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Model Predictive Control for
MR-guided Ultrasound Hyperthermia

in Cancer Therapy

With more than 18 million new cases and 9 million deaths each year, cancer
is the second leading cause of death globally. Due to the ageing of the world
population, combined with the dramatically higher risk for cancer at older age,
the incidence and morbidity rates of cancer are expected to keep increasing in
the near future. Currently, cancer treatments typically consist of a combination
of surgery, radiotherapy, and chemotherapy, which due to their invasive nature
or toxicity bring on severe side effects for the patients.

In mild local hyperthermia therapy, tumors are heated to approximately
42 ◦C for a prolonged period of time, while preserving non-elevated temperatures
in the healthy tissue. Clinical evidence shows that this significantly enhances the
therapeutic efficacy of radio- and chemotherapies in the tumor without inducing
additional toxicity in the healthy tissue. Consequently, hyperthermia enables
substantially improved treatment success, as well as the use of lower systemic
doses of radiation and drugs to reduce the severity of the negative side effects
typically associated with cancer treatment. Finally, hyperthermia treatments
can be performed noninvasively, which eliminates the need for additional surgery.
Therefore, hyperthermia therapy is an urgently needed addition to conventional
cancer treatment modalities.

However, to unlock the full therapeutic potential of hyperthermia, the tumor
temperature must be accurately induced and maintained throughout the entire
treatment. Magnetic-resonance-guided high-intensity focused ultrasound (MR-
HIFU) is a rapidly developing and highly promising technology for noninvasive
feedback-controlled hyperthermia, enabling powerful heating with millimeter-
scale accuracy guided by near-real-time thermometry via an MRI scanner. Using
model predictive control (MPC), the tissue’s future thermal behavior and restric-
tive control constraints can be taken into account explicitly while optimizing the
heating inputs. It is the aim of this thesis to enable safe and high-quality MR-
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HIFU hyperthermia treatments using MPC-based temperature feedback control
strategies.

The first contribution of this thesis is the development of offset-free MPC
for ultrasound-based hyperthermia, enabling robust temperature control perfor-
mance in the presence of plant-model mismatch. This is particularly important
for hyperthermia treatments, as modeling errors are typically inevitable due to
the natural variation of patients’ tissue properties, some of which even exhibit
time- and temperature-dependent behavior as a result of the body’s thermoreg-
ulatory response.

Second, we address the issue that HIFU applicators typically have a small
(≤2 cm) local heating range. For (MR-)HIFU hyperthermia treatments of tu-
mors larger than this range, the applicator itself must be relocated mechanically,
which results in non-negligible actuator downtime with respect to the system dy-
namics. In this case, optimally controlling the temperature requires the online
solving of both a discrete actuator allocation problem, and a continuous opti-
mization problem for the local heating profile. Therefore, in this thesis a novel
modeling framework tailored to systems with such actuator switches is devel-
oped, specifically designed to allow for user-friendly and systematic modeling,
and to yield a compact model that results in efficient mixed-integer (MI-)MPC
schemes for large-volume MR-HIFU hyperthermia.

As the third contribution, a target-conformal optimal actuator placement
method is proposed. Based on the specific tumor geometry and tissue proper-
ties, this procedure distributes the admissible heating locations and mechanical
applicator positions in such a manner that the achievable treatment quality is
optimized. In addition, this method allows for limiting the controller complex-
ity, thereby facilitating the real-time application of control strategies that offer
superior control potential, but are also more computationally demanding, such
as (MI-)MPC.

As a fourth contribution, this thesis presents a hierarchical (H)MI-MPC ar-
chitecture for large-volume MR-HIFU hyperthermia. This HMI-MPC signifi-
cantly reduces the computational burden compared to MI-MPC, without sacri-
ficing control performance and treatment quality. This is done by first solving
the challenging actuator switching problem using a low-complexity model, fol-
lowed by the computationally cheap optimization of the heating profiles using a
high-fidelity model.

The developed controllers are demonstrated using numerical case studies,
phantom experiments, and in-vivo experiments, paving the way for enhanced
MR-HIFU hyperthermia treatments in clinics.
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What medicines cannot cure, iron cures;
what iron cannot cure, fire cures;
but what fire cannot cure, must be considered incurable.

Hippocrates of Kos



CHAPTER 1

Introduction

In local mild hyperthermia therapy for cancer treatment, tumors are heated to tem-

peratures ranging between 40 ◦C and 43 ◦C for an extended period of time. This

stimulates a range of biological mechanisms, boosting the body’s own immunological

response against cancer cells, and synergistically enhancing the efficacy of radio- and

chemotherapy. Mild hyperthermia is non-toxic for the body, and thus does not introduce

any additional undesired side effects such as typically associated with cancer treatment,

rendering it a valuable adjuvant cancer treatment modality. Especially considering the

growing proportion of people suffering from cancer, partly as a result of our ageing

society, improved cancer treatment options form an urgently needed development in to-

day’s world. However, to unlock the full therapeutic potential of hyperthermia therapy,

accurately controlled heating is required. In this respect, magnetic-resonance-guided

high-intensity focused ultrasound (MR-HIFU) offers large potential for noninvasive

feedback-controlled hyperthermia, as it a rapidly developing technology, enabling power-

ful ultrasound heating with millimeter-scale accuracy guided by near-real-time MR-based

thermometry. Currently, however, most MR-HIFU treatments are performed either by

following pre-planned protocols, or using simple feedback schemes, and as a result the

realized treatment quality is far from optimal. It is the objective of this thesis to provide

a significant step toward achieving high-quality treatments by enabling more accurate

and uniform heating using model predictive control (MPC) strategies, which in turn

facilitates more widespread clinical application of and research into hyperthermia. To

further introduce and motivate the research in this thesis, this chapter elaborates on

MR-HIFU hyperthermia in oncology, distills important research objectives from rele-

vant challenges we face today, and outlines the individual contributions in this thesis.
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1.1 Hyperthermia for cancer therapy

This section provides an introduction to hyperthermia therapy as a cancer treat-
ment modality, providing the necessary background for motivating the research
in this thesis.

1.1.1 Cancer treatment

With more than 18 million new cases and over 9 million deaths in 2018, cancer
is the second most important cause of death globally [1]. In the Netherlands,
it is the leading cause, with approximately one out of every three deaths being
related to cancer [2]. Due to the continuing ageing of the world population,
combined with the dramatically higher risk for cancer at older age, the inci-
dence and morbidity rates of cancer are expected to keep increasing in the near
future. Currently, conventional cancer treatments consist of some combination
of surgically resecting the tumor, radiation therapy, and chemotherapy. Due to
tremendous advances in oncology over the past decades, it is now well estab-
lished that these methods can successfully be applied to achieve local control
and improve long-term survival rates. However, surgical intervention may exert
a significant burden on the patient due to its invasive nature and the resulting
need for post-interventional wound care. Moreover, chemo- and radiotherapies
may bring on severe toxicity-based side effects, considerably impacting the pa-
tient’s quality of life during treatment. As a consequence, their dose is limited,
which in turn imposes an upper bound on their achievable therapeutic effects.
Finally, not all tumors can be successfully treated using the aforementioned
methods. For example, metastases or tumors in high-risk locations may not be
suitable for surgical resection, and badly perfused tumors may exhibit decreased
sensitivity to radiation or chemotherapy due to the resulting hypoxia (i.e., the
deprivation of oxygen) or poor drug penetration, respectively [3, 4]. As a result
of these drawbacks, there exists a strong need for improved cancer treatment
modalities.

1.1.2 Hyperthermia therapy

The medical benefits of heating body tissues to above their normal temperature
have been long known by mankind. In fact, applying heat to the body for
medical purposes most likely dates back to at least 3000 BC, when the ancient
Egyptians used hot irons (which they called “fire drills”) for the treatment of
breast tumors, as documented by the Edwin Smith Papyrus [5], and Indian
physicians used local and whole body heating for the treatment of a variety of
ailments [6]. Thereafter, methods similar to the Egyptians’ have also been used
by Hippocrates of Kos in ancient Greece (460 – 370 BC) and Galen of Pergamon
(AD 129 – 210) in ancient Rome, for example, and described by Aulus Cornelius
Celsus (25 BC – AD 50) in his famous encyclopedia De Medicina [7].
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Figure 1.1: Overview of hyperthermia-induced biological mechanisms in the tu-
mor (center), being (A) increased blood perfusion and vessel permeability, (B)
protein unfolding and chaperoning by heat-shock proteins (HPSs), (C) increased
cell membrane fluidity and permeability, (D) stimulated immune response, and
(E) inhibited DNA repair [4].

Over the past decades in particular, as a consequence of the previously men-
tioned limitations recognized in the conventional cancer treatment options, re-
searchers have shown renewed interest in thermal therapies for the treatment of
cancer. In general, two distinct treatment types can be distinguished, namely
hyperthermia and thermal ablation [3,8]. Thermal ablation occurs for tempera-
tures above 45 ◦C, sometimes even reaching 70 ◦C or higher, inducing coagulative
necrosis of the treated tissue very rapidly [9]. Hyperthermia, on the other hand,
is achieved when tissues are heated to temperatures between roughly 40 ◦C and
45 ◦C, and is ideally maintained for prolonged periods of time such as 60 to 90
minutes or more [10–12]. For temperatures above 43 ◦C, this may still cause
direct cell killing as a result of heat-induced cytotoxicity. Mild hyperthermic
temperatures up to 43 ◦C, however, stimulate a variety of biological mechanisms
on molecular, cellular, and tissue level, which in turn boost the body’s own im-
munological response to cancer cells, inhibit DNA repair, increase blood flow
and oxygenation, and enhance drug uptake as a result of increased permeability
of the blood vessels and cell membranes, see [3,4,12–17] for details. A schematic
overview is given in Figure 1.1.

As a consequence, hyperthermia significantly increases the efficacy of radio-
and chemotherapies, thereby enabling similar or improved treatment outcomes
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using lower doses of radiation and drugs, and, in turn, reducing the severity
of the negative side effects typically associated with cancer treatment. Indeed,
clinical trials have provided ample evidence that hyperthermia is a potent ad-
juvant therapy for cancer treatment, see, for example, [3, 16, 18–24] and the
references therein. When applying the heat locally, and preserving non-elevated
temperatures in healthy tissue, hyperthermia allows for selectively sensitizing
only the tumor region, while leaving the healthy tissue unaffected. Moreover,
using temperature-sensitive liposomes, it enables targeted drug delivery, allow-
ing for a further reduction of the required systemic drug concentrations and
its side effects [25–27]. Most importantly, mild hyperthermia itself is non-toxic,
thereby introducing no additional toxicity-related side effects, and can be applied
noninvasively, rendering it highly appealing for clinical application to improve
treatment outcome as well as the the patient’s quality of life.

1.1.3 MR-guided high-intensity focused ultrasound

The two most commonly used methods for noninvasively inducing hyperthermia
in clinics are via electromagnetic (EM) waves, either in the radiofrequency (3 Hz
to 300 MHz) or microwave (300 MHz to 300 GHz) range, or by means of ultra-
sound, which are high-frequency (300 kHz to 10 MHz) acoustic waves [8,14,16].
To moderately heat larger volumes such as limbs or organs, also referred to
as (loco)regional hyperthermia, EM-based applicators are currently considered
more suitable, as these generate much wider power deposition profiles [28, 29].
Consequently, however, such applicators typically lack the spatial accuracy to
compensate for centimeter- or millimeter-scale temperature variations resulting
from, for example, blood vessels or other tissue inhomogeneities, and as a result
may be unable to achieve and maintain a uniform temperature throughout the
tumor. By contrast, high-intensity focused ultrasound (HIFU) offers unparal-
leled millimeter-accurate heating, but comes with a significantly smaller heating
range of a few centimeters at most [30, 31]. For local hyperthermia, however,
where it is the objective to heat only the tumor, while avoiding the unintentional
heating of the surrounding healthy tissue, HIFU potentially enables tighter tem-
perature control and, thereby, higher treatment quality.

HIFU has already been proposed as a noninvasive means for delivering heat
inside the body over a century ago, see [32] and [33] as some of the earliest works.
However, the lack of proper visualization technologies was one of the main rea-
sons hampering further development for widespread clinical use. This changed,
however, when more advanced imaging methods emerged, of which the three ma-
jor modalities useful for noninvasive thermometry are X-ray computed tomog-
raphy (CT) [34], diagnostic ultrasound [35, 36], or magnetic resonance imaging
(MRI) [37]. From these, MRI provides the highest soft-tissue contrast, and is
hence considered to be the best available option for high-performance tempera-
ture feedback [30]. Several techniques exist for obtaining volumetric temperature
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Figure 1.2: Example of MR-HIFU hyperthermia interface, monitoring near-real-
time temperature cross sections perpendicular to the beam axis at target depth
(left: top), directly above and below target depth (middle: top and bottom), well
below target depth in the near field (right: top), and along the beam axis (right:
bottom), and the overall target temperature evolution (left: bottom) [46].

maps by MRI, which is referred to as magnetic resonance (MR) thermometry,
one of which is based on exploiting the temperature-dependent proton resonance
frequency shift (PRFS) [38–40]. Today, PRFS-based MR thermometry is among
the best available measurement technologies, providing near-real-time temper-
ature data with excellent spatial and thermal resolution [41–45], an example
of which is shown in Figure 1.2. Integrating this technology into HIFU treat-
ments has led to MR-guided (MR-)HIFU as a valuable tool for image-guided or
feedback-controlled thermal therapies [30, 31, 43, 47, 48].

1.1.4 Clinical MR-HIFU systems

The two most widely used clinical noninvasive MR-HIFU systems are the In-
sightec Exablater (Insightec Ltd., Haifa, Israel) and the Profound Sonallever

(Profound Medical Corp., Mississauga, Canada) [8,43,49], of which the latter is
shown in Figure 1.3. These MR-HIFU setups contain an extracorporeal phased-
array transducer integrated into a dedicated MR-compatible treatment table,
as schematically depicted in Figure 1.4. The transducers consist of many small
acoustic elements (256 in case of the Sonalleve). For each element, the am-
plitude and phase of its driving signal can be individually modulated, see Fig-
ure 1.4, such that by constructive interference of the ultrasound waves a focal
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Figure 1.3: Profound Sonallever MR-HIFU therapy platform and Philips MRI
scanner.

transducer axis

patient table

tumorfocal plane

transducer

driving signals

focal point

Figure 1.4: Schematic of the transducer embedded in the treatment table, and a
HIFU beam and corresponding focal spot inside the tumor via electronic beam
steering.

spot of a few millimeters in size can be created and steered with high spatial and
temporal resolution, which is commonly termed electronic beam steering [30].
The maximum lateral beam deflection that can be achieved via electronic beam
steering, however, is small. For the Sonalleve, for example, the focal spot can
be set anywhere within a 16 mm diameter circle centered around the transducer
axis [50,51], beyond which deterioration of the focus would occur. To treat larger
tumors, the transducer itself can be mechanically repositioned with five degrees
of freedom (all except the rotation about the beam axis) by its robotic carrier
arm, shown in top-view perspective in Figure 1.5, which is also embedded in
the therapy platform. This allows for sequentially heating different parts of the
tumor, as shown in [52] for thermal ablation using the Exablate and in [53] for
hyperthermia using the Sonalleve, for instance.
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transducer

sliders

levers

Figure 1.5: Top view of a circular phased-array HIFU transducer, and its me-
chanical carrier system consisting of multiple levers and sliding actuators.

1.1.5 MR-HIFU feedback control

Accurately inducing and maintaining the desired temperature distribution by
MR-HIFU over the course of an entire treatment in a clinical setting is, how-
ever, no simple task. Currently, most implementations of MR-HIFU in thermal
therapies use largely predetermined sonication plans, possibly extended with
basic feedback controllers for some online adjustments. Examples include bi-
nary strategies to scale the sonication power and/or the heating intervals in
the sonication protocol [50, 51, 53], proportional-integral-derivative (PID) con-
trollers [54–58], or some hybrid form of PID and bang-bang control [59]. A ma-
jor drawback of such designs is their inability to take into account the tissues’s
future thermal behavior and the restrictions of the actuator when computing the
control inputs, which negatively affects treatment quality and duration. Since
the achieved therapeutic benefits of hyperthermia are strongly related to the
temperature realized during treatment, see [17, 60–62], there is a dire need for
more sophisticated feedback controllers for MR-HIFU, as also argued in [31]. Be-
sides directly improving the temperature control performance, this also enables
clinicians to achieve more reliable and reproducible hyperthermia treatments,
and may thereby serve as an enabler for more widespread application of and
quantitative research into hyperthermia as cancer therapy.

In this respect, model predictive control (MPC) [63–68] offers potential for
superior control performance in hyperthermia treatments. That is, in MPC a
dynamic model is used to generate predictions of the controlled system’s future
behavior in response to the available inputs. Based on these predictions, a
cost function, which is typically chosen to reflect the treatment objective, is
optimized online over a finite future time interval, while explicitly taking into
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MPC

Optimal

heating plan

MR

thermometry

MR-HIFU setup and patient

Model-based

observer

objective, constraints

Figure 1.6: Block scheme of the envisioned MPC-based feedback loop for high-
quality MR-HIFU hyperthermia treatments.

account the constraints present in, or deliberately imposed on, the system and
its inputs. As a result, MPC is a promising control framework for realizing high-
quality MR-HIFU hyperthermia treatments. In fact, for thermal ablation this
has already been recognized by other researchers. For example, MPC is used for
thermal ablation therapy in [69] to minimize treatment time while administering
a desired scalar-valued thermal dose in a single point or over a one-dimensional
model, and in [70] for minimum-time treatments with a prescribed thermal dose
for two-dimensional systems described by heavily simplified models and a fixed
spatial heating trajectory. In [71], an MPC scheme is developed that tries to
deliver a lethal thermal dose to the tumor, while avoiding damage to healthy
tissue. More recently, for MR-HIFU hyperthermia temperature control, in [72]
we provided a preliminary MPC scheme using two-dimensional models, which
is able to fully exploit the flexibility of the HIFU transducer’s electronic beam
steering by freely adapting online both the heating location and the acoustic
power, resulting in promising performance improvements compared to the binary
controller from [53].

1.2 Research objectives

The main objective of this thesis is to provide a significant step forward in achiev-
ing high-quality local MR-HIFU hyperthermia treatments by enabling more ac-
curate and uniform heating using MPC-based temperature control strategies. To
this end, we envision a feedback control loop as schematically depicted in Fig-
ure 1.6, of which from a control perspective the main components are the plant,
consisting of the MR-HIFU system and the patient, a model-based observer
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that transforms the noise-corrupted MR-based temperature measurements into
reliable temperature estimates (and possibly other system parameters), and a
high-performance MPC strategy that computes the optimal heating plan. To
accomplish the main objective, different subproblems have been identified, and
will be described in this section.

1.2.1 Robust performance

The works mentioned in Section 1.1.5 clearly illustrate the potential of MPC
for enhancing treatment quality in hyperthermia therapies compared to the ex-
isting binary or PID-based control schemes. Still, achieving optimal control
performance in a clinical setting is not straightforward. This is due to the large
variation of the tissue properties observed in reality, which are typically patient-
and tumor-specific, and can additionally vary dramatically as functions of time,
space, and temperature [73, 74]. Perhaps the most notable example of these is
the drastic increase in blood perfusion as a result of the body’s thermoregula-
tory response [75, 76], of which the thermal dynamics are notoriously difficult
to model [74, 77]. Capturing all tissue inhomogeneities and time/temperature-
dependencies via extensive pre-treatment model identification is undesirable and
impracticable from a clinical perspective, where shorter treatments and avoid-
ing unnecessary heating is preferred. Consequently, model discrepancies are
inevitable in practice, and may grow over time, potentially leading to signifi-
cantly deteriorated control performance and treatment quality. Therefore, the
first objective of this thesis can be formulated as:

Objective 1 Enable the accurate and robust regulation of the temperature in the
tumor over a prolonged period of time, despite the presence of considerable
and varying model uncertainty.

1.2.2 Treatment of larger tumors

As previously mentioned in Section 1.1.3, one of the key advantages of using
HIFU-based applicators for hyperthermia is their excellent spatial accuracy and
fast switching of the focus location by electronic beam steering, which allows for
compensating temperature deviations in the millimeter range to achieve uniform
tumor temperatures. However, as via electronic beam steering alone the maxi-
mum heating range is limited to a few centimeters, for the treatment of larger
tumors, it is necessary to also mechanically displace the transducer itself using
its robotic carrier system [52, 53], an example of which is shown in Figure 1.5,
such that for different transducer positions different parts of the tumor can be
heated sequentially, as schematically depicted in Figure 1.7. The mechanical
motion of the transducer is slow in comparison to the electronic steering rate,
and impairs the MR thermometry’s reliability due to intra-scan distortions of
the magnetic field. As a consequence, for safety no sonication is allowed during
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tumor outline

sonication point

electronic beam steering range

transducer position

Figure 1.7: Large irregular tumor outline (solid), four transducer positions
(×) and their corresponding local heating ranges via electronic beam steering
(dashed), and multiple sonication points (•).

transducer repositioning, resulting in considerable heating downtime, which may
significantly affect the temperature distribution. Therefore, it is important that,
in addition to controlling the sonication, also the transducer displacements are
optimally selected online. Correspondingly, the second objective of this thesis
reads:

Objective 2 Enable high treatment quality for large-volume MR-HIFU hyper-
thermia by simultaneously optimizing online the sonication plan for elec-
tronic beam steering and the mechanical transducer trajectory.

1.2.3 Target-conformal controller design

To enable MR-HIFU feedback controller synthesis, the admissible transducer po-
sitions (or position when treating sufficiently small tumors) and the sonication
points, i.e., the locations to which the focal spot can potentially be steered, see
Figure 1.7, must be chosen before treatment. The sonication points and trans-
ducer positions have a key influence on the achievable temperature distribution.
However, choosing them in such a manner that the achievable temperature dis-
tribution is as close to the desired reference as possible is not straightforward, as
this strongly depends on the shape and tissue properties of the specific tumor.
At the same time, choosing them optimally is of vital importance, as the realized
tumor temperatures have a major effect on the therapeutic effects of hyperther-
mia [60–62], as also stated in Section 1.1.5. As a solution, one could attempt
to simply include an abundance of sonication points and transducer positions in
the hope that this provides sufficient controller flexibility, and thereby enables
adequate control performance. However, as the sonication powers and the me-
chanical transducer trajectory must be determined online, this also significantly
increases the complexity of the feedback controller. Consequently, such an ap-
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proach may jeopardize the real-time feasibility of the feedback setup, especially
for more advanced control strategies such as MPC, which offer potential for su-
perior control performance, but in doing so often entail a higher computational
burden. Therefore, to optimize the achievable temperature distribution, and at
the same time unlock the advantages of more sophisticated high-performance
control schemes for MR-HIFU, it is of interest to strategically select the soni-
cation points and transducer positions based on the specific tumor properties,
resulting in the following research objective:

Objective 3 Enable the automated and target-conformal distribution of trans-
ducer positions and sonication points for optimal treatment quality.

1.2.4 Experimental validation

All the research in this thesis is ultimately intended to improve the effectiveness
of cancer treatments, such that the patients have a better chance at long-term
and disease-free survival. We desire to accomplish this by developing feedback
control strategies that achieve more accurate and uniform temperature regu-
lation in local MR-HIFU hyperthermia treatments, which translates to higher
treatment quality and, thereby, enhanced therapeutic efficacy and treatment out-
come. However, in order to truly enable improved cancer treatments, we must
also facilitate the implementation of the novel methods in clinics. Hence, it is
essential that the feasibility and performance of the controllers developed in this
thesis are demonstrated in practice. Indeed, this provides the first step toward
their clinical validation, which in turn may pave the way for their widespread
application, thus contributing to improving the treatment of patients suffering
from cancer. Therefore, the fourth objective of this thesis is given by:

Objective 4 Provide an experimental validation of the novel feedback control
concepts developed in this thesis on a clinical MR-HIFU system.

1.3 Contributions

This thesis contains four contributions, addressing the objectives formulated in
the previous section. In this section, these contributions are described.

1.3.1 Offset-free model predictive control

The first contribution of this thesis deals with Objective 1 discussed in Sec-
tion 1.2.1. In particular, we develop an offset-free MPC setup [78, 79] for MR-
HIFU hyperthermia, which incorporates a disturbance estimator that essentially
adds integrator functionality to the MPC scheme, such that constant and slowly
varying disturbances and plant-model mismatches can be identified during treat-
ment. By including the estimated model discrepancies in the prediction model,
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the MPC is made aware of these inaccuracies, and as such is able to compen-
sate for their effects. As result, the steady-state error otherwise resulting from
modeling errors can be removed, thereby recovering the optimal performance as
achievable in case of zero parameter mismatch. Since the majority of a mild hy-
perthermia treatment consists of a temperature maintenance phase, in which the
tumor temperature is ideally equal to its constant reference value, and model un-
certainties are inevitable in practice (as discussed in Section 1.2.1), but typically
do not change rapidly in time, offset-free MPC enables significantly improved
temperature control in a clinical setting. To demonstrate the controller’s ro-
bust performance in practice, thereby also addressing Objective 4, we implement
the offset-free MPC scheme on a clinical setup, and perform validating in-vivo
porcine experiments. Correspondingly, the first contribution of this thesis can
be summarized as:

Contribution 1 Development and in-vivo experimental validation of an offset-
free MPC scheme for achieving optimal treatment quality in the presence
of realistic and varying model uncertainty.

1.3.2 Switched-actuator systems with setup times

The second contribution of this thesis aims to achieve Objective 2. To this end,
we first recognize that to simultaneously optimize the mechanical transducer
trajectory and the sonication plan, a mixed-integer program (MIP) must be
solved [68, 80]. In particular, we interpret the optimization of the mechanical
transducer motions as a discrete actuator allocation problem, whereas finding
the optimal sonication powers involves continuous variables. However, deriving
a model that describes the thermal dynamics in combination with the transducer
switching for the purpose of MPC is not a trivial task. That is, the transducer
repositioning shifts the applicator’s local heating range via electronic beam steer-
ing, and as a result effectively determines at which sonication points heating can
be applied. We realize that the resulting system can be viewed essentially as a
type of switched system [81] of which the input model differs as a function of
the discrete transducer position. However, contrary to typical switched systems,
which consider instantaneous switches, in large-volume MR-HIFU the switching
takes significant time due to the mechanical transducer motions being slow, as
discussed in Section 1.2.2. Moreover, recall that during transducer relocation no
heating can be applied. To deal with these special features in a manner that is
user-friendly and that ensures that the resulting mixed-integer (MI-)MPC [68]
algorithms are computationally efficient, a tailored approach is required. To
this end, we first introduce the general class of switched-actuator systems with
setup times (SAcSSs), which provides the user with a compact and intuitive
modeling format. Based on this SAcSS framework, we develop a simple and
systematic controller synthesis procedure, which allows for deriving efficient MI-
MPC schemes. We demonstrate that this general framework can be used for
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high-performance temperature control in large-volume MR-HIFU hyperthermia.
In summary, this contribution can be formulated as:

Contribution 2 Development of a modeling framework tailored to the general
class of switched-actuator systems with setup times, which enables the user-
friendly modeling and synthesis of computationally efficient mixed-integer
MPC algorithms, and is applicable to large-volume MR-HIFU hyperther-
mia.

1.3.3 Target-conformal optimal actuator placement

The third contribution addresses Objective 3, but also contributes to achieving
Objective 2. That is, a method is developed that takes into account the tumor
geometry and its thermal dynamics to automatically distribute the sonication
points and transducer positions for optimal treatment quality. Here, the un-
derlying challenge is to maximize the controller’s expected performance, based
on the thermal model, and its robustness against unmodeled dynamics and dis-
turbances, while minimizing its online computational complexity by using as
few as possible transducer positions and sonication points. However, solving
this problem in a single optimization is a complicated task, as the relation be-
tween the design parameters and the mentioned objectives is highly nonlinear,
and may be difficult to express explicitly. Moreover, the resulting optimization
problem contains many decision variables, which are nonlinearly constrained via
the finite electronic beam steering range. Therefore, to improve computational
tractability and to provide the user with more insightful tuning parameters, a
three-step approach is developed that maximizes treatment quality for a limited
number of sonication points and transducer positions. In particular, the pro-
posed method allows for optimizing the transducer positions first, based on an
intuitive balancing between the achievable steady-state temperature distribution
and the heating coverage of the potentially irregularly shaped tumor. Second,
using the thermal model, the sonication points that are anticipated to be most
crucial for steady-state performance can be selected, which in the final step are
complemented by an additional set of points that are maximally distributed
throughout the target to enable faster heat-up and improve robust performance
in case of spatially localized model uncertainties. In summary, this contribution
is given by:

Contribution 3 Development of a method for the target-conformal optimal
placement of transducer positions and sonication points to maximize treat-
ment quality while limiting controller complexity.

Clearly, such a procedure enables the optimal target-conformal selection of trans-
ducer positions and sonication points, thereby accomplishing Objective 3. In this
thesis, however, this method is also used for the control design of a MI-MPC
scheme in a large-volume MR-HIFU hyperthermia case study, and as such also
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directly contributes to realizing Objective 2. In addition, in this thesis the son-
ication point selection steps of the actuator placement method are employed
in the hierarchical MPC architecture for large-volume MR-HIFU hyperthermia
comprising Contribution 4, which is discussed next in Section 1.3.4, and thus
Contribution 3 again assists in achieving Objective 2.

1.3.4 Hierarchical mixed-integer MPC

Contribution 2 provides an important step toward accomplishing Objective 2.
However, despite formulating the MI-MPC in a computationally advantageous
manner via the SAcSS framework, solving the corresponding optimization prob-
lem online within a time interval sufficiently short for real-time feedback control
may remain challenging. This is due to two main reasons. First, the models re-
quired for describing the tissue’s thermal dynamics are typically large. Second,
MIPs are inherently complex from a computational perspective. Indeed, such
problems are generally classified as NP-hard [80], which means that the worst-
case solution time may grow exponentially with the problem size. As a result,
for large-volume MR-HIFU hyperthermia only MI-MPCs with limited complex-
ity, either by a sufficiently small input dimension or a short prediction horizon,
can typically be implemented in practice. Such limitations, however, impose an
upper bound on the achievable control performance, even when using an optimal
input selection method such as the target-conformal procedure comprising Con-
tribution 3. Therefore, the fourth contribution of this thesis also addresses Ob-
jective 2 by aiming to realize the control performance of highly complex MI-MPC
schemes for large-volume MR-HIFU hyperthermia, including adequately many
inputs and sufficiently long prediction horizons for optimal treatment quality,
while also respecting the solver time constraints for real-time application. This
is accomplished using a two-layer hierarchical MPC approach [82]. In particular,
we exploit the key observation that the optimal transducer trajectories can be
found swiftly using a reduced-complexity MIP in the higher control layer, which
is obtained via model order reduction and/or input reduction (where for the
latter we employ the target-conformal actuator placement procedure discussed
in Section 1.3.3), together with selecting the most appropriate (sparse or con-
densed) MPC formulation. This subsequently allows for determining the optimal
high-dimensional sonication inputs via a computationally efficient quadratic pro-
gram (QP) in the low control layer. Thereby, the overall computation time of
the hierarchical (H)MI-MPC scheme is substantially reduced with respect to
the unreduced MI-MPC on which it is based, without sacrificing control per-
formance. We verify the controller’s real-time feasibility and performance in
phantom experiments on a clinical setup, thereby also addressing Objective 4.
Hence, the fourth contribution of this thesis is given by:
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Contribution 4 Development and experimental validation of a real-time feasi-
ble hierarchical mixed-integer MPC architecture that enables high-quality
large-volume MR-HIFU hyperthermia in practice.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows. Each chapter is based on
a journal publication, which relates to a single contribution, and consequently
can be read independently from the other chapters. Chapter 2 presents the
offset-free MPC design and its in-vivo experimental validation related to Con-
tribution 1. In Chapter 3, the SAcSS modeling framework of Contribution 2 is
proposed and applied for setting up a MI-MPC scheme for large-volume MR-
HIFU hyperthermia. Then, in Chapter 4 the target-conformal optimal actuator
placement method corresponding to Contribution 3 is given and demonstrated
in a large-volume MR-HIFU case study utilizing the SAcSS framework of Chap-
ter 3. This is followed by Chapter 5, which provides Contribution 4 by discussing
the high-performance, yet real-time feasible, HMI-MPC scheme for large-volume
MR-HIFU hyperthermia treatments, and the results obtained via phantom ex-
periments on a clinical setup. Although not necessary for the HMI-MPC ar-
chitecture in general, in Chapter 5 of this thesis we build the HMI-MPC using
the SAcSS framework from Chapter 3 and the target-conformal input selection
of Chapter 4. Finally, Chapter 6 summarizes the key achievements of this the-
sis, and discusses a few interesting directions for future research. A schematic
overview of the objectives, contributions, and chapters in this thesis is given in
Figure 1.8.
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CHAPTER 2

Offset-Free Model Predictive Temperature

Control for Ultrasound-Based Hyperthermia

Cancer Treatments

Heating cancer cells over an extended period of time, referred to as hyperthermia, has

proven to enhance the effects of chemo- and radiotherapy without inducing additional

toxicity or undesirable side effects, and is therefore considered a highly valuable adjuvant

therapy in cancer treatment. In this chapter, a model predictive control (MPC) setup is

developed for improving performance and robustness in regulating the temperature for

magnetic-resonance-guided high-intensity focused ultrasound (MR-HIFU) hyperthermia

treatments. The proposed control design incorporates a disturbance estimator as en-

countered in offset-free MPC that is able to remove the steady-state temperature error

caused by plant-model mismatch. For the considered healthcare application, such mod-

eling errors are inevitable in practice due to the high variability of tissue properties

in patients, some of which even exhibit time- and temperature-dependent behavior due

to the body’s thermoregulatory response, combined with the fact that extensive model

identification is undesirable in the clinic. The controller’s performance is demonstrated

by means of in-vivo experiments on a porcine thigh muscle using a clinical MR-HIFU

treatment setup.

This chapter is based on D.A. Deenen, E. Maljaars, L.C. Sebeke, B. de Jager, E. Heij-
man, H. Grüll, and W.P.M.H. Heemels, “Offset-free model predictive temperature control for
ultrasound-based hyperthermia cancer treatments,” IEEE Transactions on Control Systems

Technology, in press.
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2.1 Introduction

Mild local hyperthermia involves the heating of a specific target volume inside
the body, typically containing the tumor, to temperatures of 39-45 ◦C for up
to about 90 minutes, while preserving non-elevated temperatures in healthy tis-
sue. Clinical trials have provided ample evidence that hyperthermia is a potent
adjuvant therapy for cancer treatment, see, for example, [3, 16, 22], and the ref-
erences therein. It locally sensitizes the treated tissue to the effects of chemo-
and radiotherapy, while leaving the untreated (healthy) tissue unaffected. Con-
sequently, similar or improved treatment effectiveness can be achieved using
lower doses of radiation and drugs, thereby reducing the severity of the negative
side effects typically associated with cancer treatment [15, 19]. Moreover, using
temperature-sensitive liposomes, it enables localized heat-mediated delivery of
anticancer drugs, allowing for a further reduction of the required systemic drug
concentrations [25, 26]. Most importantly, hyperthermia itself is non-toxic, and
therefore introduces no additional toxicity-related side effects, making it highly
appealing for clinical application to increase treatment success rates and improve
quality of life for the patients.

A particularly well-suited technology for hyperthermia is magnetic-resonance-
guided high-intensity focused ultrasound (MR-HIFU). This entails the combined
use of powerful and millimeter-accurate heating by means of ultrasound waves,
and real-time volumetric thermometry using an MRI scanner, see [30,83]. Using
an external HIFU applicator, this technology allows for a completely noninvasive
treatment, which is highly desirable for patient comfort, and eliminates the need
for post-interventional wound care. However, realizing the desired temperature
distribution and accurately maintaining it over the course of an entire treatment
in a clinical setting is no simple task, resulting in a need for the development of
adequate feedback controllers. This is particularly true for mild hyperthermia,
since its beneficial effects have been found to be strongly correlated with the
tissue temperatures truly achieved during treatment, see [24, 60, 61].

Currently, most implementations of MR-HIFU for temperature control in
thermal therapies use predetermined sonication plans, possibly extended with
simple feedback controllers that make (minor) online adjustments. Examples
include binary strategies to scale the sonication power and/or length of the
heating intervals in the sonication protocol [51,53], ad-hoc proportional-integral-
derivative (PID)-based methods [57,58], or some hybrid form of PID and bang-
bang control [59]. In addition to not exploiting the full potential control freedom
offered by the setup, the major drawback of such designs is their inability to take
the body’s future thermal behavior and the restrictive actuator constraints into
account when computing the control inputs, which negatively affects treatment
quality and duration.

In this respect, we believe that model predictive control (MPC) offers superior
potential for temperature control in hyperthermia treatments. This has already
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been recognized by other researchers, see, for example, [69] for the control of a
scalar thermal dose parameter based on a single-point or one-dimensional model,
and [70] (using heavily simplified models and a fixed sonication trajectory) and
[71] for thermal dose control in two-dimensional systems. More recently, in [72]
we have developed a preliminary MPC design for temperature control in two-
dimensional systems with online adaptation of the heating location and power.

These works illustrate clearly the potential of MPC for hyperthermia. How-
ever, for accurate temperature control in mild hyperthermia treatments in a
clinical setting, a more sophisticated MPC design is required. One important
reason for this is the large variation observed in the tissue properties in real-
ity, which are typically patient- and tumor-specific, and can additionally vary
dramatically as functions of time, space, and temperature [74, 75, 77]. Exten-
sive pre-treatment model identification is undesirable from a clinical perspective,
since, besides improving treatment quality, the goal is to also reduce treatment
time and avoid unnecessary heating. Consequently, model discrepancies are typ-
ically inevitable in practice, and may result in significantly deteriorated control
performance. It is the objective of this work to provide a significant step for-
ward in the development of an MPC setup that is able to robustly regulate the
temperature in the tumor over a prolonged period of time, despite the presence
of considerable and possibly varying model uncertainty.

