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Abstract

The academic interest in cyclic executives for multitasking in hard real-
time systems decreased significantly during the past decades. Moreover,
cyclic executives are hardly addressed in contemporary text books, if at
all. Cyclic executives are still in use, however, and there is therefore a
need for analysis techniques for these executives.

In this document, we present exact analysis for basic cyclic executives
scheduling a given sequence of independent hard real-time polling tasks
in single-processor systems. Unlike existing approaches, which typically
take periodic tasks as a starting point for cyclic executives and focus
on schedulability of tasks, we take the schedulability of the system as a
starting point, i.e. whether or not the system meets its deadlines. In
particular, we do not assume periods and deadlines for tasks.

1
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1 Introduction

1.1 Background and motivation

As described in [1], cyclic executives are generally used in defense military sys-
tems and traffic control systems to handle periodic tasks. Cyclic executives
effectively execute hard real-time tasks in a continuous loop, in which every
task appears at least once. Since the paper by C. Douglass Locke [2], in which
it is concluded that the fixed-priority approach generally dominates the cyclic
executive approach for hard real-time systems, the academic interest in cyclic
executives has gradually decreased1. Accordingly, cyclic executives are men-
tioned in contemporary text books, such as [4, 5, 1, 6], but hardly addressed
in detail. Despite the decreasing academic interest, cyclic executives are still
in use, however. In a recent survey of 120 industry practitioners in the field of
real-time embedded systems [7], it was observed that from the 97 respondents
to the question which task scheduling policy/policies are used in the considered
systems, 54.17% answered “static cycle/table driven/time-triggered”. Avail-
ability of exact analysis for cyclic executives therefore remains desirable. This
document is a treatise on exact analysis for basic cyclic executives scheduling
independent, hard real-time polling tasks in single-processor systems.

1.2 Problem description

Hard real-time systems require timely responses to events. As illustrated by
an air bag, a system response (the inflation of an airbag) shall be provided in
a well-defined interval relative to the occurrence of an event (a collision), i.e.
neither too early nor too late. A system specification may therefore constrain the
time-interval from an event to a response by both a lower bound, a so-called best-
case system deadline, as well as an upper bound, a so-called worst-case system
deadline. For hard real-time computing systems, where control is realized in
software, these system deadlines give rise to timing constraints on the real-time
tasks that have to detect events (through regularly polling sensors) and provide
responses (using actuators).

In this document, we assume a hard real-time system with a set of n (input)
events, a set of n (output) responses, and a 1-1 relationship between events
and responses. Events are sporadic, i.e. are characterized by a minimal inter-
arrival time. Each event-response tuple is characterized by a best-case system
deadline and a worst-case system deadline, where the worst-case system deadline
is at most equal to the minimal inter-arrival time of the event. Each event-
response tuple is handled by a dedicated real-time polling task. A task detects
an event through observation, e.g. by reading sensory data, and provides a
response through a command, e.g. using an actuator; see Figure 1.

We assume a single-processor system and a basic cyclic executive to schedule
the set of tasks. In particular, we assume a statically known sequence of tasks
executed in a continuous loop. Depending on the type of cyclic executive, a
task may occur exactly once or at least once in the sequence. Each task is char-
acterized by a lower bound and an upper bound on its computation time, i.e.
by a best-case computation time and a worst-case computation time. Although

1In a paper from 1994 by Alan Burns [3] it is explicitly stated that “Most existing hard
real-time systems are implemented using a static table driven schedule (often called a cyclic
executive)”.
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Figure 1: A system S with n (input) events e1, e2, . . . , en, n (output) responses
r1, r2, . . . , rn, and n polling tasks τ1, τ2, . . . , τn detecting events through ob-
servation (as indicated by the dashed lines) and providing responses through
commands (as indicated by the arrows).

tasks scheduled by means of a cyclic executive are typically assumed to be peri-
odic [8], i.e. are typically assumed to be activated with a fixed inter-arrival time
(or period), we do not make that assumption in this document. The problem
addressed in this document is how to determine the schedulability of the system,
i.e. whether or not the best-case and worst-case deadlines of the system are met.
Part of the problem concerns the derivation of timing constraints for the tasks
from the deadlines of the system.

1.3 Goal

In this document, we present exact analysis for six basic cyclic executives. These
six cyclic executives are classified based on two orthogonal dimensions. The
first dimension determines the number of times a task may be executed in a
cycle, e.g. either exactly once (single-rate) or at least once (multi-rate). The
second dimension determines the start times of tasks, i.e. (i) tasks are executed
immediately one after the other and as fast as possible (AFAP), (ii) the cycle is
started by a timer interrupt and tasks are executed AFAP (time-driven AFAP),
or (iii) every job of a task is started at a statically known time (periodic). The
selection of these basic cyclic executives has been inspired by [9]. We assume
that the sequence of jobs to be executed in a cycle is known.

1.4 Topics addressed

This document addresses the following four main topics. Firstly, it presents ex-
act analysis for basic cyclic executives. Secondly, it compares the various cyclic
executives presented with respect to schedulability of systems. Thirdly, it pro-
vides simple means to determine bounds on the cycle time of time-driven AFAP
and periodic cyclic executives guaranteeing schedulability of a system with a
given execution sequence of tasks in a cycle. Finally, it presents simple means
to determine bounds on the fraction of time that can be gained for background
processing by time-driven AFAP and periodic cyclic executive compared to a
AFAP cyclic executive.
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1.5 Organization

The remainder of this document is organized as follows. In Section 2, we present
a basic real-time system model. The problem is formalized in Section 3. Exact
best-case analysis, which turns out to be trivial for cyclic executives, is also ad-
dressed in this section. In Section 4, we provide a recap of basic single-rate and
multi-rate cyclic executives. Exact worst-case analysis of these basic single-rate
and multi-rate cyclic executives are the topic of Section 5 and Section 6, respec-
tively. We briefly discuss various related topics in Section 7 and subsequently
conclude the document in Section 8.

2 A basic real-time system model

We assume a system S, a set ES of n sporadic (input) events e1, e2, . . . , en, a set
RS of n (output) responses r1, r2, . . . , rn to these events, and a 1-1 relationship
between events and responses. Each event ei is characterized by a minimal
inter-arrival time WTSi . Each event-response tuple < ei, ri > is characterized
by a best-case system deadline BDSi and a worst-case system deadline WDSi ,
where 0 ≤ BDSi ≤WDSi ≤WTSi .

Moreover, we assume a set T S of n independent polling tasks τ1, τ2, . . . , τn,
where task τi senses event ei and provides response ri. Each task τi is char-
acterized by a best-case computation time BCi and a worst-case computation
time WCi, where 0 < BCi ≤ WCi. The execution of a task is termed a job. A
job of task τi is denoted by ιi,k, with 0 ≤ k, i.e. the first job of τi is denoted
by ιi,0. The computation time Ci,k of every job ιi,k of task τi shall be between
BCi and WCi, i.e.

∀
1≤i≤n ∧ 0≤k

BCi ≤ Ci,k ≤WCi.

We use ai,k, si,k and fi,k to denote the activation time, start time and the
finalization time of job ιi,k, respectively. The response-time Ri,k of job ιi,k of
task τi is now defined as

Ri,k
def
= fi,k − ai,k. (1)

The best-case response time BRi and worst-case response time WRi of τi are
subsequently defined as

BRi
def
= inf

0≤k
Ri,k, (2)

and
WRi

def
= sup

0≤k
Ri,k, (3)

respectively. The start jitter SJi of a task τi is defined as the maximum deviation
of the start-times of a task from a strictly periodic pattern, i.e.

SJi = sup
0≤k ∧ 0≤`

((si,k − k × Ti)− (si,` − `× Ti)) , (4)

where Ti denotes the (assumed) period of the task.
We assume that tasks are scheduled by cyclic executives, run non-preemptively

and do not suspend themselves. The sequence of tasks executed in a cycle is
assumed to be known statically. Moreover, we ignore scheduling overhead and
system initialization. When a system S meets all its deadlines under a spe-
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cific cyclic executive and a specific sequence of tasks, the system S is called
schedulable under that cyclic executive and that sequence.

For single-rate cyclic executives we assume, for ease of presentation and
without loss of generality, that the first jobs of tasks in a cycle are executed in
the order of increasing index, i.e.

∀
1≤i<j≤n ∧ 0≤k

si,k < sj,k. (5)

where mi denotes the number of times task τi is executed in a cycle.
For multi-rate cyclic executives, we use mi ≥ 1 to denote the number of

times task τi is executed in a cycle. For ease of presentation, we assume a
sequence int task[] of length N =

∑
1≤i≤n

mi representing the cycle for multi-

rate cyclic executives, where the index ranges from 0 to N − 1, and a function
int index( job ) yielding the index in the sequence of the job job past as an
argument, where index(ιi,k) = index(ιi,(k mod mi)) for 1 ≤ i ≤ n and 0 ≤ k.
The relation between the sequence int task[] and function int index( job )

is expressed by

∀
1≤i≤n

∀
0≤k<mi

task[index(ιi,k)] = i

and
∀

0≤j≤N−1
∃!

0≤k<mtask[j]

index(ιtask[j],k) = j.

An overview of the notations used in this document can be found in Table 1.

3 Problem formalization

As described in Section 1.2, the response ri of a hard real-time system S to the
occurrence of an event ei at time te shall be provided in a well-defined time-
interval, bounded by a best-case system deadline BDSi and a worst-case system
deadline WDSi relative to the occurrence of the event; see Figure 2. When the
response ri is given before time te + BDSi , it is too early, and when it is given
after time te + WDSi , it is too late.

timete

WDS
i

BDS
i

Too early Too late

Figure 2: An event ei for a system S occurs at time te. The system shall provide
a response ri within a well-defined time-interval [ts + BDSi , ts + WDSi ].

We assume a real-time task τi that regularly polls for the event ei and
provides the response ri upon the occurrence of the event. In this section, we
derive timing constraints for task τi for two cases. The first case, addressed in
Section 3.1, recapitulates the existing approach for strictly periodic tasks, where
a period Ti and a best-case task deadline BDi and a worst-case task deadline
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Table 1: An overview of the notations used.

