

A deep-learning approach to realizing functionality in
nanoelectronic devices
Citation for published version (APA):
Ruiz Euler, H. C., Boon, M. N., Wildeboer, J. T., van de Ven, B., Chen, T., Broersma, H., Bobbert, P. A., & van
der Wiel, W. G. (2020). A deep-learning approach to realizing functionality in nanoelectronic devices. Nature
Nanotechnology, 15(12), 992-998. https://doi.org/10.1038/s41565-020-00779-y

Document license:
TAVERNE

DOI:
10.1038/s41565-020-00779-y

Document status and date:
Published: 01/12/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1038/s41565-020-00779-y
https://doi.org/10.1038/s41565-020-00779-y
https://research.tue.nl/en/publications/b7c7b0b1-1eb9-4f68-a38f-a4c4d414375e

Articles
https://doi.org/10.1038/s41565-020-00779-y

1NanoElectronics Group, MESA+ Institute for Nanotechnology, and Center for Brain-Inspired Nano Systems (BRAINS), University of Twente, Enschede,
The Netherlands. 2Programmable Nanosystems and Formal Methods and Tools, MESA+ Institute for Nanotechnology, DSI Digital Society Institute, and
Center for Brain-Inspired Nano Systems (BRAINS), University of Twente, Enschede, The Netherlands. 3Molecular Materials and Nanosystems and Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. 4These authors
contributed equally: Hans-Christian Ruiz Euler, Marcus N. Boon. ✉e-mail: W.G.vanderWiel@utwente.nl

Exploring the behaviour of nanoelectronic devices can be a
time-consuming task that requires considerable human and
experimental resources. For instance, multi-terminal nano-

electronic devices for quantum technology1–5 and hardware-based
computational paradigms6–10 require delicate tuning of control volt-
ages to achieve a desired functionality. Manual tuning becomes
increasingly challenging for devices with a growing parameter
space. As the number and complexity of interconnected nanoelec-
tronic devices increase, the demand for automated tuning methods
rises as well. Existing methods rely either on search heuristics1,3,4 or,
increasingly, on machine-learning methods that combine measure-
ments with either image analysis11–15 or gradient estimation of the
output response5 to converge iteratively to the desired functionality.

This article proposes the use of a deep neural network (DNN)16
model of a nanoelectronic device for optimizing the values of the
control settings of the device to achieve a desired functionality.
Tuning the corresponding control parameters of the DNN model
(instead of the control settings of the physical device) has several
advantages. These include a substantial reduction in tuning time, as
well as in human and experimental resources, because the control
parameters can be tuned in a completely automated manner with
minimal physical measurements. The model is created by training
a DNN with a measured training data set that represents the input–
output characteristics of a multi-terminal nanoelectronic device.
DNNs have been shown to act as efficient function approxima-
tors17 of multidimensional functions, and can be trained by using an
optimization algorithm known as stochastic gradient descent18–20.
Until now, in physics, DNNs have been introduced mainly as a
predictive tool21–25. Here, we demonstrate that we can realize func-
tionality successfully in a nanoelectronic device by optimizing its
DNN model, which acts as a proxy of the physical device, through
gradient descent in a fast and fully automated way.

Here, we illustrate our general approach of creating a DNN
model of a multi-terminal nanoelectronic device, and the process
for obtaining the desired functionality (Fig. 1). For the case study
of this article, voltages are applied at the input terminals and cur-
rents are measured at the output terminals. First, we sample the
multidimensional space of input voltages to obtain a sufficiently
large amount of input–output data. Next, we set up a DNN architec-
ture with the numbers of inputs and outputs matching those of the
device. The DNN should have a sufficiently large number of hidden
layers and neural nodes per layer to describe accurately the input–
output data (see Methods and Supplementary Fig. 1). Then, the
DNN is trained with measured training data and tested with unseen
measured data. The desired functionality is realized as follows. We
assign some input terminals as ‘control’ terminals (Fig. 1, circles).
The control voltages applied at these terminals control the input–
output characteristics between the output currents and the voltages
applied at the input terminals (squares). At this stage, the control
voltages that are to be applied to the device become the learnable
control parameters of the DNN. A desired functionality, defined as
a specific targeted input–output relationship, is then searched for in
the DNN model by using gradient descent on the control param-
eters. Finally, the obtained functionality is verified by applying the
obtained corresponding control voltages directly to the physical
device, without any further experimental optimization.

We demonstrate this approach for a multi-terminal nanoelec-
tronic device that we investigated recently6. The device consists of an
electrically tuneable network of boron dopants in silicon (Si:B) with
eight terminals (electrodes), seven of which act as voltage inputs
and one as current output. The active area of the device has a diam-
eter of about 300 nm. The device can be tuned to solve problems
of two-dimensional categorical nonlinear binary classification26 by
using an evolutionary approach27. Boolean functionality is realized

A deep-learning approach to realizing
functionality in nanoelectronic devices
Hans-Christian Ruiz Euler   1,4, Marcus N. Boon   1,4, Jochem T. Wildeboer   1, Bram van de Ven   1,
Tao Chen1, Hajo Broersma   2, Peter A. Bobbert1,3 and Wilfred G. van der Wiel   1 ✉

Many nanoscale devices require precise optimization to function. Tuning them to the desired operation regime becomes increas-
ingly difficult and time-consuming when the number of terminals and couplings grows. Imperfections and device-to-device
variations hinder optimization that uses physics-based models. Deep neural networks (DNNs) can model various complex
physical phenomena but, so far, are mainly used as predictive tools. Here, we propose a generic deep-learning approach to
efficiently optimize complex, multi-terminal nanoelectronic devices for desired functionality. We demonstrate our approach
for realizing functionality in a disordered network of dopant atoms in silicon. We model the input–output characteristics of the
device with a DNN, and subsequently optimize control parameters in the DNN model through gradient descent to realize vari-
ous classification tasks. When the corresponding control settings are applied to the physical device, the resulting functionality
is as predicted by the DNN model. We expect our approach to contribute to fast, in situ optimization of complex (quantum)
nanoelectronic devices.