To this end, as the first main contribution of this chapter, we develop a
temperature controller for MR-HIFU hyperthermia based on an offset-free MPC
approach. Using a disturbance model, the effects of constant and slowly vary-
ing plant-model mismatch can be captured [78, 79]. An observer is employed to
identify the corresponding disturbance, whilst simultaneously providing temper-
ature estimates that improve upon the noise-corrupted MR thermometry mea-
surements. This enables the MPC to compensate for the model-error-induced
temperature offset in steady state, recovering the optimal performance as achiev-
able in case of zero plant-model mismatch, thereby allowing for significantly
enhanced temperature control and treatment quality.

In [84], we have presented a preliminary version of this control setup. Us-
ing simulations it was shown that the proposed solution is able to identify and
compensate for model discrepancies. In this work, we present results obtained
in porcine in-vivo experiments, demonstrating the developed feedback setup’s
ability of achieving desired steady-state heating despite the presence of realistic
plant-model mismatch in a clinical setting. Furthermore, to improve modeling
accuracy without increasing computation time, in this chapter we extend the
modeling procedure for the controller and observer separately, additionally ac-
counting for computation/communication delays to reduce modeling error in the
temporal discretization of the state-space models. Finally, more details are pro-
vided regarding the design considerations of the cost function, which has been
changed with respect to [84].

The remainder of this chapter is organized as follows. First, Section 2.2
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Figure 2.1: Philips MRI scanner and Profound Sonallever MR-HIFU therapy
platform.

discusses the MR-HIFU hyperthermia setup and treatment, motivating the de-
velopment of offset-free MPC for this application. In Section 2.3, we describe
the thermal model and its spatial discretization, which is used in the observer
and controller design presented in Section 2.4. In Section 2.5, the results of
the in-vivo experiments are discussed to illustrate the algorithm’s potential for
clinical application. Finally, Section 2.6 summarizes the key achievements and
corresponding observations.

2.2 System and treatment description

In this section, we introduce the hyperthermia treatment and setup, and moti-
vate the use of MPC in this application.

2.2.1 MR-HIFU hyperthermia setup

Although the MPC setup we propose is generic in nature, in this work it is de-
signed for a clinical MR-HIFU system consisting of a Profound Sonallever, which
is shown in Figure 2.1, and a Philips 3T Achievar. The former is a dedicated
trolley-tabletop in which an MR-compatible HIFU transducer is integrated, and
the latter is an MRI scanner which we use for noninvasive near-real-time ther-
mometry. This system is already being used in clinics to non-invasively treat
uterine fibroids and for incision- and radiation-free palliative treatment of pain
associated with bone metastases. A custom software layer based on [72] has
been developed to connect the MPC algorithms designed in this work to the
MR-HIFU setup.
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Figure 2.2: Schematic of a HIFU beam into the focal plane in the tumor, with
the focal point by electronic beam steering.

2.2.2 HIFU applicator

This system uses a phased-array HIFU transducer to generate the ultrasound
waves. It consists of 256 elements of which the phases and amplitudes can
individually be chosen such that by interference a focal spot is created, thereby
enabling powerful and millimeter-accurate heat delivery to internal tissues as
depicted in Figure 2.2. By modulating these settings, which is referred to as
electronic beam steering, the focal spot can be repositioned to up to 20 distinct
locations per second within a 16 mm diameter circle around the transducer axis.
By moving the focal spot through the tumor area, all of the cancerous tissue can
be heated. Treating larger regions additionally requires mechanically displacing
the transducer, see, e.g., [53]. In this work, however, we limit ourselves to the
development of a controller for the treatment of small tumors, and will therefore
consider electronic beam steering only.

The focal spot has an axial length of approximately 7 mm, which is sig-
nificantly larger than its narrow radial width of about 2 mm, as depicted in
Figure 2.3. Here, it is also shown how for different focus locations in the focal
plane, the acoustic beams (each individually indicated in light gray) significantly
overlap each other before and behind the focal plane in the direction of the beam
axis (resulting in darker gray in the figure), see also [57, 85]. Consequently, the
resulting temperature distribution is fairly homogeneous in axial direction near
the focal plane, whereas the in-plane temperature gradients may be large [53].
Since in this work we consider only small treatment volumes, the temperature
map in the focal plane characterizes the tissue temperature in the entire treat-
ment volume, allowing us to design our MPC setup for temperature control
only in the focal plane using two-dimensional models. Note that, additionally,
all (constant and slowly varying) neglected out-of-plane effects, e.g., heat con-
duction in case of a nonzero axial temperature gradient, will be identified and
compensated for by the offset-free algorithm.
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Figure 2.3: Schematic of three HIFU beams (light gray) with different focus
location in the focal plane to illustrate the beam overlap (darker gray) outside
the focal plane in axial direction. The focal spot (red) and its dimensions are
depicted in detail.

2.2.3 Motivation for offset-free MPC in hyperthermia

The key to successful application of mild local hyperthermia is to maintain a
steady temperature elevation above 41 ◦C in the region of interest (ROI), typ-
ically the tumor and some adjacent tissue, during the entire treatment. The
temperature sweet spot for treatment quality is at 42 ◦C. This is required to
fully benefit from the desired heat-induced effects such as increased blood perfu-
sion, aiding drug delivery to otherwise poorly perfused parts of the tumor when
combined with chemotherapy [16, 73], or the inhibition of DNA repair mecha-
nisms during the crucial time window after radiation therapy [15, 24]. On the
other hand, overheating can also be detrimental for successful treatment, since
some of these mechanisms exhibit reversal effects at higher temperatures (above
43 ◦C) [73, 76]. Furthermore, temperature elevations above 41 ◦C outside the
ROI must be avoided to prevent sensitization of (or damage to) healthy tissue.

Compared to existing binary or PID-based strategies applied in MR-HIFU
hyperthermia, we believe that MPC-based approaches can deliver superior
closed-loop properties, as they are able to achieve faster and more uniform heat-
ing by exploiting beneficial (future) behavior, e.g., heat transfer by conduction,
and can explicitly take into account actuator constraints such as the inability to
actively remove heat from inside the body using HIFU. Unfortunately, model-
based strategies are also inherently accompanied by the possibility for modeling
errors.

As discussed in [74], accurate thermal and thermoregulatory modeling for
hyperthermia treatments is especially difficult due to the high variability of the
spatially distributed and time/temperature-varying tissue properties [75,77]. In
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Figure 2.4: Block scheme of the envisioned fully automated MR-HIFU feedback
loop for patient treatment.

addition, attempting to capture all these effects using extensive personalized
pre-treatment model identification is highly undesirable in the clinic, where,
besides improving treatment quality, the aim is also to reduce treatment times
and to improve safety by avoiding unnecessary (over)heating. As a result, plant-
model mismatch is typically inevitable in practice. If inadequately accounted for,
however, such modeling errors may result in insufficient heating of the tumor
or in the overheating of healthy tissue, which would significantly deteriorate
treatment quality and safety.

Given this situation, we propose an MPC setup novel for hyperthermia in-
spired by offset-free MPC [78, 79]. Figure 2.4 depicts the resulting feedback
scheme, where the observer provides the temperature and disturbance estimates
from the noninvasively sampled MR thermometry data, such that the MPC
scheme can compute the optimal power distribution to be generated by the ex-
tracorporeal HIFU actuator.

2.3 Thermal model

In this section, a model of the body’s thermal response will be discussed and
spatially discretized, yielding the state-space model from which the observer and
controller models can be derived.
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2.3.1 Bioheat model

The tissue’s thermal behavior is modeled using Pennes’ bioheat equation, see
[86], given by

ρ(r)c(r)
∂T (r, t)

∂t
= ∇(κ(r)∇T (r, t))+Qa(r, t)−wb(r, t, T )cb(T (r, t)−Tb), (2.1)

where T : Ω × R≥0 → R is the temperature profile. In particular, T (r, t) de-
notes the temperature at time t ∈ R≥0 and location r = [rx, ry]

⊤ ∈ Ω ⊂ R
2

with Ω being the patient domain in the focal plane. Furthermore, ρ : Ω → R>0

denotes the tissue’s volumetric mass density, c : Ω → R>0 the specific heat ca-
pacity, κ : Ω → R>0 the thermal conductivity, and wb : Ω × R>0 × R → R≥0

the blood perfusion coefficient. The blood’s specific heat capacity and temper-
ature are given by cb ∈ R>0 and Tb ∈ R, respectively. Note that these tissue
properties are typically spatially varying in reality due to tissue heterogeneity
or blood vessels, for example. In addition, the blood flow coefficient wb can also
depend nonlinearly on time and temperature due to the body’s thermoregula-
tory response, which will be patient- and tumor-specific [74,75,77,87]. Although
low-power pre-treatment test sonications may serve as a practical solution to ob-
tain initial estimates of the tissue properties, see [72], fully accurate models are
nearly impossible to obtain due to the unavailability of extensive model identi-
fication for the reasons previously mentioned. We therefore propose to assume
spatially homogeneous tissue properties that remain constant in time, reducing
(2.1) to

ρc
∂T (r, t)

∂t
= κ∇2T (r, t) +Qa(r, t) − wbcb(T (r, t)− Tb), (2.2)

and design a feedback controller that is able to identify and compensate for the
resulting model mismatch. Note, however, that our MPC setup can be directly
be applied to a fully inhomogeneous tissue model as well, in case such a model
would be available.

The power deposition density Qa : Ω× R≥0 → R≥0 depends on the acoustic
deposition intensity F : Ω× R≥0 → R≥0 and scales linearly with the sonication
power P : R≥0 → R≥0 as described by

Qa(r, t) = F (r, t)P (t), r ∈ Ω, t ∈ R≥0. (2.3)

In reality, for a given focus location rf (t) at some time t, the intensity F (r, t)
also depends on spatially varying factors such as the acoustic properties of the
(intermediate) tissue. In our approach, however, F is modeled by a radially sym-
metric two-dimensional Gaussian distribution centered around the focus location
rf with standard deviation σf = 2.4 mm

F (r, t) =
α

2πσ2
f

exp

(

−
‖r − rf (t)‖2

2σ2
f

)

, (2.4)

with r ∈ Ω, t ∈ R≥0, and acoustic energy absorption coefficient α ∈ R>0.
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2.3.2 Spatially discretized state-space model

Recall that we only consider the two-dimensional focal plane and assume zero
out-of-plane interaction, justified by the temperature distribution being fairly
homogeneous in axial direction as discussed in Section 2.2.2. Spatial discretiza-
tion of (2.2)-(2.4) is done using the central difference scheme, which in [72] has
been concluded to best combine model simplicity with predictive power for the
considered system, on a 44 × 44 grid with a voxel size of 1.85 × 1.85 mm2. As
boundary condition, we prescribe the outward heat flux corresponding to a fixed
temperature Tb just outside our grid’s edges, and we shift the origin of (2.2) to
the blood temperature Tb. The resulting continuous-time state-space dynamics
are given by

ẋ(t) = Acx(t) +Bcu(t), (2.5a)

where the states x(t) ∈ R
nx with nx = 442 = 1936 represent the voxel’s tem-

perature elevations with respect to Tb at time t ∈ R≥0. Due to the central
difference scheme, Ac is a sparse matrix containing at most five nonzero ele-
ments per row/column. For the input, we choose to allow sonication at the
voxel centers within the ROI, which will be referred to as sonication points. The
input u(t) ∈ R

nu , nu = 60, represents the applied acoustic power at the soni-
cation points, which may contain at most one nonzero element at any time t,
corresponding to the sonication point that coincides with the focus location rf (t)
using electronic beam steering. Each individual column of Bc therefore captures
the rate of increase of the voxel temperatures when applying unit sonication
power at the corresponding individual sonication point.

MR thermometry does not yield continuous measurement, but instead in-
duces a sample time of Ts = 3.7 s when employing the acquisition protocol used
in this work. The spatial discretization in (2.5a) is specifically chosen such that
the voxel centers coincide with the points measured by MR thermometry. Hence,
the measurements can be modeled by

yk = x(tk) + vk, (2.5b)

with k ∈ N connecting to real time tk = kTs, and yk = y(tk) ∈ R
nx representing

the measured voxel temperatures corrupted by vk ∈ R
nx , where in the moni-

tored area of interest the latter consists mainly of sensor noise, which has been
experimentally determined to typically be zero-mean and Gaussian distributed.

2.4 Controller design

In this section, we first introduce the disturbance model and discuss the sampled-
data setup, based on which we then derive the discrete-time state-space models
used by the controller and observer. The cost function is designed using the
control objectives previously described in Section 2.2.3, which in turn is used to
formulate the constrained optimization problem for MPC.
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Figure 2.5: Sampled-data timing with nonzero computation/communication de-
lay, and shifted MPC prediction instants synchronized with the control input
application times.

2.4.1 Disturbance model

To incorporate integral action in the MPC setup, a disturbance model together
with a disturbance estimator can be used [78, 79]. The disturbance estimate is
provided to the controller, enabling it to compensate for the steady-state offset
induced by model mismatch or slowly varying disturbances. To facilitate the
derivation of the required discrete-time models, let us augment the continuous-
time dynamics (2.5a) to

ẋ(t) = Acx(t) +Bcu(t) + d(t), (2.6a)

ḋ(t) = 0, (2.6b)

such that it includes the additive disturbance d(t) ∈ R
nx , which is assumed to

be constant in time. This particular choice of disturbance model allows for the
construction of a stable discrete-time estimator, as will be shown in Section 2.4.4,
which in turn enables the compensation of the steady-state offset resulting from
model error.

2.4.2 Sampled-data setup

We design a discrete-time controller for a continuous-time system. The sampled-
data workflow is schematically visualized in Figure 2.5. Here, the sampled output
yk is given by (2.5b). The discrete-time observer variables x̂k, d̂k ∈ R

nx represent
the estimates of the state x(tk) and disturbance d(tk), respectively, which be-
come available at (approximately) the same time as the measurement yk due to
negligible observer computation time. As indicated in the figure, for the consid-
ered system there is a delay of T0 ≈ 1.1 s between obtaining a temperature map
and applying the corresponding new heating plan, which is caused mainly by
the numerical optimization in MPC and a significant communication and data
processing overhead between the MPC and the dedicated MR-HIFU software.
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As discrete-time input, we define uk ∈ R
nu , which represents the applied

sonication power averaged over one sampling interval at each of the sonication
points. This is achieved by using electronic beam steering to rapidly switch the
focal spot rf (t) between all sonication points at which heating is desired in such
a manner that, on average over one sampling interval, the power as requested by
uk is injected. Recall that the input u(t) in (2.6) can contain at most only one
nonzero element. However, due to the high steering frequency with respect to the
slow sampling and system dynamics, the input in (2.6) can be well approximated
using a zero-order hold (ZOH) given by u(t) = uk for tk + T0 ≤ t < tk+1 + T0

(note the shift of the interval by T0 due to the computation/communication
delay), where uk may contain more than one nonzero element.

Finally, in temporally discretizing the continuous-time dynamics (2.6) to
obtain the controller state-space models, we account for the delay T0 with-
out increasing the computational complexity of the numerical optimization in
MPC. That is, we first compute the prediction sequence’s initial conditions
x0|k, d0|k ∈ R

nx , representing the predicted state and disturbance at time tk+T0,
and then synchronize the prediction instants ti|k, i, k ∈ N, in the MPC horizon
with the (future) time instants tk+i = tk + T0 + iTs at which the control in-
puts will be updated, as indicated in Figure 2.5. As a result, a state update
using the prediction model derived in the next subsection requires only a single
input value, as opposed to two in case the predictions and controls were not
synchronized.

2.4.3 Prediction model

As discussed in the previous subsection, the discrete-time state-space prediction
model is then given by

xi+1|k = Axi|k +Bui|k +Bddi|k, (2.7a)

di+1|k = di|k, (2.7b)

yi|k = xi|k, (2.7c)

where xi|k, di|k, yi|k ∈ R
nx and ui|k ∈ R

nu denote the predicted states, distur-
bance, outputs, and control inputs, respectively, at i ∈ N time steps ahead of the
prediction sequence’s starting time k ∈ N. Note that we assume the disturbance
to be constant over the prediction horizon, and that we do not incorporate mea-
surement noise in the prediction model since (approximately) E(vk) = 0. Here we
use the forward Euler method to temporally discretize (2.6), i.e., A = Inx

+TsAc,
B = TsBc, and Bd = TsInx

, as this fully preserves the sparseness present in the
continuous-time state-space matrices, which is crucial to reduce computation
time of the numerical optimization step in MPC, while also yielding sufficient
predictive accuracy. In particular, for the considered system, this yields a (nu-
merically) stable approximation for 0 < Ts < −2/λ(Ac) = 8.35 s (where we use



2

32 Chapter 2. Offset-free MPC for ultrasound-based hyperthermia

the fact that all eigenvalues of Ac are real and negative, and where λ(Ac) < 0
denotes the most negative eigenvalue of Ac), and when simulating entire treat-
ments given typical input trajectories for Ts = 3.7 s it induces an approximation
error in the order of 0.01 ◦C in steady state and at most around 0.1 ◦C during
the transient. Moreover, note that since we have synchronized the time instants
of input application and state prediction, (2.7a) indeed contains only a single
control input term, which is beneficial for computation time.

In addition to (2.7), we derive the model that computes the prediction’s
initial conditions as shown in Figure 2.5, which is given by

x0|k = A0x̂k +B0uk−1 +Bd,0d̂k, (2.8a)

d0|k = d̂k. (2.8b)

Since these need only be computed once before numerical optimization, ma-
trix sparseness is of negligible importance. To avoid numerical approxima-
tion errors, we obtain the matrices by exact discretization using A0 = eT0Ac ,
B0 =

∫ T0

0 eAcτdτBc, and Bd,0 =
∫ T0

0 eAcτdτ , of which the latter two expressions
exploit ZOH on the corresponding (disturbance) inputs.

2.4.4 State and disturbance estimation

We use an observer to obtain temperature estimates in which the effects of
measurement noise are reduced with respect to the MR thermometry readings,
and to identify the disturbance that captures the offset induced by plant-model
mismatch. The state and disturbance estimator is given by

x̂k = x̂−
k + Lx(yk − ŷ−k ), (2.9a)

d̂k = d̂k−1 + Ld(yk − ŷ−k ), (2.9b)

where

ŷ−k = x̂−
k = Âx̂k−1 + B̂1uk−1 + B̂2uk−2 + B̂dd̂k−1 (2.9c)

denote the model-based output and state estimates at time k before applying the
measurement-based correction to obtain x̂k. For the same reasons as for (2.8),
the observer model’s discrete-time matrices are derived by exact discretization
of (2.6) as given by Â = eTsAc , B̂1 =

∫ Ts−T0

0
eAcτdτBc, B̂2 =

∫ Ts

Ts−T0
eAcτdτBc,

and B̂d =
∫ Ts

0 eAcτdτ , where the expressions for B̂1 and B̂2 again follow from
the fact that we use ZOH on the inputs, see also [88].

We use Proposition 1 of [78] to verify the observability of the augmented
discrete-time state-space model on which the observer is based (i.e., (2.9) with
Lx = Ld = 0), which is derived using the disturbance model (2.6). That is, we
first verify that the nominal system (excluding the disturbance) is observable
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due to the full (noisy) state measurement (2.5b). Second, we evaluate the rank
condition in Proposition 1 of [78], for which in our case it holds that

rank

[

I − Â −B̂d

I 0

]

= 2n, (2.10)

from which we conclude the augmented model to be observable. Consequently,
an asymptotically stable estimator is known to exist for the proposed disturbance
model. This property also guarantees that for a stable closed-loop system, a
feasible steady-state setpoint, and constant disturbances, there will be zero offset
between the realized and desired temperature distributions in case no constraints
are active at steady state, see Theorem 1 of [89].

By observability of the augmented model, Lx and Ld can in principle be used
for arbitrary pole placement of the estimation error system resulting from (2.9).
However, determining the observer gains using exact pole placement methods or
computing them as the Kalman gains typically results in a prohibitively large
computational burden due to the large augmented state dimension 2nx = 3872.
Therefore, we set Lx to be a diagonal matrix instead, which, due to yk in (2.5b)
being the noisy full state measurement, is a practical solution with good perfor-
mance for reducing the propagation of noise into the state estimate x̂k. Similarly,
we set Ld diagonal to achieve low-pass filtering of the measured plant-model mis-
match, which is possible since d̂k is chosen to contain an estimate of the constant
and low-frequency mismatch for each state element individually. Using a poly-
acrylamide tissue-mimicking phantom as in [90], but with the ink replaced by
water, the matrices have been tuned experimentally, resulting in

Lx = 0.25Inx
, Ld = 0.01Inx

, (2.11)

which yield desirable estimator behavior with stable closed-loop poles.

2.4.5 Cost function

The temperature objectives have been discussed in Section 2.2.3 and are
schematically depicted in Figure 2.6 in cross-section perspective. The concentric
circular regions R and S inside the patient domain Ω, for which it holds that
R ⊂ S ⊂ Ω, denote the ROI and the region outside of which healthy tissue must
be safeguarded from overheating, respectively. T : R → R and T : Ω → R rep-
resent the location-dependent (desired) lower and upper temperature bounds,
respectively, defining the desired temperature range (green). Under- and over-
heating occurs for temperatures within the (light) blue and (light) red areas in
the figure, respectively. T is nonzero and defined only within R, where sufficient
heating is desired. T features an elevated plateau on S, preventing reversal of the
temperature-dependent mechanisms due to overheating, and has a lower value on
Ω \ S to protect healthy tissue. Within the aforementioned temperature range,
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Figure 2.6: Schematic cross section of the temperature objectives corresponding
to the circular regions R and S centered at the transducer axis. The maxi-
mum violations ǫ and ǫ are shown for some over- and underheated temperature
distributions such that T1 ≤ T + ǫ and T2 ≥ T − ǫ.

optimal treatment efficacy is achieved when a flat temperature distribution is
realized in the ROI, which is described by the reference temperature Tr : R → R.

To formulate these objectives mathematically, let us denote the nz < nx

elements of xk corresponding to a point within R by zk = Hxk ∈ R
nz , where

H ∈ {0, 1}nz×nx is a matrix with one 1 in each row (and at most one 1 per
column). Furthermore, let zr ∈ R

nz , z ∈ R
nz , and x ∈ R

nx denote the voxel-wise
temperature elevation reference, lower bound, and upper bound corresponding
to the values of Tr, T , and T on the discrete voxel locations, respectively. This
allows for the ROI voxel temperature deviations with respect to the reference to
be given by zk − zr. The maximum violations of the temperature bounds are
defined by ǫk = ǫ(xk) = ‖max{xk−x, 0nx

}‖∞ ∈ R≥0 and ǫk = ǫ(zk) = ‖max{z−
zk, 0nz

}‖∞ ∈ R≥0, where 0n denotes a zero-vector of length n and the maximum
operator is used element-wise, and are collected in ǫk = [ǫk ǫk]

⊤ ∈ R
nǫ

≥0, nǫ = 2.
The cost function is given by

VN (zk, ǫk) =
N
∑

i=0

ℓ(zi|k, ǫi|k) (2.12)

where zk = (z0|k, . . . , zN |k) is the sequence of predicted performance variables
zi|k = Hxi|k at time instant k ∈ N, and similarly ǫk = (ǫ0|k, . . . , ǫN |k) the
prediction sequence of the slack variable vector ǫi|k = [ǫi|k ǫi|k]

⊤. The stage cost
is given by

ℓ(zi|k, ǫi|k) = (zi|k − zr)
⊤Q(zi|k − zr) + f⊤

ǫ ǫi|k, (2.13)
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where Q is a positive definite weighting matrix and fǫ ∈ R
2
>0. The critical

importance of achieving temperatures within the desired range T ≤ T ≤ T
is expressed by using a linear penalty on ǫ, such that its contribution to the
cost does not vanish quadratically when approaching zero. Additionally, the
weighting in fǫ is typically chosen relatively high compared to the weighting
in Q, such that any (significant) violation of the temperature range will be the
dominant component of the cost. When the soft constraints are (nearly) satisfied,
i.e., when ǫk ≈ 0, the contribution of the quadratic term will be dominant,
enforcing temperature tracking of the voxels within the ROI to the optimal
treatment temperature Tr.

Although it is a natural choice to use slack variables and soft constraints
to incorporate the desire for temperatures within the range T ≤ T ≤ T in the
cost function, the manner in which these are implemented deserves considerable
attention. We choose to penalize the ROI voxels’ magnitude-wise largest viola-
tions using the∞-norm, as opposed to introducing a slack variable for each voxel
individually and using a penalty on the 1-norm of all slack variables. Compared
to the latter, the former has two main advantages. First, it requires only two
slack variables per predicted time step (one for the upper bound and one for
the lower bound) compared to 2nx slack variables per time step (nx per bound),
thereby introducing less complexity in the MPC optimization problem. Second,
it yields superior temperature homogeneity, which is desirable from a clinical
point of view. Although this effect is important during the entire treatment,
it is especially visible during the initial heat-up phase, and hence we will use
this interval to illustrate the behavioral advantage of the ∞-norm approach.
To this end, compare the temperature cross sections in Figure 2.7a obtained
through simulation with vk = 0 using the ∞-norm to those in Figure 2.7b corre-
sponding to using the 1-norm. In the former, relatively more heating is applied
towards the edge of the ROI, where the temperature is naturally lowest due
to outward heat diffusion, leading to a more uniform temperature distribution
within the ROI (gray area), whereas in Figure 2.7b a much larger difference
exists between the maximum ROI voxel temperatures (�) and the minima at
the ROI edge (•). Additionally, in Figure 2.7c we show the temperature profiles
obtained when omitting the slack variable penalty altogether, i.e., when using
(2.13) with fǫ = 0. Besides lacking the ability to explicitly counteract tempera-
tures outside the desired range, using fǫ = 0 results in similar heat-up behavior
as with the 1-norm approach. Finally, in Figure 2.7d, it is clear to see that
the resulting temperature range inside the ROI is significantly narrower during
heat-up when including the cost on the uniform lower bound following from the
∞-norm penalty (and even also slightly better directly thereafter), from which
we conclude that using the ∞-norm penalty is indeed the most favorable of the
considered options.
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Figure 2.7: The evolution of the voxel temperatures (×, •, and �) of the cross sec-
tion at ry = 0 m during heat-up when using (a) an∞-norm penalty, (b) a 1-norm
penalty, and (c) no penalty on the slack variables, at the time instants indicated
in (d) (dotted), alongside the ROI (gray area), and the temperature range’s up-
per and lower bounds (dashed) and setpoint temperature (dash-dotted). In (d),
the difference between the maximum (�) and minimum (•) temperature in the
ROI is shown for all cases.

2.4.6 Optimization problem

The control objective can now be formulated as the constrained optimization
problem

min
uk

VN (zk, ǫk) (2.14a)

where uk = (u0|k, . . . , uN−1|k), subject to

xi+1|k = Axi|k +Bui|k +Bddi|k, ∀ i ∈ N[0,N−1], (2.14b)

di+1|k = di|k, ∀ i ∈ N[0,N−1], (2.14c)

x0|k = A0x̂k +B0uk−1 +Bd,0d̂k, (2.14d)

d0|k = d̂k, (2.14e)

zi|k ≥ z − 1nz
ǫi|k, ∀ i ∈ N[0,N ], (2.14f)

xi|k ≤ x+ 1nx
ǫi|k, ∀ i ∈ N[0,N ], (2.14g)
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0nǫ
≤ ǫi|k, ∀ i ∈ N[0,N ], (2.14h)

0nu
≤ ui|k ≤ 1nu

u, ∀ i ∈ N[0,N−1], (2.14i)

1⊤nu
ui|k ≤ uΣ, ∀ i ∈ N[0,N−1], (2.14j)

where N[a,b] = {a, a + 1, . . . , b}, a, b ∈ N and a ≤ b, denotes the set of natural
numbers from a through b, and 1n represents an all-ones vector of length n.
Equality constraints (2.14b)-(2.14c) ensure satisfaction of the dynamics accord-
ing to (2.7), with the prediction sequence’s initial conditions given by (2.14d)-
(2.14e), which correspond to (2.8) and can be computed after first performing
the observer step (2.9) to obtain x̂k. Inequalities (2.14f)-(2.14g) capture the
temperature bounds as soft constraints using the slack variables bounded from
below in (2.14h). Finally, (2.14i)-(2.14j) describe the actuator constraints, where
u = 15 W and uΣ = 60 W are the maximum allowable power applied to a single
sonication point and to the entire treatment region, respectively.

Furthermore, a horizon of N = 5 is used, and for the weights we choose

Q =
1

nz

I, fǫ =

[

10
100

]

, (2.15)

which are normalized with respect to the number of corresponding variables
(note that ǫ and ǫ are scalar) for more intuitive balancing of the objectives’
relative contribution to the cost function.

We choose to incorporate the desired temperature range objective as soft
constraints to prevent the optimization problem from becoming infeasible, as
proper controller operation is crucial for patient safety and treatment quality.
Note that this is of particular importance for the considered application, as
the minimum temperature bound will be directly violated during heat-up. In
addition, violations may occur as a result of unexpected heat sinks or sources,
or due to measurement artifacts that may occur in MR-based thermometry due
to patient motion or magnetic field drift.

Remark 2.1. The stage cost (2.13) is improved with respect to [84] by excluding
the cost on the predicted input power ui|k. That is, removing this penalty slightly
increases control effort, but consequently also removes the associated downward
shift of the tumor temperature away from the reference zr. This is desirable
for hyperthermia treatments, where achieving optimal tumor temperatures, and
thereby optimal treatment quality, is of the utmost importance, in comparison
to which the desire to reduce the control energy is negligible. In addition, note
that the control effort is in fact upper bounded by the hard input constraints
(2.14i)-(2.14j).

Similarly, we chose not to include an input rate penalty in (2.13), since
reducing changes in the input signal is also of little to no importance compared
to the temperature objectives. Moreover, the input oscillations resulting from
the propagation of noise into the state and disturbance estimates are reduced
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to a negligible level by adequate filtering in the observer, as will be shown in
Figure 2.12 in the upcoming discussion of the in-vivo experiment.

Remark 2.2. The cost function (2.12) describes an economic cost, as the set-
point zr does not correspond to a reachable steady-state solution of the considered
system (2.7). This is due to the combination of the ROI radius being equal to
the lateral range using electronic beam steering, meaning all sonication points are
inside the ROI, the finitely narrow power deposition in (2.4), and the fact that
the nonnegativity constraints on the inputs (2.14i) are active at steady state. As
a result, although having satisfied (2.10), we cannot guarantee that zk → zr for
k → ∞. Instead, using the fact that the estimator is asymptotically stable and
the disturbances are (nearly) constant, we only claim to be able to remove the
part of the steady-state offset resulting from plant-model mismatch, recovering
the performance as optimally achievable without modeling error.

An alternative approach would be to formulate the objective as a tracking
problem with respect to a feasible steady-state setpoint. To this end, a target
selector as discussed in [67, 91, 92] could be used to determine the economically
optimal steady state and corresponding input (x∗

s , u
∗
s) as a function of the current

disturbance estimate by solving at each time k

(x∗
s , u

∗
s) = arg min

xs,us

ℓ(zs, ǫs), (2.16)

with zs = Hxs and ǫs = [ǫ(zs), ǫ(xs)]
⊤, subject to

[

I −A −B
]

[

xs

us

]

= Bdd̂k, (2.17)

and inequality constraints similar to (2.14f)-(2.14j). However, such a setup has
been observed to deteriorate performance compared to the current design during
the transient of d̂k and in the presence of measurement noise, while yielding
at best similar performance after convergence of the disturbance estimate, see
also [93]. In addition, this increases complexity (and thereby computation time),
which is particularly unwanted in the clinic, where any additional complexity is
regarded as a potential source of errors. We have therefore chosen to omit such
a target selector, and instead optimize the economic cost in (2.12) directly.

2.5 In-vivo experiments

In this section, the experimental results obtained on an in-vivo porcine thigh
muscle are presented to demonstrate the effectiveness of the designed feedback
control setup to remove the part of the treatment temperature steady-state offset
caused by plant-model mismatch.
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2.5.1 Implementation

The MR-HIFU system, consisting of the combination of an MRI scanner and
a dedicated HIFU therapy platform, has been discussed in Section 2.2.1 and
2.2.2. The MPC and estimator algorithms were implemented in Matlab 2017b
and executed in real time using Python 2.7 via the Matlab engine API, running
on a HP Z800 Workstation with Intel Xeon X5650 CPU @ 2.67 GHz and 12 GB
RAM. The communication with the MR-HIFU system was achieved using the
matMRI and matHIFU toolboxes [94]. For fast numerical optimization, we used
Gurobi 7.0.2 to solve a sparse formulation of the MPC problem (2.14), which
after comparative testing with a dense formulation was concluded to result in
significantly smaller computation times.

In particular, the solver times recorded during the experiments were fairly
consistent, averaging at approximately 0.26 s when the disturbance estima-
tor was disabled, i.e., when running MPC without offset-free capabilities, and
around 0.33 s for the offset-free MPC (2.14). Since the computation time of
the observer (2.9) is negligible (≤ 5 ms in both cases), this difference illustrates
the additional computation time associated with using an offset-free approach.
Recalling that the sample time is Ts = 3.7 s, we find that the resulting computa-
tion times for both MPC strategies are still well within the bounds for real-time
implementation. Given the significant performance improvement demonstrated
by the experimental results shown below, this strongly motivates the offset-free
MPC approach.

2.5.2 Tissue parameters

Using our proposed approach, we assume the treatment area to have homoge-
neous tissue properties, and rely on the disturbance estimator to identify the ef-
fects of (inhomogeneous) parameter error. Baseline values for the relevant muscle
tissue parameters have been obtained from the IT’IS Foundation database [95],
which have then been slightly adapted according to the identification procedure
in [72] based on low-power test sonications. For the thermal model equations
(2.2)-(2.4), from which the continuous-time state-space model (2.6) and in turn
the discrete-time controller and observer models (2.7), (2.8) and (2.9) are de-
rived, however, we have intentionally introduced additional parameter mismatch
that results in a negative temperature offset in closed loop. In particular, cor-
responding to the observations in [72], this is achieved by underestimating the
thermal conductivity κ in (2.2) and overestimating the acoustic energy absorp-
tion coefficient α in (2.4), resulting in the parameters listed in Table 2.1, and
a plant-model mismatch as visualized in Section 2.7 by an open-loop model
validation.

This is done for two reasons. First, for the purpose of this work it allows
for better illustration of the controller’s ability to achieve the desired treatment
temperature despite significant model error. Second, although any plant-model
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Table 2.1: Tissue parameters.

Parameter Value Unit
ρ 1090 kg/m3

c 3421 J/(kg·K)
κ 0.3773 W/(m·K)
wb 3.5289 kg/(s·m3)
cb 3617 J/(kg·K)
α 0.06141 -

mismatch is obviously undesirable in general, in case it is inevitable due to large
model uncertainty, for patient safety it is preferred to have model bias towards
underheating instead of towards overheating. That is, in case of the former,
no harm is unintentionally inflicted to the tissue, and, after proper identifica-
tion of the mismatch, increasing the sonication power will directly contribute to
achieving the desired temperature. Contrarily, overheating the tissue may induce
hyperthermic reversal effects detrimental to treatment success, or directly cause
unwanted tissue damage, and, after identification, cannot be actively counter-
acted using HIFU (as expressed by the nonnegativity constraints on the inputs
uk ≥ 0).

2.5.3 Initial disturbance estimator inactivity

In line with the desire to demonstrate the benefits of using the proposed offset-
free implementation, the disturbance estimator is disabled during the initial
heat-up phase by setting d̂k = 0 and Ld = 0 for all k ∈ N corresponding to
tk < 180 s. This is, however, also desirable from a clinical point of view, as
hereby we avoid a potential and unnecessarily large build-up of d̂k that would
otherwise lead to increased temperature over- or undershoot, see Remark 2.3.

Remark 2.3. Initially disabling the disturbance estimator is especially useful in
case of a mismatch in the input matrix Bc in (2.6) (from which the observer and
controller input matrices are derived), e.g., resulting from an incorrect value
for the acoustic absorption coefficient α, combined with rapid and substantial
changes in the input uk such as typically occurring in the transient behavior
during heat-up (especially when transitioning from heat-up towards steady state).
This effect is due to two reasons. First, a model error in Bc is multiplicative
in nature, whereas we use an additive disturbance in the augmented model (2.6)
and corresponding observer (2.9). Second, our disturbance estimator (2.9) is
designed to estimate steady-state (or slowly varying) errors, while the input uk

(and thus the mismatch in the terms B̂iuk, i = 1, 2) can vary rapidly. Although
this could possibly be tackled by using different disturbance models or a more
sophisticated adaptive controller including online parameter estimation, in the
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context of MR-HIFU hyperthermia the resulting performance improvement is be-
lieved to be minor for the following reasons. First of all, due to its general form,
the design proposed in this work is able to fully capture the effects of any con-
stant or slowly varying model mismatch and disturbance in steady state, rather
than only specific types of model errors. Furthermore, our control setup already
achieves heat-up times of less than one minute, which is short with respect to
the envisioned 90-minute treatment time, after which the disturbance estimator
can be enabled. In fact, the maximum power limit is already typically reached
during heat-up, indicating that there is relatively not much room for shortening
the heat-up phase.

