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A B S T R A C T

Hub facilities are centralized locations that consolidate and distribute the commodities in transportation
networks. In many real world applications, transport service providers may prefer to lease hub facilities for
a time horizon rather than being owned or constructed. In this paper, a modeling framework is proposed for
the multi-period hub location problem that arises in the design of the star–star network with two types of
hubs and links. It includes a designated static central hub, some movable hub facilities and a set of nodes
with pairwise demands. A periodic growth in the amount of budget is considered at each period to expand the
transportation network and an interest rate is also applied to the unused budget available during each period.
Since the overall quality of services in the hub and spoke systems rely on the length of the paths, upper bound
constraints are considered for the paths between nodes. Numerical experiments are carried out to show the
applicability of the proposed model. Due to the computational complexity of the model, an improved genetic
algorithm (GA) and a hybrid particle swarm optimization (HPSO) are utilized to find near optimal solutions.
Both algorithms employ caching strategy to improve the computation times. Moreover, the HPSO benefits
from genetic operators and local search methods to update the particles. In order to assess the effectiveness
of the proposed methods, the results are compared with a pure GA and a proper lower bound achieved by a
Lagrangian relaxation method.
. Introduction

The hub location problem (HLP) plays a crucial role in many
ransportation and telecommunications systems and can be considered
s one of the fundamental models in the classical facility location prob-
ems. It concerns the optimization of shipping of some commodities
r flows by determining the potential locations for hub facilities and
ssigning nodes to these facilities with the aim of routing the flow
mong origin–destination pairs. More precisely, the flow in a hub-and-
poke network involves three phases, consisting of collecting, routing
nd distributing. Overall, the flow goes through the located hubs. After
onsolidating the flow in the hub facilities, they traverse to the inter-
ub links (if necessary) in the routing phase. Finally, the flow departs
rom the hubs to reach their destinations (Karimi and Setak, 2014).
ub-and-spoke networks are often designed to model the problems that

equire the transfer of large number of commodities (Randall, 2008).
y explaining these points, hub and spoke structure helps to decrease
he transportation costs in comparing with the point-to-point networks
nd leads to benefit the economies of scale. General purposes in many
LPs are related to the design of an efficient network for minimizing
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E-mail addresses: Hamid.tikani@email.kntu.ac.ir (H. Tikani), Ramezanian@kntu.ac.ir (R. Ramezanian), Setak@kntu.ac.ir (M. Setak), T.v.Woensel@tue.nl

T. Van Woensel).

the total routing costs in addition to the installation costs for the hubs.
We usually see three basic assumptions for the classical hub location
problems (Kratica et al., 2011; Amin-Naseri et al., 2018): (1) the inter
hub network is a complete graph, in which every hub pair is directly
connected to each other (Fig. 1(a)); (2) Using the inter hub links,
exploiting a discounting factor (𝛼) which reflects the economies of scale
(0 ≤ 𝛼 ≤ 1); (3) It is not possible to tranship the flow between two
non-hub nodes, directly.

In this study, we relax the first assumption (1) of the classical
hub location problem. Specifically, instead of using a complete graph
between each hub node, a star network configuration is employed
between hub nodes. We applied a two level star/star network in which
a central hub (CH) is established and some of the periodic hubs (PH)
should be selected among the user nodes. Then, each hub is connected
using direct links to the central hub and each of the remaining nodes is
directly connected to exactly one hub. As such, the backbone network
that connects the PHs to CH has a star shape, and the network connect-
ing demand nodes to PHs, is also a star (Yaman and Elloumi, 2012).
Fig. 1(b) depicts an incomplete hierarchical network with a star/star
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form. This type of structure is managed easier and possible problems
can be distinguished and resolved quickly. A practical example of
such network is a kind of three-layer internetworking model, which
is applicable in designing a scalable and cost-effective internetwork.
In this regard, a typical hierarchical network model is broken up
into three various layers including access, distribution, and core. The
access layer provides users to connect to the network. The distribution
layer (non-central hub) manages the local traffic and also connects the
access layer to the core (Graziani and Vachon, 2014). Furthermore,
investigations of Elmastaş (2006) on different cargo delivery firms in
Turkey shows that one of the major companies has a star–star network
configuration where the main transfer center (CH) is located in Ankara.
The customers deliver their cargos to non-central transfer center and
these points are connected to the CH with direct links (Elmastaş,
2006). All previous works in the literature (e.g., Yaman and Elloumi,
2012; Yaman, 2008) modeled cargo delivery in the star–star network
through a static environment. In the mentioned examples, the core
layer and the main transfer center referred to as the network backbone
which contains special equipment (e.g., data center) to provide fast
transportation between the elements. Clearly, non-central (local) hubs
contain some moveable facilities (e.g., electronic equipment) that can
be relocated according to situations but the CH is not functionally
movable.