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology992

mailto:W.G.vanderWiel@utwente.nl
http://orcid.org/0000-0002-4401-2623
http://orcid.org/0000-0002-9288-1292
http://orcid.org/0000-0002-5582-0861
http://orcid.org/0000-0003-0901-7346
http://orcid.org/0000-0002-4678-3210
http://orcid.org/0000-0002-3479-8853
http://crossmark.crossref.org/dialog/?doi=10.1038/s41565-020-00779-y&domain=pdf
http://www.nature.com/naturenanotechnology

ArticlesNaTure NanoTecHnology

by applying four input voltage combinations to two input terminals,
which correspond to data inputs 00, 01, 10 and 11, and by tuning the
remaining terminal voltages such that the four data combinations
are mapped to the desired logic gate that is represented by its output
current levels. Typical I–V characteristics measured at 77 K (Fig. 2a)
demonstrate the nonlinear dependence of the output current Iout at
terminal 8 as a function of the voltage applied at each of the other
seven terminals while the remaining terminals are grounded.

Deep neural network modelling
To train a DNN model of the device, the seven-dimensional space
of its input voltages must be sampled and the corresponding out-
put current measured. One way to obtain these input–output data
would be to sample the input voltage space uniformly and ran-
domly, which would be optimal when no information on the input–
output relation is available. However, the associated abrupt voltage
jumps cause a transient response, namely a time-dependent current
that is related to capacitive effects. To circumvent this, pauses of at
least 20 ms (about five times the RC time constant of the device in
combination with the measurement circuit) after input voltage steps
could be incorporated to let the system settle into a steady state. As
the number of voltage combinations grows exponentially with the
number of terminals, this rapidly becomes very time-consuming.

To solve this problem, we sample the space of input voltages by
using sinusoidal or triangular modulation functions and a sam-
pling frequency of 50 Hz (Fig. 2b and Methods). This sampling
technique minimizes discontinuities in the applied voltages and
therefore reduces transient effects. The efficiency of sampling this
way depends strongly on the choice of the modulation frequen-
cies. By choosing the modulation frequencies of the different input
voltages such that the ratios of all of the frequency combinations
are irrational (Supplementary Table 1), we guarantee that the input

space is densely covered and that there are no recurrences of voltage
combinations. Also, the sampling density can then be increased by
simply increasing the sampling time. Our approach has substantial
advantages over standard sampling with a predefined uniform grid
in the seven-dimensional voltage space. For the same total number
of samples and highest modulation frequency as in our approach,
which is limited by remaining transient effects, the total sampling
time in the standard approach would need to be around five times
longer (Supplementary Table 2). In addition, an increase in the sam-
pling density would require performing a new sampling over a new
grid instead of simply increasing the sampling time.

The input data consist of tuples of input voltages (V1 to V7, in
V) and the output data are scalars representing the output currents
(Iout, in nA). The input and output layers of the DNN correspond to
the input terminals and output terminal of the device, respectively.
We model our nanoelectronic device with a fully connected DNN
consisting of seven inputs and one output. A network architecture
with five hidden layers and 90 nodes per layer is found to have a
sufficiently small test error (Supplementary Fig. 1). Minimization of
the mean squared error is used in training the DNN (see Methods).

When the output current predicted by the DNN is plotted
against the measured output current for unseen measured test data
(Fig. 2c), only small deviations from the identity curve are observed
compared to the overall range of the output. The root mean squared error
(RMSE) in the predicted currents for the test data is 1.2 nA (Fig. 2d),
which is 0.27% of the total current output range. These results show
that the trained DNN predicts the unseen data accurately.

Automatic functionality search through gradient descent
A desired functionality is specified by a targeted dependence of the
output current on one or more input voltages of selected terminals.
The functionality is obtained by learning the values of the remaining

IN 1

IN 2

IN 3

IN N

OUT 1

OUT M

IN N

Neural network (virtual world)Physical device (real world)

IN 1

IN 2

IN 3

OUT 1

OUT M

(1) Measure input–output data

(5) Verify DNN-predicted functionality by measuring

(2) Set up DNN with inputs and outputs matching device

(3) Train and test DNN with measured data

(4) Find functionality in DNN through gradient descent on
control parameters

Fig. 1 | Realizing functionality in a nanoelectronic device by using a DNN model. The following steps are adopted to create a DNN model that captures
the input–output characteristics of a multi-terminal nanoelectronic device with N input and M output terminals, and to realize a desired functionality. First,
input–output data of the device are measured (1). Next, a sufficiently deep and wide DNN is set up, with numbers of inputs and outputs matching those of
the device (2). The DNN is trained with the measured training data and tested with unseen test data (3). The DNN is used to find the desired functionality
through gradient descent on the control parameters (4). The predicted corresponding control voltages are then applied to the physical device to verify the
functionality (5). Circles and squares pointing towards the device or DNN indicate the control and data inputs, respectively. Circles in the DNN represent
artificial neurons and their activation function.

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology 993

http://www.nature.com/naturenanotechnology

Articles NaTure NanoTecHnology

input voltages, that is the control parameters, by following the nega-
tive gradient of a cost function E(y,z), which is a measure of the
similarity between the predicted outcome data y and the targeted
outcome data z. At this stage, the internal weights of the DNN are
kept frozen. We use a cost function composed of a correlation fac-
tor and the logistic function (see Methods). In contrast to the mean
squared error, this cost function does not target specific output cur-
rent values, but rather promotes separation of low (‘0’) and high (‘1’)
output currents. The entire process of automated optimization by
the DNN model is represented here for the case of an XOR Boolean
logic gate (Fig. 3). To demonstrate the speed and accuracy of this
approach, we apply it to solve different tasks that have increasing
accuracy requirements.