2.5.4 Results

To test the performance of the developed offset-free controller and observer setup
under realistic clinical conditions, in-vivo experiments have been conducted on an
in-vivo porcine thigh muscle. The focal plane MR image is shown in Figure 2.8,
indicating the treatment area (green) and ROI (red). We set rx = ry = 0 m
at the center of the ROI, with positive rx- and ry-axis directions towards the
ventral (belly) and cranial (head) side, respectively. In Figure 2.9, the results
of a 30-minute MR-HIFU hyperthermia treatment are presented. Note that
the baseline body/blood temperature of the treated pig was Tb ≈ 38 ◦C. The
mean (solid) and minimum/maximum (dashed) voxel temperatures are shown
corresponding to, with a temperature shift of Tb, both the state estimate in
the ROI ẑk = Hx̂k (thick black) and the measurement in the ROI zy,k = Hyk
(thin red), together with the ROI’s reference temperature Tr and lower and
upper bounds of the desired temperature range T and T , respectively. The
disturbance estimator is disabled for tk < 180 s indicated by the gray area.
In Figure 2.9a, the temperature indicators are given for the full length of the
treatment, showing that after heat-up and disturbance estimator convergence
the entire ROI is heated to within the desired temperature range, with the
mean temperature settling at Tr. Moreover, it illustrates the benefit of using a
model-based observer to obtain temperature estimates that contain significantly
reduced noise effects compared to the corrupted measurements.

Closer inspection of the interval where 0 ≤ tk ≤ 400 s in Figure 2.9b reveals
the effect of the existing plant-model mismatch on the treatment temperature
in closed loop. Due to overestimating the achievable temperature increase, it
appears from the observer as if the minimum ROI temperature has exceeded
the desired 41 ◦C at tk ≈ 26 s, whereas the measured (noisy) minimum ROI
temperature is around 39.7 ◦C at this time. It can also be seen that with
the disturbance estimator disabled, the modeling error results in a discrepancy
between the measured and estimated temperature that settles around 0.3 ◦C
on average at t = 180 s. Consequently, a negative mean temperature offset of
almost 0.5 ◦C can be observed, assuming that the effect of vk on the mean of zy,k
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Figure 2.8: Sagittal focal plane MR image of the porcine right thigh area, ranging
from halfway the abdomen (cranial) to the ankle (caudal), indicating the location
of the ROI (red circle).

is sufficiently suppressed by averaging and therefore zy,k is representative of the
actual mean ROI temperature. After activating the disturbance estimator, i.e.,
setting Ld = 0.01Inx

as defined in (2.11) for tk ≥ 180 s, the state and disturbance
estimates converge within approximately one minute, allowing for the feedback
setup to achieve the desired temperature distribution, as would typically be the
result in case of no model error.

Temperature cross sections at rx = 0 m, i.e., through the center of the ROI
in rx-direction, are shown in Figure 2.10 corresponding to the averages of the
state estimate ¯̂x (black ◦) and measurement ȳ (red ×) over the 7-sample in-
tervals 154 ≤ tk ≤ 180 s (Figure 2.10a) and 374 ≤ tk ≤ 400 s (Figure 2.10b),
together with the corresponding 2σx and 2σy confidence intervals (gray/red ar-
eas), where σx̂ and σy denote the standard deviations over the corresponding
7-sample intervals. The values shown in Figure 2.10a correspond to the last
seven samples before activating the disturbance estimator for tk ≥ 180 s. First
of all, the confidence intervals illustrate the need for an observer, as the mea-
surements yk clearly suffer from noise effects, whereas these are filtered down
to a negligible level in the estimates x̂k. Second, a clear discrepancy can be
observed between ¯̂x and ȳ, particularly in the ROI where heat loss effects are
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Figure 2.9: The mean (solid) and minimum/maximum (dashed) voxel tempera-
tures of the ROI corresponding to the measurements zy,k = Hyk (thin red) and
state estimates ẑk = Hx̂k (thick black) with the disturbance estimator disabled
for t < 180 s (gray area), shown for (a) the entire experiment, and (b) zoomed
in on the first 400 s of the experiment (dotted rectangle in (a)).

most strongly present, indicating an offset between x̂k and yk, which is the re-
sult of plant-model mismatch. The results over the last seven samples before
tk ≈ 400 s, depicted in Figure 2.10b, exemplify the offset-free implementation’s
ability to enable convergence of the estimator and enforce the desired heating
behavior.

To benchmark the performance of the offset-free MPC scheme developed
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Figure 2.10: The 7-sample averaged temperature cross sections at rx = 0 m
corresponding to ¯̂x (black ◦) and the measurement ȳ (red ×) with corresponding
2σ confidence intervals (red/gray areas) when the disturbance estimator is (a)
inactive over the interval 154 ≤ tk ≤ 180 s, and (b) active during 374 ≤ tk ≤
400 s, alongside the T and T (dashed black) and Tr (dash-dotted black).

in this work, consider Figure 2.11. Herein, we show temporal average of the
ROI temperature measurements’ deviation with respect to the setpoint Tr (i.e.,
zy,k = Hyk with respect to zr) obtained using the proposed MPC design with the
disturbance estimator and, thereby, the offset-free capabilities disabled (MPC
1) and enabled (Offset-free MPC 1), which are computed over the intervals
154 ≤ tk ≤ 180 and 300 ≤ tk ≤ 1800 during the experiment, respectively. In
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Figure 2.11: Measured ROI temperature mean (red), 10th percentile T 90 and
90th percentile T 10 (box edges), and extrema (whiskers) with respect to the ROI
setpoint Tr in steady state for the MPC design proposed in this work with the
offset-free scheme enabled (Offset-free MPC 1) and disabled (MPC 1), compared
to the in-vivo porcine experiment results from [46] using a preliminary MPC
scheme (MPC 2) and [53] using a state-of-the-art binary controller (Binary).

addition, the figure depicts the temperature distributions corresponding to the
results1 reported in [46, Table 2] obtained using our preliminary MPC design
(MPC 2), and in [53, Table II] using a clinical state-of-the-art binary controller
(Binary), both of which also involve in-vivo porcine thigh muscle experiments,
and target a similar ROI (18 mm diameter circle) as considered in this work.
This figure clearly illustrates, first of all, the benefit of using an MPC-based strat-
egy instead of the binary controller, since the former achieves a more accurate
and homogeneous temperature distribution, as shown by the ROI temperatures’
10th and 90th percentiles, which are denoted by T 90 and T 10, respectively. To
be precise, the T 90-T 10 temperature ranges of Offset-free MPC 1 (0.62 ◦C) and
MPC 1 (0.69 ◦C) corresponding to the MPC presented here, and of MPC 2 in [46]
(1.34 ◦C), are only 29%, 32%, and 62% of the T 90-T 10 range obtained using the
binary controller in [53] (2.15 ◦C). Second, it demonstrates the improved control
performance of the proposed feedback setup (Offset-free MPC 1 and MPC 1)
with respect to that used in [46] (MPC 2), which differs regarding the MPC
design and, in addition, does not employ a state or disturbance observer. In
particular, the T 90-T 10 temperature ranges obtained using Offset-free MPC 1
and MPC 1 (in the presence of considerable plant-model mismatch) are approxi-
mately half of the T 90-T 10 temperature range achieved using MPC 2 in [46]
(without such significant modeling error), and even the minimum-maximum
temperature range of Offset-free MPC 1 and MPC 1 (both 1.23 ◦C) are only
92% of the T 90-T 10 range of MPC 2. Finally, the figure once more visualizes
the steady-state offset resulting from large plant-model mismatch when using a

1The minimum and maximum ROI temperatures were not reported in [46, 53] and are
therefore not shown here.
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Figure 2.12: The total input power per time step with the disturbance estimator
disabled for t < 180 s (gray area).

standard tracking MPC strategy without offset-free capabilities (MPC 1), which
can be eliminated by using the offset-free MPC scheme developed in this work
(Offset-free MPC 1), strongly motivating the use of an offset-free MPC strategy
in MR-HIFU hyperthermia treatments.

Next, we show the total input power per time step applied during the experi-
ment in Figure 2.12. The benefit of using an observer, reducing the propagation
of noise effects into the control input, is expressed in the small magnitude of
the power fluctuations occurring during the treatment. The figure also clearly
visualizes the large acoustic power required for initial heat-up limited only by
the input constraint (2.14j), and the increased power demand after activating
the disturbance estimation that eventually brings the tissue in the ROI to its
desired temperature. Interestingly, the requested sonication power in this ex-
periment also exhibits a steady increase for tk ≥ 800 s during which the tissue
temperature does not significantly change. This is most likely due to the tissue’s
thermoregulatory response, increasing perfusion when having been exposed to
elevated temperatures for an extended period of time, as will be discussed in
more detail in Section 2.5.5. This clearly demonstrates the controller’s ability
to maintain optimal performance also in the presence of slowly varying model
mismatch.

Possibly even more remarkable, however, is that the power increase can be
observed to be seemingly linear. This is of special importance for medical science,
since measuring and modeling the transient behavior of the body’s thermoreg-
ulatory response to thermal stress has proven to be difficult [74]. By providing
the means for accurately controlling the hyperthermic conditions and identifying
tissue changes, our controller may serve as an enabler for research into better
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Figure 2.13: MR image of the treatment area (green box in Figure 2.8), high-
lighting the intensity of the vascularization (grayscale) in and around the ROI
R (red circle) and S (dashed black circle).

physiological tissue models.

2.5.5 Spatially and temporally varying disturbance estimation

For the considered experiment, the ROI contained significantly vascularized tis-
sue, as can be seen from the focal plane MR image shown in Figure 2.13, which
corresponds to the area marked in Figure 2.8 (green box). The outer edges of
the ROI R and of the area including the surrounding tissue S are marked by
the solid red circle and the dashed black circle, respectively. Tissue areas with
stronger perfusion, typically containing networks of small blood vessels and the
tissue in their vicinity, are visualized in darker gray. In Figure 2.14, the esti-
mated voxel-wise temperature mismatch B̂dd̂k is shown for two different time
instants. Additionally, the subfigures herein also include the MR image in the
background (gray, with increased contrast for visibility). Both Figure 2.14a
and Figure 2.14b illustrate that the proposed disturbance estimator is able to
capture spatially varying model discrepancies. Moreover, when comparing the
temperature mismatch estimate before the input power increases at tk ≈ 800 s
in Figure 2.14a to the estimated mismatch at tk ≈ 1800 s in Figure 2.14b,
it is clear to see that the estimated local heat loss has increased in some areas,
demonstrating the estimator’s ability to identify model mismatches that (slowly)
change over time.

Especially inside the ROI, where heating is applied and consequently the
temperature is elevated, negative values for the estimated temperature mismatch
(cyan/blue) can be seen to largely coincide with the more strongly perfused tissue
(gray). Also at the edge of and outside the ROI, a striking spatial correlation can
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(a)

(b)

Figure 2.14: The estimated voxel-wise temperature mismatch B̂dd̂k at time (a)
tk ≈ 800 s and (b) tk ≈ 1800 s for the tissue area containing the ROI R (solid
red circle) and S (dashed black circle).

be observed, most notably so in the areas around the coordinates (−0.01, 0.003),
(0.004,−0.008) and (0.007, 0.006). In the regions outside the ROI where neither
sonication occurs, and thereby modeling errors in the overestimated B are not
expressed, nor significant perfusion is present, the disturbance estimate mostly
takes on small positive values (yellow). This is the result of the estimator iden-
tifying the effects of underestimating the thermal conductivity κ, by which more
heat is transported outwards from the ROI than expected by the nominal model.
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Figure 2.15: The heating Buk at tk ≈ 1800 s for the tissue area containing the
ROI R (solid red circle) and S (dashed black circle). Active sonication points
(green dots) are distinguished from inactive sonication points (black dots). For
the former, the relative magnitude of the applied acoustic power is indicated by
the radius of the corresponding green circle.

In Figure 2.15, a spatial resemblance can also be observed between the dis-
turbance estimate and the heating that is applied using this value for d̂k at time
tk ≈ 1800 s. Here, the active and inactive sonication points (green and black
dots, respectively) are shown inside the ROI (solid red circle). The radius of
the green circles drawn around the active sonication points represent the rela-
tive magnitude of the applied acoustic power. The resulting spatial distribution
of Buk and the active sonication points can be seen to correspond well to the
highlighted tissue in Figure 2.13 and the temperature mismatch in Figure 2.14b.

From this, we draw several conclusions. First, neglecting perfusion in (2.2)
may indeed be the cause of significant unmodeled spatially varying heat loss
when the ROI contains (considerably) vascularized tissue. Second, the effects of
perfusion increasing over time due to the body’s thermoregulatory response can
be of sufficient magnitude to require an increasing steady-state power demand
as seen in Figure 2.12. Next, note that although the identified heat loss shows
obvious similarity to the MR perfusion image, it is not an exact match. Addi-
tionally, relating the MR image to the magnitude of the perfusion-related heat
loss is not straightforward. In fact, even the relative magnitude of these effects
does not exactly correspond to the MRI data, as exemplified in Figure 2.14b by
the disturbance estimates at (−0.001,−0.005) and (−0.002, 0.002) being larger
in magnitude than the estimate at (−0.001, 0.008), while from Figure 2.13 the
latter area is seen to be most strongly perfused. Therefore, we conclude that
accurately modeling the thermal effects of perfusion a priori based on an MR im-
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age as in Figure 2.13 may be considered as extremely difficult, even more so due
to the unavailability of extensive model identification (as previously mentioned).
These conclusions motivate our offset-free MPC approach, involving the use of a
simple homogeneous thermal model (2.2), and incorporating a disturbance esti-
mator to allow for the identification and compensation of the potentially time-,
space-, and temperature-dependent unmodeled thermal effects.

2.6 Conclusion

In this chapter, an offset-free MPC scheme is presented to enhance performance
and robustness in temperature control using an MR-HIFU hyperthermia sys-
tem for cancer treatment. Since plant-model mismatch inevitably occurs when
treating different patients and tumors, and accurate thermal modeling is imprac-
ticable for MR-HIFU hyperthermia, we propose to assume a simple model with
homogeneous tissue properties and (near) database parameter values, and then
include a disturbance estimator to cope with the resulting model mismatch. We
showed that this estimator is able to identify the effects of constant and slowly
varying modeling errors (and disturbances), enabling the controller to eliminate
the steady-state offset otherwise resulting from such errors. By means of ex-
periments on the thigh muscle of a living anaesthetized pig using a pre-clinical
MR-HIFU hyperthermia system, we have verified the feedback setup’s effective-
ness in terms of recovering optimal treatment temperatures despite the presence
of realistic plant-model mismatch.

2.7 Appendix: Open-loop model validation

The plant-model mismatch in the in-vivo experiment is visualized by feeding
the inputs applied during the experiment, of which the total power is shown
in Figure 2.12, to the nominal model (2.5) in open loop. The nominal model’s
resulting minimum/maximum (dashed) and mean (solid) tumor temperatures
are shown in Figure 2.16 (red), and compared to the thermal response of the
porcine thigh muscle measured during the experiment (black). Clearly, there
exists a severe mismatch, which, in addition, can be seen to grow over time due
to the increased perfusion caused by the body’s thermoregulatory response, see
also Figure 2.12 and Figure 2.15. This illustrates the degree of model error that
our offset-free MPC was able to compensate for during the in-vivo experiment,
see Figure 2.9.
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Figure 2.16: The mean (solid) and minimum/maximum (dashed) voxel temper-
atures of the ROI corresponding to the experiment measurements (black) and
generated by the nominal model (red) when supplied with the inputs applied
during the in-vivo experiments. The gray background indicates when the dis-
turbance estimator was disabled during the in-vivo experiments.



The greatest challenge to any thinker is stating
the problem in a way that will allow a solution.

Bertrand Russell



CHAPTER 3

Switched-Actuator Systems with Setup Times:

Efficient Modeling, MPC, and Application to

Hyperthermia Therapy

In many control applications, the actuator configuration has to be switched during op-

eration. This often requires non-negligible actuator downtime, resulting in switched-

actuator systems with setup times (SAcSSs). Consequently, optimally controlling SAc-

SSs requires the online solving of both a discrete actuator allocation problem, in which

the switch-induced actuator downtime is taken into account, as well as an optimization

problem for the (typically continuous) control inputs. Mixed-integer model predictive

control (MI-MPC) offers a powerful framework for tackling such problems. However,

the efficient modeling of SAcSSs for MI-MPC is not straightforward, and real-time fea-

sibility is often a major hurdle in practice. Therefore, in this chapter we first formalize

the general description of the class of SAcSSs. Then, we propose an intuitive and sys-

tematic modeling procedure tailored to SAcSSs, which is specifically designed to allow

for user-friendly controller synthesis, and to yield efficient MI-MPCs. We apply these

new results in a case study of large-volume magnetic-resonance-guided high-intensity fo-

cused ultrasound hyperthermia, which involves the heating of tumors (using real-valued

local heating controls, as well as discrete range-extending actuator relocation during

which no heating is allowed) to enhance the efficacy of radio- and chemotherapy.

This chapter is based on D.A. Deenen, E. Maljaars, L.C. Sebeke, B. de Jager, E. Heijman,
H. Grüll, and W.P.M.H. Heemels, “Switched-Actuator Systems with Setup Times: Efficient
Modeling, MPC, and Application to Hyperthermia Therapy,” Submitted for journal publica-

tion.
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3.1 Introduction

A major motivation for the system-theoretic contributions of this chapter is
large-volume magnetic-resonance-guided high-intensity focused ultrasound (MR-
HIFU) hyperthermia [83]. This is a novel technology for noninvasive cancer
treatment in which ultrasound waves are used to locally heat up cancer tissues
to 42 ◦C for 60 to 90 minutes, based on real-time temperature measurements
obtained with an MRI scanner. The heating effectively sensitizes the tissue to
the effects of chemo- and radiotherapy without adding any undesirable (toxic)
side effects [3, 15]. Thereby, hyperthermia enables significantly higher success
rates and allows for a considerable reduction of the unwanted side effects of
chemo- and radiotherapeutic cancer treatments [16, 22].

MR-HIFU allows for powerful heating with millimeter-accurate steering. Us-
ing MPC, HIFU-mediated thermal therapies of optimal quality can be realized,
while respecting actuator and safety constraints, see [69–72]. Unfortunately,
this high accuracy comes with limited heating range, implying that only small
tumors (≤16 mm diameter) can be treated using a stationary actuator. For
larger tumors, the actuator itself must be relocated, during which no heating
can occur [53]. As the set of admissible positions must be discrete and finite, the
resulting system can be described as a switched system, where the input model
differs depending on the actuator location. However, a first distinctive property
of this hyperthermia system, compared to typical switched systems, is that the
time required for actuator relocation, and thus a mode switch, is non-negligible.
Second, any mode switch induces nonzero actuator downtime, during which the
system itself keeps evolving in time according to its unforced dynamics. Clearly,
for the optimal control of the heating process in large-volume MR-HIFU hy-
perthermia, these two features have to be incorporated in the controller design,
determining online both the continuous local heating and the discrete actuator
positioning.

The essential features recognized in large-volume MR-HIFU hyperthermia,
i.e., dealing with dynamical systems in which the (finite number of) actuator
configurations have to be switched and where the switching takes significant
time during which no active control is possible, are of a general nature as they
can be identified in many other applications. Indeed, one could think about
manufacturing systems in which machine reconfiguration takes time, see [96–98]
for comprehensive surveys, but also agents in agriculture (e.g., drones, fertilizers,
irrigation systems) which must serve multiple (sub)fields resulting in significant
field-to-field travel times [99,100], or the coordinated deployment of fire-fighting
units for wildfire management [101–103]. Motivated by this range of applications,
we formally introduce the class of switched-actuator systems with setup times
(SAcSSs), exhibiting the mentioned features, as the first contribution of this
work.

As a second contribution, we address the design of easy-to-derive and efficient
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MPC schemes for SAcSSs. In particular, we desire a natural and systematic
modeling procedure for SAcSSs, yielding a compact model, i.e., with a small
number of integer variables, that can be directly integrated into a mixed-integer
MPC (MI-MPC) [68] setup. The small number of integers is motivated by the
desire to keep the computational burden limited, thereby facilitating real-time
implementation of the resulting MPC schemes. The mixed-integer programming
(MIP) compatibility could be achieved by describing a SAcSS as a mixed logi-
cal dynamical (MLD) system [104]. However, efficiently capturing the actuator
switching behavior including setup times is not straightforward. Clearly, one
could attempt to describe a SAcSS as a discrete hybrid automaton (DHA) [105],
which using the modeling language HYSDEL could then be automatically con-
verted into MLD form amenable for online optimization. Unfortunately, due
to the generic nature of the DHA framework, it may be unclear how to best
incorporate SAcSSs’ actuator switching, thereby potentially leading to models
containing too many Boolean variables, which would have negative consequences
for the computational complexity of the online MPC problem. For example, a
SAcSS could first be cast as a constrained switched (linear) system [81,106] be-
fore deriving its equivalent DHA and (using HYSDEL) MLD forms, yielding a
similar result as the lifting approach in [107]. However, incorporating an actu-
ator switch’s setup time would in these cases require the inclusion of as many
additional “transitioning modes” (i.e., duplicates of the zero-input mode cor-
responding to the unforced dynamics) as the switch’s setup time. In turn, this
results in a model with many integer (Boolean) variables, leading indeed to high-
complexity representations. Therefore, as a second contribution, we propose an
intuitive and convenient modeling procedure tailored to SAcSSs, specifically de-
signed to yield compact models that are directly suitable for efficient MI-MPC
setups.

The final contribution of this work consists of a large-volume MR-HIFU hy-
perthermia cancer therapy case study. Herein, we apply the novel methods to
obtain a SAcSS model and MI-MPC, of which the performance and computa-
tional efficiency are validated.

A preliminary version of this work was published in [108], which discusses
only a simulation study of MI-MPC for large-volume MR-HIFU hyperthermia
(different from the one included here) as an illustrative proof-of-concept, but does
not provide the general modeling procedure for SAcSSs presented in this chapter.
In fact, the class of SAcSSs is formally defined here for the first time. Moreover,
in this work we formalize the key concepts of the proposed modeling framework,
provide rigorous proofs, discuss the general MI-MPC setup for SAcSSs, and
investigate its improved computational efficiency, all of which was not included
in [108].

The remainder of the chapter is organized as follows. In Section 3.2 we
formally define SAcSSs, for which in Section 3.3 we present the intuitive and
compact modeling procedure. The resulting MI-MPC will be given in Section 3.4.
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In Section 3.5, the large-volume MR-HIFU hyperthermia case study is presented.
Finally, Section 3.6 summarizes the key contributions of this work.

Notation. The real, integer, and natural numbers (including zero) are de-
noted by R, Z, and N, respectively. Given a set S ⊆ R and values a, b ∈ S, we use
S>a, S≥a, S<a, and S≤a to denote the subset of S of which the elements satisfy
the condition in the subscript, and we define S[a,b] = {s ∈ S | a ≤ s ≤ b} (hence
S[a,b] = ∅ if a > b). P(S) denotes the power set of S, being the collection of all
subsets of S, and |S| denotes the cardinality of S. For n ∈ N>0, we denote the
n-dimensional identity matrix by In, all-ones vector by 1n, and all-zeros vector
by 0n (subscript may be omitted if the dimension is clear from context).

3.2 Switched-actuator system with setup times

In this section, we formally introduce the class of SAcSSs using a state-space
system, a weighted graph, and an actuator selector function.

Definition 3.1. [109] A simple (i.e., without self-loops or multi-arcs) arc-
weighted directed graph (digraph) is defined by the triple Γ = (Q, E , s), where
Q = N[1,Nq] is the set of Nq ∈ N>0 nodes, E ⊆ Q2 \ {(q, q) | q ∈ Q} is the
set of arcs (directed edges), and s : E → N is an arc-weighting function. If
E = Q2 \ {(q, q) | q ∈ Q}, we say that the simple digraph is complete.

Example 3.2. A complete simple arc-weighted digraph Γ with Nq = 4 nodes
and weighting function

s(q, q̃) =







1, if (q, q̃) ∈ {(1, 3), (3, 1)},
3, if (q, q̃) ∈ {(2, 4), (4, 2)},
2, otherwise,

(3.1)

is depicted in Figure 3.1. Note that although here s(q, q̃) = s(q̃, q) for all (q, q̃) ∈
E, this is not necessary.

Definition 3.3. A switched-actuator system with setup times (SAcSS) is defined
by the quintuple Σ = (X ,U , f,Γ,Φ), where X ⊆ R

nx with nx ∈ N>0 is the
state space, U ⊆ R

nu with nu ∈ N>0 is the input space, f : X × U → X is a
state transition function, Γ is a simple arc-weighted digraph, and Φ : Q ∪ E →
P(N[1,nu]) is an actuator selector function for which it holds that

Φ(σ) ⊆

{

N[1,nu], if σ ∈ Q,
∅, if σ ∈ E ,

(3.2)

where σ ∈ Q ∪ E indicates the actuator state.

Some explanation regarding Definition 3.3 is in order. In a SAcSS, the plant
dynamics are given by

xk+1 = f(xk, uk) (3.3)
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Figure 3.1: Example of a complete simple arc-weighted digraph. The numbered
circles represent the nodes, and the numbered arrows represent the weighted
arcs.

with state xk ∈ X and input uk ∈ U at discrete time k ∈ N. Note that a
solution of (3.3) is completely defined by an initial condition x0 ∈ X and an
input sequence u[0,K] = (u0, . . . , uK) ∈ UK+1 with K ∈ N. The input sequence,
however, cannot be freely chosen, but must satisfy the restrictions resulting from
the actuator switching, as will be defined in the remainder of this section. To
this end, the arc-weighted digraph Γ describes the actuator switching behavior.
That is, the nodes in Γ represent the Nq operational actuator modes q ∈ Q, and
an arc (q, q̃) ∈ E represents the possible actuator mode switch from q ∈ Q to
q̃ ∈ Q. Correspondingly, the digraph contains no self-loops (since remaining in
an actuator mode requires no switch) or multi-arcs (since we define each possible
switch only once), and hence the digraph is simple. The arc weight s(q, q̃) ∈ N

represents the setup time associated with the mode switch (q, q̃) ∈ E , where the
setup time is the number of discrete time instants during which active control is
disabled for (3.3), i.e., during which all inputs must be zero. Hence, the weighting
function s describes the setup times. We denote the actuator state at time k by
σk ∈ Q ∪ E , for which it holds that σk = q when the actuator mode q ∈ Q is
active, and σk = (q, q̃) ∈ E when the SAcSS is in the process of switching from
mode q ∈ Q to q̃ ∈ Q. We denote the destination mode corresponding to σk by
post(σk), where post : Q ∪ E → Q is defined as post(σ) = q if σ = q ∈ Q or
σ = (q̃, q) ∈ E (note that in case of no switch, the destination mode is simply
defined as the current mode). If the actuator state describes a mode switch, i.e.,
σk ∈ E , we denote the set of possible actuator states upon finishing the switch
by Post(σk), where Post : E → Q ∪ E is defined as Post(q, q̃) = {q̃} ∪ {(q̃, q̄) ∈
E | s(q̃, q̄) > 0} ∪ {q̄ ∈ Q | (q̃, q̄) ∈ E and s(q̃, q̄) = 0}. In other words, given
σk = (q, q̃) ∈ E , the SAcSS can either stay in the destination mode q̃ upon
arrival at time l ∈ N>k, indicated by σl = q̃, or immediately start another
switch (q̃, q̄) ∈ E , resulting in σl = (q̃, q̄) or σl = q̄ in case of nonzero or zero
setup time s(q̃, q̄), respectively.
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Example 3.4. Consider a SAcSS with Γ as in Example 3.2. Then for σ = (1, 2),
the destination mode is given by post(σ) = 2, and the destination actuator state
set is Post(σ) = {2, (2, 1), (2, 3), (2, 4)}.

To ensure proper switching behavior, we allow only Σ-admissible (also re-
ferred to as admissible in case Σ is clear from context) actuator sequences, as
defined next.

Definition 3.5. An actuator sequence σ[0,K] = (σ0, . . . , σK) ∈ (Q ∪ E)K+1,
K ∈ N, is called Σ-admissible, if

(A) σ0 ∈ Q, and,

(B) if σk 6= σk−1 with σk−1 ∈ Q and σk ∈ Q∪E for some k ∈ N[1,K], then σl =
σ̃ = (σk−1, post(σk)) for all l ∈ N[k,min{k+s(σ̃)−1,K}], and, if k + s(σ̃) ≤ K,
also σk+s(σ̃) ∈ Post(σ̃).

In other words, (A) specifies that the SAcSS must initialize in an operational
actuator mode σ0 ∈ Q. By (B), any actuator mode switch that is started must
also be completed while adhering to its setup time. In particular, if at some
time k ∈ N[1,K] the SAcSS starts the switch from q ∈ Q to q̃ ∈ Q, we have
σk−1 = q, and either σk = q̃ or σk = (q, q̃) in case of zero or nonzero setup time
s(q, q̃), respectively, and hence σk 6= σk−1. Moreover, since σk ∈ {q̃, (q, q̃)}, we
have post(σk) = q̃, and hence the considered mode switch can be denoted by
σ̃ = (σk−1, post(σk)) with setup time s(σ̃). Thus, (B) indeed states that, once
started, this switch σ̃ must be completed, by defining that the SAcSS must be
in the process of switching σl = σ̃ for all times l ∈ N[k,k+s(σ̃)−1] if k + s(σ̃) ≤ K
(note that N[k,k+s(σ̃)−1] = ∅ if s(σ̃) = 0, corresponding to an instantaneous mode
switch), or for all l ∈ N[k,K] if k+s(σ̃) > K. In case of the former, upon reaching
the destination mode q̃ at time k + s(σ̃) ≤ K, all possible options for σk+s(σ̃)

are described by Post(σ̃).
Finally, the actuator selector function Φ in (3.2) selects the subset of input

channels that are allowed to be nonzero on the basis of the actuator state. In
particular, when at time k the actuator is operational in mode q ∈ Q, i.e.,
σk = q, the input channels uk,i with i ∈ Φ(σk) = Φ(q) ⊆ N[1,nu] can be nonzero,
whereas uk,j = 0 for all j ∈ N[1,nu] \ Φ(q). When, on the other hand, the
SAcSS is in the process of switching from a mode q ∈ Q to another mode
q̃ ∈ Q, and thus σk = (q, q̃) ∈ E , all inputs are disabled, i.e., uk,i = 0 for all
i ∈ N[1,nu] \ Φ(σk) = N[1,nu] in this case as Φ(σk) = Φ(q, q̃) = ∅. We define
the Σ-admissibility of an actuator sequence in combination with a control input
sequence as follows.

Definition 3.6. Let a SAcSS Σ be given. Then, a pair (σ[0,K],u[0,K]), K ∈ N,
consisting of an actuator sequence σ[0,K] ∈ (Q ∪ E)K+1 and a control input
sequence u[0,K] = (u0, . . . , uK) ∈ UK+1, is called Σ-admissible if σ[0,K] is a
Σ-admissible actuator sequence, and for all k ∈ N[0,K] it holds that uk,i = 0 for
all i ∈ N[1,nu] \ Φ(σk).
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To facilitate the automated model generation proposed in Section 3.3, we use
the following standing assumptions.

Assumption 3.7. The simple arc-weighted digraph Γ is complete, i.e., E =
Q2 \ {(q, q) | q ∈ Q}.

Assumption 3.8. The digraph Γ satisfies the triangle inequality [109], which is
equivalent to stating that for each sequence (q1, . . . , qN ) ∈ QN with (qi, qi+1) ∈ E

for all i ∈ N[1,N−1], it holds that s(q1, qN ) ≤
∑N−1

i=1 s(qi, qi+1).

Assumption 3.9. For the actuator selector function Φ, it holds that Φ(q) ∩
Φ(q̃) = ∅ for all q, q̃ ∈ Q, q 6= q̃.

Assumption 3.7 describes that a switch from any actuator mode q ∈ Q to any
other mode q̃ ∈ Q is possible, and can in fact be weakened to the assumption
of the SAcSS’ true mode-switching behavior being described by a strongly con-
nected digraph (i.e., where for every pair q, q̃ ∈ Q, q 6= q̃, there exists a directed
path connecting q to q̃ and vice versa [109]), as explained in Remark 3.10.

Remark 3.10. In case a direct switch from mode q ∈ Q to q̃ ∈ Q does not exist,
i.e., (q, q̃) /∈ E, the strong connectivity of the digraph guarantees the existence
of at least one sequence q[1,N ] = (q1, . . . , qN), where q1 = q, qN = q̃, and
(qi, qi+1) ∈ E for all i ∈ N[1,N−1]. Thus, we can simply define the additional

arc (q, q̃) with weight s(q, q̃) := minN,q[1,N ]∈QN

∑N−1
i=1 s(qi, qi+1), corresponding

to the minimum-time mode sequence by which q and q̃ can be connected. In this
way, a strongly connected digraph can be transformed into a complete digraph
without loss of generality.

Assumption 3.8 states that any switch (q1, qN ) ∈ E cannot induce a setup
time larger than that along any other sequence that connects q1 to qN , repre-
senting the underlying assumption that each switch corresponds to changing the
actuator configuration in the fastest way possible.

Finally, Assumption 3.9 states that the SAcSS has disjoint input channels
per actuator mode. This is without loss of generality, as this can always be
achieved by simple duplication of the shared input channels, see Remark 3.11.

Remark 3.11. Consider a SAcSS with some input w ∈ W ⊆ R
nw , nw ∈ N>0

and corresponding actuator selector function Φw : Q ∪ E → P(N[1,nw]). In case
of shared input channels, i.e., Φw(q) ∩ Φw(q̃) 6= ∅ for some q, q̃ ∈ Q, q 6= q̃, we
can define the augmented input u ∈ U ⊆ R

nu , where nu =
∑

q∈Q |Φw(q)| > nw,
by duplicating each input channel in w as many times as the number of distinct
modes in which it is used according to Φw, and subsequently defining Φ such that
u contains disjoint input channels. For example, we can define u as

u
i+

∑q−1
j=1 |Φw(j)| = wΦw,i(q) (3.4)
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for all i ∈ N[1,|Φw(q)|] and q ∈ Q, where Φw,i(q) denotes the i-th element of
Φw(q), and correspondingly Φ as

Φ(σ) =

{

N[1+
∑q−1

i=1 |Φw(i)|,
∑q

i=1 |Φw(i)|], if σ = q ∈ Q,

∅, if σ ∈ E .
(3.5)

If w does not contain shared input channels, then (3.4)-(3.5) can be used to
reorder the input channels per mode.

3.3 SAcSS modeling framework

In this section, we present a convenient and systematic procedure for modeling
SAcSSs, which directly yields a compact MIP-compatible model. This procedure
is specifically designed to (a) avoid the need for introducing many auxiliary
discrete (Boolean) variables, which would otherwise increase model complexity
and thereby (likely) the corresponding MI-MPC’s computational burden, and
(b) allow for user-friendly model specification of a SAcSS Σ as in Definition 3.3,
on the basis of which the MIP-compatible model can be automatically generated.
In this new format, the mode-switching behavior is incorporated using mixed-
integer linear inequality constraints, requiring only Nq Boolean variables.

3.3.1 Input bounds

By Assumption 3.9, the SAcSS has disjoint inputs. Without loss of generality,
and in accordance with Remark 3.11, let us also assume the input channels in u
are ordered per mode according to

u =







u1

...
uNq






∈ U ⊆ R

nu , (3.6)

where uq represents the input of dimension nq
u = |Φ(q)| corresponding to mode

q ∈ Q. Note that
∑

q∈Q nq
u = nu. We define uq ∈ R

nq
u and uq ∈ R

nq
u as the

corresponding lower and upper bounds, resulting in the input sets

Uq = {u
q ∈ R

nq
u | uq ≤ uq ≤ uq}, q ∈ Q. (3.7)

We collect these bounds in the stacked vectors u = [u1⊤ · · · uNq⊤]⊤ and u =
[u1⊤ · · · uNq⊤]⊤, yielding

U = {u ∈ R
nu | u ≤ u ≤ u}. (3.8)
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3.3.2 Setup time matrix

We construct the setup time matrix, being the weighted adjacency matrix of Γ,
as

S :=







s11 · · · s1Nq

...
. . .

...
sNq1 · · · sNqNq






∈ N

Nq×Nq , (3.9)

with sqq̃ := s(q, q̃) for all (q, q̃) ∈ E , and where we additionally define sqq = 0
for all q ∈ Q, reflecting the fact that staying in the same mode induces no setup
time.

3.3.3 Integer variables and admissibility conditions

3.3.3.1 Activator

To encode the actuator state σk ∈ Q∪ E , we use a one-hot Boolean vector (i.e.,
with one element equal to 1 and all others 0 [110]), which we refer to as the
activator. To this end, let B = {0, 1}Nq denote the set of Nq Boolean variables,
and consider the function ∆ : Q∪E → B defined as ∆(σ) = [∆1(σ) · · · ∆Nq

(σ)]⊤,
where

∆q(σ) =

{

1, if post(σ) = q,
0, otherwise.

(3.10a)

The activator δk at time k is related to σk according to

δk =







δ1k
...

δ
Nq

k






=







∆1(σk)
...

∆Nq
(σk)






= ∆(σk) ∈ B. (3.10b)

The activator indicates which operational mode is (being) activated, i.e., δqk = 1
if post(σk) = q, meaning at time k the SAcSS is either in the corresponding
actuator mode (σk = q) or switching towards this mode (σk = (q̃, q)), and
δqk = 0 otherwise. Clearly, it holds that the activator is a one-hot vector, and
hence

∑

q∈Q

δqk = 1. (3.10c)

Definition 3.12. An activator sequence δ[0,K] = (δ0, . . . , δK) ∈ BK+1, K ∈ N,
is called Σ-admissible if there is a Σ-admissible actuator sequence σ[0,K] with
δk = ∆(σk) for all k ∈ N[0,K].