System
S system
ES set of n sporadic (input) events e1, e2, . . . , en of S
RS set of n (output) responses r1, r2, . . . , rn of S
ei (input) event i of system S
ri (output) response i of system S

WTSi minimal inter-arrival time of the eventei
BDSi best-case system deadline of the event-response tuple

< ei, ri >

WDSi worst-case system deadline of the event-response tuple
< ei, ri >

Tasks

T S set of n independent polling tasks τ1, τ2, . . . , τn of S
τi task identified by i
ιi,k job k of task τi
BCi best-case computation time of task τi
WCi worst-case computation time of task τi
Ti period of task τi

BRi worst-case response time of task τi
WRi worst-case response time of task τi
WDi worst-case task deadline of task τi
SJi start jitter of task τi
Ci,k computation time of job ιi,k
Ri,k response time of job ιi,k
ai,k activation time of job ιi,k
si,k start time of job ιi,k
fi,k finalization time of job ιi,k

Scheduling
mi number of times task τi is executed in a cycle
Φ start time of the first job of the first cycle
TS cycle time of the cyclic executive of system S

Auxiliaries

int task[] sequence of length N =
∑

1≤i≤n
mi representing a cycle

int index( job ) function yielding the index in the sequence of job job

WDi are derived from the system deadlines BDSi and WDSi . The second case,
addressed in Section 3.2, introduces our alternative approach. We conclude this
section with a problem formulation.

3.1 Strictly periodic polling tasks - a recap

In this section, we derive timing constraints for strictly periodic polling tasks
from the system deadlines and formulate both worst-case and best-case schedu-
lability conditions for tasks as well as the system.
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3.1.1 A worst-case schedulability condition

For a strictly periodic polling task τi, a worst-case situation arises when (i) the
event occurs immediately after a job ιi,k of τi polls for the event, (ii) job ιi,k
immediately starts upon its activation, (iii) the next job ιi,k+1 experiences a
worst-case interference of other tasks, and (iv) job ιi,k+1 requires its worst-case
computation time for execution; see Figure 3. For such a worst-case situation,
ιi,k+1 must finish before the worst-case system deadline WDSi .

time
te

WDS
i

Ti

WDi

Legend:

task activation;

task execution;

interference

fi,kai,k fi,k+1ai,k+1

ι i,kι i,k−1 ι i,k+1 ι i,k+2 ι i,k+3

Ti TiTi

Figure 3: A worst-case situation for a strictly periodic polling task τi to handle
an event ei for a system S that occurs at time te, where job ιi,k+1 assumes the
worst-case response time WRi of τi.

Based on Figure 3, we therefore derive the following timing constraint for
task τi based on activation times and finalization times

∀
0≤`

fi,`+1 − ai,` ≤WDSi . (6)

For a strictly periodic polling task with period Ti, this can be rewritten to

∀
0≤`

fi,`+1 − ai,` ≤WDSi

⇔ {(1)} ∀
0≤`

fi,`+1 − ai,`+1 + Ti ≤WDSi

⇔ ∀
0≤`

Ri,`+1 + Ti ≤WDSi

Hence, by using Equation (3), ignoring system initialization, and choosing the
period Ti and worst-case task deadline WDi of task τi such that (see also Fig-
ure 3)

Ti + WDi ≤WDSi (7)

we arrive at the classical condition for worst-case schedulability of task τi

WRi ≤WDi,

irrespective of the scheduling algorithm. The worst-case deadlines of a system
S are therefore met when

∀
1≤i≤n

Ti + WDi ≤WDSi ∧WRi ≤WDi. (8)

As long as the period Ti and deadline WDi of the task τi satisfy this con-
straint, and τi is guaranteed to meet its deadline WDi, the system deadline
WDS is met as well. Observe that no specific values for the period and deadline
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are required, i.e. many tuples satisfy Equation (8). A specific selection of values
is to decide upon a so-called implicit deadline, where the period and worst-case
task deadline are equal, i.e. Ti = WDi. In such a case, Equation (8) simplifies
to

∀
1≤i≤n

2× Ti ≤WDSi ∧WRi ≤ Ti.

3.1.2 A best-case schedulability condition

For a strictly periodic polling task τi, a best-case situation arises when (i) the
event occurs immediately before a job ιi,k of τi polls for the event, (ii) job
ιi,k immediately starts upon its activation, (iii) job ιi,k experiences a best-case
interference of other tasks, and (iv) job ιi,k requires its best-case computation
time for execution; see Figure 4.

time

BDS
i

fi,k

si,k = ai,k = te

ι i,kι i,k−1 ι i,k+1 ι i,k+2 ι i,k+3

TiTi Ti Ti

BDi

Figure 4: A best-case situation for a strictly periodic polling task τi to handle
an event ei for a system S that occurs at time te, where job ιi,k assumes the
best-case response time BRi of τi.

Based on Figure 4, we therefore derive the following timing constraint for
task τi based on activation times and finalization times

∀
0≤`

fi,` − ai,` ≥ BDSi .

Using Equations (1) and (2), this can be rewritten to

∀
0≤`

Ri,` ≥ BDSi

⇔ BRi ≥ BDSi .

By choosing the best-case task deadline BDi of task τi such that (see also Fig-
ure 4)

BDi ≥ BDSi (9)

we arrive at the classical condition for best-case schedulability of task τi

BRi ≥ BDi.

For cyclic executives, where tasks are executed non-preemptively, the best-case
response time is the same as the best-case computation time, similar to fixed-
priority non-preemptive scheduling with arbitrary phasing [10]. Hence, the best-
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case schedulability condition for task τi now becomes

BCi ≥ BDi.

The best-case deadlines of a system S are therefore met when

∀
1≤i≤n

BCi ≥ BDi ≥ BDSi . (10)

This best-case schedulability condition is independent of a specific cyclic exec-
utive.

3.1.3 Concluding remarks

From the previous subsections, we conclude that a system S, based on (i) strictly
periodic polling tasks to handle events and (ii) cyclic executives executing tasks
non-preemptively, meets its deadlines when the following schedulability condi-
tion holds

∀
1≤i≤n

((
Ti + WDi ≤WDSi ∧WRi ≤WDi

)
∧ (BCi ≥ BDi ≥ BDSi )

)
. (11)

How to check the condition falls outside the scope of this document.
We merely observe that the so-called minor cycle and major cycle, which

are typically used to describe a cyclic executive [1], are generally derived from
the periods of the tasks. In particular, the minor cycle and the major cycle
are generally taken to be the Greatest Common Divider (GCD) and the Least
Common Multiple (LCM) of the periods of the tasks, respectively.

3.2 A “regularly” polling task

Although it is common to assume periodic tasks for system scheduled by means
of a cyclic executive, there is no inherent need to do so. In this section, we derive
timing constraints for “regularly” polling tasks from the system deadlines and
formulate both worst-case and best-case schedulability conditions for both the
tasks and the system.

3.2.1 A worst-case schedulability condition

Similar to a strictly periodic polling task τi, a worst-case situation arises for a
“regularly” poling task when (i) the event occurs immediately after a job ιi,k of
τi polls for the event, (ii) job ιi,k immediately starts upon its activation, (iii)
the next job ιi,k+1 experiences a worst-case interference of other tasks, and (iv)
job ιi,k+1 requires its worst-case computation time for execution; see Figure 5.
For such a worst-case situation, ιi,k+1 must finish before the worst-case system

deadline WDSi . Based on Figure 5, we therefore derive the following timing
constraint for task τi based on start times and finalization times, similar to
Equation (7)

∀
0≤k

fi,k+1 − si,k ≤WDSi . (12)
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time
te

WDS
i

Legend:

task activation;

task execution;

interference

ι i,kι i,k−1 ι i,k+1 ι i,k+2 ι i,k+3

fi,ksi,k fi,k+1si,k+1

Figure 5: A worst-case situation for a regularly polling task τi to handle an
event ei for a system S that occurs at time te, where job ιi,k+1 executes for the
worst-case computation time WCi of τi.

The worst-case deadlines of a system S are therefore met when the following
condition holds

∀
1≤i≤n

(
∀

0≤k
fi,k+1 − si,k ≤WDSi

)
. (13)

3.2.2 A best-case schedulability condition

Similar to a strictly periodic polling task τi, a best-case situation arises for a
“regularly” poling task when (i) the event occurs immediately before a job ιi,k
of τi polls for the event, (ii) job ιi,k immediately starts upon its activation,
(iii) job ιi,k experiences a best-case interference of other tasks, and (iv) job ιi,k
requires its best-case computation time for execution; see Figure 6. Based on

time

BDS
i

fi,ksi,k = te

ι i,kι i,k−1 ι i,k+1 ι i,k+2 ι i,k+3

Figure 6: A best-case situation for a regularly polling task τi to handle an
event ei for a system S that occurs at time te, where job ιi,k+1 executes for the
best-case computation time BCi of τi.

Figure 6, we therefore derive the following timing constraint for task τi based
on start times and finalization times

∀
0≤`

fi,` − si,` ≥ BDSi .

For cyclic executives, where tasks are executed non-preemptively, this can be
rewritten to

∀
1≤i≤n

BCi ≥ BDSi . (14)

This best-case schedulability condition is independent of a specific cyclic exec-
utive.
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3.2.3 Concluding remarks

From the previous subsections, we conclude that a system S, based on (i) “reg-
ular” polling tasks to handle events and (ii) cyclic executives executing tasks
non-preemptively, meets its deadlines when the following schedulability condi-
tion holds

∀
1≤i≤n

((
∀

0≤k
fi,k+1 − si,k ≤WDSi

)
∧ BCi ≥ BDSi

)
. (15)

The best-case schedulability condition is independent of a specific cyclic
executive and checking the condition is considered trivial. In the remainder of
this document, we therefore focus on checking Equation (13) for various basic
single-rate and multi-cyclic executives, respectively, where the sequence of tasks
to be executed in a cycle is assumed to be known.

3.3 Problem formulation

As illustrated in this section, exact best-case analysis of a system S, where
scheduling is based on a cyclic executive with non-preemptive execution of tasks,
is trivial. We therefore focus on exact worst-case analysis in the remainder of
this document.