In this study, the service quality is incorporated into the design
process problem. The purpose is to design a transportation network in
which the length of the paths that connect each pair does not exceed
a pre-specified threshold value (Yaman and Elloumi, 2012). According
to Yaman and Elloumi (2012), the distance between each pair of nodes
can be considered as a measure of service quality. This problem is
known as the HLP with bounded path lengths.

In many real applications, transportation companies have several
hub facilities (usually combinations of company-owned hubs and/or
leased hubs). Leasing hubs facilitates relocating the facilities based on
the demand fluctuations or transportation cost variations. It also helps
to expand their networks to increase their market share in the future
(Gelareh et al., 2015). Clearly, a multi-period facility location problem
makes it possible to open new facilities or closing current facilities pro-
portionating to the variation in demands, costs, governments imposes,
sale strategies, tax regulations, and other parameters involved in the
decision-making processes.

In the current work, we study a multi-period star hub median
problem with budget constraints and bounded path lengths, denoted
as the MSHMP-BC-BP. We have three main contributions:

1. This study focuses on a multi-period HLP in the design of the
star/star network with regard to service quality considerations.
Two types of static and dynamic hub facilities are considered in
the model. The network also exploits one static central hub that
is owned by the company. The non-portable crucial equipment
should be located in this hub.

2. We consider the Time Value of Money (TVM) as an important
factor for managerial decision-making. In practice, in each pe-
riod, the budget that is available to invest in opening (lease) or
closing hubs is limited and an interest rate is accounted for the
unused budget.

3. We build two meta-heuristic algorithms, including a caching ge-
netic algorithm (CGA) and a hybrid particle swarm optimization
(HPSO) to solve the MSHMP-BC-BP. The HPSO utilizes crossover
and mutation operators to update the particles. The proposed
algorithms apply an immigration operator to avoid local optima
in searching process and benefit from a caching strategy to avoid
unnecessary calculation of objective values for repetitive individ-
uals during the executions (Kratica et al., 2007). The solution
algorithms are further discussed in Section 4. In addition to the
mentioned methods, a Lagrangian relaxation (LR) approach is
adopted to find a tight lower bound for the proposed model.
2

This paper is structured as follows. Section 2 is dedicated to the
relevant literature. We describe the problem and formulate the model
in Section 3. In Section 4, the procedures of the proposed CGA, HPSO
and the LR are described in detail. In Section 5, the results of various
computational experiments for the model are reported. Additionally,
the performance of the proposed algorithms is analyzed in this section.
Section 6 provides a sensitivity analysis on some parameters of the
model and presents some managerial insights and guidance for decision
makers. Finally, in Section 7, conclusions are summarized and some
directions for further researches are suggested.

2. Literature review

In this section, we provide a brief literature review of the hub
location problem and related solution algorithms by concentrating on
the multi period network design problems. Firstly, the idea of using
hubs in a network is presented by Goldman (1971). Then, O’kelly
(1987) formulates a mathematical model for the single hub location
problem. Thereafter, many of researchers developed numerous hub
location models and various methods for solving them. For example,
we refer to Najy and Diabat (2020), Ghaffarinasab and Kara (2019)
and Yang et al. (2019). To sum up the trends of researches on HLPs
in the last three decades, the studies in the late 1980s focused on
modeling frameworks, in the 1990s on both modeling and optimizing,
and eventually in recent years on advanced formulations and method
solutions. Among various types of hub location models with different
objective functions such as median, covering and center, the most fre-
quently researches focused on hub median location problems (Farahani
et al., 2013). A detailed review on HLPs and the categorizations are
provided in Contreras and O’Kelly (2019) and Farahani et al. (2013).
Concerning reviewing the studies in the field of HLP, it comes out that
a large variety of mathematic formulations and solution algorithms
have been proposed during the past decade. Due to the NP-Hardness
of the HLP, many researchers have employed meta-heuristics to solve
the hub location problems (Özgün-Kibiroğlu et al., 2019; Aboytes-Ojeda
et al., 2020; Lüer-Villagra et al., 2019). Among various methods, GAs
and their modifications can be considered as effective and practical
solution methods that utilized to find acceptable solutions for HLP.
Moreover, hybridization of genetic operators and local searches with
other meta-heuristics such as particle swarm optimization (PSO) helps
to prevent premature convergence and increase the performance of
proposed algorithms (see Yang et al., 2013; Gao and Qin, 2016).