Definition 3.13. A pair (δ[0,K],u[0,K]), K ∈ N, is called Σ-admissible if
there exists a Σ-admissible actuator sequence σ[0,K] such that δk = ∆(σk) for
all k ∈ N[0,K] (i.e., δ[0,K] is a Σ-admissible activator sequence) and the pair
(σ[0,K],u[0,K]) is Σ-admissible.
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Note that while the actuator state σk differentiates between the SAcSS having
an operational actuator mode activated (σk ∈ Q) or being in transition between
two modes (σk ∈ E), the activator δk effectively lumps these two actuator states
together due to the function ∆ considering only the destination mode post(σk).
This property is instrumental in reducing the number of required Boolean vari-
ables in the model. That is, explicitly modeling also the states σk ∈ E , as in a
constrained switched (linear) system [81,106] in mixed logical dynamical (MLD)
form [104] for instance, would require additional Boolean variables. Moreover,
since the switching is to be determined by MPC, where a performance-related
stage cost must be evaluated at each prediction instant, switches (q, q̃) ∈ E with
s(q, q̃) > 1 even require multiple additional Boolean variables to model the dif-
ferent levels of switching progress, which is referred to as lifting [107]. As a
result, such approaches require

∑

(q,q̃)∈E sqq̃ Boolean variables (which grows for
increasing setup times) in addition to the Nq Boolean variables that model the
operational actuator states σk ∈ Q. By contrast, our approach leads to a more
compact model using only the Nq Boolean variables in the activator, indepen-
dent of the setup times. Since, however, the activator δK at some time K ∈ N

does not indicate the actuator state σK directly, see (3.10), we instead infer σK ,
and thereby the admissible input uK according to Definition 3.6, from a sequence
of current and past activators in δ[0,K]. Note that this essentially exchanges the
need for many Boolean variables per time instant against the need for a few
Boolean variables over multiple instants, and that an activator δk, k ∈ N, is
required to determine σl at multiple (equal and later) times l ∈ N≥k. In the
context of MPC, however, the decision variables such as the activators must
be considered at all time instants in the prediction horizon anyway. Hence, in-
cluding only the Nq-dimensional Boolean activator per time step, and effectively
“reusing” each (predicted) activator to determine multiple (predicted) actuator
states, leads to a MIP problem with significantly less Boolean variables, thereby
improving efficiency.

3.3.3.2 Admissibility conditions

To explain the logic underlying the relation between σ[0,K] and δ[0,K], let us first
introduce

Qq
<τ = {q̃ ∈ Q | sq̃q < τ}, τ ∈ N>0, q ∈ Q, (3.11)

denoting the set of modes q̃ ∈ Q from which the switch to mode q ∈ Q induces a
setup time smaller than τ instants. Note that q ∈ Qq

<1 as sqq = 0 by definition,
Qq

<τ1 ⊆ Q
q
<τ2 for positive times τ1 < τ2, and Qq

<τ = Q for all τ > maxq̃∈Q sq̃q
(due to Assumption 3.7 and Assumption 3.8). Using (3.11), we can express the
equality σK = q in terms of the activator sequence δ[0,K] as follows.

Lemma 3.14. For a Σ-admissible actuator sequence σ[0,K] and corresponding
activator sequence δ[0,K], it holds that σK = q if and only if:
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(i) δqK = 1, and,

(ii) for all τ ∈ N[1,min{K,sq}], where sq = maxq̃∈Q sq̃q, there exists q̃ ∈ Qq
<τ

such that δq̃K−τ = 1.

Proof 3.15. Note that by Assumption 3.7, combined with Assumption 3.8, we
have that given some q̃ ∈ Q \ Qq

<τ there exists no admissible actuator sequence
connecting q̃ to q in less than τ steps. Consequently, in the remainder of this
proof, inspecting which admissible past actuator sequences can lead to σK = q can
be done entirely on the basis of Qq

<τ , and thereby on only the actuator sequences
describing “direct” switches to q, while disregarding all actuator sequences by
which the SAcSS reaches σK = q “indirectly” (i.e., by first switching to some
other mode before finally switching to q).

(Only if.) We will first show that for admissible σ[0,K] and δ[0,K], the equality
σK = q implies conditions (i)-(ii) in the lemma. By admissibility of δ[0,K], we
can use (3.10) to find

σK = q ⇒ δqK = ∆q(σK) = 1, (3.12)

and thus condition (i) is satisfied. Next, by admissibility of σ[0,K], σK = q
implies that

σK−τ ∈ Q
q
<τ ∪ {(q̃, q̄) ∈ E | q̄ ∈ Q

q
<τ} (3.13)

for all τ ∈ N[1,K], i.e, the SAcSS must at all times k = K − τ , τ ∈ N[1,K], have
been in or transitioning towards a mode from which the switch to mode q would
induce a setup time of less than τ time instants (as otherwise the SAcSS would
not be able to reach mode q at time K). By admissibility of δ[0,K], we can apply
the function ∆ from (3.10) to find that (3.13) implies that for all τ ∈ N[1,K]

there exists q̃ ∈ Qq
<τ such that δq̃K−τ = 1, and thus condition (ii) holds.

(If.) By admissibility of δ[0,K], we use (3.10) to derive from condition (i)

δqK = 1 ⇔ post(σK) = q ⇔ σK ∈ {q} ∪ {(q̂, q) ∈ E},

i.e., the SAcSS was either in or switching towards mode q at time K. We will
complete this proof by showing that condition (ii) excludes the latter possibility.
To this end, note that for any admissible actuator sequence with σK = (q̂, q) ∈ E,
it must hold that post(σK−τ ) = q̂ ∈ Q \ Qq

<τ for some τ ∈ N[1,min{K,sq̂q}],
followed by σk = (q̂, q) for all k ∈ N[K−τ+1,K] (describing that the SAcSS was in
or arriving at mode q̂ at time K − τ , and that the switch (q̂, q) started at time
K− τ+1 and is not yet completed at time K). Using (3.10b) by admissibility of

δ[0,K], this is equivalent to δq̂K−τ = 1 for some τ ∈ N[1,min{K,sq̂q}] and q̂ /∈ Qq
<τ

(and δqk = 1 for all k ∈ N[K−τ+1,K]). Using (3.10c), however, we find that this
is contradicted by condition (ii), which completes the proof.



3

64 Chapter 3. Switched-Actuator Systems with Setup Times

Remark 3.16. In the first (only if) part of the above proof, we show that con-
dition (ii) holds for all τ ∈ N[1,K], whereas in Lemma 3.14 condition (ii) only
includes all τ ∈ N[1,sq ], q ∈ Q. Note that these conditions are in fact equivalent,
since for all τ > sq it holds that Qq

<τ = Q, and thus the existence of a mode

q̃ ∈ Q such that δq̃K−τ = 1 for all such τ is satisfied by definition, see (3.10c).

To further clarify Lemma 3.14, and in particular the first (only if) part of its
proof, consider Example 3.17.

Example 3.17. Consider a SAcSS with Γ as in Example 3.2. For an admissible
actuator sequence with σK = 1, the possible actuator states at the preceding time
instants are depicted in Figure 3.2, where the possible actuator states at each
time are highlighted (black). If σK = 1 (Figure 3.2a), then at time K − 1 by
admissibility the SAcSS must have either already been in mode 1 or in the last
time instant of switching towards this mode, i.e., σK−1 ∈ {1} ∪ {(q, 1) ∈ E}
(Figure 3.2b). Consequently, taking the setup times into account, at time K − 2
the SAcSS may have been in modes 1 or 3 or in the last step of switching towards
these modes, i.e., σK−1 ∈ {1, 3}∪{(q, q̃) ∈ E | q̃ ∈ {1, 3}} (Figure 3.2c), by which
in turn at time K − 3 the SAcSS may have been in any actuator state, i.e.,
σK−3 ∈ Q ∪ E (Figure 3.2d). Let us now realize that this in fact demonstrates
(3.13), which is the key result in the “only if” part of the proof of Lemma 3.14,
since for mode 1 we find Q1

<1 = {1}, Q1
<2 = {1, 3}, and Q1

<3 = Q.

For the second (if) part of the proof, the conditions (i)-(ii) may be interpreted
as follows. Satisfying (ii) ensures that any switch (q̃, q) ∈ E with setup time sq̃q
can only have started at time K−sq̃q−1 at the latest. By admissibility, any such
switch is then completed at time K. Condition (i) is equivalent to post(σK) = q,
thus excluding the possibility that the SAcSS initiates another switch away from
mode q at time K, resulting in conditions (i)-(ii) together to imply σK = q.

We have shown that the conditions in Lemma 3.14 are equivalent to the state-
ment σK = q, which by Definition 3.6 is directly related to the admissible values
of uK . Therefore, using Lemma 3.14 we can formulate explicit admissibility
conditions on u[0,K] in relation to δ[0,K], as is done in the following theorem.

Theorem 3.18. Given an admissible activator sequence δ[0,K], the pair

(δ[0,K],u[0,K]) is admissible if and only if for all k ∈ N[0,K] it holds that uq̃
k = 0

n
q̃
u

for all q̃ ∈ Q \ {q}, where q ∈ Q satisfies

(I) δqk = 1, and,

(II) for all τ ∈ N[1,min{k,sq}], there exists q̃ ∈ Qq
<τ such that δq̃k−τ = 1.

Proof 3.19. By admissibility of δ[0,K] there exists a corresponding admissible
actuator sequence σ[0,K]. Using Lemma 3.14, the conditions (I)-(II) are equiva-
lent to σk = q, and consequently Theorem 3.18 restricts uk exactly to its admis-
sible set as in Definition 3.6. Hence, satisfying the conditions in Theorem 3.18
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<3 = Q

Figure 3.2: Possible actuator states (black) at different times, given an admissible
actuator sequence with σK = 1.

on u[0,K] in relation to an admissible δ[0,K] is equivalent to the admissibility of
the pair (δ[0,K],u[0,K]).

3.3.4 Mixed-integer linear inequality constraints

In this subsection, we use Theorem 3.18 to formulate the mixed-integer linear
inequality constraints (in terms of the inputs and activators) that incorporate the
actuator switching behavior in a manner that ensures admissibility of the pair
(δ[0,K],u[0,K]) for a given δ[0,K]. Then, we discuss a significant simplification of
these constraints for systems with one-sided controls.

3.3.4.1 General form

Recall that uq and uq denote the lower and upper input bounds of the inputs in
mode q ∈ Q as in (3.7). For some k ∈ N, the linear inequality constraints that
ensure that uq̃

k = 0
n
q̃
u

for all q̃ ∈ Q \ {q}, where q ∈ Q satisfies condition (I) of
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Theorem 3.18, are then given by

δqku
q ≤ uq

k ≤ δqku
q for all q ∈ Q, (3.14)

indeed allowing for nonzero uq
k ∈ Uq only when δqk = 1. Collecting all modal input

bounds (3.14) results in the constraints on uk corresponding to condition (I) to
read

U0δk ≤ uk ≤ U0δk, (3.15a)

where the nu × Nq-dimensional block diagonal input constraint matrices are
given by

U0 =







u1

. . .
uNq






, U0 =







u1

. . .
uNq






. (3.15b)

Note that the products U0δk and U0δk contain mostly zeros, except for the
entries corresponding to δqk = 1.

By the same reasoning, the input restrictions resulting from condition (II) of
Theorem 3.18 for some k ∈ N can equivalently be expressed as requiring for all
q ∈ Q that

∑

q̃∈Qq
<τ

δq̃k−τu
q ≤ uq

k ≤
∑

q̃∈Qq
<τ

δq̃k−τu
q (3.16)

for all τ ∈ N[1,min{k,sq}]. To automate the generation of the inequality constraints
(3.16) for the entire input vector, we first use the setup time matrix S from (3.9)
to construct the setup time constraint matrices

Sτ :=







sτ,11 · · · sτ,1Nq

...
. . .

...
sτ,Nq1 · · · sτ,NqNq






∈ {0, 1}Nq×Nq , τ = 1, . . . , s, (3.17a)

with largest setup time s := max(q,q̃)∈E sqq̃, and

sτ,qq̃ :=

{

1, if sqq̃ < τ,
0, otherwise.

(3.17b)

The input constraints from (II) are then given by

Uτ δk−τ ≤ uk ≤ Uτ δk−τ for all τ ∈ N[1,min{k,s}], (3.18a)

with input constraint matrices

U τ =







sτ,11u
1 · · · sτ,Nq1u

1

...
. . .

...
sτ,1Nq

uNq · · · sτ,NqNq
uNq






, (3.18b)
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Uτ =







sτ,11u
1 · · · sτ,Nq1u

1

...
. . .

...
sτ,1Nq

uNq · · · sτ,NqNq
uNq






. (3.18c)

In summary, (3.15) and (3.18) translate the conditions in Theorem 3.18 into
mixed-integer linear inequality constraints that are directly suitable for MI-
MPC. Precisely, if we have an admissible pair (δ[0,K],u[0,K]), then this pair
satisfies the constraints in (3.15) and (3.18). Moreover, these constraints are
constructed automatically on the basis of u, u, Φ, and S, and result in nu(s+1)
(two-sided) linear inequalities.

Remark 3.20. In case of non-uniform maximum setup times per mode, i.e.,
if sq 6= sq̃ for some q, q̃ ∈ Q and thus sq < s for some q ∈ Q, the number of
inequality constraints can be reduced by omitting the constraints that follow from
all-ones columns in the matrices Sτ , τ = 1, . . . , s. That is, these constraints are
a byproduct of automatically constructing (3.16) in the form of (3.18), and in
fact correspond to (3.16) for τ > sq, which are not included in condition (II)
(and which are satisfied by definition, see Remark 3.20). In many numerical
solvers, however, these constraints are automatically removed using a presolve
algorithm, which eliminates the need to explicitly remove them during our mod-
eling procedure.

Remark 3.21. If the system dynamics (3.3) are linear, then the combination of
(3.3) with the linear inequality constraints (3.15) and (3.18) in terms of contin-
uous and Boolean variables in fact describes a SAcSS as a MLD system [104].
Contrary to the general-purpose discrete hybrid automaton (DHA) framework
(and accompanying modeling language HYSDEL which automates the conver-
sion of a DHA into MLD form) [105], our method is tailored to SAcSSs. As
a result, it allows for easier high-level specification of SAcSSs, and enables the
automated generation of integer-wise compact (MLD) models.

3.3.4.2 Simplifications for one-sided control

The number of input constraints in (3.18) may be reduced in case of one-sided
input channels, i.e., when ui = 0 or ui = 0 for some i ∈ N[1,nu]. This is the
case in MR-HIFU hyperthermia, for example, where due to physical limitations
heat cannot actively be removed from the system, and thus uk,i ≥ ui = 0 for all
k ∈ N. For ease of exposition, we discuss here the simplification for the case that
all inputs are nonnegative, i.e., u = 0nu

. All other cases can be treated mutatis
mutandis.

The key property that enables the reduction of the number of inequality
constraints is that by the one-sidedness of the controls, the logic of condition (II)
can be imposed on the sum of the one-sided inputs per mode, as opposed to on
the individual input elements. That is, if uq = 0 for all q ∈ Q, and additionally
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(3.14) is imposed to restrict the individual input elements, then (II) (and thereby
(3.16)) is equivalent to requiring for all q ∈ Q that

1⊤nq
u
uq
k ≤

∑

q̃∈Qq
<τ

δq̃k−τ1
⊤
n
q
u
uq for all τ ∈ N[1,min{k,sq}].

Consequently, we may replace (3.18a) by the inequalities

Juuk ≤ JuU τ δk−τ for all τ ∈ N[1,min{k,s}], (3.19a)

where Ju represents the block diagonal matrix

Ju =









1⊤
n1
u

. . .
1⊤
n
Nq
u









∈ {0, 1}Nq×nu . (3.19b)

Together, (3.15) and (3.19) comprise the reduced set of inequality constraints
that incorporate the SAcSS’ switching including setup times.

Remark 3.22. Note that if, in addition, all modes have a common bound on
the sum of their inputs, i.e., 1⊤

n
q
u
uq ≤ uΣ with uΣ ∈ R>0 must hold for all q ∈ Q,

then (3.19) can be written as

Juuk ≤ uΣS
⊤
τ δk−τ for all τ ∈ N[1,min{k,s}]. (3.20)

Summarizing, the nus two-sided inequality constraints in (3.18a) can be re-
placed by only Nqs single inequalities in (3.19) (or (3.20)), achieving a reduction
of (2nu−Nq)s single inequalities. Especially for SAcSSs with high input dimen-
sion and only few modes, such as in MR-HIFU hyperthermia, and in the case of
large maximum setup time s, this leads to a significant reduction.

Remark 3.23. In many numerical solvers, one needs to specify the upper and
lower bounds of the search space for the optimization variables, by which the
constraints u ≤ uk ≤ u are already included. Then, the above simplification
procedure may also be applied to (3.15), yielding

Juuk ≤ uΣδk. (3.21)

In this case, the nu(s + 1) two-sided inequalities in (3.15) and (3.18) are re-
duced to the Nq(s+1) one-sided inequalities in (3.19) and (3.21), resulting in a
reduction of (2nu −Nq)(s+ 1) constraints.

3.3.5 Admissibility assurance

The inequalities (3.15) and (3.18) (or, if applicable, (3.21) and (3.19) or (3.20))
provide a set of admissibility conditions on u[0,K] in relation to δ[0,K]. Being
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based on Theorem 3.18, these constraints rely on the assumption that the acti-
vator sequence δ[0,K] is admissible. To ensure the admissibility of δ[0,K] a priori
in the context of MPC, where the pair (δ[0,K],u[0,K]) is to be determined by
optimization, one could try to impose restrictions on δ[0,K]. However, for com-
patibility with MI-MPC, this must then be done using additional mixed-integer
linear inequality constraints, of which the derivation is not straightforward and
due to linearization may require the introduction of many auxiliary integer vari-
ables. To avoid the need for this, we instead opt to ensure the admissibility of
δ[0,K] a posteriori. In particular, we will use only (3.15) and (3.18) directly in

the MPC to obtain a pair (δ̃[0,K],u[0,K]) that satisfies the conditions in The-

orem 3.18, where δ̃[0,K] need not be admissible. Subsequently, on the basis of

(δ̃[0,K],u[0,K]) we construct (using a simple procedure) a potentially different
activator sequence δ[0,K] such that (δ[0,K],u[0,K]) is admissible for the same

u[0,K]. We call any such pair (δ̃[0,K],u[0,K]) Σ-feasible (or feasible if Σ is clear
from context), as defined next.

Definition 3.24. A pair (δ[0,K],u[0,K]), K ∈ N, is called Σ-feasible if it satisfies
the conditions on u[0,K] in relation to δ[0,K] given in Theorem 3.18.

The construction of an alternative sequence δ[0,K] such that the pair

(δ[0,K],u[0,K]) is Σ-admissible, given a Σ-feasible pair (δ̃[0,K],u[0,K]), is based
on the following theorem.

Theorem 3.25. Let a Σ-feasible pair (δ̃[0,K],u[0,K]) be given. Define K =
{k1, . . . , kL} = {k ∈ N[0,K] | uk 6= 0}, L ∈ N, where kl < kl+1 for all l ∈ N[1,L−1],
and construct the activator sequence δ[0,K] as

δk =







δ̃k1 , if k ∈ N[0,k1],

δ̃kl
, if k ∈ N[kl−1+1,kl], l ∈ N[2,L],

δ̃kL
, if k ∈ N[kL+1,K].

(3.22)

Then, the pair (δ[0,K],u[0,K]) is Σ-admissible.

Proof 3.26. Note that K denotes the chronologically ordered set of L time in-
stants at which the control inputs are nonzero. Let ql with l ∈ N[1,L] denote the
mode with nonzero input at time kl ∈ K, i.e., such that uql

kl
6= 0. By feasibil-

ity of (δ̃[0,K],u[0,K]), condition (II) of Theorem 3.18 holds for all k ∈ N[0,K].
Combined with (3.10c), this implies that ql ∈ Q

ql+1

<kl+1−kl
for all l ∈ N[1,L−1], and

therefore
sqlql+1

< kl+1 − kl for all l ∈ N[1,L−1], (3.23)

by which we can construct the actuator sequence σ[0,K] as

σk =















q1, if k ∈ N[0,k1],
(ql, ql+1), if k ∈ N[kl+1,kl+sqlql+1

], l ∈ N[1,L−1],

ql, if k ∈ N[kl−1+sql−1ql
+1,kl], l ∈ N[2,L],

qL, if k ∈ N[kL,K].
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Figure 3.3: Example of post(σk) related to a spurious pair (δ̃[0,K],u[0,K])
(dashed red) and the corresponding admissibility-assured pair (δ[0,K],u[0,K])
(solid black), alongside the mode with nonzero inputs in u[0,K] (gray).

First, note that this sequence σ[0,K] is admissible according to Definition 3.5,
describing the SAcSS (a) starting and staying in mode q1 ∈ Q during the times
k ∈ N[0,k1], (b) performing each switch (ql, ql+1), l ∈ N[1,L−1], during the interval
k ∈ N[kl+1,kl+s(ql,ql+1)] in case ql 6= ql+1, or remaining in the same mode during
the interval k ∈ N[kl,kl+1] if ql = ql+1 (since then sqlql+1

= 0 in the above
construction of σ[0,K]), and (c) staying in the last active mode qL during k ∈
N[kL,K]. Since, additionally, σkl

= ql for all l ∈ N[1,L], the pair (σ[0,K],u[0,K]) is
admissible according to Definition 3.6. Finally, note that for δ[0,K] from (3.22)
it holds that δk = ∆(σk) for all k ∈ N[0,K], which proves the admissibility of the
pair (δ[0,K],u[0,K]) according to Definition 3.13.

We call the procedure in Theorem 3.25 the admissibility assurance. Note
that this procedure is simple, and thus computationally lightweight, and can be
performed automatically. The activator sequence constructed using the admis-
sibility assurance corresponds to the actuator sequence that enables u[0,K] in an
admissible manner, using the minimum number of mode switches, and where
each switch occurs as early as possible.

Example 3.27. For a SAcSS with Γ as in Example 3.2 and initial state
σ0 = 4, Figure 3.3 shows the destination mode post(σk) corresponding to a pair
(δ̃[0,K],u[0,K]), K = 13, that is feasible but not admissible (dashed red), referred
to as spurious, and the destination mode post(σk) corresponding to the resulting
admissibility-assured pair (δ[0,K],u[0,K]) obtained via (3.22) (solid black). By in-
specting the figure in relation to the setup times defined in the previous examples,
we find that the admissibility-assured sequence allows the SAcSS to apply the in-
put sequence u[0,K] (gray) while switching as little as possible (see all switches
and the last three time instants in Figure 3.3) and as soon as possible (see the
last required switch at k ∈ N[7,10]).

One may note that this is only one particular choice out of a potentially larger
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set of activator sequences that render (δ[0,K],u[0,K]) admissible, as discussed in
Remark 3.28.

Remark 3.28. Consider the integer programming problem

min
δ[0,K]

K−1
∑

k=0

dk(δk+1 − δk)
⊤(δk+1 − δk), (3.24)

subject to the constraints (3.15) and (3.18) (or (3.19) or (3.20)) for all k ∈ N[0,K]

with u[0,K] given, where dk ∈ R>0, k ∈ N[0,K], represent scalar weights. The
activator sequence constructed using the admissibility assurance (3.22) is in fact
the optimal solution to (3.24) in case dk < dk+1 for all k ∈ N[0,K−1]. Indeed,
the constraints (3.15) and (3.18) then ensure feasibility, the minimization of the
number of switches by (3.24) ensures admissibility, and the strict increase of
the weights dk (with respect to k) favors switching as early as possible. Since,
however, dk 6= dl for all k, l ∈ N[1,K], k 6= l, is a sufficient condition for the
minimizer of (3.24) to be unique, (3.24) is a generalization of the admissibility
assurance, and can be used to uniquely construct other minimum-switching acti-
vator sequences by which (δ[0,K],u[0,K]) is admissible, reflecting different switch-
ing time preferences (e.g., dk > dk+1 for all k ∈ N[0,K−1] for switching as late as
possible). Note that for such different switching preferences, the procedure (3.22)
can also be easily augmented to quickly construct the corresponding minimum-
switching activator sequence.

3.4 Mixed-integer MPC for SAcSSs

In this section, we first show how a SAcSS model derived using the procedure
discussed in the previous section can be directly integrated into MI-MPC. Then,
we present the control algorithm, taking into account that re-optimizing during
a switch is redundant, as all switches must be completed by definition.

3.4.1 Optimal control problem

The MI-MPC based on the previously derived SAcSS model is given by

min
uk,δk

VN (xk,uk) (3.25a)

subject to uk = (u0|k, . . . , uN−1|k) ∈ UN (xk), δk = (δ0|k, . . . , δN−1|k) ∈ B
N , and

[

0N×Nnu
O1(k) IN ⊗ 1⊤Nq

]

[

uk

dk

]

= 1N , (3.25b)

[

−INnu
O2(k, τ) IN−τ ⊗ Uτ O3(τ)

INnu
O2(k, τ) −IN−τ ⊗ U τ O3(τ)

]

[

uk

dk

]

≤ 02Nnu
, (3.25c)
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for all τ ∈ N[0,s]. Here, VN : X ×UN → R≥0 is the cost function over the predic-
tion horizon N ∈ N>0 in terms of the predicted states (based on the initial state
xk and the model dynamics (3.3)) and inputs, which reflects the performance-
related control objective. Moreover, ui|k ∈ U and δi|k ∈ B denote the predicted
inputs and activators at i ∈ N time instants ahead of the prediction’s starting
time k ∈ N. The set UN (xk) ⊆ UN represents all input sequences by which the
predicted states (which depend on xk and uk according to (3.3)) and inputs sat-
isfy their corresponding constraints. Hence, the set membership uk ∈ UN (xk)
imposes all general state and input constraints. For the switching constraints
specific to our SAcSSs model, (3.25b) incorporates (3.10c), and (3.25c) corre-
sponds to (3.15) and (3.18). Here, uk = [u⊤

0|k . . . u⊤
N−1|k]

⊤ denotes the stacked

vector containing all elements of uk, and dk = [δ⊤−min{k,s}|k . . . δ⊤
N−1|k]

⊤, where
δk−τ |k = δk−τ for τ ∈ N>0, contains the min{k, s} activators prior to time k and
all activators in δk. Finally, ⊗ denotes the Kronecker product, and for ease of
presentation we use the zero matrix shorthand notations O1(k) = 0N×Nq min{k,s},
O2(k, τ) = 0Nnu×Nq min{k,s−τ} and O3(τ) = 0Nnu×Nqτ .

Thus, due to the structure in (3.25b)-(3.25c), the constraints (3.10c), (3.15),
and (3.18) that describe the mode switching and setup times can directly and
automatically be used to formulate MI-MPCs for SAcSSs. Moreover, (3.25b)-
(3.25c) are linear in terms of the activators and inputs. Consequently, in case
VN is quadratic and uk ∈ UN (xk) translates into linear constraints, (3.25) is a
MIQP, for which efficient solvers are available.

Next, note that by Definition 3.13 and Definition 3.24 the admissibility of
a pair (δk,uk) implies its feasibility. The converse does not hold, but given a
feasible pair (δ̃k,uk) the existence of an admissible pair with the same input
sequence is guaranteed (and it can be constructed using Theorem 3.25), from
which we conclude the set of admissible pairs to be contained in the set of feasible
pairs. Consequently, since in solving (3.25) to find an optimal pair (δ̃∗k,u

∗
k) we

minimize over the set of feasible solutions, the optimal objective function value
V ∗
N = VN (xk,u

∗
k) is a lower bound for the minimization performed over the

admissible solutions only. However, now note that in VN (xk,uk) (3.25a) we
assume no explicit cost on the predicted activator sequence δk, which is valid
for many applications where the control-related performance measure is mainly
based on the system states and the required control effort. As a result, applying
the admissibility assurance to a feasible pair (δ̃∗k,u

∗
k) that optimizes (3.25) yields

an admissible pair (δ∗k,u
∗
k) (corresponding to the preferred minimum-switching

sequence, see Remark 3.28) that also optimizes (3.25) with the same objective
function value, and thus truly minimizes the optimal control problem evaluated
over the set of admissible solutions.

Remark 3.29. Instead of optimizing (3.25) and subsequently applying the ad-
missibility assurance (3.22), one could consider adding a switching penalty in
the form of (3.24) to VN . The optimal activator sequence δ∗k would then always
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correspond to a minimum-switching actuator sequence, and as a result the opti-
mal pair (δ∗k,u

∗
k) would be admissible. However, for control applications where

there is no inherent desire to reduce the number of mode switches, or where less
switching is generally preferred, but not at the expense of increasing the state-
and input-related costs, introducing such a bias in the cost function could result
in suboptimal behavior with respect to the true control objective. For such appli-
cations, our approach is considered favorable, as it allows for optimizing the true
(unbiased) control objective in VN , while additionally using as few mode switches
as possible to achieve it. Additionally, when suboptimally solving the MIP prob-
lem (3.25), as is typically done in practice to reduce computation time (e.g.,
by terminating the optimization in branch-and-bound [68, 111] or branch-and-
cut [112] algorithms when a solution is found of which the cost is closer to the
best theoretical cost than some threshold [80]), the obtained near-optimal activa-
tor sequence is not guaranteed to be admissible even when including a switching
penalty of the form (3.24) in the cost function. Then, (3.22) again offers a
way to quickly and easily construct an activator sequence by which (δ∗k,u

∗
k) is

guaranteed to be admissible.

3.4.2 MI-MPC algorithm

Recall that if a mode switch is initiated, for admissibility it must also be com-
pleted (see (B) of Definition 3.5), and that during a switch all control inputs are
zero (see Definition 3.6). Therefore, in the context of MPC there is no need for
re-optimizing the control inputs and activators while the SAcSS is in the process
of switching. When incorporating this practical consideration, the proposed MI-
MPC setup is given by Algorithm 1. The variable st stores the setup time of the
last/current switch, and the counter kt represents the number of elapsed time
steps since starting this switch. Initially, we set k = kt = st = 0, perform an
admissibility-assured MI-MPC optimization by consecutively solving (3.25) and
(3.22), and apply the optimal pair (δ∗0|k, u

∗
0|k) to the system. If at some time k−1

the SAcSS was in mode q ∈ Q, and at time k it is optimal to start transitioning
towards another mode q̃ ∈ Q, q 6= q̃, indicated by δk 6= δk−1, st stores the setup
time sqq̃, and kt is reset to zero. At the following time steps, we iteratively
increase kt by one, using which we can evaluate whether the setup time required
for the current transition has elapsed. If so, i.e., kt ≥ st, we perform another
admissibility-assured MI-MPC optimization by consecutively solving (3.25) and
(3.22). If not, i.e., kt < st, we simply continue the mode switch (δk = δk−kt

)
while disabling all inputs (uk = 0nu

) until this transition has completed.

3.5 Case study

This section first discusses the MR-HIFU hyperthermia setup and treatment.
Then, we apply the procedure proposed in Section 3.3 to derive a compact
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Algorithm 1 MI-MPC for for SAcSSs

Require: SAcSS-based MI-MPC (3.25), and initial conditions including k =
kt = st = 0
while SAcSS feedback control do

if kt ≥ st then

Solve (3.25) and (3.22) to find (δ∗k,u
∗
k)

Apply (δk, uk)← (δ∗0|k, u
∗
0|k)

if δk 6= δk−1 then

kt ← 0
st ← s(q, q̃), where q, q̃ ∈ Q correspond to
δqk−1 = 1 and δq̃k = 1

end if

else

Apply (δk, uk)← (δk−kt
, 0nu

)
end if

k ← k + 1
kt ← kt + 1

end while

SAcSS model, set up the MI-MPC, and perform validating simulations.

3.5.1 MR-HIFU hyperthermia therapy platform

The MR-HIFU system considered in this case study consists of a Profound
Sonallever HIFU platform, depicted in Figure 3.4, and a Philips 3T Achievar

MRI scanner. The former is a dedicated trolley-tabletop in which an MR-
compatible HIFU transducer and its carrier system are integrated. The latter
noninvasively provides near-real-time temperature measurements. This setup is
already being used in clinics for the treatment of uterine fibroids and for pallia-
tive therapy in patients with painful bone metastases.

3.5.1.1 MR thermometry

The temperature maps are obtained noninvasively using the proton resonance
frequency shift (PRFS) method [38, 44], providing the temperature difference
with respect to some baseline by comparing the current MR image to a refer-
ence image. The reference image is typically acquired before treatment, such
that the baseline corresponds to zero treatment-induced temperature elevation.
Due to the relative nature of this MR-based thermometry, combined with the
fact that the HIFU transducer itself distorts the magnetic field, for accurate
measurements given a certain transducer position, a baseline image is required
that was obtained with the transducer in the same position. Therefore, we con-
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Figure 3.4: Philips MRI scanner and Profound Sonallever MR-HIFU therapy
platform.

transducer axis

patient table

tumorfocal plane

transducer

driving signals

focal point

Figure 3.5: Schematic of a focal point by electronic beam steering, with the focal
plane in the tumor volume.

strain the possible mechanical transducer positions to a discrete set, such that
we can obtain a reference image for each location before treatment, and use a
lookup table to select the correct reference image during treatment.

3.5.1.2 HIFU transducer

The Sonalleve contains a phased-array transducer consisting of 256 acoustic el-
ements, each of which is able to generate high-intensity ultrasound waves. By
coordinated modulation of the individual elements’ phases and amplitudes, re-
ferred to as electronic beam steering, a focal spot can be created, see Figure 3.5,
and steered through a circular area with a diameter of 16 mm, which we call
a treatment cell. To treat larger regions, the transducer itself must be me-
chanically relocated, see [53], enabling the heating of multiple treatment cells
throughout the treatment area. Due to the previously mentioned limitations of
the MR thermometry, the treatment cell locations are limited to a predefined
discrete set. In this case study, we allocate Nq = 4 treatment cells as depicted
in Figure 3.6, which we will explain further below.
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Figure 3.6: The centers (×), electronic beam steering ranges (circles), and son-
ication points (•) of the four treatment cells, over a large ROI R. The tissue
outside S must be safeguarded against overheating.

3.5.2 Hyperthermia treatment

The main goal in a hyperthermia treatment is to create and maintain a controlled
and homogeneous temperature elevation in the region of interest (ROI) R shown
in Figure 3.6 containing the tumor, as this sensitizes the treated tissue to the
effects of chemo- and radiotherapy. The tissue sensitization gradually increases
for rising temperatures starting around 40 ◦C [12], which is why the healthy
tissue outside S in Figure 3.6 will be safeguarded against temperatures above
40 ◦C. In the ROI, adequate sensitization is considered to occur around 41 ◦C,
and optimal treatment quality is achieved at 42 ◦C, while overheating above
43 ◦C reduces the beneficial heat-induced effects and should therefore be avoided.

3.5.3 SAcSS model

3.5.3.1 Arc-weighted digraph

The complete simple arc-weighted digraph Γ = (Q, E , s) describing the system
considered in this case study corresponds to Example 3.2. Here, the setup time
defined by s represents the number of samples required to mechanically relocate
the transducer from one cell to another.

3.5.3.2 Plant dynamics, state space, input space, and actuator selector function

To model the tissue’s thermal dynamics, we follow a procedure similar to Chap-
ter 2. In summary, this entails first describing the tissue’s thermal dynamics
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using the Pennes bioheat equation [86] using tissue parameters from [95] and
then spatially discretizing this partial differential equation on a two-dimensional
square grid with 2.25×2.25 mm2 voxels (depicted in Figure 3.6 by the grid lines)
using the central difference scheme, which in [72] was verified to be the method
that best balances model simplicity with descriptive accuracy. Finally, the model
is temporally discretized with the MR thermometry sample time Ts = 3.2 s us-
ing the forward Euler method, which preserves model sparsity, while providing
sufficient accuracy for the considered system, as discussed in Chapter 2.

The resulting discrete-time state-space model in the form of (3.3) is given by

xk+1 = f(xk, uk) = Axk +Buk, (3.26a)

yk =

{

xk + vk, if σk−1 ∈ Q,
∅, if σk−1 ∈ E ,

(3.26b)

where the states xk ∈ X = R
nx , nx = 362 = 1296, represent the temperature

elevations with respect to the baseline of the voxels in the focal plane at real time
tk = kTs. The matrix A captures the effects of heat transfer by conduction and
by blood perfusion. The voxels are chosen such that their centers coincide with
the points measured by MR thermometry, resulting in yk ∈ R

nx to consist of full
state measurements corrupted by MR measurement noise vk ∈ R

nx , which can
be well approximated by spatially uncorrelated zero-mean Gaussian noise with
a standard deviation of 0.4 ◦C, i.e., vk ∼ N (0, 0.42Inx

), when the transducer
was not moving during the interval from tk−1 until tk indicated by σk−1 ∈ Q. In
case of transducer motion σk−1 ∈ E , no measurement is available at time tk. Per
treatment cell, and thereby per actuator mode q ∈ Q, we use nq

u = nu,cell = 20
voxels at the centers of which we allow sonication by appropriate steering of the
focal spot. These locations are referred to as sonication points, which are also
shown in Figure 3.6 by the markers ‘•’. Using our method, we only need to
model the Nq operational input modes. To this end, let the input uq

k describe
the average acoustic power applied at each of the sonication points in cell q ∈ Q
over the course of one sampling interval. The inputs are collected in the input
vector uk ∈ U as in (3.6), and hence the input matrix is given by

B =
[

B1 · · · BNq
]

∈ R
nx×nu , (3.27)

where each submatrix Bq ∈ R
nx×nu,cell describes the system’s temperature

change in response to the heating power uq
k applied at the sonication points

in cell q ∈ Q. Since by HIFU we can only deposit heat in the system, but not
extract it, the inputs are nonnegative. Additionally, for patient safety, the maxi-
mum input power per sonication point is limited to umax = 15 W. Consequently,
the input space is given by U = R

nu

[0,umax]
, nu =

∑

q∈Q nq
u = Nqnu,cell = 80.

Next, note that even though six sonication points on the outer ring of cell 1 are
shared by multiple cells, to satisfy Assumption 3.9 we have defined the nu,cell
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sonication points for each cell individually, resulting in disjoint inputs per ac-
tuator mode. Correspondingly, in accordance with Remark 3.11, the inputs are
ordered as in (3.6), and the actuator selector function is given by

Φ(σ) =

{

N[1+nu,cell(q−1),nu,cellq], if σ = q ∈ Q,
∅, if σ ∈ E ,

(3.28)

describing the fact that heating can only occur in the cell where the transducer
is located, and that no heating may occur during transducer motion.