For a (worst-case) deadline WDSi of the system S, related to event ei ∈ ES ,
we have to guarantee that task τi ∈ T S provides a timely response ri ∈ RS .
We therefore have to make sure that the length of the interval from the start
time si,k of a job ιi,k till the finalization time fi,k+1 of the next job ιi,k+1 is at

most equal to WDSi ; see Equation (12). To determine worst-case schedulability
of the system S, we therefore have to prove Equation (13)

In Sections 5 and 6, we provide exact worst-case analysis for basic cyclic
executives, under the assumptions given in Section 2. In the next section, basic
cyclic executives are recapitulated.

4 A recap of basic cyclic executives

Inspired by [9], we consider six basic cyclic executives based on two orthogonal
dimensions:

1. single-rate, i.e. ∀
1≤i≤n

mi = 1, versus multi-rate, i.e. ∀
1≤i≤n

mi ≥ 1, and

2. AFAP (as fast as possible), time-driven AFAP, and periodic.

These six basic cyclic executives are briefly recapitulated below, using the first
dimension as leading for the structure of the section.

For each of these executives, tasks can simply be implemented as procedures
and executed within a loop.

4.1 Single-rate cyclic executive

A single-rate cyclic executive essentially executes every task exactly once in
a cycle. In the following subsections, three basic types of single-rate cyclic
executives are presented, single-rate AFAP, single-rate time-driven AFAP, and
single-rate periodic.
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4.1.1 Single-rate AFAP

Figure 7 illustrates a single-rate AFAP cyclic executive.

τ1

τ2

τ5

τ8

τ11 τ3

τ4τ10

τ6

τ7

τ9

τ12

while( 1 ){
   τ1;
   τ2;
   τ3;
   /∗ ... ∗/
       τ12;
}

Figure 7: Graphical representation and code structure of a single-rate AFAP
cyclic executive.

A single-rate AFAP cyclic executive has at least three general disadvantages.
A first disadvantage is that tasks may experience drift2, which is generally con-
sidered undesirable. We will illustrate this by considering the start times of jobs
of a task τi. The start time si,k of job ιi,k can be bounded by

s1,0 + k ×
∑

1≤j≤n

BCj +
∑

1≤j<i

BCj ≤ si,k ≤ s1,0 + k ×
∑

1≤j≤n

WCj +
∑

1≤j<i

WCj .

When
∑

1≤j≤n
BCj <

∑
1≤j≤n

WCj , the length of the interval in which job ιi,k may

be started becomes arbitrary large for increasing k. Stated differently, task τi
experiences unbounded start jitter or drift.

A second general disadvantage is that a single-rate AFAP cyclic executive
is energy inefficient, because the processor is constantly active executing tasks.
The single-rate time-driven AFAP cyclic executive, described in the next sub-
section, resolves both these disadvantages.

A third disadvantage is that whenever a system deadline is small compared
to the sum of the worst-case computation times, to be more specific when

∃
1≤i≤n

∑
1≤j≤n

WCj > WDSi −WCi as we will see in Section 5.3, the system is

not schedulable. A multi-rate cyclic executive may solve this disadvantage; see
Section 4.2.

4.1.2 Single-rate time-driven AFAP

For a single-rate time-driven AFAP, a cycle is started by a timer. The sum of
the worst-case computation times of all tasks shall be less than the inter-arrival
time TS of the timer, otherwise the (worst-case) executions of the tasks do not
‘fit’ in a cycle, i.e. ∑

1≤i≤n

WCi ≤ TS . (16)

Figure 8 illustrates a single-rate time-driven AFAP cyclic executive with cycle
time TS , where the cycle is started at time Φ, i.e. the start time of the first job
of task τ1 is given by s1,0 = Φ.

2Drift led to a system failure of the Patriot Missile Defense at Dharan, Saudi Arabia [11].
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τ1

τ2

τ5

τ8

τ11 τ3

τ4τ10

τ6

τ7

τ9

τ12

int k = 0; /* cycle counter */

/* wait until time Φ, the start of the cycle */
sleep( Φ );
while( 1 ){
   τ1;
   τ2;
   τ3;
   /∗ ... ∗/
       τ12;
   /* wait until the start of the next cycle */
   k = k + 1;
   sleep( Φ + k * TS );
}

Figure 8: Graphical representation and code structure of a single-rate time-
driven-AFAP cyclic executive with cycle time TS .

The start time si,k of job ιi,k is now bounded by

s1,0 + k × TS +
∑

1≤j<i

BCj ≤ si,k ≤ s1,0 + k × TS +
∑

1≤j<i

WCj .

The length of the interval, in which job ιi,k may be started, is now bounded by a
value that is independent of k. Stated differently, task τi experiences (bounded)
start jitter. The start jitter SJi of task τi is given by

SJi =
∑

1≤j<i

(WCj − BCj) .

The single-rate time-driven AFAP cyclic executive therefore resolves the first
disadvantage of the single-rate AFAP cyclic executive.

By starting cycles with an inter-arrival time of TS , the spare time, i.e. the
combination of slack3 and gain time4, can be used to execute background tasks
or run the processor at a lower, more energy efficient, clock frequency after the
cycle is completed. The second disadvantage of the single-rate AFAP cyclic
executive is therefore also resolved by this executive.

4.1.3 Single-rate periodic

For a single-rate periodic cyclic executive, we focus on the ‘strict’ case, where
every task is started at a specific time. In particular, for the ‘basic strict’ case
we assume that every task is started at the worst-case start-time relative to the
start of the cycle assuming each task needs its worst-case execution time.

Figure 9 illustrates such a single-rate periodic cyclic executive with cycle
time TS .

3Slack is the amount of time that has not been allocated to tasks, i.e. TS −
∑

1≤i≤n

WCi

per cycle.
4Gain time is time that has been allocated to tasks, but is not used, i.e. at most∑

1≤i≤n

WCi − BCi per cycle.
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τ1

τ2

τ5

τ8

τ11 τ3

τ4τ10

τ6

τ7

τ9

τ12

int k = 0, /* cycle counter */
    i,     /* task counter  */
    time;

/* wait until time Φ, the start of the cycle */
time = Φ;
sleep( time );
while( 1 ){
   for( i = 1; i <= 12; ++i ){
      τi;
      /* wait until the start of the next task */
      time = time + WCi ;
      sleep( time );
   }
   /* wait until the start of the next cycle */
   k = k + 1;
   time = Φ + k * TS;
   sleep( time );
}

Figure 9: Graphical representation and code structure of a (basic strict) single-
rate periodic cyclic executive with cycle time TS .

The start time si,k of job ιi,k is now exactly defined by

si,k = s1,0 + k × TS +
∑

1≤j<i

WCj . (17)

Stated differently, every task is started strictly periodically, i.e. ∀
1≤i≤n

SJi = 0,

making scheduling highly deterministic.
In a non-strict case, not all tasks are necessarily started at a statically de-

termined time, but some may be started immediately after the previous task
completed. Hence, the single-rate time-driven AFAP cyclic executive is a special
case of a non-strict single-rate periodic cyclic executive.

4.2 Multi-rate cyclic executive

A multi-rate cyclic executive executes every task at least once in a cycle. By
allowing tasks to be executed multiple times in a cycle, the third disadvantage
of a single-rate AFAP cyclic executive is addressed.

Let task τi be executed mi ≥ 1 times in the cycle. The multi-rate cyclic
executive specializes to a single-rate cyclic executive when every task is executed
exactly once in the cycle, i.e. ∀

1≤i≤n
mi = 1.

4.2.1 Multi-rate AFAP

Figure 10 illustrates a multi-rate AFAP cyclic executive.
A multi-rate AFAP cyclic executive has the same two general disadvantages

as a single-rate AFAP cyclic executive, being tasks may experience drift and
the cyclic executive is energy inefficient.

4.2.2 Multi-rate time-driven AFAP

Similar to the single-rate time-driven AFAP, the sum of the worst-case com-
putation times of all jobs in a cycle shall be less than the inter-arrival time
TS of the timer for a multi-rate time-driven AFAP, otherwise the (worst-case)
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while( 1 ){
   τ1; τ2; τ3;
   τ1; τ4; τ5;
   τ1; τ2; τ6;
   τ1; τ7; τ8;
}

τ1

τ2

τ4

τ2

τ7 τ3

τ1τ1

τ5

τ1

τ6

τ8

Figure 10: Graphical representation and code structure of a multi-rate AFAP
cyclic executive. In this example, τ1 is executed four times in the cycle, τ2 is
executed twice, and τ3, τ4, τ5, τ6, τ7 and τ8 are executed once.

executions of the tasks do not ‘fit’ in a cycle, i.e.∑
1≤i≤n

mi ×WCi ≤ TS . (18)

Figure 11 illustrates a multi-rate time-driven AFAP cyclic executive with cycle
time TS , where the cycle is started at time Φ.

int k = 0; /* cycle counter */

/* wait till time Φ, the start of the cycle */
sleep( Φ );
while( 1 ){
   τ1; τ2; τ3;
   τ1; τ4; τ5;
   τ1; τ2; τ6;
   τ1; τ7; τ8;
   /* wait until the start of the next cycle*/
   k = k + 1;
   sleep( Φ + k * TS );
}

τ1

τ2

τ4

τ2

τ7 τ3

τ1τ1

τ5

τ1

τ6

τ8

Figure 11: Graphical representation and code structure of a multi-rate time-
driven AFAP cyclic executive with cycle time TS . In this example, τ1 is executed
four times in the cycle, τ2 is executed twice, and τ3, τ4, τ5, τ6, τ7 and τ8 are
executed once.

Similar to the single-rate time-driven AFAP, tasks experience (bounded) start
jitter.

