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Exploring the behaviour of nanoelectronic devices can be a 
time-consuming task that requires considerable human and 
experimental resources. For instance, multi-terminal nano-

electronic devices for quantum technology1–5 and hardware-based 
computational paradigms6–10 require delicate tuning of control volt-
ages to achieve a desired functionality. Manual tuning becomes 
increasingly challenging for devices with a growing parameter 
space. As the number and complexity of interconnected nanoelec-
tronic devices increase, the demand for automated tuning methods 
rises as well. Existing methods rely either on search heuristics1,3,4 or, 
increasingly, on machine-learning methods that combine measure-
ments with either image analysis11–15 or gradient estimation of the 
output response5 to converge iteratively to the desired functionality.

This article proposes the use of a deep neural network (DNN)16 
model of a nanoelectronic device for optimizing the values of the 
control settings of the device to achieve a desired functionality. 
Tuning the corresponding control parameters of the DNN model 
(instead of the control settings of the physical device) has several 
advantages. These include a substantial reduction in tuning time, as 
well as in human and experimental resources, because the control 
parameters can be tuned in a completely automated manner with 
minimal physical measurements. The model is created by training 
a DNN with a measured training data set that represents the input–
output characteristics of a multi-terminal nanoelectronic device. 
DNNs have been shown to act as efficient function approxima-
tors17 of multidimensional functions, and can be trained by using an 
optimization algorithm known as stochastic gradient descent18–20. 
Until now, in physics, DNNs have been introduced mainly as a 
predictive tool21–25. Here, we demonstrate that we can realize func-
tionality successfully in a nanoelectronic device by optimizing its 
DNN model, which acts as a proxy of the physical device, through  
gradient descent in a fast and fully automated way.

Here, we illustrate our general approach of creating a DNN 
model of a multi-terminal nanoelectronic device, and the process 
for obtaining the desired functionality (Fig. 1). For the case study 
of this article, voltages are applied at the input terminals and cur-
rents are measured at the output terminals. First, we sample the 
multidimensional space of input voltages to obtain a sufficiently 
large amount of input–output data. Next, we set up a DNN architec-
ture with the numbers of inputs and outputs matching those of the 
device. The DNN should have a sufficiently large number of hidden 
layers and neural nodes per layer to describe accurately the input–
output data (see Methods and Supplementary Fig. 1). Then, the 
DNN is trained with measured training data and tested with unseen 
measured data. The desired functionality is realized as follows. We 
assign some input terminals as ‘control’ terminals (Fig. 1, circles). 
The control voltages applied at these terminals control the input–
output characteristics between the output currents and the voltages 
applied at the input terminals (squares). At this stage, the control 
voltages that are to be applied to the device become the learnable 
control parameters of the DNN. A desired functionality, defined as 
a specific targeted input–output relationship, is then searched for in 
the DNN model by using gradient descent on the control param-
eters. Finally, the obtained functionality is verified by applying the 
obtained corresponding control voltages directly to the physical 
device, without any further experimental optimization.

We demonstrate this approach for a multi-terminal nanoelec-
tronic device that we investigated recently6. The device consists of an 
electrically tuneable network of boron dopants in silicon (Si:B) with 
eight terminals (electrodes), seven of which act as voltage inputs 
and one as current output. The active area of the device has a diam-
eter of about 300 nm. The device can be tuned to solve problems 
of two-dimensional categorical nonlinear binary classification26 by 
using an evolutionary approach27. Boolean functionality is realized 
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by applying four input voltage combinations to two input terminals, 
which correspond to data inputs 00, 01, 10 and 11, and by tuning the 
remaining terminal voltages such that the four data combinations 
are mapped to the desired logic gate that is represented by its output 
current levels. Typical I–V characteristics measured at 77 K (Fig. 2a) 
demonstrate the nonlinear dependence of the output current Iout at 
terminal 8 as a function of the voltage applied at each of the other 
seven terminals while the remaining terminals are grounded.