3.5.4 Input constraints

In this case study, we use Gurobi 8.1.1, which requires explicit specification of
the input’s upper and lower limits. From U as in Section 3.5.3.2, according to
(3.8) we find

0nu
= u ≤ uk ≤ u = 1nu

umax. (3.29)

In addition, as a safety measure in the considered MR-HIFU hyperthermia setup
we constrain the total applied power in a single treatment cell to 100 W, i.e.,

1⊤nq
u
uq ≤ uΣ = 100 for all q ∈ Q. (3.30)

To formulate the inequality constraints that incorporate the switching and setup
times in the upcoming MI-MPC, of which the general form is given by (3.15)
and (3.18), based on Γ we first construct the setup time matrix (3.9) given by

S =









0 2 1 2
2 0 2 3
1 2 0 2
2 3 2 0









, (3.31)

and the corresponding setup time constraint matrices (3.17), which read

S1 = I4, S2 =









1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1









, S3 =









1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 1









. (3.32)

However, since by U ⊂ R≥0 the controls are nonnegative, see also (3.29), and a
common upper bound in the sum of the inputs is imposed by (3.30), we do not
need to formulate the constraints (3.18), but we can instead use the simplified
form (3.20) discussed in Remark 3.22. Moreover, by imposing (3.29) we can
also use the simplified form (3.21) instead of (3.15), see Remark 3.23. Thus,
introducing the Boolean one-hot activators δk ∈ B as in (3.10) for Nq = 4, we
find the linear inequality constraints on the inputs uk related to the setup times
to be given by

Juuk ≤ uΣδk, (3.33a)

Juuk ≤ uΣS
⊤
τ δk−τ for all τ ∈ N[1,min{k,3}]. (3.33b)
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Figure 3.7: Schematic cross section of the temperature objectives corresponding
toR and S. The maximum violation ǫ is shown for some overheated temperature
distribution T1 such that T1 ≤ T + ǫ.

3.5.5 MI-MPC for large-volume MR-HIFU hyperthermia

3.5.5.1 Prediction model

Based on (3.26), we define the prediction model as

xi+1|k = Axi|k +Bui|k, (3.34)

where xi|k ∈ X and ui|k ∈ U denote the predicted states and inputs, respectively,
at i ∈ N time steps ahead of the prediction sequence’s starting time k ∈ N.

3.5.5.2 Observer model

To reduce the propagation of the measurement noise into the desired input uk

computed by MPC, we use a Luenberger observer given by

x̂k =

{

Ax̂k−1 +Buk−1 + L(yk − ŷ−k ), if σk−1 ∈ Q,
Ax̂k−1 +Buk−1, if σk−1 ∈ E ,

(3.35)

where ŷ−k = Ax̂k−1 + Buk−1 denotes the estimated output at time k before
the measurement-based correction step in (3.35) if possible by σk−1 ∈ Q. The
observer gain matrix is given by L = 0.25Inx

, which has been tuned such that
the estimator is exponentially stable, see Section 3.7, and exhibits desirable
convergence behavior.

3.5.5.3 MI-MPC optimization problem

The temperature objectives of our MI-MPC setup are depicted schematically in
Figure 3.7 in cross-section perspective. On Ω ⊂ R

2, denoting the patient domain
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in the focal plane, Tr : R → R (dash-dotted) is the reference temperature of 42
◦C in the ROI R, and T : Ω → R is the location-dependent upper temperature
bound (dashed) used to prevent overheating (red). To translate these objectives
to the state-space representation (3.26), we introduce the performance variables
zk = Hxk ∈ R

nz , with H ∈ {0, 1}nz×nx being a matrix with one 1 per row
(and at most one 1 per column), which are the temperatures of the nz < nx

voxels inside R. Furthermore, we use zr ∈ R
nz and x ∈ R

nx to denote the voxel-
wise temperature reference and upper bounds corresponding to the values of Tr

and T , respectively. The maximum violation of the upper temperature bound
is measured by the slack variable ǫk = ǫ(xk) = ‖max{xk − x, 0nx

}‖∞ ∈ R≥0,
where the maximum operator is used element-wise. The predicted performance
and slack variables are denoted by zi|k and ǫi|k, respectively.

The resulting MI-MPC, which can be easily written in the form of (3.25), is
then given by

min
δk,uk

N
∑

i=0

(zi|k − zr)
⊤Q(zi|k − zr) + fǫǫi|k, (3.36a)

subject to

xi+1|k = Axi|k + Bui|k, ∀ i ∈ N[0,N−1], (3.36b)

x0|k = x̂k, (3.36c)

1⊤Nq
δi|k = 1, ∀ i ∈ N[0,N−1], (3.36d)

xi|k ≤ x+ 1nx
ǫi|k, ∀ i ∈ N[0,N ], (3.36e)

0 ≤ ǫi|k, ∀ i ∈ N[0,N ], (3.36f)

0nu
≤ ui|k ≤ u, ∀ i ∈ N[0,N−1], (3.36g)

Juui|k ≤ uΣδi|k, ∀ i ∈ N[0,N−1], (3.36h)

Juui|k ≤ uΣS
⊤
τ δi−τ |k,

{

∀ τ ∈ N[1,min{k,s}],

∀ i ∈ N[0,N−1].
(3.36i)

In (3.36a), we choose Q = 1
nz

Inz
and fǫ = 10, which are normalized with

respect to the number of weighted variables (note that ǫ is scalar) for more
intuitive tuning, and use horizon N = 8. The weighting fǫ on the linear term
in (3.36a), incorporating the upper temperature bound as a soft constraint,
is large relative to Q, reflecting the fact that the prevention of overheating is
prioritized. The quadratic term in (3.36a) weighted by Q enforces tracking of
the ROI temperature towards the optimal treatment temperature. The equality
constraints (3.36b) capture the system dynamics as modeled by (3.34), with the
initial condition (3.36c) determined by the observer (3.35). The equality (3.36d)
captures (3.10c) throughout the horizon. The inequalities (3.36e) encode the
upper temperature bound as a soft constraint using the slack variable, which
is restricted to be nonnegative by (3.36f). Finally, (3.36g) corresponds to the
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Figure 3.8: The mean (solid) and maximum/minimum (dashed) temperature
inside the ROI R of the plant (black) and as estimated by the observer (gray).

actuator constraints (3.29), and the inequalities (3.36h)-(3.36i) incorporate the
mode and setup time constraints (3.33). Note that in (3.36i), δi−τ |k = δk+i−τ

for i < τ , following from the system’s activator sequence prior to time k ∈ N.

3.5.6 Simulation results

The temperature control performance of the MI-MPC setup is verified by means
of simulation. We initialize the transducer in cell 1, set the plant, observer,
and controller states to zero, corresponding to the monitored tissue to be at
the blood temperature Tb = 37 ◦C before treatment, and initialize the noise se-
quence. The temperature evolution of the ROI voxels of the plant (gray) and the
observer/controller (black) are visualized in Figure 3.8 using their mean (solid)
and maximum/minimum values (dashed). It can be seen that after approxi-
mately 150 s the entire ROI is heated to 41 ◦C, which is the temperature above
which the beneficial hyperthermia-related effects are adequately triggered. Fur-
thermore, during heat-up the upper temperature limit is observed to be reached,
but no overheating occurs, and the average ROI temperature converges to the
optimum 42 ◦C.

In Figure 3.9, the total acoustic input power per cell is shown, together
with the destination mode post(σk). First, note that post(σk) (which is directly
related to δk by (3.10)) and uq

k indeed correspond to an admissible sequence
of actuator-input pairs, describing the SAcSS to heat only in the active cell,
perform the minimum number of mode switches required to allow for the desired
nonzero inputs, and respect the setup time induced by each switch. From this,
we verify the admissibility-assured MI-MPC setup to be functioning as intended.
Next, regarding the input power, the figure shows that the controller initially
requests maximum power for fast heat-up, reaching the upper limit of the total
cell power constraint (3.36h). Moreover, in this period it often heats a certain
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Figure 3.10: Contour plot of the focal plane temperature distribution in the ROI
R (red) and S (dashed) at tk = 400 s.

cell for several consecutive samples, thereby reducing actuator downtime, thus
contributing to achieving a short heat-up phase. For tk > 100 s, however, each
cell is only heated for one sample before continuing to the next cell, as this
allows for maintaining a ROI temperature distribution that is as homogeneous
as possible.

The plant temperature at tk = 400 s is shown in Figure 3.10, where addi-
tionally the perimeters of R (red) and S (dashed black) are plotted. This figure
clearly illustrates the temperature homogeneity in R. The maximum tempera-
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ture (42.1 ◦C) is observed in all cells except cell 2 (top-left). In Figure 3.9, it can
be seen that at time tk = 400 s the transducer has just arrived at cell 2, and that
the MPC has computed significant sonication power (approximately 33 W) to be
applied, which will result in a temperature increase in this cell. This exemplifies
the advantage of a predictive controller for large-volume MR-HIFU hyperther-
mia. That is, the MPC is able to anticipate the diffusive heat loss during the
future time interval in which a cell cannot be heated due to the transducer having
moved to another cell. To preemptively counteract this heat loss, which is most
severe at the ROI’s corners, additional heat is injected especially at the corners
just before relocating the transducer, resulting in temperature peaks (slightly)
above the reference temperature of 42 ◦C. Then, after the subsequent heat dif-
fusion during the time period that a cell cannot be heated, minor temperature
peaks remain near the ROI’s corners, while the corner temperatures are still
within the desired range (≥ 41 ◦C), as can be seen in the corners of cells 1, 3,
and 4 in Figure 3.10.

3.5.7 Computational efficiency

To evaluate the improved computational efficiency of the online MI-MPC prob-
lem when using the modeling approach proposed in this chapter, we compare
the resulting computation time to that of the MI-MPC setup obtained by mod-
eling the SAcSS using a lifting approach [107], effectively yielding a constrained
switched linear system (cSLS) [81, 106] in MLD form [104]. Similar to our
method, for the purpose of MI-MPC this also requires duplicating shared in-
put channels such that the resulting input vector is the collection of the disjoint
inputs, and hence the discrete-time dynamics are described by (3.26). Contrary
to our method, however, is the fact that we must now define sqq̃ actuator tran-
sition modes for each switch (q, q̃) ∈ E , in addition to the Nq = 4 operational
modes, which for this case study results in sΣ :=

∑

(q,q̃)∈E sqq̃ = 24 additional
modes. The constrained switching is graphically represented in Figure 3.11,
where the operational and transition modes are indicated by the numbered and
(smaller) unnumbered nodes, respectively. The arcs represent possible switches.
Additionally, switches are possible from each color-filled node to each node with
an outline of the same color, modeling the possibility for back-to-back actuator
switches.

Correspondingly, we define the Nq Boolean actuator-operation states

βq
k ∈ {0, 1}, q ∈ Q, (3.37)

for which βq
k = 1 if at time k the SAcSS is in operational mode q ∈ Q, and

βq
k = 0 otherwise. In addition, we must for each actuator switch (q, q̃) ∈ E with



3

84 Chapter 3. Switched-Actuator Systems with Setup Times
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Figure 3.11: Graph representation of the switching when modeled as a cSLS.
Switches are possible as indicated by the arrows, and from each color-filled node
to each node with an outline of the same color.

nonzero setup time sqq̃ define the Boolean actuator-transition states

βqq̃
k =







βqq̃,1
k
...

β
qq̃,sqq̃
k






∈ {0, 1}sqq̃ , (3.38)

where δqq̃,ik = 1 if at time k the SAcSS is at setup time instant i ∈ N[1,sqq̃ ] of the
switch (q, q̃) ∈ E . Since a SAcSS’ actuator can only be in one mode or at one
stage of a switch at any given time, it must hold that

1⊤Nq+sΣ
βk = 1, (3.39)

where βk is the collection of all actuator-operation and actuator-transition states
in (3.37) and (3.38) at time k. The mode-dependent input constraints can be
expressed as

uqβq
k ≤ uq

k ≤ uqβq
k for all q ∈ Q, (3.40)

or, in case the input bounds are explicitly imposed by (3.29) and using uΣ from
(3.30), as the simplified form

1⊤nq
u
uq
k ≤ uΣβ

q
k for all q ∈ Q. (3.41)

Next, the switching progression along the successive actuator-transition
states is prescribed by







βqq̃,2
k+1
...

β
qq̃,sqq̃
k+1






=







1 0
. . .

. . .
1 0






βqq̃
k , (3.42)
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for all (q, q̃) ∈ E with sqq̃ > 1. Furthermore, recall that a SAcSS can only be
in operational actuator mode q ∈ Q when at the previous time instant it was
either already in this mode, in its last setup time instant towards this mode,
or in an operational mode q̃ ∈ Q from which the switch towards q induces zero
setup time. This can be described by the inequality

βq
k ≤ βq

k−1 +
∑

q̃∈Qq
0

βq̃
k−1 +

∑

q̃∈Qq
>0

β
q̃q,sq̃q
k−1 , (3.43)

where similarly to (3.11) we define for q ∈ Q the sets

Qq
0 = {q̃ ∈ Q | sq̃q = 0},

Qq
>0 = {q̃ ∈ Q | sq̃q > 0},

as the set of actuator modes q̃ ∈ Q from which the switch towards mode q ∈ Q
induces zero and nonzero setup time, respectively. Similarly, an actuator switch
(q, q̃) ∈ E can only start at time k when at k − 1 the SAcSS was in or arriving
at mode q ∈ Q, and hence

βqq̃,1
k ≤ βq

k−1 +
∑

q̂∈Qq
>0

β
q̂q,sq̂q
k−1 . (3.44)

Note that, contrary to (3.43), in (3.44) we do not need to include the possibility
that at time k−1 the SAcSS was in some mode q̂ ∈ Qq

0, since by Assumption 3.7
and Assumption 3.8 switching towards mode q̃ at time k would then be described
by the direct switch (q̂, q̃) ∈ E (i.e., βq̂q̃

k = 1, not βqq̃
k = 1).

Finally, to obtain the MLD system form of the cSLS model of the con-
sidered SAcSS, all of the above constraints must be combined and rewritten
in matrix-vector form in terms of the inputs and the actuator-operation and
actuator-transition states, and combined with the discrete-time plant dynam-
ics (3.26). However, as these are not easy to write down compactly, the MLD
system description is not explicitly given here.

The resulting MI-MPC consists of the optimization problem (3.36a) (ex-
cept for optimizing over βk = (β0|k, . . . , βN−1|k) instead of δk) subject to the
thermal dynamics and initial condition constraints (3.36b) and (3.36c), the up-
per temperature bound soft constraints (3.36e) and (3.36f), the input bounds
(3.36g), and additionally (after substituting uk and βk by their prediction coun-
terparts ui|k and βi|k) for all i ∈ N[0,N−1] the one-hot encoding constraint (3.39),
the mode-dependent input constraints (3.41), the switch progression constraints
(3.42), and the constraints (3.43) and (3.44) describing the actuator possibilities
at the end and beginning of an actuator switch. Note that (for all i ∈ N[0,N−1])
we must impose (3.41) and (3.43) for all q ∈ Q, and (3.42) and (3.44) for all
(q, q̃) ∈ E with sqq̃ > 1 and sqq̃ > 0, respectively.

Compared to (3.36), the continuous part of the optimization problem is
unchanged, while the number of Boolean decision variables increases from
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NqN = 32 (δi|k in (3.10b) over the horizon N) to (Nq + sΣ)N = 224 (βi|k in
(3.37)-(3.38) over N). The number of integer equality constraints increases from
N = 8 in (3.36d) to (1 +

∑

(q,q̃)∈E max{sqq̃ − 1, 0})N = 104 in (3.39) and (3.42)
over N . Finally, the number of mixed-integer inequality constraints increases
from Nq(1 + s)N = 128 in (3.36h)-(3.36i) (actually Nq(1 + s − 2/4)N = 112,
since 2 out of 4 constraints generated using S3 from (3.32) for each i in (3.36i)
are redundant, see Remark 3.20) to (2Nq +

∑

(q,q̃)∈E min{sqq̃, 1})N = 160 in
(3.41) and (3.43)-(3.44) over N .

In simulation, the control inputs and resulting temperatures using the cSLS-
based MI-MPC are found to indeed be exactly the equal to those obtained using
the MI-MPC (3.36) up to numerical tolerances. The computation times for
both MI-MPC setups have been recorded using five different noise realizations
and five runs per realization, i.e., twenty-five simulations for each MI-MPC. The
distributions of the computation times are depicted in Figure 3.12 (normalized
with respect to the largest observed computation time) over the entire simula-
tion, and over the transient (tk < 100) and steady-state (tk ≥ 100) intervals
separately. The MI-MPC (3.36) designed specifically for SAcSS clearly outper-
forms the MI-MPC derived using the cSLS model, with the latter showing 39%
and 63% larger overall mean and median computation times. In fact, in the
constant-temperature phase, which comprises the majority of a hyperthermia
treatment, the cSLS MI-MPC computation times’ 10th percentile is larger than
the 90th percentile of (3.36), and the mean and median computation times are
65% larger than those obtained using our novel method.
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3.6 Conclusion

In this chapter, the class of switched-actuator systems with setup times (SAc-
SSs) has been formally introduced. As key contribution, a modeling framework
for SAcSSs has been presented, which is specifically tailored to (a) allow for
user-friendly system specification, modeling, and controller synthesis, and (b)
yield compact models leading to efficient MI-MPCs. In particular, the resulting
model is in MLD form, consisting of a state-space representation of the SAcSS’
dynamics in its Nq operational modes, combined with systematically derived
mixed-integer linear inequality constraints on the inputs (thus achieving com-
patibility with MI-MPC) to incorporate the mode switching and setup times.
A distinctive property of our method is that instead of explicitly modeling the
zero-input “switching modes” as in a constrained switched linear system (cSLS)
or lifting approach, which would require many auxiliary Boolean variables per
time step, it uses only the Nq Boolean variables corresponding to the operational
modes, and infers the actuator activity from a sequence of these variables in the
prediction horizon. This reduces the MI-MPC’s computational complexity. The
proposed modeling procedure and corresponding MI-MPC setup have been vali-
dated in a large-volume MR-HIFU hyperthermia case study. It is demonstrated
that the desired temperature distribution can be achieved and maintained in
a large tumor by coordinated heating and mechanical transducer displacement,
and that the MI-MPC’s computational efficiency is improved with respect to a
cSLS/lifting approach.

3.7 Appendix: Proof of observer stability

Consider the observer (3.35), and note that A is Schur, i.e., with all eigenvalues
strictly inside the unit disc of the complex plane, due to the tissue’s stable (first-
order) thermal dynamics (3.26). The corresponding estimation error dynamics
are given by

ek = xk − x̂k =

{

(A− LA)ek−1, if σk−1 ∈ Q,
Aek−1, if σk−1 ∈ E ,

(3.45)

Since A is Schur, there exists a positive definite matrix P > 0 such that

A⊤PA− P < 0, (3.46)

which ensures global exponential stability of the σk−1 ∈ E subsystem of (3.45)
when using V (ek) = e⊤k Pek as Lyapunov function. Next, for L = αlI with
0 ≤ αl ≤ 1, it holds that

(A− LA)⊤P (A− LA)− P = (1− αl)
2A⊤PA− P ≤ A⊤PA− P < 0, (3.47)

which guarantees global exponential stability of the σk−1 ∈ Q subsystem of
(3.45) using the same Lyapunov function V (ek) = e⊤k Pek. As V (ek) is a common
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Lyapunov function for the two subsystems, (3.45) is globally exponentially stable
for arbitrary switching sequences of σk.
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CHAPTER 4

Target-Conformal Optimal Actuator Placement

for Ultrasound-Mediated Hyperthermia in

Cancer Treatments

In hyperthermia for cancer treatments, tumors are heated to improve the outcome of

radio- and chemotherapies. Using extracorporeal phased-array high-intensity focused

ultrasound (HIFU) transducers, the heating can be applied noninvasively, accurately,

and with high acoustic power. The heating location can be changed by electronic beam

steering, within the transducer’s local heating range, and by mechanically reposition-

ing the transducer, which effectively shifts the local range to enable the treatment of

larger tumors. The sonication points, i.e., the discrete locations reachable by electronic

beam steering, and the admissible transducer positions must be chosen before treatment.

However, their locations have a major impact on the achievable tumor temperatures,

and their number is directly related to the controller’s complexity and, thereby, real-time

feasibility. To address this challenging issue, this chapter presents a target-conformal

optimal actuator placement procedure, designed to enable maximum treatment qual-

ity using only a limited number of sonication points and transducer positions. The

method is computationally tractable, and takes into account the specific tumor geome-

try and tissue properties. In a numerical case study, the actuator placement procedure

is applied and combined with the design of various mixed-integer model predictive con-

trollers for large-volume magnetic-resonance-guided HIFU hyperthermia, demonstrat-

ing the achievable control performance and computation time using significantly fewer,

but strategically selected, control inputs.

This chapter is based on D.A. Deenen, L.C. Sebeke, B. de Jager, E. Heijman, H. Grüll, and
W.P.M.H. Heemels, “Target-conformal optimal actuator placement for ultrasound-mediated
hyperthermia in cancer treatments,” In preparation for journal submission.
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4.1 Introduction

It has been shown in many clinical trials that heating tissues to approximately
42 ◦C over an extended period of time, referred to as mild hyperthermia, signifi-
cantly enhances the desired effects of chemo- and radiotherapy [3,4,16,19–24]. As
a major advantage, hyperthermia is non-toxic and can be induced locally, allow-
ing for selectively sensitizing only the cancer tissue, while leaving healthy tissue
unaffected. Consequently, hyperthermia treatments as an adjuvant therapy en-
able improved clinical outcome and lowered chemo- and radiotherapeutic doses,
the latter of which alleviates the unwanted and often severe side effects. In fact,
using temperature-sensitive drug carriers, local hyperthermia enables targeted
drug release, allowing for further reducing the systemic toxicity in chemother-
apy [25–27].

Using high-intensity focused ultrasound (HIFU) as heating modality, hyper-
thermic temperatures can be induced in tissue. In recent years, this has been
successfully combined with near-real-time temperature measurements obtained
using an MRI scanner, resulting in magnetic-resonance-guided (MR-)HIFU as a
valuable technology for feedback-controlled thermal therapies [30, 43, 47, 48, 83].
When using extracorporeal applicators, MR-HIFU hyperthermia treatments be-
come fully noninvasive, which significantly contributes to the patients’ qual-
ity of life by avoiding the need for additional surgery. Modern MR-HIFU se-
tups typically use phased-array transducers, which enable powerful heating with
millimeter-scale accuracy, allowing for high-quality treatments. In particular,
a focal spot can be generated by constructive interference of the ultrasound
waves, and steered up to a maximum deflection via coordinated phase shifts of
the acoustic driving signals, which is referred to as electronic beam steering. To
treat tumors larger than the electronic beam steering range, the transducer it-
self can also be repositioned mechanically [52, 53]. The transducer’s mechanical
point-to-point motion, however, takes a non-negligible amount of time, during
which no heating is allowed.

The discrete locations to which the focal spot can be steered during treatment
are called sonication points. Together with the admissible transducer positions,
these must be chosen before treatment, such that subsequently a feedback con-
troller can be used to determine the desired transducer position and sonication
point powers during treatment. However, choosing the sonication points and ad-
missible transducer positions in such a manner that the achievable temperature
distribution is as close to the desired reference as possible is not straightfor-
ward, as this strongly depends on the shape and tissue properties of the specific
tumor. At the same time, choosing them optimally is of vital importance, as
the therapeutic effects of hyperthermia are directly linked to the realized tumor
temperatures [60–62]. Moreover, including more points and positions generally
allows for better control performance, but also increases controller complexity,
which especially for more advanced, and thereby often computationally demand-
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ing, control strategies may hamper real-time feasibility.
A particularly interesting example of such a strategy is model predictive con-

trol (MPC) [66]. Indeed, researchers have recognized MPC to be highly suitable
for MR-HIFU treatments, as it allows for high-dimensional multi-input multi-
output control to optimize a cost function representing the treatment objective,
while explicitly taking into account the tissue’s thermal dynamics and the re-
strictive input and temperature constraints. Examples include [69, 70] for mini-
mizing the treatment time of thermal ablation therapies, and [71] for maximizing
the thermal dose applied to the cancer cells without harming the surrounding
healthy tissue. More recently, we have developed a preliminary MPC scheme
for MR-HIFU hyperthermia temperature control using a stationary transducer
in [72], which is shown to significantly outperform the current clinical state-of-
the-art (binary) controller from [53] in phantom experiments. To also enable
such improved control performance for the treatment of larger tumors requiring
multiple transducer positions, in Chapter 3 a mixed-integer (MI-)MPC design
for switched-actuator systems with setup times (SAcSSs) is proposed, which al-
lows for simultaneously optimizing the discrete transducer positioning and the
continuous acoustic powers of the sonication points in range.

Due to its model- and optimization-based nature, MPC is among the most
promising control solutions for high-precision thermal therapies in the future.
Unfortunately, due to these properties, MPC also easily leads to increased com-
putational complexity. Especially for MI-MPCs with long prediction horizons
and many transducer positions and sonication points, combined with the large
models typically used in MR-HIFU treatments, the resulting computation times
may be too large for practical application. In this case, optimally selecting only
a small number of transducer positions and sonication points may enable su-
perior treatment quality, while also satisfying computation time constraints for
real-time feasibility.

In line with the above, as the first and main contribution of this chapter, we
propose a target-conformal optimal actuator placement method for MR-HIFU
cancer treatments, which aims to maximize treatment quality using only a lim-
ited number of sonication points and transducer positions, while taking into
account the specific tumor geometry and tissue properties. In particular, the
method first optimizes the transducer positions based on a weighted balance be-
tween the achievable steady-state temperature distribution and target coverage.
Then, it identifies the sonication points critical in steady state, and subsequently
allows for including additional sonication points that maximize target coverage
for more uniform heating and enhanced robustness in case of disturbances or
unmodeled tissue inhomogeneities.

As a second contribution, the resulting control performance and computa-
tion times are investigated for various actuator settings in a large-volume (requir-
ing multiple admissible transducer positions) MR-HIFU hyperthermia numerical
case study. Although the actuator placement procedure presented in this chap-
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Figure 4.1: Schematic cross section of the temperature objectives corresponding
toR and S. The maximum violation ǫ is shown for some overheated temperature
distribution T1 such that T1 ≤ T + ǫ.

ter is considered to be applicable to MR-HIFU control design in general, in this
case study it is used for MI-MPC, as this control strategy is of particular interest
for MR-HIFU due to the reasons mentioned previously.

The remainder of the chapter is organized as follows. First, we discuss the
MR-HIFU hyperthermia setup and treatment in Section 4.2. Second, in Sec-
tion 4.3 we derive the SAcSS model describing the system dynamics, and pro-
vide the problem formulation. Next, the target-conformal transducer location
and sonication point optimization is presented in Section 4.4. In Section 4.5, the
MI-MPC setup and corresponding simulation results are given, and in Section 4.6
the key contributions of this chapter are summarized.

4.2 Hyperthermia treatment and setup

In this section, we discuss the MR-HIFU hyperthermia treatment and therapy
platform.

4.2.1 Hyperthermia treatment

Consider a target region of interest (ROI) R outlining the tumor, and its cor-
responding safety boundary region S, see Figure 4.4, in the patient domain
Ω, where R ⊂ S ⊂ Ω. The temperature objectives for hyperthermia therapy
are schematically depicted in cross-section perspective in Figure 4.1. The main
goal is to achieve constant and uniform heating of R, with optimal treatment
quality being achieved at 42 ◦C [4, 12], indicated by the reference temperature
Tr : R → R in the figure. However, temperatures above 43 ◦C inside the ROI
must be prevented, as this significantly deteriorates treatment quality and may
cause direct tissue damage. In addition, the healthy tissue, defined as the area
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Figure 4.2: MR-HIFU system consisting of a Philips MRI scanner and Profound
Sonallever therapy platform.

outside S, must remain cooler than 40 ◦C, since above this temperature the
heat-induced tissue sensitization gradually increases. Correspondingly, the tem-
perature upper bound T : Ω → R is defined. The maximum violation of this
bound is measured by ǫ ∈ R≥0.

4.2.2 MR-HIFU hyperthermia system

In this work, we consider a MR-HIFU hyperthermia treatment setup similar to
Figure 4.2. Note, however, that the principles on which this work’s optimal actu-
ator placement method is based can also be used for the control design of other
MR-HIFU setups. The main components are a Philips 3T Achievar MRI scan-
ner, using which volumetric temperature maps can be obtained noninvasively
and in near-real time, and a Profound Sonallever HIFU applicator platform,
consisting of a patient bed in which an MR-compatible HIFU transducer and
its mechanical robotic carrier are integrated. Currently, this setup is already
used in clinics for the treatment of uterine fibroids and for palliative treatment
of painful bone metastases.

4.2.2.1 MR thermometry

By exploiting the temperature-dependent proton resonance frequency shift
(PRFS) in water molecules, the temperature of tissues inside the body can
be measured noninvasively using an MRI scanner [38, 44]. To be precise, the
temperature change with respect to a reference can be measured. By acquiring
the reference image before treatment, the actual temperature can be recon-
structed during treatment, with superior accuracy and resolution compared to
other imaging methods [30,39,40]. However, due to its relative nature, it is sen-
sitive to changes in the magnetic field, such as those resulting from repositioning
the transducer, resulting in non-temperature-related measurement artifacts. To
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Figure 4.3: Schematic of a HIFU beam into the focal plane in the tumor, with
the focal point by electronic beam steering.

avoid this, a multi-baseline approach is employed, where before treatment refer-
ence images are obtained for each of the transducer positions, such that during
treatment the baseline corresponding to the current transducer position can be
used for accurate thermometry. In case of intra-scan transducer motion, how-
ever, the obtained temperature map is considered unreliable.

4.2.2.2 HIFU transducer

By constructively interfering ultrasound waves generated by the 256 acoustic
elements of the phased-array HIFU transducer inside the Sonalleve system, a
focal spot can be created, see Figure 4.3. Using coordinated phase shifts in the
driving signals, the focus location can be moved, which is called electronic beam
steering, up to a lateral deflection of REBS = 8 mm. The focus is relatively long
along the beam axis (7 mm), but narrow in lateral direction (2 mm), and addi-
tionally significant acoustic beam overlap occurs directly in front of and behind
the focal plane, see Chapter 2 and [53, 57, 85]. Consequently, the temperature
distribution inside the focal plane typically characterizes the temperature in its
surrounding volume. Correspondingly, we choose the focal plane such that it
bisects the target volume, and consider only the patient domain in this plane,
i.e., Ω ⊂ R

2, in designing the temperature controller.

We call the 16 mm diameter (= 2REBS) circular area around the transducer
axis, corresponding to the maximum electronic beam steering range, a treatment
cell. For larger tumors, multiple (possibly overlapping) treatment cells must be
defined. An example is shown in Figure 4.4, depicting a target ROI R, safety re-
gion S, and four transducer positions (red ×) and corresponding treatment cells
(red circles). Inside a treatment cell, the focus can quickly be switched between
all corresponding sonication points (•), which in the figure are distributed using
a fixed pattern. The different cells can be heated sequentially by mechanically
switching between the transducer positions [53].
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Figure 4.4: Four transducer positions (red ×) and corresponding treatment cells
(red circles) and sonication points (•) spread over a large irregularly shaped ROI
R with corresponding safety boundary region S.

4.3 Modeling for control

In this section, we derive a model of the tissue’s thermal dynamics and the trans-
ducer switching, and formulate the objective of the optimal actuator placement
problem.

4.3.1 Thermal model

4.3.1.1 Transducer positioning

Following the switched-actuator system with setup times (SAcSS) framework
proposed in Chapter 3, we first model the mechanical transducer switching us-
ing an arc-weighted digraph Γ = (Q, E , s) as depicted in Figure 4.5 for Nq = 4
nodes. Here, Q = N[1,Nq] (nodes) represents the set of Nq operational actuator
modes, resulting from the transducer being in each of its admissible positions.
The weighted arcs E = Q2 \ {(q, q) ∈ Q2} (numbered arrows) correspond to all
possible transducer relocations. The arc weights sqq̃ ∈ N, (q, q̃) ∈ E , represent
the number of MR thermometry sampling periods required to complete the me-
chanical transducer displacement from position q to q̃. In this work, the sample
time is Ts = 3.2 s. Moreover, let us remark that although in Figure 4.5 the setup
times are independent of the switching direction between two modes, this is not
necessary. Next, the actuator state is denoted by σk ∈ Q∪E , where σk = q ∈ Q
means that at discrete time k ∈ N, connected to real time via tk = kTs, the
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Figure 4.5: Four-nodal arc-weighted digraph example.

transducer is in its q-th admissible position, and σk = (q, q̃) ∈ E indicates that
the transducer is being relocated from position q to q̃.

4.3.1.2 Thermal dynamics

Next, continuing the SAcSS modeling framework of Chapter 3, we model the
tissue’s thermal response using the discrete-time state-space system

xk+1 = Axk +B(P)uk, (4.1a)

yk =

{

xk + vk, if σk−1 ∈ Q,
∅, if σk−1 ∈ E ,

(4.1b)

which is derived by spatially and temporally discretizing the Pennes bioheat
equation [86] with the homogeneous tissue parameters from [95] using the MR
thermometry grid, consisting of 2.25×2.25 mm2 voxels (grid lines in Figure 4.4),
and the MR sample time Ts = 3.2 s mentioned previously. Consequently,
xk ∈ R

nx represents the voxels’ treatment-induced temperature elevation, where
typically nx = 362 = 1296 for tumors up to 4 × 4 cm2, at discrete time k ∈ N.
Correspondingly, the matrix A has the form of a graph Laplacian matrix, cap-
turing the effects of heat conduction inside the focal plane, and the heat loss
resulting from blood perfusion, using the database muscle tissue parameters
from [95]. Since we have chosen the voxel grid to correspond to the MR ther-
mometry grid, the output yk ∈ R

nx consists of the state, corrupted by the
measurement noise vk ∼ N (0, 0.42Inx

), when measurements are available due to
the transducer being at standstill during the scanning interval (σk−1 ∈ Q). In
case the transducer was moving (σk−1 ∈ E), no reliable temperature map can
be acquired, as expressed by yk = ∅ in (4.1b). The input vector

uk =







u1
k
...

u
Nq

k






∈ R

nu

[0,umax]
(4.2)
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represents the acoustic powers applied at the set of sonication points P =
{r1p, . . . , r

nu
p }, in which the points rip ∈ Ω are assumed to be ordered per treat-

ment cell, such that in (4.2) uq
k ∈ R

nq
u denotes the sonication point powers

corresponding to cell q ∈ Q. To be precise, uk denotes the average power ap-
plied to the sonication points P during the interval from tk to tk+1, resulting
from rapidly switching the focal spot over all points at which nonzero power is
requested, which is justified by the electronic beam steering rate being consid-
erably faster than the timescale of the thermal dynamics. In (4.2), the lower
input bound reflects that we cannot actively cool tissue, and the upper bound
umax = 15 W is enforced for safety. In addition, the total input power is upper
bounded by ‖uk‖1 ≤ uΣ = 100 W. Using 0n to denote the zero-vector of length
n, the transducer switching is incorporated by imposing that

uq̃
k = 0

n
q̃
u

for all q̃ ∈ Q \ {σk}, (4.3)

i.e., heating can only occur at the sonication points of cell q if the transducer is
at the corresponding position by σk = q. If, on the other hand, σk ∈ E , i.e., the
transducer is moving, we have in (4.3) that Q\{σk} = Q, by which no sonication
is allowed according to uk = 0nu

. Finally, the input matrix corresponding to the
set P = {r1p, . . . , r

nu
p } ⊂ Ω is given by

B(P) =
[

b(r1p) · · · b(rnu
p )
]

∈ R
nx×nu , (4.4)

where b(rip) ∈ R
nx describes the system’s temperature change in response to

unit heating at sonication point rip, which is obtained by spatial and tempo-
ral discretization of the corresponding power deposition intensity. The latter
is modeled as a radially symmetric Gaussian distribution centered around the
considered sonication point rp ∈ Ω by

F (r) =
αf

2πσ2
f

exp

(

−
‖r − rp‖2

2σ2
f

)

, (4.5)

with spatial coordinate r ∈ Ω, and where in this work we use σf = 2.4 mm to
determine the profile width and αf = 0.0267 as the acoustic energy absorption
coefficient.

4.3.2 Problem formulation

The set of admissible transducer positions, denoted by T ⊂ Ω, and the sonica-
tion points P must be chosen before treatment to allow for controller synthesis
and acquiring the MR thermometry reference library. Choosing them optimally
is crucial for achieving high-quality hyperthermia treatments, as via the input
matrix B(P) in (4.1), the achievable temperature distribution of (4.1) strongly
depends on the points P , which in turn are constrained by T due to the finite
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electronic beam steering range. Corresponding to the temperature objectives
discussed in Section 4.2.1 and the spatial discretization of (4.1), optimizing the
treatment quality can be expressed as minimizing the cost

ℓ(zk, ǫ(xk)) = (zk − zr)
⊤Q(zk − zr) + fǫǫ(xk), (4.6a)

where zk = Hxk ∈ R
nz , nz < nx, represents the target voxel temperatures,

using the matrix H ∈ {0, 1}nz×nx containing a single 1 per row and at most one
1 per column, and zr ∈ R

nz is the reference temperature corresponding to Tr

on the voxel grid. Similarly, ǫ(xk) = ‖max{xk − x, 0nx
}‖∞ ∈ R≥0, where the

maximum operator is used element-wise, corresponds to the maximum violation
of the temperature upper bound x ∈ R

nx obtained by spatially discretizing T .
Using

Q =
1

nz

Inz
, fǫ = 10, (4.6b)

which are normalized with respect to the corresponding number of weighted
variables (note that ǫ is scalar), (4.6a) measures the temperature error with
respect to the reference, and incorporates the temperature upper bound as a
soft constraint.