Some recent papers that employed the principals of GA in solving
the HLPs are Kratica et al. (2011), Bashiri et al. (2013), Mohammadi
et al. (2013), Kratica et al. (2007), Bashiri et al. (2013), Yang et al.
(2013), Damgacioglu et al. (2015), Ebrahimi-Zade et al. (2016), Gao
and Qin (2016), Qin and Gao (2017), Hasanzadeh et al. (2016), Bashiri
et al. (2017), and Lüer-Villagra et al. (2019). In the current paper,
we aim to study two improved meta-heuristics by taking the following
features into account:

• So far, most of the studies investigated the HLP in a static en-
vironment; however, according to the Farahani et al. (2013),
formulations of single period HLP and their solution approaches
are not pertinent to real-world applications. Because after some
years, the location of selected hubs is no longer optimum due to
the significant changes in the initial data. This fact motivated us
to provide efficient algorithms for dynamic HLPs.

• Recalculation of fitness values for repetitive individuals that ap-
pear during the optimization process can significantly affect the
quality of the algorithms (Kratica et al., 2007). In order to remedy
this drawback, we utilized caching technique to speed up the
searching process. The provided cache table is also utilized to fill
the population list as varied as possible and enhance the searching
scheme.
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Fig. 1. Examples of hub networks.
• Some of the existing methods cannot bring enough diversifica-
tion to escape from the poor local optima. In the current work,
we embedded several diversification strategies (e.g. immigration
operator and LS strategies) through our proposed algorithms to
prevent premature convergence.

Since the proposed model in the current study is a kind of incom-
lete hub network, the rest of the literature is dedicated to incomplete
ub location models and after that, we review the multi-period hub
ocation problems.

In the field of hub location problems there exist various studies with
ncomplete structure among inter-hub links. This incomplete configu-
ation of hub networks can be classified into different categories such
s tree shape, ring network, star shape and some special forms. For
xample, Wang et al. (2006), Contreras et al. (2009, 2010), Karimi
nd Setak (2014) and Karimi and Setak (2016), developed hub location
odels with incomplete structures. Some other researches that relaxed

he assumption of complete hub and spoke network include, Nickel
t al. (2001), Yaman et al. (2007), Yoon and Current (2008), Yaman
2009), Alumur et al. (2009), Calık et al. (2009), and Khodemani-Yazdi
t al. (2019). Star topology network in hub structures is employed
n different studies. Gavish (1982) utilized a star form network for a
elecommunications system that flows are only to and from a central
ite. Yaman (2008) developed a hub location model in the design of a
tar–star configuration considering modular arc capacities. Yaman and
lloumi (2012) presented two star p-hub location problems, including
tar p-hub center problem and the star p-hub median problem. In the
irst model, the aim is to minimize the longest length of paths in the
etwork while the second model strives to minimize the total trans-
ortation routing cost considering an upper bound for path lengths,
hich reflects the service quality in the network. Some other studies
re Wasner and Zäpfel (2004), Labbé and Yaman (2008) and Tikani
t al. (2016, 2018).

The next part of our review focuses on multi period hub location
odels.