Deep neural network modelling
To train a DNN model of the device, the seven-dimensional space 
of its input voltages must be sampled and the corresponding out-
put current measured. One way to obtain these input–output data 
would be to sample the input voltage space uniformly and ran-
domly, which would be optimal when no information on the input–
output relation is available. However, the associated abrupt voltage 
jumps cause a transient response, namely a time-dependent current 
that is related to capacitive effects. To circumvent this, pauses of at 
least 20 ms (about five times the RC time constant of the device in 
combination with the measurement circuit) after input voltage steps 
could be incorporated to let the system settle into a steady state. As 
the number of voltage combinations grows exponentially with the 
number of terminals, this rapidly becomes very time-consuming.

To solve this problem, we sample the space of input voltages by 
using sinusoidal or triangular modulation functions and a sam-
pling frequency of 50 Hz (Fig. 2b and Methods). This sampling 
technique minimizes discontinuities in the applied voltages and 
therefore reduces transient effects. The efficiency of sampling this 
way depends strongly on the choice of the modulation frequen-
cies. By choosing the modulation frequencies of the different input 
voltages such that the ratios of all of the frequency combinations 
are irrational (Supplementary Table 1), we guarantee that the input 

space is densely covered and that there are no recurrences of voltage 
combinations. Also, the sampling density can then be increased by 
simply increasing the sampling time. Our approach has substantial 
advantages over standard sampling with a predefined uniform grid 
in the seven-dimensional voltage space. For the same total number 
of samples and highest modulation frequency as in our approach, 
which is limited by remaining transient effects, the total sampling 
time in the standard approach would need to be around five times 
longer (Supplementary Table 2). In addition, an increase in the sam-
pling density would require performing a new sampling over a new 
grid instead of simply increasing the sampling time.

The input data consist of tuples of input voltages (V1 to V7, in 
V) and the output data are scalars representing the output currents 
(Iout, in nA). The input and output layers of the DNN correspond to 
the input terminals and output terminal of the device, respectively. 
We model our nanoelectronic device with a fully connected DNN 
consisting of seven inputs and one output. A network architecture 
with five hidden layers and 90 nodes per layer is found to have a 
sufficiently small test error (Supplementary Fig. 1). Minimization of 
the mean squared error is used in training the DNN (see Methods).

When the output current predicted by the DNN is plotted 
against the measured output current for unseen measured test data  
(Fig. 2c), only small deviations from the identity curve are observed 
compared to the overall range of the output. The root mean squared error 
(RMSE) in the predicted currents for the test data is 1.2 nA (Fig. 2d),  
which is 0.27% of the total current output range. These results show 
that the trained DNN predicts the unseen data accurately.

Automatic functionality search through gradient descent
A desired functionality is specified by a targeted dependence of the 
output current on one or more input voltages of selected terminals. 
The functionality is obtained by learning the values of the remaining  
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Fig. 1 | Realizing functionality in a nanoelectronic device by using a DNN model. The following steps are adopted to create a DNN model that captures 
the input–output characteristics of a multi-terminal nanoelectronic device with N input and M output terminals, and to realize a desired functionality. First, 
input–output data of the device are measured (1). Next, a sufficiently deep and wide DNN is set up, with numbers of inputs and outputs matching those of 
the device (2). The DNN is trained with the measured training data and tested with unseen test data (3). The DNN is used to find the desired functionality 
through gradient descent on the control parameters (4). The predicted corresponding control voltages are then applied to the physical device to verify the 
functionality (5). Circles and squares pointing towards the device or DNN indicate the control and data inputs, respectively. Circles in the DNN represent 
artificial neurons and their activation function.
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input voltages, that is the control parameters, by following the nega-
tive gradient of a cost function E(y,z), which is a measure of the 
similarity between the predicted outcome data y and the targeted 
outcome data z. At this stage, the internal weights of the DNN are 
kept frozen. We use a cost function composed of a correlation fac-
tor and the logistic function (see Methods). In contrast to the mean 
squared error, this cost function does not target specific output cur-
rent values, but rather promotes separation of low (‘0’) and high (‘1’) 
output currents. The entire process of automated optimization by 
the DNN model is represented here for the case of an XOR Boolean 
logic gate (Fig. 3). To demonstrate the speed and accuracy of this 
approach, we apply it to solve different tasks that have increasing 
accuracy requirements.

