its sleeve. This trick is, of course, also
founded in quantum mechanics and has to do with how we treat multiple qubits.
If we have two qubits, each of them can be in the |0〉 or |1〉 qubit state, or in a
superposition state. We write the two-qubit state, with the two qubits being in
states |ψ1〉 = a0|0〉+ a1|1〉 and |ψ2〉 = b0|0〉+ b1|1〉 as a so-called product state

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 = a0b0|00〉+ a1b0|10〉+ a0b1|01〉+ a1b1|11〉, (1.1.6)

where a0, a1, b0 and b1 are complex numbers satisfying |a0|2 + |a1|2 = 1 and
|b0|2 + |b1|2 = 1. The symbol ⊗ merely means that we take two different things
and combine into one. You can think of it a bit like taking a street name and house
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Flip−→

Figure 1.2: Danish 5 kroner coin placed on its side. In contrast to Figure 1.1, ’flipping’
the coin now rotates the coin around an axis perpendicular to the obverse and
going through the centre of the coin. This only changes the orientation of the coin,
but not the direction the heads side of the coin faces. Moreover, the coin is placed
in an unstable equilibrium, any disturbance will make it fall over and show one of
the sides at 50-50 probability.

number and combine them into an address. However, to avoid unnecessary
complication of the notation, we will mostly use the notation where the two-qubit
states are in the same bracket "| 〉", rather than the ⊗-notation, see Table 2.

Table 2: The four states describing a system of two qubits with individual qubits in
the single qubit states.

⊗ |0〉 |1〉
|0〉 |00〉 |01〉
|1〉 |10〉 |11〉

It is important to note here that the number of two-qubit states is not two, but four.
You would need four classical bits to describe a two-qubit state. If we introduce a
third qubit, we get eight three-qubit states |Ψ〉⊗|ψ3〉, two for each of the two-qubit
states, by combining it with either |0〉 or |1〉, and this trend continues. If you want
to model N qubits on a classical computer, you need 2N complex coefficients,
each stored in a number of classical bits, quickly reaching a number so big that
no classical computer could ever possibly model the system, when N gets large.

Just like in the single qubit case, the two-qubit system can also be brought into a
superposition of the two-qubit states from Table 2. As an example, consider such
a two-qubit superposition state

|Ψ〉 =
1√

2
(|00〉+ |11〉) , (1.1.7)

which is fundamentally different from the state described in eq. (1.1.6). No matter
the choice of a0, a1, b0 or b1 we can never construct this state as a product of two
superposition states, but only as a superposition of two product states. We call
such a state an entangled state.

Having seen what a quantum computer can do, it is also important to understand
what it can not do. A common misconception is that a quantum computer can
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calculate everything at once, since you just input a superposition state of all
possible input. Without going into detail on whether this is at all feasible or whether
the outcome would be a superposition of all answers, this would not speed up
calculation in a sort of super-parallelization, since the output state would collapse
upon measurement, and we would only get a single answer. Just like on a classical
computer.

Instead, a quantum computer can apply quantum logic gates, like the Hadamard
operation in the example with the coin flip game, which are unitary quantum op-
erations, to the qubits. These quantum counterparts of the classical logic gates,
ideally, preserve the quantum nature of the qubits and do not collapse the su-
perposition states or break entanglement, unless needed. However, since the
number of quantum gates is much larger than the three classical logic gates, it is
impractical to implement every single possible quantum logic gate. Luckily, we
draw inspiration from the NAND- and NOR-logic of the classical computer, where
the usual implementation only makes use of one of these so-called universal logic
gates, which can be combined to make all three basic logic gates.

A similar set of universal quantum gates can be chosen for the quantum computer,
since any unitary quantum operation can be decomposed into a series of two-
level unitary operations [Bar95], i.e. operations, which only act on two of the
multi-qubit states. Such a set is not unique, but a common example consists of
the C-NOT, Hadamard and π/8 gates [Nie11]. This is sometimes known as C-NOT
logic. Several approaches to constructing a C-NOT gate have been developed,
but possibly the best was proposed by Mølmer and Sørensen [Sø99, Sø00] for ions;
an atomic version of this is described in chapter 4.

The Hadamard gate, which we made a brief acquaintance with earlier in the
coin flip game, creates superposition states from single qubit states and vice versa

a0|0〉+ a1|1〉 Hadamard−−−−−−→
√

1
2

(
(a0 + a1)|0〉+ (a0 − a1)|1〉

)
. (1.1.8)

The π/8-gate gives a complex phase to the |1〉 part of the state

a0|0〉+ a1|1〉
π/8−−→ a0|0〉+ eiπ/4a1|1〉. (1.1.9)

Sometimes, an additional gate, called the phase gate, is included in the universal
set, due to its importance in fault tolerant implementation, but since it is equivalent
to applying the π/8 twice, we will not go into further detail here. Finally, we have
the C-NOT gate, which takes two qubits and changes the state of one depending
on the state of the other

a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 C-NOT−−−−→ a00|00〉+ a01|01〉+ a11|10〉+ a10|11〉.
(1.1.10)

Applying these gates is what makes universal quantum computing powerful. We
can approximate any unitary operation by a series of these universal operations,
and hence implement quantum algorithms and explore the field quantum logic,
where counterintuitive givens, result in counter-intuitive conclusions.

To recap, a quantum computer can take advantage of qubit superposition states
as well as entanglement and apply algorithms that work on these without col-
lapsing the superposition states or untangling the qubits. This allows the quantum
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computer to perform its task with different rules from those applying for a classical
computer. There is no known classical algorithm, which can efficiently model a
quantum computer with a large number of qubits and we do not expect one to
be found [Pre18]. The number of classical bits needed grows exponentially with
the number of qubits, which means that we need a lot of computing power to
(inefficiently) model a quantum computer with the algorithms of today. A quan-
tum computer with around 50 qubits is at the edge of quantum supremacy, i.e.
beyond what we can model on a classical computer [Pre18], and 100 qubits is
past what we can hope to achieve with future classical computers just in terms of
memory. All together this means that a quantum computer can perform tasks in
a regime that no classical computer ever will be able to.

1.2 Noisy Intermediate-scale Quantum Era

So, where are we today? And where will we go in the next decade or so? In a
2017 keynote address [Pre18], John Preskill describes the near future of quantum
computing, the so-called Noisy Intermediate-scale Quantum Computing (NISQ)
era. This term covers quantum computer implementations, where we just have
to live with noise in the system and accept that computations can fail or be
unreliable and some can not be performed at all. The hope is that we can use
the experience and knowledge we gain from these NISQ devices to construct a
second generation of quantum computers that rely on a (large) number physical
qubits to simulate a small(er) number of virtual qubits [Lom00, Chap. 3] along
with quantum error correction [Ste96] to make them more reliable. So why is this
an interesting concept? To answer the question, we must first understand, not only
what a NISQ-device is, but also what the potential of NISQ-devices is.

NISQ-devices are noisy devices, meaning that they are prone to influences from
both inside and outside the quantum computer. Such influences will inevitably
break the carefully constructed quantum entanglement the quantum computer
relies on [Lad10, Pre18]. For quantum calculations, losing entanglement is equiv-
alent to losing information, resulting in a breakdown of the entire computation.
Isolation from outside influences are not all we worry about, though. We also
have to consider how well we can control the quantum systems we use for qubits.
Bad control of the qubits might result in errors due to imperfect operations or long
operation times for quantum gates [Pre18]. Long operation times do not only slow
down the quantum computation, making the whole exercise pointless, but can
also lead to errors due to finite lifetime effects of internal qubit states. Imperfect
operations, even with small errors, can build up over many gate operations, re-
sulting in very large final errors for complicated programs. For quantum codes
requiring a large number of qubits, each qubit will add to the error of the entire
computation, limiting the number of qubits that can be successfully implemented
and used in a device.

A final source of errors come from the initialization and readout of the qubits
[Pre18]. Not being able to fully trust that the questions we ask or the answers
we get are transferred to and from the quantum device will reduce the trust in
the answers we get, but does not make the NISQ device completely useless. By
performing the same computation many times and statistically comparing the
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answers, we can limit the effect of wrongful encoding or readout.
Apart from purely academic research, some of the big tech companies of the

world, including Google [Dun18, Nei18], IBM [Har19, IMB, Qis], Intel in collabo-
ration with QuTech [Fu18] and Microsoft [Aas16, Kar17] are leading in the de-
velopment of the quantum computer. There are, though, many other types of
qubits, some are at this point purely theoretical while others have been demon-
strated in experiments or prototypes. As evident from the big-tech investments,
both superconducting and topological qubits are very promising, but also ion- or
atomic qubit devices show promise. Currently ion-qubit quantum gates, like the
Mølmer-Sørensen gate [Sø99, Wan01, Sø00], which in chapter 4 is developed into
an atomic version, show some of the highest fidelities, but are hard to scale up,
due to the Coulomb interaction between the ions. Atomic qubit devices, like those
based on Rydberg atoms [Bar16, Bro16, Jak00a, Lab16, Luk01a] show promise
in their scalability, and are the focus of much academic research, including this
thesis where chapter 3 treats magnetic trapping Rydberg atoms and chapters 5
and 6 treat their use in quantum simulation.

However, we must recognize that current state of the art quantum computers and
devices (eg. [Hua19]) fall into the NISQ category [Lad10]. For now and the near
future, it is all we have got. The goal of the NISQ-game is not to eliminate the noise,
that dream is far off in the future, but to reduce it to a tolerable level, in tandem
with making quantum error correcting code [Ste96] and devices [Lom00, Chap.
3]. We will just have to live with the noise for now, and accept the limitations that
come with it.

1.2.1 Quantum supremacy

But, if NISQ-devices are so prone to error and are so hard to scale up, why not
just skip the step? We can work with classical computers until a fault-tolerant
quantum computer is ready. What is the gain? Well, fault-tolerant quantum
computers are many years into the future [Pre18] and NISQ-devices might help
us get there, both with experience and results. In fact, we have very few quantum
algorithms right now, and NISQ-devices will be a development platform for such
algorithms. Also, there is the scaling argument from Section 1.1, if you want to
simulate N two-level quantum systems, you need 2N classical bits. Thus we
can never hope to simulate a, say 300 qubit quantum computer on a classical
computer, since 2300 ≈1090 is larger than the estimated number of atoms in the
observable universe, meaning that even if every single atom in the universe was
used for a classical bit, we would still run out of memory. We can simply never
hope to simulate large quantum computers on classical computers, noisy or not.
Today’s largest supercomputers can simulate up to 48 qubits [Boi18], which means
that even NISQ devices can go beyond the best classical computing has to offer.

We have defined the term ’quantum supremacy’, to describe when quantum
computers outperform classical computers [Geo14, Har17, Boi18, Pre18]. For
a long time it was an open question, what quantum supremacy really means,
but Harrow et al. [Har17] have set four requirements to experiments that show
quantum supremacy

1. A well-defined computational task
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Figure 1.3: Computational complexity groups. The group NP contains the prob-
lems, where we can easily check if an answer is right. Inside NP we have two
subgroups that are completely contained within NP. The group P, which contains
the problems that can ’easily’ be solved on a classical computer, and the group
NP-complete, which contains all the hardest problems in NP. It is an open question,
whether all of these groups contain exactly the same elements. Further groupings
exist outside of P, which contains problems like the games chess and go. With
quantum computers we can expand the group of problems we can easily solve
to the group BQP, which extends to some problems outside of NP, but probably
does not contain any problems from NP-complete.

2. A quantum algorithm, which can be run on near-term quantum devices
(NISQs)

3. An amount of resources allowed to any classical competitor

4. An assumption from complexity-theory, supporting a quantum supremacy
hypothesis in the given experiment

along with the optional requirement

5. A verification method that can easily distinguish the quantum algorithm from
its classical competitors

The task need not be of any practical use except for showing quantum supremacy,
which is, in its own right, a worthy goal [Pre18]. However, the task must be
sufficiently hard that we can be confident that no classical computer can do
it. Analogue quantum simulators can already outperform classical computers
at simulating certain quantum properties [Che16, Har17], we are just not sure
whether classical computers could perform better yet.

To make sure the classical computer will not outperform its quantum counterpart,
in performing our test task, we need some computational complexity arguments
that it is a hard task for any (hypothetical but realisable) classical computer.
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Currently we think some problems are ’easy’ for a computer to solve. Here easy
means that the time it takes a computer to find the solution to the problem is a
polynomial of the number of bits in the problem, so-called polynomial time. We
call this group of problems P, see Figure 1.3. However, some problems are not
apparently easy to solve and we suspect it is because these problems are hard.
For some of the hard problems, we can easily check if a given solution is right,
it is just difficult to find the solution. We call these problems NP. Over the years,
some problems we thought were hard turned out to be easy, we just needed a
good algorithm for solving the problem. Therefore it is an open question whether
P and NP are actually the same group of problems or, as we suspect there are NP
problems we can never solve easily. If it turns out that P and NP are indeed not the
same, then we know that some of the problems not in P are harder than others.
Among the problems in NP there is a subgroup, which we call NP-complete. A
problem L in NP is NP-complete, if every problem in NP is reducible to L, i.e. if we
have an algorithm solving L, this algorithm can be used as part of an algorithm
solving every other NP problem. With quantum computers we can expand the
group of problems we can easily solve to the group BQP, which extends to some
problems outside of P, but probably does not contain any problems from NP-
complete [Ber97, For99]. To prove quantum supremacy we therefore have to find
a problem, which we believe is beyond the ability of even a hypothetical future
classical computer, and show that a quantum computer can solve it with less
resources.

Some proposals have been made for experiments that could, within reasonable
time, show quantum supremacy [Har17, Boi18]. But for now, let us consider
two of the more famous examples, though they are unlikely candidates to first
demonstrate quantum supremacy.

Shor’s algorithm

One of the problems from NP (but not NP-complete), which today we assume
is beyond classical computers, is finding the prime factors of very large integers.
This problem is so hard that we use it for encryption [Riv78]. Any integer N can
be factored into prime numbers 2,3,5,7, . . . , pi, . . . . This means that we can write
N as the product of a finite number of primes

N = p1 · p2 · · · pfinal, (1.2.1)

where pfinal is the final prime number. Each prime may be in the list several times or
not at all. We call the numbers p1, . . . , pfinal the prime factors of N . Numbers with
only one prime factor, which is necessarily the number itself, are prime numbers.
Finding the prime factors of small integers, say 15=3·5, is easy [Van01], but the
problem gets extremely difficult for large numbers with hundreds of digits [Van01].
An efficient, fully classical algorithm could be found in the future, but we think it is
unlikely.

In 1994 Peter Shor published a quantum algorithm [Sho94, Sho99], which could
easily find the prime factors of numbers, barred a few constraints. This algorithm,
which has famously come to be known as Shor’s algorithm, combines a classical
part, which can be done on a classical computer, with a quantum period finding
algorithm based on the quantum Fourier transform [Bea03], which requires the
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use of a quantum computer. Shor’s algorithm has been shown experimentally to
work [Van01], albeit only to factor 15=3·5, which is still done with fewer resources
on a classical computer. Nevertheless, it was an important demonstration of a
working quantum algorithm, leading the way for further development of quan-
tum algorithms. However, Shor’s algorithm is not a good showcase for quantum
supremacy, since according to [Har17], we would need around 4000 virtual or
fault tolerant qubits to show quantum supremacy using Shor’s algorithm. The
impact of a large-scale implementation of Shor’s algorithm on society would be
enormous, as such an implementation would be able to break our currently most
used encryption system, the RSA encryption [Riv78].

Grover’s algorithm

Another quantum algorithm, which has achieved fame in the world of quantum
information, is a database search algorithm by Lov Grover [Gro96, Gro99], known
as Grover’s algorithm. Grover’s algorithm works by asking ’all questions at once’
with a superposition state and then adjusting phases, such that successful queries
reinforce each other while the others interfere randomly [Gro96]. However, it
can only be used to find unique elements and requires the right formatting of
the databases. There is not yet any efficient way to implement the quantum
operations for making the right phase shift. Grover’s algorithm also has the backing
of experimental realization [Jon98].

Though Grover’s algorithm also finds uses in cryptoanalysis [Kap16], the database
search is still an illustrative example of a quantum algorithm. The algorithm can
be explained in a few steps for searching a database with elements of size N
bits, which can be encoded to a quantum system with N qubits and state-space
dimension 2N . We need a quantum operation C , which rotates the phase of
the state we are seeking by π and the diffusion transform D, where the ijth

element is Dij = 2/N − δij (δij is the Kronecker delta). Prepare N qubits on a
quantum computer in the superposition state |ψ0〉 = 1√

2N
(|0, . . . ,0〉+|1,0, . . . ,0〉+

|1, . . . ,1〉) and then apply the following steps on the order of
√
N times [Gro97]

1. Apply the phase shift operation |φ〉 = C|ψi〉.

2. Apply the diffusion transform |ψi+1〉 = D|φ〉.

3. If i =
√

2N stop the iteration otherwise add 1 to i and go to point 1.

When the algorithm is performed, the most likely state to measure is the one
corresponding to the object we seek, see Figure 1.4.

The example in Figure 1.4 shows the key feature of Grover’s algorithm. Finding
the right answer in a database search with more than 50 % probability would
require, on average, 2N−1 lookups with a classical computer, but with Grover’s
algorithm we only need 2N/2 lookups. Therefore is of interest to tech-companies,
such as Google [Nei18, Dun18], because it can possibly reduce the computer
power needed for one of their main objectives, searching databases.

Recently papers claiming to prove quantum supremacy have been published
[Aru19, Vil20], heralding the beginning of the quantum era. We have confidence
that this will mean a huge step forward in our understanding of the world, partly
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because quantum computers can simulate any local quantum system [Llo96] and
we do not think classical computers can [Fey82]. Therefore, we have good reasons
to expect that quantum computing will significantly increase the computational
power available to humanity [Kan17]. A wide variety of technologies are being
developed for quantum computation [Lad10], but they all have their faults and
strengths, and none will be perfect from the start. It is the task of the NISQ-devices
to demonstrate quantum supremacy and to serve as a testing bed for quantum
algorithms. Classical computers have a 70-odd year head start, but quantum
computers are gaining momentum and will in a few years time surpass their older
cousins.

1.3 Types of quantum computing

Feynman’s original claim from 1982 [Fey82] that quantum simulators can simulate
any local quantum system has been shown to be correct [Llo96]. But quantum
computers are not just quantum computers. Just like classical computers come
in many flavours, like desktop, laptop, gaming console, calculator or server, de-
pending on the specific tasks they are intended to do, so are quantum computers
envisioned in many flavours.
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1.3.1 Quantum simulation

In the lecture ’Simulating physics with computers’ in 1981, the basis for [Fey82],
Feynman made the argument that we can never hope to efficiently simulate
quantum physics on classical computers. Instead, we would need a quantum
computer, which operates according to the laws of quantum mechanics, and
can exactly imitate any quantum system [Cir12, Geo14], by discretizing time and
breaking each time step down to a series of quantum operations. We know from
classical simulations and the great technological progress of society in general
over the past 100 years or so that we often only need certain physical properties
of a quantum system, such as densities, magnetization per lattice site, few-body
correlation and phase diagrams [Cir12], to understand and develop a technology.
A device, which does not make an exact replication of the quantum system but can
give us a specific set of physical quantities, is what we call a quantum simulator.

To do this, we take a well-understood and controllable quantum system, initially
described by a Hamiltonian Ĥsim, and in the state |ψ〉, map the system we are
interested in, described by Hamiltonian Ĥ with time dependent state |φ(t)〉 onto
the well-understood system

|φ(0)〉 = M |ψ(0)〉. (1.3.1)

The time evolution of the system we want to simulate is described by the propa-
gator

U = exp

[
−i
∫ t

0
Ĥ dt′

]
, (1.3.2)

and we find the state of the system at a later time by applying the propagator,
which is a unitary transformation, to the state |ψ(t)〉 = U |ψ〉. The idea is now to
evolve the simulator, such that at the time steps of interest t1 . . . , tend, the state of
the simulator exactly maps back to the state we are looking for. We achieve this
by applying a series of external influences, such as lasers and electric fields, in
sequence. Each of these applications gives rise to a unitary transformationUi and
the state of the simulator at time ti is given by

|ψ(ti)〉 = Ui . . . U1|ψ(0)〉, (1.3.3)

where U1, . . . , Ui are the unitary transformations due to the individual influences,
and Uj propagate the system from time step tj−1 to tj . This state can then be
mapped back to the state of the system we are simulating

|φ(ti)〉 = M inv|ψ(ti)〉, (1.3.4)

where M inv inverts the mapping.
The naïve way would be to apply the propagator of a system wide Hamiltonian
Ĥi(t) = Ĥsim(t)+Ĥ ′i(t), including the Hamiltonian of the external influences Ĥ ′i(t),
as the unitary transformation

Ui = exp

[
−i
∫ ti

ti−1

Ĥi(t
′) dt′

]
. (1.3.5)
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This is known as analogue quantum simulation and has been used to simulate
Fermionic systems [Ger10, Geo14]. However, there is another way. If we, instead
of system wide operators, have a fixed set of (universal) unitary operators u1, . . .
that only act on one or two qubits at a time, we call these quantum gates. Applying
these quantum gates to specific qubits in the right finite sequence can then model
the system wide operators (of Analogue quantum simulation)

Ui = ui1ui2 . . . uiend , (1.3.6)

where the subscripted i’s takes a predetermined sequence of uj ’s. This way is
more versatile than the analogue version [Cir12] and we call it digital quantum
simulation [Geo14]. In reality, we also consider multi qubit quantum gates for
digital quantum simulation, as we can often reduce the number of operations
needed to execute an algorithm. Both analogue and digital quantum simulators
have been realized [Ger10, Lan11, Geo14] and other platforms for quantum sim-
ulation have been proposed or are in development [Geo14] including platforms
based on Rydberg atoms [Saf10a].

1.3.2 Universal quantum computers

The digital quantum simulator is a remarkable device and in many ways mirror
the workings of a digital classical computer, but it begs the question ’What will
we need to solve other problems like applying Shor’s algorithm?’. The answer is
a Turing complete quantum simulator, a fully programmable version of the digital
quantum simulator, capable of performing any quantum algorithm we give it
[Deu85]. We call this a universal quantum computer.

To go from a digital quantum simulator to a fault-tolerant universal quantum
computer, the device must fulfil the five DiVincenzo criteria [DiV00]

1. Scalability with a well-characterized qubit.

2. The ability to confidently initialize to a simple state.

3. Coherence times much longer than the gate operation time.

4. A finite universal set of quantum gates.

5. A qubit-specific measurement capability.

However, since the original publication of these criteria, quantum computing
has come a long way and quantum computer implementations today are error-
correcting like NISQs [Pre18]. The third DiVincenzo criteria is therefore of less
concern and the rest can be rephrased, keeping decoherence ’small enough’
[Lad10]. The main concerns for quantum computer implementations are then
scalability and fidelity of the quantum gates with error-correcting initialization and
read-out [Lad10]. As long as the error-rate in the quantum computer operation
is beneath a certain limit, we can use quantum error-correction [Lad10]. The
error-rate can be kept low by use of virtual qubits [Pre18], but this presents a new
challenge as the number of physical qubits needed grow very fast with respect to
the number of available virtual qubits [Pre18], greatly reducing scalability.

14



A number of platforms that promise to deliver universal quantum computing
have been developed [Lad10], with big tech companies in the lead. Google
leads research into superconducting qubits program [Dun18, Nei18] and in Oc-
tober 2019 claimed to have demonstrated quantum supremacy [Aru19] on their
53 qubit Sicamore chip. IBM also develops superconducting qubit quantum com-
puting [Har19] with a special focus on developing quantum algorithms through
their Qiskit [LaR19], which is open to all [IMB, Qis]. Microsoft collaborates with
the university of Copenhagen, Denmark on topological qubits [Aas16, Kar17],
which show some promise in being particularly resistant against loss errors due
to the environment. Perhaps the future of quantum computing lies down the
same path as classical computers in silicon quantum gates, as single qubit silicon
quantum gates have exceeded fidelities of 99.9% and two-qubit silicon quantum
gates have reached fidelities of 98% [Hua19]. The Intel/QuTech collaboration
is currently looking into this type of qubit along their existing research on super-
conducting qubits. However, the fully programmable quantum computer is still a
distant dream [Pre18].

1.3.3 Other methods

Other types of quantum computing exist with experimental backing, like the
variational quantum eigensolvers [Kan17] (VQE) and the quantum annealing.

VQEs are hybrid approaches, used to study a quantum system described by the
Hamiltonian Ĥ . A quantum simulator is used to prepare a variational trial state
|ψα〉 dependent on the set of parameters α and the expectation value of an
operator Ô is found EOα = 〈ψα|Ô|ψα〉 and used in a classical optimizer to find an
improved set of parameters α′, which can be fed into the quantum computer for
the next trial state [Per14, McC16, Kan17]. Among the advantages is the ability to
prepare trial states beyond what purely classical methods are capable of [Kan17],
while significantly reducing the need for coherent evolution compared to the fully
quantum methods [Per14, McC16].

The other type, quantum annealing, is closely related to the classical technique
of simulated annealing [Fin94], useful for finding global minima of multivariate
functions. Both rely on the concept of thermal annealing, where the density of
configurations of a cooling system tends to condensate at the lowest potential
energies. Simulated annealing treats the problem as fully classical and lowers the
temperature of the model slowly to find the global minimum. Quantum annealing,
on the other hand, treats the problem at zero temperature and slowly increases the
mass of the system, thereby effectively turning off the quantum mechanical spread
of the energy, which condensates at the lowest configuration [Fin94]. Perhaps
the most famous implementations of quantum annealers are the D-Wave 1 and
D-Wave 2 commercial quantum computing devices by the Canadian company
D-Wave Systems, although the quantum nature of these devices has been brought
into question [Shi14, Alb15].

1.4 Contents of this thesis

This thesis contains eight chapters of which the first two cover the techniques and
concepts behind the research reported in the following four chapters. Chapters
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three through six contain papers written by the author and various collaborators.
Each chapter contains one paper, which is published in or submitted to a peer
review journal.

Chapter 1 is this chapter and provides an introduction to quantum computing,
intended for a layman that is a person with no prior knowledge of quantum
mechanics or quantum computing, as well as an overview of the current state of
development of quantum computers and simulators.

Chapter 2 contains a summary of the concepts and methods that have been used
in the research behind the following chapters. There is a general introduction to
Rydberg atoms including wavefunctions, excitation, scaling relations, interactions
and blockade/facilitation phenomena. This chapter also explains the basics of
stochastic variation, time-evolution and Monte Carlo simulation in some detail.
Stochastic variation on correlated Gaussians is used in chapter 6 to find upper
bounds on the energies in a one dimensional Coulomb system. This method
provides the means of finding approximate ground states of quantum systems
without being particularly demanding in computer resources. Coherent time-
evolution describes the time dependence of well-isolated quantum systems and
is used in chapter 4. For systems where the time dependence of the system is not
completely governed by the Schrödinger equation like in chapter 5, incoherent
time-evolution is used. Here the master equation describes the time dependence
of the system and it is possible to treat finite life times and external influences
on the system. Monte Carlo methods can be applied to find time dependent
statistical information on a quantum system. The system is randomly realized
many times over and the averages of these realizations are taken to describe the
system. This technique is used in chapter 5. The final section is a short explanation
to diffraction light shaping with spatial light modulators in mind. Shaped light is
an important component in the experimental work reported in chapter 5.

Chapter 3 is published in Phys. Rev. A 97 [Boe18] and theoretically explores
the possibility of confining Rydberg atoms in tight magnetic microtraps. The trap-
ping frequencies for Rydberg atoms are expected to be influenced strongly by
magnetic-field gradients. The chapter shows that there are regimes where Ryd-
berg atoms can be trapped. Moreover, it is shown that so-called magic trapping
conditions can be found for certain states of rubidium, where both Rydberg atoms
and ground-state atoms have the same trapping frequencies. Magic trapping
is highly beneficial for implementing quantum gate operations that require long
operation times.

Chapter 4 studies the possibility of creating phonon-mediated spin-spin inter-
actions between neutral atoms trapped in optical tweezers in theory. By laser
coupling the atoms to Rydberg states, collective modes of motion appear. The
chapter shows that these can be used to mediate effective spin-spin interactions
or quantum logic gates between the atoms in analogy to schemes employed
in trapped ions. In particular, the chapter employs Rydberg dressing in a novel
scheme to induce the needed interaction, and it is shown that it is possible to repli-
cate the working of the Mølmer-Sørensen entanglement scheme. The Mølmer-
Sørensen gate is widely used in emerging quantum computers using trapped ion
qubits and currently features some of the highest fidelities of any quantum gate
under consideration. Arbitrarily high fidelity for the coherent time evolution of the
two-atom state even at non-zero temperature is shown.
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Chapter 5 investigates formation of structures of Rydberg atoms excited from a
disordered gas of ultra-cold atoms, using rate equations for two-photon Rydberg
excitation in a single atom without eliminating the intermediate state. The chapter
explores the validity range of these rate equations and defines a simple measure
to determine whether our model is applicable for a given set of laser parameters.
These rate equations are applied in Monte Carlo simulations of ultra-cold gases,
for different laser beam profiles, and the results of these simulations are compared
to experimental observations, where we find a general agreement.

Chapter 6 investigates how Rydberg atoms can be used to simulate quantum
plasmas and insulator-conductor crossovers. Starting from a one dimensional
Rydberg crystal, the electrons will, if excited highly enough, have enough kinetic
energy to pass through the potential barrier between the atoms, and the system
can transition into an ordered quantum plasma. Using a 1D model we find
crossovers between insulators and conductors and quantum plasma states, as
well as universal scalings of the lengths and energies, dependent on principal
quantum number n.
In chapter 7 I would like to say a few words on the process of making this thesis

and express my gratitude to the people who helped make it a reality.
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2Background for this thesis

The papers included in this thesis all cover the subject of Rydberg atoms used for
quantum simulation. This requires a variety of techniques and, of course, a good
background knowledge of Rydberg atoms. In this chapter, we will go over the
basics of Rydberg atoms and the employed techniques in some detail.

2.1 Rydberg atoms

Rydberg atoms are atoms where one electron is excited to a very high principal
quantum number n, usually we talk about Rydberg atoms when n & 30. These
highly excited atomic states are now found in labs around the world, but are also
found in the interstellar medium [Gne09]. Rydberg atoms have been studied
for their fascinating behaviour and strong scaling for many years [Ste76, Zim79,
Gal94]. The last decade, though, has seen a renewed and unrivalled interest, due
to both advances in experimental techniques and theoretical work, covering the
application of Rydberg atoms in quantum information [Jak00a, Luk01a], quantum
sensing [Car12, Deg17], exploring exotic quantum phases in many body systems
[Qia13] and strongly correlated systems [Urv15], due to the strongly scaling dipole-
dipole interactions. Especially the promise of applications in quantum information
is interesting, for the reasons outlined in chapter 1.

The definition of ’highly excited’ is, however, somewhat vague, as for most atomic
species we have to consider which electron gets excited and what the conse-
quences are. Much research focuses on atoms of alkali metals (lithium, sodium,
potassium, rubidium, caesium and francium) [Noe00, Bet15, Bet09, Sin05, Kru02,
The84, Mit03, Saf10a], as alkalis in general are best suited for laser cooling
[Saf10a], but some researchers excite Rydberg ions from (singly ionized) alkaline-
earth metals (Beryllium, Magnesium; Calcium, Strontium, Barium and Radium)
[Mit03, McQ13, Lan91] or even Rydberg molecules [Bel13, Lv16]. The alkalis have
the benefit of having only a single electron in the outermost shell, which is also
the only enclosed shell in the atomic electron structure. This makes for relatively
simple electronic structures, which can, in general, be described using quantum
defect theory [Mar94, Sea83, Li03][Bra03, chap.9.4], where only small modifica-
tions to the hydrogen theory are necessary to explain these larger systems. That
is, their energy levels follow the Rydberg formula with only minor modifications

Enlj = −Ry∗

n∗2 = − Ry∗

(n− δnlj)2 , (2.1.1)

where Ry∗ is the species specific Rydberg constant and δnlj is a state specific
parameter, known as the quantum defects. The quantum defects are to a large
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Figure 2.1: Space charge distribution from the core of an rubidium atom as
experienced by the valence electron in a given orbital angular (l) state (top), see
eq. (2.1.4), and the resulting potential Vcore (bottom), see eq. (2.1.3), with guides
corresponding to Coulomb potentials with charges 37 and 1.

extent only dependent on the orbital angular quantum number l [Bra03, chap.9.4]
but can be more accurately determined by

δnlj(n) = δ0 +
δ2

(n− δ0)2 +
δ4

(n− δ0)4 + . . . , (2.1.2)

where δ0, δ2,. . . are dependent on l and j and must be determined from experi-
ment, see for example [Li03].