Classification with DNN-optimized nanoelectronic devices
Starting with Boolean logic gates, voltages V2 and V3 on terminals
2 and 3 are used as data inputs (Fig. 3a, squares; Fig. 3b, coloured
terminals). Hence, there are five remaining control voltages (V1,
V4, V5, V6 and V7) to realize the gates. We note that it is to a large
extent a matter of choice which terminals are used for data input
and which are used for control. Optimal functionality is generally
obtained when the input terminals are not neighbouring the output
terminal or each other. This is intuitively understandable from the
underlying physics of variable-range hopping of charge carriers, in
between the dopants and between the dopants and the electrodes,
in the electrostatic potential generated by the electrode voltages and
the dopants and charge carriers themselves6. During verification of

the predicted gates, the input data (V2 and V3) are presented to the
physical device as a time sequence in the order shown in Fig. 3b.
These input wave forms, given by the 0011 (olive green) and 0101
(blue) signals, represent all four possible combinations of inputs for
the truth table for Boolean logic (00, 01, 10 and 11). We show the
numerical prediction and experimental verification of an XOR gate
(Fig. 3c, black and red, respectively).

Results are provided for all logic gates AND, NAND, OR, NOR,
XOR and XNOR (Fig. 4). The voltage values that correspond to
logic inputs ‘0’ and ‘1’ are −1.2 V and 0.6 V, respectively (Fig. 4a).
We show the output currents for the logic gates that are predicted
by the DNN (Fig. 4b, black). To verify the predicted output cur-
rents, the predicted control voltages and the binary input voltages
are applied to the physical device, and we obtain the measured out-
put currents (Fig. 4b, red). A comparison shows that all of the gates
predicted by the DNN are also demonstrated in the physical device.
Moreover, the values of the output currents are predicted with high
accuracy. The RMSEs of the predicted gates (values in Fig. 4b) are
consistent with the test error of 1.2 nA in Fig. 2d. The normalized
RMSEs display the magnitude of the error with respect to the cur-
rent scale (highest minus lowest current) of the predicted gates.
The normalized RMSEs show that the most poorly predicted gates
(NAND and OR) have a relative error of 5.6%. Possible threshold
current values separating ‘true’ and ‘false’ for each logic gate are rep-
resented (Fig. 4b, dashed lines). Optimal thresholds could be deter-
mined automatically by training a single perceptron28 on the output
and target data.

t
t

t

t

t

t t

–4 –2 0 2 4
Error (nA)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

N
um

be
r o

f s
am

pl
es

T = 77 K
100

a b

c d

V6 V7 V5

V4

V2

V3

V1

100

100

–100

–100

–100

–200

–200

–300

–300

–1.2 –0.6
Input voltage (V)

True output (nA)

0.60.0

50

–50

O
ut

pu
t c

ur
re

nt
 (n

A)
Pr

ed
ic

te
d

ou
tp

ut
 (n

A)

0

0

0

V5

V6V4

V2

V1

V3

Iout

V7

Fig. 2 | Sampling input–output data to train and test the DNN. a, Typical I–V characteristics of the Si:B device measured at 77 K, showing nonlinear
behaviour. The current between the output terminal and the ground is measured while applying a voltage to each of the input terminals and grounding the
remaining terminals. b, Schematic representation of the device, with boron dopants represented by orange dots (see ref. 6 for details). Training and test data
are obtained by measuring the output current (Iout) while applying sinusoidal (as shown in this example) or triangular voltage modulations (V1 to V7) as a
function of time t to the input terminals (see Supplementary Table 1 for frequencies). c, Output current predicted by the trained DNN for the unseen test
data set against the current measured in the physical device. The solid line has a slope of unity. d, Histogram of the test error, showing an RMSE of 1.2 nA.

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology994

http://www.nature.com/naturenanotechnology

ArticlesNaTure NanoTecHnology

The DNN model allows for an accelerated exploration of func-
tionality without having to perform further measurements on the
device after collecting the training and test data. In our case, we are
able to reduce the search of Boolean functionality from 15 minutes
per gate by performing physical measurements in combination with
an evolutionary algorithm6, to around 10 seconds on a standard
computer (Intel Core i5-8250U CPU processor @ 1.60 GHz with
four cores and 8 GB RAM) by using the DNN model, which is an
increase in speed of almost two orders of magnitude.

Next, we study a more challenging binary classification problem
that consists of classifying points in a two-dimensional feature space
with two classes: data points in an outer ring that correspond to the
label ‘0’, and data points in an inner cluster that correspond to the
label ‘1’ (Fig. 5a). The two classes in this ring classification problem
must be separated by using a closed decision boundary. Using in
this case V4 and V5 from Fig. 3b as data inputs, the DNN is trained
to separate the two classes such that the inner class corresponds to a
high output current and the outer class to a low output current. The
remaining control parameters (V1, V2, V3, V6 and V7) are to be tuned.
In addition, we have added a scaling factor and two bias parameters
to the input voltages, which enable the DNN to determine an affine
transformation of the data by itself (see Methods). In the compari-
son of the resulting prediction by the DNN and the physical mea-
surements (Fig. 5b), the RMSE is 0.78 nA and the normalized RMSE
is 4.4%, which demonstrates the accuracy of the prediction by the

DNN model. We note that the second input voltage ranges up to
1.1 V, whereas the DNN is only trained for voltages up to 0.6 V for
this terminal. The trained DNN therefore successfully extrapolates
over a 0.5 V range. To visualize the results, a heat map created by
sweeping the two input voltages in the physical device is included
(Fig. 5a). This demonstrates that the output current is indeed maxi-
mized for the inner class and minimized for the outer class. The
two classes are separable by defining a threshold current as decision
boundary (Fig. 5b, dashed line). We note that the data inputs V4
and V5 are different from those for the Boolean gates (V2 and V3). A
good functionality can also be obtained with other choices for the
data inputs. Another good ring classification functionality is dem-
onstrated by using V6 and V7 as data inputs (Supplementary Fig. 5
and Supplementary Tables 3, 4).