Classification with DNN-optimized nanoelectronic devices
Starting with Boolean logic gates, voltages V2 and V3 on terminals 
2 and 3 are used as data inputs (Fig. 3a, squares; Fig. 3b, coloured 
terminals). Hence, there are five remaining control voltages (V1, 
V4, V5, V6 and V7) to realize the gates. We note that it is to a large 
extent a matter of choice which terminals are used for data input 
and which are used for control. Optimal functionality is generally 
obtained when the input terminals are not neighbouring the output 
terminal or each other. This is intuitively understandable from the 
underlying physics of variable-range hopping of charge carriers, in 
between the dopants and between the dopants and the electrodes, 
in the electrostatic potential generated by the electrode voltages and 
the dopants and charge carriers themselves6. During verification of 

the predicted gates, the input data (V2 and V3) are presented to the 
physical device as a time sequence in the order shown in Fig. 3b. 
These input wave forms, given by the 0011 (olive green) and 0101 
(blue) signals, represent all four possible combinations of inputs for 
the truth table for Boolean logic (00, 01, 10 and 11). We show the 
numerical prediction and experimental verification of an XOR gate 
(Fig. 3c, black and red, respectively).

Results are provided for all logic gates AND, NAND, OR, NOR, 
XOR and XNOR (Fig. 4). The voltage values that correspond to 
logic inputs ‘0’ and ‘1’ are −1.2 V and 0.6 V, respectively (Fig. 4a). 
We show the output currents for the logic gates that are predicted 
by the DNN (Fig. 4b, black). To verify the predicted output cur-
rents, the predicted control voltages and the binary input voltages 
are applied to the physical device, and we obtain the measured out-
put currents (Fig. 4b, red). A comparison shows that all of the gates 
predicted by the DNN are also demonstrated in the physical device. 
Moreover, the values of the output currents are predicted with high 
accuracy. The RMSEs of the predicted gates (values in Fig. 4b) are 
consistent with the test error of 1.2 nA in Fig. 2d. The normalized 
RMSEs display the magnitude of the error with respect to the cur-
rent scale (highest minus lowest current) of the predicted gates. 
The normalized RMSEs show that the most poorly predicted gates 
(NAND and OR) have a relative error of 5.6%. Possible threshold 
current values separating ‘true’ and ‘false’ for each logic gate are rep-
resented (Fig. 4b, dashed lines). Optimal thresholds could be deter-
mined automatically by training a single perceptron28 on the output 
and target data.
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Fig. 2 | Sampling input–output data to train and test the DNN. a, Typical I–V characteristics of the Si:B device measured at 77 K, showing nonlinear 
behaviour. The current between the output terminal and the ground is measured while applying a voltage to each of the input terminals and grounding the 
remaining terminals. b, Schematic representation of the device, with boron dopants represented by orange dots (see ref. 6 for details). Training and test data 
are obtained by measuring the output current (Iout) while applying sinusoidal (as shown in this example) or triangular voltage modulations (V1 to V7) as a 
function of time t to the input terminals (see Supplementary Table 1 for frequencies). c, Output current predicted by the trained DNN for the unseen test 
data set against the current measured in the physical device. The solid line has a slope of unity. d, Histogram of the test error, showing an RMSE of 1.2 nA.
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The DNN model allows for an accelerated exploration of func-
tionality without having to perform further measurements on the 
device after collecting the training and test data. In our case, we are 
able to reduce the search of Boolean functionality from 15 minutes 
per gate by performing physical measurements in combination with 
an evolutionary algorithm6, to around 10 seconds on a standard 
computer (Intel Core i5-8250U CPU processor @ 1.60 GHz with 
four cores and 8 GB RAM) by using the DNN model, which is an 
increase in speed of almost two orders of magnitude.

Next, we study a more challenging binary classification problem 
that consists of classifying points in a two-dimensional feature space 
with two classes: data points in an outer ring that correspond to the 
label ‘0’, and data points in an inner cluster that correspond to the 
label ‘1’ (Fig. 5a). The two classes in this ring classification problem 
must be separated by using a closed decision boundary. Using in 
this case V4 and V5 from Fig. 3b as data inputs, the DNN is trained 
to separate the two classes such that the inner class corresponds to a 
high output current and the outer class to a low output current. The 
remaining control parameters (V1, V2, V3, V6 and V7) are to be tuned. 
In addition, we have added a scaling factor and two bias parameters 
to the input voltages, which enable the DNN to determine an affine 
transformation of the data by itself (see Methods). In the compari-
son of the resulting prediction by the DNN and the physical mea-
surements (Fig. 5b), the RMSE is 0.78 nA and the normalized RMSE 
is 4.4%, which demonstrates the accuracy of the prediction by the 