To determine the wave functions of the outermost electron, commonly referred to
as the Rydberg electron, subject to the combined electric potential of the nucleus
and remaining (core) electrons, together called the (ionic) core, we use the model
potential (in atomic units, which will be used throughout this thesis unless otherwise
indicated)

Vcore = −Zl(r)
r
− αc

2r4

(
1− e−(r/rc)6

)
, (2.1.3)

proposed in [Mar94] (see Figure 2.1) or alternatives like the one in [Gre91]. The
first term in eq. (2.1.3) describes the Coulomb interaction between the Rydberg
electron and the left-over charge of the nucleus, the so-called unshielded charge;
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Figure 2.2: Numerical solutions to the radial Schrödinger equation at n = 30
and j = l + 1/2 using the potential Vcore from eq. (2.1.3) (filled grey) compared
to their hydrogenic counterparts (black). At low angular momentum (l = 0) the
solutions differ significantly, and we have to take the spatial extent of the core
into account. At maximal angular momentum (l = 29) the two solutions are
practically identical.

we will go over the spatial distribution of this in a moment. The second term in
eq. (2.1.3) deals with the polarisability of the ionic core,αc is the static polarisability
of the core and rc is a cut-off distance, both must be determined from experiment.
Most of the nuclear charge is shielded by the core electrons, but the remaining
unshielded nuclear charge is described by

Zl(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a1r, (2.1.4)

where Z is the total nuclear charge and the l-dependent constants a1, ..., a4 are
determined from experiment, see [Mar94] and Figure 2.1.

In Figure 2.1 the unshielded charge Zl (top) and the model core potential Vcore

(bottom) have been plotted for rubidium, with constants taken from [Mar94]. At
r = 0 the Rydberg electron experiences the full nuclear charge, which is shielded
at larger distances, and at r = ∞ the Rydberg electron experiences the core as
a point elementary charge. Although there is a dependence on orbital angular
momentum l in the unshielded charge and potential, this does not represent any
practical difficulties [Mar94]. The model potential Vcore shows some dependence
on l, but when the centrifugal barrier term of the kinetic energy (l(l+1)/r2) is taken
into account, this will be the dominant term in the region, where the potential is
strongly l-dependent (r .

√
l(l + 1)). Figure 2.1 shows that the model potential

quickly approaches the Coulomb potential of a single elementary point charge
for r ≥ 5.
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This results in the Hamiltonian (in atomic units)

Ĥ = T̂ +
α2

r3 L̂ · Ŝ + Vcore(r), (2.1.5)

where T̂ is the kinetic energy operator, α is the fine-structure constant, r is the
distance between the core and the Rydberg electron, L̂ is the orbital angular
momentum operator and Ŝ is the spin operator. In this thesis the term hydrogenic
will be applied to results stemming from this Hamiltonian, with the replacement
Vcore → −1/|r|.
The solutions to the angular part of the Schrödinger equation are well-known,

since the potential is still a central potential. The radial wavefunction, though, has
to be found numerically, except in the hydrogenic case, and an example of the
Rydberg electron radial wavefunctions (grey) R for Rydberg states 30ll+1/2 with
l = 0 and l = 29, that is minimal and maximal angular momentum for n = 30, is
shown in Figure 2.2, along with solutions to the hydrogenic Hamiltonian (black).
For large angular momentum, the Rydberg electron does not penetrate the core,
and the radial wavefunction is practically independent of the type of potential.
For zero angular momentum, however, the Rydberg electron penetrates all the
way to the core and we see a clear difference between the radial wavefunctions
resulting from the two types of potential. In both the minimal and maximal angular
momentum case, we see that the Rydberg electron has a very large orbital radius,
on the order of 1000 Bohr radii, this is the crux of Rydberg physics.

2.1.1 Scaling relations

The Rydberg formula eq. (2.1.1) tells us that the energy of a Rydberg atom Enlj
increases roughly inverse square n−2 in principal quantum number n, and the
energy spacing ∆E between two neighbouring principal quantum numbers is

∆E = Ry
(

1
(n+ 1)2 −

1
n2

)
= Ry

n2 −
(
n2 + 2n+ 1

)

n4 + 2n3 + n2 ≈ −2
Ry
n3 , (2.1.6)

for large n.
Rydberg atoms are also known for their very long (radiative) lifetimes τnl, which

depends inversely on the overlap between the wavefunctions of the Rydberg
and ground state. This overlap quickly decreases as the electron orbit is pushed
further out, and therefore the radiative lifetime increases with n. The radiative
lifetime τ rad

nl can, according to [Gal94, Bet09, Saf10a] be roughly estimated, at
zero temperature, by

τ rad
nl = τ rad

l n3, (2.1.7)

where τ rad
l is the zero temperature l-dependent radiative lifetime. However, the

interaction with black body radiation, that is the heat radiation of thermal bodies,
becomes significant for states with high n and the total lifetime of a Rydberg atom
is

τnl =

(
1
τ rad
nl

+
1
τBB
nl

)−1

, (2.1.8)
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where τBB
nl is the lifetime due to decay stimulated by black body radiation. An

extensive work, covering lifetimes for n up to 80 and l up to 2 at temperatures of
0K, 77K 300K and 600K for the stable alkalis, can be found in [Bet09].

In addition, we know by virtue of the virial theorem that the potential energy of
the Rydberg electron is twice the kinetic energy with opposite sign

〈
nlj
∣∣∣V̂
∣∣∣nlj

〉
= −2

〈
nlj
∣∣∣T̂
∣∣∣nlj

〉
, (2.1.9)

yielding an estimate for the expectation value of the potential energy

〈
nlj
∣∣∣V̂
∣∣∣nlj

〉
= 2Enlj ≈ 2

Ry
n2 . (2.1.10)

From this we can make a classical estimate of the electron orbital radius rOrbit as

− 1
rOrbit

=
〈
nlj
∣∣∣V̂
∣∣∣nlj

〉
≈ 2

Ry
n2 ⇒ rOrbit ≈

n2

2Ry
, (2.1.11)

increasing very quickly with principal quantum number n. This means that for
Rydberg atoms the classical orbital radius of the electron is more than 900 times
larger than that of a ground state atom, agreeing very well with the observations
in Figure 2.2. For comparison, this is roughly the size of vira. However, often we
consider Rydberg atoms with n ≈ 100, see Chapter 5, resulting in atoms the size
of typical prokaryote cells. Displacing the Rydberg electron this much from the
nucleus does not go unnoticed, though, but leads to a variety of effects all scaling
with n. For actual calculations of Rydberg atoms, the species and state specific
quantum defect are taken into account, but the general picture remains the same.

Many of the ’exaggerated’ properties of Rydberg atoms stem from the large orbital
radius of the Rydberg electron. A classical system with two charges at small but
appreciable distances from one another will result in a dipole. Though we do
not necessarily get a permanent dipole moment in an atom, which of course is
a quantum system, at least the polarisability of the atom and the induced dipole
moments must scale very strongly with n.

Due to the large orbital radius of the Rydberg electron, a Rydberg atom would
classically (that is with the Rydberg electron being a localized particle) behave
like a dipole. However, undisturbed Rydberg states are spherically symmetric
and there is no preferred direction. Introducing a perturbator, which breaks the
symmetry of the system, leads to strong responses, as the Rydberg atom gains a
dipole moment. As an example, consider a weak electric field F = F ẑ oriented
along the z-axis. The perturbation on the Rydberg atom by this electric field is
described by the Hamiltonian

H ′ = −F ẑ · r. (2.1.12)

Assuming hydrogenic Rydberg wavefunctions, we can use perturbation theory
to find the response of the Rydberg atom to the electric field. The first order
energy shift is zero, as hydrogenic wavefunctions are (a)symmetric along the z-axis
resulting in an overall asymmetric integral. The first order change to a hydrogenic
state |nljmj〉 is then, assuming the states to be properly orthogonalized to lift the
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degeneracy,

˜|nljmj〉 = F
∑

other states

〈n′l′j′m′j |ẑ · d|nljmj〉
E − E′ |n′l′j′m′j〉, (2.1.13)

where d = −er is the dipole operator, E (E′) is the energy of the state |nljmj〉
(|n′l′j′m′j〉) and the sum runs over all other (orthogonalized) hydrogenic states.
From this we can make two observations: the perturbed state has an induced
dipole moment and the second order energy shift is

E(2) = F 2
∑

other states

|〈n′l′j′m′j |dz|nljmj〉|2
E − E′ ≡ 1

2
α0F

2, (2.1.14)

where α0 is the polarisability of the atom. This leads to a very strong scaling with
n as the dipole matrix elements, when non-zero, scale as the orbital radius of the
Rydberg electron 〈r〉 ∝ n2 and the energy spacing as n−3, yielding

α0 ∝ n7. (2.1.15)

One of the most fascinating and useful properties of Rydberg atoms is the very
strong interaction between them. Since Rydberg atoms are electrically neutral,
the primary interaction channel is the dipole-dipole interaction between the to
atoms. Assuming the atoms are separated beyond the dissociation limit (usually
taken to mean beyond the LeRoy radius), such that the interaction can be mod-
elled classically [LeR70, LeR74], we can model the interaction as a dipole-dipole
interaction

Vdd =
d1 · d2

R3 − 3
(d1 ·R)(d2 ·R)

R5 , (2.1.16)

where d1 (d2) is the dipole (position) operator for the valence electron in atom 1
(2) and R is the distance between the (centres mass of the) two atoms.
Again, we will use perturbation theory to examine the interaction of the nearby

Rydberg atoms. Consider a system of two Rydberg atoms, where both atoms
are excited to the same Rydberg state, the combined two-atom state is then
|nljmj〉⊗ |nljmj〉, and the interatomic axis and the quantization axis are both the
z-axis. The matrix elements of the dipole-dipole operator are given by

Mdd = 〈n′′l′′j′′m′′j |z2|nljmj〉〈n′l′j′m′j |z1|nljmj〉, (2.1.17)

The diagonal elements are always zero, as the Rydberg states have no permanent
dipole element, but the interaction with other states might be finite. Assuming the
Rydberg state to be an nS state, the only allowed dipole transitions are to the n′P
states. For simplicity we reduce the system to a toy model, where the Rydberg
atoms are interacting via a single other two-atom state |n′P 〉⊗ |n′′P 〉. Writing out
the perturbation Hamiltonian in matrix form

H ′ =

(
0 (1− 3) M̃dd

R3

(1− 3)
M̃∗dd
R3 ∆E,

)
(2.1.18)
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where M̃dd is the matrix element eq. (2.1.17) between the two-atom Rydberg
state and the two-atom state |n′P 〉 ⊗ |n′′P 〉, and ∆E is the energy difference
between the two two-atom states. From this we find the energy

E(2) =
∆E

2
±
√(

∆E

2

)2

+
|M̃dd|2
R6 (2.1.19)

=

{
− |M̃dd|2

∆ER6

∆E + |M̃dd|2
∆ER6

∆E >> |M̃dd|2/R6, (2.1.20)

which results in a ±|M̃dd|2/(∆ER6) interaction, which is known as the Van der
Waals interaction, for ∆E >> |M̃dd|2/R6. The strength of this interaction can be
further quantified by use of eq. (2.1.14), since both Rydberg atoms are in the same
state, the interaction strength C6 is proportional to

C6 ≡
|M̃dd|2

∆E
= 4

(E − E′)(E − E′′)
∆E

α2
0 ∝

n−3n−3

n−3 n7n7 = n11. (2.1.21)

This is a remarkably strong scaling with principal quantum number n and, despite
the simplicity of this toy model, consistent with experimental observation [Sin04,
Saf10a].

In reality, the interaction between Rydberg atoms is somewhat more compli-
cated, and the interaction can be both attractive and repulsive [Sin05]. At
shorter distances the interaction is dominated by resonant dipole-dipole interac-
tions [Saf10a] and is sensitive to Zeeman degeneracy and hence the magnetic
quantum number mj [Wal08]. These long-range interactions can lead to macro
molecules [Boi02, Boo15] and find applications in quantum information [Saf10a].

2.1.2 Excitation - blockade and facilitation

Rydberg atoms can be excited from ground state alkali atoms either directly
[Han14] in a single-photon process or via an intermediate state [Bra03, chap. 4]
in what is known as a two-photon excitation, see Figure 2.3. In both cases we
use the (electric) dipole approximation [Bra03, chap. 4.3] to find the interaction
between the photon and the valence electron of the atom. This approximation is
valid, when the wavelength of the light is much longer than the size of the atom.
Typical wavelengths of the lasers involved are in the visible spectrum, 400-800nm,
much larger than a ground state atom, which has orbital radius 50pm.

Using this approximation, we can calculate the transition matrix elements of an
atom subject to a monochromatic classical laser field with vector potential A in
the Coulomb gauge, following the approach of [Bra03], for weak laser fields we
get the perturbation Hamiltonian

H ′ = A · p =
A0

2

(
exp

[
i(k · r − ωt)

]
+ exp

[
− i(k · r − ωt)

])
ε̂ · p, (2.1.22)

where p is the momentum operator, A0 is the amplitude of the vector potential,
k is the photon wave number, ω is the photon frequency t is the time and ε̂ the
polarization vector.
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Figure 2.3: Excitation schemes with one or two photons. Left, two-photon excita-
tion to an nS Rydberg state. Middle, single photon excitation to an nP Rydberg
state. Right, two-photon excitation to an nD Rydberg state.

To apply the dipole approximation, we ignore the dependence of the electric
field of the laser on position r

exp
[
i(k · r − ωt)

]
ε̂ · p ≈ exp(−iωt)ε̂ · p. (2.1.23)

We now use that p = dr/dt and remember that

i~
dr

dt
= [r, H0]⇒

〈
a

∣∣∣∣
dr

dt

∣∣∣∣b
〉

= −i 〈a|rH0 −H0r|b〉 = i(Eb − Ea) 〈a|r|b〉 ,
(2.1.24)

where |a〉 and |b〉 are some appropriate states with associated energies Ea and
Eb respectively, since H0 is by far the dominant term in the Hamiltonian.

We have now reduced the matrix elements of the perturbation Hamiltonian
eq. (2.1.22) to

〈a|H ′|b〉 =iA0 (Eb − Ea) cos
(
ωt
)
ε̂ · 〈a|r|b〉 , (2.1.25)

which is only dependent on the matrix element 〈a|r|b〉 = rab. This is the dipole ma-
trix element in atomic units, which we will call Dab = −erab, since the elemental
charge e is not one in other unit systems. This is a commonly used approxima-
tion, and the dipole matrix elements give rise to the well-known selection rules of
dipole transitions. Details on evaluating the dipole matrix elements are common-
place, see e.g. [Bra03]. For alkali atoms the ground state is always an S-state,
i.e. a zero orbital angular momentum state (l = 0). In dipole transitions, each
photon changes the orbital angular momentum l of the atom by ±1, hence the
single photon excitation can only reach nP -states (l = 1), whereas two-photon
excitations can reach both nS-states (l = 0) and nD-states (l = 2). We focus
on the two-photon transitions, as the nP Rydberg levels are shorter lived and we
prefer the spherical symmetry of the nS levels.

Figure 2.3 illustrates the three different paths to Rydberg excitations via dipole
transitions. We see how the different excitation schemes can reach the three
different l-states. Since many states are unreachable via any specific dipole
transition, we truncate the state space to only include the states that can be

26



Distance

B
lo

ck
a

d
e

B
lo

ck
a

d
e

Fa
ci

lit
a

tio
n

Re
so

na
nt

RblockRfac

Figure 2.4: Schematic of the Rydberg excitation regimes using either resonant
excitation (red curve) or slightly blue detuned excitation (blue curve). Far from
existing Rydberg atoms, a new Rydberg atom can be resonantly excited (red
area). The dipole-dipole interaction with a nearby Rydberg atom shifts the energy
level (thick black) out of resonance and a new Rydberg atom can not be excited
resonantly if too close to an existing atom (white area), the crossover between the
resonant and blocked excitation happens at the so-called blockade radius. With
a blue detuned excitation laser, new Rydberg atoms will be resonantly excited
in a thin region (blue) at a distance known as the facilitation radius Rfac from an
existing Rydberg atom in a process known as facilitation.

reached, and write the Hamiltonian in matrix form

H =




0 Ω1 0
Ω∗1 −∆1 Ω2

0 Ω∗2 −∆2


 or H =

(
0 Ω

Ω∗ −∆

)
, (2.1.26)

for two and single photon transitions respectively. The Rabi frequencies Ω(i) are
determined from eq. (2.1.22), taking advantage of the dipole approximation and
the detunings are the energy in the atom-photon system as a whole. The spon-
taneous decay rate from the intermediate level Γe (for two-photon approaches)
is very large, therefore we usually keep the detuning from this state ∆1 large,
which ensures an insignificant population transfer to the intermediate state and
we can, in general, ignore the decoherence induced by the decay from this state.
However, in Chapter 5 we will use another approach to take this decoherence
into account. The large detuning also allows us to ignore the intermediate state
completely by adiabatic elimination.

The detuning of the Rydberg state, however, leads to vastly different physics for
the Rydberg atoms, see Figures 2.4 and 2.5. Here we, for the sake of argument,
consider rubidium atoms being excited to nS Rydberg states. The two atoms are
so far apart that we can safely assume that the electron clouds do not overlap
and that we can treat their effective interaction classically. The dipole-dipole
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interaction between these states results in an increase in energy, which we here
will assume is of the Van der Waals type, giving the total energy

E(R) = E0 +
C6

R6 , (2.1.27)

where E0 is the energy of the Rydberg state, C6 is a positive constant, see
eq. (2.1.21), andR is the distance to an existing Rydberg atom. With zero Rydberg
detuning ∆2 = 0, the excitation of a new Rydberg atom far away from all existing
Rydberg atoms (if any) is resonant, which means that exciting this new Rydberg
atom is as likely as exciting the first Rydberg atom. However, nearer to an existing
Rydberg atom, the dipole-dipole interactions start to shift the energy levels of our
potential Rydberg atom by C6/R

6 (eq. (2.1.27)). When the energy shift becomes
larger than the line width σnS of the Rydberg state |nS〉, excitation of new Rydberg
atoms becomes severely suppressed. This leads to a volume of space surrounding
existing Rydberg atoms, where new Rydberg atoms are unlikely to to be excited.
We call this volume the blockaded region, and we define the so-called blockade
radius Rblock, within which Rydberg excitation is suppressed

σ =
C6

R6
block

⇐ Rblock = 6

√
C6

σnS
. (2.1.28)

In Figure 2.4 the region of resonant excitation is indicated by red and the block-
aded region by white. If the excitation laser is slightly negative detuning, what is
known as red detuning, this picture still holds, but the excitation probability drops
off with increasing magnitude of the detuning. The blockade radius approaches
infinity, but it will still be much more likely to find well separated Rydberg atoms
rather than close neighbours.

An additional possibility is represented in Figure 2.4, namely that the excitation
laser is positively detuned from the Rydberg transition, what is known as blue
detuning. If the detuning is larger than the line width of the Rydberg state, it is
unlikely to excite a Rydberg atom, however, if one already exists, either by chance
or seeding, we can define a distance in analogy to the blockade radius Rblock in
eq. (2.1.28)

Rfac = 6

√
C6

∆2
, (2.1.29)

which we call the facilitation radius, because existing Rydberg atoms facilitate the
excitation of new Rydberg atoms at this distance. In reality, facilitation happens
in a thin shell around Rfac, blue in Figure 2.4, due to the finite line width of the
Rydberg state. Both inside and outside this shell Rydberg excitation is blocked.

The difference between these two situations, red detuned blockade (∆2 = 0 MHz)
and blue detuned facilitation (∆2 = 1 MHz), is shown in Figure 2.5, which has
been created using the same methods as in Chapter 5. In this figure, the blue
dots represent ground state rubidium atoms in a cold atomic gas in a thin sheet
measuring 125µm×125µm×1µm. The atoms are assumed to be motionless
on the timescales of the simulation. The red dots indicate atoms that have been
excited to the 99S1/2 Rydberg state.
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Figure 2.5: Rydberg atoms (red) excited from an ultra-cold background gas (blue)
using the methods of Chapter 5. Left hand side shows the Rydberg atoms in the
blockade regime are randomly distributed, but never within the blockade radius
of one another (black circles are at half a blockade radius). Right hand side
shows the Rydberg atoms in the facilitation regime are distributed in clusters with
distances within a cluster being the facilitation radius (black). This figure has been
made using the simulations reported in chapter 5, with a 150µm square of laser
light exciting to the intermediate state intersecting a 1µm thin sheet of laser light
exciting the Rydberg state.

The left hand side of Figure 2.5, shows the distribution of Rydberg atoms under
red detuning. The black circles are drawn at a distance of Rblock/2 from the
Rydberg atoms. None of the black circles overlap, indicating that Rydberg atoms
are located at least Rblock apart, and evenly distributed in the atomic cloud.
On the right hand side of Figure 2.5, the same simulation has been done, but

with blue detuning. The black circles here are drawn Rfac from the Rydberg
atoms. In this case the Rydberg atoms come in clusters each originating from
a single off-resonant excitation, known as a seed, the seed then facilitates the
resonant excitation of new Rydberg atoms in the facilitation shell around it. The
new Rydberg atom also has a facilitation shell, where resonant excitation occurs,
growing the cluster of evenly spaced Rydberg atoms. However, the combined
effect of two or more Rydberg atoms moves the facilitation shell just a bit further
away, making the Rydberg spacing slightly uneven.

In both the red and blue detuning cases, we can imagine that the space fills
up with Rydberg atoms and the blockaded region around them. In this case
all the atoms in the cloud are either Rydberg atoms or blocked from excitation
by a Rydberg atom. This is known as the jamming limit, and leads to a clear
signature when analysing the number of Rydberg atoms in the cloud statistically,
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simply because the number of ways to distribute Rydberg atoms in a way that
fills up the volume is limited. If there was no blockade region (and the number of
atoms in the cloud is very large) we expect the number of Rydberg atoms to be
completely random, and excitation events are independent of both each other
and time. This results in a Poisson distribution of the number of Rydberg atoms,
when considering many realizations of the experiment or simulation. However,
when taking the blockade effect into account, we reach the jamming limit and
we need (more or less) the same number of Rydberg atoms to reach the jamming
limit, resulting in very small variance on the number of Rydberg atoms. We call
this distribution subpoissonian.

2.2 Stochastic variation

Stochastic variation is a technique suitable for optimizing a finite basis set with a
large parameter space to span the eigenstates, with extreme eigenvalues, of an
operator, by making random changes to the basis. Usually, but not necessarily,
the operator in question is the Hamiltonian, and optimization is for lowest energy.

The Mini-Max theorem [Suz98] tells us that, by random optimization, our initial
basis will converge on a basis spanning the eigenfunctions of the operator, whose
eigenvalues we are optimizing against. Provided that care is taken in the imple-
mentation of the optimization, we can hope to span many eigenfunctions of the
operator.

Stochastic variation is not suitable for operators that are easily diagonalized
or when the parameter space of the basis functions is easily searched, usually
because it has low dimensionality. However, parameter space is often riddled with
local minima making deterministic minimization techniques practically useless
for determining the optimal configuration in parameter space. The power of
stochastic variation is this ability to find global minima in parameter spaces of high
dimensionality and large numbers of local minima. This makes stochastic variation
very suitable for systems with high degree of correlation. Such systems often
require explicitly correlated basis functions, resulting in extremely complicated
parameter space landscapes, full of local minima [Suz98].

Imagine a set of k functions Sk = {f1, . . . , fk} each with a set of parameters αi
(i = 1, . . . , k), which are randomly chosen from a infinitely large set set S∞ ⊃ S1

of linearly independent functions forming a complete basis for L2. The set of
chosen functions will form the basis of a k-dimensional subspace Vk ⊂ L2, which
we restrict our operator Q̂ to, denoted Q̂Vk

. By virtue of the Mini-Max theorem, the
eigenvalues of the restricted operator are then upper bounds for the eigenvalues
of the unrestricted operator. By taking another random selection S2 ⊂ S∞, which
will also form the basis of a k-dimensional subspace Wk ⊂ L2 (Wk 6= Vk), we can
compare the eigenvalues of the operator when restricted to each subspace. The
idea is then to pick the subspace providing the more desirable set of eigenvalues,
we will shortly approach on what this means, and do the same thing over and over
again, until the eigenvalues no longer improve. The eigenfunctions of the operator
restricted to the subspace providing the most optimal set of eigenvalues are then
taken to represent the eigenfunctions of the unrestricted operator corresponding
to the k eigenvalues we optimized against. In reality, though, the actual number
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Figure 2.6: Energy landscape as function of some variational parameter. By
stochastically picking starting points (grey) and performing random changes to
the variational parameter, we can get estimates for the lowest energy of the
system, without getting into trouble with local minima.

of suitable eigenfunctions and -values is lower than k.
However, we are still left with the somewhat ill-defined notion of a more desirable

set of eigenvalues. Since the operator in question for the implementation used in
chapter 6 is the Hamiltonian, the eigenvalues are canonically referred to as the
energies, and we are always concerned with finding the lowest energy states,
the most desirable set of eigenvalues is the one containing the lowest value. This
approach of simply optimizing by always choosing the lowest single value, is often
good enough to ensure good representations of the first few excited states too,
see Figure 2.6.

The method described above basically works by probing a large number of
points in the parameter space, and choosing the one providing the answer one
might deem best. However, assuming we are fairly close to a basis that already
spans the eigenfunction with the lowest energy, it might be more effective to only
make small variations to the basis set. Rather than picking a completely new
basis set, we will sequentially replace each basis function one at a time. If a given
replacement does not lower the lowest energy of the restricted Hamiltonian, we
reject the replacement and try replacing the next function in the basis set. If,
on the other hand, the replacement does lower the lowest energy, we admit
the replacement to the basis and start over from the first function, since any of
the earlier optimized functions might be optimized better, when taking this latest
replacement into account. When we reach the end of the sequence without
making any replacements, we can assume that we have reached the lowest
possible energy. This algorithm can be captured in the following steps

1. Randomly pick a set of ordered basis functions {f1, . . . , fk} from a family of
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linearly independent functions F forming a complete basis for L2, set i = 1.

2. Calculate (a representation of) the restricted Hamiltonian and determine
the (lowest) energy Elow

3. Replace fi with a randomly chosen trial function g ∈ F and determine the
new restricted Hamiltonian and its lowest energy Etest

If: Elow > Etest, make the substitutions g → fi and Etest → Elow, set i to 1
and go to 3.

If: Elow ≤ Etest and i < k, set i to i+ 1 and go to 3.

4. We are done

While this method works in theory, reliability can be improved drastically in two
ways. One, instead of just using a single trial function to find a replacement to
a basis function, we can randomly pick a set of trial functions, try out all these
as a replacement in our basis, and then pick the best one as the replacement.
Of course only if any of the trial functions are better than the one already in
the basis. Two, we can require that the sequence can be completed several
times without making any new admissions to the basis, before we assume to
have reached the optimal basis. In principle we could calculate the parameter
space gradient at this point and do a deterministic optimization, but it is often of
limited use and involves extended computation. Instead, it proves more useful to
repeat the algorithm from a different start basis and see if this can provide a better
estimate for the lowest energy. This ties in to an important fact to keep in mind,
when designing a stochastic variational algorithm: Determination of the restricted
operator eigenvalues has to be fast and accurate. If we can not determine these
eigenvalues fast enough, to out-compete other algorithms, why then bother with
a variational approach? If we can not do it accurately enough, we could build up
errors and possibly end up with impossibly low energies, i.e. energies below the
ground state energy of the system, as we optimize for error rather than energy.

So far we have not considered this implementation, but rather kept the treatment
abstract. We will now delve into the specific details of the implementation used
in writing chapter 6. We will start out by choosing a family of functions to build our
basis from. As discussed above, there are three properties we need this family of
functions to have:

1. Linear independence

2. Form a complete basis of L2

3. Fast and accurate determination of (a representation of) the restricted Hamil-
tonian

We intend to use this algorithm to explore two-electron systems and therefore
prefer a set of basis functions, which includes correlations inherently, i.e. the
chosen set of multi-body basis functions is not simply the direct product of several
sets of single-body basis functions, taking advantage of the strengths of stochastic
variation. When considering the three points above in connection with the aim
for inherently correlated basis functions, we have settled on so-called explicitly
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x (arbitrary units)

Figure 2.7: Two Gaussian functions (black solid) and their product (grey). Products
of Gaussian functions are themselves Gaussian functions.

correlated Gaussians as the function family we pick our basis sets from [CGm].
These are functions of the form

ψ(x) = exp

[
−1

2
(x− a)

T
A (x− a)

]
, (2.2.1)

where x is the position vector of the electrons, A is a symmetric, real valued,
positive definite matrix generating both the correlations between the electrons
and the overall shape of the multi-dimensional Gaussian in position space, a is a
vector responsible for shifting the peak of the Gaussian in position space.

Though (correlated) Gaussians are non-orthogonal, this need not be a problem.
Start by considering an arbitrary function fc in the subspace Vk spanned by the
set Sk = {ψ1, . . . , ψk} of k correlated Gaussians, we can write fc in terms of the
basis functions

fc =

k∑

i=1

ciψi, (2.2.2)

we can then define the vector c = (c1, . . . , ck)T , containing the expansion coef-
ficients of fc. We shall say this vector characterizes fc. Let us further define the
overlap matrix N ∈ Rk×k , whose elements are

Nij =

∫ ∞

−∞
ψj(x) · ψi(x) dx, (2.2.3)

and the Hamiltonian matrix H , with elements

Hij =

∫ ∞

−∞
ψj(x)Ĥ · ψi(x) dx. (2.2.4)

We remark that both N and H are real valued and symmetric and N is positive
definite. Since the basis functions are non-orthogonal, we know that the overlap
between two functions fv and fu, characterized by vectors v and u correspond-
ingly, is given by

k∑

i=1

k∑

j=1

∫ ∞

−∞
vjψj(x) · uiψi(x) dx = vTNu. (2.2.5)
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Assuming fu to be an eigenfunction of Ĥ with eigenvalue E, we get

k∑

j=1

∫ ∞

−∞
vjψj(x) · fu dx = E

k∑

j=1

∫ ∞

−∞
vjψj(x) · fu dx

=E

k∑

i=1

k∑

j=1

∫ ∞

−∞
vjψj(x) · uiψi(x) = EvTNu, (2.2.6)

i.e. if fu is an eigenfunction of Ĥ then u is the solution to the generalized eigen-
value problem

Hu = ENu. (2.2.7)

This sort of problem can readily be solved by MATLAB’s eig() function, by (for real
symmetric matrices such as H and N ) exploiting the Cholesky decomposition

N = LLT , N positive definite, (2.2.8)

and defining

H̃ = L−1HL−T , ũ = LTu. (2.2.9)

This leads to the ordinary eigenvalue problem

H̃ũ =L−1HL−TLTu = L−1Hu = EL−1Nu

=EL−1LLTu = ELTu = Eũ. (2.2.10)

We will not go into detail with calculations of operator matrix elements in a
correlated Gaussian basis, but only give a general idea of how do it. We start by
noting that the product of two Gaussians is also a Gaussian (see Figure 2.7)

exp

[
−1

2
(x− a)

T
A (x− a)

]
exp

[
−1

2
(x− b)T B (x− b)

]

= exp

[
−1

2

(
xT (A+B)x+ aTAa+ bTBb− 2xT (Aa+Bb)

)]

= exp

[
−1

2
(x− v)

T
C (x− v)− 1

2

(
aTAa+ bTBb− vTCv

)]
, (2.2.11)

with C = A+B and v = C−1(Aa+Bb). We can continue from here by making
the substitution y = K(x − v), since C = KTK is also symmetric, real valued
and positive definite, and simply integrate coordinate-wise, since the Gaussian is
uncorrelated in y-coordinates.
Thus, the non-orthogonality of the correlated Gaussians does not represent a

problem, and working with this type of basis function has a lot of benefits. As
already explained, the correlated Gaussians inherently treat correlated states.
More importantly though, the matrix representations of operators can be expressed
analytically, which allows for fast and accurate evaluation of these matrices and
hence their eigenvalues. For an extensive overview see [Suz98] or the online
resource [CGm]. This leads to fast a repetition rate of the algorithm outlined
above, and thus a good coverage of parameter space in a limited amount of
time.
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2.3 Monte Carlo simulation with shaped laser fields

Apart from the lasers and Rydberg atoms themselves, one of the most useful tools
in the Rydberg physicists toolkit is the ability to shape the excitation lasers, as
the requirements of trapping, detection and manipulation lasers become more
complex in response to the increasing complexity of experiments [Bij13, Chap.
4]. The two-photon excitation (Figure 2.3) allows in its own right for some spatial
control, as the blue Rydberg excitation laser can be shaped into a sheet, which
has a Gaussian intensity profile in the z-direction with a width of typically 7µm,
while practically infinite in the remaining directions (x and y) [Wer17]. Such a thin
sheet gives us a plane of Rydberg excitations, but more novel excitation patterns
can be achieved by carefully moulding the red intermediate state excitation laser
into a specific shape in the plane of the blue sheet [Bij13, Chap. 4].