Nowadays, it is very scarce that the amount of supplies, demands
r generally the market sizes do not change as time goes on. More
recisely, each service provider may start with some initial facilities
nd over the course of a planning horizon based on various con-
itions decide about expanding the network by opening some new
ub facilities or contracting it with closing them. Campbell (1990)
eveloped the first model that considered a hub location problem in
dynamic situation. He introduced a continuous approximation model

or the general freighting carrier that operates in a fixed region with

n increasing density of demands. Thereafter, Gelareh (2008) studied

3

a hub location problem in which a transportation company begins
its operation by an initial hub network. Then, facility location model
strives to minimize the total transportation and facility costs over the
specific planning horizon. Contreras et al. (2011) considered a dynamic
uncapacitated HLP with single assignments. They proposed quadratic
model that minimizes the cost of locating, routing and closing the hubs
throughout the planning horizon. In another work, Taghipourian et al.
(2012) introduced a dynamic virtual hub location problem considering
the fuzziness in the planning. Their model decides on location of virtual
hubs and the paths to connect the origin–destination pairs over the
planning periods. Recently, Gelareh et al. (2015) presented a multi-
period hub location problem. In their proposed model, the hub facilities
can be changed during the time. In detail, they assume that facilities
are leased instead of being owned or constructed; therefore, they can
be easily relocated over the course of a planning period. Ghodratnama
et al. (2015) presented hub median problem with opening and re-
opening modes in an uncertain environment. The objective function of
their models includes the costs associated with covering, transporting,
activating, opening and reopening operations. Ebrahimi-Zade et al.
(2016) presented a multi-period hub set covering problem with single
assignments considering flexible covering radius. The covering radius
is assumed to be an exogenous parameter. Their model strives to find
the optimal network proportional to the various involving parameters
by establishing or closing the facilities, periodically. Alumur et al.
(2016) formulated a mixed-integer linear program for multi-period
hub location problems in a situation that network structure can be
progressively constructed and the capacity of hubs gradually expanded
during the time. Correia et al. (2017) studied multi-period hub location
problems with the multiple allocations using two-stage stochastic mod-
eling framework. The first stage of the model determines the location
of hub facilities and sets their initial capacity for the entire planning
horizon. While the second-stage involves tactical/operational decisions
including allocation of the non-hub nodes to the selected hubs, routing
between origin–destination pairs, and the amount of capacity expansion
for the hubs. Bashiri et al. (2017) presented a mathematical model for
the dynamic p-mobile hub location problem. They considered facilities
with mobility feature that can be transferred to other nodes to meet
the demands. They declared that using such facilities helps to save extra
hub establishment and closing costs in the hub networks. Ghodratnama
et al. (2018) addressed a bi-objective HLP model in manufacturing
supply chains. In this model various transportation modes, congestion
effects and production scheduling are taken into account over the
planning horizon. Saadati and Hosseininezhad (2019) developed a

multi-period hub-and-spoke model for a bagasse-based Bioethanol in
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a five echelons supply chain. The proposed model seeks to minimize
the total costs and co2 emission, simultaneously. They tested the model
using real-world data associated with the Iran sugar industry.

Table 1 summarizes the studies about multi-period hub location
problems and shows the innovations of the current paper in comparison
with the previous works.

From the literature review, we conclude that the multi-period hub
location problem has not received too much attention in the past
decades and only few studies are published in recent years. The third
column of Table 1 indicates that the current paper is the first one
addressing star/star hub median problem in a multi-period setting.
In particular, we consider that a company established a central hub
facility with some special traits while several periodic hubs can be
leased for a specific time horizon. We additionally incorporate service
quality considerations and budget constraints with TVM concept to
reflect more actual factors in the model, which again, is considered for
the first time within a multi-period HLP. Another main contribution of
the study is provision of efficient solution algorithms to cope with real
size problems including modified genetic algorithm, hybrid PSO and
Lagrangian relaxation method.

3. Problem definition

In this section, we formally describe the problem and formulate
it as a mixed integer programming problem. Based on the star/star
hub network design (proposed by Yaman, 2008), this paper deals
with a two-level star structure, including a designated central hub
to consolidate the flow among the hubs (Yaman, 2008). Consider an
origin–destination (OD) pair that both of them are non-hub nodes. In
this configuration, the flow originates from a node, goes through its
assigned hub with a direct connection. We have three cases as follows:

• If both origin and destination (O–D) are assigned to the same
hub, then the flow goes from the hub to its destination. The
corresponding path is Origin→hub→ Destination.

• If an (O–D) pair is dedicated to different non central hubs, then
the flow traverses a path in the form of Origin→Hub→ Central-hub
→ Hub → Destination.