DNN model. We note that the second input voltage ranges up to 
1.1 V, whereas the DNN is only trained for voltages up to 0.6 V for 
this terminal. The trained DNN therefore successfully extrapolates 
over a 0.5 V range. To visualize the results, a heat map created by 
sweeping the two input voltages in the physical device is included 
(Fig. 5a). This demonstrates that the output current is indeed maxi-
mized for the inner class and minimized for the outer class. The 
two classes are separable by defining a threshold current as decision 
boundary (Fig. 5b, dashed line). We note that the data inputs V4 
and V5 are different from those for the Boolean gates (V2 and V3). A 
good functionality can also be obtained with other choices for the 
data inputs. Another good ring classification functionality is dem-
onstrated by using V6 and V7 as data inputs (Supplementary Fig. 5 
and Supplementary Tables 3, 4).

Feature mapping with DNN-optimized nanoelectronic 
devices
We fabricated another device with the same structure as the device 
used for the previous experiments (Figs. 2b,3b), and used it to per-
form a more complex task. The task involves distinguishing 16 
different 2 × 2 pixel features by the output current of the device, 
which is a possible subtask of a higher-level image recognition task6. 
Training and test data are measured as before, except for the use of 
triangular instead of sinusoidal modulation functions and the use of 
other voltage amplitudes (Supplementary Table 1). The modelling  
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of the DNN is the same as before. The RMSE of the predicted test 
data happens to have the same value of 1.2 nA as before, which is 
now 0.6% of the output current range. The features are defined by 
2 × 2 black and white pixel combinations that are converted to high 
(black) and low (white) voltage values on four input terminals, in 
this case V2, V3, V4 and V5. The remaining terminal voltages V1, 
V6 and V7 are the learnable controls. Learnable scaling factors and 
bias parameters are added to each of the four input voltages. In the 
search for the desired functionality with the trained DNN, a cost 
function is used that promotes separation of output currents for the 
16 different pixel features (see Methods).

The main problem faced in the feature mapping is that noise and 
instabilities of various origin lead to a distribution in the measured 
output current when a certain pixel feature is presented to the device 
multiple times (Fig. 6a). For reliable mapping, the separation of the 
output currents for the different features should sufficiently exceed 
the width of this distribution. The functionality obtained from the 
DNN search satisfies this criterion (Fig. 6b). In multiple verification 
measurements, the different features are presented subsequently to 

the device for 0.1 s. The result of a specific measurement is shown 
together with the DNN prediction (Fig. 6b, left). Histograms of the 
complete set of measurements are also shown (Fig. 6b, right); these 
involve 1,000 measurement points per feature obtained from a total 
of 10 measurements at 1,000 Hz spread over the course of 1 minute. 
A set of decision boundaries (Fig. 6b, dashed lines) was determined 
by using a Naive Bayes classifier that can be used to separate the fea-
tures (see Methods and Supplementary Fig. 6). With these boundar-
ies, 99.94% of the measured data are classified correctly.

Conclusions
We have proposed a generally applicable deep-learning approach to 
realizing desired functionality in complex multi-terminal nanoelec-
tronic devices. The method involves the training of a DNN model 
that emulates the multidimensional input–output characteristics of 
the device, followed by gradient descent on selected control param-
eters of the DNN to find the desired functionality. The set-up of 
the DNN model, which involves input–output data collection and 
training, needs to be done only once per device. After the DNN 
model set-up, a variety of functionalities can be searched for with 
the model without further experimentation on the device. We 
demonstrated the method for nanoelectronic devices consisting of 
boron dopants in silicon (Si:B) that are contacted by eight termi-
nals. Owing to the high efficiency of input evaluation by a DNN, we 
were able to find all of the Boolean functionalities almost two orders 
of magnitude faster than by performing physical measurements in 
combination with an evolutionary algorithm6. In addition, we were 
able to readily realize a more complex ring classification and a  
2 × 2 pixel feature mapping functionality, demonstrating that the 
devices have enhanced computational capacity6.