In the work presented in this thesis, laser light has been imagined to be shaped
by use of Spatial Light Modulators (SLM). As examples of a diffractive optical
element, which spatially modulate the phase of the laser light without affecting
the amplitude, SLMs can be dynamically shaped to provide an almost limitless
laser pattern in the focal plane of a lens [Bij13, Chap. 4]. Other methods include
interference between multiple laser beams [Gri03] and masking the laser into a
specific shape, which is often used in laser lithography techniques [Wag10]. This
might seem intuitive, but one has to keep in mind the loss of laser power due to
only a part of the light interacting with the atomic cloud.

Diffractive optical elements are, somewhat simplified, slabs of material that a
coherent laser beam can either pass through or reflect upon, but in the process of
doing so, gains a phase pattern depending on the position on the element [Bij13,
Chap. 4]. Such elements can be made using a transparent material of varying
thickness that the laser must pass through, acquiring a phase shift depending
on the thickness of the material. Another approach to obtaining this spatially
dependent phase shift is the SLM, which has a surface that can be controlled to
make phase shifts at request. SLMs can be made using a variety of techniques
including physical deformation of mirrors [Hor90] and the use of liquid crystal
materials [Col89].

Both SLMs and other diffractive optical elements employ a spatially dependent
phase shift to obtain a spatial intensity pattern in the far field or alternatively focal
plane of a lens. As an example, let us assume a transmitting SLM, located one
focal length f away from a lens, is imprinting a phase pattern φ(x, y), with x and
y spanning the plane of the SLM, on a laser beam with intensity profile U(x, y, z),
which has uniform phase across the plane of the SLM surface, U(x, y,−f) =
U0(x, y) with U0 being some 2D intensity profile. In principle we should consider
both the finite size and resolution of the SLM as well as the resulting diffraction, but
these will all be neglected here. Since the SLM is placed exactly one focal length
from the lens, the intensity profile Uf in the (other) focal plane of the lens can be
found using a Fourier transform

Uf (X,Y ) = F
[
U(x, y,−f)eφ(x,y)

]
(X,Y ). (2.3.1)

For a specific desired shape Uf , there is no canonical way of finding the required
imprint phase pattern φ(x, y).
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The resolution of the shaped light is high enough, that addressing of individual
atoms is possible [Zup16] and is used in both optical tweezers [Gri03, Wul06],
Rydberg physics, where control over excitation volume geometry [Bij15, Lee16,
Sel18] and single site addressability is important [Bij15, Bru15b]. Arbitrary light
patterns can be engineered [Bre00], even with multiple wavelengths of light
[Bru15a] and aberrations can be controlled by feedback to the SLM [Bru15b].

In chapter 5, we investigate crystal formation of a cloud of rubidium atoms under
the influence of such shaped laser fields. We capture the dynamics of the system
using incoherent time evolution, since we have to consider processes, such as
decay from the intermediate and Rydberg states, which do not conserve the
coherence of the ensemble. We model the time evolution of the system, using
the Master Equation in Lindblad form where the state |n〉 decays with decay rate
Γn,m to the state |m〉

∂

∂t
ρ = i[ρ, Ĥ] +

∑

n,m

Γn,m

(
|n〉〈m|ρ|m〉〈n| − 1

2
{|n〉〈n|, ρ}

)
, (2.3.2)

with the curly brackets being the anticommutator.
The Master Equation provides a powerful tool to explore the time evolution of

quantum systems, but since the density matrix scales quadratically with the num-
ber of states in the system, the problem quickly becomes prohibitively large to
solve. Remember that for a system of N two-level quantum particles, the number
of states of the system is 2N leading to a number of free parameters in the density
matrix of 22N−1 + 2N−1 − 1, since the matrix is Hermitian and the trace is 1.
To remedy this, we will use a Monte Carlo approach, which, for a set of fixed

laser parameters, see Figure 2.3, uses random sampling to obtain a numerical
simulation of the time evolution of a large number of atoms being excited to a
Rydberg state. We will implement and use this approach in Chapter 5, and the
specific implementation has been described in detail in [Wee17].

Our large quantum system consists of a cloud of many ultra-cold atoms with
transitions of the internal states of the atoms being described by Figure 2.3. Since
we only drive transitions between three internal states of each atom, we assume
that they can each be described by a three-level quantum system. Further, we
assume that the effect of one atom on any other is fully described via the state
dependent dipole-dipole interaction eq. (2.1.16) as a Van der Waals potential
VV dW = C6/R

6. The probability of any given atom transitioning to or from the
Rydberg state is dependent on its own state, the laser parameters and the state
of the rest of the cloud, but independent of time. The transition event is thus a
memoryless stochastic variable.

We now make the following iterative process

1. Randomly pick N random three dimensional coordinates r1, . . . , rN in the
cloud volume, N being the number of atoms in the cloud.

2. Construct the N-dimensional initial state-vector σ (usually a zero vector
indicating no Rydberg excitations).

3. Calculate the matrix V with elements Vij = C6/(|ri − rj |6) if i 6= j and zero
otherwise.
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4. Calculate the vector δ = ∆2 + V σ.

5. Determine, for each atom i in the cloud, an excitation rate γ↑(δi) and a
de-excitation rate γ↓(δi), both functions of the laser parameters with the
replacement ∆2 → δi, using the Master Equation of a single atom. And
determine the probability of change for atom i as γi(σi) = (1− σi)γ↑(δi) +
σiγ↓(δi).

6. Generate a random time step ∆t from an exponential distribution with mean∑N
i=1 γi(σi) at which the next transition will occur.

7. Randomly select an atom k with the probability of picking atom i being
γi(σi).

8. Set σk → 1− σk and t→ t+ ∆t and go back to 4, unless we reach the end
time tend.

This algorithm will realize one instance of the time evolution of the system. Two
examples of such realizations at a specific time step, but with different laser
parameters can be seen in Figure 2.5. By redoing the algorithm a large number
of times, each with a new random outcome, we get statistical information on the
time evolution of a cloud of ultra-cold atoms under the influence of the lasers in
Figure 2.3.
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3Trapping of Rydberg Atoms in Tight Magnetic
Microtraps

A. G. Boetes, R. V. Skannrup, J. Naber, S. J. J. M. F. Kokkelmans and R. J. C. Spreeuw

Abstract

We explore the possibility to trap Rydberg atoms in tightly confining magnetic
microtraps. The trapping frequencies for Rydberg atoms are expected to be
influenced strongly by magnetic field gradients. We show that there are
regimes where Rydberg atoms can be trapped. Moreover, we show that so-
called magic trapping conditions can be found for certain states of rubidium,
where both Rydberg atoms and ground state atoms have the same trapping
frequencies. Magic trapping is highly beneficial for implementing quantum
gate operations that require long operation times.
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3.1 Introduction

Atoms with one electron excited to a high principal quantum numbern, commonly
known as Rydberg atoms [Gal05], have been proposed as the basis for quantum
simulators and quantum information processing [Saf10a, Mül11]. An idea going
back to Richard Feynman [Fey82], a quantum simulator is an easily manipulated
quantum system onto which the Hamiltonian of other quantum problems can
be mapped. Ever since, quantum simulation and information processing has
been driven by the promise of access to complex quantum systems as well as
applications in quantum technology [fla17].

In this context, Rydberg atoms attract a lot of attention due to their extreme
properties like n11 scaling of the C6 Van der Waals coefficient and the blockade
effect, providing strong interactions and the essential mechanism for quantum
gates [Saf10a, Luk01a, Jak00a]. An important issue is to achieve so-called magic
trapping, identical trapping potentials for the ground state and the Rydberg state.
Magic trapping conditions can suppress decoherence due to atomic motion dur-
ing quantum gate protocols, much needed for high-fidelity quantum operations
[Wil10a, Saf16a]. However, this is challenging to realize for alkali atoms in optical
traps [Zha11, Top14].

In this paper we show that magic trapping conditions can be achieved more
easily in magnetic lattice traps [Wan16]. Both ground state and Rydberg atoms
can be trapped in magnetic fields arising from microwires on a fabricated chip
[Rei99, Fol00, Fol02, Rei02], or from a patterned magnetic film giving rise to an
array of microtraps [Leu14, Whi09, Wan17]. These microtraps have very strong
magnetic field gradients, hence are very tight, and can be arranged into different
lattice geometries, such as square or hexagonal. Field gradients can be particu-
larly strong using patterned magnets. Whereas gradients above microwires are
typically 10-100 T/m, with magnetic film chips they can be readily two orders
of magnitude higher. If the blockade radius is comparable to, or larger than, a
single trap, each trap effectively becomes a single excitation site. In this paper
we investigate the magnetic trappability of alkali Rydberg atoms, and address
the issue of achieving magic trapping conditions.

For ground state atoms the magnetic field can be assumed to be uniform across
the atom. However, the large classical electron orbit radii of the Rydberg atoms
and the large gradients of the microtraps make this approximation invalid. Mag-
netic trapping of Rydberg atoms in other magnetic configurations has been stud-
ied by other authors [Cho05, Sin08, Les05a, Les05b, Sch07, Hez06, Hez07, May09b,
May09a]. Our paper is related to the work performed by Mayle, Lesanovsky and
Schmelcher (MLS) [May09b, May09a], however, our work is focused on the strong
gradient regime of the microtraps, requiring a higher order expansion of the mag-
netic fields.

In this work we base our calculations on 87Rb atoms, however, the treatment is
generally applicable to other species as well. For a 50 kHz trap the oscillator
length of a rubidium atom (34 nm) is much smaller than the rms radius of a
n = 50 electron orbit (132 nm). The strong magnetic field gradient then results
in a magnetic field difference of 0.9 G across the size of the atom, resulting in an
energy difference of about 1.3 MHz, much larger than the trapping frequency. This
paper therefore considers the effect of the spatial extent of the electronic wave
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function on the trappability of the Rydberg atom in a magnetic trap.
In accordance with the Born-Oppenheimer approximation, we assume that the

motion of the Rydberg electron and the atomic core can be separated, and that
the light Rydberg electron will react instantly to any movement of the heavy core.
We then use perturbation theory in the fine structure basis to find the energy of
the Rydberg electron as function of the position of the core in the trap. These
energies can be regarded as potentials for the core, which we call Potential
Energy Surfaces (PES). We have expanded these potentials as harmonic traps
around their respective minima and found feasible trapping conditions for a wide
range of Rydberg states.

This paper is divided into six sections. In section 3.2 we provide a detailed
description of the magnetic field configuration used in this work. In section 3.3
we provide the model Hamiltonian in Jacobi coordinates and discuss some of the
differences to the earlier work by MLS. Furthermore, we discuss the perturbative
treatment of the system. In sections 3.4 and 3.5 we discuss the outcome of the
previous sections, with focus on trapping Rydberg atoms and magic trapping
conditions. In section 3.6 we conclude on our work.

3.2 Parametrization of the magnetic traps

In the following two sections we use atomic (~ = me = a0 = 1) units and sum-
mation over repeated indices for the sake of readability. We model the magnetic
field as a Ioffe-Pritchard configuration around the trap minimum [Ger06]

B(x) =




0
0
B


+ G



x1

−x2

0


+

1
2
êicijkxjxk. (3.2.1)

We shall call these terms constantBc, linearBl and quadraticBq respectively. The
strength of the constant term is set to 3.23G. At this field the differential Zeeman shift
between the two qubit states |F = 1,mF = −1〉 and |F = 2,mF = 1〉 vanishes
[Dav02].

Expanding the magnetic fields to quadratic order goes beyond existing works in
literature [May09b]. This is necessary for the systems with strong magnetic gradi-
ents we explore. This provides further accuracy for systems already investigated
with linear only expansions, which can never explain axial trapping.

The linear term coefficient G provides confinement in the tight transverse direc-
tions. This coefficient has a value of 900 T/m for microtraps in a hexagonal lattice
[Leu14]. In the remainder of this paper we use microtrap parameters as relevant
for this hexagonal lattice. This is much greater than that of more conventional
Z-wire magnetic chip traps with G ≈ 7 T/m [Nab16].

The curvature tensor cijk , which determines the strength of the quadratic term
of the magnetic field, is symmetric under permutation of its indices and all partial
traces vanish. This leaves 7 independent components. For the microtraps the non
zero components of cijk are on the order of 107 T/m2, again much larger than for
a typical Z-wire trap, where the non zero components are on the order of 10-100
T/m2.
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Choosing the Coulomb gauge we find the vector potential corresponding to Eq.
(3.2.1)

A(x) =
B
2



−x2

x1

0


+ G




0
0

x1x2


+

1
8
êiεijkcjlmxlxmxk, (3.2.2)

with εijk the fully antisymmetric Levi-Civita tensor. We retain the naming conven-
tion from the magnetic field, i.e. the curl of the ’linear’ term of the vector potential
corresponds to the linear term of the magnetic field ∇×Al = Bl etc. It is con-
venient to define "residual terms" for the magnetic field and the vector potential
respectively, as follows

B̃(R, r) =B(R+ r)−B(R)−B(r) (3.2.3)

Ã(R, r) =A(R+ r)−A(R)−A(r). (3.2.4)

Note that these do not describe the fields at any position, but merely express the
difference between the sum of fields at two positions and the field at the sum of
those two positions.

3.3 Hamiltonian and perturbation terms

O

R

r

c

e

xc

xe

Figure 3.1: Schematic of the coordinates used in this paper. O denotes the
origin. xe and xc are the position vectors of the electron and core respectively
in the Ioffe-Pritchard frame. r and R denotes the relative and center of mass
coordinates respectively. Since the mass is almost entirely contained in the core
we approximate R with xc.

Our approach builds on a spin and minimal coupling scheme for the valence
electron with position xe, momentum pe and mass me = 1 and the core with
position xc, momentum pc and mass M in an external magnetic field. We
reexpress this Hamiltonian using Jacobi coordinates ((x, y, z)T = r = xe − xc,
(X,Y, Z)T = R = xe/M + xc, see Fig. 3.1). Since the mass ratio is large, about
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1.6× 105 for 87Rb, we identify the core xc and center of mass coordinateR as an
approximation. This leaves us with the Hamiltonian

H =Hff +A (R+ r) · p+ S ·B (R+ r)

+
P 2

2M
+

1
M

[A (R+ r)−A (R)] · P (3.3.1)

+
1
2
A2 (R+ r) +

gI
2
I ·B (R) ,

with Hff being the (field free) fine structure Hamiltonian, P the center of mass
momentum operator, S the electron spin, I the nuclear spin and gI the nuclear
Landé g-factor. We apply degenerate perturbation theory in the fine structure
basis |κ〉 = |nLjmj〉 to this Hamiltonian, coupling to all states within one L-
manifold.

At this point, in previous work [May09b, May09a] a unitary transformation is
applied: Ulit = exp(−i(Bc×r) ·R/2) = exp(iAc(R) ·r). This removes, what they
consider the most dominant perturbation terms in the linear field approximation,
A2
c(R)/2 and −Ac(R) · p, which are of similar magnitude but opposite sign,

making the perturbative treatment more robust. However, this transformation
complicates the diamagnetic terms unnecessarily. If we consider Eq. (20) in Ref.
[May09b] along the line X = Y we obtain E(2)

κ (R) ≈ CzG2X4 with Cz ≈ −1/2,
within 10% for 35 ≤ n ≤ 45 and l ≤ 4. But if we consider the term A2

l (R)/2 =
G2X2Y 2/2, which is implicitly neglected by MLS, we find the same value but with
opposite sign along X = Y . Thus the main Rydberg contribution is countered by
a neglected term.

Instead we use a more general unitary transformation that does not rely on any
explicit field to be introduced, and is inspired by the previous

U = exp (iA(R) · r) . (3.3.2)

We apply this to the Hamiltonian: H = UHU†. The transformation (3.3.2) removes
the terms A2(R)/2 and −A(R) · p, in their entirety in contrast to the standard
transformation Ulit.
The resulting Hamiltonian can be split into four parts (H = HR,r+HR+Hr+Hr,P )

according to their dependence on the Jacobi operators

HR,r =Hff +

(
S +

1
2
Lr

)
·B(R) +

1
2
Ã2(R, r)

+A(r) · Ã(R, r) +Hsmall, (3.3.3)

HR =
P 2

2M
+

1
2
gII ·B(R), (3.3.4)

Hr = (Bl(r) +Bq(r)) · S + (Al(r) +Aq(r)) · p

+
1
2
A2(r), (3.3.5)

Hr,P =
1
M

[A(R+ r)−A(R) +∇R (A(R) · r)] · P , (3.3.6)
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withHsmall
2 collecting some terms we can neglect in perturbation theory, andLr

being the electron angular momentum operator. For the ground state, only the
B(R) term of Eq. (3.3.3) contributes significantly to the energy, as 〈|r|〉 ≈ 0, and
the magnetic trapping field is assumed to be constant across the atom. This is
sharply contrasted for large Rydberg states, where terms dependent on r become
important, since 〈|r|〉 ∝ n2 is large, and the terms

1
2
Ã2(R, r) +A(r) · Ã(R, r) +Hr, (3.3.7)

which we call the "Rydberg term", become important. These terms are mostly
extra terms compared to the MLS approach, and together constitute the Rydberg
specific part of the Hamiltonian.

We work in a frozen gas setting whereP/M ≈ 0. This has the direct consequence
that we can neglect the Hr,P . Furthermore, this setting is well explored with the
Born-Oppenheimer approximation, where the electrons are assumed to react
instantly to any core movement. In accordance with the Born-Oppenheimer
approximation we assume the eigenstates to be product states of a r dependent
part and a R dependent part

|ψ〉 = |ψr〉 |ψR〉 =
∑

κ

cκ |κ〉 |ψR〉 , (3.3.8)

where cκ are expansion coefficients for ψr in the fine structure basis.
By applying the electronic parts (i.e. the parts dependent on the relative coor-

dinate) of the Hamiltonian, we find an energy dependent on the core position
R

(HR,r +Hr) |ψ〉 = E(R) |ψ〉 . (3.3.9)

We specifically use degenerate perturbation theory to find the electronic ener-
gies E(R) at any given core position R. We use a set of all fine structure states
|κ〉 = |nLjmj〉 (the eigenstates of Hff ), within one n, L- manifold, as basis for our
perturbative treatment, as the energy contribution from the fine structure Hamilto-
nian is, by far, most dominant. We have found that coupling between states with
different n or L quantum numbers is not significant for the parameter space we
are considering, and we have not included this in our model.

The complexity of this computation can be greatly reduced by carefully exam-
ining and understanding the couplings between different states. The expressions
become quite simple and S1/2 states can be solved analytically. We include

2 We have neglected a number of terms in Eq. (3.3.3), part of the perturbation Hamiltonian

Hsmall = S · B̃q(R, r) +
α2

2r

dVl(r)

dr
(A(R)× r) · S

+
i

2
G
(
X [Hff , yz] + Y [Hff , xz]

)
+
i

2
∂Rj Aq,k(R) [Hff , rjrk] +A

(2)
q (R, r) · p,

which have all been estimated to give only minor contributions. With the exception of S · B̃q(R, r)
term, all have higher order than 3 in the relative coordinates.
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mixing between different j states within one L manifold, as they are sufficiently
close in energy for the principal quantum numbers of interest.

Since the energy in Eq. (3.3.9) is dependent on the core position R we interpret
it as a potential and construct a total potential W seen by the core

〈ψr|H|ψ〉 = [HR + E(R)] |ψR〉
= [TR +W (R)] |ψR〉. (3.3.10)

We call these potentials W (R) Potential Energy Surfaces (PES). Since the mictro-
traps are designed to trap ground state atoms with only little spatial extent, it can
be expected that trapping is mostly provided by the unperturbed Hamiltonian.
However, there are exceptions leading to anti-trapping, as we will explain below.

3.4 Potential energy surfaces

We have calculated PES states that are reachable via a standard two-photon
excitation process (S- and D states) from the rubidium ground state. We consider
only states where n ≤ 80 in order to keep perturbations small compared to the
fine structure energies and to not break the Born-Oppenheimer approximation.
For nDj states mixing becomes significant when n > 80 and the finestructure
states are no longer good quantum states. Thus the results for nDj with n > 80
are unreliable. In the remainder of this paper we no longer use atomic units, but
rather SI units.

In Fig. 3.2 we present the PES for the 70Lj states with all different positivemj up to
a distance of 0.75 µm from the trap center in the radial plane (Z = 0). These have
been rescaled by mjgj to make them comparable. The approximate symmetry
with respect to the X = Y line is due to this line being normal to the chip surface.
In Fig. 3.3 we see the Z dependence of the PES for the same states to a distance
of 4 µm from the trap center along the X = Y = 0 line. The choice of the 70Lj
states is motivated by being well within the limits of our methods while the high n
makes the Rydberg specific contributions clearly visible. This is seen in the strong
dependence on the angular state, which is not evident for n < 40. When going to
even higher n these effects become more pronounced and we eventually loose
trapping for the nD3/2 potentials, whereas the nD5/2 states transition to quartic
trapping potentials.

The nS1/2 state trapping potentials do remain fairly similar to that of the ground
state, not surprising as the electron is more tightly confined near the core.

The 70D3/2 states stand out among the PES by being antitrapping on the mi-
crometer scale in both the Z = 0 plane and along the X = Y = 0 line. The
PES of these states are more strongly influenced by the diamagnetic terms in the
Hamiltonian, leading to both the antitrapping behavior and the structure in the
positive potential region of the mj = 1/2 state, by coupling to (j, mj)-states of
different angular symmetry. This structure makes the state unsuitable for quantum
simulation but shows the importance of the Rydberg nature of the atom to the
PES.

We see a small bump near the origin in the PES of the 70D5/2, mj = 1/2 state.
For higher n this bump becomes a regular peak turning the potential a Mexican
hat shape.
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Figure 3.2: Potential Energy Surfaces (PES) for the different angular states with
n = 70 in the Ioffe-Pritchard plane (Z = 0) scaled by mjgj . These represent
results for a typical magnetic potential of the hexagonal magnetic lattice. Solid
contours at every 5 MHz and dashed contours at every 0.2 MHz in the interval -1
to 1 (limits included) are shown. Near the origin we observe positive curvature,
meaning that the state is trappable, for all but the 70D5/2 with mj = 1/2 state;
where a small bump indicates a crossover to a Mexican Hat type potential. At
higher n this will be more pronounced. For both 70D3/2 states we observe strong
downwards gradients for large |R|, due to the strong influence of the diamagnetic
term. The noticeable asymmetry in the plots is due to the fact that the coordinates
are rotated with respect to the atom chip surface. The X = Y direction is normal
to the surface.

In our analysis of the PES of the n = 35, 45, 55, 65, and 75 states, we fitted a
polynomial to the contributions of the Rydberg specific terms in Eq. (3.3.7). This
showed that, though highly state dependent, the effect of the Rydberg terms can
be reduced to an offset and anR2 dependent term for the nS1/2 and nD5/2 states.
When n > 73, however, this simple picture fails for the nD3/2 states, and higher
order terms are needed to describe the behavior.

We predict that one can encounter this effect in spectroscopic measurements,
even for weaker traps, as long as the magnetic field is well described by the
second order expansion of our model.
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Figure 3.3: Trapping potential in the Z direction at X = Y = 0 for the different
angular states with n = 70. Parameters of the hexagonal lattice microtraps have
been used [Leu14]. Trapping along this direction is much weaker than in the X ,
Y plane. All states shown have local, albeit weak, minima near Z = 0.

Our results show that in general, the PES of the nS1/2 and nD5/2 states are always
trapping on micrometer length scales for atoms with n < 80. The nD3/2 states
also show trapping PES, but for n > 50 the PES become of antitrapping nature
on the micrometer scale, and we only observe local trapping on sub micrometer
scales, and rich structure appearing near the center of the PES, when mj = 1/2
and n > 60.

3.5 Trapping conditions

We now analyze the trapping conditions for different Rydberg states as function
of principal quantum number n and angular state. We investigate in particular
whether Rydberg states with trapping conditions identical to the ground state
conditions can be found. This is particularly relevant for the implementation of
various quantum information protocols based on Rydberg interactions. Rydberg
atoms and ground state atoms experience different trapping potentials, which
leads to motional decoherence. We denote a Rydberg atom in internal state |r〉 =
|nLjmj〉 in a certain motional state |ν〉by |r, ν〉. During the Rydberg excitation that
same motional state |ν〉 will be a non-stationary state in the Rydberg trap. When
de-exciting the atom the motional state will have changed under time evolution
and no longer be identical to |ν〉. Therefore it is of great interest if we can suppress
this decoherence mechanism by realizing conditions of magic trapping, where
ground and Rydberg state atoms would experience identical trapping potentials.

First, we define the rotated coordinates away from the surface of the chip X̃ =√
1
2 (X + Y ) and Ỹ =

√
1
2 (X − Y ) parallel to the surface.

V (X̃, Ỹ , Z) =C +
1
2
mω2

X̃
(X̃ − X̃0)2 +

1
2
mω2

Ỹ
(Ỹ − Ỹ0)2

+
1
2
mω2

Z(Z − Z0)2, (3.5.1)
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Figure 3.4: (a) Radial trap frequency and (b) position of the local potential min-
imum as a function of n, both in the X̃ direction. The shift of the trap minimum
away from the origin occurs gradually for low n but becomes very rapid for larger
n. The rapid shift indicates crossover to a Mexican hat type potential. Dashed
lines indicate the value of the 5S1/2, mj = 1/2 state in all cases. Similar results
are found in the Ỹ direction; whereas in the Z direction the trap is an order of
magnitude weaker. Of special interest is the 45D3/2, mj = 3/2 state, where the
trapping frequency is very close to that of the ground state. This and the small
value of X0 lead to magic trapping conditions for the 45D3/2, mj = 3/2 state.

where C is some constant offset, (X̃0, Ỹ0, Z0) is the minimum position of the trap
and ωi is the local trap frequency around the minimum in the R̃i direction. This is
a good approximation over a distance of 0.3µm from the trap center, many times
larger than the trap oscillator length. Analysis of the traps show that all states
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have tens or hundreds of trap levels. With energy much lower than the potential
walls, the center of mass will behave as in an infinitely deep potential. The lowest
number of trap levels are found for the nD3/2, mj = 1/2 states, consistent with the
antitrapping long range behavior.

Our analysis shows that the trap behaves harmonically for n ≤ 50 and does not
deviate significantly from the n = 5 trapping potential for any given angular state,
see Fig. 3.4. In particular the changes in nS1/2 state trapping frequency and
minimum position remain insignificant over the whole n-range considered.

The nD3/2 states show strong dependence on n and mj . In the mj = 1/2 states
we find the trap bottom shift away from the origin but the effective trap frequency
remains relatively stable until n = 70. The mj = 3/2 states show consistently
decreasing trap frequencies but the trap minima remain fairly centered. As seen
from Fig. 3.4 magic trapping conditions, i.e. effective trapping similar to that of
the ground state, are present for the nD3/2, mj = 3/2 states around n = 45. The
effective trap frequency of these states are equal to that of the ground state in
the X̃ direction. This means that the Rydberg excitation cycle can be performed
with minimal motional decoherence. Since the PES for these states are nearly
identical to that for the ground state, the CM wave function remains unchanged
after the Rydberg excitation, see Fig 3.5.

The nD5/2 states show rich behavior in the parameters of the effective trapping.
The trap frequencies of states with mj = 1/2 drop to around a quarter of the
n = 5 value at n = 66. The minimum of the traps shift position away from the
origin, very rapidly for 63 ≤ n ≤ 65. Inspection of the PES shows that this is a
crossover to a Mexican Hat type potential in the Z = 0 plane. The mj = 3/2 state
trapping frequencies remain stable, at around twice the value of the ground state
trap frequency, across the entire n-interval considered, with a slight decrease for
very large n. The minimum position shifts away from the origin. The mj = 5/2
states show large, increasing trapping frequency, but no significant change in trap
minimum position. The nD5/2 states are not suitable for procedures requiring trap
frequencies comparable to those of the ground state.

The trapping conditions that were found for the X̃ direction in Fig. 3.4 for the
45D3/2, mj = 3/2 and nearby states (and similar conditions in the Ỹ and Z di-
rections) are expected to strongly suppress motional decoherence in any gate
protocol involving Rydberg excitation and de-excitation. A full analysis of gate
fidelities should take into account the photon recoils upon (de-)excitation, consid-
ering also that these tight magnetic traps are in the Lamb-Dicke limit[Win98]. For
the highest fidelities the anharmonicity of the traps may also play a role. Such full
analysis of fidelities is beyond the scope of this paper.

As a first indicator, we have projected the motional ground state of the 5S1/2,
mj = 1/2 electronic state, denoted by |g,0〉, onto the motional states of an
electronically excited state,

|ψ〉 =
∑

ν

|r, ν〉 〈g,0|r, ν〉 =
∑

ν

cν |r, ν〉 , (3.5.2)

with ν = {νX̃ , νỸ , νZ} being the motional quantum numbers in the indexed direc-
tions. We time evolve this projection |ψ(t)〉 = exp(iHt/~) |ψ〉 and calculate the
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time delayed overlap

βt = 〈ψ(0)|ψ(t)〉

=
∑

ν

|cν |2 exp

[
−i
(
ν +

3
2

)
ωt

]
, (3.5.3)

where the coefficients cν are calculated using second order perturbation the-
ory,and define the overlap of the state as |β|2 = |β10µs|2. Thus 1− |β|2 represents
the probability of finding the atom in a different motional state after a 10 µs
evolution time.

In Fig. 3.5 we see that this overlap reaches 0.9994, for the 46D3/2,mj = 3/2 state,
comparable to that of the nS1/2,mj = 1/2 states, which have overlaps exceeding
0.999 for n ≤ 58. We have identified two angular configurations that are com-
parably good, around n = 46. Experiments therefore can choose between two
angular states and therefore also between symmetric and directional blockade
regions. The reason that the optimal overlap is found for 46D3/2, whereas Fig 3.4
would suggest n = 45 is due to a small shift of the trap minimum position.

This overlap allows for minimizing decoherence due to changes in effective
trapping, making sure the effect of the excited state trap is not the limiting factor.
This should be compared to losses due to other sources, which will be dominant,
in particular spontaneous emission and transitions driven by black body radiation,
with a lifetime of about 50 µs for the n = 45 states [Bet09].
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3.6 Conclusion and outlook

We have studied Rydberg atoms in magnetic microtraps described by a second
order expansion of the magnetic field. The magnetic microtraps are much tighter
and have much stronger field gradients than more commonly used traps, such
as Z-wire traps. This enhances the effects of the trap on the spatially extended
Rydberg atoms.

Our work confirms the findings by Mayle et al. [May09b], that Rydberg atoms
can indeed be magnetically trapped, and we have extended their model by
including several new terms in the Hamiltonian, most importantly the diamagnetic
term mixing the relative and center of mass coordinates. These terms constituted
an unknown contribution to the trapping potentials of Rydberg atoms that, while
negligible in weaker traps, are important in the context of microtraps. We have,
however, also found the ’Rydberg term’ of Ref. [May09b] to be almost zeroed by
some of the additional terms.

We found that trapping of Rydberg atoms is possible for both S-states and D-
states, but for high n effective trapping potentials become distorted, due to the
anisotropic nature of the Rydberg contributions and the increased contribution
from the diamagnetic terms.

We have found near-magic trapping conditions with more than 99% overlap for
nS states with n < 70 and nD3/2 states with mj = 3/2 and 43 ≤ n ≤ 49, with
the highest overlap for the n = 46 state. This provides a choice between the two
angular states, and therewith the angular dependence of the interaction. With
magic trapping states available, a Rydberg equivalent of the Mølmer-Sørensen
gate [Sø99, Sø00, Wan01], relying on such conditions, could be possible. Such a
gate implementation will be of great value for quantum simulation and processing,
and demands further research.

We have found that the spatially extended nature of Rydberg atoms has signifi-
cant effects in the microtraps, and results significant modifications of the trapping
potentials of the center of mass. In particular we have observed a strong n-
dependence of the center of mass trapping potentials, with shallow trapping for
nD3/2 states and quartic trapping of nD5/2 states.

Further research should consider the effect of the trap on the electronic wave
function and, in turn, the effect on the Rydberg-Rydberg interaction.