4.2.3 Multi-rate periodic

For a multi-rate periodic cyclic executive, we focus on the strict case, where
every job in the cycle is started at a specific time. In particular, for the ‘basic
strict’ case we assume that every task is started at the worst-case start-time
relative to the start of the cycle assuming each job needs its worst-case execution
time. Figure 12 illustrates such a multi-rate periodic cyclic executive with cycle
time TS .
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#define N 12 /* number of jobs in the cycle */

int k = 0, /* cycle counter */
    idx,   /* index         */
    time;
int task[N] = {1, 2, 3, 1, 4, 5, 1, 2, 6, 1, 7, 8};

/* wait until time Φ, the start of the cycle */
time = Φ ;
sleep( time );
while( 1 ){
   for( idx = 0; idx < N; ++idx ){
      τtask[idx];
      /* wait until the start of the next task */
      time = time + WCtask[idx];
      sleep( time );
   }
   /* wait until the start of the next cycle */
   k = k + 1;
   time = Φ + k * TS;
   sleep( time );
}

τ1

τ2

τ4

τ2

τ7 τ3

τ1τ1

τ5

τ1

τ6

τ8

Figure 12: Graphical representation and code structure of a (basic strict) multi-
rate periodic cyclic executive with cycle time TS . In this example, τ1 is executed
four times in the cycle, τ2 is executed twice, and τ3, τ4, τ5, τ6, τ7 and τ8 are
executed once.

In a strict case, the start time of every job is statically determined. Ob-
serve that, unlike the case of a single-rate periodic cyclic executive, the inter
start-times of jobs of a task may fluctuate, however. As an example, consider
Figure 12. The inter start-times of the jobs ι1,0, ι1,1, . . . , ι1,4 of task τ1 are given
by:

s1,1 − s1,0 = WC1 + WC2 + WC3;

s1,2 − s1,1 = WC1 + WC4 + WC5;

s1,3 − s1,2 = WC1 + WC2 + WC6;

s1,4 − s1,3 = WC1 + WC7 + WC8.

The inter start-times differ as soon as not all right-hand sides of these equations
are equal. Hence, although every specific job in the cycle is started strictly
periodically, the inter start-times of successive jobs of a task within a cycle and
between cycles may fluctuate.

In a non-strict case, not all jobs are started at a statically determined time,
but some are started immediately after the previous task completed. Hence, the
multi-rate time-driven AFAP cyclic executive is a special case of a non-strict
multi-rate periodic cyclic executive.

5 Exact worst-case analysis for single-rate cyclic
executives

In this section, we first revisit the general exact condition for the worst-case
schedulability of a system S when tasks are scheduled by a basic cyclic execu-
tive. We subsequently present two example systems, which we will use in the
remainder of the section for illustration purposes. Next, we consider analysis for
each of the three basic single-rate cyclic executives. Apart from providing exact
worst-case analysis for each cyclic executive, we also consider lower and upper
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bounds for the fraction of time that can be gained for background processing
by the time-driven AFAP and periodic cyclic executives compared to the AFAP
version. Finally, the single-rate cyclic executives are also compared with respect
to schedulability.

5.1 Worst-case schedulability condition revisited

Given the cyclic nature of the single-rate cyclic executive and the fact that every
task is executed exactly once in the cycle, it is sufficient to consider at most 2,
or 1 pair of, successive jobs of τi. Hence, we can simplify Equation (13) to

∀
1≤i≤n

fi,1 − si,0 ≤WDSi . (19)

To determine schedulability, we therefore have to test at most n conditions.
In the remainder of this section, we will stick to Equation (13), however,

to ease comparison between the exact conditions of the multi-rate executives
presented in the next section with their specializations for single-rate executives.

5.2 Two example systems

Tables 2 and 3 present task sets T S2 and T S3 and associated system deadlines
of systems S2 and S3, respectively. These two example systems will be used for
illustration purposes in the remainder of this section.

Table 2: Task characteristics of task set T S2 and associated system deadlines
of system S2.

BC WC WDS2

τ1 1 2 10
τ2 2 4 14

Table 3: Task characteristics of task set T S3 and associated system deadlines
of system S3.

BC WC WDS3

τ1 2 3 11
τ2 1 2 14
τ3 3 4 17
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5.3 Single-rate AFAP

Theorem 1. A system S will meet all its worst-case deadlines under a single-
rate AFAP cyclic executive iff (i.e. if-and-only-if) the following condition holds

∀
1≤i≤n

WCi +
∑

1≤j≤n

WCj ≤WDSi . (20)

Proof. The proof is given by construction. For a single-rate AFAP cyclic exec-
utive, all other tasks are executed exactly once between the execution of two
successive jobs of a task τi. Hence, we can write

fi,k+1 ≤ si,k + WCi +
∑

1≤j≤n

WCj

and derive
fi,k+1 − si,k −WCi ≤

∑
1≤j≤n

WCj .

Because this bound on fi,k+1 − si,k is tight by construction for all τi, the result
now immediately follows from Equation (13).

Based on Theorem 1, we derive that system S2 meets all its worst-case dead-
lines; see also Figure 13. Similarly, we derive that system S3 is not schedulable,
because WDS21 may be missed, i.e.

∑
1≤i≤|T S3 |

WCi + WC1 = 12 > WDS31 = 11;

see also Figure 14.

τ1 τ2

WC1 + WC2 = 6

0 5 10

2*WC1 + WC2 = 8 < WDS
1 = 10

WC1 +2*WC2 = 10 < WDS
2 = 14

τ1 τ2

WC1 + WC2 = 6

Figure 13: A situation of worst-case execution for system S2 under a single-rate
AFAP cyclic executive. Both system deadlines WDS21 and WDS22 are met.

5.4 Single-rate time-driven AFAP

In this section, we first present exact worst-case analysis for the single-rate time-
driven AFAP cyclic executive. We subsequently compare the schedulability of
the single-rate AFQP cyclic executive with the single-rate time-driven AFAP
cyclic executive. Finally, we provide lower and upper bounds for the fraction
of time that can be gained for background processing by the time-driven AFAP
cyclic executive compared to the AFAP version.
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τ1 τ2 τ3

WC1 + WC2 + WC3 = 9

τ1 τ2 τ3

WC1 + WC2 + 2*WC3 = 13 < WDS
3 = 17

0 5 10 15

2*WC1 + WC2 + WC3 = 12 > WDS
1 = 11

WC1 +2*WC2 + WC3 = 11 < WDS
2 = 14

WC1 + WC2 + WC3 = 9

Figure 14: A situation of worst-case execution for system S3 under a single-rate
AFAP cyclic executive. System deadline WDS31 is missed.

5.4.1 Exact worst-case analysis

Theorem 2. A system S will meet all its worst-case deadlines under a single-
rate time-driven AFAP cyclic executive iff (i.e. if-and-only-if) the following con-
dition holds

∃
TS

∑
1≤i≤n

WCi ≤ TS ≤ min
1≤i≤n

WDSi −

 ∑
1≤j<i

(WCj − BCj) + WCi

 .

(21)

Proof. We first observe that the lower bound on TS , given by
∑

1≤i≤n
WCi ≤ TS ,

is required to guarantee that the (worst-case) executions of the tasks ‘fit’ in a
cycle.

Consider a task τi. The term fi,k+1 − si,k is maximized for a single-rate
time-driven AFAP cyclic executive when job ιi,k starts as early as possible and
job ιi,k+1 finishes as late as possible in their successive cycles. Denoting the
cycle time by TS , we find (by construction)

si,k ≥ k × TS +
∑

1≤j<i

BCj

fi,k+1 ≤ (k + 1)× TS +
∑

1≤j≤i

WCj .

Hence,

fi,k+1 − si,k ≤ TS +
∑

1≤j<i

(WCj − BCj) + WCi.

Because this bound on fi,k+1 − si,k is tight by construction for all τi, the con-
dition

∀
1≤i≤n

TS +
∑

1≤j<i

(WCj − BCj) + WCi ≤WDSi

now immediately follows from Equation (13). Hence, an upper bound on TS is
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given by

TS ≤ min
1≤i≤n

WDSi −

 ∑
1≤j<i

(WCj − BCj) + WCi

 .

Together with the lower bound on TS given earlier, this concludes the proof.

Based on Theorem 2 we conclude that system S2 meets all its worst-case
deadlines under a single-rate time-driven AFAP cyclic executive, because there
exists a cycle time TS2 that satisfies the relation 6 ≤ TS2 ≤ min{8, 9} = 8.
Figure 15 shows a situation of worst-case execution for system S2 for a cycle
time TS2 = 8. As can be seen, both system deadlines are met. Observe that

τ1 τ2

TS = 8

0 5 10

TS + WC1 = 10 = WDS
1

TS + (WC1 − BC1) + WC2 = 13 < WDS
2 = 14

τ1 τ2

15

TS = 8

BC1

Figure 15: A situation of worst-case execution for system S2 under a single-rate
time-driven AFAP cyclic executive with TS2 = 8. Both system deadlines WDS21
and WDS22 are met.

increasing the cycle time beyond 8 will cause system deadline WDS21 to be
missed.

Based on Theorem 2 we conclude that system S3 is not schedulable under
a single-rate AFAP cyclic executive, because there does not exist a cycle time
TS3 that satisfies the relation 9 ≤ TS3 ≤ min{11− 3, 14− (3− 2 + 2), 17− (3−
2 + 2− 1 + 4)} = min{8, 11, 11} = 8. Figure 16 shows a situation of worst-case
execution for system S3 for a cycle time TS3 = 9, illustrating that S3 is not
schedulable.

5.4.2 Comparison with an AFAP cyclic executive

Next, we compare single-rate AFAP and single-rate time-driven AFAP cyclic
executives. We first present a lemma stating that if a system meets its worst-
case deadlines under a single-rate time-driven AFAP cyclic executive then it will
also meet its worst-case deadlines under a single-rate AFAP cyclic executive.
We subsequently present an example system that meets its worst-case deadlines
under a single-rate AFAP cyclic executive but is not schedulable by a single-
rate time-driven AFAP cyclic executive. We therefore conclude that the single-
rate AFAP cyclic executive dominates the single-rate time-driven AFAP cyclic
executive.
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T
S
 + WC1 + WC2 + WC3 = 9

τ1 τ2 τ3

T
S
 + WC1 = 12 > WDS

1 = 11

T
S
 + (WC1 − BC1) + WC2 = 12 < WDS

2 = 14

TS+(WC1 − BC1) + (WC2 − BC2) + WC3 = 15 < WDS
3 = 17

0 5 10 15

τ1 τ2 τ3

T
S
 + WC1 + WC2 + WC3 = 9

BC1 + BC2 

BC1

Figure 16: A situation of worst-case execution for system S3 under a single-rate
time-driven AFAP cyclic executive with TS3 = 9. System deadline WDS31 is not
met, whereas both system deadlines WDS32 and WDS33 are met.