Feature mapping with DNN-optimized nanoelectronic
devices
We fabricated another device with the same structure as the device
used for the previous experiments (Figs. 2b,3b), and used it to per-
form a more complex task. The task involves distinguishing 16
different 2 × 2 pixel features by the output current of the device,
which is a possible subtask of a higher-level image recognition task6.
Training and test data are measured as before, except for the use of
triangular instead of sinusoidal modulation functions and the use of
other voltage amplitudes (Supplementary Table 1). The modelling

Verify prediction

Prediction Ver
ific

at
ion

in deviceΔV = 0

Frozen weights

Backpropagationa

c

b

V7

0 0.1 0.2 0.3 0.4

Time (s)

20

25

30

35

40

45

O
ut

pu
t c

ur
re

nt
 (

nA
)

V5

V3

V1

V1

V2

V3

V7

V2

V4

V6

Iout

Fig. 3 | DNN prediction of device functionality and verification. a, Backpropagation of the gradient through the DNN to tune the control parameters to
realize the desired functionality. During the tuning process, the internal weights of the DNN are frozen. The input and control terminals are represented
by squares and circles, respectively. b, For this example, the prediction of an XOR Boolean logic gate is chosen, which consists of two-dimensional input
data (V2 and V3, −1.2 V for ‘0’ and 0.6 V for ‘1’) with the five remaining voltages as control parameters. The control voltages are tuned such that the
input data are mapped to the desired outputs. c, To verify the predicted outcome, the tuned control voltages and the time-dependent input voltages
are applied to the physical device. Each input combination is applied for 0.1 s, which results in a total output signal of 0.4 s; this is sufficiently long to
reveal typical fluctuations in the output current. The predicted outcome is shown in black and the physical measurement in red. Between the different
input combinations, the input voltages are linearly ramped over 10 ms periods to their new values, during which the current is masked. We note that
optimization of the devices and the interfacing equipment may eventually lead to a readout bandwidth exceeding 100 MHz6.

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology 995

http://www.nature.com/naturenanotechnology

Articles NaTure NanoTecHnology

of the DNN is the same as before. The RMSE of the predicted test
data happens to have the same value of 1.2 nA as before, which is
now 0.6% of the output current range. The features are defined by
2 × 2 black and white pixel combinations that are converted to high
(black) and low (white) voltage values on four input terminals, in
this case V2, V3, V4 and V5. The remaining terminal voltages V1,
V6 and V7 are the learnable controls. Learnable scaling factors and
bias parameters are added to each of the four input voltages. In the
search for the desired functionality with the trained DNN, a cost
function is used that promotes separation of output currents for the
16 different pixel features (see Methods).

The main problem faced in the feature mapping is that noise and
instabilities of various origin lead to a distribution in the measured
output current when a certain pixel feature is presented to the device
multiple times (Fig. 6a). For reliable mapping, the separation of the
output currents for the different features should sufficiently exceed
the width of this distribution. The functionality obtained from the
DNN search satisfies this criterion (Fig. 6b). In multiple verification
measurements, the different features are presented subsequently to

the device for 0.1 s. The result of a specific measurement is shown
together with the DNN prediction (Fig. 6b, left). Histograms of the
complete set of measurements are also shown (Fig. 6b, right); these
involve 1,000 measurement points per feature obtained from a total
of 10 measurements at 1,000 Hz spread over the course of 1 minute.
A set of decision boundaries (Fig. 6b, dashed lines) was determined
by using a Naive Bayes classifier that can be used to separate the fea-
tures (see Methods and Supplementary Fig. 6). With these boundar-
ies, 99.94% of the measured data are classified correctly.

Conclusions
We have proposed a generally applicable deep-learning approach to
realizing desired functionality in complex multi-terminal nanoelec-
tronic devices. The method involves the training of a DNN model
that emulates the multidimensional input–output characteristics of
the device, followed by gradient descent on selected control param-
eters of the DNN to find the desired functionality. The set-up of
the DNN model, which involves input–output data collection and
training, needs to be done only once per device. After the DNN
model set-up, a variety of functionalities can be searched for with
the model without further experimentation on the device. We
demonstrated the method for nanoelectronic devices consisting of
boron dopants in silicon (Si:B) that are contacted by eight termi-
nals. Owing to the high efficiency of input evaluation by a DNN, we
were able to find all of the Boolean functionalities almost two orders
of magnitude faster than by performing physical measurements in
combination with an evolutionary algorithm6. In addition, we were
able to readily realize a more complex ring classification and a
2 × 2 pixel feature mapping functionality, demonstrating that the
devices have enhanced computational capacity6.

We expect our approach to have a broad application range. By
using standard machine learning techniques and libraries, the gen-
erality of our approach ensures the optimization of a broad range of
physical systems where control parameters are available. Naturally,
the choice of DNN architectures determines the reliability of the
functionality prediction and varies for different physical systems
(see Methods and Supplementary Figs. 2–4).

As an extension of the present work, we intend to explore the
coupling of many devices to create hierarchical structures with many
more inputs, outputs and control parameters. Finding a desired
complex functionality solely by experimentation will then become
increasingly challenging. A limitation of our approach will be the
time needed to sample the input voltage space, which scales expo-
nentially with the number of input terminals if the sampling density
is kept constant. In the present study, the number of input terminals
is seven. If the sampling speed can be increased to 100 MHz6 instead
of the present 50 Hz, while keeping the same sampling density, the
number of input terminals could be doubled to about 14 without
increasing the sampling time. For many more input terminals, a
modular approach can be used in which DNN models are created
for separate modules with a still manageable number of terminals.
The response of the total system can then be modelled by coupling
the DNNs of the separate modules.