Finally we remark that the methods employed in this work can readily be adapted
to model other isotopes or elements. By adjusting the magnetic field parameters,
we can model other magnetic trap configurations.
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4Phonon-mediated spin-spin interactions
between trapped Rydberg atoms

R. V. Skannrup, R. Gerritsma and S. J. J. M. F. Kokkelmans

Abstract

We theoretically investigate the possibility of creating phonon-mediated
spin-spin interactions between neutral atoms trapped in optical tweezers.
By laser coupling the atoms to Rydberg states, collective modes of motion
appear. We show that these can be used to mediate effective spin-spin in-
teractions or quantum logic gates between the atoms in analogy to schemes
employed in trapped ions. In particular, we employ Rydberg dressing in a
novel scheme to induce the needed interaction, and we show that it is possi-
ble to replicate the working of the Mølmer-Sørensen entanglement scheme.
The Mølmer-Sørensen gate is widely used in emerging quantum computers
using trapped ion qubits and currently features some of the highest fidelities of
any quantum gate under consideration. We find arbitrarily high fidelity for the
coherent time evolution of the two-atom state even at non-zero temperature.
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4.1 Introduction

The quest for scalable, high fidelity quantum logic gates is on [fla17]. State-of-
the-art quantum gates based on trapped ions show the best fidelities in the field
of quantum logic. A notable quantum gate protocol, inspiring this work, is the
so-called Mølmer-Sørensen (MS) gate [Sø99, Wan01, Sø00], which uses trapped
ions to create a quantum gate. It is based on phonon-mediated interactions, and
in combination with the Hadamard- and π/2-gates the MS gate can be used
to implement a C-NOT gate. This gate has been experimentally realized and
has shown very high fidelities [Sac00, Lei03, Ben08, Kir09a, Gae16, Bal16], but
trapped ion gates lack in terms of scalability, as it is difficult to control many trapped
ions. On the other hand, quantum gates using neutral, highly excited Rydberg
atoms [Jak00a, Mal15, Ise10a, Luk01a, Zha10, Wil10b, Cir95, Jau15], constitute a
much more scalable platform [Saf16b, Saf10a], but show significantly lower ex-
perimental fidelities. Rydberg atom quantum gates rely on strong dipole-dipole
interactions between electrically neautral Rydberg atoms to facilitate entangle-
ment.

These considerations raise the question: "Can phonon-mediated interactions be
used to implement quantum gates between neutral atoms in a similar way as
between ions?" In this paper we will justify that the answer is "yes" and we present
both a model and a recipe for the formation of maximally entangled Bell states
of neutral atoms.

Phonon-mediated interactions between Rydberg atoms have been treated in
a recently published paper by Gambetta et al. [Gam20]. This work, however,
focuses on multi-body interactions in optical lattices, while our paper focuses on
phonon-mediated two-body interactions, and we demonstrate that these interac-
tions can be made independent of the temperature of the atoms in direct analogy
to the trapped ion case [Sø99, Kir09b].

Although the external degrees of freedom play a central role in the trapped
ion quantum system, their use has not been fully explored in ultracold Rydberg
platforms. The recent [Gam20] work proposes the occurrence of non-binary
interactions by electron-phonon coupling, while there has also been a number
of works studying mediated interactions in self-assembled dipolar crystals e.g.
[Büc07, Pup08]. Here we aim for a scalable high fidelity platform for the creation of
Bell states using trapped, neutral, Rydberg-dressed rubidium atoms for our qubits,
and rely on the strong dipole-dipole interactions to induce motion, like in the
Mølmer-Sørensen trapped ion gate, where entanglement is achieved via phonon
mediated interactions [Por04a, Fri08, Kim09a, Kim10, Ric14, Jur14, Zha17]. This
is realized by transient mapping of the qubit states of the atoms onto a mode
of collective motion. At the end of the sequence, the qubit state is disentangled
from the motion again [Sø99, Wan01, Sø00]. This phonon-mediated interaction,
treated in the original MS paper [Sø99], does not depend on the initial state
of the phonon modes to lowest order. This makes for a reliable entanglement
mechanism, even if the qubits are strongly coupled to a thermal reservoir [Sø99],
and can possibly be used as the basis for a two-qubit quantum gate.
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4.2 Model

Our approach starts with two (Rb) atoms with four distinct states each, two long
lived states |g0〉 and |g1〉 and two Rydberg states |r0〉 and |r1〉, trapped in two well
separated harmonic traps

V =
1
2
mν2 [(x1 − l/2)2 + (x2 + l/2)2]+ VRyd(x1 − x2), (4.2.1)

with xj the position of atom j, l the distance between the the oscillator minima,
m the mass of each atom and VRyd(x) = C6/x

6 the state dependent, repulsive (in
the case of rubidium nS-states) Rydberg-Rydberg van der Waals interaction. This
can be rewritten in relative and center-of-mass (CM) coordinates

V =
1
2
ν2 [mr(r − l)2 +mRR

2]+ VRyd(r), (4.2.2)

where mr = m/2 and r are the reduced mass m1m2/(m1 + m2) and relative
coordinates and mR = 2m and R are the CM mass and coordinate.

In order to lift the degeneracy of the CM and relative modes, we will use Rydberg
dressed qubit states. We therefore apply the excitation scheme sketched in
Fig. 4.1, where the four internal states of the proposed qubits are coupled via four
lasers (which could effectively be a combination of lasers in case of a two-photon
transition). The parameter β is a small dimensionless number, indicating the
ratio between the Rabi frequency for the ground state to ground state coupling
connecting |g0〉 and |g1〉 and those of the dressing lasers, connecting |gj〉 and
|rj〉 for j = 0,1). Additionally, the Rabi frequency of the coupling laser that is
connecting |r0〉 and |r1〉 is scaled by β2. The interaction between the laser field
and a single atom is described by the single atom Hamiltonian

H(1) =
~Ω

1 + β2× (4.2.3)
(
ei(ηg(â†+â)−ωgt)|g1〉〈g0|

+ βei(η0(â†+â)−ω0t)|r0〉〈g0|
+ βei(η1(â†+â)−ω1t)|r1〉〈g1|

+ β2ei(ηr(â†+â)−ωrt)|r1〉〈r0|
)

+ H.C.,

where β is the dressing parameter, Ω is the Rabi frequency, ηl = kl · ẑ
√
~/2mν is

the lth transition Lamb-Dicke parameter (kl is the wave number, ẑ is a unit vector
and l = g,0,1, r), â and â† are the ladder operators of the qubit trap and ωl is the
lth laser frequency. The exponential factors treat the effect of the lasers on the
external/trap states, which we will initially ignore, and only consider their effect on
the internal states, by expanding the exponentials inH(1) to zeroth order, denoted
H̃(1).
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Figure 4.1: Excitation scheme for using dressed qubits. The useful quantum states
for qubits are the ’cross-dressed’ states |O〉 = (|g0〉 + β|r1〉)/

√
1 + β2 and |I〉 =

(|g1〉+ β|r0〉)/
√

1 + β2.

The zeroth order single atom Hamiltonian has two dark states

|D0〉 =
1√

1 + β2
(β|g0〉 − |r0〉)

|D1〉 =
1√

1 + β2
(β|g1〉 − |r1〉) , (4.2.4)

which we will ignore, and two bright states

|O〉 =
1√

1 + β2
(|g0〉+ β|r1〉)

|I〉 =
1√

1 + β2
(|g1〉+ β|r0〉) , (4.2.5)

which we will use as qubit states, as H̃(1)|O〉 = ~Ω|I〉 and H̃(1)|I〉 = ~Ω|O〉.
Initialization of the qubit states can be performed by appropriate laser pulses.
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Rydberg dressing gives longer life times of our qubit states, compared to direct
Rydberg excitation, and allows for a finer tuning of the interaction strength by
means of adjusting the dressing parameter β in addition to choice of Rydberg
state.

The interaction between the atoms and the laser light not only changes the inter-
nal state of the atom, but also their external state, i.e. the atoms gain momentum.
Therefore we have to consider the full laser interaction Hamiltonian Eq. (4.2.3), in-
cluding the exponential factors. Using the shorthand notation θl = ηl(â

†+ â)−ωlt,
and projecting H(1) onto the basis

S = (D0, D1, O, I) =
1√

1 + β2




0 −β 1 0
−β 0 0 1

1 0 0 β
0 1 β 0


 , (4.2.6)

constructed from the dark and qubit states of H̃(1), we get

S−1H(1)S = ~Ω

(
β(e−iθ0 − e−iθg )|D0〉〈O|

+ β(e−iθ1 − eiθg )|D1〉〈I|+ eiθg |O〉〈I|
)

+H.C., (4.2.7)

ignoring terms higher than second order in β, since a realistic setup would be nS
Rydberg states with n ≈ 100, l ≈ 3µm and ν ≈ 2π × 100 kHz, we can expect
β < 0.1, as we will explain below. Therefore neglecting these terms lead to errors
on the order of 1%.

Additionally, assuming ηl to be small and taking the Lamb-Dicke approximation,
we get

Φ = exp
[
−iηk(â† + â)

]
− exp

[
−iηl(â† + â)

]

≈ i (ηl − ηk) (â† + â)− 1
2

(
η2
l − η2

k

)
(â† + â)2. (4.2.8)

We will here assume that η0 and η1 are not only small and comparable to ηg ≈
0.05, but in fact of equal absolute value. This is not only desirable, but also easily
realizable as the Lamb-Dicke parameter can be tuned for two-photon transitions.
With counter propagating dressing lasers and with Lamb-Dicke parameters close
to that of the ground state to ground state coupling, η0 = ηg + ξ = −η1 (with
dimensionless |ξ| << ηg), we can ensure that the exponential factors of the
|D0〉〈O| and |D1〉〈I| terms in Eq. (4.2.7) are limited in absolute value, to leading
order, by

Φ ≈βξ
∣∣i(â† + â)− ηg(â† + â)2

∣∣
.0.001

∣∣i(â† + â)− ηg(â† + â)2
∣∣ , (4.2.9)

which we can neglect, for reasonably low vibrational states i.e. the CM mode
quantum numbernR < 10, as they contribute on the order of 1% to the Hamiltonian,
leaving

S−1H(1)S = ~Ωei(ηg(â†+â)−ωgt)|O〉〈I|+H.C. (4.2.10)
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With these approximations, H(1) only cycles between the two-qubit states. Al-
lowing for a detuning of the ground state to ground state coupling and one of the
dressing lasers, we add D = −~∆(|g1〉〈g1|+ |r0〉〈r0|) to H(1), resulting in the qubit
detuning

S−1DS = −~∆(|D0〉〈D0|+ |I〉〈I|). (4.2.11)

This dressing makes the Van der Waals interaction between the two atoms in-
dependent of state, while having long life time compared to bare Rydberg atom
qubits. The Van der Waals interactions will lift the degeneracy of the CM and
relative modes of motion, as the oscillator frequency of the CM mode remains
unchanged and the relative mode frequency increases. This results in a simplified
Hamiltonian, in the absence of laser light,

H0 = ~
[
νr

(
a†râr +

1
2

)
+ ν

(
â†RâR +

1
2

)

+
∑

σ∈S
ωσ|σ〉〈σ|

]
, (4.2.12)

with νr the relative mode oscillator frequency, âR (âr) and Hermitian conjugate
are the CM (relative) mode ladder operators, the sum runs over the internal states
and ~ωσ is the energy of state σ.

The inter-particle Rydberg-Rydberg interaction will only affect the relative mode.
The relative frequency and the shift in the relative minimum position are also a
function of the trapping frequency ν and the distance between the traps l, and to
fully characterize the mode splitting we have to take all four parameters ν , l, C6,
and β into account. We introduce the dressed interaction strength

W = β4C6, (4.2.13)

since the strength of the interaction between Rydberg dressed atoms is scaled by
β4 [ń17].

Ideally we would like to achieve a splitting ratio νr/ν =
√

3, as this would mimic
to the ion-ion case. However, at the same time we have to minimize the shift in
minimum position, realize sufficiently large life time (scaling with β−2) and keep
gate operation times low, therefore we have to consider splitting ratios smaller
than

√
3. We find that the splitting needs to be larger than 1.15, in order to make

a reliable transfer with good fidelity.
For a given dressed interaction strength W only one local minimum exists in

the potential Eq. (4.2.2) for (real) positive relative coordinate, see Fig. 4.2. This
minimum is located at rmin, which is the solution to

r8
min − lr7

min − 6
~W
ν2mr

= 0. (4.2.14)

Expanding the potential around this minimum, we find the splitting ratio fν = νr
ν

as

fν =

√
8− 7

l

rmin
, l > 0, (4.2.15)

58



1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

10−2 1 102 104 106 108 1010
0

5

10

15

20

25

1.0

1.1

1.2

1.3

1 10 100
0.0

0.1

0.2

0.3

0.4
f
ν

∆
r m

in
(µ

m
)

W (GHz µm6)

f
ν

∆
r m

in
(µ

m
)

W (GHz µm6)

Figure 4.2: Ratio of relative and CM mode oscillator frequencies fν = νr/ν as
function of the dressed interaction strength W (solid) and the corresponding shift
in relative mode minimum position (dashed). Inset shows the range of small W in
greater detail.

which is shown in Fig. 4.2. Since rmin grows monotonically for increasing W , the
upper limit of the splitting fraction is

√
8 and lower limit is 1. This gives us a large

range of controllable splitting fraction, limited the distance between the single
atom traps. Inversely, it is more convenient to determine what strength is needed
to result in a sufficient splitting fraction and the shift in minimum position can then
be determined as

rmin =
7l

8− f2
ν

, l > 0, (4.2.16)

from which W can be derived, using Eq. (4.2.14). This treatment is limited by the
validity of the harmonic approximation of the effective potential around the local
minimum rmin. However, for reasonable values of l and W the approximation
holds for a large range around the minimum and a large number of bound states
are consistent with this approximation.

4.3 Phonon interactions

We induce spin-spin interactions by letting both qubits interact with bichromatic
laser light, slightly detuned both above and below resonance. Including the
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Figure 4.3: Time evolution at finite temperature of the two-qubit populations
with the vibrational motion traced out, obtained by propagating HI (Eq. (4.3.3)).
Labels denote the population of the indicated state, OO is the population of |OO〉
and so forth. The subfigures show populations of the time evolved states resulting
in the creation of Bell states from pure qubit states |OO〉 → 1√

2
(|OO〉 + i|II〉)

(a and c) and |IO〉 → 1√
2
(|IO〉 + i|OI〉) (b and d) at 0 temperature (a and b)

and 5µK (c and d). The other input states mirror this behavior. These Bell states
can be achieved with high fidelity at realistic cold atom temperatures, given the
approximations made in this paper.

photon recoil in the dressed frame, the effect of the laser light acting on both
qubits, each with internal states |O〉 and |I〉 and trap states |nR, nr〉, where nR (nr)
is the CM (relative) mode vibrational quantum number, can be expressed in the
two-qubit Hamiltonian

H(2) =
∑

j

∑

kj

~Ωkj
2

σ+,je
−iωkj

t×

exp

[
iηkj

(
â†R + âR −

(−1)j
√
fν

2
(a†r + âr)

)]

+H.C., (4.3.1)

where kj is used to label the laser beams interacting with the j atom and σ±,j
are the internal state step operator for atom j. We will use a sufficiently large
mode splitting such that the relative mode is effectively frozen out. Changing to
the interaction picture, we define the rotated creation operator

b̂j = e−iνtâR −
(−1)j

√
fν

2
e−iνrtâr, (4.3.2)
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where j = 1,2 is the atom site number, and get the two-qubit interaction picture
Hamiltonian

HI =
~
2

∑

j

∑

kj

Ωkje
iδkj

tσ+,je
iηkj (b̂†j+b̂j)

+ Ωkje
−iδkj

tσ−,je
−iηkj (b̂†j+b̂j), (4.3.3)

where δkj = ωkj − ωO→I is the detuning from the |O〉 → |I〉 transition. This
Hamiltonian Eq. (4.3.3) reduces to a spin-spin interaction Hamiltonian [Kim09a,
Por04a, Roo08]. Assuming ηkj = η, Ωkj = Ω and |δkj | = δ ≈ ν , we can, in the
Lamb-Dicke limit, simplify the interaction picture Hamiltonian

HI ≈
~Ω

2

∑

j

∑

kj

eiδkj
tσ+,j

[
1 + iη

(
b̂†j + b̂j

)]
+H.C.,

which we further simplify by using

eiδkj
tb̂j = ei(δkj

−ν)tâR −
(−1)j

√
fν

2
ei(δkj

−νr)târ, (4.3.4)

and by neglecting fast rotating terms. This results in

HI ≈Ω

(
2~ cos(δt)Jx −

√
2~νmRηJy

(
cos(νt− δt)R

+
sin(νt− δt)

mRν
pR

))
−Hr, (4.3.5)

where Jx and Jy are collective spin operators, pR is the CM mode momentum
operator and

Hr =

√
~mrνr

2
ΩηrJ̃y

(
cos(νrt− δt)r

+
sin(νrt− δt)

mrνr
pr

)
, (4.3.6)

with pr the relative mode momentum operator, J̃y = σy,2 − σy,1 and ηr = η/
√
fν

the relative mode Lamb-Dicke parameter. If we ignore the fast rotating Jx term,
we can write the propagator by virtue of the Zassenhaus formula

U(t) = exp

[
−i η

2Ω2

ν − δ J
2
yA(t)

]
exp

[
−i η

2
rΩ2

νr − δ
J̃2
yB(t)

]

× exp

[
−iαRJy

sin(ν − δ)t
ν − δ R

]

× exp

[
−iαRJy

1− cos(ν − δ)t
mRν(ν − δ) pR

]

× exp

[
iαrJ̃y

sin(νr − δ)t
νr − δ

r

]

× exp

[
iαrJ̃y

1− cos(νr − δ)t
mrνr(νr − δ)

pr

]
, (4.3.7)
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with αR =
√

2mRν
~ ηΩ and αr =

√
2mrνr

~ ηrΩ. A(t) and B(t) can be determined

from the Schrödinger equation similar to A(t) in Eq. (9) of ref. [Sø00].
At times τk = 2kπ/(ν − δ) (with k an integer), the propagator Eq. (4.3.7) reduces

to that of a spin-spin Hamiltonian

U(τk) ≈ exp

(
−i η

2Ω2

ν − δ J
2
yA(τk)−i η

2
rΩ2

νr − δ
J̃2
yB(τk)

)
, (4.3.8)

with exact equality if ν(fν − 1)/(ν − δ) is an integer, however, the approximation
always has merit if νr−δν−δ >> 1.

We apply the Hamiltonian Eq. (4.3.3) in the time-dependent Schrödinger equa-
tion in the interaction picture with interaction picture state ψI [Por04b, Kim09b].
We set the Rabi frequency such that

Ω =
ν − |δ|

2η
· (1 + α) · T (t), (4.3.9)

with alpha being a small dimensionless number and

T (t) =





sin2
(
πt
2ts

)
t < ts

1 ts < t < tp − ts

cos2
(
π
t+ts−tp

2ts

)
tp − ts < t < tp

0 otherwise

(4.3.10)

is a ramping function with ts being the ramping time and tp is the length of the
pulse. In the original MS paper [Sø99] α is zero, as this ensures a π/2 rotation
in phase space, but small adjustments to the Rabi frequency must be made to
compensate for the (usually) weaker mode splitting achieved with the Rydberg
interaction.

We have simulated the coherent time evolution starting from each of the four two-
qubit states (|OO〉, |OI〉, |IO〉 and |II〉), in combination with a thermal ensemble
of oscillator states at temperatures ranging from 0µK to 5µK, see Fig. 4.3 for
examples. For this simulation, we have set all Lamb-Dicke parameters to η = 0.05,
the detunings are set to δ = ±0.975ν , the dressed interaction strength W = 50
GHzµm6, the trap frequency is ν = 2π × 100 kHz and the distance between
the atoms is set to l = 3µm. The resulting splitting fraction is fν = 1.1745 and
atoms are pushed a further rmin = 0.1719µm apart. In order to account for the
off-resonant phase accumulation in the relative mode of motion, which is much
closer in frequency compared to the trapped ion case, we need α = 0.1333.

Our simulation shows reliable creation of Bell states, at all temperatures starting
from all four of the internal two-qubit states. Tracing out the vibrational states, we
find fidelties of Bell state creation to be higher than 0.999 for all input states even
at non-zero temperature, under the approximations given above. We expect
both the anharmonicity of the trap and non-magic trapping of the Rydberg part
[Boe18] to influence the fidelity of the entanglement mechanism negatively: We
estimate the trap quality issues to reduce the fidelity of Bell state creation by
∼ 2%. Further we expect the finite life-time of the Rydberg-dressed qubits, which
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we estimate to influence the overall fidelity by∼ 1% for the 100S Rydberg level in
rubidium-85. Additional losses and reductions in fidelity, due to neglected terms
in the Hamiltonian are all below 1%, as they are all higher order in β ∼ 0.1 or
η ∼ 0.01. By increasing the principal quantum number of the Rydberg level n of
the dressed qubits, we expect these approximations to have a smaller effect on
the overall fidelities, as β ∝ n−11/4. The lifetime of the Rydberg-dressed state will
also increase [He90, Bra09, Bet09, ń17] as β−2n3 ∝ n8√n by neglecting black
body radiation, which of course limits the lifetime, but is not detrimental to this
analysis, and can be reduced by means of a cryostat. This leaves only the quality
of the traps as a significant source of errors, which can not simply be reduced by
a change of the dressing parameter, and we expect this will be the limiting factor.

4.4 Conclusions

Recent years have seen many implementations of single atom traps, like optical
tweezers [Lab16, Bar16, Kau12], holographic trapping [Xu10, Nog14], photonic
crystals trapping [Yu14], cavity trapping [Pin00, Ye99], magneto optical traps
[Yoo07] or magnetic microtraps [Wan16, Boe18]. Both magnetic microtraps and
optical tweezer arrays [Lab16, Bar16] can be very tight with frequencies in the 10−
100kHz and the separation of two trap sites is on the µm scale. This development
of tight single-atom traps with high filling factor forms the main motivation of this
paper to investigate the MS gate for dressed Rydberg atoms. An interesting future
development would be to employ a trapped ion crystal to mediate interactions
between atomic qubits. This would combine long-range Coulomb interactions
with the favorable scaling properties of neutral quantum devices [Sec16].

In this paper, we have shown that it should be possible to implement a Mølmer-
Sørensen gate between two atoms trapped in tweezers. Combined with single
qubit gates, the MS gate forms a universal set of quantum gates that has been
implemented in trapped ions with very high fidelity [Sø99, Wan01, Sø00]. Our
work shows, that it should be possible to extend its use to neutral atomic systems,
that have much better scalability prospects. We have shown that, by appro-
priate choices of Rydberg level and dressing parameters, it is possible to create
maximally entangled states with qubits consisting of Rydberg-dressed atoms in
a Boltzmann-distributed statistical mixture of oscillator states, with experimentally
realistic laser parameters, and we have quantified the order of magnitude of the
errors. Besides the quantum gate described in this work, the scheme may be
beneficial for the creation of atomic quantum simulators of quantum spin models
[Wei10]. Here the tweezer setup offers in particular the benefit of creating nearly
arbitrary trapping geometries [Gam20].

During the preparation of this paper, we became aware of a related work by
Gambetta et al. [Gam20], which focuses on many-body interactions in tweezer
arrays. Our work has been conducted independently of Gambetta et al. and
focuses instead on two-body interactions.
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5Three-level rate equations in cold, disordered
Rydberg gases

R. V. Skannrup, T. v Weerden, Y. vd Werf, T. Johri, E. J. D. Vredenbregt and
S. J. J. M. F. Kokkelmans

Abstract

We have investigated formation of structures of Rydberg atoms excited from
a disordered gas of ultra-cold atoms, using rate equations for two-photon
Rydberg excitation in a single atom without eliminating the intermediate state.
We have explored the validity range of these rate equations and defined a
simple measure to determine, whether our model is applicable for a given set
of laser parameters. We have applied these rate equations in Monte Carlo
simulations of ultra-cold gases, for different laser beam profiles, and compared
these simulations to experimental observations and find a general agreement.
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5.1 Introduction

Highly excited atoms, generally referred to as Rydberg atoms, show extreme
features such as long life times and strong dipole interactions, first observed in
1981 [Rai81]. As a result of these strong interactions, a Rydberg atom will block
its neighbors from being excited, as the Rydberg level is moved out of resonance
with the excitation laser. This blockade effect, first observed in 2009 [Urb09], has
been proposed [Jak00b, Luk01b] as the mechanism for a two q-bit quantum gate,
specifically a CNOT gate first demonstrated in 2010 [Ise10b]. Rydberg atoms have
also been proposed as a many-body spin model quantum simulator [Wei10], and
realized [Lab16]. In addition, the opposite mechanism, known as facilitation, is
also possible [Les14, Les13, Val16], and is characterized by resonant excitation of
Rydberg atoms at specific distances from existing Rydberg atoms. An in depth
review of quantum information with Rydberg atoms is available [Saf10b].

Properties of Rydberg ensembles are often studied through measuring counting
statistics such as the Mandel Q-parameter and spectra [Man79, Sch14, Mal14].
From these results different phase transitions can be recognized, for instance
between a facilitation and blockade regime, which was already predicted for
systems in equilibrium [Wei08a]. Another method to study Rydberg atoms is by
measuring spatial correlations through spatial imaging [Sch12, H1̈3]. Often the
three-level system is simplified to a two-level system, which is only possible if a
large laser detuning is used [Sha80, Bri07]. However, no matter how simple an
atom description is, the state space grows exponentially in the number of atoms
(just like with qubits) and one must still find a way to make many-body calculations
feasible. We translate the problem to a Markov process with a limited amount
of possible transitions, characterized by transition rates, and then employ Monte
Carlo techniques as done in [Ate07b].

This research was done with a specific experiment, described in [Eng14, Bij14], in
mind, though it is not limited to describing this. In our lab in Eindhoven University of
Technology the setup can trap rubidium atoms in a magneto-optical trap (MOT)
and excite these to Rydberg states. The excitation region can be varied at will
by means of a spatial light modulator (SLM) with good control of both shape and
dimensionality. The excitation region does not have to be continuous or convex,
but we will limit the work presented here to one and two dimensional boxes, as
this is of more general value.

In order to describe the versatile experimental excitation conditions, we develop
a Monte Carlo model based on three-level atoms capable of covering the range of
laser parameters and excitation volume geometries available to the experiment.
The (de-)excitation probabilities of the Monte Carlo simulation are based on rate
equations, where the detunings and Rabi frequencies of both the Rydberg and
intermediate states are tunable in the model. In addition to the laser parameters,
also the choice of intermediate and Rydberg state is kept free, by having the
spontaneous decay rates of both states and Van der Waals coefficient of the
Rydberg as input parameters. The resulting single-atom rate equations go beyond
a simple effective two-level treatment and are applicable to both resonant and
off-resonant excitations. We have checked the validity of the model and set limits
to the validity range. This general rate equation description of the single atom,
dependent on the internal states of the surrounding atoms, can then be used to

66



|g〉

|e〉

Γe

∆1

|nS〉

ΓnS

∆2

Ω1

Ω2

Figure 5.1: Three level excitation scheme. A red laser (red) excites from the
ground state |g〉 to an intermediate state |e〉 and is detuned by ∆r . Another laser
will excite from this intermediate level to the Rydberg level |r〉 and is detuned by
∆b.

describe the entire cloud in our Monte Carlo simulation, which we use to explain
our experimental observations.

This paper is structured into seven sections. In section 5.2 we will derive the (de-)
excitation rates for a single atom influenced by lasers as indicated Figure 5.1, and
in section 5.3 we investigate the limits to the rate equation model (RE) in depth. In
section 5.4 we investigate the differences in a Monte Carlo simulation, stemming
from the three sets of rates. In section 5.6 we draw conclusions on this work.

5.2 Rate equations

We base our approach on N three level atoms with the Hamiltonian of the ith

atom in the interaction picture given by

Hi =
~
2

(
−∆1|ei〉〈ei| −∆2|ri〉〈ri|

+ Ω1|gi〉〈ei|+ Ω2|ei〉〈ri|
)

+ H.C. (5.2.1)

with |ei〉 (|ri〉) the ith atom being in the intermediate (Rydberg) state. Other
authors have used similar rate equation models for two-level [Les14, G1̈4] or
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Figure 5.2: Excitation rates (top) and deexcitation rates (bottom) vs blue detuning
∆2, for different sets of laser parameters. Left column: Varying red Rabi frequency
Ω1, with constant blue Rabi frequency Ω2 = 2π × 0.4 MHz and red detuning
∆1 = 2π × 0 MHz. Middle column: Varying red detuning ∆1, with constant blue
Rabi frequency Ω2 = 2π×0.4 MHz and red Rabi frequency Ω1 = 2π×6 MHz. Right
column: Steady state Rydberg populations, while varying red Rabi frequency
(top) or red detuning (bottom). Other parameters are as in the corresponding
(de-)excitation column.

three-level [Ate07a, Ate07b, Hee12, Ate11] atoms. In [Ate07a, Ate07b, Hee12]
an effective two-level system is achieved by fixing the intermediate level detuning
at zero. Our three-level atom rate equation model allows for both the Rydberg
and intermediate level detunings to be freely chosen input parameters, as well
as both Rabi frequencies and the spontaneous decay rates. Further, we treat in
some detail the limits of this free choice in the next section.

We will base our calculations on rubidium-85, with the intermediate state being
5P3/2 and the Rydberg state 100S1/2 unless otherwise specified. These states
have spontaneous decay rates Γe = 2π×6.07 MHz for the intermediate state and
Γr = 2π × 0.003 MHz for the Rydberg state. We call the laser associated with
subscript 1 the probe laser and the one associated with subscript 2 the coupling
laser. The interactions between atoms are given by

Hi
int =

1
2

N∑

j 6=i

C6

r6
ij

|rj〉|ri〉〈ri|〈rj |, (5.2.2)

where rij is the distance between atoms i and j and C6 is the Van der Waals
coefficient scaling as the principal quantum number of the Rydberg state |r〉 to the
power of 11. Since we apply the frozen gas approximation, we can assume the
rijs to stay constant and the terms of Hi

int can be evaluated only once. The state
of the system determines what terms to be included at any given time. We will
assume that each atom can be modeled independently, with only an effective
shift in local coupling detuning due to the interactions between Rydberg atoms.
The entire effect of Hi

int is then captured by modifying the coupling detuning

∆2 → ∆2 +
1
~
〈s|Hi

int|s〉 = ∆i
eff(s), (5.2.3)
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where |s〉 is the state of the full N atom system, if atom i is excited.
Using these we find the master equation (ME) of atom i in Lindblad form

d

dt
ρ =− i

~
[Hi(s), ρ] + L(ρ), (5.2.4)

where Hi(s) given by eq. (5.2.1) with the replacement eq. (5.2.3) and Liouvillian

L(ρ) =Γe|ei〉〈gi|ρ|gi〉〈ei| −
Γe
2
{ρ, |ei〉〈ei|}

+Γr|ri〉〈ei|ρ|ei〉〈ri| −
Γr
2
{ρ, |ri〉〈ri|}, (5.2.5)

and Hi(s) being the Hamiltonian in eq. (5.2.1) with ∆2 replaced by the state
dependent effective detuning eq. (5.2.3).

Rewriting the density matrix of a single atom in vector form, the effective time
evolution operator is

ρ̇ = Rρ =

(
Rp L
LT Rc

)
ρ, (5.2.6)

with ρT = (ρgg, ρee, ρrr, ρge, ρer, ρgr, ρeg, ρre, ρrg), Rp is a 3 × 3 matrix taking
population to populations, Rc is a 6× 6 matrix taking coherences to coherences
and L is a 3×6 matrix taking coherences to populations. Adiabatically removing
the coherences, we can write the optical Bloch equations

ṗ =
(
Rp − LR−1

c LT
)
p = Qp, (5.2.7)

where p = (pg, pe, pr)
T are the populations (ρgg , ρee and ρrr) of the ith atom.

Our analysis has shown that, for laser parameters where adiabatic elimination of
the coherences is valid, the elements of Q solely associated with the dynamics
between pg and pe are larger than those associated with dynamics of pr by two
or three orders of magnitude. We will call the terms associated with the dynamics
of pr the ’small’ terms of Q.

The general solution to such a homogeneous system of coupled differential
equations is known

p =
∑

k

vk exp (−λkt) , (5.2.8)

withλk (vk) the eigenvalues (-vectors) ofQ, and the sum running over all eigenval-
ues. At sufficiently long time, all but one (non-zero) eigenvalues have dampened
out, and we know that ṗr = αṗe, where |α| & 1, since only one eigenvector
contributes to the derivative.