Lemma 1. When a system S is schedulable under a single-rate time-driven
AFAP cyclic executive, it is also schedulable under a single-rate AFAP cyclic
executive.

Proof. We first recall from Section 3.2 that the best-case schedulability condition
is independent of the cyclic executive. To prove the lemma, we therefore only
have to show that when the worst-case deadlines of S are met under a single-rate
time-driven AFAP cyclic executives, these deadlines are also met under a single-
rate AFAP cyclic executive. We now prove the lemma by deriving Equation (20)
from Equation (21).

∃
TS

∑
1≤i≤n

WCi ≤ TS ≤ min
1≤i≤n

WDSi −

 ∑
1≤j<i

(WCj − BCj) + WCi


⇔

∑
1≤i≤n

WCi ≤ min
1≤i≤n

WDSi −

 ∑
1≤j<i

(WCj − BCj) + WCi


⇔ ∀

1≤i≤n

∑
1≤j≤n

WCj ≤WDSi −

 ∑
1≤j<i

(WCj − BCj) + WCi


⇒ { ∀

1≤i≤n
WCi ≥ BCi} ∀

1≤i≤n

∑
1≤j≤n

WCj ≤WDSi −WCi

⇔ ∀
1≤i≤n

WCi +
∑

1≤j≤n

WCj ≤WDSi

Now consider system S4 described in Table 4. Based on Theorem 1, we
conclude that system S4 meets all its worst-case deadlines under a single-rate
AFAP cyclic executive; see also Figure 17.

Based on Theorem 2, we conclude that system S4 is not schedulable under
a single-rate time-driven AFAP cyclic executive, however, because there is no
TS4 that satisfies the relation 8 ≤ TS4 ≤ min{9, 7} = 7. Figure 18 shows a
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Table 4: Task characteristics of task set T S4 and associated system deadlines
of system S4.

BC WC WDS4

τ1 1 3 12
τ2 2 5 14

WC1 + WC2 = 8

0 5 10

2*WC1 + WC2 = 11 < WDS
1 = 12

WC1 + 2*WC2 = 13 < WDS
2 = 14

τ1 τ2

15

τ1 τ2

WC1 + WC2 = 8

Figure 17: A situation of worst-case execution for system S4 under a single-rate
AFAP cyclic executive. Both system deadlines WDS41 and WDS42 are met.

situation with a worst-case execution and a cycle time TS4 = WC1 + WC2 = 8,
where the system deadline WDS42 is missed.

τ1 τ2

TS = WC1 + WC2 = 8

0 5 10

TS + WC1 = 11 < WDS
1 = 12

TS + (WC1 − BC1) + WC2 = 15 > WDS
2 = 14

τ1 τ2

15

TS = WC1 + WC2 = 8

BC1

Figure 18: A situation of worst-case execution for system S4 under a single-rate
time-driven AFAP cyclic executive with a cycle time TS4 = WC1 + WC2 = 8.
System deadline WDS42 is missed.

Theorem 3. The single-rate AFAP cyclic executive dominates the single-rate
time-driven AFAP cyclic executive.

Proof. Follows immediately from Lemma 1 and system S4.

5.4.3 Bounds on fraction of spare time

Finally, we consider bounds on the fraction of time that can be gained for back-
ground processing by a single-rate time-driven AFAP cyclic executive compared
to a single-rate AFAP cyclic executive.
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The slack per cycle of a single time-driven cyclic executive is equal to TS −∑
1≤i≤n

WCi. The gain time per cycle is at most
∑

1≤i≤n
(WCi − BCi). The spare

time per cycle is therefore bounded by TS −
∑

1≤i≤n
WCi and TS −

∑
1≤i≤n

BCi.

Lemma 2. Whenever a system S is schedulable under a single-rate time-driven
AFAP cyclic executive with a cycle time of TS , a fraction fS,gain(TS) given by(

TS −
∑

1≤i≤n WCi

)
TS

≤ fS,gain(TS) ≤

(
TS −

∑
1≤i≤n BCi

)
TS

of the time can be gained for background processing by a single-rate time-driven
AFAP cyclic executive compared to a single-rate AFAP cyclic executive.

Proof. The term
(
TS −

∑
1≤i≤n WCi

)
represents the worst-case (i.e. minimum)

amount of spare time in a cycle and the term
(
TS −

∑
1≤i≤n BCi

)
represents

the best-case (i.e. maximum) amount of spare time. The result therefore follows
immediately.

In case of system S2 and TS2 = 8, we find 1
4 ≤ f

S2,gain(8) ≤ 1
2 .

5.5 Single-rate periodic cyclic executive

By explicitly activating each task in the cycle, tasks do not experience any
start jitter, as already described by Equation (17) in Section 4.1.3. This is also
illustrated for system S2 in Figure 19. As illustrated in Figure 20, system S4

τ1 τ2

TS = 8

0 5 10

TS + WC1 = 10 = WDS
1

TS + WC2 = 12 < WDS
2 = 14

τ1 τ2

15

TS = 8

Figure 19: A situation of worst-case execution for system S2 under a (basic
strict) single-rate periodic cyclic executive with a cycle time TS2 = 8. All
deadlines of S2 are met.

meets all its worst-case deadlines under a single-rate periodic cyclic executive.

5.5.1 Exact worst-case analysis

By removing the start jitter through the usage of a (strict) single-rate periodic
cyclic executive, we can adapt Theorem 2:
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τ1

TS = WC1 + WC2 = 8

0 5 10

TS + WC1 = 11 < WDS
1 = 12

TS + WC2 = 13 < WDS
2 = 14

τ1 τ2

15

TS = WC1 + WC2 = 8

τ2

Figure 20: A situation of worst-case execution for system S4 under a (basic
strict) single-rate periodic cyclic executive with a cycle time TS4 = 8. All
deadlines of S4 are met.

Theorem 4. A system S will meet all its worst-case deadlines under a (strict)
single-rate periodic cyclic executive iff the following condition holds

∃
TS

∑
1≤j≤n

WCj ≤ TS ≤ min
1≤i≤n

{
WDSi −WCi

}
. (22)

Proof. Follows immediately from Equation (16) and by simply replacing BCi
by WCi in Equation (21).

For system S4 we find that it will meet all its worst-case deadlines under a
single-rate periodic cyclic executive when 8 ≤ TS4 ≤ min{9, 9} = 9. Figure 21
illustrates a schedule for TS4 = 9.

τ1

0 5 10

TS + WC1 = 12 = WDS
1

TS + WC2 = 14 = WDS
2

τ1 τ2

15

TS = 9 > WC1 + WC2 = 8

τ2

TS = 9 > WC1 + WC2 = 8

Figure 21: A situation of worst-case execution for system S4 under a (basic
strict) single-rate periodic cyclic executive with a cycle time TS4 = 9. All
deadlines of S4 are met.

5.5.2 Comparison with AFAP cyclic executives

Next, we compare the single-rate periodic cyclic executive with the other basic
single-rate cyclic executives.

Theorem 5. The single-rate AFAP cyclic executive and the single-rate periodic
cyclic executive are equivalent, i.e. can schedule the same systems.
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Proof. We prove the theorem by showing that by taking TS to be equal to the
lower bound in Equation (22), Equation (22) and Equation (19) are equivalent.
We first rewrite Equation (22) to

∃
TS

∀
1≤i≤n

∑
1≤j≤n

WCj ≤ TS ≤WDSi −WCi.

We now derive for TS =
∑

1≤j≤n
WCj

∀
1≤i≤n

∑
1≤j≤n

WCj ≤WDSi −WCi

⇔ ∀
1≤i≤n

∑
1≤j≤n

WCj + WCi ≤WDSi ,

where the latter relation is identical to Equation (19) of Theorem 1.

Theorem 6. The single-rate periodic cyclic executive dominates the single-rate
time-driven AFAP cyclic executive.

Proof. Follows immediately from Theorems 3 and 5.

5.5.3 Bounds on fraction of spare time

Finally, we consider bounds on the fraction of time that can be gained for
background processing by a single-rate periodic cyclic executive compared to a
single-rate AFAP cyclic executive.

Lemma 3. Whenever a system S is schedulable under a single-rate time-driven
AFAP cyclic executive with a cycle time of TS , a fraction fS,gain(TS) given by(

TS −
∑

1≤i≤n WCi

)
TS

≤ fS,gain(TS) ≤

(
TS −

∑
1≤i≤n BCi

)
TS

of the time can be gained for background processing by a single-rate periodic
cyclic executive compared to a single-rate AFAP cyclic executive.

Proof. Similar to the proof of Lemma 2.

In case of system S4 and TS4 = 9, we find 1
9 ≤ f

S4,gain(9) ≤ 2
3 .

6 Exact worst-case analysis for multi-rate cyclic
executives

As mentioned in the Section 1.3, we assume that the sequence of tasks to be
executed in the cycle is known.

Given the cyclic nature of the multi-rate cyclic executive and the fact that
every task τi is executed mi times in the cycle, it is sufficient to consider at most
mi+1, or mi pairs of, successive jobs of τi. Hence, we can simplify Equation (13)
to

∀
1≤i≤n

(
∀

0≤k≤mi−1
fi,k+1 − si,k ≤WDSi

)
. (23)
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To determine whether or not system S meets all its worst-case deadlines, we
therefore have to test at most N =

∑
1≤i≤n

mi conditions, where N reduces to n

for the special case of single-rate executives, i.e. when ∀
1≤i≤n

mi = 1. From these

mi pairs, mi − 1 pairs are executed in the same cycle and 1 pair is executed in
two successive cycles.

6.1 Multi-rate AFAP

Theorem 7. A system S will meet all its worst-case deadlines under a multi-
rate AFAP cyclic executive scheduling a sequence of tasks task[] iff the follow-
ing condition holds

∀
1≤i≤n

max

 max
0≤k<mi−1

∑
index(ιi,k)≤` ≤index(ιi,k+1)

WCtask[`]

,
∑

index(ιi,mi−1)≤`≤N−1 ∨
0≤`≤index(ιi,0)

WCtask[`]

}
≤WDSi . (24)

Proof. The proof is based on a construction argument. We consider two cases, a
first case where the jobs ιi,k and ιi,k+1 are in the same cycle, i.e. 0 ≤ k < mi−1
and a second case where these jobs are in successive cycles, i.e. k = mi− 1. For
both cases, we write fi,k+1 − si,k in terms of task[] and int index( job ),
where we assume the start time of the system is given by 0, i.e. stask[0],0 = 0.