We expect our approach to have a broad application range. By 
using standard machine learning techniques and libraries, the gen-
erality of our approach ensures the optimization of a broad range of 
physical systems where control parameters are available. Naturally, 
the choice of DNN architectures determines the reliability of the 
functionality prediction and varies for different physical systems 
(see Methods and Supplementary Figs. 2–4).

As an extension of the present work, we intend to explore the 
coupling of many devices to create hierarchical structures with many 
more inputs, outputs and control parameters. Finding a desired 
complex functionality solely by experimentation will then become 
increasingly challenging. A limitation of our approach will be the 
time needed to sample the input voltage space, which scales expo-
nentially with the number of input terminals if the sampling density 
is kept constant. In the present study, the number of input terminals 
is seven. If the sampling speed can be increased to 100 MHz6 instead 
of the present 50 Hz, while keeping the same sampling density, the 
number of input terminals could be doubled to about 14 without 
increasing the sampling time. For many more input terminals, a 
modular approach can be used in which DNN models are created 
for separate modules with a still manageable number of terminals. 
The response of the total system can then be modelled by coupling 
the DNNs of the separate modules.

Our approach can also be valuable for the tuning of quantum 
dot architectures29–31 that are used in quantum information pro-
cessing. Large systems that consist of many coupled quantum dots 
have a large parameter space and therefore require more sophis-
ticated tuning approaches. Existing tuning methods are based on 
‘device-in-the-loop’ approaches32–34 in which measurement of the 
physical device is required during optimization. By contrast, param-
eter tuning in our approach can be performed entirely off-chip. 
Because of its generality, our deep-learning approach can be read-
ily applied to these systems. Finally, we note that our approach is 
not restricted to nanoelectronic devices, but can be applied to any  
complex, tuneable, static system, such as programmable metasur-
faces35, for which functionality realization is also challenging.
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voltages are linearly ramped over 10 ms periods to their new values, during 
which the current is masked. The values in the panels indicate the RMSE 
in nA and the normalized RMSE (in brackets). The dashed lines indicate 
current levels that could be used for separating the logical outputs ‘0’ and ‘1’.
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Methods
Data sampling. To perform the measurements, we use a battery-powered 
electronics rack that comprises voltage sources and I–V converters for low-noise 
measurements. All of the measurements are automated with Python by using 
Ni-DAQmx software v.0.536 and our in-house SkyNEt framework37. The 
temperature (77 K) is fixed by dipping the device in a dewar that contains liquid 
nitrogen.

The training and test data are sampled by using sinusoidal (Boolean logic 
and ring classification functionality) or triangular (2 × 2 pixel feature mapping) 
modulated input signals to minimize capacitive transient effects. We used both 
input signals to test different input distributions (Supplementary Table 2). The 
frequencies, amplitudes and offsets of these functions for each input terminal are 
given (Supplementary Table 1). We choose frequencies that are proportional to the 
square root of prime numbers. The ratio of any two frequencies is then irrational, 
which guarantees a good coverage of the seven-dimensional input voltage space 
and prevents any recurrence of voltage combinations. To ensure that training and 
test data do not overlap, the training data set is generated by using modulation 
functions without phase shift, whereas the test set is generated with a phase 
shift of 1 rad (~57°). The training and test data sets comprise about 3 × 106 and 
5.4 × 105 input–output pairs, respectively. The sampling occurs at a frequency of 
50 Hz, where one in three points is added to the data set. For the generation of the 
sinusoidal and triangular voltage modulation functions, a National Instruments 
(NI) 9264 voltage sourcing module is used in combination with cDAQ-9171 
and cDAQ-9178 chassis. Output currents are measured after an I–V conversion 
with either an NI USB-6216 device or an NI 9202 voltage measuring unit in 
combination with the cDAQ-9178 chassis.