From this we can express pe in terms of pr and Q

pe =
(0,1,0)Q (1,0,0)T

(0,1,0)Q (−1,1,0)T
(1− pr), (5.2.9)

be neglecting the small terms of Q
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We define excitation rate γ↑ and deexcitation rate γ↓, such that

ṗr = γ↑(pg + pe)− γ↓pr = γ↑(1− pr)− γ↓pr, (5.2.10)

which can be found by substituting eq. (5.2.9) into eq. (5.2.7) to get

γ↑ =(0,−ξ,1)Q (1,0,0)T (5.2.11)

γ↓ =(0,0,1)Q (ξ − 1,−ξ,1)T . (5.2.12)

with

ξ =
(0,1,0), Q (−1,0,1)T

(0,1,0)Q (−1,1,0)T
. (5.2.13)

For the steady state solution the time derivative is the null-vector, and we get

p∞r =
γ↑

γ↑ + γ↓
, (5.2.14)

In Fig. 5.2 we show the derived (de-) excitation rates versus the blue laser detuning
∆2 for a variety of laser parameters. In the left and middle column only a single
of the three remaining controllable parameters is varied and the others are kept
constant at Ω1 = 2π × 6 MHz, ∆1 = 0 MHz and Ω2 = 2π × 0.4 MHz. In the right
most column the corresponding steady state populations are shown. We observe
that the excitation rates show the general features we expect, like Autler-Townes
splitting into two Lorentzian peaks for Ω1 > Γe and tend to 0 for large Rydberg
detuning ∆2. For small Ω1, the two Lorentzian peaks merge, as expected. For
large intermediate state detuning ∆1, the center of the largest peak shifts towards
larger Rydberg detuning by a value of ∆1/2 and the peak to peak distance is√

Ω2
1 + Ω2

2 + ∆2
1. Further, the ratio between the maximal height of the two peaks

tends to zero. These features are easily explained from the eigenvalues and -states
of the Hamiltonian (5.2.1). For the deexcitation rates we generally observe the
same with two important addenda. First, for large Rydberg detuning ∆2, the de-
excitation rate does not go to zero, but rather Γr , as expected. Secondly, for small
Rydberg detuning, the de-exitation also approaches the spontaneous decay rate
Γr . This happens as the de-excitation rate only has an effect on the Rydberg state,
which for zero detuning has an overlap with a dark state of the Hamiltonian (5.2.1)
larger than 0.99, meaning that the lasers have no influence on the de-excitation
rate in this case, reducing the de-excitation rate to the spontaneous decay rate.

The Rydberg populations, as shown in the rightmost column of Fig. 5.2, are found
using eq. (5.2.14). Increasing the red Rabi frequency Ω1 beyond the intermediate
state spontaneous decay rate Γe broadens and lowers the Rydberg transition
resonance, as Autler-Townes splitting affects the excitation rate. Increasing the
intermediate state detuning, lowers and narrows the Rydberg transition resonance,
but only slightly, as well as giving a slight shift to the resonance.

5.3 Rate equation validity

Going back to eq. (5.2.6) and considering the adiabatic elimination of the co-
herences, we know that R, has nine complex eigenvalues v1, . . . , v9 and the
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Figure 5.3: Numerical solutions to the optical Bloch equation (solid) and rate equa-
tion approximations (dotted) versus time for different critical fractions frm. Bottom
plot shows a magnification indicated by the dashed square. Lines with small
critical fraction show good agreement between rate equations and optical Bloch
equations, whereas the large critical fraction line only shows good agreement
with final population value.

coherence only partRc six complex eigenvalues k1, . . . , k6, which determine the
time scale of the dampening of the coherences. This time scale has to be short,
in order to support adiabatic elimination of the coherences. Of the eigenvalues
v1, . . . , v9, only three have eigenvectors with non-zero populations of the interme-
diate state, and of these only one is always real valued, we call this v1. In addition
one eigenvalue, which we call v9, is always zero.

We define the dampening time scales for eigenvalue v as τv = −1
<(v) , and make

shorthands for the three most important

τ0 =τv1 (5.3.1)

τ1 = max(τv2 , . . . , τv8 ) (5.3.2)

τ2 = max(τk1 , . . . , τk6 ). (5.3.3)

Since τ0 is, in general, larger than τ1, it is the time scale on which higher order
dynamics of the system dampens out and only the steady state solution remains.
On top of this the coherences dampen out on the time scale τ2.
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Figure 5.4: Top: Maximal allowed blue Rabi frequency Ω2 versus red Rabi fre-
quency Ω1 and red detuning ∆1. This value is found as the largest blue Rabi
frequency for which the critical fraction is smaller than 0.1 for all (positive) blue
detunings ∆2. Bottom: Critical fraction fcrit in the Ω2-∆2 plane for Ω1 = 2π×5 MHz
and ∆1 = 2π×5 MHz. Black contour line is at fcrit = 0.1 and white at fcrit = 0.2.We
generally require that fcrit < 0.1. Note that the positive detunings allow for larger
Ω2, but since the sign is dependent on the ratio between the detunings, we can
always choose positive for a given experiment.

72



The rate equation model is dependent on there being a clear distinction between
the dynamics on the long time scale τ0 and the shorter time scales τ1 and τ2, and
This means that we now have conditions for the validity of the rate equation model

τ0 >>max(τ1, τ2) (5.3.4)

t >>τ1, (5.3.5)

where t is the simulation run time. For practical purposes, we will assume this to
be satisfied if

fcrit =
max(τ1, τ2)

τ0
< 0.1, (5.3.6)

which we call the critical fraction. Fig. 5.3 shows a comparison between our
rate equation model (dotted) and the optical Bloch equations (solid) for different
critical fraction values. The agreement between solid and dotted lines is clearly
dependent on the critical fraction. Of special note is the rather bad agreement
between the solid and dotted lines for critical fraction larger than 0.1, which we
choose as the practical limit.

We have searched the parameter space to satisfy these conditions, and the
requirements are in general quite lax for reasonable red laser parameters, see
Fig. 5.4. For any given combination of red Rabi frequency and detuning, we find
the critical fraction in the Ω2-∆2 plane, and determine the maximal allowed blue
Rabi frequency Ω2,max as the largest value of Ω2for which the critical fraction is
smaller than 0.1 for all (positive) blue detunings ∆2.

The maximal blue Rabi frequency is dependent on the relative sign of blue
detuning to red detuning, and we can find blue Rabi frequency limits Ω+

b and
Ω−b , dependent on that sign, below which the rate equations always hold. This
asymmetry is stemming from the asymmetry in the excitation due to the red laser.
Since Ω+

b ≥ Ω−b is always the case, we can choose the sign of the red detuning
such that we have the largest allowed range for Ωb. However, if scanning the
blue detuning across the resonance, the blue Rabi frequency has to be below
Ω−b , as the limiting point is right below zero. It is worth noting though that for most
detunings, the maximal blue Rabi frequency can be much larger than this limiting
value, and it would be prudent for any experiment to determine the limiting values
appropriate for the specific experiment.

5.4 Monte Carlo simulation

We have implemented our (de-)excitation rates in a kinetic Monte Carlo simula-
tion, where we extract the values of interest as the average over many realizations.
We will explore three different settings, first we consider a 1D regular lattice, sec-
ondly a random gas with a square quasi 2D excitation volume and finally we will
compare to experimental measurements.

Each Monte Carlo realization is performed by, at time t0 = 0, calculating (de-
)excitation rates for all atoms and an exponentially distributed random time step
dt, with mean value 1/

∑
i γ

i
l, with γil the excitation rate for atom i (deexcitation

rate if atom i is already excited). We then randomly pick an atom with probability
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Figure 5.5: Time dependence of excitation probability in the 1D lattice with 30
lattice sites. Labels denote lattice site. Probability is calculated as the number
Monte Carlo realizations with a Rydberg excitation at a site divided by the total
number of realizations for every time step.
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Figure 5.6: Time dependence of the g2 function for a 1D lattice with 30 lattice sites.
Nearest neighbors are never Rydberg pairs, but for times larger the equilibration
time T = 4Γe/Ω1Ω2 Rydberg excitations start to come in pairs separated by one
atom and at 10T the crystal consists of 3 excitations. The correlation length scales
as t1/3, but saturates at t ∼ 100T .
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proportional to the γil. This atom is then (de-)excited and the time is set to
t1 = t0 +dt. This procedure is then repeated until the time exceeds the simulation
time tend < tend−1 + dt. At prespecified times, we save the state of the system
for our analysis. The output of the Monte Carlo simulation is the average over all
realizations.

For our 1D lattice simulation, the individual lattice sites are identifiable and we
therefore explore the time evolution of the excitation probability of the individual
sites. This requires many realizations to converge and we therefore perform 6000
realizations for the simulation.

We consider a string of 30 atoms placed at regular distance l = 16.3µm with
laser parameters Ω1 = Γe/2, Ω2 = Γe/10, ∆1 = ∆2 = 0. This results in a nearest
neighbor interaction strength Vnn = 2Ω1 for the 100S state and corresponds to
the work done in [H1̈3]. Our work is consistent with their result, but for a slightly
larger correlation length due to the fully interacting system.

On time scales on the order of the steady-state equilibration time for a single
atom T , the system reaches a 1 − e−1 fraction of its final Rydberg population,
but this is distributed over many single atom excitations. At such small time
scales, only the edge atoms have a larger than average Rydberg probability,
as they only have neighbors on one side, see Fig. 5.5. On time scales of 3T ,
we observe the first formation of small local crystalline structures with correlation
lengths larger than 1 lattice constant and growing as t1/3, see Fig. 5.6, consisting
of two Rydberg excitations separated by a single unexcited lattice site. These
structures are not all consistent with a global crystal, as they have formed at
random positions in the lattice and could lead to domains in the final state. At
this time, the enhanced Rydberg probability of the edge sites leads to suppression
of the Rydberg probability of their neighbors. This effect is the beginning of the
global crystal structure.

These small crystals will continuously form and melt in the lattice at random
positions, but as time passes, fewer and fewer sites not consistent with a larger
crystal will be available, and at time scales of 10T the average crystal formation
will contain three Rydberg atoms. As the process continues, the crystal forming
on the edge grows, as there is no room for excitation hopping, and the average
crystal size increases. At large time scales (∼ 100T ), a global crystal has formed
by spanning the entire lattice, and the correlation length does not increase further.

We move on to our quasi 2D random gas, which we will use to model the con-
ditions in a magneto optical trap (MOT), and consider three statistical properties:
Average Rydberg count 〈NRyd〉, Mandel Q-parameter and second order spatial
correlation g2. We perform each Monte Carlo realization with a total simulation
time tend = 250µs, a total number of atomsNtot equal to the integral of the atomic
density in the laser volume. The total number of realizations is 2500 for every set
of parameters. Additionally, we assume the gas to be cold enough that we can
ignore all atomic motion.

We excite to the 99S state and use laser parameters according to our experi-
mental setup: Ω1 = 2π × 4 MHz, Ω2 = 2π × 0.5 MHz, ∆1 = −2π × 9 MHz and the
blue laser detuning ∆2 is variable. The red laser intersects a Gaussian blue sheet
with waist σblue = 7µm. Due to the thickness of the blue sheet, we do not expect
the second order correlation function g2 to be zero inside the blockade radius,
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Figure 5.7: Statistical measures of Rydberg excitation for a Gaussian profile red
laser beam (left) and a uniform square laser beam (right). Both simulations have
Ω1 = 2π × 4 MHz, Ω2 = 2π × 0.5 MHz and ∆1 = −2π × 9 MHz and the red laser
intersects a Gaussian blue sheet with waist σblue = 7µm. On the left hand side the
simulation is carried out with a Gaussian profile red laser with waist σred = 25µm
and the right hand side a square box with side length l =

√
2π 25µm, this ensures

that the total power of the two lasers is the same. Top: g2 map. In both cases we
observe clear blockade for small distancesR followed by a uniform distribution for
negative blue detuning (∆2 < 0) and strong facilitation for positive blue detuning.
Middle: Average Rydberg count across all realizations. White contours mark
〈NRyd〉 = 1. Large Rydberg populations do not appear for large negative detuning
and appear explosively but delayed for positive detunings. Note that the square
geometry has about half the number of atoms in the excitation volume and
hence twice the Rydberg fraction. Bottom: Mandel Q-parameter. Dark blue is
Q < −1/2, the deeply subpoissonian regime. For positive detuning Q > 0, we
are in the superpoissonian regime (red).

but strongly suppressed, since we only explore the correlations in the projection
on the blue laser plane. In Fig. 5.7, we show results from two different red laser
geometries, realizable in our experiment by means of a spatial light modulator,
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Figure 5.8: Left: Rydberg spectra in experiment (solid) with laser parameters
Ω1 = 2π × 4 MHz, Ω2 = 2π × 0.5 MHz and ∆1 = −2π × 9 MHz and the red
Gaussian profiled laser, with waist σred = 25µm, intersects a Gaussian profile blue
sheet with waist σblue = 7µm, corresponding to the simulations in Fig. 5.7. Dashed
curves are skew-Gaussian fits. Middle: Full width half max of the experimental
spectrum (circles), errorbars determined from fit, and simulation (solid) of Gaussian
(G), square (S) or circular (C) laser beam profiles with the characteristic length
scale (std for Gaussian, side length for square and radius for circular) denoted
by subscript. The star (∗) denotes simulation with twice the red laser intensity
(Ω1 →

√
2Ω1). Right: Frequency shift of the experimental spectrum (circles),

errorbars determined from fit and frequency drift of the blue laser. Solid curves
represent the same simulations as in the middle plot. The overall comparison
between experiment and simulation show general agreement for both FWHM
and frequency shift.

a Gaussian beam profile with waist σred = 25µm (left in Fig. 5.7) and a square
beam profile of uniform intensity with side length l =

√
2π 25µm (right in Fig. 5.7).

These shapes ensure the two lasers output the same power, but the Gaussian
excitation volume has about twice the number of atoms compared to the square
geometry. Our model is not limited to these laser shapes and parameters, but
they show the essential features. Since the blockade radius Rblock, for the given
parameter and ∆2 = 0, is 20.9µm, we expect the system to be completely filled
at NRyd = (l/Rblock)2 ≈ 9 for the square beam profile and slightly before that for
the Gaussian beam profile, we call this number the jamming count NJam.

We start by generating Ntot random 3D coordinates in the laser volume, and
we calculate the laser parameters at each coordinate as well as the distances
between all pairs of atoms. With these parameters in place at the beginning of
each realization it is easy to evaluate the (de-)excitation rates at each atom on
the fly.

For any specific realization we are only interested in the Rydberg count and
distribution at a number of prespecified time steps, therefore we only carry the
binary information of Rydberg state or ground state for each atom, as well as the
atom positions. This will let us determine both the Rydberg-Rydberg interaction
strength at each coordinate from the predetermined atomic distances, for use in
determining the rates, and is sufficient to calculate the aforementioned statistical
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measures we are interested in for the total ensemble of realizations, see Fig. 5.7.
Analysis of the Monte Carlo simulations shows features usually associated with

the Rydberg-Rydberg interaction, but also illustrates a clear dependence on ex-
citation geometry. The location of the first excitation is much more likely to occur
near the center of the excitation volume for the Gaussian profile beam. For neg-
ative detunings this leads to even stronger blockade as not only is the effective
detuning larger, but the Rabi frequency is also lower. For positive detunings, how-
ever, the facilitation rings become narrower. The gradient of the laser intensity also
leads to a tighter distribution of excitations, as excitation too far from the center is
unlikely, limiting the number of excitations in the volume.

From the Mandel Q-parameter, see Fig. 5.7 (bottom), we can identify three
regimes of interest: Firstly, the (weakly sub)poissonian (light blue) regime where
−1/2 < Q < 0, found for very low blue laser detunings ∆2. Secondly, the deeply
subpoissonian (dark blue) regime where Q < −1/2, found for small absolute val-
ues of ∆2. And thirdly, the superpoissonian (red) regime where Q > 0, found for
large positive ∆2.

For negative blue laser detunings, the MandelQ-parameter gradually decreases
over time from 0 to its final value. This happens as atoms are excited to the
Rydberg state and exclude parts of the volume. For very negative detunings, only
a few Rydberg excitations exist at any given time and the Q-parameter stays
relatively high, since the jamming limit is never reached. This is again reflected in
the average Rydberg count, which is very low compared to the jamming count
NJam.
For detunings nearer to zero, the number of Rydberg excitations increases over

time and the jamming limit is reached, resulting in deeply subpoissonian counting
statistics. The subpoissonian regime is reached somewhat before the jamming
count, since the reduction in the excitation volume is significant when NRyd ≥√
NJam.

For positive blue laser detunings, an initial Rydberg excitation, called the seeding
excitation, results in a ring of resonant excitation around the seed at the distance
R = (C6/∆2)1/6, called the facilitation distance Rfac. The seeding excitation
occurs with low probability for large detunings, but after seeding more Rydberg
atoms are quickly excited on resonance. This results in superpoissonian counting
statistics, as a cascade of Rydberg excitations spreads from the seed. We see this in
the steep slope of the average Rydberg count for positive detuning coinciding with
very large Mandel Q-parameter. However, the system quickly fills up, reaching
the jamming limit resulting in a drop to negativeQ and the strongly subpoissonian
regime.

The second order correlation functions g2 at time t = 250µs for the Gaussian
(left) and square (right) beam profiles are seen in Fig. 5.7 (top). For negative
blue laser detuning, the region in the immediate vicinity of a Rydberg excitation
(R . Rblock = 21µm) shows very reduced values of g2. Around Rblock, the g2

gradually climbs to 1, with only a slight overshoot. This behavior is the same for
both geometries and consistent with the blockade effect. The nonzero value for
short distances is due to the thickness of the excitation volume, as we only consider
the correlations in the plane parallel to the blue laser sheet.

For positive blue laser detuning the blockade effect is still clearly visible for small
distances, but at the facilitation distance Rfac ≈ (C6/~∆2)1/6 there is a strong
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signal from the facilitation region followed by a dip from the blockade effect of
the facilitated excitations. This feature is significantly sharper for the Gaussian
geometry consistent with a narrower facilitation region due to the drop off in laser
intensity. At about 2Rfac, a faint signal from the secondary facilitation peak is
visible for both the Gaussian and the square beam profiles.

At very limited blue laser detunings (|∆2| . 0.5 MHz) the g2-function resulting
from the Gaussian beam profile shows a cusp that is not present in case of a
square beam profile. This cusp is in part due to the sharpening of the facilitation
peak in the Gaussian profile case and in part due to the tighter packing of Rydberg
excitations for the Gaussian beam profile. This leads to a crystalline locking of the
Rydberg excitations in the relatively small volume of peak laser intensity.

5.5 Experimental validation

Rydberg excitation was studied experimentally using a setup described previ-
ously [Eng14, Bij14]. In short, 85Rb atoms are trapped and cooled in a standard
magneto-optical trap, resulting in typical atomic densities of 1016/m3 and tem-
peratures of 0.2 mK. To create Rydberg atoms from the cooled sample, the 780nm
trapping laser beams are suddenly switched off, after which a separate 780 nm
and a 479 nm laser beam are flashed on for a variable amount of time, which
drive the 5S, F = 2 → 5P3/2, F = 3 and 5P3/2, F = 3 → 99S transitions in 85Rb.
The red laser beam is referenced to the atomic transition frequency by a saturated
absorption scheme, and detuned approximately 9 MHz below resonance. The
frequency of the blue laser can be scanned in a range of tens of MHz centered
on the two-photon resonance condition and is referenced to a commercial ultra-
stable cavity (Stable Laser Systems). The linewidths of the two laser beams are
below 1 MHz but otherwise not accurately known.

The red laser beam can be spatially shaped using a spatial light modulator
[Bij14] in various ways but in the experiments reported here the spatial shape was
a single Gaussian with a rms radius of 25µm. This shaped red beam crosses the
blue beam at the center of the MOT, where the rms sizes of the blue beam are
7µm ×1.8 mm. Typical excitation times are in the µs range. The powers of the
laser beams were adjusted to provide nominal Rabi frequencies of Ω1 ≈ 4 MHz
and Ω2 ≈ 0.5 MHz.

Rydberg atoms created by this excitation sequence were detected using field
ionization. An electric field of several kV/m strength is turned on which ion-
izes any Rydberg atoms present and pushes the resulting ions towards a dual
microchannel-plate detector (GIDS GmbH) [Eng14]. The current produced by the
detector is fed through a transimpedance amplifier and then sampled by a digital
oscilloscope (Agilent DSO 054A). The integral of the digitized signal over a period
of the experimental cycle is taken as proportional to the number of Rydberg atoms
produced.

Experimentally observed spectra are shown in Fig. 5.8 (left), and fitted with a
skew Gaussian. From this fit the derived parameters of full width half max (FWHM)
(middle) and frequency shift (f-shift) (right) are determined and plotted (circles).
The errorbars on the FWHM values are determined from the 95% confidence limit
of the fitting parameters (fitting error). The f-shift errorbars are determined as the
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root of the sum of the fitting error squared and the measurement error squared.
The derived parameters from the experiment are compared to simulation (solid).
We show here derived parameters for both the Gaussian and the square laser
profile simulations of Fig. 5.7 as well as those from a simulation with the same
Gaussian laser profile, but twice the intensity, ie. Ω1 →

√
2Ω1.

Direct comparison between the experimental (see Fig. 5.8, left) and simulated
(Fig. 5.7, middle) spectra shows a general agreement. Far from resonance (|∆2| &
8 MHz) the experimental Rydberg count is suppressed at all times. For negative
Rydberg detuning (∆2 . −2 MHz) we see suppression of the increase in Rydberg
count over time, consistent with the existing Rydberg atoms in the volume blocking
excitation of additional Rydberg atoms. Nearing zero detuning (|∆2| . 2 MHz)
the Rydberg count grows fast and the peak shifts towards higher detunings with
time. This means that, especially at later times, the peak is shifted to large Rydberg
detuning (∆2 & 2 MHz). At these large detunings, we observe almost no Rydberg
atoms at small times, but with increasing time this changes as facilitation shifts the
Rydberg levels of unexcited atoms into resonance. This is all in agreement with
the simulation results presented in Fig. 5.7.

For both experimental data and simulation we observe that both the FWHM and
f-shift, derived from the spectra in Fig. 5.8, values rise quickly and then level out
after about 50µs. The precise shape of the excitation volume and laser profile
have little influence on the behavior of the FWHM value, and we can generally
explain experimental observations without knowledge of the exact excitation
volume geometry. Similarly, the f-shift shows some dependence on the laser
profile, but this can be explained from the small dependence of Rydberg count
on geometry to influence the f-shift.

5.6 Conclusions

We have derived rate equations for excitations of the Rydberg state in three-
level atoms starting from the master equation. Our approach does not assume
vanishing populations in the intermediate state and are therefore valid for a wide
range of laser parameters, in principle whenever the three-level approximation of
the atom is valid.

Our rate equation model agrees with the master equation, provided that only
one eigenvalue has not dampened out. We have investigated and described
the validity range of our approach, and determined criteria that provide sufficient
insight into whether our model is valid or a full solution of the master equation is
required.

We have made a Monte Carlo implementation of our (de-)excitation rates, and
explored different excitation geometries and laser parameters. In this paper
we have reported on 1D lattice simulations, with parameters corresponding to
previous theoretical work published in [H1̈3], and found our results to be consistent
with literature. We explored the dynamics of self assembly of the resulting 1D
Rydberg crystal, and the time evolution of the second order correlation function
g2 and site dependent excitation probability.
We further explored 2D settings, where we considered the effect of the laser

beam profile by comparing a Gaussian profile to a square of uniform intensity
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with sharp edges. We found that the beam profile has significant influence on
the resulting excitation pattern and that a Gaussian profile in general will result in
sharper features in the g2-map, but at the cost of lower excitation counts.

We have compared our model to experimentally observed Rydberg spectra at
several time steps and found a general agreement for the spectral shapes and
derived parameters FWHM and f-shift. We did not see any significant depen-
dence on excitation volume geometry in the time dependence of FWHM, but
the geometry dependence of the Rydberg count may result in a slight geometry
dependence of the f-shift.
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6Controlled Quantum Plasmas Created from
Rydberg Crystals

R. V. Skannrup, E. J. D. Vredenbregt and S. J. J. M. F. Kokkelmans

Abstract

Rydberg atoms, made by exciting (alkali) atoms to high principal quantum
number n, interact very strongly via dipole interactions or long range van der
Waals interactions and have been proposed for quantum simulation. We
investigate how such a system can be used to simulate one dimensional
chemistry and insulator-conductor crossovers and as a source for degenerate
electrons. Starting from a one dimensional Rydberg crystal, the electrons
will, if excited highly enough, have enough kinetic energy to pass through
the potential barrier between the atoms, and the system can transition into
an ordered conductor. We study a 1D model, where we find crossovers
between insulators and conductors and bound states of 1D molecules, as
well as universal scaling of the lengths and energies, dependent on principal
quantum number n.
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6.1 Introduction

Characterized by having large principal quantum number n, highly excited Ryd-
berg atoms are on the front of research today [Saf10a, Sha18, Saf16b, Lim13,
Bro16, Hel16]. Extreme properties, such as van der Waals coefficient scaling
as n11 and blockade [Rob05] or facilitation [Wei08b] of nearby excitations at
distances of micrometers make Rydberg atoms not only interesting but also a
valuable tool in the atomic toolbox. Magnetically trapped ground state atoms
can be excited to trapped Rydberg atoms with identical trapping conditions for
ground and Rydberg state [Boe18]. Strong interactions, combined with long life
times, versatile trapping conditions and single site addressability [Boe18] make
Rydberg atoms an ideal platform for quantum simulation [Wei10, Saf10a].

Due to the strong van der Waals interactions between the Rydberg atoms, the
gas can crystallize [Bij11, Poh10], or be excited in a regular pattern[Bij15]. The
regularity of such a Rydberg lattice limits disorder induced heating, which in
turn limits the velocity of the ionic cores, allowing for a frozen gas treatment of the
system. Thus Rydberg atoms allow precise control over interparticle distance, spins
and principal quantum number, making the system ideal for studying quantum
systems with carefully designed geometries that are not readily found in nature.

In a highly excited Rydberg gas the atoms are known to spontaneously ionize
[SV13, Poh03]. The first electrons are lost, but eventually the positive charge from
the ionic cores becomes so strong that additional ionized electrons are bound to
the ion structure. This leaves a system, where the number of valence electrons is
smaller than the number of cores. Such a system is known as an ultracold plasma,
since the cores can be assumed motionless at the short time scales, where such
systems exist. When the spacing between the cores becomes comparable to
the electron de Broglie wavelength, we have to consider the quantum nature of
the plasma [Bon10]. This gives structure to the spatial electron distribution and
we have to consider the degeneracy of the electronic states. This is a quantum
plasma, other examples of quantum plasmas are valence electrons in metals,
ionized matter in the interior of very heavy stellar objects and the quark-gluon
plasma in the early universe. Investigating quantum plasmas is therefore of interest
to both fundamental and applied physics. For atoms with high principal quantum
number, the electron wavefunction has a larger extent and we can enter the
quantum plasma regime in more dilute gases. The principal quantum number
therefore acts as a control parameter to go from Rydberg crystal to a quantum
plasma.

We solve the electronic system, sketched in Fig. 6.1, using tools from few-body
physics, as a simple model for Rydberg crystal excitations into the quantum plasma
regime. We have focused on and compared the results from Stochastic Variation
(SV) [Suz03] and Numerical Integration of the 1D Schrödinger equation (NI). We
have had a special focus on investigating the feasibility of simulation quantum
plasmas and the scalability of the simulated systems using these methods. We
neglect (hyper) fine structure or spin-orbit coupling.

Exotic materials such as carbon nanotubes [Cha07, Egg98, Boc99, Ped03], or-
ganic conductors [Sch98, Zwi00, Lor02], quantum Hall edge states [Cha03], and
semiconductor quantum wires [B8́7], as well as transition metal oxides [Hu,02],
confined atomic gases [Mon98, Rec03, Mor05] and certain polymers [Bar13] can
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Figure 6.1: Model potential (black) with idealized typical wavefunctions (green).
The wavefunctions all represent the ground state at different distances between
the ionic cores a. Top: The wavefunction can be seen as a part outside the core
structure and a part between the cores. The wavefunction approaches zero at
the cores, this puts strong constraints on the state and has a significant influence
on the energies, as we will show. Middle: Central barrier starts to suppress the
state between the cores. Bottom: There are no electronic states shared between
the atoms. Features in the wavefunction at small a and low E reappear at large
a and high E, which are captured by scaling relations dependent on principal
quantum number n.

greatly restrict the movement of electrons towards a quasi 1D nature. In hydrogen-
like atoms in magnetic fields with field strengthsB & 106T [Lou16, Has61, Wun81],
this is also the case, but we will show that the field strength needed, when dealing
with Rydberg atoms, is much weaker.

In recent years the 1D Coulomb system has been theoretically studied by several
authors [Lou16, Loo15, Bal17]. Loudon [Lou16] focuses on the hydrogen atom, and
treats the subjects of regularization and experimental realization extensively. Ball,
Loos and Gill [Loo15, Bal17] treat the subject of 1D chemistry with no regularization
and describe the lowest chemical states of several systems.

This paper contains four sections in addition to this introduction. In section 6.2 we
will present a way to reduce Coulomb systems to quasi 1D based on the approach
of [Lou16], as well as a regularization of the Coulomb potential to avoid some
of the unnatural behavior discussed in literature. In section 6.3 we discuss the
consequences of the regularization and present results of 1D systems with a single
electron in the potential from two to five ionic cores as well as a periodic lattice.
We find approximations for the energies at small and large distance between the
cores and find scaling relations for the system. In section 6.4 we present results of a
system with two electrons and two ionic cores. Again we will present approximate
expressions for energies of the system at small and large distance between the
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cores and discuss some of the unique features of the system. In section 6.5 we
conclude on our work and discuss the future perspectives of this work.

6.2 Quantum Plasma Model

We develop a 1D toy model for quantum plasmas, and make the case for the
1D model by initially considering a hydrogen atom in a uniform magnetic field of
strength B pointing in the z direction. We write the vector potential in cylindrical
coordinates as A = (0, 1

2Bρ,0)T , where ρ is the radial distance. Using minimal
coupling we find the cylindrical coordinate Hamiltonian in atomic units, which we
will use throughout this paper,

Hcyl =
1
2

(i∇−A)
2 − 1√

ρ2 + z2
+ ŝ ·B

=
−1
2

(
∂2

∂z2 +
1
ρ

∂ρ

∂ρρ
∂ρ

∂+ρ

1
ρ2

∂2

∂φ2

)

+
1
2
B2

4
ρ2 − i

2
Bρ

∂φ

∂−φ
1√

ρ2 + z2
+ szB, (6.2.1)

where φ is the angle around the z-axis and ŝ is the electron spin operator. Assum-
ing a wave function of the form

ψ = R(ρ, z)eilφ, (6.2.2)

we can rewrite eq. (6.2.3) as

Hcyl =
−1
2

(
∂2

∂z2 +
1
ρ

∂ρ

∂ρρ
∂ρ

∂−ρ
l2

ρ2

)

+
1
2
B2

4
ρ2 − 1

2
Bl − 1√

ρ2 + z2
+ ŝzB. (6.2.3)

This Hamiltonian has a harmonic oscillator part in the radial direction, which
becomes dominant over the Coulomb potential at large ρ. This happens at
ρ ∼ 2B−2/3, which decreases with the magnitude of the magnetic field. If this
distance is well inside the classical orbital radius of the electron, expressed in
terms of the Bohr radius as a0 >> 2B−2/3, the Coulomb potential merely acts as
a perturbation to the harmonic oscillator potential. The magnetic field needed to
confine the ground state of hydrogen to a quasi 1D geometry is then (in SI units)

B1 >>

√
2m
πε0a

3
0

≈ 660 kT. (6.2.4)

However, our quantum plasma model is derived from an ultracold crystal of highly
excited Rydberg atoms, which can be created and studied at timescales short
enough to satisfy the frozen gas approximation where it is assumed that there is
not enough time for the atomic cores to move significantly. Since the classical
orbital radius of an electron in a hydrogen atom scales as the principal quantum
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number n squared, the magnetic field dominates the electronic motion if the
magnetic field has a strength above

Bn ≈
B1

n3 . (6.2.5)

Therefore, to confine the electron in a highly excited Rydberg atom, well within
current experimental capabilities [Ska20], where n ∼ 100 to a quasi 1D geometry,
we only need magnetic fields in the 10 Tesla range. Though still very strong
magnetic fields, this is significantly lower than the aforementioned 600 kT needed
for ground state atoms.