When the successive jobs ιi,k and ιi,k+1 of task τi are in the same cycle,
fi,k+1 − si,k is bounded by the sum of the worst-case computation times of all
jobs in the cycle starting with job ιi,k up to and including job ιi,k+1, i.e.

fi,k+1 − si,k ≤
∑

index(ιi,k)≤`≤index(ιi,k+1)

WCtask[`]. (25)

When the successive jobs ιi,k and ιi,k+1 of task τi are in successive cycles, i.e.
k = mi − 1, fi,k+1 − si,k = fi,mi

− si,mi−1 is bounded by the sum of the worst-
case computation times of all jobs (i) in the cycle starting with job ιi,mi−1 up
to the end of the cycle and (ii) in the successive cycle from the start of the cycle
up to and including job ιi,mi , i.e.

fi,mi
− si,mi−1 ≤

∑
index(ιi,mi−1)≤`≤N−1 ∨

0≤`≤index(ιi,0)

WCtask[`]. (26)

The term fi,k+1 − si,k is therefore bounded by the maximum of the right-hand
sides of Equations (25) and (26). Because this bound on fi,k+1− si,k is tight by
construction for all τi, the result now immediately follows from Equation (13).

Let the cycle for system S2 be given by task[] = {1, 2, 1, 3}, i.e. m1 = 2
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and m2 = m3 = 1. Using Theorem 7, we find for task

• τ1: max{8, 10} = 10 ≤WDS31 = 11, hence the deadline WDS31 is met;

• τ2: max{− inf, 14} = 14 ≤WDS32 = 14, hence the deadline WDS32 is met;

• τ3: max{− inf, 16} = 16 ≤WDS33 = 17, hence the deadline WDS33 is met.

We therefore conclude that system S2 meets all its worst-case deadlines under
a multi-rate AFAP cyclic executive using the cycle {1, 2, 1, 3}.

Figure 22 shows a situation of worst-case execution for system S3.

τ1 τ2 τ1 τ3

2*WC1 + WC2 + WC3 = 12

τ1 τ2 τ1 τ3

2*WC1 + WC2 = 8 < WDS
1 = 11

2*WC1 + WC3 = 10 < WDS
1 = 11

2*WC1 + 2*WC2 + WC3 = 14 = WDS
2

2*WC1 + WC2 + 2*WC3 = 16 < WDS
3 = 17

0 5 10 15 20

2*WC1 + WC2 + WC3 = 12

Figure 22: A situation of worst-case execution for system S3 under a multi-rate
AFAP cyclic executive using the cycle {1, 2, 1, 3}. All deadlines of S3 are
met.

6.2 Multi-rate time-driven AFAP

Similar to Section 5.4, we first present exact worst-case analysis for the multi-
rate time-driven AFAP cyclic executive, subsequently compare the schedula-
bility of the multi-rate AFQP cyclic executive with the multi-rate time-driven
AFAP cyclic executive, and finally provide lower and upper bounds for the frac-
tion of time that can be gained for background processing by the time-driven
AFAP cyclic executive compared to the AFAP version.

6.2.1 Exact worst-case analysis

Theorem 8. A system S will meet all its worst-case deadlines under a multi-
rate time-driven AFAP cyclic executive scheduling a sequence of tasks task[]

iff the following condition holds

∀
1≤i≤n

max
0≤k<mi−1

∑
index(ιi,k)≤`≤index(ιi,k+1)

WCtask[`] ≤WDSi

∧ ∃
TS

∑
1≤i≤n

mi ×WCi ≤ TS ≤ min
1≤i≤n

{
WDSi − ∑

0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`]

}.(27)
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Proof. The proof is based on a construction argument. Similar to the multi-
rate AFAP case, we consider two cases, a first case where ιi,k and ιi,k+1 are in
the same cycle, i.e. 0 ≤ k < mi − 1 and a second case where these jobs are in
successive cycles, i.e. k = mi − 1.

When the successive jobs ιi,k and ιi,k+1 of task τi are in the same cycle,
fi,k+1 − si,k is bounded by the sum of the worst-case computation times of all
jobs in the cycle starting with job ιi,k up to and including job ιi,k+1, as for the
case of multi-rate AFAP, i.e. Equation (25).

For the successive jobs ιi,mi−1 and ιi,mi of task τi, we first observe that TS

shall satisfy Equation (16), otherwise the (worst-case) executions of the tasks
do not ‘fit’ in a cycle. Next, tight bounds on si,mi−1 and fi,mi

are given by

si,mi−1 ≥
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`]

fi,mi
≤ TS +

∑
0≤`≤index(ιi,0)

WCtask[`]

Hence,

fi,mi
− si,mi−1 ≤ TS +

∑
0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`].

(28)
The term fi,k+1 − si,k is therefore bounded by the maximum of the right-hand
sides of Equations (25) and (28). Because this bound on fi,k+1− si,k is tight by
construction for all τi, the condition

∀
1≤i≤n

TS +
∑

0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`] ≤WDSi ,

now immediately follows from Equation (13). Hence, and upper bound on TS

is given by

TS ≤ min
1≤i≤n

WDSi −

 ∑
0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`]

 .

Based on Theorem 8, we can make the following derivation for system S3.
Because only m1 > 1, we only need to check the first clause for τ1, and find∑
index(ι1,0)≤`≤index(ι1,1)

WCtask[`] = WC1+WC2+WC1 = 8 < WDS31 = 11. Hence

that clause is satisfied. Next, we need to check the second clause, and find
12 ≤ TS3 ≤ min{11− (3−3), 14− (5−2), 17− (12−5)} = min{11, 11, 10} = 10.
We therefore conclude that system S3 is not schedulable under a multi-rate
time-driven AFAP cyclic executive. Figure 23 shows a worst-case execution for
system S3 for a cycle time TS3 = 12. As can be observed from the figure, WDS31
and WDS32 are both exceeded by 1 and WDS33 is exceeded by 2.
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τ1 τ2 τ3

2*WC1 + WC2 + WC3 = 12

τ1 τ2 τ1 τ3

2*WC1 + WC2 = 8 < WDS
1 = 11

(2*WC1 + WC2 + WC3) + (WC1 + WC2) − BC1= 15 > WDS
2 = 14

(2*WC1 + WC2 + WC3) +(2*WC1 + WC2 + WC3) − (2*BC1 + BC2) = 19 > WDS
3 = 17

0 5 10 15 20

τ1

(2*WC1 + WC2 + WC3) + WC1 = 12 > WDS
1 = 11

2*WC1 + WC2 + WC3 = 12

BC1 BC1BC2

Figure 23: A situation of worst-case execution for system S3 under a multi-rate
time-driven cyclic executive with TS3 = 12 and using the cycle {1, 2, 1, 3}.
All three system deadlines WDS31 , WDS32 and WDS33 are missed.

6.2.2 Comparison with an AFAP cyclic executive

Next, we compare multi-rate AFAP and multi-rate time-driven AFAP cyclic
executives. We first present a lemma stating that if a system is schedulable by
a multi-rate time-driven AFAP cyclic executive, then it is also schedulable by a
multi-rate AFAP cyclic executive. Through system S3, we already presented an
example that is schedulable by a multi-rate AFAP cyclic executive but not by a
multi-rate time-driven AFAP cyclic executive. We therefore conclude that the
multi-rate AFAP cyclic executive dominates the multi-rate time-driven AFAP
cyclic executive.

Lemma 4. When a system S with a sequence of tasks task[] is schedulable
under a multi-rate time-driven AFAP cyclic executive, it is also schedulable
under a multi-rate AFAP cyclic executive.

Proof. Given Theorems 7 and 8, we have to prove that∑
index(ιi,mi−1)≤`≤N−1 ∨

0≤`≤index(ιi,0)

WCtask[`] ≤

TS +
∑

0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`].

We first remove the term
∑

0≤`≤index(ιi,0)
WCtask[`] from both sides of the relation.

∑
index(ιi,mi−1)≤`≤N−1

WCtask[`] ≤ TS −
∑

0≤`≤index(ιi,mi−1)−1

BCtask[`]

Next, we replace TS by its lower bound
∑

1≤`≤N−1
WCtask[`] and remove the term∑

index(ιi,mi−1)≤`≤N−1
WCtask[`] from both sides of the relation, yielding

0 ≤
∑

0≤`<index(ιi,mi−1)

(
WCtask[`] − BCtask[`]

)
.
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Given BCi ≤WCi, the result follows.

Theorem 9. The multi-rate AFAP cyclic executive dominates the multi-rate
time-driven AFAP cyclic executive.

Proof. Follows immediately from Lemma 4 and system S3.

6.2.3 Bounds on fraction of gain time

Finally, we consider bounds on the fraction of time that can be gained for back-
ground processing by a multi-rate time-driven AFAP cyclic executive compared
to a multi-rate AFAP cyclic executive.

Lemma 5. Whenever a system S with a sequence of tasks task[] is schedulable
under a multi-rate time-driven AFAP cyclic executive with a cycle time of TS ,
a fraction fS,gain(TS) given by(

TS −
∑

1≤i≤nmi ×WCi

)
TS

≤ fS,gain(TS) ≤

(
TS −

∑
1≤i≤nmi × BCi

)
TS

of the time can be gained for background processing by a multi-rate time-driven
AFAP cyclic executive compared to a multi-rate AFAP cyclic executive.

Proof. The term
(
TS −

∑
1≤i≤nmi ×WCi

)
represents the worst-case (i.e. min-

imum) amount of spare time in a cycle and the term
(
TS −

∑
1≤i≤nmi × BCi

)
represents the best-case (i.e. maximum) amount of spare time. The result there-
fore follows immediately.