Our approach can also be valuable for the tuning of quantum
dot architectures29–31 that are used in quantum information pro-
cessing. Large systems that consist of many coupled quantum dots
have a large parameter space and therefore require more sophis-
ticated tuning approaches. Existing tuning methods are based on
‘device-in-the-loop’ approaches32–34 in which measurement of the
physical device is required during optimization. By contrast, param-
eter tuning in our approach can be performed entirely off-chip.
Because of its generality, our deep-learning approach can be read-
ily applied to these systems. Finally, we note that our approach is
not restricted to nanoelectronic devices, but can be applied to any
complex, tuneable, static system, such as programmable metasur-
faces35, for which functionality realization is also challenging.

0

2

4

6

8 AND
0.19 nA (2.2%)

30

40

50

60

NAND
1.91 nA (5.6%)

–100

–75

–50

–25

0

C
ur

re
nt

 (n
A)

C
ur

re
nt

 (n
A)

OR
1.04 nA (5.6%)

0

5

10

15

20

25
NOR
0.74 nA (2.8%)

0 0.2 0.4
Time (s)

20

30

40 XOR
0.88 nA
(3.6%)

0 0.2 0.4
Time (s)

2

4

6

8
XNOR
0.19 nA
(2.4%)

0 0.2 0.4
Time (s)

–1.2

0.6a

b

0 0.2 0.4
Time (s)

–1.2

0.6

V 3
 (V

)

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

V 2
 (V

)

Fig. 4 | Prediction and verification of Boolean logic. a, Applied voltages V2
and V3 to test the Boolean logic gates. b, Comparison of output currents.
Black curves, logic gates predicted by the trained DNN. Red curves, output
current measured in the device by using the control voltages predicted by
the DNN (given in Supplementary Table 5). Between the different inputs, the
voltages are linearly ramped over 10 ms periods to their new values, during
which the current is masked. The values in the panels indicate the RMSE
in nA and the normalized RMSE (in brackets). The dashed lines indicate
current levels that could be used for separating the logical outputs ‘0’ and ‘1’.

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology996

http://www.nature.com/naturenanotechnology

ArticlesNaTure NanoTecHnology

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of

data and code availability are available at https://doi.org/10.1038/
s41565-020-00779-y.

Received: 14 January 2020; Accepted: 9 September 2020;
Published online: 19 October 2020

0 5 10
Time (s)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
ur

re
nt

 (n
A)

–0.5 0.0 0.5

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

a b

V i
n,

2 (
V)

Vin,1 (V)

0

3

6

9

12

15

18

C
urrent (nA)

Class 1 (‘x’)
0.78 nA (4.4%)

Class 0 (‘o’)

Fig. 5 | Ring classification functionality. a, The 66 outer data points (class ‘0’, grey dots) and 66 inner data points (class ‘1’, black crosses) to be classified.
In this case V4 and V5 from Fig. 3b are used as data input voltages Vin,1 and Vin,2, whereas the remaining voltages are the control parameters. The heat map
shows the output current of the physical device while sweeping V4 and V5 and keeping the predicted control voltages fixed (see Supplementary Table 6 for
their values). The points undergo an affine transformation before the mapping (see Supplementary Table 7 for the scaling factor and offset voltages).
b, Prediction by the trained DNN (black) and verification measurement (red). Grouped in classes for visualization, data points (‘x’ represents black
crosses, ‘o’ represents grey dots) are each measured for 100 ms in the physical device, and between the data points the input voltages are ramped up or
down to the next point with a ramping time of 10 ms to avoid transient effects. The classes are readily separable by a threshold current (dashed line).

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

–100

–75

–50

–25

0

25

50

75

100

a

b

O
ut

pu
t c

ur
re

nt
 (

nA
)

0 0.2 0.4 0.6

Number of samples (normalized)

V5

V7

Iout

IoutV6

V4

C
ou

nt
s

V2

V1

V3

Fig. 6 | Feature mapping task. a, Schematic representation of the task. All four pixels of the feature are presented as a high (black) or low (white) input
voltage to a terminal of the device, after which a histogram of the output current is obtained that should be separated from that of other features. The
voltages of the remaining control terminals are optimized by the DNN model to maximize the difference between the output currents of different features
(see Supplementary Tables 8, 9 for the parameters). b, Left, comparison of a measurement of the output current (red) to the DNN prediction (black) for
the different input features. Between different presented features, the input voltages are linearly ramped over 200 ms periods to their new values, during
which the current is masked. Right, histograms of the output current of 10 measurements. The dashed lines show decision boundaries that are obtained
with a Naive Bayes classifier (Supplementary Table 10).

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology 997

https://doi.org/10.1038/s41565-020-00779-y
https://doi.org/10.1038/s41565-020-00779-y
http://www.nature.com/naturenanotechnology

Articles NaTure NanoTecHnology

References
	1.	 Baart, T. A., Eendebak, P. T., Reichl, C., Wegscheider, W. & Vandersypen, L.

M. K. Computer-automated tuning of semiconductor double quantum dots
into the single-electron regime. Appl. Phys. Lett. 108, 213104 (2016).

	2.	 Kalantre, S. S. et al. Machine learning techniques for state recognition and
auto-tuning in quantum dots. Npj Quantum Inf. 5, 6 (2019).

	3.	 Botzem, T. et al. Tuning methods for semiconductor spin qubits. Phys. Rev.
Appl. 10, 054026 (2018).

	4.	 van Diepen, C. J. et al. Automated tuning of inter-dot tunnel coupling in
double quantum dots. Appl. Phys. Lett. 113, 033101 (2018).

	5.	 Teske, J. D. et al. A machine learning approach for automated fine-tuning of
semiconductor spin qubits. Appl. Phys. Lett. 114, 133102 (2019).

	6.	 Chen, T. et al. Classification with a disordered dopant-atom network in
silicon. Nature 577, 341–345 (2020).

	7.	 Bose, S. K. et al. Evolution of a designless nanoparticle network into
reconfigurable Boolean logic. Nat. Nanotechnol. 10, 1048–1052 (2015).