Since Rydberg atoms can be excited in specified patterns using a Spatial Light
Modulator (SLM) to project the pattern into a cold atomic cloud [Bij15], or by ex-
citing magnetically trapped atoms [Boe18], we propose using crystals of Rydberg
atoms, which are very sensitive to external fields to explore the electron behavior
in a quasi 1D geometry.

Assuming the magnetic field to be dominant, we can use separation of variables
and first order perturbation theory to estimate the energy of the radial system from
the harmonic ground state dependent on z

Erad =
B

2
−B

∫ ∞

0

e−
B
2 ρ

2

√
ρ2 + z2

ρ dρ

=
B

2
−





√
Bπ

2 for z2 << 1
B

1√
z2

for z2 >> 1
B ,

(6.2.6)

which allows us to separate the Schrödinger equation into a radial, an angular
and a longitudinal part and assume wavefunctions of the form

ψ = Kn(z)Llh(ρ)eilφ, (6.2.7)

where n, h and l are appropriate quantum numbers. The extent of the radial
wavefunction Llh is limited to a few oscillator lengths

√
B−1, and we are not

interested in the dynamics close to the nuclei, as this is well understood [Boe18],
and we will assume the electrons to be in the radial ground state. However, our
large z solutions have to be able to circumvent the nuclei, which means removing
the singularities at the nuclei. Therefore we introduce a regularization of the
1D Coulomb potential, which smoothly cuts off the potential on length scales
comparable to the extent of the radial wavefunction

1√
z2
→ 1√

z2 + ε2
, (6.2.8)

where ε ≈
√
B−1. This potential, however, allows for an unnatural, deeply bound

state near the ionic cores, as discussed by Loudon and Haines [Hai69, Lou59]. To
avoid having to deal with this state, we reintroduce the singularities at the nuclei
in a controllable manner by means of a δ-function of strength λ, which penalizes
the deeply bound states, but does not significantly influence the "natural" states
of the system

Vε(z) =
−1√
z2 + ε2

+ λδ(z). (6.2.9)
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Our specific choice of regularization uses ε = 10−2 and λ = 1/(2ε) = 50, for
reasons discussed in Section 6.3.

We apply the frozen gas approximation to the ultracold Rydberg crystal, as
the time scale of the electronic dynamics is much shorter than that of the core
dynamics, and place cores at distinct and controllable locations separated by
a length 2a. The model Hamiltonian for a single electron in an N ion potential,
known as a Coulomb comb, is

H = T +

N/2∑

m=−N/2

Vε(z − 2ma), (6.2.10)

where T is the kinetic energy operator, which we extend to two electron calcula-
tions using the model Hamiltonian

H =
∑

i

Hi −
∑

j>i

V +
ε (zi − zj), (6.2.11)

whereHi is the single electron Hamiltonian of the ith electron eq. (6.2.10) and V +
ε ,

representing electron-electron repulsion, is the same as Vε, but with λ replaced by
−λ.

6.3 One electron two ionic cores

For a single electron in a 1D Coulomb comb, the Schrödinger equation with the
Hamiltonian eq. (6.2.10) can be solved directly by piecewise numerical integra-
tion, when λ is either 0 or∞, see fig. 6.2. These values of λ are particularly easy
to use in a numerical integration method, as they can be implemented by an
appropriate choice of boundary conditions for the single electron wave function
on the site of the ionic core. As can be seen in fig. 6.2, the energy and even
the number of electronic states is highly dependent on this choice of boundary
condition.

For λ = 0, we observe in Fig. 6.2, like ref. [Lou59, Lou16], a set of states, which
are locally asymmetric around the core sites, with energies that do not conform to
the Rydberg energies at large separation a; we call these 1D specific states. We
also observe the deeply bound states, which is not visible in fig. 6.2. The wave
functions of these deeply bound states peak sharply at the core sites and are not
possible states. When λ =∞, which implies that the wave function must be zero
at the core sites. However, the other states of the system are also affected, when
λ is increased, and the 1D specific states are not available, when λ =∞. For both
λ = 0 and λ = ∞, we observe a series of bound states, the first of which have a
mean distance between the ions of around 2.2 for λ = ∞, which is about three
times the distance between the nuclei in 3D H2, and around 3 for λ = 0.
In addition, the boundary conditions associated with largeλprevent the electrons

from circumventing the cores, a behavior which is intrinsically unphysical and must
be remedied in order to be comparable to any future experiment, as even the
best quasi 1D Coulomb comb is fully 3D near the cores.

To remove the deeply bound states, while not introducing boundary conditions
at the core sites, we have chosen to work with a value for the λ-parameter
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Figure 6.2: Energy spectra of a single electron in the potential of two cores of
unitary charge vs core separation. Solid curves are the spectra of the model with
λ = ∞ and dotted curves are calculated using λ = 0, both with ε = 10−2. The
spectra differ significantly and it is clear that the λ-parameter plays an important
role in the model. The deeply bound states of [Lou59, Lou16] for λ = 0 are not
visible.

that is strong enough to effectively penalize the deeply bound states, while not
significantly influencing the 1D specific states. A logical choice for the value of
the parameter is

λ =
1

2ε
, (6.3.1)

as this will, according to the virial theorem, penalize the deeply bound state with
an energy corresponding to its binding energy, in the limit of vanishing ε.
We have found the eigenstates of the Hamiltonian eq. (6.2.10) with ε = 10−2

and λ = 50 using stochastic variation (SV) on correlated Gaussians, which is useful
for finding the lowest eigenstates of a system with a large parameter space and
many local minima [Suz03]. The energies of the system can be seen in fig. 6.3. As
can be seen in the figure, the 1D specific states, except the deeply bound state,
are still present for large distances between the cores. The bound states of the
system are still present and binding, with a core distance of the lowest energy
state of 2.2, similar to that of λ =∞ in fig. 6.2.

The noise in the energies presented in fig. 6.3 is due to the nature of the variational
approach we have taken to find the eigenstates of the Hamiltonian. The figure
only represents upper bounds for the individual energy level, and our model has
not been able to fully converge on all levels. However, the noise is somewhat
amplified by the logarithmic axes of the figure.

Our implementation of the SV method provides us with the eigenstates of the
Hamiltonian eq. (6.2.10) expanded in a Gaussian basis, which allows us to cal-
culate the wave function and a range of quantum mechanical observables. In
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Figure 6.3: Energy of a single electron in the potential of two cores of unitary
charge (black solid) vs core separation. We see both the 1D specific states that
do not conform to the Rydberg formula at large a as well as the more familiar
states, which do line up with the Rydberg energies at large a. In the large a
limit the curves are described by permanent dipole interactions (black dotted),
and in the small separation limit the unbinding states are described by Yukawa
curves (gray dashed) corresponding to Debye shielding. For the binding states
the energies are dominated by a strong increase in kinetic energy for decreasing
a. This is described by a Yukawa potential with the addition of a a−3 curve and
an energy offset (gray dotted).

fig. 6.4 we plot the root-mean-square (rms) value of the electron’s z coordinate.
Since the 〈r〉 of an electron in a symmetric potential is always 0, the rms value is
identical to the standard deviation in the electron position. We will use the rms
value as an estimate for the mean position of the electron.

By comparing the energies in fig. 6.3 with the mean position of the electron
in fig. 6.4, we notice that the binding states are characterized by rms z-values
less than a, ie. the electron is located between the cores. Since the ionic cores
constitute (weak) potential barriers, the electron is more or less confined to the
area between the cores. This means that as the distance between the cores
decreases, the curvature of the wave function, and hence the kinetic energy of
the electron, increases rapidly. When the distance between the ionic cores is
smaller than 2, the energy of all states with the electron situated between the
cores is positive and the electron is forced outside of the Coulomb comb.

If we, as a simple estimate, ignore the change in electron energy due to the
potential barrier between the ionic cores, we find that the kinetic energy of the
confined electron will decrease with distance between the cores cubed. This is
seen in fig. 6.3, where the grey dotted lines match up with the energies of the
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Figure 6.4: Root-mean-square values of the position of a single electron in the
potential of two cores of unitary charge, with ε = 10−2 and λ = 50. Dashed line
is
√
z2 = a, corresponding to the placement of the ionic cores. For small core

separations a, the electron is predominantly situated outside the cores, but from
a ≈ 1.5 on, some electronic states exist, with the electron situated between the
cores.

bound states and are determined by

Υ(a) = 2En∞ +
exp [−a/ln∞ ]

a
+
Gn∞
a3 , (6.3.2)

where En∞ is an energy offset (found to be equal to the energy of the state at
infinite separation), ln∞ is the quantum Debye screening length, which we will
discuss shortly, andGn∞ is a constant, all of which are dependent on the principal
quantum number of the state at infinite distance between the ionic cores n∞.
This increase in kinetic energy only occurs for states, where the electron is located
between the cores (region II in fig. 6.1). For these states, the third term in eq. (6.3.2)
is dominant and, since it is an effect due to the geometry of the system and blocks
the electron from entering the space between the cores, we call this the geometric
blocking term. We have determined Gn∞ for the first few states and found that it
scales as

Gn∞ ∼
(
n∞

2 ∓ n∞
2

)3
∼ n6

∞, (6.3.3)

with the sign of the second term dependent on the global symmetry of the state.
Disregarding the interaction energy of the ionic cores, the first state, where the
electron is located between the cores, becomes energetically favorable at a = 1

2 .
We can determine a length scale

Ln∞ = 2 3
√
Gn∞ ∼ 2n∞2 ∓ n∞, (6.3.4)
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at which it becomes energetically possible for the electron to be located between
the ionic cores. This sets a length scale for the system as a whole.
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Figure 6.5: Energies in systems with 3 (a), 4 (b), 5 (c) core systems and a peri-
odic lattice (d). Interaction energy between the cores has been subtracted for
comparison. For the non periodic lattices (a, b and c), states, where the electron
is located between the cores, only become energetically available inside the
energy bands of a periodic lattice (d), indicated by solid black lines. In all subfig-
ures, dashed black indicate the maximal potential inside the core structure. Some
points are missing due to the resolution that was attainable in the simulation. The
shape of the potential in (d) Vperiodic is modeled as the center-most inner region
of an N = 100 ion regular lattice, with an offset such that the potential at 0 is
Vperiodic(0) = −4/a.

The second term in eq. (6.3.2) is a Yukawa potential, which describes the inter-
action between two charged particles, where the charge is screened at lengths
larger than the Debye length ln∞ . When the electron is situated between the
cores, is free to find the optimally screening wavefunction, and the screening
length for these states is, independently of the state, equal to 1. This screening is a
feature of plasmas, where the charges can move around, such that a test charge
will not experience the full Coulomb potential of nearby charges, but rather a
screened Yukawa potential. This is not the case, when the electron is not located
between the cores.

For states, where the electron is not located between the cores, we do not see
geometric blocking, as the electron wave function can be redistributed, thereby
minimizing the increase in kinetic energy of the system. However, for these states,
the charges of the cores are not as efficiently screened, and we have to consider
the state dependence of the quantum Debye length ln∞ . As can be seen from
the gray dashed lines in Fig. 6.3, which are described by

Y (a) = En∞ +
exp [−a/ln∞ ]

a
, (6.3.5)

where the constants are the same as in eq. (6.3.2). However, for states, where the
electron is not located in the area between the cores, the quantum Debye length
is strongly dependent on the principal quantum number n∞, as counted at infinite
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distance between the cores. Again we find the same length scale dependence
on n∞ as in eq. (6.3.4), as can be seen in fig. 6.3, where gray dashed lines follow
the Yukawa potential eq. (6.3.5) with Debye length

ln∞ = 2n∞2 ∓ n∞ = Ln∞ . (6.3.6)

This provides a universal scaling for the 1D quantum plasma system, which works
well for states, where the electron is located between the ionic cores and states
where the electron is located outside the ionic structure.

Finally, using the rms value of the electron coordinate, shown in fig. 6.4, we can
determine the permanent dipole moment D of the core-electron system in the
presence of a charged ionic core as

Dn(a) =
√
〈z2〉 − a, (6.3.7)

which is dependent on the distance between the ionic cores a and the principal
quantum number n. For states where the electron is located between the ionic
cores, this results in a negative dipole moment and thus an attractive force be-
tween the cores. For states with the electron on the outside of the core structure,
on the other hand, the dipole moment is positive, leading to a repulsive force
between the cores. Thus, we find the energy of the system at large distances as
a multipole expansion

En(a) = En∞ +
Dn(a)

a2 , (6.3.8)

whereEn(a) is the energy of the nth state at core distance a andEn∞ is the energy
at infinite distance between the cores. This expansion is shown with black, dashed
curves in fig. 6.3, and predicts the simulated curves well.

For states where the electron is located between the cores and the energy of
the electron is large enough to pass over the potential barrier between the cores,
we can assume that the electron density is equal to the inverse distance between
the cores 1/a, in 1D. This yields the plasma parameter, equal to the number of
electrons within a Debye length, as

Λ ∼ 2n2
∞ ∓ n∞
a

. (6.3.9)

Forn∞ = 1 this is never larger than 1, since the energy of states, where the electron
is located between the cores, is positive, when a < 1. Therefore the system
is in the regime of strongly coupled plasmas. However, for excited states, the
scaling relation found in eq. (6.3.4) still holds, and both the Debye length and the
distance between the core, where a higher excited electronic state is energetically
available, increase at the same rate and the parameter Λ will asymptotically
approach 1 as n∞ increases.
Increasing the number of ionic cores in the system, which leads to a more natural

net surplus of charge [SV13, Poh03], has a few insights to be revealed, as can be
seen in fig. 6.5, where such systems are shown. The interaction energy between
the ionic cores has been subtracted to make the subfigures comparable. Due to
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limitations in the simulation, a few points are missing from fig. 6.5 d, this is not a
physical phenomenon, but rather a flaw in the simulation.

Fig. 6.5 shows the energies of aperiodic systems with 3, 4 or 5 ionic cores (a
through c) as well as the energy bands found using a periodic lattice where the
shape matches the center most area of a 100 core potential (d). The energies of
the aperiodic systems show two different trends; one is a relatively stable increase
with a corresponding to the 2 core states, where the electron is located outside the
ionic core structure. This is most noticeable outside the energy bands. The other
is a strong drop in energy corresponding to the 2 core states, where the electron
is located between the cores. For systems with N cores, there are N − 1 areas
between the cores, and in fig. 6.5 we indeed observe exactly N − 1 states, where
the electron is located between the cores.

The most striking feature of fig. 6.5, is that the states, where the electron is located
between the cores, fill up the bands of the periodic lattice (subfigure d, and
indicated by black solid lines in a through c) one state at a time, when adjusted
for the energy offset associated with the number of cores. Also indicated in the
figure, by black dashed lines, is the maximal height of the summed Coulomb
potential between the ionic cores, ie. the height of the potential between the first
and second core. For energies higher than what is indicated by these lines, the
electron is free to travel across the entire core structure.

This is essentially an atomic scale conductor, constructed from the ground up,
using a finite size 1D Coulomb lattice. This could provide helpful insights into the
formation of energy bands and the insulator-conductor crossover.

6.4 Two electrons two ionic cores

Increasing the number of electrons in the calculation presents a new set of prob-
lems. First and foremost is the treatment of symmetry in the system, which for a
single electron is limited to parity symmetry. For two electrons, however, we also
have to consider exchange symmetry of the electrons. To facilitate this, we use
Jacobi coordinates, that is a center-of-mass (COM) coordinate R and a relative
coordinate r, indicating the distance between the two electrons. We can then
express the unsymmetrized wave function of the electrons as a function of the
Jacobi coordinates

ψ(r,R). (6.4.1)

We build the symmetrized two-electron wave functions from eq. (6.4.1)

ψSS(r,R) = ψ(r,R) + ψ(−r,R) + ψ(r,−R) + ψ(−r,−R)

ψSA(r,R) = ψ(r,R)− ψ(−r,R)− ψ(r,−R) + ψ(−r,−R)

ψAS(r,R) = ψ(r,R) + ψ(−r,R)− ψ(r,−R)− ψ(−r,−R)

ψAA(r,R) = ψ(r,R)− ψ(−r,R) + ψ(r,−R)− ψ(−r,−R), (6.4.2)

where the subscripts are S (A) for (a)symmetric, the first subscript indicates sym-
metry under parity and the second indicates symmetry under particle exchange.
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Applying the parity P and exchange χ operators to the unsymmetrized two-
electron wave function, we get

Pψ(r,R) = ψ(−r,−R)

χψ(r,R) = ψ(−r,R)

Pχψ(r,R) = χPψ(r,R) = ψ(r,−R). (6.4.3)

Due to the Coulomb interaction between the electrons, the wave function is
always zero when r = 0 and the energy of the state is unchanged under sign
flip of the r coordinate, therefore symmetry considerations only concern what
happens, when R is replaced with −R. For the symmetrized wave functions in
eq. (6.4.2) we find

ψSS(r,−R) = ψSS(r,R)

ψSA(r,−R) = −ψSA(r,R)

ψAS(r,−R) = −ψAS(r,R)

ψAA(r,−R) = ψAA(r,R). (6.4.4)

Thus the symmetry considerations of the two-electron system boil down to R-
symmetric (ψSS and ψAA) and R-asymmetric (ψSA and ψAS) states, whereas
r-symmetry does not influence energy.
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Figure 6.6: Spectrum of two interacting 1D hydrogen atoms Black curves are
R-symmetric states, gray curves are R-asymmetric states. No states with two
electrons in the central region appear due to the strong Coulomb repulsion be-
tween them. Grey dots are the geometric blocking and gray dot-dash are Debye
shielding. Grey dashes are permanent dipole interaction. Dark circles indicate
examples of cusps in energy. The jaggedness of the curves is due to limitations
on computational power.

Taking these symmetry considerations into account, we show the energies of the
1D two-electron-two-core system in fig. 6.6. Solid black curves are R-symmetric
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and solid gray are R-asymmetric. The jaggedness of the lines is due to limitations
in computation time. In the limit of large distance between the cores a, the system
will form two independent 1D atoms from an electron and a core each.

At small core-to-core distances a, the electrons can not be located between the
cores for the same reasons as in the single electron case. Due to the Coulomb
interaction between the electrons, the electrons are located at opposite ends of
the core structure. This can only happen for R-symmetric states, as the electron
center of mass is in the center of the core structure. In fig. 6.6 we see that the
lowest (andR-symmetric) state follows the Yukawa potential (gray dash-dot) of a
screened Coulomb system. However, for R-asymmetric states the center of mass
of the electrons does not lie in the center of the core structure, and one electron is
located between the cores, whereas the other is located outside the cores. These
states are only allowed, when the distance between the cores is large enough
to avoid the geometric blocking discussed in the single electron case. Since one
electron is located outside the core structure, though, the quantum Debye length
of these states is no longer unity for all states, but rather the natural scale of the
system Ln∞ . Combining this with eq. (6.3.2), we get

Υ2(a) = 2En∞ +
exp [−a/Ln∞ ]

a
+
G

(2)
n∞

a3 , (6.4.5)

where G
(2)
n∞ ∼ 2Gn∞ is the two electron equivalent of Gn∞ . These Yukawa

approximations are shown (for the first few states only to avoid confusing the
figure) by the grey dotted curves in fig. 6.6.

For large distances between the cores, the system behaves as two permanent
dipoles, as the electrons do not easily cross the core sites and we can approximate
the energy by

En(a) = En∞ +
D1
n(a)D2

n(a)

a3 , (6.4.6)

where Di
n is the dipole moment of the individual 1D atom. A fair approxima-

tion can be achieved using the dipole moments from the single electron case
(eq. (6.3.7)), as seen in the gray dashed lines in fig. 6.6.

One final feature of the energies seen in fig. 6.6 is the cusp (examples indicated by
circles) in energy for some states, most clearly visible for the lowest R-asymmetric
state around a = 7. We will call the distance, where the cusp is centered (for a
given state) the cusp distance (for that state). For states, where the cusp exists,
this means that a second local minimum exists in energy, resulting in a second
stability point for the bound state of the system. This is a feature of 1D that we can
not expect to see in a system of higher dimensionality, as the electrons can more
freely circumvent the ionic cores.

The cusp only appears for states, where the center of mass of the electrons is
moved away from the core center of mass, which means it is only there for R-
asymmetric states and certain excited R-symmetric states. Since the probability
of finding the electrons at equal but opposite distances from the core center of
mass is zero, along with the strong Coulomb interaction between them, only one
electron can be located between the cores for a smaller than the cusp distance.
When a is larger than the cusp distance, the wavefunction of the second electron
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can partially spill into the area between the cores, giving a small probability of
finding both electrons between the cores. This spilling happens smoothly and we
therefore see this appearing as a small perturbation to the state, rather than a new
state entering the picture. For states where the electron wave function is not zero
for R = 0, this transition happens more gradually and we do not see the cusp in
energy.

6.5 Conclusion and outlook

In this paper we have presented a 1D toy model for the exploration of quantum
plasmas. We have argued for the possibility of using Rydberg atoms in strong
magnetic fields to explore the field of 1D Coulomb systems, due to the strong effect
of the magnetic field along with the pin point accuracy of Rydberg excitation in
atomic clouds.

We have explored the system using a regularized potential, which, while not
significantly influencing the energies of the states, allows the electrons to circum-
vent the ions. This removes some of the most unnatural consequences of the 1D
treatment, previously discussed in literature.

We have presented expressions for the state dependent quantum Debye length
and found natural scaling for the system, which describes all length scales of the
system. This length scale also describes the strength of the geometric blocking
effect, where a rise in kinetic energy forces the electron out of the area between
the ionic cores. This effect is also present in systems with more electrons, and
repeats at larger core distances for the second electron. We have shown useful
expressions for approximating the energies of both one and two electron systems,
beyond the regimes discussed in this paper, with multipole expansions in the
large core distance limit. Further, we presented results of systems with multiple
ionic cores as well as a periodic lattice, and showed that the energy bands of the
system is an emergent feature, building up slowly and visible in even the smallest
1D systems.

This work has been somewhat limited in the achievable size of the simulated
system. Of the two methods used, direct numerical integration of the Schrödinger
equation has yielded the best results in the single electron case, but is difficult
to scale up in number of simulated electrons. The SV method, on the other
hand, is easy to scale up, but has suffered from the singularities intrinsic to the 1D
treatment. We believe that, despite the mediocre results, the SV method is the best
way forward, when expanding the system to 2- or 3D. Scaling up in 1D, however,
the SV method could benefit from basis functions that are specifically designed
for that purpose, but it has not been the intention of this paper to find such basis
functions. Future work should focus on expanding the number of electrons in the
simulation, but increasing both energy resolution as well as convergence would
be of great interest.

As of right now, it is perhaps not feasible to explore the regime experimentally, but
with increasing principal quantum number in state of the art Rydberg experiments,
the required magnetic field strengths can be brought within experimental reach.
It would be of extreme interest to see experimental exploration of a quasi 1D
Coulomb regime.

97



Acknowledgments

This research was financially supported by the Foundation for Fundamental Re-
search on Matter (FOM), and by the Netherlands Organization for Scientific Re-
search (NWO). We also acknowledge the European Union H2020 FET Proactive
project RySQ (grant N. 640378).

98



7Acknowledgement

This thesis represents the culmination of a lifelong interest in physics and the
realisation of a dream I have held since childhood. It would not have been
possible for me to achieve this without the help and support of people around me,
and of course the financial support of FOM, which about halfway through my PhD
became part of NWO.

First of all I would like to thank Servaas and Edgar for giving me the opportunity
and for the huge amount of work they have put into the roles as supervisors. Ser-
vaas, you have not only supplied fruitful discussions on the research and supported
my work, but also provided a great working environment. Always a happy face
at group meetings. I also appreciate your annual christmas lunches, bringing your
PhD students together in your home. Both I and Christina enjoyed that very much,
and we almost miss making 6 litres of risalamande for you and your children. I
would also like to thank you for attending our wedding and for the speech you
gave at the occasion. Edgar, thank you for your stern reading of my manuscripts
without which, most would not have been of the quality they are or perhaps even
published. Your feedback has always been quick and precise, giving me a solid
base to work from.

I would also like to thank the technical staff at CQT, especially Iman, who has
put up with my chats over the morning coffee for several years, and was always
happy to talk over the state of the universe or some cool equipment you were
building at those early hours before the rest of our colleges showed up. Though I
have no expertise in electronics, I believe those morning chats gave me at least a
minimal insight into the art and craft of electronic designs. Thank you to Harry and
Marco, who were my "victims", when Iman was out. And also to Eddie for your
tales of hunting and trips to "Schiesskino", and Ton whom I could still be talking to
over coffee to this day. My thanks go out to Betty, for handling all the office tasks
and paperwork. For finding my first home and putting up with my slobby travel
permits.

Of course my time at CQT would not have been the same without my fellow PhD
students. Together, we spent many Thursday evenings at the Caroussel, trying to
win the pub quiz, though I think third place was the best we ever achieved. In
my first weeks, I went to Durham with Steinar and Gijs, the two experienced PhD
students in the group, who introduced me to life with paid lunch, drinks and Dutch
card games. Though, we worked on unrelated subjects I think you both were
part of what made my time at CQT special. Steinar, we pranked each other and
sometimes you deviced something truly devilish, but your conscience always got
the better of you, when you thought you crossed the line. I hope you had as much
fun as I did. Gijs, you introduced me to the real Dutch cuisine of kapsalon, though

99



I never quite understood your preference for the place that got Mark sick. Starting
their PhDs roughly at the time as me were Wouter, Jasper and my experimental
counterpart Tarun. Wouter, you were always up for a drink Thursdays and I think
you were part of the life and soul of our merry band of PhD students. Jasper, you
always tried to get me to join the soccer team. I hope you have had more success
with your new house. I will forever associate the name Jasper with cats and pizzas.
Tarun, you were responsible for the experimental part of our project, and I was
sad that it didn’t work out. We have shared posters at many conferences, trying to
encompass two rapidly diverting subprojects. I think we both experienced both
the sinking feeling of failure and the joy of success of the project during our time
working together. Thomas, though your computer was blowing hot air across my
desk all the time, I think you were a great office buddy. Marc, Jim and Wiebe, the
experimental people one could pull a prank on, when you were in the lab. Silvia,
Denise, Paul and Victor, Servaases new crew. I hope you will have as much fun
in the future as we did, when I was there. May the Carrousel quiz master smile at
you all.

My thanks also go out to my family. To my mum, dad, my sister Anne Christine
and her family, who nurtured my interest in physics since I was young. Thank you
for supporting my dreams and for pushing me forward. I felt comfortable going
abroad for my PhD, knowing that I would always find a good time and a place
to sleep, when I went home to for holidays and family occasions. Both me and
Christina looked forward to your visits.

Christina, before I left for Eindhoven, I asked you if it was ok. Had I known at the
time how many tears both of us would shed, saying goodbye on the train stations
in Aarhus and Eindhoven, I would probably not have left. Thank you for saying
yes to me leaving, thanking for saying yes to moving to Eindhoven with me and
finally thank you for saying yes to me on the 12th of August 2017. Without you, I
would not have made it, tak.

100



Bibliography

[Aas16] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham et al., Milestones
Toward Majorana-Based Quantum Computing, Phys. Rev. X 6, 031016
(2016), doi:10.1103/PhysRevX.6.031016.

[Alb15] T. Albash, T. Rønnow, M. Troyer and D. Lidar, Reexamining classical
and quantum models for the D-Wave One processor, The European
Physical Journal Special Topics 224, 111 (2015), ISSN 1951-6401, doi:
10.1140/epjst/e2015-02346-0.

[Aru19] F. Arute, K. Arya, R. Babbush, D. Bacon et al., Quantum supremacy using
a programmable superconducting processor, Nature 574, 505 (2019),
ISSN 1476-4687, doi:10.1038/s41586-019-1666-5.

[Ate07a] C. Ates, T. Pohl, T. Pattard and J. M. Rost, Antiblockade in Rydberg
Excitation of an Ultracold Lattice Gas, Phys. Rev. Lett. 98, 023002 (2007),
doi:10.1103/PhysRevLett.98.023002.

[Ate07b] C. Ates, T. Pohl, T. Pattard and J. M. Rost, Many-body theory of excitation
dynamics in an ultracold Rydberg gas, Phys. Rev. A 76, 013413 (2007).

[Ate11] C. Ates, S. Sevinçli and T. Pohl, Electromagnetically induced trans-
parency in strongly interacting Rydberg gases, Phys. Rev. A 83, 041802
(2011), doi:10.1103/PhysRevA.83.041802.

[B8́7] L. Bányai, I. Galbraith, C. Ell and H. Haug, Excitons and biexcitons in
semiconductor quantum wires, Phys. Rev. B 36, 6099 (1987), doi:10.
1103/PhysRevB.36.6099.

[Bal16] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol and D. M. Lu-
cas, High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine
Qubits, Phys. Rev. Lett. 117, 060504 (2016), doi:10.1103/PhysRevLett.
117.060504.

[Bal17] C. J. Ball, P.-F. Loos and P. M. W. Gill, Molecular electronic structure in
one-dimensional Coulomb systems, Phys. Chem. Chem. Phys. 19, 3987
(2017), doi:10.1039/C6CP06801D.

[Bar95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo et al., Elementary
gates for quantum computation, Phys. Rev. A 52, 3457 (1995), doi:
10.1103/PhysRevA.52.3457.

101

http://dx.doi.org/10.1103/PhysRevX.6.031016
http://dx.doi.org/10.1140/epjst/e2015-02346-0
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1103/PhysRevLett.98.023002
https://link.aps.org/doi/10.1103/PhysRevA.76.013413
http://dx.doi.org/10.1103/PhysRevA.83.041802
http://dx.doi.org/10.1103/PhysRevB.36.6099
http://dx.doi.org/10.1103/PhysRevLett.117.060504
http://dx.doi.org/10.1103/PhysRevLett.117.060504
http://dx.doi.org/10.1039/C6CP06801D
http://dx.doi.org/10.1103/PhysRevA.52.3457


[Bar13] W. Barford, Excitons in Conjugated Polymers: A Tale of Two Particles,
The Journal of Physical Chemistry A 117, 2665 (2013), doi:10.1021/
jp310110r. PMID: 23427996.

[Bar16] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye and A. Browaeys,
An atom-by-atom assembler of defect-free arbitrary two-dimensional
atomic arrays, Science 354, 1021 (2016), ISSN 0036-8075, doi:10.1126/
science.aah3778.

[Bea03] S. Beauregard, Circuit for Shor’s Algorithm Using 2N+3 Qubits, Quantum
Info. Comput. 3, 175 (2003), ISSN 1533-7146.

[Bel13] M. A. Bellos, R. Carollo, J. Banerjee, E. E. Eyler, P. L. Gould and W. C.
Stwalley, Excitation of Weakly Bound Molecules to Trilobitelike Rydberg
States, Phys. Rev. Lett. 111, 053001 (2013), doi:10.1103/PhysRevLett.
111.053001.

[Ben08] J. Benhelm, G. Kirchmair, C. F. Roos and R. Blatt, Towards fault-tolerant
quantum computing with trapped ions, Nature Physics 4, 463 EP (2008).

[Ber97] E. Bernstein and U. Vazirani, Quantum Complexity Theory, SIAM Journal
on Computing 26, 1411 (1997), doi:10.1137/S0097539796300921.

[Bet09] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov and V. M. Entin, Quasiclassical
calculations of blackbody-radiation-induced depopulation rates and
effective lifetimes of Rydberg nS, nP , and nD alkali-metal atoms with
n ≤ 80, Phys. Rev. A 79, 052504 (2009), doi:10.1103/PhysRevA.79.
052504.

[Bet15] I. I. Beterov and M. Saffman, Rydberg blockade, Förster resonances, and
quantum state measurements with different atomic species, Phys. Rev.
A 92, 042710 (2015), doi:10.1103/PhysRevA.92.042710.

[Bij11] R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt
and S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals
with chirped laser pulses, Journal of Physics B: Atomic, Molecular and
Optical Physics 44, 184008 (2011).

[Bij13] R. van Bijnen, Quantum Engineering with Ultracold Atoms, Ph.D. thesis,
Eindhoven University of Technology (2013).

[Bij14] R. M. W. van Bijnen, C. Ravensbergen, D. Bakker, G. J. Dijk, S. Kokkelmans
and E. Vredenbregt, Patterned Rydberg excitation and ionisation with a
spatial light modulator, New Journal of Physics 17 (2014), doi:10.1088/
1367-2630/17/2/023045.

[Bij15] R. M. W. van Bijnen, C. Ravensbergen, D. J. Bakker, G. J. Dijk, S. J. J. M. F.
Kokkelmans and E. J. D. Vredenbregt, Patterned Rydberg excitation and
ionization with a spatial light modulator, New Journal of Physics 17,
023045 (2015), doi:10.1088/1367-2630/17/2/023045.