6.3 Multi-rate periodic cyclic executive

6.3.1 Exact worst-case analysis

By removing the start jitter through the usage of a (strict) multi-rate periodic
cyclic executive, we can adapt Theorem 8:

Theorem 10. A system S will meet all its worst-case deadlines under a (strict)
multi-rate periodic cyclic executive scheduling a sequence of tasks task[] iff the
following condition holds

∀
1≤i≤n

max
0≤k<mi−1

∑
index(ιi,k)≤`≤index(ιi,k+1)

WCtask[`] ≤WDSi

∧ ∃
TS

∑
1≤i≤n

mi ×WCi ≤ TS ≤ min
1≤i≤n

{
WDSi − ∑

0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

WCtask[`]

}.(29)

Proof. Follows immediately from Equation (18) and by simply replacing BCi
by WCi in Equation (27).
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Based on Theorem 10, we can make the following derivation for system
S3. Because the first clause of Equation (29) is identical to the first clause of
Equation (27), we already know that this clause is satisfied. Next, we need to
check the second claues, and find 12 ≤ TS3 ≤ min{11− (3−5), 14− (5−3), 17−
(12− 8)} = min{13, 12, 13} = 12. We therefore conclude that system S3 under
a multi-rate periodic cyclic executive. Figure 24 shows a worst-case execution
for system S3 for a cycle time TS3 = 12.

2*WC1 + WC2 + WC3 = 12

τ1 τ2 τ1 τ3

2*WC1 + WC2 = 8 < WDS
1 = 11

2*WC1 + WC3 = 10 < WDS
1 = 11

2*WC1 + 2*WC2 + WC3 = 14 = WDS
2

2*WC1 + WC2 + 2*WC3 = 16 < WDS
3 = 17

0 5 10 15 20

τ1 τ2 τ3τ1

2*WC1 + WC2 + WC3 = 12

WC1 + WC2 

WC1

2*WC1 + WC2

Figure 24: A situation of worst-case execution for system S3 under a (basic
strict) multi-rate periodic cyclic executive using the cycle {1, 2, 1, 3} and a
cycle time TS3 = 12. All system deadlines of S3 are met.

We observe that because system deadline WDS32 is just met, as also became
clear from applying Theorem 10, it is not possible to increase the cycle time. We
further observe that task τ1 is not started strictly periodically, i.e. s1,1 − s1,0 =
5 < s1,2 − s1,1 = 9.

6.3.2 Comparison with AFAP cyclic executives

Theorem 11. The multi-rate AFAP cyclic executive and the multi-rate periodic
cyclic executive are equivalent, i.e. can schedule the same systems.

Proof. We prove the theorem by showing that by taking TS to be equal to the
lower bound in Equation (29), Equation (29) and Equation (23) are equivalent.
We first observe that the first clause of Equation (29) is identical to the first
part of Equation (23). Next, we rewrite the second clause of Equation (29) to

∀
1≤i≤n

∃
TS

∑
1≤j≤n

mj ×WCj ≤ TS ≤WDSi − ∑
0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

WCtask[`]

 .
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We now derive for TS =
∑

1≤j≤n
mj ×WCj

∀
1≤i≤n

∑
1≤j≤n

mj ×WCj ≤WDSi − ∑
0≤`≤index(ιi,0)

WCtask[`] −
∑

0≤`≤index(ιi,mi−1)−1

WCtask[`]


⇔ ∀

1≤i≤n

∑
index(ιi,mi−1)≤`≤N−1 ∨

0≤`≤index(ιi,0)

WCtask[`] ≤WDSi ,

where the latter is identical to the second part of Equation (23) of Theorem 7.

Theorem 12. The multi-rate periodic cyclic executive dominates the multi-rate
time-driven AFAP cyclic executive.

Proof. Follows immediately from Theorems 9 and 11.

6.3.3 Bounds on fraction of gain time

Lemma 6. Whenever a system S with a sequence of tasks task[] is schedulable
under a multi-rate periodic cyclic executive with a cycle time of TS , a fraction
fS,gain(TS) given by(

TS −
∑

1≤i≤nmi ×WCi

)
TS

≤ fS,gain(TS) ≤

(
TS −

∑
1≤i≤nmi × BCi

)
TS

of the time can be gained for background processing by a multi-rate periodic
cyclic executive compared to a multi-rate AFAP cyclic executive.

Proof. Similar to the proof of Lemma 5.

In case of system S3 and TS3 = 12, we find 0 ≤ fS3,gain(12) ≤ 1
3 .

7 Discussion

In this section, we put the contents of this document in perspective by discussing
various related issues.

7.1 Polling tasks and task types

For real-time systems, various types of tasks are typically distinguished based
on their activation pattern or constraints on the inter-arrival time of jobs.
Well-known examples include periodic tasks, with a fixed inter-arrival time of
jobs, sporadic tasks [12], with a minimal inter-arrival time of jobs, and elastic
tasks [13], with both a minimal and a maximal inter-arrival time of jobs.

The constraint expressed by Equation (7) for a polling task does not specif-
ically correspond to any of these basic task types, because the period Ti is
essentially a maximal inter-arrival time of jobs.



CSR 20-02, November 2, 2020 34

We observe that although tasks scheduled by a single- or multi-rate AFAP
cyclic executive may experience drift, and therefore behave as elastic tasks, this
behavior is an emergent property of the system rather than a characteristic of
the task as determined by a designer.

7.2 A refinement of the task model

In Section 2, it is implicitly assumed that:

• tasks provide a response just before their completion;

• best-case computation times are a proper lower bound for the amount of
time required by tasks when they handle events.

Both assumptions need not hold, however.
When providing the response is not the last action of a task, e.g. because

there may be a number of internal actions after the task provided the response5,
Equations (8) and (13) are pessimistic6. In that case, we may like to refine our
model by explicitly considering a finalization time fri , a worst-case computation
time WCri ≤ WCi, a worst-case response time WRr

i ≤ WRi, and a worst-
case task deadline7 WDr

i , denoting the worst-case values for the case where
the response is given earlier. This would yield refined worst-case schedulability
conditions for S, i.e. for periodic polling tasks

∀
1≤i≤n

Ti + WDi ≤WDSi ∧WRr
i ≤WDr

i ,

and for regularly polling tasks

∀
1≤i≤n

(
∀

0≤k
fri,k+1 − si,k ≤WDSi

)
.

The best-case computation time BCi is probably assumed when the event
ei does not occur. Hence, we may like to refine our model by explicitly consid-
ering a best-case computation time BCe,ri ≥ BCi and a best-case response time
BRe,r

i ≥ BRi denoting the best-case values for the case where (i) the event oc-
curred and (ii) the minimal computation time for internal actions after the task
provided the response are taken into account. Whereas ignoring the former may
make Equations (10) and (14) pessimistic ignoring the latter may make them
optimistic8. These two additional assumptions would yield refined best-case
schedulability conditions for S, i.e. for periodic polling tasks

∀
1≤i≤n

BCe,ri ≥ BDe,r
i ≥ BDSi .

and for regularly polling tasks

∀
1≤i≤n

BCe,ri ≥ BDSi .

5In [14], the notion of observable event of a task is introduced. The last observable event
of a task (in our case a response) may not be the end of a task’s execution.

6Schedulability analysis is pessimistic when it deems a system unschedulable, whereas the
system is actually schedulable.

7In [3], such a deadline is termed an internal deadline.
8Schedulability analysis is optimistic when it deems a system schedulable, whereas the

system is actually unschedulable.
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We merely observe that the worst-case analysis of time-driven AFAP cyclic
executives need not be adapted based on these new insights for best-case compu-
tation times, despite the fact that the analysis for those executives also depends
on best-case computation times.

7.3 Equivalence and dominance of cyclic executives

In Theorems 5 and 11 we proved that for single-rate as well as multi-rate the
AFAP and periodic cyclic executives are equivalent, i.e. each pair of cyclic ex-
ecutives can schedule the same systems. The advantages of a periodic cyclic
executive over an AFAP cyclic executive is that the former prevents drift and
may improve energy efficiency, as explained in Section 4. Moreover, a multi-rate
cyclic executive may schedule systems that can not be scheduled by a single-rate
cyclic executive, as illustrated by means of system S3. Because the single-rate
cyclic executives are specializations of the multi-rate cyclic executives, we con-
clude that multi-rate cyclic executives dominate single-rate cyclic executives.

7.4 A note on task ordering

Whereas the order of tasks in the sequence to be executed in a cycle for the
single-rate AFAP and single-rate periodic cyclic executives is immaterial, i.e.
Theorems 1 and 4 are independent of the order of the tasks, this order has
an influence on the schedulability for a system for the single-rate time-driven
AFAP cyclic executive.

We illustrate the latter for an example system S5. We start by rewriting
Theorem 2, using task[] and index(), to support an arbitrary, but fixed,
order of tasks in a cycle.

Lemma 7. A system S with a sequence of tasks task[], that contains every
task of the set T S exactly once, is schedulable by a single-rate time-driven AFAP
cyclic executive iff the following condition holds

∃
TS

∑
1≤i≤n

WCi ≤ TS ≤ min
1≤i≤n

{
WDSi − ∑

0≤k<index(ιi,0)

(
WCtask[k] − BCtask[k]

)
+ WCi

}. (30)

Proof. Follows immediately from Theorem 2 and the definitions of task[] and
index().

The task characteristics of T S5 and associated system deadlines of S5 are
given in Table 5. Based on Lemma 7, we conclude that S5 is not schedulable
for task[] = {τ1, τ2} under a single-rate time-driven AFAP cyclic executive,
because there doesn’t exist a cycle time TS5 that satisfies the relation 11 ≤
TS5 ≤ min{16− 4, 18− (4− 3 + 7)} = 10. For task[] = {τ2, τ1}, however, we
find 11 ≤ TS5 ≤ min{18− 7, 16− (7− 6 + 4)} = 11, making S5 schedulable.

We define an optimal task ordering for a set T S of tasks of a system S sched-
uled by means of a single-rate time-driven cyclic executive as an ordering that
will make S schedulable, if such an ordering exists. We leave the derivation of
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Table 5: Task characteristics of task set T S5 and associated system deadlines
of system S5.

BC WC WDS5

τ1 4 3 16
τ2 7 6 18

an optimal task ordering algorithm for single-rate time-driven cyclic executives
as future work.