Unfortunately, finding the sets P and T that allow for the system (4.1) to
achieve high treatment quality according to (4.6) is not straightforward, espe-
cially for irregularly shaped tumors and in case of inhomogeneous tissue prop-
erties, e.g., due to chaotic vascularization. As a solution, one could attempt to
simply define many sonication points and transducer positions, as this gener-
ally allows for adequate control performance due to the controller having suf-
ficient degrees of freedom. However, as the sonication powers and mechanical
transducer motions have to be determined by the feedback controller, this also
increases the online complexity, which is potentially problematic for real-time
implementation, especially for optimization-based strategies such as MPC. As a
solution, we propose a target-conformal optimal actuator placement method, of
which the objective can be formulated as: Find a set of sonication points and
transducer positions that is small, thereby avoiding excessive controller complex-
ity, but which is distributed in such a manner that the hyperthermia treatment
quality (4.6) is optimized.

4.4 Target-conformal actuator placement

This section proposes a three-step procedure for optimizing the set of transducer
positions and sonication points before treatment.

4.4.1 Outline

Ideally, the optimization problem to be solved here would balance computa-
tional effort, control performance, and robustness, using a variable number of
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treatment cells and sonication points. Unfortunately, this leads to many deci-
sion variables, which are also nonlinearly constrained due to the finite electronic
beam steering range. Moreover, the relation between these design parameters
and the mentioned objectives is highly nonlinear, and may be non-trivial to ob-
tain. For example, deriving an explicit expression of the computational burden
for the purpose of penalizing it relative to some performance measure is already
not straightforward. If, additionally, the sonication points are restricted to a
discrete set of locations, as will be done in this work, the optimization is of
the mixed-integer type and the (nonlinear) cost function becomes discontinuous,
which further complicates the problem.

To make the procedure computationally tractable and, in addition, concep-
tually more insightful, it is split into three steps. In particular, we first optimize
the transducer positions, based on which subsequently a large set of candidate
sonication points within electronic beam steering range Pc is determined. Then,
using the thermal model, we select from the candidate sonication points Pc a
substantially smaller subset Ps that is expected to be critical for steady-state
performance. Finally, to improve the transient performance and the robustness
against unmodeled heat losses, a small set of additional sonication points Pu are
selected from Pc \ Pu to improve target coverage.

4.4.2 Procedure

4.4.2.1 Transducer positions

The transducer positions are determined by solving an optimization problem that
seeks to maximize both steady-state performance and target coverage. However,
since the heating occurs by sonication, but the sonication points are not yet
known and, due to the limited electronic beam steering, are constrained by the
to-be-determined transducer positions, we first set up the intermediate system

xk+1 = Axk +B(Pt(T ))ut, (4.7)

where the input matrix is explicitly parameterized in terms of the set of trans-
ducer positions T = {r1t , . . . , r

Nq

t }, with rqt ∈ Ω for q ∈ Q, and where Nq is
user-defined. For a given T , the set Pt(T ) represents the intermediate sonica-
tion points, which follow directly from the transducer positions by using a fixed
sonication point pattern per cell, such that changing T immediately leads to a
different input matrix B(Pt(T )). This avoids the need for including the soni-
cation points as decision variables, and instead requires only the optimization
of the 2Nq planar coordinates of the transducer positions T , thus considerably
improving the computational tractability of the upcoming nonlinear transducer
optimization problem. To optimize T , the fixed sonication point pattern must be
able to capture the full heating potential of a cell, such that in the subsequent ac-
tuator placement steps a small, but strategically selected, set of sonication points
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can be determined that achieves similar heating performance. To this end, we
overpopulate each cell using the pattern in Figure 4.4, consisting of Npp = 81
sonication points divided over one center point and four concentric rings of di-
ameters 4, 8, 12, and 16 mm containing 8, 16, 24, and 32 evenly distributed
points, respectively. The corresponding intermediate input ut ∈ R

Npt

[0,umax]
, with

Npt = NqNpp, denotes the sonication powers at Pt(T ).
Using (4.7), we formulate the nonlinear program

min
T ⊂Ω

(

α

αp

gp(T ) +
1− α

αc

gc(T )

)

, (4.8a)

with performance cost

gp(T ) = min
x,ut

ℓ(z, ǫ(x)) (4.8b)

s.t. x = Ax +B(Pt(T ))ut, (4.8c)

0Npt
≤ ut ≤ 1Npt

umax, (4.8d)

1⊤Npt
ut ≤ uΣ, (4.8e)

and coverage cost

gc(T ) =
∑

r∈R∩V

d(r, C(T )). (4.8f)

The performance cost gp(T ) (4.8b), where z = Hx, is based on the treatment
quality cost from (4.6), which by minimization subject to (4.8c)-(4.8e) is a mea-
sure for the optimally achievable steady-state temperature for a given T . To be
precise, (4.8c) ensures that the intermediate system (4.7) is in steady state, and
by (4.8d)-(4.8e), where 1n denotes the all-ones vector of length n, the input ut

satisfies the acoustic power limits discussed in Section 4.3.1.2.

Remark 4.1. The constraints (4.8c)-(4.8e) do not incorporate the input restric-
tions resulting from the transducer switching as described in (4.3). Instead, they
represent the “averaged” system, allowing for sonication at all points Pt(T ) si-
multaneously, but with the total heating power limited to uΣ instead of NquΣ.
This is done for computational tractability, as incorporating the switching be-
havior would typically result in a periodic steady state (sequentially heating all
treatment cells at which steady-state heat losses must be counteracted) of which
the period is unknown a priori and depends on T , and hence must be determined
during optimization.

The cost gc(T ) (4.8f) is used as a measure of target coverage, which can be
interpreted as a type of continuous maximal covering location problem [113].
Here, V = {riv, . . . , r

nx
v } denotes the set of voxel coordinates riv ∈ Ω, i ∈ N[1,nx],

and consequently R ∩ V is the collection of all target voxel coordinates. Next,
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the set C(T ) ⊂ R
2 denotes the union of the treatment cell areas corresponding

to the transducer positions T , i.e.,

C(T ) =
⋃

q∈Q

{rqt } ⊕ D(REBS), (4.9)

where D(REBS) = {r ∈ R
2 | ‖r‖2 ≤ REBS} is the disk centered at zero with

radius equal to the electronic beam steering range REBS, and ⊕ denotes the
Minkowski sum given by A⊕ B = {a+ b | a ∈ A, b ∈ B}. Also,

d(r, C(T )) = min{‖r − rc‖2 | rc ∈ C(T )} (4.10)

measures the shortest Euclidian distance from some point r ∈ R
2 to C(T ). As

a result, in finding the set of positions T that minimizes gp(T ), we effectively
seek to cover as many ROI voxels r ∈ R ∩ V by the treatment cell areas C(T )
(as d(r, C(T )) = 0 for r ∈ C(T )), while also minimizing the distance from all
non-covered target voxels to the nearest point in C(T ). The latter improves the
ability to heat the non-covered points by diffusion, and helps to distribute the
cells more evenly throughout the target.

The performance and coverage objectives are combined using a scaling vari-
able α ∈ R[0,1], determining the balance between these objectives. Due to the
nonlinearity of (4.8), α does not provide a linear balancing. We do, however,
make the scaling more intuitive using the normalization constants

αp =
gp(Tp) + gp(Tc)

2
, αc =

gc(Tp) + gc(Tc)

2
, (4.11)

representing the “mean” performance and coverage costs, respectively, between
the performance-optimal transducer positions Tp = argminT ⊂Ω gp(T ) and the
coverage-optimal positions Tc = argminT ⊂Ω gc(T ).

4.4.2.2 Sonication points for steady state

For a given set of admissible transducer positions T , we first determine the
Npc candidate sonication points Pc. These can in principle be chosen as any
arbitrary set of points within the cell areas C(T ), for example using the fixed
pattern in the previous step, in which case Pc = Pt(T ). In this work, however,
we select Pc as the voxel centers inside the union of the optimized cell areas, i.e.,
Pc = C(T ) ∩ V , as this leads to better model and measurement accuracy. Note
that, nevertheless, the remainder of this procedure can be applied to any finite
and discrete set Pc ⊂ C(T ).

To identify the sonication points critical for steady-state performance, de-
noted by Ps ⊆ Pc, we first compute the optimal steady-state temperature dis-
tribution for the candidate system

xk+1 = Axk +Bcuc. (4.12)
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where the input uc ∈ R
Npc and matrix Bc := B(Pc) correspond to using all

candidate points Pc. To this end, we solve

min
x,uc

ℓ(z, ǫ(x)), (4.13a)

subject to

x = Ax+Bcuc, (4.13b)

0Npc
≤ uc ≤ 1Npc

umax, (4.13c)

1⊤Npc
uc ≤ uΣ. (4.13d)

which can be written as a computationally efficient quadratic program, and yields
the optimal steady-state input u∗

c . Subsequently, we select only the sonication
points with the Nps ≤ Npc largest acoustic powers, where Nps is user-defined or
follows from selecting only the points with sonication powers above some user-
defined threshold, such as a fraction of the largest optimal sonication power
αs‖u∗

c‖∞ with αs ∈ R[0,1]. As (4.13) is based on the thermal model via (4.13b),
the points Ps are typically around the ROI edge and in areas with increased
perfusion according to the model (4.1), such as in the vicinity of blood vessels,
to counteract the anticipated diffusive and perfusive steady-state heat losses,
respectively.

Remark 4.2. By using Pc = C(T ) ∩ V 6= Pt(T ), we effectively introduce quan-
tization in selecting the candidate sonication points. As (4.8) is a continuous
optimization, this may cause some mismatch between the optimal heating pro-
files B(Pt(T ))u∗

t in (4.8b) and Bcu
∗
c in (4.13), corresponding to Pt(T ) and Pc,

respectively. To reduce this quantization-induced mismatch, a minor shift can
be applied to T such that the optimal heating profiles B(Pt(T ))u∗

t and Bcu
∗
c are

more similar.

4.4.2.3 Sonication points for uniform coverage

The final step is to include Npu ≤ Npc − Nps additional sonication points
throughout the ROI, with Npu being user-defined, to improve transient perfor-
mance during the initial heat-up phase and to enhance the controller’s robustness
against unexpected spatially localized disturbances or unmodeled tissue inhomo-
geneities. Especially for the latter, we cannot use the thermal model to determine
which sonication points must be selected. Therefore, we instead desire the ad-
ditional points Pu ⊆ Pc \ Ps to be distributed in such a manner that, combined
with the steady-state-critical sonication points in Ps, they are spread over the
target as uniformly as possible. This can be recognized to be a conditional k-
median (with k = Npu) facility location problem [113], in which the objective is
to select from Pc \Ps the points Pu that minimize the mean distance from each
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target voxel r ∈ R ∩ V to its nearest sonication point in Ps ∪ Pu. This can be
solved efficiently in the form of the mixed-integer linear program

min
γ,β

∑

p∈Pc

∑

r∈R∩V

dprβpr, (4.14a)

subject to

γp = 1, for all p ∈ Ps, (4.14b)
∑

p∈Pu

γp = Npu, (4.14c)

∑

p∈Pc

βpr = 1, for all r ∈ R ∩ V , (4.14d)

βpr ≤ γp, for all p ∈ Pc and r ∈ R∩ V , (4.14e)

where γ = {γp}p∈Pc
is the collection of the Npc Boolean selection variables

γp ∈ {0, 1}, with γp = 1 indicating that candidate point p is selected, i.e.,
p ∈ Ps ∪ Pu, and γp = 0 otherwise. Using (4.10), the weights are defined
as dpr = d(p, {r}) ∈ R≥0, each representing the Euclidian distance between
candidate sonication point p ∈ Pc and target voxel center r ∈ R ∩ V , and
which are computed before solving (4.14). Next, β = {βpr}p∈Pc,r∈R∩V denotes
the collection of the Npcnz assignment variables, where βpr ∈ R[0,1] represents
the fraction of dpr that is penalized, for which by minimization it holds that if
βpr = 1 then p is (one of) the selected sonication point(s) closest to target voxel
r ∈ R∩V . The equalities (4.14b) fix the set of steady-state-critical points Ps to
be selected, and (4.14c) requires that Npu additional points must be assigned.
By (4.14d), the distance from each ROI voxel to its closest selected sonication
point (or combinations of distances to multiple equally close selected points)
must be fully accounted for, where (4.14e) ensures that only the distances to
selected sonication points can be penalized. Thus, (4.14) represents minimizing
the sum of distances, and thereby indeed the mean distance, from each target
voxel center to its nearest selected sonication point. The number Npu can be
updated iteratively until the ROI is considered to be adequately covered, which
can be measured in terms of the mean distance between each target voxel and
its closest sonication point, i.e., the mean of d(r,Ps ∪ Pu) over all r ∈ R ∩ V .

4.4.3 Results

As an example, we demonstrate the above procedure to derive an optimal actu-
ator configuration for the ROI in Figure 4.5.

4.4.3.1 Transducer positions

In Figure 4.6, we show the treatment cells obtained with α ∈ {0, 0.4, 1} in (4.8)
to balance the steady-state performance and target coverage in optimizing the
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Figure 4.6: The numbered treatment cells for α = 0 (dotted circles), α = 1
(dashed circles), and α = 0.4 (solid circles), for a large irregularly shaped ROI
R (solid outline) and corresponding safety boundary S (dashed outline). For
α = 0.4, we also show the transducer positions T (×), the optimal heating Bu∗

c

(color map), and the sonication points Ps for Nps = 19 (•), Pu for Npu = 12
(◦), and Pc \ (Ps ∪ Pu) (gray dots).

admissible transducer positions. It is clear to see that using the treatment cells
for α = 0 (dotted circles) maximum target coverage is achieved, but that the
target corners and edge regions are outside the heating range as a result of
not taking into account the achievable temperature distribution. For the cells
corresponding to α = 1 (dashed circles), on the other hand, an outward shift can
be observed, which allows for a better steady-state temperature of the averaged
system (in the absence of spatially localized modeling errors). For a desirable
balance, we set α = 0.4, resulting in the admissible transducer positions T (×)
with treatment cells (solid circles).

4.4.3.2 Sonication points for steady state

Using T from the previous step, we first define the candidate sonication points
Pc = C(T ) ∩ V (•, ◦, and gray dots), from which we find Npc = 176. Next,
we solve (4.13), yielding the optimal steady-state input u∗

c corresponding to
using all candidate points Pc, of which the fifty largest normalized sonication
powers are shown in Figure 4.7 in descending order. Based on this figure, we
choose to select the Nps = 19 most strongly heated sonication points, which
corresponds to setting an acoustic power threshold at 0.27‖u∗

c‖∞. The resulting
set of steady-state-critical sonication points Ps (• in Figure 4.6) are responsible
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Figure 4.7: The 50 largest sonication powers in u∗
c in descending order (normal-

ized with respect to ‖u∗
c‖∞) and their cumulative sum (normalized with respect

to ‖u∗
c‖1).

for almost 80% of the total steady-state input power. By visual comparison with
the optimal power deposition Bcu

∗
c (color map in Figure 4.6), we verify Ps to

correspond to the key sonication points in steady state. Note that due to using
a homogeneous model, these generally lie as far as possible towards the edge of
the ROI R, or even outside R. This allows for more effectively counteracting the
diffusive steady-state heat loss, as was also observed in optimizing the transducer
positions for α = 1.

4.4.3.3 Sonication points for uniformity

Finally, given Ps, we can solve (4.14) for a user-defined Npu. As an example, we
set Npu = 12, resulting in the sonication points Pu (◦ in Figure 4.6) correspond-
ing to a mean distance of 2.55 mm between each target voxel and its nearest
sonication point in Ps ∪ Pu.

4.5 Mixed-integer model predictive control

In this section, we discuss a MI-MPC setup for large-volume MR-HIFU hy-
perthermia, with which simulations are performed to investigate the control
performance and computation time for different actuator placement settings.

4.5.1 Observer

Due to the presence of measurement noise in (4.1b), we employ a Luenberger
observer given by

x̂k =

{

Ax̂k−1 +Buk−1 + L(yk − ŷ−k ), if σk−1 ∈ Q,
Ax̂k−1 +Buk−1, if σk−1 ∈ E ,

(4.15a)
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where
ŷ−k = Ax̂k−1 +Buk−1, (4.15b)

denotes the model-based output estimate at time k before performing the
measurement-based correction step in (4.15a) (if available by σk−1 ∈ Q). Using
the observer gain matrix L = 0.25Inx

, combined with A being a Schur matrix,
the estimation error dynamics are exponentially stable, see Section 3.7, with
desirable convergence properties.

4.5.2 Controller

As discussed in Chapter 3, we can easily set up a MI-MPC based on the SAcSS
model described in Section 4.3.1, which is here given by

min
δk,uk

N
∑

i=0

ℓ(zi|k, ǫi|k), (4.16a)

subject to

xi+1|k = Axi|k +Bui|k, ∀ i ∈ N[0,N−1], (4.16b)

x0|k = x̂k, (4.16c)

u0|k = u∗
1|k−1, (4.16d)

δ0|k = δ∗1|k−1, (4.16e)

1⊤Nq
δi|k = 1, ∀ i ∈ N[0,N−1], (4.16f)

xi|k ≤ x+ 1nx
ǫi|k, ∀ i ∈ N[0,N ], (4.16g)

0 ≤ ǫi|k, ∀ i ∈ N[0,N ], (4.16h)

0nu
≤ ui|k ≤ u, ∀ i ∈ N[0,N−1], (4.16i)

Juui|k ≤ uΣδi|k, ∀ i ∈ N[0,N−1], (4.16j)

Juui|k ≤ uΣS
⊤
τ δi−τ |k,

{

∀ τ ∈ N[1,min{k,s}],

∀ i ∈ N[0,N−1].
(4.16k)

together with the so-called admissibility assurance (of which the computation
time is negligible) to guarantee that the optimal solution (δ∗k,u

∗
k) is physically re-

alizable by the HIFU setup, see Chapter 3. In (4.16a), we use the treatment qual-
ity measure from (4.6) as the stage cost, where zi|k = Hxi|k and ǫi|k := ǫ(xi|k),
and for this case study we set the prediction horizon to N = 7. Moreover, the
sequence uk = (u0|k, . . . , uN−1|k) contains the predicted sonication inputs ui|k at
i ∈ N steps ahead of time k ∈ N. Similarly, δk = (δ0|k, . . . , δN−1|k) denotes the
predicted sequence of the so-called activators δi|k, which are Boolean variables
that encode the transducer steering in a manner compatible with mixed-integer
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optimization, see Chapter 3. In summary, at discrete time k ∈ N, the activa-
tor δk = [δ1k . . . δ

Nq

k ]⊤ ∈ {0, 1}Nq follows directly from the actuator state σk

according to

δqk =

{

1, if σk = q ∈ Q or σk = (q̃, q) ∈ E ,
0, otherwise,

(4.17)

i.e., δqk = 1 if at time k the transducer is located at or moving towards cell
q, and δqk = 0 otherwise. Note that, as a consequence, δk must always consist
of one element equal to 1, and all others 0, as is reflected by (4.16f). Regard-
ing the other constraints, (4.16b) incorporates the thermal dynamics of (4.1),
of which the initial condition is provided by the observer according to (4.16c).
To allow for computation times up to one sampling period, we adopt a one-
step-ahead optimization using (4.16d) and (4.16e), by which we effectively apply
uk = u∗

0|k = u∗
1|k−1 and δk = δ∗0|k = δ∗1|k−1 (and for initialization we use δ0|0 = δ0,

corresponding to the transducer starting position, and u0|0 = 0nu
). Inequalities

(4.16g)-(4.16h) include the temperature upper bound as a soft constraint in such
a manner that (4.16) is a mixed-integer quadratic program. Finally, as discussed
in detail in Chapter 3, (4.16i)-(4.16k) impose the sonication power limits per son-
ication point and per treatment cell, and encode all input restrictions resulting
from the transducer switching as described in Section 4.3.1. To this end, we use
the matrix

Ju =









1⊤n1
u

. . .
1⊤
n
Nq
u









∈ {0, 1}Nq×nu ,

such that Juui|k is a vector containing the total sonication powers per treatment
cell, and we use the matrices

Sτ =







sτ,11 · · · sτ,1Nq

...
. . .

...
sτ,Nq1 · · · sτ,NqNq






∈ {0, 1}Nq×Nq , τ = 1, . . . , s,

of which the diagonal elements are given by sτ,qq = 0 for q ∈ Q, the off-diagonal
elements follow from the arc weights sqq̃ of the digraph in Figure 4.5 according
to

sτ,qq̃ =

{

1, if sqq̃ < τ,
0, otherwise,

and s = max(q,q̃)∈E sqq̃ denotes the transducer’s largest cell-to-cell travel time.

4.5.3 Simulation results

To demonstrate the performance and computation time of the MI-MPC (4.16)
derived using the actuator placement method proposed in this chapter, simula-



4

110 Chapter 4. Target-Conformal Optimal Actuator Placement

tions are performed for the ROI in Figure 4.6. To visualize the control perfor-
mance, we compute the time evolution of the M -sample centered moving aver-
age of the stage cost (4.6) MAM (ℓ(zk, ǫk)), which for odd integers M = 1+ 2m,
m ∈ N, is defined as

MAM (ℓ(zk, ǫk)) =
1

M

k+M
2

∑

l=max{k−M
2 ,0}

ℓ(zl, ǫl), (4.18)

which smooths the switching effects over an interval of (M − 1)Ts for better
readability. In analyzing the results of this simulation study, adequate smooth-
ing was observed using M = 11. Correspondingly, for T optimized with α = 0.4
(× in Figure 4.6, Pc determined using Nps = 19 (• in Figure 4.6), and using
M = 11, Figure 4.8a visualizes the control performance obtained using Pu opti-
mized for various values of Npu (solid, see legend), where Npu = 157 corresponds
to selecting all candidate sonication points by Ps ∪ Pu = Pc. The figure shows
that the control performance is unsatisfactory for Npu ≤ 2, as this does not allow
for sufficiently heating the interior of R for fast heat-up and for counteracting
the perfusive heat loss inside R. Moreover, we observe that the performance
clearly improves by including more sonication points in Pu. However, the added
benefit for both the transient and steady-state behavior becomes progressively
smaller for increasing Npu, while the corresponding solver times continue to
grow, see Figure 4.8b, reaching a maximum computation time of almost 20 s for
Npu = 157. An example where the maximum computation time is smaller than
Ts = 3.2 s, but which exhibits adequate control performance, is recognized in
Npu = 12 (red in Figure 4.8a, and ◦ in Figure 4.6 for the corresponding Pu). This
illustrates that the target-conformal actuator design method presented in this
chapter can enable real-time feasibility of more advanced (thereby often more
computationally challenging) control methods such as (MI-)MPC without sacri-
ficing significant performance, by strategically selecting only the key sonication
points.

The tumor temperatures obtained with Npu ∈ {12, 157}, from hereon also
referred to as input reduction cases A and B (see Table 4.1), are depicted in
Figure 4.9a, again visualizing that larger Npu enables better heat-up. However,
the observed temperature difference is small due to case A containing sufficiently

Table 4.1: Input reduction cases.

Case α Nps Npu

A 0.4 19 12
B 0.4 19 157
C 0.4 0 31
D 0 19 12



4

4.5 Mixed-integer model predictive control 111

Time [s]

St
ag

e
co

st
M

A
1
1
(ℓ
(z

k
,ǫ

k
)) 0

0

2
4
6
8
10

10

10

12/A
157/B
C
D

200 400 600

−1

−2

(a)

C
om

pu
ta

ti
on

ti
m

e
[s

]

Number of uniformity sonication points Npu

0 2 4 6 8 10 12 14 25 50 100 157
10−2

10−1

100

101

(b)

Figure 4.8: In (a), the 11-sample moving average of the stage cost
MA11(ℓ(zk, ǫk)) versus time tk for (α,Nps) = (0.4, 19) and various Npu (solid,
see legend), and for cases C (dashed) and D (dash-dotted) as in Table 4.1. In
(b), for (α,Nps) = (0.4, 19), the computation time versus Npu indicating the
mean (red +), median (central mark), 25th and 75th percentiles (box edges),
10th and 90th percentiles (whiskers), and outliers (gray dots).

many sonication points, and due to the upper power limit being active, see Fig-
ure 4.9b and Figure 4.9c, where post : Q ∪ E → Q denotes the destination
mode according to post(σk) = q if σk = q ∈ Q (transducer is at position q) or
σk = (q̃, q) ∈ E (transducer is moving toward position q). After approximately
200 s the ROI is found to be adequately heated for both cases. In fact, the result-
ing steady-state temperatures (350 ≤ tk ≤ 600) are very similar, see Table 4.2
(A and B). This verifies that using the proposed actuator placement method,
we can select from a large (case B: Nps + Npu = Npc = 176) set of candidate
sonication points Pc, a significantly smaller (case A: Nps +Npu = 19+12 = 31)
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Figure 4.9: Simulation results for cases A and B, see Table 4.1, using (α,Nps) =
(0.4, 19). In (a), the mean (solid) and extremum (dashed) temperatures in the
ROI R for Npu = 12 (A, black) and Npu = 157 (B, gray), and the temperature
reference (thin dash-dotted) and upper bound (thin dashed). In (b) and (c), the
total acoustic power per cell (legend) and the destination mode post(σk) (red
line) for A and B, respectively.

subset Ps ∪ Pu that achieves similar performance, by taking into account the
specific tumor properties during the actuator optimization.
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Next, we exemplify the influence of improperly choosing Ps by comparing
in Figure 4.8a for α = 0.4 the smoothed stage cost for (Nps, Npu) = (0, 31)
(dashed), referred to as case C (see Table 4.1), to the cost for case A with
(Nps, Npu) = (19, 12) (red). Note that both cases contain Nps + Npu = 31
sonication points, but for case C these are all in Pu, and hence are distributed
as evenly throughout R using (4.14). As a consequence, in the figure case C
exhibits slightly better initial heat-up due to the mean distance between the
ROI voxels and their closest sonication point being smaller (1.96 mm for C
versus 2.55 mm for A). However, case C fails to achieve a satisfactory steady
state due to Ps = ∅ lacking the sonication points at the critical locations around
the target edge, eventually resulting in a significantly larger steady-state ROI
temperature range, see Table 4.2 (A compared to C).

In a similar fashion, we show an example of the performance loss resulting
from suboptimally choosing the transducer positions T . To this end, compare
in Figure 4.8a for (Nps, Npu) = (19, 12) the results obtained with α = 0 (dash-
dotted), which we call case D (see Table 4.1), to the results of case A with α = 0.4
(red). Here, for both sets of transducer positions, the time required for the
mechanical cell-to-cell transducer motion is modeled by Figure 4.5. Moreover,
the number of steady-state and uniformity-related sonication points are equal
for both cases. However, by selecting T based only on the coverage-related cost
in (4.8) in case D, the corresponding treatment cells (dotted circles in Figure 4.6)
do not cover as much of the regions at which steady-state heating is required.
As a result, case A outperforms case D for tk ≥ 130 in Figure 4.8a and regarding
steady-state temperature in Table 4.2 (A outperforms D).

4.6 Conclusion

We proposed a target-conformal optimal actuator placement procedure for MR-
HIFU hyperthermia therapies in cancer treatment. For computational tractabil-
ity and conceptual simplicity, the proposed method consists of three steps. First,
it uses the specific tumor properties to automatically distribute the transducer
positions based on a weighted balance between the steady-state performance
and target coverage by the resulting treatment cells. Second, the sonication
points critical for steady-state heating are selected. Finally, additional evenly

Table 4.2: ROI temperature during 350 ≤ tk ≤ 600 for cases A, B, C, and D as
in Table 4.1.

Temperature A B C D
Maximum 42.28 42.25 42.82 42.62
Mean 41.93 41.94 41.89 41.92
Minimum 41.14 41.14 40.24 40.81
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distributed sonication points are included to enable more heating throughout the
tumor for faster heat-up and improved robustness. In a case study involving an
irregularly shaped tumor, the method has been demonstrated, and subsequently
used for setting up a MI-MPC scheme. In a numerical case study, the resulting
control performance and computation times have been investigated, illustrating
that using our method high-quality temperature control can be achieved using
a limited number of strategically selected sonication points and transducer posi-
tions, which in addition translates to limited controller complexity and thereby
sufficiently small solver times for real-time feasibility.





Nothing is particularly hard
if you divide it into small jobs.
 

Henry Ford



CHAPTER 5

Hierarchical Mixed-Integer MPC for Real-Time

Large-Volume Ultrasound Hyperthermia in

Cancer Therapy

In oncological applications of mild hyperthermia, tumors are heated to enhance the

efficacy of chemo- and radiotherapies. For magnetic-resonance-guided high-intensity

focused ultrasound hyperthermia, treating tumors larger than the transducer’s local

heating range is a challenge, as then the transducer itself must also be mechanically

relocated. Using mixed-integer model predictive control (MI-MPC) to simultaneously

steer the local heating and the discrete mechanical transducer positioning, optimal treat-

ment quality can be achieved in theory. In practice, however, MI-MPC may require

prohibitively large computation times, which hampers clinical implementation. This

chapter describes a two-layer hierarchical MI-MPC scheme designed to substantially

decrease the computational burden, thereby enabling real-time feasibility, without sac-

rificing performance. This is accomplished by swiftly solving a lower-complexity mixed-

integer program in the higher control layer, based on a model obtained via model order

reduction and/or (target-conformal) input reduction, to determine the optimal mechan-

ical transducer path. Subsequently, given the discrete transducer path, the lower control

layer optimizes the local heating profiles using a high-fidelity model, which despite large

state and input dimensions can be computed efficiently in the form of a quadratic pro-

gram. For the high-level controller, both sparse and condensed MPC formulations are

used to investigate which is preferable in terms of computation time for different state-

and input-reduction settings. In experiments on a clinical MR-HIFU system using a

tissue-mimicking phantom, the strengths of the proposed controller are demonstrated.

This chapter is based on D.A. Deenen, J. van Wordragen, L.C. Sebeke, B. de Jager,
E. Heijman, H. Grüll, and W.P.M.H. Heemels, “Hierarchical mixed-integer MPC for real-
time large-volume ultrasound hyperthermia in cancer therapy,” In preparation for journal

submission.
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5.1 Introduction

The developments presented in this chapter are aimed at enabling clinical appli-
cation of large-volume magnetic-resonance-guided high-intensity focused ultra-
sound (MR-HIFU) hyperthermia for cancer therapy. Mild local hyperthermia
in cancer treatments is the heating of tumors inside the body to around 42 ◦C
for a duration of up to 90 minutes, while avoiding temperature elevations in
healthy tissue. The prolonged exposure to mild heating has in numerous clinical
studies been shown to sensitize the tissue to the desired effects of chemo- and
radiotherapy, see [3, 4, 16, 19–22, 24] and the references therein, without intro-
ducing additional toxicity and hence without aggravating the severe side effects
typically associated with cancer therapy. In addition, using thermo-sensitive
liposomes, local hyperthermia enables targeted drug delivery, resulting in even
more effective chemotherapy with reduced systemic drug concentrations [25–27].
As a consequence, hyperthermia is considered a valuable adjuvant therapy in
cancer treatment, enabling significantly improved treatment outcome and sur-
vival rates. However, since the achieved therapeutic benefits are strongly related
to the temperature realized during treatment [60–62], there is a dire need for
hyperthermia temperature feedback controllers.

Using an extracorporeal applicator, MR-HIFU is a promising feedback tech-
nology for noninvasive hyperthermia therapy [30, 43, 47, 48], which is highly
desirable for patients’ quality of life due to the absence of additional surgery
and post-interventional wound care. An MRI scanner is used for near-real-time
volumetric thermometry, and by means of the coordinated modulation of con-
structively interfering ultrasound waves, referred to as electronic beam steering,
powerful heating with spatial accuracy in the millimeter-range is applied. Using
model predictive control (MPC) [66, 67], ultrasound-based thermal therapies of
optimal quality can be realized, while explicitly satisfying actuator and safety
constraints. For example, MPC is used for thermal ablation therapy in [69] to
minimize treatment time while administering a desired scalar-valued thermal
dose in a single point or over a one-dimensional model, and in [70] for minimum-
time treatments with a prescribed thermal dose for two-dimensional systems
described by heavily simplified models and a fixed spatial heating trajectory.
In [71], an MPC scheme is developed that tries to deliver a lethal thermal dose
to the tumor, while avoiding damage to healthy tissue. More recently, in [72]
we have designed a preliminary MPC algorithm for temperature control in two-
dimensional systems, which exploit the full flexibility of the HIFU transducer’s
beam steering by freely adapting online both the heating location and the acous-
tic power.

Unfortunately, the methods developed in [72] are only applicable to the treat-
ment of small-size tumors due to the limited electronic beam steering range. To
treat larger tumors, the transducer itself must also be moved mechanically, al-
lowing for all parts of the tumor to be sonicated sequentially, see [52] for a
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pre-planning method for HIFU treatments involving both electronic beam steer-
ing and mechanical transducer displacements, and see [53] for a binary con-
troller with fixed beam steering trajectories and simple logic-based transducer
positioning. Due to MR thermometry limitations [44], the set of admissible me-
chanical transducer positions is discrete, finite, and must be chosen before treat-
ment. Consequently, the resulting system can be described as a linear switched-
actuator system with setup times (SAcSS), see Chapter 3, which is a special
type of switched linear system [81]. In particular, the input model depends on
the transducer location, but, contrary to typical switched systems, it cannot
switch instantaneously, as the time required for the transducer to complete its
mechanical point-to-point motion is significant compared to the timescale of the
heating dynamics. Moreover, during transducer relocation no heating is allowed,
meaning every actuator mode switch induces non-negligible actuator downtime
during which the system itself keeps evolving in time according to its unforced
dynamics.

Mixed-integer (MI-)MPC [68] allows for optimally controlling both the range-
extending discrete mechanical transducer displacements and the continuous son-
ication inputs. In Chapter 3, a modeling framework tailored to SAcSSs is pre-
sented, specifically designed to (a) allow for user-friendly system specification
and effortless MI-MPC synthesis, and (b) yield a model that includes only a
small number of Boolean variables, such that the resulting MI-MPC schemes
are computationally efficient. However, for large-volume MR-HIFU hyperther-
mia temperature control, real-time feasibility of the obtained MI-MPC remains
a major issue in practice, see [108] for a numerical case study, due to the large
state and input dimensions of the required thermal models obtained by spatially
discretizing Pennes’ bioheat equation [86].

To alleviate the computational burden of the online MI-MPC, one could
resort to model order reduction techniques [114]. Although such methods are
effective in reducing model complexity, for MPC their benefits are always ac-
companied by decreased predictive accuracy, potentially leading to deteriorated
control performance. Alternatively, the controller could be simplified by de-
creasing the input dimension. Unfortunately, this typically results in reduced
controller flexibility, and thereby suboptimal performance and robustness, even
when using an optimal input selection procedure such as in Chapter 4. How-
ever, by recognizing that for large-volume MR-HIFU hyperthermia the full-scale
MI-MPC can be decomposed into a two-layer controller with different levels of
accuracy, a real-time feasible hierarchical (H)MI-MPC scheme [82] with optimal
performance can be designed. In particular, for optimizing the electronic beam
steering and acoustic power, temperature predictions with high spatial accuracy
are needed, whereas to solve the discrete transducer allocation problem, the pre-
dictions only need to be sufficiently detailed to determine which tumor region
should be heated.

Therefore, as the main contribution of this work, we propose a HMI-MPC ar-
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chitecture of which the high-level controller solves a mixed-integer quadratic pro-
gram (MIQP) using a reduced-complexity thermal model, obtained via model or-
der and/or input reduction, to find the optimal transducer path in much shorter
time than the full-scale MI-MPC. The discrete transducer path is then passed
on to a low-level controller that, for the given path, determines the optimal soni-
cation plan using a high-fidelity thermal model. By fixing the integer part of the
problem, the low-level optimization boils down to solving a QP, which despite
large state and input dimensions is computationally lightweight. As a result, the
total computational efforts are substantially reduced compared to the MI-MPC
setup, without sacrificing significant performance.

The second contribution of this chapter consists of a numerical simulation
study to investigate the control performance and computation time of the pro-
posed HMI-MPC for different high-level model reductions in comparison to the
unreduced MI-MPC. Here, two methods for reducing the model complexity are
considered. The first involves an input reduction, for which in this work we
employ the target-conformal procedure proposed in Chapter 4 to approximate
the HIFU setup’s full heating capabilities using significantly fewer inputs by
strategically selecting only the most important inputs based on the specific tu-
mor properties. This effectively reduces the number of required high-level MPC
input decision variables to decrease its computational complexity. As a second
method, we reduce the number of state decision variables by using a reduced-
order model derived via proper orthogonal decomposition (POD) [114]. In addi-
tion, the high-level controller is formulated both using a sparse and a condensed
approach [67, 115], to examine which is favorable in terms of computation time
for the different model reduction cases.

Finally, as the third contribution, we verify the control performance and
real-time feasibility of the developed HMI-MPC design via experiments on a
tissue-mimicking phantom using a clinical MR-HIFU system. We compare the
results obtained using our novel HMI-MPC setup to those reported in [53], which
represent a clinical state-of-the-art binary controller.

The remainder of the chapter is organized as follows. In Section 5.2, we
discuss the MR-HIFU hyperthermia setup and treatment. Section 5.3 provides
the problem statement based on the system model and MI-MPC setup. In Sec-
tion 5.4, we describe the proposed HMI-MPC architecture, followed by a compar-
ison of the performance and computational burden using different reduced-order
high-level models in Section 5.5. The results of the phantom experiments are
presented Section 5.6. Finally, Section 5.7 summarizes the key contributions of
this work.

5.2 Large-volume MR-HIFU hyperthermia

This section first discusses the key aspects of a hyperthermia treatment, followed
a description of the MR-HIFU hyperthermia setup considered in this work.
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Figure 5.1: Schematic cross section of the temperature objectives corresponding
toR and S. The maximum violation ǫ is shown for some overheated temperature
distribution T1 such that T1 ≤ T + ǫ.