102

http://dx.doi.org/10.1021/jp310110r
http://dx.doi.org/10.1126/science.aah3778
http://dl.acm.org/citation.cfm?id=2011517.2011525
http://dx.doi.org/10.1103/PhysRevLett.111.053001
http://dx.doi.org/10.1103/PhysRevLett.111.053001
https://doi.org/10.1038/nphys961
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1103/PhysRevA.79.052504
http://dx.doi.org/10.1103/PhysRevA.92.042710
http://stacks.iop.org/0953-4075/44/i=18/a=184008
http://stacks.iop.org/0953-4075/44/i=18/a=184008
http://dx.doi.org/10.1088/1367-2630/17/2/023045
http://dx.doi.org/10.1088/1367-2630/17/2/023045
http://dx.doi.org/10.1088/1367-2630/17/2/023045
http://dx.doi.org/10.1088/1367-2630/17/2/023045


[Boc99] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents and
P. L. McEuen, Luttinger-liquid behaviour in carbon nanotubes, Nature
397, 598 EP (1999).

[Boe18] A. G. Boetes, R. V. Skannrup, J. Naber, S. J. J. M. F. Kokkelmans and R. J. C.
Spreeuw, Trapping of Rydberg atoms in tight magnetic microtraps, Phys.
Rev. A 97, 013430 (2018), doi:10.1103/PhysRevA.97.013430.

[Boi02] C. Boisseau, I. Simbotin and R. Côté, Macrodimers: Ultralong Range
Rydberg Molecules, Phys. Rev. Lett. 88, 133004 (2002), doi:10.1103/
PhysRevLett.88.133004.

[Boi18] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush et al., Characteriz-
ing quantum supremacy in near-term devices, Nature Physics 14, 595
(2018), ISSN 1745-2481, doi:10.1038/s41567-018-0124-x.

[Bon10] M. Bonitz, N. Horning and L. P., Introduction to Complex Plasmas,
Springer Berlin Heidelberg (2010), ISBN 9783642105913, doi:10.1007/
978-3-642-10592-0.

[Boo15] D. Booth, S. T. Rittenhouse, J. Yang, H. R. Sadeghpour and J. P. Shaffer,
Production of trilobite Rydberg molecule dimers with kilo-Debye perma-
nent electric dipole moments, Science 348, 99 (2015), ISSN 0036-8075,
doi:10.1126/science.1260722.

[Bra03] B. Bransden, C. Joachain and T. Plivier, Physics of Atoms and Molecules,
Pearson Education, Prentice Hall (2003), ISBN 9780582356924.

[Bra09] D. B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa et al., Radiative life-
time measurements of rubidium Rydberg states, Journal of Physics
B: Atomic, Molecular and Optical Physics 43, 015002 (2009), doi:
10.1088/0953-4075/43/1/015002.

[Bre00] K.-H. Brenner, Method for designing arbitrary two-dimensional continu-
ous phase elements, Opt. Lett. 25, 31 (2000), doi:10.1364/OL.25.000031.

[Bri07] E. Brion, L. H. Pedersen and K. Mølmer, Adiabatic elimination in a lambda
system, Journal of Physics A: Mathematical and Theoretical 40, 1033
(2007), ISSN 1751-8121.

[Bro16] A. Browaeys, D. Barredo and T. Lahaye, Experimental investigations of
dipole–dipole interactions between a few Rydberg atoms, Journal of
Physics B: Atomic, Molecular and Optical Physics 49, 152001 (2016).

[Bru15a] G. D. Bruce, T. Harte, D. Bowman, P. Ireland, J. Keeling and D. Casset-
tari, Phase-engineered Light Patterns for Ultracold Atom Experiments,
in 2015 European Conference on Lasers and Electro-Optics - European
Quantum Electronics Conference, Optical Society of America (2015).

[Bru15b] G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh
and D. Cassettari, Feedback-enhanced algorithm for aberration correc-
tion of holographic atom traps, Journal of Physics B: Atomic, Molecular

103

http://dx.doi.org/10.1038/17569
http://dx.doi.org/10.1038/17569
http://dx.doi.org/10.1103/PhysRevA.97.013430
http://dx.doi.org/10.1103/PhysRevA.97.013430
http://dx.doi.org/10.1103/PhysRevLett.88.133004
http://dx.doi.org/10.1038/s41567-018-0124-x
http://dx.doi.org/10.1007/978-3-642-10592-0
http://dx.doi.org/10.1126/science.1260722
https://books.google.nl/books?id=ST_DwIGZeTQC
http://dx.doi.org/10.1088/0953-4075/43/1/015002
http://dx.doi.org/10.1364/OL.25.000031
http://stacks.iop.org/1751-8121/40/i=5/a=011
http://stacks.iop.org/0953-4075/49/i=15/a=152001
http://www.osapublishing.org/abstract.cfm?URI=EQEC-2015-EC_P_1
http://www.osapublishing.org/abstract.cfm?URI=EQEC-2015-EC_P_1
http://dx.doi.org/10.1088/0953-4075/48/11/115303
http://dx.doi.org/10.1088/0953-4075/48/11/115303


and Optical Physics 48, 115303 (2015), doi:10.1088/0953-4075/48/
11/115303.

[Büc07] H. P. Büchler, A. Micheli and P. Zoller, Three-body interactions with cold
polar?molecules, Nature Physics 3, 726 (2007), ISSN 1745-2481, doi:
10.1038/nphys678.

[Car12] J. D. Carter, O. Cherry and J. D. D. Martin, Electric-field sensing near the
surface microstructure of an atom chip using cold Rydberg atoms, Phys.
Rev. A 86, 053401 (2012), doi:10.1103/PhysRevA.86.053401.

[CGm] Correlated Gaussian Method in Quantum Mechanics, https:

//en.wikibooks.org/wiki/Correlated_Gaussian_method_in_

Quantum_Mechanics. Accessed: 2019-03-27.

[Cha03] A. M. Chang, Chiral Luttinger liquids at the fractional quantum Hall edge,
Rev. Mod. Phys. 75, 1449 (2003), doi:10.1103/RevModPhys.75.1449.

[Cha07] J.-C. Charlier, X. Blase and S. Roche, Electronic and transport properties
of nanotubes, Rev. Mod. Phys. 79, 677 (2007), doi:10.1103/RevModPhys.
79.677.

[Che16] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan et al., Ob-
servation of spatial charge and spin correlations in the 2D Fermi-
Hubbard model, Science 353, 1260 (2016), ISSN 0036-8075, doi:
10.1126/science.aag3349.

[Cho05] J. H. Choi, J. R. Guest, A. P. Povilus, E. Hansis and G. Raithel, Magnetic
Trapping of Long-Lived Cold Rydberg Atoms, Phys. Rev. Lett. 95, 243001
(2005), doi:10.1103/PhysRevLett.95.243001.

[Cir95] J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions,
Phys. Rev. Lett. 74, 4091 (1995), doi:10.1103/PhysRevLett.74.4091.

[Cir12] J. I. Cirac and P. Zoller, Goals and opportunities in quantum simulation,
Nature Physics 8, 264 EP (2012).

[Col89] N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass and I. Underwood,
Evolutionary development of advanced liquid crystal spatial light mod-
ulators, Appl. Opt. 28, 4740 (1989), doi:10.1364/AO.28.004740.

[Cop17] B. J. Copeland, The Modern History of Computing, in E. N. Zalta (ed.)
The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab,
Stanford University, winter 2017 edn. (2017).

[Dav02] T. Davis, 2D magnetic traps for ultra-cold atoms: a simple theory using
complex numbers, The European Physical Journal D - Atomic, Molecular,
Optical and Plasma Physics 18, 27 (2002), ISSN 1434-6079, doi:10.
1140/e10053-002-0003-x.

[Deg17] C. L. Degen, F. Reinhard and P. Cappellaro, Quantum sensing, Rev. Mod.
Phys. 89, 035002 (2017), doi:10.1103/RevModPhys.89.035002.

104

http://dx.doi.org/10.1038/nphys678
http://dx.doi.org/10.1103/PhysRevA.86.053401
https://en.wikibooks.org/wiki/Correlated_Gaussian_method_in_Quantum_Mechanics
https://en.wikibooks.org/wiki/Correlated_Gaussian_method_in_Quantum_Mechanics
https://en.wikibooks.org/wiki/Correlated_Gaussian_method_in_Quantum_Mechanics
http://dx.doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1126/science.aag3349
http://dx.doi.org/10.1103/PhysRevLett.95.243001
http://dx.doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1038/nphys2275
http://dx.doi.org/10.1364/AO.28.004740
http://dx.doi.org/10.1140/e10053-002-0003-x
http://dx.doi.org/10.1103/RevModPhys.89.035002


[Deu85] D. Deutsch and R. Penrose, Quantum theory, the Church-Turing principle
and the universal quantum computer, Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 400, 97 (1985), doi:
10.1098/rspa.1985.0070.

[DiV00] D. P. DiVincenzo, The Physical Implementation of Quantum Com-
putation, Fortschritte der Physik 48, 771 (2000), doi:10.1002/
1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.

[Dun18] A. Dunsworth, R. Barends, Y. Chen, Z. Chen et al., A method for build-
ing low loss multi-layer wiring for superconducting microwave devices,
Applied Physics Letters 112, 063502 (2018), doi:10.1063/1.5014033.

[Egg98] R. Egger and A. Gogolin, Correlated transport and non-Fermi-liquid be-
havior in single-wall carbon nanotubes, The European Physical Journal
B - Condensed Matter and Complex Systems 3, 281 (1998), ISSN 1434-
6036, doi:10.1007/s100510050315.

[Eng14] W. Engelen, E. Smakman, D. Bakker, O. Luiten and E. Vredenbregt, Ef-
fective temperature of an ultracold electron source based on near-
threshold photoionization, Ultramicroscopy 136, 73 (2014), ISSN 0304-
3991, doi:https://doi.org/10.1016/j.ultramic.2013.07.017.

[Fey82] R. P. Feynman, Simulating physics with computers, International Journal
of Theoretical Physics 21, 467 (1982), ISSN 1572-9575, doi:10.1007/
BF02650179.

[Fin94] A. Finnila, M. Gomez, C. Sebenik, C. Stenson and J. Doll, Quan-
tum annealing: A new method for minimizing multidimensional func-
tions, Chemical Physics Letters 219, 343 (1994), ISSN 0009-2614, doi:
https://doi.org/10.1016/0009-2614(94)00117-0.

[fla17] Quantum Technologies Flagship Intermediate Report (2017).
Https://ec.europa.eu/digital-single-market/en/news/intermediate-
report-quantum-flagship-high-level-expert-group.

[Fol00] R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier and J. Schmied-
mayer, Controlling Cold Atoms using Nanofabricated Surfaces: Atom
Chips, Phys. Rev. Lett. 84, 4749 (2000), doi:10.1103/PhysRevLett.84.
4749.

[Fol02] R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag and C. Henkel,
Microscopic Atom Optics: From Wires to an Atom Chip, in B. Bed-
erson and H. Walther (eds.) Advances In Atomic, Molecular, and
Optical Physics, vol. 48, Academic Press, pp. 263–356 (2002), doi:
10.1016/S1049-250X(02)80011-8.

[For99] L. Fortnow and J. Rogers, Complexity Limitations on Quantum Compu-
tation, Journal of Computer and System Sciences 59, 240 (1999), ISSN
0022-0000, doi:https://doi.org/10.1006/jcss.1999.1651.

105

http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1063/1.5014033
http://dx.doi.org/10.1007/s100510050315
http://dx.doi.org/https://doi.org/10.1016/j.ultramic.2013.07.017
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/https://doi.org/10.1016/0009-2614(94)00117-0
http://dx.doi.org/10.1103/PhysRevLett.84.4749
http://dx.doi.org/10.1103/PhysRevLett.84.4749
http://dx.doi.org/10.1016/S1049-250X(02)80011-8
http://dx.doi.org/10.1016/S1049-250X(02)80011-8
http://dx.doi.org/10.1016/S1049-250X(02)80011-8
http://dx.doi.org/https://doi.org/10.1006/jcss.1999.1651


[Fre06] T. Freeth, Y. Bitsakis, X. Moussas, J. H. Seiradakis et al., Decoding
the ancient Greek astronomical calculator known as the Antikythera
Mechanism, Nature 444, 587 (2006), ISSN 1476-4687, doi:10.1038/
nature05357.

[Fri08] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras and T. Schaetz,
Simulating a quantum magnet with trapped?ions, Nature Physics 4,
757 EP (2008).

[Fu18] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren et al., A Microarchitecture
for a Superconducting Quantum Processor, IEEE Micro 38, 40 (2018),
ISSN 0272-1732, doi:10.1109/MM.2018.032271060.

[G1̈4] M. Gärttner, S. Whitlock, D. W. Schönleber and J. Evers, Semianalytical
model for nonlinear absorption in strongly interacting Rydberg gases,
Phys. Rev. A 89, 063407 (2014), doi:10.1103/PhysRevA.89.063407.

[Gae16] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan et al., High-Fidelity Universal
Gate Set for 9Be

+
Ion Qubits, Phys. Rev. Lett. 117, 060505 (2016), doi:

10.1103/PhysRevLett.117.060505.

[Gal94] T. F. Gallagher, Rydberg Atoms, Cambridge Monographs on Atomic,
Molecular and Chemical Physics, Cambridge University Press, 1st edn.
(1994), ISBN 521021669, doi:10.1017/CBO9780511524530.

[Gal05] T. Gallagher, Rydberg Atoms, Cambridge Monographs on Atomic,
Molecular and Chemical Physics, Cambridge University Press (2005),
ISBN 9780521021661.

[Gam20] F. M. Gambetta, W. Li, F. Schmidt-Kaler and I. Lesanovsky, Engineering
NonBinary Rydberg Interactions via Phonons in an Optical Lattice, Phys.
Rev. Lett. 124, 043402 (2020), doi:10.1103/PhysRevLett.124.043402.

[GC10] J. Graham-Cumming, Let’s build Babbage’s ultimate mechanical com-
puter, New Scientist (2010).

[Geo14] I. M. Georgescu, S. Ashhab and F. Nori, Quantum simulation, Rev. Mod.
Phys. 86, 153 (2014), doi:10.1103/RevModPhys.86.153.

[Ger06] R. Gerritsma and R. J. C. Spreeuw, Topological constraints on magneto-
static traps, Phys. Rev. A 74, 043405 (2006), doi:10.1103/PhysRevA.74.
043405.

[Ger10] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt and C. F. Roos,
Quantum simulation of the Dirac equation, Nature 463, 68 EP (2010).

[Gne09] Y. Gnedin, A. Mihajlov, L. Ignjatović, N. Sakan et al., Rydberg atoms
in astrophysics, New Astronomy Reviews 53, 259 (2009), ISSN 1387-
6473, doi:https://doi.org/10.1016/j.newar.2009.07.003. Proceedings of
the VII Serbian Conference on Spectral Line Shapes (VII SCSLSA) held
in Zrenjanin, Serbia June 15th-19th 2009.

106

http://dx.doi.org/10.1038/nature05357
https://doi.org/10.1038/nphys1032
http://dx.doi.org/10.1109/MM.2018.032271060
http://dx.doi.org/10.1103/PhysRevA.89.063407
http://dx.doi.org/10.1103/PhysRevLett.117.060505
http://dx.doi.org/10.1017/CBO9780511524530
http://dx.doi.org/10.1103/PhysRevLett.124.043402
https://www.newscientist.com/article/mg20827915-500-lets-build-babbages-ultimate-mechanical-computer/
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/PhysRevA.74.043405
https://doi.org/10.1038/nature08688
http://dx.doi.org/https://doi.org/10.1016/j.newar.2009.07.003


[Gre91] C. H. Greene and M. Aymar, Spin-orbit effects in the heavy alkaline-earth
atoms, Phys. Rev. A 44, 1773 (1991), doi:10.1103/PhysRevA.44.1773.

[Gri03] D. G. Grier, A revolution in optical manipulation, Nature 424, 810 (2003),
ISSN 1476-4687, doi:10.1038/nature01935.

[Gro96] L. K. Grover, A Fast Quantum Mechanical Algorithm for Database Search,
in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory
of Computing, ACM, New York, NY, USA (1996), STOC ’96, pp. 212–219,
ISBN 0-89791-785-5, doi:10.1145/237814.237866.

[Gro97] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a
Haystack, Phys. Rev. Lett. 79, 325 (1997), doi:10.1103/PhysRevLett.79.
325.

[Gro99] L. K. Grover, Quantum mechanical searching, in Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),
vol. 3 (1999), vol. 3, pp. 2255–2261 Vol. 3, doi:10.1109/CEC.1999.
785555.

[H1̈3] M. Höning, D. Muth, D. Petrosyan and M. Fleischhauer, Steady-state crys-
tallization of Rydberg excitations in an optically driven lattice gas, Phys.
Rev. A 87, 023401 (2013), doi:10.1103/PhysRevA.87.023401.

[Hai69] L. K. Haines and D. H. Roberts, One-Dimensional Hydrogen Atom, Amer-
ican Journal of Physics 37, 1145 (1969), doi:10.1119/1.1975232.

[Han14] A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong,
A. J. Landahl and G. W. Biedermann, Two-atom Rydberg blockade
using direct 6S to nP excitation, Phys. Rev. A 89, 033416 (2014), doi:
10.1103/PhysRevA.89.033416.

[Har17] A. W. Harrow and A. Montanaro, Quantum computational supremacy,
Nature 549, 203 EP (2017).

[Har19] R. Harper and S. T. Flammia, Fault-Tolerant Logical Gates in the IBM
Quantum Experience, Phys. Rev. Lett. 122, 080504 (2019), doi:10.1103/
PhysRevLett.122.080504.

[Has61] H. Hasegawa and R. Howard, Optical absorption spectrum of hydro-
genic atoms in a strong magnetic field, Journal of Physics and Chemistry
of Solids 21, 179 (1961), ISSN 0022-3697, doi:https://doi.org/10.1016/
0022-3697(61)90097-X.

[He90] X. He, B. Li, A. Chen and C. Zhang, Model-potential calculation of life-
times of Rydberg states of alkali atoms, Journal of Physics B: Atomic,
Molecular and Optical Physics 23, 661 (1990), doi:10.1088/0953-4075/
23/4/001.

[Hee12] K. P. Heeg, M. Gärttner and J. Evers, Hybrid model for Rydberg gases
including exact two-body correlations, Phys. Rev. A 86, 063421 (2012).

107

http://dx.doi.org/10.1103/PhysRevA.44.1773
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1109/CEC.1999.785555
http://dx.doi.org/10.1103/PhysRevA.87.023401
http://dx.doi.org/10.1119/1.1975232
http://dx.doi.org/10.1103/PhysRevA.89.033416
http://dx.doi.org/10.1103/PhysRevA.89.033416
https://doi.org/10.1038/nature23458
http://dx.doi.org/10.1103/PhysRevLett.122.080504
http://dx.doi.org/https://doi.org/10.1016/0022-3697(61)90097-X
http://dx.doi.org/10.1088/0953-4075/23/4/001
https://link.aps.org/doi/10.1103/PhysRevA.86.063421


[Hel16] S. Helmrich, A. Arias, N. Pehoviak and S. Whitlock, Two-body interactions
and decay of three-level Rydberg-dressed atoms, Journal of Physics B:
Atomic, Molecular and Optical Physics 49, 03LT02 (2016).

[Hez06] B. Hezel, I. Lesanovsky and P. Schmelcher, Controlling Ultracold Rydberg
Atoms in the Quantum Regime, Phys. Rev. Lett. 97, 223001 (2006), doi:
10.1103/PhysRevLett.97.223001.

[Hez07] B. Hezel, I. Lesanovsky and P. Schmelcher, Ultracold Rydberg atoms
in a Ioffe-Pritchard trap, Phys. Rev. A 76, 053417 (2007), doi:10.1103/
PhysRevA.76.053417.

[Hor90] L. J. Hornbeck, Deformable-Mirror Spatial Light Modulators (1990), doi:
10.1117/12.962188.

[Hu,02] Hu, Z., Knupfer, M., Kielwein, M., Rößler, U. K. et al., The electronic structure
of the doped one-dimensional transition metal oxide Y2-xCaxBaNiO5
studied using X-ray absorption, Eur. Phys. J. B 26, 449 (2002), doi:10.
1140/epjb/e20020113.

[Hua19] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu et al., Fidelity benchmarks
for two-qubit gates in silicon, Nature (2019), ISSN 1476-4687, doi:10.
1038/s41586-019-1197-0.

[IMB] IMB Q Experience, https://quantumexperience.ng.bluemix.net/

qx/editor. Accessed: 12-4-2019.

[Ise10a] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill et al., Demonstration of
a Neutral Atom Controlled-NOT Quantum Gate, Phys. Rev. Lett. 104,
010503 (2010), doi:10.1103/PhysRevLett.104.010503.

[Ise10b] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill et al., Demonstration of
a Neutral Atom Controlled-NOT Quantum Gate, Phys. Rev. Lett. 104,
010503 (2010), doi:10.1103/PhysRevLett.104.010503.

[Jak00a] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté and M. D. Lukin,
Fast Quantum Gates for Neutral Atoms, Phys. Rev. Lett. 85, 2208 (2000),
doi:10.1103/PhysRevLett.85.2208.

[Jak00b] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté and M. D. Lukin,
Fast Quantum Gates for Neutral Atoms, Phys. Rev. Lett. 85, 2208 (2000),
doi:10.1103/PhysRevLett.85.2208.

[Jau15] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch and G. W. Biedermann,
Entangling atomic spins with a Rydberg-dressed spin-flip blockade,
Nature Physics 12, 71 EP (2015). Article.

[Jon98] J. A. Jones, M. Mosca and R. H. Hansen, Implementation of a quantum
search algorithm on a quantum computer, Nature 393, 344 (1998), ISSN
1476-4687, doi:10.1038/30687.

108

http://stacks.iop.org/0953-4075/49/i=3/a=03LT02
http://dx.doi.org/10.1103/PhysRevLett.97.223001
http://dx.doi.org/10.1103/PhysRevA.76.053417
http://dx.doi.org/10.1117/12.962188
http://dx.doi.org/10.1140/epjb/e20020113
http://dx.doi.org/10.1038/s41586-019-1197-0
https://quantumexperience.ng.bluemix.net/qx/editor
https://quantumexperience.ng.bluemix.net/qx/editor
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1038/nphys3487
http://dx.doi.org/10.1038/30687


[Jur14] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt and C. F.
Roos, Quasiparticle engineering and entanglement propagation in a
quantum many-body system, Nature 511, 202 EP (2014).

[Kan17] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow and
J. M. Gambetta, Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets, Nature 549, 242 EP (2017).

[Kap16] M. Kaplan, G. Leurent, A. Leverrier and M. Naya-Plasencia, Breaking
Symmetric Cryptosystems Using Quantum Period Finding, in M. Rob-
shaw and J. Katz (eds.) Advances in Cryptology – CRYPTO 2016,
Springer Berlin Heidelberg, Berlin, Heidelberg (2016), pp. 207–237, ISBN
978-3-662-53008-5.

[Kar17] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson et al., Scalable designs for
quasiparticle-poisoning-protected topological quantum computation
with Majorana zero modes, Phys. Rev. B 95, 235305 (2017), doi:10.
1103/PhysRevB.95.235305.

[Kau12] A. M. Kaufman, B. J. Lester and C. A. Regal, Cooling a Single Atom in an
Optical Tweezer to Its Quantum Ground State, Phys. Rev. X 2, 041014
(2012), doi:10.1103/PhysRevX.2.041014.

[Kim09a] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan and C. Monroe,
Entanglement and Tunable Spin-Spin Couplings between Trapped Ions
Using Multiple Transverse Modes, Phys. Rev. Lett. 103, 120502 (2009),
doi:10.1103/PhysRevLett.103.120502.

[Kim09b] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan and C. Monroe,
Entanglement and Tunable Spin-Spin Couplings between Trapped Ions
Using Multiple Transverse Modes, Phys. Rev. Lett. 103, 120502 (2009),
doi:10.1103/PhysRevLett.103.120502.

[Kim10] K. Kim, M.-S. Chang, S. Korenblit, R. Islam et al., Quantum simulation of
frustrated Ising spins with trapped ions, Nature 465, 590 EP (2010).

[Kir09a] G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C. F. Roos and
R. Blatt, Deterministic entanglement of ions in thermal states of motion,
New Journal of Physics 11, 023002 (2009), doi:10.1088/1367-2630/
11/2/023002.

[Kir09b] G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C. F. Roos and
R. Blatt, Deterministic entanglement of ions in thermal states of motion,
New Journal of Physics 11, 023002 (2009).

[Kru02] A. Krug and A. Buchleitner, Microwave ionization of alkali-metal Ryd-
berg states in a realistic numerical experiment, Phys. Rev. A 66, 053416
(2002), doi:10.1103/PhysRevA.66.053416.

[Lab16] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye
and A. Browaeys, Tunable two-dimensional arrays of single Rydberg
atoms for realizing quantum Ising models, Nature 534, 667 (2016), ISSN
0028-0836.

109

https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
http://dx.doi.org/10.1103/PhysRevB.95.235305
http://dx.doi.org/10.1103/PhysRevX.2.041014
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1103/PhysRevLett.103.120502
https://doi.org/10.1038/nature09071
http://dx.doi.org/10.1088/1367-2630/11/2/023002
http://dx.doi.org/10.1088/1367-2630/11/2/023002
http://stacks.iop.org/1367-2630/11/i=2/a=023002
http://stacks.iop.org/1367-2630/11/i=2/a=023002
http://dx.doi.org/10.1103/PhysRevA.66.053416
http://dx.doi.org/10.1038/nature18274
http://dx.doi.org/10.1038/nature18274


[Lad10] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J. L.
O’Brien, Quantum computers, Nature 464, 45 EP (2010). Review Article.

[Lan91] V. Lange, M. A. Khan, U. Eichmann and W. Sandner, Rydberg states of
the strontium ion, Zeitschrift für Physik D Atoms, Molecules and Clusters
18, 319 (1991), ISSN 1431-5866, doi:10.1007/BF01426593.

[Lan11] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller et al., Universal Digital Quan-
tum Simulation with Trapped Ions, Science 334, 57 (2011), ISSN 0036-
8075, doi:10.1126/science.1208001.

[LaR19] R. LaRose, Overview and Comparison of Gate Level Quantum Soft-
ware Platforms, Quantum 3, 130 (2019), ISSN 2521-327X, doi:10.22331/
q-2019-03-25-130.

[Lee16] W. Lee, H. Kim and J. Ahn, Three-Dimensional Dynamic Reconfiguration
of Single-Atom Arrays Using Liquid-Crystal Spatial Light Modulator, in
Conference on Lasers and Electro-Optics, Optical Society of America
(2016), p. FM2C.4, doi:10.1364/CLEO_QELS.2016.FM2C.4.

[Lei03] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas et al., Experimental demon-
stration of a robust, high-fidelity geometric two ion-qubit phase gate,
Nature 422, 412 EP (2003).

[LeR70] R. J. LeRoy and R. B. Bernstein, Dissociation energies of diatomic
moleculles from vibrational spacings of higher levels: application to
the halogens*, Chemical Physics Letters 5, 42 (1970), ISSN 0009-2614,
doi:https://doi.org/10.1016/0009-2614(70)80125-7.

[LeR74] R. J. LeRoy, Long-range potential coefficients from RKR turning points: C6

and C8 for B(3Π0u
+)-state Cl3, Br2, and I2, Canadian Journal of Physics

52, 246 (1974), doi:10.1139/p74-035.

[Les05a] I. Lesanovsky and P. Schmelcher, Magnetic Trapping of Ultracold
Rydberg Atoms, Phys. Rev. Lett. 95, 053001 (2005), doi:10.1103/
PhysRevLett.95.053001.

[Les05b] I. Lesanovsky and P. Schmelcher, Quantum states of ultracold electron-
ically excited atoms in a magnetic quadrupole trap, Phys. Rev. A 72,
053410 (2005), doi:10.1103/PhysRevA.72.053410.

[Les13] I. Lesanovsky and J. P. Garrahan, Kinetic Constraints, Hierarchical Re-
laxation, and Onset of Glassiness in Strongly Interacting and Dissipative
Rydberg Gases, Phys. Rev. Lett. 111, 215305 (2013).

[Les14] I. Lesanovsky and J. P. Garrahan, Out-of-equilibrium structures in strongly
interacting Rydberg gases with dissipation, Phys. Rev. A 90, 011603
(2014).

[Leu14] V. Leung, D. Pijn, H. Schlatter, L. Torralbo-Campo et al., Magnetic-film
atom chip with 10 µm period lattices of microtraps for quantum infor-
mation science with Rydberg atoms, Review of Scientific Instruments
85, 053102 (2014).

110

https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
http://dx.doi.org/10.1007/BF01426593
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.22331/q-2019-03-25-130
http://dx.doi.org/10.1364/CLEO_QELS.2016.FM2C.4
https://doi.org/10.1038/nature01492
http://dx.doi.org/https://doi.org/10.1016/0009-2614(70)80125-7
http://dx.doi.org/10.1139/p74-035
http://dx.doi.org/10.1103/PhysRevLett.95.053001
http://dx.doi.org/10.1103/PhysRevA.72.053410
https://link.aps.org/doi/10.1103/PhysRevLett.111.215305
https://link.aps.org/doi/10.1103/PhysRevA.90.011603


[Li03] W. Li, I. Mourachko, M. W. Noel and T. F. Gallagher, Millimeter-wave
spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap:
Quantum defects of the ns, np, and nd series, Phys. Rev. A 67, 052502
(2003), doi:10.1103/PhysRevA.67.052502.

[Lim13] J. Lim, H.-g. Lee and J. Ahn, Review of cold Rydberg atoms and their
applications, Journal of the Korean Physical Society 63, 867 (2013), ISSN
1976-8524, doi:10.3938/jkps.63.867.

[Llo96] S. Lloyd, Universal Quantum Simulators, Science 273, 1073 (1996), ISSN
00368075, 10959203.

[Lom00] S. J. J. Lomonaco (ed.), Quantum Computation: A Grand Mathematical
Challenge for the Twenty-First Century and the Millennium, Lecture
Notes prepared for the American Mathematical Society short course on
quantum computation held in Washington, DC January 17-18 2000,
vol. 58, American Mathematical Society (2000), ISBN 0821820842.

[Loo15] P.-F. Loos, C. J. Ball and P. M. W. Gill, Chemistry in one dimension, Phys.
Chem. Chem. Phys. 17, 3196 (2015), doi:10.1039/C4CP03571B.

[Lor02] T. Lorenz, M. Hofmann, M. Grüninger, A. Freimuth, G. S. Uhrig, M. Dumm
and M. Dressel, Evidence for spin-charge separation in quasi-one-
dimensional organic conductors, Nature 418, 614 EP (2002).

[Lou59] R. Loudon, One-Dimensional Hydrogen Atom, American Journal of
Physics 27, 649 (1959), doi:10.1119/1.1934950.

[Lou16] R. Loudon, One-dimensional hydrogen atom, Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences
472 (2016), ISSN 1364-5021, doi:10.1098/rspa.2015.0534.

[Luk01a] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac
and P. Zoller, Dipole Blockade and Quantum Information Processing
in Mesoscopic Atomic Ensembles, Phys. Rev. Lett. 87, 037901 (2001),
doi:10.1103/PhysRevLett.87.037901.

[Luk01b] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac
and P. Zoller, Dipole Blockade and Quantum Information Processing
in Mesoscopic Atomic Ensembles, Phys. Rev. Lett. 87, 037901 (2001),
doi:10.1103/PhysRevLett.87.037901.

[Lv16] H. Lv, W. Zuo, L. Zhao, H. Xu et al., Comparative study on atomic and
molecular Rydberg-state excitation in strong infrared laser fields, Phys.
Rev. A 93, 033415 (2016), doi:10.1103/PhysRevA.93.033415.

[Mal14] N. Malossi, M. M. Valado, S. Scotto, P. Huillery et al., Full Counting Statistics
and Phase Diagram of a Dissipative Rydberg Gas, Phys. Rev. Lett. 113,
023006 (2014).