	8.	 Lykkebø, O. R., Nichele, S. & Tufte, G. An investigation of square waves for
evolution in carbon nanotubes material. In Proc. 13th European Conference on
Artificial Life (ECAL) 503–510 (MIT Press, 2015).

	9.	 Miller, J. F., Harding, S. L. & Tufte, G. Evolution-in-materio: evolving
computation in materials. Evol. Intell. 7, 49–67 (2014).

	10.	Stepney, S. The neglected pillar of material computation. Physica D 237,
1157–1164 (2008).

	11.	Zwolak, J. P. et al. Autotuning of double-dot devices in situ with machine
learning. Phys. Rev. Appl. 13, 034075 (2020).

	12.	Lennon, D. T. et al. Efficiently measuring a quantum device using machine
learning. Npj Quantum Inf. 5, 79 (2019).

	13.	Durrer, R. et al. Automated tuning of double quantum dots into specific
charge states using neural networks. Phys. Rev. Appl. 13, 054019 (2020).

	14.	Lapointe-Major, M. et al. Algorithm for automated tuning of a quantum dot
into the single-electron regime. Phys. Rev. B 102, 085301 (2020).

	15.	Darulová, J. et al. Autonomous tuning and charge-state detection of
gate-defined quantum dots. Phys. Rev. Appl. 13, 054005 (2020).

	16.	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

	17.	Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks
are universal approximators. Neural Netw. 2, 359–366 (1989).

	18.	Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD dissertation, Harvard Univ. (1974).

	19.	Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning Internal
Representations by Error Propagation Report 8506 (Institute for Cognitive
Science, University of California, San Diego, 1985).

	20.	LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

	21.	Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big
data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114,
105503 (2015).

	22.	Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big–deep–smart
data in imaging for guiding materials design. Nat. Mater. 14,
973–980 (2015).

	23.	Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine
learning for molecular and materials science. Nature 559, 547–555 (2018).

	24.	Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys.
13, 431–434 (2017).

	25.	Arsenault, L.-F., Lopez-Bezanilla, A., von Lilienfeld, O. A. & Millis, A. J.
Machine learning for many-body physics: the case of the Anderson impurity
model. Phys. Rev. B 90, 155136 (2014).

	26.	Cover, T. M. Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Trans. Electron.
Comput. EC-14, 326–334 (1965).

	27.	Miller, J. F. & Downing, K. Evolution in materio: looking beyond the silicon
box. In Proc. 2002 NASA/DoD Conference on Evolvable Hardware 167–176
(IEEE, 2002).

	28.	Rosenblatt, F. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychol. Rev. 65, 386–408 (1958).

	29.	Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4,
eaar3960 (2018).

	30.	Hill, C. D. et al. A surface code quantum computer in silicon. Sci. Adv. 1,
e1500707 (2015).

	31.	Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon
CMOS architecture for a spin-based quantum computer. Nat. Commun. 8,
1766 (2017).

	32.	van Esbroeck, N. M. et al. Quantum device fine-tuning using
unsupervised embedding learning. New J. Phys. https://doi.org/10.1088/1367-
2630/abb64c (2020).

	33.	Moon, H. et al. Machine learning enables completely automatic tuning of a
quantum device faster than human experts. Nat. Commun. 11, 4161 (2020).

	34.	Darulova, J., Troyer, M. & Cassidy, M. C. Evaluation of synthetic and
experimental training data in supervised machine learning applied to
charge state detection of quantum dots. Preprint at https://arxiv.org/
abs/2005.08131 (2020).

	35.	Tsilipakos, O. et al. Toward intelligent metasurfaces: the progress from
globally tunable metasurfaces to software-defined metasurfaces with an
embedded network of controllers. Adv. Opt. Mater. 8, 2000783 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature Nanotechnology | VOL 15 | December 2020 | 992–998 | www.nature.com/naturenanotechnology998

https://doi.org/10.1088/1367-2630/abb64c
https://doi.org/10.1088/1367-2630/abb64c
https://arxiv.org/abs/2005.08131
https://arxiv.org/abs/2005.08131
http://www.nature.com/naturenanotechnology

ArticlesNaTure NanoTecHnology

Methods
Data sampling. To perform the measurements, we use a battery-powered
electronics rack that comprises voltage sources and I–V converters for low-noise
measurements. All of the measurements are automated with Python by using
Ni-DAQmx software v.0.536 and our in-house SkyNEt framework37. The
temperature (77 K) is fixed by dipping the device in a dewar that contains liquid
nitrogen.

The training and test data are sampled by using sinusoidal (Boolean logic
and ring classification functionality) or triangular (2 × 2 pixel feature mapping)
modulated input signals to minimize capacitive transient effects. We used both
input signals to test different input distributions (Supplementary Table 2). The
frequencies, amplitudes and offsets of these functions for each input terminal are
given (Supplementary Table 1). We choose frequencies that are proportional to the
square root of prime numbers. The ratio of any two frequencies is then irrational,
which guarantees a good coverage of the seven-dimensional input voltage space
and prevents any recurrence of voltage combinations. To ensure that training and
test data do not overlap, the training data set is generated by using modulation
functions without phase shift, whereas the test set is generated with a phase
shift of 1 rad (~57°). The training and test data sets comprise about 3 × 106 and
5.4 × 105 input–output pairs, respectively. The sampling occurs at a frequency of
50 Hz, where one in three points is added to the data set. For the generation of the
sinusoidal and triangular voltage modulation functions, a National Instruments
(NI) 9264 voltage sourcing module is used in combination with cDAQ-9171
and cDAQ-9178 chassis. Output currents are measured after an I–V conversion
with either an NI USB-6216 device or an NI 9202 voltage measuring unit in
combination with the cDAQ-9178 chassis.