• If one of the (O–D) pairs is connected to the central hub (for ex-
ample the origin is connected to the CH), then the flow traverses
a path in the form of Origin→ Central-hub → Hub → Destination.

When one of the OD pairs is a hub or central hub itself, the flow in
the network is a subset of the mentioned incidents. The hub facilities
in the star/star network are categorized into two types:

Central hub (CH): There exists only one CH in the communication
network. It is the fundamental hub to be established and can be
considered as a centralized point in the backbone network that connects
the periodic hubs (PH) to each other by a star structure. All basic
equipment that is not removable is in the CH. Due to the importance
of CH, the potential locations for CH are predetermined with regards
to different considerations.

Periodic hub (PH): The number of PHs in the network is a model
decision. These hubs are constituents of accessible networks and not
owned by a company. They can be leased for a specific time horizon.
PHs do not need installation costs but opening or closing them is costly.
Each user node is a potential location for opening a hub. The facilities
in such hubs are classified into static and movable facilities (Ebrahimi-
Zade et al., 2016). Static facilities in PH refer to the facilities and staffs,
which are not possible to be relocated, and when a hub is closed they
remain useless. Moveable facilities refer to the facilities and staffs that
can be transferred to the newly opened hubs. We consider that the
moving facilities of a closed hub can only be used in one hub. This
process eventuates some savings in the total costs. The related savings
are subtracted from the total costs on each period.

Other assumptions and concepts of the model are described. (i)

Direct transshipment between nodes and PHs is not allowable; (ii)

4

uncapacitated single assignment version of HLP is considered for the
problem. In fact, a demanded node should be connected to only one
hub with a direct link and no limitation is considered on the capacity
of the hubs; (iii) routing cost using inter-hub links is discounted with the
classical discount factor 0 < 𝛼 ≤ 1, which represents the economies of
scale; (iv) the length of a route between two pairs of nodes is considered
as a measure for quality of services. The model controls the lengths
such that the connection between each two pair of nodes does not
exceed a pre-specified threshold value. This service quality has been
improved over the time by decreasing the threshold; (v) the planning
horizon is finite and the time horizon is divided into various periods;
(vi) the total investment for opening hubs is limited to available budget
on each period. This amount is periodically increasing to expand hub
and spoke network. The incremental budget is determined based on
the demanding fluctuations and using cost predictions. Unused budget
on each period is counted as saving in the objective function; (vii)
objective function computed by present worth value and all costs are
converted to the present form by knowing the interest rate and using
formulas in the factor conversion table.

We first present the notation:

Sets and Parameters
𝑁 The number of nodes (spokes) in the hub–spoke network.
𝑖, 𝑗 Indices for nodes 𝑖, 𝑗 = 1…𝑁 .
𝑘, 𝑙 Indices for hubs.
𝑛 Indices for central hubs.
𝑡 Indices for planning horizon length, 𝑡 = 1, 2,… , 𝑇
𝑑𝑖𝑗 Distance from node 𝑖 to node 𝑗.
𝐶𝑡 Transfer cost (per unit distance) between nodes in period

𝑡.
𝐷𝑡

𝑖𝑗 Flow to be sent from origin node 𝑖 to destination 𝑗 in
period 𝑡.

𝐹 Fix
𝑛 Fix cost for establishing central hub 𝑛.

𝐹 rent
𝑘𝑡 Related cost for opening (renting) a non-central hub 𝑘 in

period 𝑡.
𝐹 excrete
𝑘𝑡 Related cost for closing (excreting) a non-central hub 𝑘

in period 𝑡.
𝑆𝑡 The benefits from movable facilities in a closed PH in

period 𝑡.
𝑈𝑡 The longest possible path between nodes in period 𝑡.
𝐴𝑅𝐶 Basic allowable sleep capital related to open hubs

periodically.
𝐸𝐼𝑡 Allowable marginal capital investment related to open

hubs in period 𝑡.
Decision variables
𝑥𝑙𝑛𝑘𝑡𝑖𝑗 A binary decision variable, which is 1 if the flow from

node 𝑖 to node j goes through hubs located at node 𝑘 and
𝑙 and central hub 𝑛 in period 𝑡, it takes 0 otherwise.

𝑂𝑛 A binary decision variable, which is 1 if node 𝑛
established as a central hub, it takes 0 otherwise.