5.2.1 Hyperthermia treatment

We first define a target area R containing the tumor, also referred to as a region
of interest (ROI), and a safety boundary region S in the patient domain Ω, where
R ⊂ S ⊂ Ω, as schematically shown in cross-section perspective in Figure 5.1.
In a hyperthermia treatment, we strive for a constant and homogeneous tem-
perature elevation in R to optimally sensitize the tumor tissue to the chemo-
and radiotherapeutic cancer-killing effects [4, 12, 13, 116]. To enable a perfor-
mance comparison with the binary controller results from [53] in the upcoming
experiment, we set the ROI reference temperature Tr : R→ R to 42.5 ◦C inside
R. Overheating the ROI (≥45 ◦C) causes significant reversal effects and hence
should be avoided. Also, to ensure that no healthy tissue is sensitized, we aim
to prevent temperatures above 40 ◦C outside S. Combined, these constraints
lead to the temperature upper bound T : Ω → R. The maximum violation of
this bound is measured by ǫ ∈ R≥0.

5.2.2 MR-HIFU hyperthermia treatment setup

First, let us note that the HMI-MPC design proposed in this chapter is gener-
ally applicable to any SAcSS, as defined in Chapter 3, in which an accuracy-
based separation can be identified between the discrete and continuous parts
of the mixed-integer program describing the true optimal control problem. For
the scope of this work in particular, however, the developed HMI-MPC setup
is designed for an MR-HIFU hyperthermia system consisting of a Philips 3T
Achievar MRI scanner, used for near-real-time noninvasive thermometry, and
a Profound Sonallever HIFU platform shown in Figure 5.2, which is a dedi-
cated trolley-tabletop with an embedded MR-compatible HIFU transducer and
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Figure 5.2: Philips MRI scanner and Profound Sonallever MR-HIFU therapy
platform.

its mechanical carrier system. This system is already being used clinically for
the treatment of uterine fibroids and for palliative treatment of painful bone
metastases.

5.2.2.1 MR thermometry

The temperature maps are obtained noninvasively by MRI using the proton res-
onance frequency shift (PRFS) method [38,44], which provides the temperature
difference with respect to a baseline by comparing the current MR image to a
reference image. The reference is typically acquired before treatment, such that
the baseline corresponds to zero treatment-induced temperature elevation. The
PRFS method is among the best available measurement technologies for image-
guided hyperthermia feedback control [30, 39, 40]. However, due to it being a
relative method, its accuracy may significantly deteriorate in case of distortions
of the magnetic field, such as those caused by changing the HIFU transducer’s
position. Consequently, for accurate measurements given a certain transducer
position, a baseline image is required which was obtained with the transducer
in the same position. For this reason, the discrete set of admissible mechanical
transducer positions must be chosen before treatment. Subsequently, a reference
image can be acquired for each position, and during treatment a lookup table is
used to select the correct reference image for accurate MR thermometry.

5.2.2.2 HIFU transducer

The Sonalleve contains a phased-array HIFU transducer consisting of 256 acous-
tic elements, each of which is able to generate high-intensity ultrasound waves.
By coordinating the individual elements’ phases and amplitudes, referred to as
electronic beam steering, a focal spot with variable intensity and location can
be created, as schematically depicted in Figure 5.3. The resulting power depo-
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Figure 5.3: Schematic of a patient table with integrated HIFU transducer, gen-
erating an acoustic beam with the focal point inside in the tumor by electronic
beam steering, and the coordinate axes as used in this work when the patient
enters the MRI with the feet first.

sition profile is relatively wide in the beam’s axial direction, but very narrow
radially. In addition, for different in-plane focus locations, the acoustic beams
are substantially overlapping everywhere along the beam axis except in the focal
plane, see Chapter 2 and [53, 57, 85]. As a consequence, the axial temperature
profile is fairly uniform near the focal plane, and hence accurate volumetric heat-
ing of the target tissue can be achieved by setting the focal plane at a suitable
depth inside the target volume and controlling only the in-plane temperature
distribution. Accordingly, the MR-HIFU hyperthermia temperature controller
developed in this chapter is based on a thermal model of the patient domain in
the two-dimensional focal plane Ω ⊂ R

2.

Using a stationary transducer, electronic beam steering allows for heating
a 16 mm diameter circular area centered around the transducer axis, which is
referred to as a treatment cell. By moving the focal spot rapidly, compared to
the timescale of the tissue’s thermal dynamics, the heating applied in a cell can
be considered to be (quasi-)continuous in time. For the treatment of tumors
larger than the electronic beam steering range, multiple treatment cells must
be defined throughout the target area, which can be heated sequentially by
exploiting the transducer’s robotic carrier system to mechanically relocate the
transducer itself [52,53]. Note that since the treatment cells are directly coupled
to the admissible transducer positions, they must also be chosen before treatment
due to the MR thermometry limitations mentioned previously. As an example,
Figure 5.4 depicts a large circular ROIR with 58 mm diameter (red circle), safety
boundary S with 78 mm diameter (dashed circle), and seven transducer positions
(×) and their corresponding treatment cells (black circles), which corresponds to
the largest setup programmed into the clinical Sonalleve software and presented
in [53]. The remainder of the figure will be explained later in this chapter.
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Figure 5.4: A large circular ROI R (red circle) and corresponding safety bound-
ary S (dashed circle), the transducer positions (×) and corresponding numbered
treatment cells (black circles), and all candidate sonication points Pc (dots) with
corresponding optimal “averaged” steady-state heating Bu∗

ss from (5.13) (color
map). For Nps = 12 steady-state-critical sonication points Ps (green dots), we
indicate the coverage-related points Pu for Npu equal to 2 (red ◦), 12 (blue ◦),
140 (black dots), and 280 (black and gray dots) corresponding to input reduction
settings A, B, C, and D, respectively, see Table 5.1.

5.3 Problem description

In this section, we derive a compact mixed-integer model of the system using the
SAcSS framework introduced in Chapter 3, with which we can directly formulate
the full-scale MI-MPC that forms the key element of the problem statement.

5.3.1 Thermal Model in SAcSS Framework

5.3.1.1 Actuator modes and setup times

The transducer switching behavior is modeled using an arc-weighted digraph
Γ = (Q, E , s), which for the setup in Figure 5.4 is given by Figure 5.5. The
Nq = 7 nodes model the operational actuator modes Q = N[1,Nq] corresponding
to the transducer being in each of its Nq admissible positions. The set of arcs
E = Q2 \ {(q, q) ∈ Q2} represents all possible transducer displacements. The
arc weights sqq̃ ∈ N, (q, q̃) ∈ E , correspond to the number of sampling periods
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Figure 5.5: Seven-nodal arc-weighted digraph.

required for mechanically moving the transducer from position q to q̃, and are
collected in the setup time matrix

S :=







s11 · · · s1Nq

...
. . .

...
sNq1 · · · sNqNq






∈ N

Nq×Nq , (5.1)

for which we additionally define sqq = 0 for all q ∈ Q, since staying in the same
mode does not require transducer relocation. Note that although S = S⊤ for
Figure 5.5, this is not necessary for the upcoming (H)MI-MPC setup in general.
Next, we introduce the actuator state σk ∈ Q ∪ E , where σk = q ∈ Q indicates
that at discrete time k ∈ N the transducer is in its q-th admissible position, and
σk = (q, q̃) ∈ E means that the transducer is moving from position q to q̃.

5.3.1.2 Plant dynamics

The thermal discrete-time state-space model is derived using a similar approach
as discussed in Chapter 2, which essentially entails discretizing the Pennes bio-
heat equation [86] spatially on the two-dimensional MR thermometry grid with
2.25 × 2.25 mm2 voxels (grid in Figure 5.4), and temporally using the corre-
sponding MR thermometry sampling time Ts = 3.2 s. The resulting model is
given by

xk+1 = Axk +Buk, (5.2a)

yk =

{

xk + vk, if σk−1 ∈ Q,
∅, if σk−1 ∈ E ,

(5.2b)

where the states xk ∈ R
nx , with typically nx = 442 = 1936 for tumors up to

6 × 6 cm2, represent the temperature elevations (with respect to the baseline)
of the voxels in the focal plane at time instant k ∈ N connecting to real time
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via tk = kTs. The matrix A is a two-dimensional Laplacian matrix, describing
the diffusion of heat inside the focal place and the heat loss resulting from blood
perfusion. By choosing the voxel grid equal to the MR thermometry grid, the
output yk ∈ R

nx is the sum of the voxel temperatures xk and the measurement
noise vk ∈ R

nx , when the measurements are available due to the transducer
being at standstill during the MR acquisition interval (σk−1 ∈ Q). The input
uk ∈ R

nu is the acoustic power applied at the sonication points, i.e., the loca-
tions to which the focal spot may be steered during treatment. For maximum
treatment quality, these points are chosen as all voxel centers inside the union
of the cell areas (green, black, and gray dots in Figure 5.4). To be precise, uk

represents the sonication point powers averaged over the sampling interval from
tk to tk+1, achieved by rapidly switching the focus over all sonication points
at which nonzero power is requested, which is justified by the electronic beam
steering being fast with respect to the thermal dynamics and sample time. Us-
ing uq

k ∈ R
nq
u to denote the acoustic powers at the nq

u sonication points inside
treatment cell q ∈ Q, the input is given by

uk =







u1
k
...

u
Nq

k






∈ R

nu

[0,umax]
, (5.3)

where nu =
∑

q∈Q nq
u = 292, the input space’s lower bound is due to the inability

to actively cool using HIFU, and the upper bound umax = 15 W is enforced for
safety. The corresponding input matrix is given by

B =
[

B1 · · · BNq
]

∈ R
nx×nu , (5.4)

where each submatrix Bq ∈ R
nx×nu,cell describes the system’s temperature

change in response to uq
k.

5.3.1.3 Input constraints

From (5.3), we find

0nu
≤ uk ≤ u = 1nu

umax. (5.5)

Next, we incorporate the input restrictions that describe the fact that heating
can only occur in the cell where the transducer is located, i.e., uq

k = 0nq
u

for all
q 6= σk ∈ Q, and the actuator downtime during transducer repositioning, i.e.,
uk = 0nu

if σk ∈ E . To this end, we introduce the Boolean activator δk ∈ {0, 1}Nq

of which the elements δqk are related to the actuator state σk by

δqk =

{

1, if σk = q ∈ Q or σk = (q̃, q) ∈ E ,
0, otherwise,

(5.6)
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meaning that δqk = 1 if at time k the transducer is located at or moving towards
cell q, and zero otherwise. Note that, as a consequence, δk is a one-hot vector
[110], i.e.,

∑

q∈Q

δqk = 1. (5.7)

Due to imposing (5.5), combined with additionally desiring a maximum total
power limit of uΣ = 180 W per cell, the mode-switching input constraints can
be formulated as

Juuk ≤ uΣδk, (5.8a)

Juuk ≤ uΣS
⊤
τ δk−τ , for all τ ∈ N[1,min{k,s}], (5.8b)

as discussed in Chapter 3 in more detail. Here, Ju represents the block diagonal
matrix

Ju =









1⊤
n1
u

. . .
1⊤
n
Nq
u









∈ {0, 1}Nq×nu , (5.8c)

such that Juuk is a vector containing the total input powers of each cell, s =
max(q,q̃)∈E sqq̃ denotes the largest travel time, and the setup time constraint
matrices Sτ follow directly from S in (5.1) according to

Sτ =







sτ,11 · · · sτ,1Nq

...
. . .

...
sτ,Nq1 · · · sτ,NqNq






∈ {0, 1}Nq×Nq , τ = 1, . . . , s, (5.9a)

with

sτ,qq̃ =

{

1, if sqq̃ < τ,
0, otherwise.

(5.9b)

The combination of (5.2), and (5.5)-(5.8) can be recognized to be a mixed logical
dynamical (MLD) system [104], and hence is directly compatible with MI-MPC.

5.3.2 Mixed-integer model predictive control

5.3.2.1 Prediction model

The MI-MPC prediction model follows from (5.2a), and is thus given by

xi+1|k = Axi|k +Bui|k, (5.10)

where xi|k and ui|k denote the predicted states and inputs, respectively, at i ∈ N

time steps ahead of the prediction starting time k ∈ N.
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5.3.2.2 State estimator

For model-based attenuation of the measurement noise, we use a Luenberger
observer given by

x̂k =

{

Ax̂k−1 +Buk−1 + L(yk − ŷ−k ), if σk−1 ∈ Q,
Ax̂k−1 +Buk−1, if σk−1 ∈ E ,

(5.11a)

where
ŷ−k = Ax̂k−1 +Buk−1, (5.11b)

denotes the model-based output estimate at time k before performing the
measurement-based correction step in (5.11a) (if available by σk−1 ∈ Q). The
observer gain matrix Lx = 0.25Inx

has been tuned such that the estimation error
dynamics are exponentially stable, see Section 3.7, with desirable convergence
properties.

5.3.2.3 Optimal control problem

To transform the temperature objectives discussed in Section 5.2.1 to the state
space of (5.2), we use zk = Hxk ∈ R

nz , nz < nx, to denote the temperature
elevations of the ROI voxels, where H ∈ {0, 1}nz×nx is a matrix with a single
1 in each row, and at most one 1 per column. Next, let zr ∈ R

nz and x ∈ R
nx

denote the voxel-wise temperature reference and upper bound corresponding to
the spatial discretizations of Tr and T , respectively. The maximum violation
of the upper bound is given by ǫk = ǫ(xk) = ‖max{xk − x, 0nx

}‖∞ ∈ R≥0,
where 0nx

denotes a zero-vector of length nx and the maximum operator is used
element-wise.

Following the MI-MPC synthesis for SAcSSs described in Chapter 3, we
obtain the optimization problem

min
δk,uk

N
∑

i=0

ℓ(zi|k, ǫi|k), (5.12a)

with prediction horizon N ∈ N and stage cost

ℓ(zi|k, ǫi|k) = (zi|k − zr)
⊤Q(zi|k − zr) + fǫǫi|k, (5.12b)

subject to

xi+1|k = Axi|k + Bui|k, ∀ i ∈ N[0,N−1], (5.12c)

x0|k = x̂k, (5.12d)

u0|k = u∗
1|k−1, (5.12e)

δ0|k = δ∗1|k−1, (5.12f)

1⊤Nq
δi|k = 1, ∀ i ∈ N[0,N−1], (5.12g)
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xi|k ≤ x+ 1nx
ǫi|k, ∀ i ∈ N[0,N ], (5.12h)

0 ≤ ǫi|k, ∀ i ∈ N[0,N ], (5.12i)

0nu
≤ ui|k ≤ u, ∀ i ∈ N[0,N−1], (5.12j)

Juui|k ≤ uΣδi|k, ∀ i ∈ N[0,N−1], (5.12k)

Juui|k ≤ uΣS
⊤
τ δi−τ |k,

{

∀ τ ∈ N[1,min{k,s}],

∀ i ∈ N[0,N−1].
(5.12l)

In (5.12a), the sequences uk = (u0|k, . . . , uN−1|k) and δk = (δ0|k, . . . , δN−1|k)
denote the predicted inputs ui|k and activators δi|k, respectively, at i ∈ N time
steps ahead of the prediction sequence’s starting time k ∈ N. The cost function
contains a tracking term to steer the ROI states z̃k towards zr, and a linear cost
on ǫi|k to incorporate the upper temperature bound as a soft constraint. The
weights are chosen as

Q =
1

nz

Inz
, fǫ = 10, (5.12m)

which are normalized with respect to the corresponding number of decision vari-
ables (note that ǫ is scalar) for more intuitive tuning. Consequently, the weight-
ing by fǫ exceeds that of Q, such that the prevention of detrimental overheating is
prioritized above the reference tracking. The equality constraints (5.12c) account
for the system dynamics (5.10), which start at the initial condition (5.12d) fol-
lowing from the observer (5.11). By (5.12e) and (5.12f), the first predicted input
u0|k and activator δ0|k are fixed to their optimal values computed at the previous
time step (and for initialization δ0|0 = δ0, corresponding to the transducer start-
ing position, and u0|0 = 0nu

). Consequently, we in fact apply uk = u∗
0|k = u∗

1|k−1

and δk = δ∗0|k = δ∗1|k−1, meaning that solving (5.12) at time k is effectively the
one-step-ahead optimization of the inputs for time k + 1. This allows for com-
putational delays up to the sample time Ts. Hence, Ts will be regarded as the
solver times’ upper limit, which we will aim to satisfy for real-time feasibility.
Next, (5.12g) includes the one-hot encoding constraint (5.7). Regarding the in-
equalities, (5.12h) and (5.12i) incorporate the temperature upper bound as a
soft constraint with nonnegative slack variable, and (5.12j), (5.12k), and (5.12l)
follow directly from the input constraints (5.5), (5.8a), and (5.8b), respectively.
Note that in (5.12l), δi−τ |k = δk+i−τ for i < τ , which follows from the past acti-
vator values. As discussed in Chapter 3, after solving (5.12) we apply a so-called
admissibility assurance procedure, of which the execution time is negligible, and
which ensures that the optimal pair (δ∗k,u

∗
k) is physically realizable by the HIFU

system.

5.3.3 Problem statement

Due to being based on a mixed-integer model with large state and input di-
mension, the MI-MPC (5.12) is computationally demanding. As a result, the
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Figure 5.6: Hierarchical control architecture.

required solver times are often larger than the sample time Ts, which hampers
practical implementation. To circumvent this issue, one could allow for larger
computation times, for instance by increasing Ts or by re-optimizing the MPC
only at discrete times k = al with l ∈ N and a ∈ N≥1. Due to the increased
delay, however, such approaches are prone to reduced control performance. As
an alternative that does not suffer from these drawbacks, we propose a hierar-
chical control approach in this chapter. Hence, the key objective of this work
can be formulated as: Enable the real-time feasibility of the control principles
of the MI-MPC (5.12) using a hierarchical MI-MPC scheme with substantially
reduced computational complexity, and thereby solver times, but without signifi-
cantly sacrificing performance.

5.4 Hierarchical mixed-integer MPC

This section presents the hierarchically decomposed MI-MPC, consisting of a
low-complexity high-level MI-MPC coupled to a high-accuracy low-level MPC.

5.4.1 Hierarchical control architecture

The hierarchical control structure is schematically depicted in Figure 5.6. The
full-scale MI-MPC (5.12) is decomposed into two control layers. In the higher
layer, a MIQP is solved to find the optimal mechanical transducer path. Since
this requires only sufficient predictive accuracy to determine which region of the
tumor should be heated at which time, it is expected that a reduced-complexity
thermal model can be used, and as a consequence the MIQP can be solved in
considerably less time than (5.12). Subsequently, we feed the discrete transducer
path to the lower layer, thus reducing the low-level optimization problem to a QP,
which is computationally lightweight also when using a model with large state
and input dimensions. Hence, in the low layer we use the unreduced prediction
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model (5.10) to optimize the sonication powers, without inducing large com-
putation time. As a result, the hierarchical controller yields high-performance
sonication and transducer inputs while requiring significantly reduced overall
computational efforts compared to (5.12).

5.4.2 High control layer

5.4.2.1 Input reduction

As a first method for alleviating the computational burden of the high-level
controller, we decrease the number of MPC decision variables by reducing the
input dimension. In principle, the HMI-MPC setup proposed in this work is
compatible with any input reduction method. In this work, however, we use
the sonication point selection steps of the target-conformal optimal actuator
placement procedure proposed in Chapter 4. This allows for identifying the
most important sonication points, based on the specific tumor geometry and
tissue properties. As a result, we can approximate the HIFU setup’s heating
capability with sufficient accuracy to determine a (near-)optimal transducer path
in the higher control layer, while using substantially fewer sonication points than
in the unreduced MI-MPC (5.12) for computational efficiency.

To this end, we first select a subset of sonication points critical for steady-
state performance Ps ⊆ Pc, from the set of nu “candidate” sonication points Pc

used in the unreduced MI-MPC (green, black, and gray dots in Figure 5.4). In
the high-level model, the points Ps characterize the steady-state heating of the
full-scale MI-MPC (5.12), which is key for achieving high treatment quality. As
described in Chapter 4, this can be done by computing the optimal steady state
of (5.2a) when disregarding the mode-switching constraints, i.e., when allowing
all elements of uk to be nonzero, using

(x∗
ss, u

∗
ss) = arg min

xss,uss

ℓ(Hxss, ǫ(xss)), (5.13a)

with the stage cost from (5.12b), and subject to

xss = Axss +Buss, (5.13b)

0nu
≤ uss ≤ u, (5.13c)

1⊤nu
uss ≤ uΣ, (5.13d)

which can be written as a simple QP. Then, based on u∗
ss, we define Ps as the

sonication points with the user-defined Nps ∈ N[0,nu] largest steady-state powers.
Typically, these are located near the edge ofR and in the vicinity of blood vessels,
counteracting the diffusive and perfusive heat losses, respectively. Second, we
select a set of Npu ∈ N[0,nu−Nps] additional sonication points Pu ⊆ Pc \ Ps in
such a manner that the combined set Ps ∪Pu is distributed throughout the ROI
as uniformly as possible. In the higher control layer, the points Pu are needed to
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better approximate the unreduced MI-MPC’s heating behavior during heat-up
and when counteracting heat losses in areas not in the vicinity of Ps. The set
Pu can be found by solving, for a user-defined number Npu, an efficient mixed-
integer linear program that minimizes the mean distance from each ROI voxel
center to its closest sonication point in Ps ∪Pu, see Chapter 4 for details. With
respect to the MI-MPC (5.12), the resulting high-level input reads

ũk = Guk ∈ R
nũ (5.14)

where the matrix G ∈ {0, 1}nũ×nu selects the nũ = Nps + Npu ≤ nu elements
from the unreduced input uk in (5.2), corresponding to selecting the points
Ps ∪ Pu from Pc.

5.4.2.2 State reduction

The second manner in which we decrease the solver time of the high-level con-
troller is by reducing the number of state decision variables in the optimization
problem, which is achieved by using a reduced-order model. Although such
an approach typically induces prediction errors due to using lower-dimensional
state approximations, this effect may be small as a result of the hierarchical
control structure (with high-accuracy low-level controller) if the reduction is ap-
plied properly. As also recognized in [117], model order reduction by proper
orthogonal decomposition (POD) [114] is particularly well suited for MR-HIFU
treatments, as it is a data-based method achieving accurate lower-order ap-
proximations when the realized output trajectories resemble the (measured or
model-generated) data used for generating the POD. This is the case for high-
quality hyperthermia treatments, in which typically an initial heat-up phase
with gradually rising tumor temperatures is followed by a steady-state phase
where the temperature is close to optimal. As an additional advantage, due to
being data-based, POD allows for tumor-specific reduced-order modeling when
a patient has to be treated multiple times, as is often true in reality, by using
the data recorded during previous treatments. In fact, as argued in [117], the
model could even be updated during treatment after sufficient measurements
have been collected, which may be particularly useful in case the tissue prop-
erties have changed over time, for instance due to the body’s thermoregulatory
response.

Correspondingly, we write the high-level model as

x̃k+1 = Ãx̃k + B̃ũk, (5.15)

with high-level state x̃k = Ũ⊤xk ∈ R
nx̃ and matrices Ã = Ũ⊤AŨ and B̃ =

Ũ⊤BG⊤ (with G from (5.14)). In case of POD-based model order reduction,
the high-level state transformation matrix is given by Ũ = Unx̃

, where Unx̃

denotes the first nx̃ < nx columns of U , which follows from the singular value
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decomposition X = UΣV ⊤ of the NX temperature snapshots collected in

X =
[

x0 . . . xNX

]

∈ R
nx×NX . (5.16)

The snapshots can be obtained from previous treatments or generated by simula-
tion of the full-scale model (5.2). If, on the other hand, no model order reduction
is applied, the high-level transformation matrix is given simply by Ũ = Inx

, such
that x̃k = xk and nx̃ = nx.

5.4.2.3 Optimal control problem

Since the control objectives are defined in the state space of (5.2), see Sec-
tion 5.2.1 and Section 5.3.2.3, we write the high-level optimization problem in
terms of the potentially lower-dimensional approximation of the unreduced state
Ũ x̃k, with correspondingly z̃k = HŨx̃k and ǫ̃k = ǫ(Ũ x̃k), yielding

min
δk,ũk

N
∑

i=0

(z̃i|k − zr)
⊤Q(z̃i|k − zr) + fǫǫ̃i|k, (5.17a)

subject to

x̃i+1|k = Ãx̃i|k + B̃ũi|k, ∀ i ∈ N[0,N−1], (5.17b)

x̃0|k = Ũ x̂k, (5.17c)

0nu
≤ ũi|k ≤ αũu, ∀ i ∈ N[0,N−1], (5.17d)

Ũ⊤x̃i|k ≤ x+ 1nx
ǫ̃i|k, ∀ i ∈ N[0,N ], (5.17e)

and the constraints (5.12i) on ǫ̃k, and (5.12e)-(5.12g) and (5.12k)-(5.12l) on
δk and ũk. Here, (5.17b)-(5.17e) represent the high-level system’s dynamics
(5.15), the initial condition, the amplified individual sonication point power
range with αũ ≥ 1 to compensate for the potentially smaller number of sonica-
tion points, and the temperature upper bound (where the reduced-order states
are projected back onto the full-order state space), respectively. Similar to the
MI-MPC (5.12), we first solve (5.17), and subsequently apply the admissibility
assurance described in Chapter 3 to ensure that the optimal pair (δ∗k, ũ

∗
k) is

physically realizable.
The high-level MPC (5.17) can generally be formulated using a sparse or a

condensed approach [67,115]. In the sparse formulation, the predicted states are
included as optimization variables, and the system dynamics (5.17b) are incorpo-
rated as equality constraints, whereas using the condensed approach, the state
decision variables are eliminated by expressing the state predictions in terms
of the initial prediction state x̃0|k and the input sequence ũk. Although the
sparse method leads to more decision variables, it is generally preferable regard-
ing computational efficiency when using large prediction horizons N , due to the
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structure and sparsity of the matrices defining the optimization problem. In this
case, using a POD-reduced model may speed up computations by significantly
reducing the state dimension. Contrarily, for smaller N and in case of small
input dimension relative to the state dimension nũ ≪ nx̃, the latter of which
can be achieved by input reduction, eliminating the state decision variables may
outweigh the loss of sparsity in the cost and constraint matrices, resulting in
the condensed formulation to yield smaller solver times. Although condensing
the MPC does not preclude using a reduced-order model, combining these is not
sensible, since in a condensed formulation the computational complexity does
not depend on the (reduced) state dimension due to all state decision variables
being eliminated. In fact, if for sparse unreduced models the state-space matri-
ces of their reduced-order approximations are full, as is often the case, using the
reduced models in a condensed formulation typically results in a denser problem,
and thereby larger computation times, than when using the unreduced models.
Since, in addition, reduced-order models usually lead to approximation errors, a
condensed POD-based MPC is typically inferior in terms of accuracy as well as
computational efficiency. Therefore, in this work we consider only the condensed
form of (5.17) when using Ũ = Inx

, i.e., without model order reduction.

5.4.3 Low control layer

After solving (5.17) to find δ∗k, representing the optimal transducer path, the
optimal sonication powers are determined in the lower control layer. To en-
able maximum control performance and robustness, this is done using the high-
accuracy prediction model (5.10), which also includes all sonication points Pc

within electronic beam steering range, thus offering the same sonication flexi-
bility as the unreduced MI-MPC (5.12). The corresponding low-level controller
is given by the QP that results from fixing δk = δ∗k in (5.12), which by solving
yields the optimal input sequence u∗

k, such that the pair (δ∗k,u
∗
k) constitutes the

optimized control actions for the MR-HIFU system.

5.5 Numerical simulation study

This section presents simulation results obtained with various reduced-
complexity high-level models to illustrate the achievable control performance
and computation time of the HMI-MPC in comparison to the unreduced MI-
MPC.

5.5.1 High-level model complexity reduction

We first follow the input reduction method proposed in Chapter 4, as discussed
in Section 5.4.2.1. To determine the steady-state-critical sonication points Ps,
we solve (5.13) (with (A,B) corresponding to the phantom for the upcoming
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experiments in Section 5.6) to find u∗
ss, of which the 25 largest sonication powers

are shown in Figure 5.7 in descending order and normalized with respect to the
largest power ‖u∗

ss‖∞. Based on this, we choose Ps to consist of the Nps =
12 sonication points that are heated most by u∗

ss, and together apply 89% of
the total steady-state input power ‖u∗

ss‖1. These points are also indicated in
Figure 5.4 (green dots), where they can also be visually verified to correspond
to the key sonication points for the optimal steady-state heating Bu∗

ss (color
map). Next, we must determine the set of Npu additional uniformly distributed
sonication points Pu. To evaluate the effect on performance and solver time when
including a different number of sonication points, simulations are performed for
various Pu. These are indicated in Figure 5.4, and correspond to Npu equal to
2 (red ◦), 12 (blue ◦), 140 (black dots), and 280 (black and gray dots). Note
that since nu = 292 and Nps = 12, the case with Npu = 280 in fact yields
Ps ∪ Pu = Pc, which means no input reduction is applied.

Second, to apply the POD-based high-level model order reduction, we gener-
ate the snapshot matrix X (5.16) by running seven simulations of the unreduced
model (5.2) in closed-loop feedback with the MI-MPC (5.12), with each simu-
lation starting from a different treatment cell for a richer data set, especially
regarding the heat-up phase. The resulting singular values are shown in Fig-
ure 5.8, suggesting that the first 10 modes contain the most dominant behavior.
Correspondingly, to exemplify the achievable results using POD-based reduced-
order models, and to show the effects of using too few modes, simulations are
performed using nx̃ ∈ {5, 10, 15}.

As mentioned previously, when using a reduced-order high-level model, the
MPC is formulated using a sparse approach. When using the full-order model by
Ũ = Inx

, on the other hand, we investigate the computation times obtained using
both a sparse and condensed MPC approach. For convenience, all high-level
controller settings considered in this case study are summarized in Table 5.1.
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Figure 5.8: The 100 largest singular values of X (normalized).

Note that by Npu = 280 in input setting D and Ũ = Inx
in state settings 1

and 2, the high-level controllers of setups D{1,2} in fact represent the full-scale
MI-MPC (5.12) in sparse and condensed form, respectively.

5.5.2 Control performance and computation time

Simulations have been performed using Matlab R2017b and Gurobi 8.1.1 on
a laptop with Intel Core i7 @ 2.60 GHz CPU and 8 GB RAM. The resulting
computation times, for a prediction horizon N = 8, are presented in Figure 5.9.
Clearly, the reduced-complexity high-level controllers achieve much smaller com-
putation times than the unreduced setups D{1,2}. In particular, we observe that
for small input dimensions the condensed formulation enables the fastest com-
putations on average, indicating that in this case eliminating the state decision
variables outweighs the loss of sparsity in the optimization problem’s small in-
put component. This is visualized in Figure 5.10a-5.10c, depicting the nonzero
elements of the Hessian matrices of the different HMI-MPCs’ high-level stage
costs (note the different axis scaling). For increasing nũ, however, the input
component of the optimal control problem grows, resulting in the significant fill-
ing of the Hessian matrices, see Figure 5.10d-5.10f, which causes the complexity
of the dense controllers to grow more rapidly than that of the sparse controllers.

Table 5.1: HMI-MPC high-level reduction parameters.

Input setting A B C D
Nps 12 12 12 12
Npu 2 12 140 280

State setting 1 2 3 4 5
MPC formulation Sparse Dense Sparse Sparse Sparse
Transformation matrix Ũ Inx

Inx
U5 U10 U15
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Consequently, the densely formulated HMI-MPCs (state setting 2) are mostly
outperformed in terms of maximum computation time by the sparse-form POD-
reduced HMI-MPCs (state settings 3 to 5) for Npu ≥ 140 (input settings C and
D).

For the lower control layer, which is equal for all considered HMI-MPC se-
tups, the sparse formulation was found to be less computationally demanding
than the condensed form. When including the resulting solver times, with mean,
90th percentile, and maximum at 0.38 s, 0.58 s, and 1.07 s, respectively, real-
time feasibility (here defined as the maximum computation time of the HMI-
MPC being smaller than the sample time Ts = 3.2) is achieved using controllers
{A,B}{2,3}.

To evaluate the control performance, we compute the M -sample centered
moving average of the stage cost (5.12b) MAM (ℓ(zk, ǫk)), which for odd integers
M = 1 + 2m, m ∈ N, is defined as

MAM (ℓ(zk, ǫk)) =
1

M

k+M
2

∑

l=max{k−M
2 ,0}

ℓ(zl, ǫl), (5.18)

effectively smoothing the stage cost over an interval of (M − 1)Ts to reduce the
oscillations caused by relocating the transducer, thereby improving readability.
In Figure 5.11a, using M = 11, we indicate the range in which the smoothed
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Figure 5.10: High-level cost function Hessian matrix sparsity pattern for setting
(a) A1 (black) and A4 with matrix outline (gray, top left), (b) A4 (black) and
A2 with matrix outline (gray, top left), (c) A2, (d) D1 (black) and D4 with
matrix outline (gray, top left), (e) D4 (black) and D2 with matrix outline (gray,
top left), (f) D2.

stage costs lie for all the high-level input settings when using state setting 3 (red)
and when using settings {1,2,4,5} (gray). In addition, the results obtained with
A{1,2} are highlighted individually (black). Clearly, using state setting 3, the
HMI-MPC does not achieve satisfactory performance, from which we conclude
that using only the first five modes of the considered POD by Ũ = U5 does not
provide the higher control layer with sufficient model information to properly
optimize the mechanical transducer path. As a consequence, the transducer is
repositioned too infrequently, and the ROI cannot be adequately heated. For all
other high-level controller settings, on the other hand, this figure verifies that
in this case study the corresponding reduced-complexity HMI-MPC controllers
achieve similar performance as the full-scale MI-MPC (5.12). For example, the
HMI-MPC with high-level reduction setting A2 achieves similar tumor tempera-
tures as the unreduced MI-MPC, see Figure 5.11b, while exhibiting substantially
smaller computation times. In particular, compared to the fastest full-scale MI-
MPC implementation (the dense-form high-level controller in D2, see Figure 5.9),
the HMI-MPC A2 reduces the mean solver time from 36.05 s to 0.76 s, and the
maximum from 122.54 s to 1.27 s, which corresponds to a reduction of 98% and
99%, respectively.
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Figure 5.11: In (a), the range of the 11-sample moving average
stage costs MA11(ℓ(zk, ǫk)) versus time tk for settings {A,B,C,D}3 (red),
{A,B,C,D}{1,2,4,5} (gray), and A2 individually (black). In (b), the mean (solid)
and extremum (dashed) tumor temperatures for the HMI-MPC A2 and the unre-
duced MI-MPC D{1,2}, and the temperature reference (thin dash-dotted) and
upper bound (thin dashed).

5.5.3 Discussion

These results strongly motivate the proposed HMI-MPC (5.17) for substantially
decreasing the computation time with respect to the unreduced MI-MPC (5.12),
without sacrificing significant performance. In the considered case study, us-
ing the input selection method of Chapter 4, the HIFU system’s full heating
capability using nu = 292 sonication points can be approximated using only
Nps + Npu = 12 + 12 = 24 (A2) points with sufficient accuracy to determine
a (near-)optimal mechanical transducer path. As a result, using a dense MPC
formulation for the high-level controller achieves the fastest computations, and,
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in addition, is considered preferable over using a POD-reduced model due to
the absence of state approximation errors (although due to the hierarchical ar-
chitecture this effect is shown to be small for properly selected POD-reduced
models). If, however, such a considerable input reduction would not be possible,
for instance due to the thermal system having a very low diffusion coefficient,
model order reduction by POD in the high control layer provides an alterna-
tive for reducing the solver time with respect to the unreduced MI-MPC, while
achieving similar control performance. In this case, however, one must be sure
to include enough POD modes.

5.6 Phantom experiments

This section presents the results obtained from phantom experiments using a
clinical MR-HIFU setup to validate its control performance and real-time feasi-
bility.

5.6.1 Setup

In these experiments, we aim to heat a polyacrylamide tissue-mimicking phantom
as in [90], but with the ink replaced by water, using our HMI-MPC (5.17)To
allow for a comparison with the results reported in [53] obtained using a state-
of-the-art binary controller, we use the same ROI and the treatment cells, which
are depicted in Figure 5.4. However, as we are heating a phantom, of which
the baseline corresponds to the ambient temperature, we use as temperature
objectives the values described in Section 5.2.1 relative to 37 ◦C, i.e., we use
as ROI temperature reference an elevation of 5.5 ◦C, and the upper bound
equals 8 ◦C elevation inside S and 3 ◦C elevation outside S. For the HMI-
MPC, we use setting A2 from Table 5.1 for the higher control layer, and a
prediction horizon N = 10. In the binary controller of [53], each treatment
cell contains 80 sonication points (distributed over four concentric circles with
diameters 4, 8, 12, and 16 mm, where each circle contains 8, 16, 24, and 32
sonication points, respectively), which is approximately twice as many as in the
lower layer of our HMI-MPC, where each cell contains only 40 or 44 points, see
Figure 5.4. Thus, regarding the number of control inputs, the binary controller
offers more controller flexibility, meaning that if the HMI-MPC outperforms the
binary controller, it is truly due to possessing a superior control strategy.

5.6.2 Results

5.6.2.1 Performance and computation time

The distribution of the HMI-MPC’s high-level, low-level, and overall computa-
tion times are shown in Figure 5.12, verifying that the proposed setup achieves
real-time feasibility on the clinical setup. In Figure 5.13, we show the mean



5

5.6 Phantom experiments 141

C
om

pu
ta

ti
on

ti
m

e
[s

]

High Low Total
0

0.5

1

1.5

2

Figure 5.12: High-level, low-level, and overall computation time of the HMI-
MPC during the phantom experiments, indicating the mean (red +), median
(central mark), 25th and 75th percentiles (box edges), 10th and 90th percentiles
(whiskers), and outliers (gray dots).