DNN architectures. The general methodology to determine the hyperparameters
of DNN models, especially regarding the architecture, is still an open question
in the field of deep learning, but suggestions exist to guide the construction of
suitable DNN models. If there are no previous examples of network models for
the system at hand, it is advisable to start with simple models, for example linear
models or shallow networks, and assess their ability to predict the behaviour of
the given system. When designing the model, one should consider the amount
of data available for the training and validation of the models, for which no clear
guidelines exist. However, as a rule of thumb, if simple models readily overfit
the data, the focus should be more on data acquisition or on other modelling
methods that are suitable for small data sets. Given a suitable amount of data, it is
best practice to explore architectures with different design choices, such as depth,
width and activation function. At the beginning of the exploration, choosing a
width for the hidden layers that is larger than the input dimension often improves
performance. Increasing the depth of the DNN usually boosts performance at
the beginning, but once this improvement becomes marginal, the width of the
hidden layers should be increased. The aim should be to find the architecture
with the best performance on the validation data set that also generalizes well
with test data. (An example of this procedure is given in Supplementary Fig. 1.) If
overfitting is observed, the DNN can be regularized to improve performance. If
the cost levels off at an acceptable value for different architectures, it is advisable
to take the simplest model to avoid computational overhead. If further efficiency
considerations are important after finding the best DNN model, the computational
complexity of the model may be optimized through parameter quantization and
pruning, low-rank factorization, or knowledge distillation approaches38. There are,
however, important considerations when making a trade-off between accuracy and
computational or model complexity. In general, sacrificing the prediction accuracy
will result in greater efforts in searching for functionality, because the probability
of false positives and negatives will increase (Supplementary Figs. 2–4). We refer
to Supplementary Section 2 for a detailed discussion on the consequences of this
trade-off.

DNN training. The neural network consists of seven inputs and one output, which
correspond to the input and output terminals of the physical device, respectively.
We use a fully connected feedforward network that consists of five hidden layers
with 90 nodes (see Supplementary Section 2 for the choice of this architecture) and
a ReLU (rectified linear unit) activation function. Training is done by stochastic
gradient descent on the mean squared error for 3,000 epochs with a learning rate
of η = 10−5 and a mini-batch size of 128. The training data set is split into a set
(90%) used for the training and a set (10%) used for the validation. The validation
data set should not be confused with the test data set. The validation set is used
for hyper-parameter optimization and to prevent overfitting, whereas the test
set of unseen data is used to estimate the generalization error. For optimization,
Adam39 is used with β1 = 0.9 and β2 = 0.75. All of the hyperparameters are explored
to obtain the lowest possible validation error. Our DNN model is implemented by
using PyTorch v.1.1.040.

Cost functions. The cost function to obtain Boolean logic and ring classification
functionality is given by

E y; zð Þ ¼ 1� ρ y; zð Þð Þ=f ysep � q
� �

=p
� �

;

where y = (y1,y2,…,yn) are the actual currents, z = (z1,z2,…,zn) are the targeted binary
current levels (n = 4 for Boolean logic and n = 132 for ring classification), ρ(y,z)
is the Pearson correlation coefficient and f(x) = 1/(1+e−x) is the standard logistic
function. The current values q and p control the desired separation and are chosen
to be 3 nA and 5 nA, respectively. The value ysep represents the minimum separation
between the high and low labelled data. For the data labelled as class ‘1’ (high
output) the lowest predicted current is taken, and for the data labelled as class ‘0’
(low output) the highest predicted current is taken; the difference is used to obtain
ysep. The correlation function promotes similarity between the targeted and actual
outputs, whereas the logistic function promotes separation of the two classes.

Although the binary cross-entropy loss is most often used for binary
classification tasks, its use would require the mapping of the output of our device
to the posterior probability over the targets. This requires a linear readout to be
learned together with the control voltages. Here, we opt for a cost function that
avoids the introduction of extra parameters. We designed our cost function to be a
differentiable function of the control parameters that reflects the characteristics of
the fitness function that was used previously to find Boolean functionality6.

For the 2 × 2 pixel feature mapping, we use the cost function

E yð Þ ¼ �
X

i
f yi � yNN ið Þ


=p

 
;

where yi is the current for feature i (i = 1, …, 16) and yNN(i) is the ‘nearest-neighbour’
current (NN(i) is the feature with current closest to yi). The logistic function
promotes an initial increase in current separation and leads to a saturation for a
sufficiently large separation. We take p to be 2 nA, which leads to saturation of the
cost function for separations above 10 nA.

Control parameters. The Boolean logic gates consist of four distinct combinations
of two binary states for the input terminals. The voltages that represent these states
are taken to be −1.2 V and 0.6 V, which correspond to ‘0’ and ‘1’, respectively. The
voltages of the remaining five terminals are the learnable control parameters.
The input data set of the Boolean logic gates is expanded such that each input
combination is represented 100 times, thereby leading to a total of 400 data points
in the training set. During optimization, these data points are presented randomly
as inputs to the DNN. Stochastic gradient descent is used with a mini-batch of 100
data points and a learning rate of η = 0.08. A single optimization session for a logic
gate consists of at most 600 epochs, with an early termination if in the previous
150 iterations there has not been a substantial reduction in error. To prevent the
learnable parameters from deviating too much from the voltage range of the
training data set, the parameters are regularized with an L1 norm outside this
range. To obtain the best results, we re-initialized training 10 times per logic gate.
The predicted control voltage values with the lowest error (Supplementary Table 5)
are the ones taken in the verification.

For the ring classification problem, 132 input data points are used (Fig. 5a).
The hyperparameters used for optimization are the same as for the Boolean logic
gate optimization, except for the number of initializations and the maximum
number of iterations per initialization, which are 20 and 800, respectively. The 66
outer points are generated uniformly and randomly in a ring with radii of 0.5 V and
0.6 V, and the 66 inner points in a circle with a radius of 0.1 V. The coordinates (x1,
x2) of these points are transformed to input voltages by

V in;i ¼ xiV scaling þ Voffset;i;

where Vscaling is a scaling voltage, taken to be equal for the two input electrodes, and
Voffset,i are voltage offsets. These parameters define an affine transformation of the
data and are, next to the control voltages, the learnable control parameters. The
control voltages for the ring classification functionality are given in Supplementary
Table 6, and the scaling voltage and offsets of the two input voltages are given in
Supplementary Table 7. Note that, in this example, the input data terminals are 4
and 5, which are different from the Boolean logic gates (terminals 2 and 3).