DNN architectures. The general methodology to determine the hyperparameters 
of DNN models, especially regarding the architecture, is still an open question 
in the field of deep learning, but suggestions exist to guide the construction of 
suitable DNN models. If there are no previous examples of network models for 
the system at hand, it is advisable to start with simple models, for example linear 
models or shallow networks, and assess their ability to predict the behaviour of 
the given system. When designing the model, one should consider the amount 
of data available for the training and validation of the models, for which no clear 
guidelines exist. However, as a rule of thumb, if simple models readily overfit 
the data, the focus should be more on data acquisition or on other modelling 
methods that are suitable for small data sets. Given a suitable amount of data, it is 
best practice to explore architectures with different design choices, such as depth, 
width and activation function. At the beginning of the exploration, choosing a 
width for the hidden layers that is larger than the input dimension often improves 
performance. Increasing the depth of the DNN usually boosts performance at 
the beginning, but once this improvement becomes marginal, the width of the 
hidden layers should be increased. The aim should be to find the architecture 
with the best performance on the validation data set that also generalizes well 
with test data. (An example of this procedure is given in Supplementary Fig. 1.) If 
overfitting is observed, the DNN can be regularized to improve performance. If 
the cost levels off at an acceptable value for different architectures, it is advisable 
to take the simplest model to avoid computational overhead. If further efficiency 
considerations are important after finding the best DNN model, the computational 
complexity of the model may be optimized through parameter quantization and 
pruning, low-rank factorization, or knowledge distillation approaches38. There are, 
however, important considerations when making a trade-off between accuracy and 
computational or model complexity. In general, sacrificing the prediction accuracy 
will result in greater efforts in searching for functionality, because the probability 
of false positives and negatives will increase (Supplementary Figs. 2–4). We refer 
to Supplementary Section 2 for a detailed discussion on the consequences of this 
trade-off.

DNN training. The neural network consists of seven inputs and one output, which 
correspond to the input and output terminals of the physical device, respectively. 
We use a fully connected feedforward network that consists of five hidden layers 
with 90 nodes (see Supplementary Section 2 for the choice of this architecture) and 
a ReLU (rectified linear unit) activation function. Training is done by stochastic 
gradient descent on the mean squared error for 3,000 epochs with a learning rate 
of η = 10−5 and a mini-batch size of 128. The training data set is split into a set 
(90%) used for the training and a set (10%) used for the validation. The validation 
data set should not be confused with the test data set. The validation set is used 
for hyper-parameter optimization and to prevent overfitting, whereas the test 
set of unseen data is used to estimate the generalization error. For optimization, 
Adam39 is used with β1 = 0.9 and β2 = 0.75. All of the hyperparameters are explored 
to obtain the lowest possible validation error. Our DNN model is implemented by 
using PyTorch v.1.1.040.

Cost functions. The cost function to obtain Boolean logic and ring classification 
functionality is given by

E y; zð Þ ¼ 1� ρ y; zð Þð Þ=f ysep � q
� �

=p
� �

;

where y = (y1,y2,…,yn) are the actual currents, z = (z1,z2,…,zn) are the targeted binary 
current levels (n = 4 for Boolean logic and n = 132 for ring classification), ρ(y,z) 
is the Pearson correlation coefficient and f(x) = 1/(1+e−x) is the standard logistic 
function. The current values q and p control the desired separation and are chosen 
to be 3 nA and 5 nA, respectively. The value ysep represents the minimum separation 
between the high and low labelled data. For the data labelled as class ‘1’ (high 
output) the lowest predicted current is taken, and for the data labelled as class ‘0’ 
(low output) the highest predicted current is taken; the difference is used to obtain 
ysep. The correlation function promotes similarity between the targeted and actual 
outputs, whereas the logistic function promotes separation of the two classes.

Although the binary cross-entropy loss is most often used for binary 
classification tasks, its use would require the mapping of the output of our device 
to the posterior probability over the targets. This requires a linear readout to be 
learned together with the control voltages. Here, we opt for a cost function that 
avoids the introduction of extra parameters. We designed our cost function to be a 
differentiable function of the control parameters that reflects the characteristics of 
the fitness function that was used previously to find Boolean functionality6.

For the 2 × 2 pixel feature mapping, we use the cost function

E yð Þ ¼ �
X

i
f yi � yNN ið Þ


=p

 
;

where yi is the current for feature i (i = 1, …, 16) and yNN(i) is the ‘nearest-neighbour’ 
current (NN(i) is the feature with current closest to yi). The logistic function 
promotes an initial increase in current separation and leads to a saturation for a 
sufficiently large separation. We take p to be 2 nA, which leads to saturation of the 
cost function for separations above 10 nA.