111

http://dx.doi.org/10.1103/PhysRevA.67.052502
http://dx.doi.org/10.3938/jkps.63.867
http://www.jstor.org/stable/2899535
http://dx.doi.org/10.1039/C4CP03571B
http://dx.doi.org/10.1038/nature00913
http://dx.doi.org/10.1038/nature00913
http://dx.doi.org/10.1119/1.1934950
http://dx.doi.org/10.1098/rspa.2015.0534
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevA.93.033415
https://link.aps.org/doi/10.1103/PhysRevLett.113.023006


[Mal15] K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun et al., Rydberg-blockade
controlled-not gate and entanglement in a two-dimensional array
of neutral-atom qubits, Phys. Rev. A 92, 022336 (2015), doi:10.1103/
PhysRevA.92.022336.

[Man79] L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence,
Opt. Lett. 4, 205 (1979), doi:10.1364/OL.4.000205.

[Mar94] M. Marinescu, H. R. Sadeghpour and A. Dalgarno, Dispersion coef-
ficients for alkali-metal dimers, Phys. Rev. A 49, 982 (1994), doi:
10.1103/PhysRevA.49.982.

[May09a] M. Mayle, I. Lesanovsky and P. Schmelcher, Exploiting the composite
character of Rydberg atoms for cold-atom trapping, Phys. Rev. A 79,
041403R (2009), doi:10.1103/PhysRevA.79.041403.

[May09b] M. Mayle, I. Lesanovsky and P. Schmelcher, Magnetic trapping of ultra-
cold Rydberg atoms in low angular momentum states, Phys. Rev. A 80,
053410 (2009), doi:10.1103/PhysRevA.80.053410.

[McC16] J. R. McClean, J. Romero, R. Babbush and A. Aspuru-Guzik, The theory of
variational hybrid quantum-classical algorithms, New Journal of Physics
18, 023023 (2016), doi:10.1088/1367-2630/18/2/023023.

[McQ13] P. McQuillen, X. Zhang, T. Strickler, F. B. Dunning and T. C. Killian, Imaging
the evolution of an ultracold strontium Rydberg gas, Phys. Rev. A 87,
013407 (2013), doi:10.1103/PhysRevA.87.013407.

[Mit03] J. Mitroy and M. W. J. Bromley, Semiempirical calculation of van der
Waals coefficients for alkali-metal and alkaline-earth-metal atoms,
Phys. Rev. A 68, 052714 (2003), doi:10.1103/PhysRevA.68.052714.

[Mon98] H. Monien, M. Linn and N. Elstner, Trapped one-dimensional Bose gas as
a Luttinger liquid, Phys. Rev. A 58, R3395 (1998), doi:10.1103/PhysRevA.
58.R3395.

[Mor05] H. Moritz, T. Stöferle, K. Günter, M. Köhl and T. Esslinger, Confinement
Induced Molecules in a 1D Fermi Gas, Phys. Rev. Lett. 94, 210401 (2005),
doi:10.1103/PhysRevLett.94.210401.

[Mül11] M. M. Müller, H. R. Haakh, T. Calarco, C. P. Koch and C. Henkel, Prospects
for fast Rydberg gates on an atom chip, Quantum Information Process-
ing 10, 771 (2011), doi:10.1007/s11128-011-0296-0.

[ń17] M. Płodzień, G. Lochead, J. de Hond, N. J. van Druten and S. Kokkelmans,
Rydberg dressing of a one-dimensional Bose-Einstein condensate, Phys.
Rev. A 95, 043606 (2017), doi:10.1103/PhysRevA.95.043606.

[Nab16] J. B. Naber, Magnetic atom lattices for quantum information, Ph.D. thesis,
University of Amsterdam (2016). See chapter 2, section 2.3.2.

112

http://dx.doi.org/10.1103/PhysRevA.92.022336
http://dx.doi.org/10.1364/OL.4.000205
http://dx.doi.org/10.1103/PhysRevA.49.982
http://dx.doi.org/10.1103/PhysRevA.79.041403
http://dx.doi.org/10.1103/PhysRevA.80.053410
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1103/PhysRevA.87.013407
http://dx.doi.org/10.1103/PhysRevA.68.052714
http://dx.doi.org/10.1103/PhysRevA.58.R3395
http://dx.doi.org/10.1103/PhysRevLett.94.210401
http://dx.doi.org/10.1007/s11128-011-0296-0
http://dx.doi.org/10.1103/PhysRevA.95.043606
http://hdl.handle.net/11245/1.543967


[Nei18] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo et al., A blueprint for demon-
strating quantum supremacy with superconducting qubits, Science 360,
195 (2018), ISSN 0036-8075, doi:10.1126/science.aao4309.

[Nie11] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, Cambridge University Press, New
York, NY, USA, 10th edn. (2011), ISBN 1107002176, 9781107002173.

[Noe00] M. W. Noel, W. M. Griffith and T. F. Gallagher, Classical subharmonic
resonances in microwave ionization of lithium Rydberg atoms, Phys.
Rev. A 62, 063401 (2000), doi:10.1103/PhysRevA.62.063401.

[Nog14] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo et al., Single-Atom Trapping
in Holographic 2D Arrays of Microtraps with Arbitrary Geometries, Phys.
Rev. X 4, 021034 (2014), doi:10.1103/PhysRevX.4.021034.

[Ped03] T. G. Pedersen, Variational approach to excitons in carbon nanotubes,
Phys. Rev. B 67, 073401 (2003), doi:10.1103/PhysRevB.67.073401.

[Per14] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung et al., A variational eigen-
value solver on a photonic quantum processor, Nature Communications
5, 4213 EP (2014). Article.

[Pin00] P. W. H. Pinkse, T. Fischer, P. Maunz and G. Rempe, Trapping an atom
with single photons, Nature 404, 365 EP (2000).

[Poh03] T. Pohl, T. Pattard and J. M. Rost, Plasma formation from ultracold Ryd-
berg gases, Phys. Rev. A 68, 010703 (2003), doi:10.1103/PhysRevA.68.
010703.

[Poh10] T. Pohl, E. Demler and M. D. Lukin, Dynamical Crystallization in the Dipole
Blockade of Ultracold Atoms, Phys. Rev. Lett. 104, 043002 (2010), doi:
10.1103/PhysRevLett.104.043002.

[Por04a] D. Porras and J. I. Cirac, Effective Quantum Spin Systems with Trapped
Ions, Phys. Rev. Lett. 92, 207901 (2004), doi:10.1103/PhysRevLett.92.
207901.

[Por04b] D. Porras and J. I. Cirac, Effective Quantum Spin Systems with Trapped
Ions, Phys. Rev. Lett. 92, 207901 (2004), doi:10.1103/PhysRevLett.92.
207901.

[Pre18] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum
2, 79 (2018), ISSN 2521-327X, doi:10.22331/q-2018-08-06-79.

[Pup08] G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D.-W. Wang and P. Zoller,
Cold Atoms and Molecules in Self-Assembled Dipolar Lattices, Phys.
Rev. Lett. 100, 050402 (2008), doi:10.1103/PhysRevLett.100.050402.

[Qia13] J. Qian, L. Zhou and W. Zhang, Quantum phases of strongly interacting
Rydberg atoms in triangular lattices, Phys. Rev. A 87, 063421 (2013),
doi:10.1103/PhysRevA.87.063421.

113

http://dx.doi.org/10.1126/science.aao4309
http://dx.doi.org/10.1103/PhysRevA.62.063401
http://dx.doi.org/10.1103/PhysRevX.4.021034
http://dx.doi.org/10.1103/PhysRevB.67.073401
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/35006006
http://dx.doi.org/10.1103/PhysRevA.68.010703
http://dx.doi.org/10.1103/PhysRevLett.104.043002
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevLett.100.050402
http://dx.doi.org/10.1103/PhysRevA.87.063421


[Qis] Qiskit AER | A high performance simulator framework for quantum
circuits, https://qiskit.org/aer. Accessed: 12-4-2019.

[Rai81] J. M. Raimond, G. Vitrant and S. Haroche, Spectral line broadening due
to the interaction between very excited atoms: ’the dense Rydberg gas’,
Journal of Physics B: Atomic and Molecular Physics 14, L655 (1981), ISSN
0022-3700.

[Raj11] A. Rajaei, M. Houshmand and M. Rouhani, Optimization of Combina-
tional Logic Circuits Using NAND Gates and Genetic Programming, in
A. Gaspar-Cunha, R. Takahashi, G. Schaefer and L. Costa (eds.) Soft
Computing in Industrial Applications, Springer Berlin Heidelberg, Berlin,
Heidelberg (2011), pp. 405–414, ISBN 978-3-642-20505-7.

[Rec03] A. Recati, P. O. Fedichev, W. Zwerger and P. Zoller, Fermi one-
dimensional quantum gas: Luttinger liquid approach and spin–charge
separation, Journal of Optics B: Quantum and Semiclassical Optics 5,
S55 (2003).

[Rei99] J. Reichel, W. Hänsel and T. W. Hänsch, Atomic Micromanipulation with
Magnetic Surface Traps, Phys. Rev. Lett. 83, 3398 (1999), doi:10.1103/
PhysRevLett.83.3398.

[Rei02] J. Reichel, Microchip traps and Bose–Einstein condensation, Applied
Physics B: Lasers and Optics 74, 469 (2002), ISSN 0946-2171, doi:10.
1007/s003400200861.

[Ric14] P. Richerme, Z.-X. Gong, A. Lee, C. Senko et al., Non-local propagation
of correlations in quantum systems with long-range interactions, Nature
511, 198 EP (2014).

[Riv78] R. L. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digi-
tal Signatures and Public-key Cryptosystems, Commun. ACM 21, 120
(1978), ISSN 0001-0782, doi:10.1145/359340.359342.

[Rob05] F. Robicheaux and J. V. Hernández, Many-body wave function in a
dipole blockade configuration, Phys. Rev. A 72, 063403 (2005), doi:
10.1103/PhysRevA.72.063403.

[Roo08] C. F. Roos, Ion trap quantum gates with amplitude-modulated laser
beams, New Journal of Physics 10, 013002 (2008), doi:10.1088/
1367-2630/10/1/013002.

[Sac00] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer et al., Experimental
entanglement of four particles, Nature 404, 256 EP (2000).

[Saf10a] M. Saffman, T. G. Walker and K. Mølmer, Quantum information with Ryd-
berg atoms, Rev. Mod. Phys. 82, 2313 (2010), doi:10.1103/RevModPhys.
82.2313.

[Saf10b] M. Saffman, T. G. Walker and K. Mølmer, Quantum information with Ryd-
berg atoms, Rev. Mod. Phys. 82, 2313 (2010), doi:10.1103/RevModPhys.
82.2313.

114

https://qiskit.org/aer
http://stacks.iop.org/0022-3700/14/i=21/a=003
http://stacks.iop.org/1464-4266/5/i=2/a=359
http://dx.doi.org/10.1103/PhysRevLett.83.3398
http://dx.doi.org/10.1007/s003400200861
https://doi.org/10.1038/nature13450
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1103/PhysRevA.72.063403
http://dx.doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1038/35005011
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313


[Saf16a] M. Saffman, Quantum computing with atomic qubits and Rydberg inter-
actions: progress and challenges, Journal of Physics B: Atomic, Molecu-
lar and Optical Physics 49, 202001 (2016).

[Saf16b] M. Saffman, Quantum computing with atomic qubits and Rydberg inter-
actions: progress and challenges, Journal of Physics B-Atomic Molec-
ular and Optical Physics 49 (2016), ISSN 0953-4075, doi:10.1088/
0953-4075/49/20/202001.

[Sch98] A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi and T. Gia-
marchi, On-chain electrodynamics of metallic (TMTSF)2X salts: Ob-
servation of Tomonaga-Luttinger liquid response, Phys. Rev. B 58, 1261
(1998), doi:10.1103/PhysRevB.58.1261.

[Sch07] U. Schmidt, I. Lesanovsky and P. Schmelcher, Ultracold Rydberg atoms
in a magneto-electric trap, Journal of Physics B: Atomic, Molecular and
Optical Physics 40, 1003 (2007).

[Sch12] P. Schausz, M. Cheneau, M. Endres, T. Fukuhara et al., Observation of
spatially ordered structures in a two-dimensional Rydberg gas, Nature
491, 87 (2012), ISSN 0028-0836.

[Sch14] H. Schempp, G. Günter, M. Robert-de Saint-Vincent, C. S. Hofmann et al.,
Full Counting Statistics of Laser Excited Rydberg Aggregates in a One-
Dimensional Geometry, Phys. Rev. Lett. 112, 013002 (2014).

[Sea83] M. J. Seaton, Quantum defect theory, Reports on Progress in Physics 46,
167 (1983), doi:10.1088/0034-4885/46/2/002.

[Sec16] T. Secker, R. Gerritsma, A. W. Glaetzle and A. Negretti, Controlled long-
range interactions between Rydberg atoms and ions, Phys. Rev. A 94,
013420 (2016), doi:10.1103/PhysRevA.94.013420.

[Sel18] A. Selyem, S. Fayard, T. W. Clark, A. S. Arnold, N. Radwell and S. Franke-
Arnold, Holographically controlled three-dimensional atomic popu-
lation patterns, Opt. Express 26, 18513 (2018), doi:10.1364/OE.26.
018513.

[Sha80] I. Shavitt and L. T. Redmon, Quasidegenerate perturbation theories. A
canonical van Vleck formalism and its relationship to other approaches,
The Journal of Chemical Physics 73, 5711 (1980), ISSN 0021-9606, doi:
10.1063/1.440050.

[Sha18] J. P. Shaffer, S. T. Rittenhouse and H. R. Sadeghpour, Ultracold Rydberg
molecules, Nature Communications 9, 1965 (2018), ISSN 2041-1723,
doi:10.1038/s41467-018-04135-6.

[Shi14] S. W. Shin, G. Smith, J. A. Smolin and U. Vazirani, How "Quantum" is the
D-Wave Machine? (2014).

115

http://stacks.iop.org/0953-4075/49/i=20/a=202001
http://dx.doi.org/10.1088/0953-4075/49/20/202001
http://dx.doi.org/10.1103/PhysRevB.58.1261
http://dx.doi.org/10.1103/PhysRevB.58.1261
http://stacks.iop.org/0953-4075/40/i=5/a=015
http://dx.doi.org/10.1038/nature11596
https://link.aps.org/doi/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1088/0034-4885/46/2/002
http://dx.doi.org/10.1103/PhysRevA.94.013420
http://dx.doi.org/10.1364/OE.26.018513
http://dx.doi.org/10.1364/OE.26.018513
http://dx.doi.org/10.1063/1.440050
http://dx.doi.org/10.1038/s41467-018-04135-6


[Sho94] P. W. Shor, Algorithms for quantum computation: discrete logarithms
and factoring, in Proceedings 35th Annual Symposium on Foundations
of Computer Science (1994), pp. 124–134, doi:10.1109/SFCS.1994.
365700.

[Sho99] P. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM Review 41, 303 (1999), doi:
10.1137/S0036144598347011.

[Sin04] K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa and M. Wei-
demüller, Suppression of Excitation and Spectral Broadening Induced
by Interactions in a Cold Gas of Rydberg Atoms, Phys. Rev. Lett. 93,
163001 (2004), doi:10.1103/PhysRevLett.93.163001.

[Sin05] K. Singer, J. Stanojevic, M. Weidemüller and R. Côté, Long-range interac-
tions between alkali Rydberg atom pairs correlated to thens–ns,np–np
andnd–nd asymptotes, Journal of Physics B: Atomic, Molecular and Op-
tical Physics 38, S295 (2005), doi:10.1088/0953-4075/38/2/021.

[Sin08] M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean and P. Hannaford,
One-dimensional lattice of permanent magnetic microtraps for ultra-
cold atoms on an atom chip, Journal of Physics B: Atomic, Molecular
and Optical Physics 41, 065301 (2008).

[Ska20] R. Skannrup, T. van Weerden, Y. van der Werf, T. Johri, E. Vredenbregt and
S. Kokkelmans, Three-level rate equations in cold, disordered Rydberg
gases, Journal of Physics B: Atomic, Molecular and Optical Physics 53
(2020), ISSN 0953-4075, doi:10.1088/1361-6455/ab7525.

[Sø99] A. Sørensen and K. Mølmer, Quantum Computation with Ions in Thermal
Motion, Phys. Rev. Lett. 82, 1971 (1999), doi:10.1103/PhysRevLett.82.
1971.

[Sø00] A. Sørensen and K. Mølmer, Entanglement and quantum computation
with ions in thermal motion, Phys. Rev. A 62, 022311 (2000), doi:10.
1103/PhysRevA.62.022311.

[Ste76] R. F. Stebbings, High Rydberg Atoms: Newcomers to the Atomic Physics
Scene, Science 193, 537 (1976), ISSN 0036-8075, doi:10.1126/science.
193.4253.537.

[Ste96] A. M. Steane, Error Correcting Codes in Quantum Theory, Phys. Rev. Lett.
77, 793 (1996), doi:10.1103/PhysRevLett.77.793.

[Suz98] Y. Suzuki, Y. S. K. Varga, M. Suzuki and K. Varga, Stochastic Vari-
ational Approach to Quantum-Mechanical Few-Body Problems, no.
v. 54 in Lecture Notes in Physics Monographs, Springer (1998), ISBN
9783540651529.

[Suz03] Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-
Mechanical Few-Body Problems, Lecture Notes in Physics Monographs,
Springer Berlin Heidelberg (2003), ISBN 9783540495413.

116

http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1103/PhysRevLett.93.163001
http://dx.doi.org/10.1103/PhysRevLett.93.163001
http://dx.doi.org/10.1088/0953-4075/38/2/021
http://dx.doi.org/10.1088/1361-6455/ab7525
http://dx.doi.org/10.1088/1361-6455/ab7525
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1126/science.193.4253.537
http://dx.doi.org/10.1103/PhysRevLett.77.793
https://books.google.nl/books?id=SxnyCAAAQBAJ


[SV13] M. Robert-de Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter,
S. Whitlock and M. Weidemüller, Spontaneous Avalanche Ionization of
a Strongly Blockaded Rydberg Gas, Phys. Rev. Lett. 110, 045004 (2013),
doi:10.1103/PhysRevLett.110.045004.

[The84] C. E. Theodosiou, Lifetimes of alkali-metal—atom Rydberg states, Phys.
Rev. A 30, 2881 (1984), doi:10.1103/PhysRevA.30.2881.

[Tho10] W. Thomson, Baron Kelvin, NINETEENTH CENTURY CLOUDS OVER THE
DYNAMICAL THEORY OF HEAT AND LIGHT, Cambridge University Press,
p. 486–527, Cambridge Library Collection - Physical Sciences (2010),
doi:10.1017/CBO9780511694523.026.

[Top14] T. Topcu and A. Derevianko, Divalent Rydberg atoms in optical lattices:
Intensity landscape and magic trapping, Phys. Rev. A 89, 023411 (2014),
doi:10.1103/PhysRevA.89.023411.

[Tur37] A. M. Turing, On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Soci-
ety s2-42, 230 (1937), doi:10.1112/plms/s2-42.1.230.

[Urb09] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker
and M. Saffman, Observation of Rydberg blockade between two atoms,
Nat Phys 5, 110 (2009), ISSN 1745-2473.

[Urv15] A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. P. Shaffer, T. Pfau and
R. Löw, Strongly Correlated Growth of Rydberg Aggregates in a Vapor
Cell, Phys. Rev. Lett. 114, 203002 (2015), doi:10.1103/PhysRevLett.114.
203002.

[Val16] M. M. Valado, C. Simonelli, M. D. Hoogerland, I. Lesanovsky et al., Exper-
imental observation of controllable kinetic constraints in a cold atomic
gas, Phys. Rev. A 93, 040701 (2016).

[Van01] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood
and I. L. Chuang, Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance, Nature 414, 883 (2001),
ISSN 1476-4687, doi:10.1038/414883a.

[Vil20] B. Villalonga, D. Lyakh, S. Boixo, H. Neven et al., Establishing the quantum
supremacy frontier with a 281 Pflop/s simulation, Quantum Science and
Technology 5, 034003 (2020), doi:10.1088/2058-9565/ab7eeb.

[Wag10] C. Wagner and N. Harned, Lithography gets extreme, Nature Photonics
4, 24 EP (2010).

[Wal08] T. G. Walker and M. Saffman, Consequences of Zeeman degeneracy
for the van der Waals blockade between Rydberg atoms, Phys. Rev. A
77, 032723 (2008), doi:10.1103/PhysRevA.77.032723.

[Wan01] X. Wang, A. Sørensen and K. Mølmer, Multibit Gates for Quantum Com-
puting, Phys. Rev. Lett. 86, 3907 (2001), doi:10.1103/PhysRevLett.86.
3907.

117

http://dx.doi.org/10.1103/PhysRevLett.110.045004
http://dx.doi.org/10.1103/PhysRevLett.110.045004
http://dx.doi.org/10.1103/PhysRevA.30.2881
http://dx.doi.org/10.1017/CBO9780511694523.026
http://dx.doi.org/10.1103/PhysRevA.89.023411
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1038/nphys1178
http://dx.doi.org/10.1038/nphys1178
http://dx.doi.org/10.1103/PhysRevLett.114.203002
http://dx.doi.org/10.1103/PhysRevLett.114.203002
https://link.aps.org/doi/10.1103/PhysRevA.93.040701
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1038/nphoton.2009.251
http://dx.doi.org/10.1103/PhysRevA.77.032723
http://dx.doi.org/10.1103/PhysRevLett.86.3907


[Wan16] Y. Wang, P. Surendran, S. Jose, T. Tran et al., Magnetic lattices
for ultracold atoms and degenerate quantum gases, Science Bul-
letin 61, 1097 (2016), ISSN 2095-9273, doi:https://doi.org/10.1007/
s11434-016-1123-x.

[Wan17] Y. Wang, T. Tran, P. Surendran, I. Herrera et al., Trapping ultracold atoms
in a sub-micron-period triangular magnetic lattice, Phys. Rev. A 96,
013630 (2017), doi:10.1103/PhysRevA.96.013630.

[Wee17] T. H. P. van Weerden, Spontaneous crystallization in a one-dimensional
Rydberg system, Master’s thesis, Eindhoven University of Technology
(2017).

[Wei08a] H. Weimer, R. Löw, T. Pfau and H. P. Büchler, Quantum Critical Behav-
ior in Strongly Interacting Rydberg Gases, Phys. Rev. Lett. 101, 250601
(2008), doi:10.1103/PhysRevLett.101.250601.

[Wei08b] H. Weimer, R. Löw, T. Pfau and H. P. Büchler, Quantum Critical Behav-
ior in Strongly Interacting Rydberg Gases, Phys. Rev. Lett. 101, 250601
(2008), doi:10.1103/PhysRevLett.101.250601.

[Wei10] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller and H. P. Büchler, A Rydberg
quantum simulator, Nature Physics 6, 382 (2010), ISSN 1745-2481, doi:
10.1038/nphys1614.

[Wer17] Y. van der Werf, Spatial Structures and Strong Interactions in Ultracold
Rydberg Gases, Master’s thesis, Eindhoven University of Technology
(2017).

[Whi09] S. Whitlock, R. Gerritsma, T. Fernholz and R. Spreeuw, Two-dimensional
array of microtraps with atomic shift register on a chip, New Journal of
Physics 11, 023021 (2009).

[Wil10a] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier
and A. Browaeys, Entanglement of Two Individual Neutral Atoms Using
Rydberg Blockade, Physical Review Letters 104, 010502+ (2010), doi:
10.1103/physrevlett.104.010502.

[Wil10b] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier
and A. Browaeys, Entanglement of Two Individual Neutral Atoms Using
Rydberg Blockade, Phys. Rev. Lett. 104, 010502 (2010), doi:10.1103/
PhysRevLett.104.010502.

[Win98] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King and D. M.
Meekhof, Experimental Issues in Coherent Quantum-State Manipula-
tion of Trapped Ions, Journal of Research of the National Institute of
Standards and Technology 103, 259 (1998), doi:10.6028/jres.103.019.

[Wul06] K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo et al., Aberration cor-
rection in holographic optical tweezers, Opt. Express 14, 4169 (2006),
doi:10.1364/OE.14.004169.

118

http://dx.doi.org/https://doi.org/10.1007/s11434-016-1123-x
http://dx.doi.org/10.1103/PhysRevA.96.013630
http://dx.doi.org/10.1103/PhysRevLett.101.250601
http://dx.doi.org/10.1103/PhysRevLett.101.250601
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1103/physrevlett.104.010502
http://dx.doi.org/10.1103/physrevlett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.1364/OE.14.004169


[Wun81] G. Wunner and H. Ruder, Hydrogen atom in strong magnetic fields -
Polynomial approximations for the magnetic-field dependence of the
energy values, aap 95, 204 (1981).

[Xu10] P. Xu, X. He, J. Wang and M. Zhan, Trapping a single atom in a blue
detuned optical bottle beam trap, Opt. Lett. 35, 2164 (2010), doi:10.
1364/OL.35.002164.

[Ye99] J. Ye, D. W. Vernooy and H. J. Kimble, Trapping of Single Atoms in Cavity
QED, Phys. Rev. Lett. 83, 4987 (1999), doi:10.1103/PhysRevLett.83.4987.

[Yoo07] S. Yoon, Y. Choi, S. Park, W. Ji, J.-H. Lee and K. An, Characteristics of
single-atom trapping in a magneto-optical trap with a high magnetic-
field gradient, Journal of Physics: Conference Series 80, 012046 (2007).

[Yu14] S.-P. Yu, J. D. Hood, J. A. Muniz, M. J. Martin et al., Nanowire photonic
crystal waveguides for single-atom trapping and strong light-matter
interactions, Applied Physics Letters 104, 111103 (2014), doi:10.1063/
1.4868975.

[Zha10] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker and M. Saffman, De-
terministic entanglement of two neutral atoms via Rydberg blockade,
Phys. Rev. A 82, 030306 (2010), doi:10.1103/PhysRevA.82.030306.

[Zha11] S. Zhang, F. Robicheaux and M. Saffman, Magic-wavelength optical
traps for Rydberg atoms, Phys. Rev. A 84, 043408 (2011), doi:10.1103/
PhysRevA.84.043408.

[Zha17] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis et al., Observation of
a many-body dynamical phase transition with a 53-qubit quantum
simulator, Nature 551, 601 EP (2017).

[Zim79] M. L. Zimmerman, M. G. Littman, M. M. Kash and D. Kleppner, Stark
structure of the Rydberg states of alkali-metal atoms, Phys. Rev. A 20,
2251 (1979), doi:10.1103/PhysRevA.20.2251.

[Zup16] P. Zupancic, P. M. Preiss, R. Ma, A. Lukin et al., Ultra-precise holographic
beam shaping for microscopic quantum control, Opt. Express 24, 13881
(2016), doi:10.1364/OE.24.013881.

[Zwi00] F. Zwick, W. Henderson, L. Degiorgi, M. Grioni, G. Gruner, L. K. Mont-
gomery and V. Vescoli, Optical and photoemission evidence for a
Tomonaga-Luttinger liquid in the Bechgaard salts, European Physical
Journal B 13, 503 (2000).

119

http://adsabs.harvard.edu/abs/1981A%26A....95..204W
http://dx.doi.org/10.1364/OL.35.002164
http://dx.doi.org/10.1103/PhysRevLett.83.4987
http://stacks.iop.org/1742-6596/80/i=1/a=012046
http://dx.doi.org/10.1063/1.4868975
http://dx.doi.org/10.1103/PhysRevA.82.030306
http://dx.doi.org/10.1103/PhysRevA.84.043408
https://doi.org/10.1038/nature24654
http://dx.doi.org/10.1103/PhysRevA.20.2251
http://dx.doi.org/10.1364/OE.24.013881




Curiculum vitæ

Rasmus Vestergaard Skannrup, born in Skanderborg on the 17th of December
1986

2007-2011

Bachelor of Science in Physics
Aarhus University
Bachelor project: Space-time Geometry in the
Vicinity of a Rotating Black Hole

2011-2017

Master of Science in Physics
Aarhus University
Master’s thesis: Correlated Gaussian Approach to
Cold Atoms in a One Dimensional Double Well Trap

2014-2020

PhD candidate
Coherence and Quantum Technology research
group
Department of Applied Physics
Eindhoven University of Technology

121





List of publications

Published

A. G. Boetes, R. V. Skannrup, J. Naber, S. J. J. M. F. Kokkelmans and
R. J. C. Spreeuw, Trapping of Rydberg atoms in tight magnetic microtraps,
Phys. Rev. A 97, 013430 (2018).

R. V. Skannrup, T. van Weerden, Y. van der Werf, T. Johri, E. J. D. Vredenbregt
and S. J. J. M. F. Kokkelmans, Three-level rate equations in cold, disordered
Rydberg gases, Journal of Physics B: Atomic, Molecular and Optical Physics
53 (2020).

In preparation

R. V. Skannrup, R. Gerritsma and S. J. J. M. F. Kokkelmans, Phonon-mediated
spin-spin interactions between trapped Rydberg atoms, submitted for publi-
cation in Phys. Rev. A (2020).

R. V. Skannrup, E. J. D. Vredenbregt and S. J. J. M. F. Kokkelmans Controlled
Quantum Plasmas Created from Rydberg Crystals, in preparation.

Presentations

A. G. Boetes, R. V. Skannrup, J. Naber, S. J. J. M. F. Kokkelmans and
R. J. C. Spreeuw, Trapping of Rydberg atoms in tight magnetic microtraps,
presented at NNV AMO Lunteren 2017.

A. G. Boetes, R. V. Skannrup, J. Naber, S. J. J. M. F. Kokkelmans and
R. J. C. Spreeuw, Trapping of Rydberg atoms in tight magnetic microtraps,
presented at Physics@Veldhoven 2018.

123

http://dx.doi.org/10.1103/PhysRevA.97.013430
http://dx.doi.org/10.1103/PhysRevA.97.013430
http://dx.doi.org/10.1088/1361-6455/ab7525
http://dx.doi.org/10.1088/1361-6455/ab7525




Index

C-NOT logic, 6
NAND-logic, 2
NOR-logic, 2

Alkali metal, 19
Alkaline earth metal, 19
Analytical engine, 2
Antikythera mechanism, 1
Autler-Townes splitting, 70

Bit, 2
Black body radiation, 22
Blockade radius, 28
Born-Oppenheimer approximation, 44
Bra, 2

C6 coefficient, 25
Center-of-mass coordinate , see Ja-

cobi coordinates55
Coin flip

Classical, 3
Quantum, 4

Computation complexity, 9
Computational complexity

BQP, 10
NP, 10

Complete, 10
P, 10

Core, 20
Electron, 20
Ionic, 20
potential, 20

Correlated Gaussian, 32

D-Wave, 15
Dipole approximation, 25
Dipole matrix element, 26
Dipole operator, 24
DiVincenzo criteria, 14

Electron

Core, 20
Orbital radius, 23
Rydberg, 20

Energy
Of a state, 19
Separation between states, 22

Entangled state, 5

Facilitation radius, 28
Frozen gas, 44

Gate
AND, 2
NAND, 2
NOR, 2
NOT, 2
OR, 2
Quantum, 6

Generalized eigenvalue problem, 34
Google, 8, 15

Hydrogenic, 22

IBM, 8, 15
Intel, 8
Interaction

Dipole-dipole, 24
Rydberg-Rydberg, 24
Van der Waals, 25

Jacobi coordinates, 42
Jamming limit, 29

Ket, 2

Lamb-Dicke approximation, 57
Lamb-Dicke parameter, 55
Lifetime, 22

Magic trapping, 40
Magnetic microtraps, 40



Mandel Q-parameter, 66
Master equation

Lindblad form, 36
Measure, 3
Mexican hat potential, 45
Microsoft, 8, 15
Monte Carlo simulation, 36

NISQ, 7

PES, see Potential Energy Surface41
Polarisability, 24
Potential Energy Surface, 45
Propagator, 13

Quantum annealing, 15
Quantum defect, 19
Quantum gate

π/8, 6
C-NOT, 6
Hadamard, 6
Universal, 6

Quantum plasma, 84
Quantum simulation

Analogue, 14
Digital, 14

Quantum simulator, 40
Quantum supremacy, 8

Demonstration, 15
Qubit, 2

virtual, 7
Qubit state, 2

Collapse, 3
QuTech, 8

Rabi frequency, 27
Relative coordinate , see Jacobi co-

ordinates55
Rydberg atom size, 23
Rydberg electron, 20

Spatial light modulator, 35
Stochastic variation, 30, 31

Basis requirements, 32
Subpoissonian distribution, 30
Superpoissonian distribution, 78
Superposition, 2

Collapse, 3

Time evolution
Incoherent, 36

Two-photon transition, 26
Two-qubit State, 4

Unitary operation, 6
Universal logic

Classical, 2
Quantum, 6

Unshielded charge, 20

Variation Quantum Eigensolver, 15
VQE, see Variational Quantum Eigen-

solver

126



“...There is another theory which states that this has already happened.

Douglas Adams
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