For the feature mapping functionality (Fig. 6), we map the 16 combinations of
four-dimensional binary patterns to 16 distinguishable current output levels. The
binary values xbase = 0 for ‘high’ and −1 for ‘low’ are mapped to input voltages

V in;i ¼ xbaseV scaling;i þ Voffset;i;

where again Vscaling,i, now taken to be different for the four input electrodes, and
Voffset,i are added to the learnable control parameters. The final functionality is the
best result obtained after 500 random initializations of the control parameters and
training for 5,000 epochs with a mini-batch of four. The resulting control voltages
are given in Supplementary Table 8, and the scaling factors and offsets of the four
input voltages are given in Supplementary Table 9.

Pixel feature decision boundaries. The set of decision boundaries for the pixel
features (Fig. 6b) is determined by using a Naive Bayes classifier with Gaussian data
approximation, which optimizes the posterior probability. The collective measured
data (Fig. 6b, right) are used as training set for finding the decision boundaries.
Using standard Bayesian notation, a new data point x is assigned to class k′ for which

P k0ð ÞP xjk0ð Þ ¼ max
k

P kð ÞP xjkð Þ½ :

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Articles NaTure NanoTecHnology

Here, P(k) is the prior probability, which is equal to the fraction of data points
that belong to class k in the training set, and P(x|k) is the probability density
function of class k in the training set. In our case the classes have an equal
prior probability, so P(k) = P0 ∀ k. The probability density function P(x|k) of
each class k = 1,…,16 in the training set is assumed to be Gaussian in our case
(see histograms in Fig. 6b, right). Therefore, in our case a new data point x is
assigned to the class k that has the highest probability density for that value of x.
Graphically, this means that the decision boundaries are located at the crossings
of Gaussian fits to the histograms (Fig. 6b, right), as shown in Supplementary
Fig. 6. The currents corresponding to the decision boundaries are given in
Supplementary Table 10. The classification is done with the Gaussian Naive Bayes
module of the scikit-learn v.0.22.1 package41.

Data availability
Data are available from the public repository https://data.4tu.nl at https://doi.
org/10.4121/12884804.

Code availability
The custom computer code used here is available under the GNU General Public
License v3.0 at https://github.com/BraiNEdarwin/SkyNEt.

References
	36.	NI-DAQmx Python documentation (National Instruments Corp., 2017)

https://nidaqmx-python.readthedocs.io/en/latest
	37.	SkyNEt library (Darwin team of the NanoElectronics group, Univ. of Twente,

2020) https://github.com/BraiNEdarwin/SkyNEt
	38.	Cheng, Y., Wang, D., Zhou, P. & Zhang, T. A survey of model compression

and acceleration for deep neural networks. IEEE Signal Process. Mag. https://
arxiv.org/abs/1710.09282 (2017).

	39.	Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization. In
Proc. 3rd International Conference for Learning Representations (ICLR).
https://arxiv.org/abs/1412.6980 (2015).

	40.	Paszke, A. et al. PyTorch: an imperative style, high-performance deep
learning library. In Proc. 33rd Conference on Neural Information Processing
Systems (NeurIPS) 8024–8035 (2019).

	41.	Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

Acknowledgements
We thank B. J. Geurts, U. Alegre Ibarra, B. de Wilde and L. J. Knoll for fruitful
discussions. We are grateful to U. Alegre Ibarra for reading the manuscript carefully and
providing useful input. We thank M. H. Siekman and J. G. M. Sanderink for technical
support. We acknowledge financial support from the University of Twente, the Dutch
Research Council (NWA Startimpuls grant no. 400-17-607) and the Natuurkunde
Projectruimte (grant no. 680-91-114).

Author contributions
H.-C.R.E., M.N.B. and J.T.W. performed the measurements and the DNN modelling.
B.v.d.V. and T.C. fabricated the samples. H.-C.R.E., M.N.B., J.T.W., P.A.B. and W.G.v.d.W.
wrote the manuscript and all of the authors contributed to revisions. W.G.v.d.W. and
H.-C.R.E. conceived the project and designed the experiments with input from M.N.B.
and J.T.W. W.G.v.d.W., P.A.B., H.B. and H.-C.R.E. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41565-020-00779-y.

Correspondence and requests for materials should be addressed to W.G.v.W.

Peer review information Nature Nanotechnology thanks Matthew Dale, Gunnar
Tufte and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Nanotechnology | www.nature.com/naturenanotechnology

https://data.4tu.nl
https://doi.org/10.4121/12884804
https://doi.org/10.4121/12884804
https://github.com/BraiNEdarwin/SkyNEt
https://nidaqmx-python.readthedocs.io/en/latest
https://github.com/BraiNEdarwin/SkyNEt
https://arxiv.org/abs/1710.09282
https://arxiv.org/abs/1710.09282
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41565-020-00779-y
https://doi.org/10.1038/s41565-020-00779-y
http://www.nature.com/reprints
http://www.nature.com/naturenanotechnology

	A deep-learning approach to realizing functionality in nanoelectronic devices

	Deep neural network modelling

	Automatic functionality search through gradient descent

	Classification with DNN-optimized nanoelectronic devices

	Feature mapping with DNN-optimized nanoelectronic devices

	Conclusions

	Online content

	Fig. 1 Realizing functionality in a nanoelectronic device by using a DNN model.
	Fig. 2 Sampling input–output data to train and test the DNN.
	Fig. 3 DNN prediction of device functionality and verification.
	Fig. 4 Prediction and verification of Boolean logic.
	Fig. 5 Ring classification functionality.
	Fig. 6 Feature mapping task.