For multi-rate cyclic executives, the task ordering will in general have an
influence on schedulability. We also leave optimal task ordering algorithms for
multi-rate cyclic executives as future work.

7.5 A simple approach to determine schedulability

Given the fact that multi-rate cyclic executives dominate single-rate cyclic ex-
ecutives, a simple approach to determine schedulability of a system by a basic
periodic cyclic executive is as follows:

1. Check whether or not a system S is schedulable by a single-rate AFAP
using Theorem 1.

2. If it is, it can scheduled by a single-rate period cyclic executive with a
maximum cycle time TS derived by means of Theorem 4.

3. If it is not, search for an appropriate sequence with multiple jobs for tasks
making the system schedulable with a muti-rate AFAP using Theorem 7.

4. If a sequence can be found, it can scheduled by a multi-rate period cyclic
executive with a maximum cycle time TS derived by means of Theorem 10.

5. Otherwise, this simple approach fails and other more advanced approaches
are required, such as, for example, splitting tasks in sub-tasks or using
other types of schedulers, as already concluded by C. Douglass Locke [2].
Further elaboration falls outside the scope of this document, however.

7.6 A note on ‘advanced strict’ cyclic executives

In this document, we assumed ‘basic strict’ cyclic executives, where every job is
started at the worst-case start-time relative to the start of the cycle, assuming
each job needs its worst-case execution time. When we lift this assumption, we
may increase the cycle time, as illustrated by the following example, which only
differs with respect to system S3 for DS61 and DS62 (i.e. DS31 = 11 and DS32 = 14).

As illustrated in Figure 25, all system deadlines are met when the task set
T S6 is scheduled by means of a ‘basic strict’ multi-rate periodic cyclic executive.
Applying Theorem 10, we find 12 ≤ TS6 ≤ min{10− (3− 5), 15− (5− 3), 17−
(12 − 8)} = min{12, 13, 13} = 12. Hence, TS6 cannot be increased for a ‘basic
strict’ version of the multi-rate periodic cyclic executive. Observe that task τ1
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Table 6: Task characteristics of task set T S6 and associated system deadlines
of system S6. System S6 only differs from S4 for the values given in bold.

BC WC WDS6

τ1 2 3 10
τ2 1 2 15
τ3 3 4 17

is not started strictly periodically, i.e. s1,1 − s1,0 = 5, whereas s1,2 − s1,1 = 7.
Using Equation (4) and assuming T1 = TS/2, we find SJ1 = 1.

2*WC1 + WC2 + WC3 = 12

τ1 τ2 τ1 τ3

2*WC1 + WC2 = 8 < WDS
1 = 10

2*WC1 + WC3 = 10 = WDS
1

2*WC1 + 2*WC2 + WC3 = 14 < WDS
2 = 15

2*WC1 + WC2 + 2*WC3 = 16 < WDS
3 = 17

0 5 10 15 20

τ1 τ2 τ3τ1

2*WC1 + WC2 + WC3 = 12

WC1 + WC2 

WC1

2*WC1 + WC2

Figure 25: A situation of worst-case execution for system S6 under a (basic
strict) multi-rate periodic cyclic executive using the cycle {1, 2, 1, 3} and a
cycle time TS6 = 12. All system deadlines of S6 are met.

For an ‘advanced strict version’, we may delay the activation of job ι1,1 with
1 time unit in the cycle and increase TS6 to 13, without causing deadline misses;
see Figure 26. Hence, the advanced strict case allows a further increase of the
fraction of gain time. We make three observations. Firstly, it is not possible
to further increase TS6 , because each of the system deadlines are just met.
Secondly, task τ1 is still not started strictly periodically, i.e. s1,1 − s1,0 = 6,
whereas s1,2 − s1,1 = 7. Using Equation (4) and assuming T1 = TS/2, we find
SJ1 = 1

2 . Thirdly, it is not immediately clear how the periods and deadlines
of the tasks in TS6 shall be chosen to construct a cyclic executive as described
in [1], where the minor cycle and a major cycle are taken to be the GCD and
LCM of the periods of the tasks, respectively, all tasks meet their deadlines and
Equation (11) is satisfied. We leave further elaboration as future work.

7.7 Other advanced approaches

In this document, we exclusively looked at a single processor, basic (strict) cyclic
executives, and independent (and non-preemptive) polling tasks. Advanced
approaches lifting our assumptions can be found in the literature. Without
further elaboration, we merely observe that by assuming non-strict single-rate
and multi-rate periodic cyclic executives, there is again a need for best-case
computation times of tasks, similar to single-rate and multi-rate time-driven
AFAP cyclic executives.
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2*WC1 + WC2 + WC3 + 1 = 13

τ1 τ2 τ1 τ3

2*WC1 + WC2 + 1 = 9 < WDS
1 = 10

2*WC1 + WC3 = 10 = WDS
1

2*WC1 + 2*WC2 + WC3 + 1 = 15 = WDS
2

2*WC1 + WC2 + 2*WC3 + 1 = 17 = WDS
3

0 5 10 15 20

τ1 τ2 τ3τ1

2*WC1 + WC2 + WC3 + 1 = 13

WC1 + WC2 + 1

WC1

2*WC1 + WC2 + 1

25

Figure 26: A situation of worst-case execution for system S6 under an advanced
strict multi-rate periodic cyclic executive using the cycle {1, 2, 1, 3} and a
cycle time TS6 = 13. Note that 1 unit of idle time has been inserted before jobs
ι1,1 and ι1,3. All system deadlines of S6 are met.

As mentioned in, for example, Section 4.1.2, the spare time in a cycle could
be used to execute other tasks. Apart from simply allowing other tasks to
execute in the background, it is also possible to adapt the static schedule at
runtime to allow other ready tasks to run earlier. As an example, reconsider
Figure 24. Whenever τ2 does not experience a worst-case execution, τ1 can be
started earlier, i.e. immediately after task τ2, because the second execution of
τ1 in the major cycle has 1 unit of time slack. Similarly, whenever task τ1 does
not experience a worst-case execution, τ3 can be started earlier, but no earlier
than at time 13 relative to the start of the major cycle. Hence, we may either
immediately start τ1 after τ2 or immediately start τ3 after τ1.

An advanced approach called slot shifting was proposed by Gerhard Fohler [15,
16], to efficiently combine off-line scheduling of periodic tasks and online schedul-
ing of aperiodic tasks for distributed systems and advanced task models includ-
ing various kinds of constraints for the periodic tasks. The approach was later
extended by Damir Isovic [17] by also considering sporadic tasks for online
scheduling. It is interesting to see that within the context of, for example,
Time Sensitive Networks (TSN), combining off-line (e.g. the IEEE 802.1Qbv
Enhancements to Scheduled Traffic, i.e. the Time-Aware Shaper (TAS) [18])
and online (e.g. the IEEE 802.1Qav Forwarding and Queuing Enhancements
for Time-Sensitive Networks, in particular Credit-Based Shaping (CBS) [19])
scheduling techniques is again a topic of (research) interest.

8 Conclusion

In this document, we considered scheduling of independent polling tasks on a
single processor using basic cyclic executives. Unlike existing approaches that
typically assume periods and deadlines for tasks, we focussed on whether or not
the deadlines of the system are met. A major advantage of our approach is that
there is no need to decide upon the specific periods and deadlines of the tasks
to determine schedulability of the system.

We addressed the following topics. Firstly, we presented exact analysis for
basic (strict) cyclic executives. Because best-case analysis turned out to be triv-
ial, focus of this document has been on exact worst-case analysis (Theorems 1,
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2, 4, 7, 8, and 10). Secondly, we showed that for the exact schedulability test
for single-rate and multi-rate time-driven AFAP cyclic executives we need both
worst-case and best-case computation times of tasks (see Theorems 2 and 8).
Thirdly, we presented methods to determine the maximum cycle time for

• single-rate and multi-rate time-driven AFAP cyclic executives (see Theo-
rems 2 and 8);

• (strict) single-rate and multi-rate periodic cyclic executives (see Theo-
rems 4 and 10).

Fourthly, we compared cyclic executives (see Theorems 3, 5, 6, 9, 11, and 12),
and concluded that the (strict) multi-rate periodic cyclic executive dominates all
other cyclic executives considered. Finally, we presented methods to determine
bounds on the fraction of time that can be gained for background processing
by time-driven AFAP and periodic cyclic executives compared to the AFAP
versions (see Lemmas 2, 3, 5, and 6).

We put the contents of this document in perspective by discussing various
related issues in Section 7.
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Glossary

best-case computation time A lower bound on the computation time of any
job of a task. 3, 5, 7, 9, 11, 34, 37, 38

best-case response time The infimum of the response times of the jobs of a
task. 5, 9, 34

best-case system deadline A lower bound on the time-interval from the oc-
currence of an (input) event of a system to its (output) response. 3, 5–7

best-case task deadline A lower bound on the response time of all jobs of a
task. 6, 9

drift unbounded jitter. 12, 13, 15, 33, 34

gain time the amount of time that has been allocated to tasks, but is not used,
i.e. when tasks execute for less than their worst-case computation time.
14, 23, 30, 33, 36

jitter fluctuations in the inter-arrival time of certain timing events, such as
arrival times, start times or finalization times of tasks. 41

job the execution of a task. 5

maximal inter-arrival time An upper bound on the time between consecu-
tive arrivals. 33

minimal inter-arrival time A lower bound on the time between consecutive
arrivals. 3, 5, 7, 33

slack the amount of time that has not been allocated to tasks. 14, 23, 38

spare time the combination of slack and gain time. 14, 22, 23, 26, 31, 37

start jitter fluctuations in the interval between start times of subsequent jobs
of a task. 7, 13, 14, 16, 24, 31

worst-case computation time An upper bound on the computation time of
any job of a task. 3, 5, 7, 10, 13, 16, 27, 28, 34, 41

worst-case response time The supremum of the response times of the jobs
of a task. 5, 7, 8, 34

worst-case system deadline An upper bound on the time-interval from the
occurrence of an (input) event of a system to its (output) response. 3, 5–7

worst-case task deadline An upper bound on the response time of all jobs
of a task. 6, 8, 34
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Acronyms

AFAP as fast as possible. 4

GCD Greatest Common Divider. 10, 37

LCM Least Common Multiple. 10, 37
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