Control parameters. The Boolean logic gates consist of four distinct combinations 
of two binary states for the input terminals. The voltages that represent these states 
are taken to be −1.2 V and 0.6 V, which correspond to ‘0’ and ‘1’, respectively. The 
voltages of the remaining five terminals are the learnable control parameters. 
The input data set of the Boolean logic gates is expanded such that each input 
combination is represented 100 times, thereby leading to a total of 400 data points 
in the training set. During optimization, these data points are presented randomly 
as inputs to the DNN. Stochastic gradient descent is used with a mini-batch of 100 
data points and a learning rate of η = 0.08. A single optimization session for a logic 
gate consists of at most 600 epochs, with an early termination if in the previous 
150 iterations there has not been a substantial reduction in error. To prevent the 
learnable parameters from deviating too much from the voltage range of the 
training data set, the parameters are regularized with an L1 norm outside this 
range. To obtain the best results, we re-initialized training 10 times per logic gate. 
The predicted control voltage values with the lowest error (Supplementary Table 5) 
are the ones taken in the verification.

For the ring classification problem, 132 input data points are used (Fig. 5a). 
The hyperparameters used for optimization are the same as for the Boolean logic 
gate optimization, except for the number of initializations and the maximum 
number of iterations per initialization, which are 20 and 800, respectively. The 66 
outer points are generated uniformly and randomly in a ring with radii of 0.5 V and 
0.6 V, and the 66 inner points in a circle with a radius of 0.1 V. The coordinates (x1, 
x2) of these points are transformed to input voltages by

V in;i ¼ xiV scaling þ Voffset;i;

where Vscaling is a scaling voltage, taken to be equal for the two input electrodes, and 
Voffset,i are voltage offsets. These parameters define an affine transformation of the 
data and are, next to the control voltages, the learnable control parameters. The 
control voltages for the ring classification functionality are given in Supplementary 
Table 6, and the scaling voltage and offsets of the two input voltages are given in 
Supplementary Table 7. Note that, in this example, the input data terminals are 4 
and 5, which are different from the Boolean logic gates (terminals 2 and 3).

For the feature mapping functionality (Fig. 6), we map the 16 combinations of 
four-dimensional binary patterns to 16 distinguishable current output levels. The 
binary values xbase = 0 for ‘high’ and −1 for ‘low’ are mapped to input voltages

V in;i ¼ xbaseV scaling;i þ Voffset;i;

where again Vscaling,i, now taken to be different for the four input electrodes, and 
Voffset,i are added to the learnable control parameters. The final functionality is the 
best result obtained after 500 random initializations of the control parameters and 
training for 5,000 epochs with a mini-batch of four. The resulting control voltages 
are given in Supplementary Table 8, and the scaling factors and offsets of the four 
input voltages are given in Supplementary Table 9.

Pixel feature decision boundaries. The set of decision boundaries for the pixel 
features (Fig. 6b) is determined by using a Naive Bayes classifier with Gaussian data 
approximation, which optimizes the posterior probability. The collective measured 
data (Fig. 6b, right) are used as training set for finding the decision boundaries. 
Using standard Bayesian notation, a new data point x is assigned to class k′ for which

P k0ð ÞP xjk0ð Þ ¼ max
k

P kð ÞP xjkð Þ½ :
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Here, P(k) is the prior probability, which is equal to the fraction of data points 
that belong to class k in the training set, and P(x|k) is the probability density 
function of class k in the training set. In our case the classes have an equal 
prior probability, so P(k) = P0 ∀ k. The probability density function P(x|k) of 
each class k = 1,…,16 in the training set is assumed to be Gaussian in our case 
(see histograms in Fig. 6b, right). Therefore, in our case a new data point x is 
assigned to the class k that has the highest probability density for that value of x. 
Graphically, this means that the decision boundaries are located at the crossings 
of Gaussian fits to the histograms (Fig. 6b, right), as shown in Supplementary 
Fig. 6. The currents corresponding to the decision boundaries are given in 
Supplementary Table 10. The classification is done with the Gaussian Naive Bayes 
module of the scikit-learn v.0.22.1 package41.

Data availability
Data are available from the public repository https://data.4tu.nl at https://doi.
org/10.4121/12884804.

Code availability
The custom computer code used here is available under the GNU General Public 
License v3.0 at https://github.com/BraiNEdarwin/SkyNEt.
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