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400 1600 1800
Time tk [s]

T
em

p
er

at
ur

e
el

ev
at

io
n

[◦
C

]

HMI-MPC 1

HMI-MPC 2
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(dashed) tumor temperatures for two HMI-MPC experiments (red and black)and
the temperature reference (thin dash-dotted) and upper bound (thin dashed).

(solid), 10th percentile (dash-dotted), which is commonly denoted as T 90, and
extremum (dashed) ROI temperatures for two experiments using the HMI-MPC
with heating until tk = 1400 (black) and tk = 1800 (red). These results indicate
that using the HMI-MPC, the large ROI can in general be adequately heated,
reaching satisfactory a steady-state temperature. For closer inspection regard-
ing the steady state, in Figure 5.14 we show the temporal averages of the mean
value (red), 10th percentile T 90 and 90th percentile T 10 (box edges), and ex-
trema (whiskers) of the measured ROI temperature distribution’s deviation from
its setpoint (i.e., Hyk with respect to zr) over the interval from tk ≥ 600 until
the sonication is stopped. Additionally, this figure shows the mean, T 90, and
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Figure 5.14: ROI temperature mean (red), 10th percentile T 90 and 90th per-
centile T 10 (box edges), and extrema (whiskers) with respect to the ROI setpoint
Tr in steady state for HMI-MPC experiments 1 and 2, compared to results re-
ported in [53] using a state-of-the-art binary controller and ROI of 44 mm and
58 mm diameter.

T 10 as reported in [53] using a binary state-of-the-art clinical controller for the
same 58 mm diameter ROI and for a smaller 44 mm diameter ROI1, although
it must be remarked that [53] concerns an in-vivo experiment. Clearly, the tem-
perature distributions achieved in this work using HMI-MPC 1 (1.46 ◦C) and
HMI-MPC 2 (1.78 ◦C) are significantly more uniform than those obtained in [53]
using the binary controller for the 44 mm and 58 mm diameter ROIs (2.25 ◦C
and 2.20 ◦C, respectively). Moreover, the mean temperature deviations from the
desired setpoint for HMI-MPC 1 (−0.15 ◦C) and HMI-MPC 2 (−0.02 ◦C) are
also smaller than for the Binary 44 mm (−0.23 ◦C) and 58 mm (−1.9 ◦C). These
results already demonstrate the enhanced control performance of the proposed
MPC design. However, as discussed in more detail in Section 5.6.2.2 below, the
HMI-MPC’s temperature control performance is actually considered to be even
better, as the results presented in Figure 5.13 and Figure 5.14 are corrupted by
thermometry artifacts, causing the measured ROI temperature distribution to
seem less homogeneous than the actual ROI temperature in the phantom.

Next, we analyze the spatial variation of the temperature distribution. We
find that the coldest 10 percent of the ROI lies at its periphery, as shown in the
temperature contour plots in Figure 5.15, corresponding to the areas outside the
treatment cells (dashed green), meaning they cannot be heated directly. This
could be improved by redefining the transducer positions and treatment cells,
or including more, such that they better cover the areas critical for steady-state

1The only 58 mm diameter ROI experiment presented in [53] (see [53, Data set 8]) was
mentioned not to be representative, since excessive unforeseen near-field heating at a bone-
tissue interface prevented further heating. Therefore, we also show results for a 44 mm diameter
ROI computed from the average of [53, Data sets 1 to 4]) for comparison with our HMI-MPC.
The temperature mean, and 10th and 90th percentiles are obtained from [53, Table II]. For
the 44 mm ROI, the extrema are estimated from [53, Figure 3a]. For the 58 mm ROI, extrema
indications were not presented.
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Figure 5.15: Contour plots of the focal plane temperature elevation for HMI-
MPC experiment 1 averaged over (a) 320 ≤ tk ≤ 400 and (b) 1300 ≤ tk ≤ 1400,
and for experiment 2 over (c) 320 ≤ tk ≤ 400 and (d) 1700 ≤ tk ≤ 1800, and the
outline of R (solid red), S (dashed red), and the treatment cells (dashed green).

heating, which could be done via the optimal transducer placement method from
Chapter 4. Figure 5.15c shows that for 320 ≤ tk ≤ 400, most of the ROI is be-
tween 5.3 ◦C and 5.7 ◦C elevation, i.e., within 0.2 ◦C from the reference. To
relate it to (the incremental versions of) the treatment objectives visualized in
Figure 5.1, consider the temperature cross sections at ry = 0 in Figure 5.16a and
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Figure 5.16: The mean (line) and extremum (area) tumor temperature estimates
of HMI-MPC experiment 2 during 320 ≤ tk ≤ 400 (black) and 1700 ≤ tk ≤ 1800
(red) of the cross section at (a) ry = 0 and (b) rx = 0, and the temperature
reference (dash-dotted), upper bound (dashed), and ROI edge (dotted).

rx = 0 in Figure 5.16b for experiment 2 during 320 ≤ tk ≤ 400 (black), clearly
depicting the controller’s ability to achieve a uniform temperature inside R near
the reference of 5.5 ◦C (dash-dotted). In Figure 5.16b, the temperature fluctua-
tions (gray area) can be seen to be largest at the ROI edge, which is the result of
constant diffusive heat loss being periodically counteracted by direct sonication,
which is possible due to these areas being within electronic beam steering range,
see the treatment cells in Figure 5.15 for rx = 0, and which enables tighter
temperature control. By contrast, this is not the case in Figure 5.16a due to the
periphery of R at ry = 0 being outside the treatment cells, as mentioned earlier,
see Figure 5.15. Upon closer inspection of the applied heating during tk ≥ 400,
which for experiment 2 is visualized in Figure 5.17 (and which is also represen-
tative for experiment 1), we find that indeed the only significant heating occurs
at the ROI edge to counteract diffusive heat loss, as one would expect for a non-
perfused phantom. Moreover, note the similarity of the averaged steady-state
heating in Figure 5.17 compared to its model-based counterpart in Figure 5.4
used in finding the steady-state-critical sonication points Ps in the high control
layer. This verifies that Pc is adequately selected, indeed enabling the high-level
controller (5.17) to approximate the required steady-state heating with sufficient
accuracy for determining the optimal mechanical transducer path.

5.6.2.2 Thermometry artifacts

Unfortunately, the conducted experiments suffered from measurement artifacts,
resulting in the false registration of an additional ROI temperature increase for
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Figure 5.17: The heating Buk averaged over 400 ≤ tk ≤ 1800 (color map), the
ROI R (solid black), and the treatment cells (dashed black).

approximately tk ≥ 400 s, expressed by a larger maximum ROI temperature in
Figure 5.13 than truly in the phantom. The artifacts are centered at approxi-
mately (rx, ry) = (0.005, 0), and are shorter in the rx-direction than along the
ry-axis, see Figure 5.15b for HMI-MPC experiment 1, and Figure 5.15d and Fig-
ure 5.16 (red) for experiment 2. Consider again the applied heating for tk ≥ 400,
an example of which is shown in Figure 5.17. Clearly, the temperature evolutions
from Figure 5.15a to Figure 5.15b, and from Figure 5.15c to Figure 5.15d (or
equivalently from the black to the red profiles in Figure 5.16), do not correspond
to the applied heating, and are therefore concluded to be caused by thermome-
try artifacts. This is further supported by the strongly heterogeneous (especially
along the rx-axis) temperature maps that remain after the phantom has fully
cooled down, see Figure 5.18 for an example, which in the absence of artifacts
should be uniformly equal to zero. Consequently, we expect the truly achiev-
able temperature homogeneity of the ROI to be even better than Figure 5.13
suggests.

The artifacts were most likely caused by the occurrence of B0 field drift, i.e.,
changes over time of the polarizing magnetic field in ry-direction along the MRI
scanner bore (see Figure 5.3), which could not be adequately compensated for
by the second-order drift correction algorithm due to significant heterogeneous
phase drift on a relatively small spatial scale. That is, the phantom is relatively
small (17 cm diameter), and its magnetic susceptibility is considerably different
from air. This results in strong localized field inhomogeneities in and around
the phantom, which in case of B0 drift may lead to inhomogeneous phase drift
in the phantom, especially in the rx-direction perpendicular to the field, thereby
leading to thermometry artifacts [40,44]. In addition, due to the heated volume
being large (8 to 10 cm diameter, see Figure 5.15 and Figure 5.16) compared
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after cooling down.

to the phantom, only a relatively small unheated phantom volume remains as
background reference for the drift estimation [118]. Finally, using the phantom
test rig, the phantom is not centered in the MRI scanner bore in rx-direction,
which could explain the rx-asymmetry of the measurement artifacts.

To reduce the occurrence of the observed thermometry artifacts, further de-
velopment of the drift correction algorithms could be pursued [118–120]. Another
option, relating more directly to actual patient treatment, would be to perform
the experiment using a larger (possibly anthropomorphic) phantom and a re-
designed test rig that allows for centering the phantom in the MRI scanner
bore. The increased object volume, compared to the phantom considered in this
work, typically leads to a more uniform magnetic susceptibility distribution, and
results in more unheated tissue being available for drift estimation, both of which
are beneficial for the accuracy of the MR thermometry and the drift correction.
Alternatively, an offset-free MPC scheme [78, 79] could be employed, which es-
sentially estimates online the constant or slowly varying mismatch between the
measurements and model. For MR-HIFU hyperthermia using a mechanically
stationary transducer, this has already been shown to be able to identify signifi-
cant plant-model mismatch, see Chapter 2. However, two important remarks are
in order. First, particular attention must be paid in selecting the disturbance
model, as this determines the manner in which the offset-free algorithm cap-
tures the input or output disturbances. Second, when switching the transducer
position, the steady-state temperature and heating are (close to) periodic, in-
stead of constant, which requires appropriate modifications to the conventional
offset-free MPC architectures.
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5.7 Conclusion

This chapter presented a hierarchical MI-MPC approach for improved tempera-
ture control in large-volume MR-HIFU hyperthermia. First, the integer part of
the problem, representing the range-extending mechanical transducer switching,
is determined by swiftly solving a reduced-complexity MIQP in the higher control
layer. Here, the complexity reduction is achieved by (target-conformal) input
reduction and/or (POD-based) model order reduction, and by wisely choosing a
sparse or condensed MPC approach depending on the specific reduction settings.
Subsequently, in the lower control layer, the sonication plan is determined using
an unreduced high-fidelity model for optimal control performance. In numerical
simulation, the proposed HMI-MPC architecture is shown to enable tremendous
computational benefit without sacrificing significant performance. Using phan-
tom experiments on a clinical MR-HIFU setup, the HMI-MPC’s performance
and real-time feasibility are verified.



The more I learn, the more I
realize how much I don’t know.

Albert Einstein



CHAPTER 6

Conclusion

Local mild hyperthermia is a potent adjuvant cancer treatment modality, able to signif-

icantly enhance the desired effects of radio- and chemotherapies, without introducing

additional toxicity and its unwanted side effects. To unlock the full therapeutic po-

tential of hyperthermia therapy, the temperature elevation must be induced accurately

and uniformly over a prolonged period of time. MR-HIFU is a promising technology

for noninvasively applying powerful heating with millimeter-range accuracy based on

near-real-time temperature measurements. However, currently most MR-HIFU treat-

ments are performed using predetermined treatment plans or simple feedback controllers,

resulting in suboptimal treatment quality. In this thesis, several relevant control chal-

lenges have been identified, in response to which MPC-based control solutions have been

developed, aimed at enabling local MR-HIFU hyperthermia treatments of optimal qual-

ity. In this chapter, the key results of the individual contributions in this thesis will be

summarized, and recommendations for interesting future research topics will be given.
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6.1 Conclusions

This thesis provides a significant contribution toward realizing higher-quality
MR-HIFU hyperthermia treatments in clinics by enabling more accurate tem-
perature control using advanced MPC-based control solutions. In Chapter 1,
three relevant research objectives have been formulated, which for convenience
are repeated here.

Objective 1 Enable the accurate and robust regulation of the temperature in the
tumor over a prolonged period of time, despite the presence of considerable
and varying model uncertainty.

Objective 2 Enable high treatment quality for large-volume MR-HIFU hyper-
thermia by simultaneously optimizing online the sonication plan for elec-
tronic beam steering and the mechanical transducer trajectory.

Objective 3 Enable the automated and target-conformal distribution of trans-
ducer positions and sonication points for optimal treatment quality.

Objective 4 Provide an experimental validation of the novel feedback control
concepts developed in this thesis on a clinical MR-HIFU system.

This thesis accomplishes these objectives via four individual contributions, each
of which relates to a single chapter, see also Chapter 1, of which in this section
the key results will be discussed and related to the objectives above.

6.1.1 Offset-free MPC

To achieve Objective 1, in Chapter 2 an offset-free MPC scheme is presented,
enabling MR-HIFU hyperthermia treatments of optimal quality despite the pres-
ence of (severe) plant-model mismatch, which is inevitably present when treating
patients due to the large uncertainty in thermal and thermoregulatory model-
ing, and due to the impracticability of extensive model identification. In par-
ticular, this approach allows for assuming a time-invariant plant model with
homogeneous tissue properties, thereby avoiding the necessity for accurate ther-
mal modeling. Subsequently, a disturbance observer is used to identify constant
and slowly varying model errors, allowing for the MPC to take these discrep-
ancies into account when computing the optimal control inputs to recover the
steady-state control performance as achievable in case of no model mismatch.
To also address Objective 4, this feedback setup has been implemented on a
clinical MR-HIFU system, with which experiments have been performed on an
in-vivo porcine thigh muscle with considerable vascularization in the target re-
gion. These experiments verified the offset-free MPC scheme’s effectiveness for
successfully estimating, and subsequently mitigating, the effects of time-invariant
parameter mismatch and of the spatially and temporally varying heat loss by
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blood perfusion. To be precise, it was shown that when using a standard MPC
design without offset-free capabilities, a negative steady-state offset of 0.5 ◦C
in the mean target temperature occurred, which using the presented offset-free
MPC scheme is eliminated within approximately one minute. As we have re-
cently shown that a standard MPC already outperforms a clinical state-of-the-art
binary controller, the proposed offset-free MPC design is concluded to be suit-
able for enabling significantly more robust and accurate temperature control for
MR-HIFU hyperthermia treatments in clinics.

6.1.2 Switched-actuator systems with setup times

In Chapter 3, the class of switched-actuator systems with setup times (SAcSSs)
is introduced, which can be used to conveniently describe the tissue’s thermal
dynamics together with the transducer repositioning. A modeling framework
tailored to SAcSSs is provided, which offers two key advantages. First, it allows
for the user-friendly and systematic derivation of a mixed-integer state-space
model that is directly suitable for formulating MI-MPCs. Second, using this
framework the resulting model contains significantly less Boolean variables than
via other typical modeling approaches, which consequently leads to more com-
putationally efficient MI-MPC schemes. As these MI-MPC setups are suitable
for simultaneously optimizing online the discrete mechanical transducer motions
as well as the continuous sonication powers in large-volume MR-HIFU hyper-
thermia, as verified via numerical case studies, Chapter 3 provides an important
step toward achieving Objective 2.

6.1.3 Target-conformal optimal actuator placement

In Chapter 4, a method is developed for the automatic distribution of transducer
positions and sonication points, aimed at optimizing the achievable treatment
quality for the specific tumor shape and tissue properties, thereby realizing Ob-
jective 3. The procedure is computationally tractable and provides the user
with insightful tuning parameters to balance the importance of optimizing the
steady-state temperature as expected from the thermal model, against the de-
sire for distributing the transducer positions and sonication points as uniformly
as possible throughout the target region to enable faster heat-up and generally
improve robust performance in the presence of spatially varying disturbances or
modeling errors. The procedure’s effectiveness for optimally selecting the trans-
ducer positions and sonication points was demonstrated via a numerical case
study involving an irregularly shaped target region, illustrating its usefulness for
MR-HIFU control design in general. Regarding the sonication points, the case
study revealed that near-optimal performance can be achieved using a strategi-
cally selected small set of points, and thereby limited controller complexity, thus
paving the way for the practical implementation of more advanced control solu-
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tions such as (MI-)MPC, which offer potential for superior control performance
compared to simple feedback schemes, but in doing so are also often more prone
to increased computational complexity. Besides accomplishing Objective 3, the
developments in Chapter 4 also addressed Objective 2 in two ways. First, in
the case study in Chapter 4, the method was used to set up a MI-MPC scheme
for large-volume MR-HIFU hyperthermia (derived using the SAcSS framework
from Chapter 3), thereby directly contributing to Objective 2. Second, in Chap-
ter 5 the sonication point selection steps of the actuator placement method were
employed for the high-level input reduction in the hierarchical MI-MPC archi-
tecture for large-volume MR-HIFU hyperthermia, as will be discussed next in
Section 6.1.4, thus again assisting in achieving Objective 2.

6.1.4 Hierarchical mixed-integer MPC

Chapter 5 is dedicated to fully realizing Objective 2. That is, although the MI-
MPC schemes derived using the SAcSS framework introduced in Chapter 3 are
less computationally demanding than via typical other modeling approaches,
real-time implementation may still be challenging when using long prediction
horizons and many transducer positions and sonication points, which may be
required for optimal treatment quality. Moreover, while the target-conformal
actuator placement method proposed in Chapter 4 allows for optimizing the
control performance for a limited number of control inputs, this will always lead
to some loss of performance and robustness. Therefore, in Chapter 5 a two-layer
hierarchical (H)MI-MPC architecture is presented, in which in the higher layer
the discrete transducer positioning is swiftly determined by a reduced-complexity
MI-MPC, and subsequently in the low level the sonication powers are optimized
via a QP based on a high-fidelity model for optimal performance and robust-
ness. Consequently, the HMI-MPC achieves the same treatment quality as highly
complex MI-MPCs, but with substantially smaller solver times, thereby satis-
fying the computational requirements for real-time feasibility. This is verified
by phantom experiments on a clinical MR-HIFU setup, thereby also addressing
Objective 4. Moreover, by comparing the experimental results to previously pub-
lished results of a state-of-the-art binary controller, the HMI-MPC is shown to
enable significantly more accurate and homogeneous heating over a large tumor
region than the control design currently used in clinics.

6.2 Recommendations

There remain many open challenges in improving hyperthermia therapy for can-
cer treatment. Based on the results in this thesis and on observations made
in parallel with this work, this section discusses several relevant directions for
future research.
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6.2.1 Hyperthermia therapy

Over the past decades in particular, tremendous research efforts have been
made regarding hyperthermia in oncology, resulting in valuable knowledge about
its underlying heat-induced mechanisms that are beneficial for cancer treat-
ment [3, 4, 12–17], and substantial pre-clinical and clinical evidence of its po-
tency as a chemo- and radiosensitizer [3, 16, 18–24]. These results provided the
main motivation for the research in this thesis. However, further research into
hyperthermia for cancer therapy remains urgently required today, as a deeper
quantitative understanding of its effects, and their relation to treatment param-
eters such as temperature and duration, may lead to a significant improvement
of the clinical success of hyperthermia-based treatments. To this end, it is im-
perative that more (quantitative) clinical trials regarding hyperthermia therapy
will continue to be performed. Up to now, one of the key obstacles for exact
quantitative research was the inability to accurately induce the temperature el-
evation throughout the tumor, which contributed to, for example, lack of clarity
regarding which thermal parameter is best suited as a prognostic for treatment
outcome [17, 62]. Regarding this problem, the control solutions in this thesis
could serve as an enabling factor, as they can achieve more accurate, uniform,
and reproducible treatment temperatures. In addition, more research and clin-
ical trials involving hyperthermia therapy is desired, as this continues to build
evidence for its safety and effectiveness, which contributes to more widespread
acceptance and clinical application, and as new discoveries may translate into
promising novel applications, such as hyperthermia in conjunction with proton
irradiation [121–123], or indicate the applicability of hyperthermia therapy to
different types of tumors.

6.2.2 HIFU applicator

The development of ultrasound applicators has led to highly advanced and ver-
satile phased-array HIFU transducers with an electronically steerable focus [30].
This is a core technology for achieving high-performance MR-HIFU temper-
ature control. Further developing these instruments and integrating them in
clinical MR-HIFU setups enables improved actuator flexibility, which may lead
to better control performance [124]. For example, compared to the spherically
curved, random sparse array designs [85] such as in the Profound Sonalleve or
Insightec Exablate, of which the former contains 256 acoustic elements randomly
distributed (without overlap) over the 13 cm diameter transducer area [30,125],
planar transducers populated with significantly more (5000 to 8000) elements
on a similar surface area are expected to exhibit a considerably larger electronic
beam steering range [126, 127]. This allows for defining larger treatment cells
inside which the focal spot can be rapidly steered, and consequently reduces the
need for the mechanical repositioning of the transducer, during which no heat-
ing is allowed, in large-volume MR-HIFU treatments. As a result, such highly
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populated planar transducers would significantly improve the ratio of heating
versus non-heating time in each treatment cell (which for cycling steady-state
behavior such as observed in Chapters 3 to 5 can be roughly approximated by
1:(scycle + Ncycle), with scycle and Ncycle denoting the total transducer travel
time and the number of treatment cells, respectively, in the cycle), which would
positively affect the achievable homogeneity of the temperature distribution.
Alternatively, the latter issue can be addressed by redesigning the transducer’s
robotic carrier system in such a manner that it allows for faster mechanical
displacements.

6.2.3 MR measurement and estimation

As a result of outstanding developments in the area of MR thermometry, the
current spatial, temporal, and thermal resolution is sufficient for feedback con-
trol via MR-HIFU [40, 42, 44, 45]. However, when using more high-performance
controllers, such as the MPC algorithms presented in this thesis, the po-
tential controller accuracy has surpassed the measurement accuracy. Hence,
further improvements in the thermometry’s reliability, quality, sampling fre-
quency, and data processing time are expected to contribute to enabling tighter
temperature control. Interesting ongoing developments include novel MR ac-
quisition protocols for an improved balance between resolution, speed, and
measurement accuracy [128], and more sophisticated data processing meth-
ods such as multi-baseline [129], referenceless [130], hybrid [119, 131], or vari-
ous other [118, 120] techniques to reduce thermometry artifacts resulting from
temperature-independent magnetic field changes such as due to motion (e.g., pa-
tient, organ, or respiratory motion) or strong spatial variations of the magnetic
susceptibility in the measurement volume [44]. Indeed, such improved meth-
ods may mitigate artifacts such as encountered in the phantom experiments of
Chapter 5.

Due to the spatial density of MR imaging, i.e., providing data on a planar or
volumetric grid, for thermometry noise effects can to a great extent be attenuated
using simple state observers, as done throughout this thesis. However, to increase
functionality, extending the feedback designs in this thesis with more sophisti-
cated estimation or image recognition strategies may prove to be useful. Exam-
ples of such extensions include (variations of) Kalman filters [132,133] for adap-
tive balancing between model and measurement data when combined with online
estimation schemes of the measurement noise and process noise covariances, or
motion tracking schemes for the treatment of moving organs [131,134–136] when
combined with adaptive MPC setups that allow for model updating [137–139].
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6.2.4 Experimental and clinical evaluation

The novel MPC schemes for MR-HIFU hyperthermia developed in this thesis
have been verified regarding temperature control performance in simulations,
phantom experiments, and in-vivo experiments. The results clearly indicate
more accurate, robust, and homogeneous heating when compared to results re-
ported previously for current state-of-the-art controllers, see Chapters 2 and 5.
However, more experimental evaluation is warranted to provide further evidence
demonstrating and quantifying the performance improvement of the proposed
MPC-based strategies. When combined with the relation between the (thermal)
treatment parameters and clinical outcome (which as discussed above in Sec-
tion 6.2.1 is highly desirable to continue studying via quantitative clinical trials
for hyperthermia therapy), such rigorous experimental proof may in turn be
used as a solid indication of the potential clinical impact of the presented MPC
designs, providing a stronger motivation for their clinical application. Moreover,
further experimental and clinical testing of the developed control strategies under
various different circumstances may allow for a better assessment the controller
sensitivity with respect to, for example, modeling errors, measurement uncer-
tainty, or organ motion. Such an analysis is important to identify which aspects
of the feedback scheme are most practically relevant for further development,
which allows for prioritizing possible future research directions, such as the mea-
surement and estimation technologies mentioned above in Section 6.2.3 or the
robust and adaptive MPC methods discussed below in Section 6.2.5.1 for dealing
with parameter mismatch and organ motion.

6.2.5 MPC design

This thesis provides a clear motivation for using MPC to regulate the tempera-
ture in hyperthermia therapy. The MPC designs in this work can be extended or
augmented to provide more rigorous theoretical support, enhance their practi-
cal performance, and diversify their applicability to different situations. Several
interesting research directions are listed here.

6.2.5.1 Model uncertainty

In Chapter 2, it is argued that modeling errors are inevitable when treating pa-
tients, and correspondingly an offset-free MPC design is proposed to improve the
control performance in the presence of constant or slowly varying plant-model
mismatch. Such a feature is lacking from the (H)MI-MPC designs in Chapters 3
to 5 for large-volume MR-HIFU, and consequently their performance may be
suboptimal in case of modeling uncertainty. The offset-free architecture from
Chapter 2 is a powerful general-purpose solution, compounding the steady-state
effects of all unmodeled behavior into an additive disturbance vector. However,
such an approach is not suitable for controlling switched systems, such as the
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large-volume MR-HIFU setup, due to the states and inputs not converging to a
fixed point in steady state, but instead exhibiting cyclic or periodic behavior due
to the transducer switching. To enhance the robust performance of the (H)MI-
MPC schemes for large-volume MR-HIFU in a clinical setting, the development
of an offset-free MPC design for switched systems could be pursued. Here, a
particularly interesting challenge is the selection of the disturbance model, i.e.,
what type of uncertainty each disturbance variable should capture and how
these should be incorporated in the state-space model in such a manner that
convergence of the estimates is guaranteed. For example, by properly including
output disturbances, measurement artifacts as encountered in Chapter 5 could
be identified. Alternatively, especially regarding parametric uncertainty or to
account for patient and organ motion, researchers may turn to the recently de-
veloped adaptive MPC methods incorporating online parameter estimation and
robust recursive model updates [137–139], possibly employing machine learning
techniques [140,141].

6.2.5.2 Stability and convergence guarantees

The controllers developed in this thesis exhibit stable closed-loop behavior and
desirable control performance, partly due to the inherent stability of the tissue’s
first-order thermal dynamics, but are not guaranteed to converge to an optimal
equilibrium. Note that due to the stability of the thermal system and the absence
of hard state constraints, we could easily guarantee asymptotic stability of the
optimal nominal steady-state pair (xs, us) via a standard tracking MPC formu-
lation employing a terminal penalty, see [67, Section 2.5.3]. However, we opted
not to use such a scheme for two reasons. First, a tracking MPC with terminal
penalty was observed to exhibit significantly deteriorated transient performance,
as it aims to minimize the distance to (xs, us), resulting in excessive heating of
the tumor region to achieve faster convergence of the temperature in the healthy
tissue via diffusion, which is exactly opposite to the true treatment objective
of heating the tumor to the optimum temperature while avoiding temperature
elevations in healthy tissue. Second, in case of plant-model mismatch, which is
inevitable in practice as discussed in Chapter 2, the optimal steady-state pair
(xs, us) of the nominal model may not be an equilibrium for the actual plant due
to the nonnegativity input constraints uk ≥ 0nu

, by which the stability proof
of the tracking MPC does not hold anymore. The second issue can be resolved
using an offset-free MPC scheme [78,79] together with a target selector [91,92] to
determine at each time k ∈ N the augmented system’s reachable optimal steady-
state pair (xs(d̂k), us(d̂k)) corresponding to the current disturbance estimate d̂k.
However, when using a tracking cost with (xs(d̂k), us(d̂k)) as target, the undesir-
able transient behavior persists. In addition, as discussed in Chapter 2, due to
noise combined with input constraints being active in steady state, the optimal
target (xs(d̂k), us(d̂k)) may be far away from the reference tumor temperature
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42 ◦C in case of an unfortunate disturbance estimate d̂k, which causes the target-
tracking MPC to steer the system towards the undesirable target, see also [93],
resulting in deteriorated treatment quality.

Therefore, in all MPC designs in this thesis we chose to directly optimize the
true treatment objective, which involves minimizing the tumor temperature de-
viation from the typically unreachable 42 ◦C reference while protecting healthy
tissue and avoiding overheating the tumor (and in Chapter 2 also penalizing the
underheating of the tumor). Such an approach in fact corresponds to the ratio-
nale of economic (E)MPC [142–145]. Therefore, a meaningful future research
direction would be to cast the MPC schemes in this thesis into the formal EMPC
framework to assess whether asymptotic stability can be guaranteed, or whether
adaptations are required and what their impact on the control performance is.
For example, it may be interesting to investigate if EMPC architectures with ter-
minal (set) constraints and penalties [93,146–148] may guarantee stability with-
out being overly restrictive or detrimental to performance, or if EMPC schemes
with only simple linear end penalties [149–151] or even without any terminal
conditions (but, instead, approximate optimality for sufficiently long horizons)
are better suited for the problem at hand [152–154]. Notable extensions that
may prove useful regarding the MPC algorithms in this thesis include EMPC
with offset-free functionalities [79, 155–157], periodic cost functions [158–161],
and hierarchical structures [162].

On a final note regarding stability guarantees, for the HMI-MPC scheme in
Chapter 5 a closer look may be required into accounting for the prediction error
in the high control layer resulting from the complexity reduction. A potential
solution could be found in tube-based robust MPC methods [163–165] as applied
in the hierarchical design of [166]. Note that also for tube-based robust MPC,
integration exists toward EMPC [167] with additionally periodic [159] or offset-
free [157] capabilities.

6.2.5.3 Input parameterization

In this thesis, a zero-order hold is assumed for the control inputs, which during
optimization are allowed to vary for each discrete time step in the MPC predic-
tion horizon for maximum control flexibility, which generally implies maximum
performance. However, this also leads to (relatively) rapidly growing controller
complexities for longer horizons, thereby essentially imposing an upper limit on
the maximum horizon length, which in turn may negatively affect control per-
formance. In this thesis, these negative effects have been observed to be inconse-
quential, partially as a result of the tissue’s stable first-order thermal dynamics
together with the hyperthermia temperature control problem essentially being a
regulator problem due to the constant optimal tumor temperature. Nevertheless,
in case longer horizons are desired, one may employ input parameterizations such
as move blocking [67]. This allows for including longer predictions in the MPC
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optimization, without increasing the number of independent decision variables
and, thereby, the controller complexity. This may be useful when, for example,
using an EMPC framework of which the stability proof requires a sufficiently
long horizon [152,153].

6.2.6 Applications

This thesis focused on MR-HIFU for hyperthermia therapy, clearly demonstrat-
ing its strengths for highly accurate feedback-controlled heating. Therefore,
MPC is also considered a promising control solution for enhancing the quality
of other thermal therapies.

6.2.6.1 Thermal ablation

As mentioned in Chapter 1, MR-HIFU is also highly suitable for thermal abla-
tion. In fact, currently most clinical applications of (MR-)HIFU concern abla-
tion, rather than (mild) hyperthermia, for the (experimental) treatment of tu-
mors of the liver, breast, uterus, pancreas, bone, connective tissue, (para)thyroid,
kidney, and brain, and for functional neurosurgery aimed at treating Parkinson’s
disease, essential tremor, epilepsy, and chronic neuropathic pain [8,30,47,83,168].
As this thesis clearly showcases the suitability of MPC for accurately controlled
MR-HIFU treatments, and other researchers have also already recognized the
potential of MPC for thermal ablation [69–71], continuing the development of
such control strategies may further enhance the quality, safety, effectiveness, and
time efficiency of MR-HIFU thermal ablation treatments. When translating the
MPC designs in this thesis to thermal ablation, specific attention must be paid
to the formulation of the cost function and constraints. For example, when the
cost function involves the thermal dose, which is commonly defined as depending
exponentially on time and temperature [17,69,116], a nonlinearity is introduced
in the controller. However, based on [69–71], this is not expected to be a major
hurdle, as in terms of control design it is one of the key strengths of MPC (and
especially EMPC) to allow for intuitively specifying the cost function and con-
straints in such a manner that they reflect the underlying treatment objective.

6.2.6.2 MR-guided radiofrequency and microwave hyperthermia

Besides HIFU, electromagnetic (EM) waves are highly suitable for noninvasively
heating internal body tissues. As discussed in Chapter 1, this is typically done
using radiofrequency (RF) or microwave (MW) applicators. Actually, today hy-
perthermia treatments are more often performed using EM-based methods than
via ultrasound [16, 29]. Although HIFU offers certain advantages, especially
regarding its extraordinary spatial accuracy, RF/MW heating should not be
considered an inferior technology for hyperthermia. To the contrary, RF/MW is
complementary to HIFU, as the former is generally better suited for the heating
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Figure 6.1: Visualization of the antennas (gray) around the patient (orange) for
the BSD Sigma-Eye EM applicator [169].

of larger regions as in deep (loco)regional hyperthermia, or to treat areas that
contain significant air pockets or which are obstructed by bone. With the ongo-
ing development of more advanced MR-compatible multi-antenna phased-array
EM applicators that enable three-dimensional focus steering, see Figure 6.1 for
an example, there is major potential for high-quality MR-guided (MR-)RF/MW
hyperthermia treatments. The current clinical state of the practice is to deter-
mine the optimal relative antenna settings offline using hyperthermia treatment
planning [170–172], based on extensive EM and possibly thermal simulations
using patient-specific models, and then scale the total heating power online via
manual intervention. This practically comes down to using only one degree of
freedom for controlling the temperature, which in addition can be assumed to not
be optimally exploited. That is, the power steering is performed manually, but,
as will be discussed in more detail below, the mapping from antenna settings to
temperature is high-dimensional, multi-input multi-output, and nonlinear, and
therefore too complex for manual optimization. Promising results have already
been obtained in research evaluating online simulation-based re-optimization of
the antenna settings, especially regarding the reduction of unwanted hot spots in
healthy tissue, which are currently often a limiting factor in achieving adequate
heating of the tumor [173–178]. Therefore, realizing a fully automated MPC
feedback loop is expected to enable significantly enhanced treatment quality,
as this allows for optimally controlling all antenna phases and amplitudes indi-
vidually, which for the 12-antenna applicator in Figure 6.1 leads to 23 degrees
of controller freedom1, for instance. In addition, eliminating the clinician from
the feedback loop provides a more standardized and reproducible treatment ap-
proach, which in principle (clinical acceptance and regulatory approval or certifi-
cation aside) facilitates more reliable and widespread application of MR-RF/MW

1The constructive interference of EM waves depends on the antenna phases relative to each
other. Therefore, one antenna phase is fixed to zero, leaving 11 phases and 12 amplitudes as
independent control variables when using a 12-antenna applicator.
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hyperthermia. Therefore, the development of high-performance MPC schemes
for MR-RF/MW deserves considerable future research efforts. Although many
principles of the MR-HIFU MPC designs in this thesis are easily translated to
MR-RF/MW, new problems will also arise in closing the loop for MR-RF/MW,
due to essential practical differences with MR-HIFU. Two notable challenges
that are anticipated are discussed next.

A first key topic that may require significant attention is the large system
scale inherent to MR-RF. That is, the modern advanced phased-array EM-
applicators with steerable focus consist of multiple rings of antennas placed
around the patient, as shown in Figure 6.1. Consequently, there is a large pa-
tient volume inside the applicator, which potentially receives heat and therefore
must be monitored. Combined with the sufficiently high MR thermometry spa-
tial resolution required to detect hot spots in the (sub)centimeter-range, espe-
cially at bone-tissue interfaces [171,177], this may lead to the state and output
dimensions of the thermal state-space model being over 105. To enable compu-
tational tractability and real-time feasibility of a corresponding MPC scheme,
these incredibly large system dimensions must be dealt with properly. Possible
solutions may be found in MPC and observer schemes based on reduced-order
models [114,133], condensed MPC formulations [67,115], and graphical process-
ing unit (GPU-)based parallel computing. In addition, due to the large number
of measurements required for the entire monitored volume, the full MR ther-
mometry acquisition sequence may take a significant amount time. Sampling
intervals of around 90 seconds, for example, are not uncommon, resulting in
considerable latency from a feedback control perspective. To reduce the acquisi-
tion time without sacrificing accuracy, an option would be to abandon the fixed
full-volume measurement sequence, and instead process each slice1 individually.
This could be especially beneficial when combined with an algorithm that adap-
tively selects the slice at which a new measurement is needed most, which may
be determined based on the estimated observer error or some weighting that
indicates the performance-critical region. Moreover, an adaptive online switch-
ing between slow accurate measurements and fast coarse measurements may be
employed [180]. Note, however, that such enhancements must be accompanied
by developments of the MRI console to facilitate the online switching between
different scanning protocols. In parallel, an observer design exploiting sensor
fusion may improve the temperature estimation accuracy by combining the tem-
porally sparse and spatially dense MR thermometry data with the temporally
dense and spatially sparse readings of the (minimally) invasive or intraluminal
thermocouple probes often used in MR-RF hyperthermia.

A second important challenge from a control perspective is the nonlinear-
ity of the input model. That is, in EM-based heating, the specific absorption
rate (SAR) indicates the power deposition density. Contrary to HIFU, where

1In MR imaging, measurement data is collected per slice, which is a thin volumetric layer
centered at a planar cross section [179].
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the control inputs enter the control-oriented state-space model linearly (describ-
ing the acoustic power at the sonication points, which in turn is realized by
determining the corresponding acoustic driving signals’ phases and amplitudes
separately), using EM the SAR cannot be treated as a simple linear control in-
put. In particular, although the SAR enters the state update equation linearly,
the SAR itself depends nonlinearly on the antenna amplitudes and phases, and
not all SAR profiles are physically realizable, as evidenced by the many works on
SAR-based optimization of the antenna settings [170, 181–183]. Consequently,
the MPC should either optimize the antenna settings directly, which leads to
a nonlinear input model, or a suitable input linearization or parameterization
must be performed, which may require additional input constraints to ensure its
validity.
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