𝑤𝑡
𝑖𝑘 A binary decision variable, which is 1 if node 𝑖 is

assigned to be hub 𝑘 in period 𝑡, it takes 0 otherwise.
𝑝𝑡𝑘 A binary decision variable, which is 1 if a new hub is

opened (rented) at node 𝑘 in period 𝑡 and otherwise
equals 0.

𝑞𝑡𝑘 A binary decision variable, which is 1 if the existing hub
𝑘 is closed in period 𝑡 and otherwise equals 0.

𝑧𝑡 Equals to minimum value of ∑𝑘 𝑝𝑡𝑘 and ∑

𝑘 𝑞𝑡𝑘.
𝑒𝑡 Unused budget in the period 𝑡.

3.1. Financial process of expanding the network

Time value of money is a basic principle in financial management.
The HLP can be considered as an important investment project, as
establishing (and even leasing) the hub facilities is costly and needs

a large amount of capital. Studying multi-period HLPs by ignoring the
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Table 1
A summary of related work in the literature (Complete: complete graph in spoke-level network).

Authors Year Multi period
planning

Inter hub
network structure

Types of facility Relocation
is allowed

Budget
constraints

Service quality
considerations

Time value
of money

Solution algorithm

Static
facilities

Moveable
facilities

Gelareh (2008) 2008 ✔ Complete ✔ – ✔ ✔ – – Benders Algorithm/Lagrangian
Relaxation/Greedy Algorithms

Contreras et al.
(2011)

2011 ✔ Complete ✔ – ✔ – – – Lagrangian Relaxation/
Branch and bound algorithm

Taghipourian
et al. (2012)

2012 ✔ Complete ✔ – ✔ ✔ – – CPLEX commercial solver

Gelareh et al.
(2015)

2015 ✔ Complete ✔ – ✔ ✔ – – Meta-heuristic method/Benders
Algorithm

Ghodratnama
et al. (2015)

2015 ✔ Complete – ✔ ✔ – – – commercial solver (Gams
software)

Ebrahimi-Zade
et al. (2016)

2016 ✔ Complete – ✔ ✔ – – – Genetic algorithm

Alumur et al.
(2016)

2016 ✔ Incomplete ✔ – ✔ – – – CPLEX commercial solver using
valid inequalities

Correia et al.
(2017)

2017 ✔ Complete ✔ – ✔ – – – commercial solver using valid
inequalities

Bashiri et al.
(2017)

2017 ✔ Complete ✔ ✔ ✔ – – – Genetic algorithm/
simulated annealing algorithm

Ghodratnama
et al. (2018)

2018 ✔ Complete ✔ – ✔ – – – Goal attainment and
LP metric method

de Sá et al.
(2018)

2018 – Incomplete ✔ – – ✔ – – Benders decomposition

Pearce and
Forbes (2018)

2018 ✔ Complete – ✔ ✔ ✔ – – Benders decomposition

Saadati and
Hosseininezhad
(2019)

2019 ✔ Complete ✔ – ✔ – – – 𝜀-constraint method

Ghaffarinasab
(2020)

2020 – Star–star network ✔ – – – ✔ – Tabu search heuristic

This paper ✔ Star–star network ✔ ✔ ✔ ✔ ✔ ✔ CPLEX commercial
solver/Modified caching genetic
algorithm/Hybrid particle swarm
optimization/Lagrangian
Relaxation
concept of TVM brings suboptimal decisions. As described earlier, the
amount of investing in opening hubs is limited in each period and is
affected by demand fluctuation. Determining these parameters is out
of this paper’s scope, but a comprehensive business plan includes the
business goals and the associated plans can be applied to decide on the
available budget on each period. Many companies usually start their
business with a special share of the market with less investment. To this
end, we exert a minimum sleep capital (ARC) for network structure on
each period to support the initial market share. Moreover, a marginal
capital investment 𝐸𝐼𝑡 is added to ARC for expanding the network
structure in each period 𝑡. The amount of 𝐸𝐼𝑡 relies on the marketing
strategies and business model of the company and utilized to gradually
expand the foundations. We employed

(

F
P ,%i, t

)

factor to convert the
financial amounts to the present form. For example, consider that the
ARC is set to 200 unit and we aim to invest a uniform gradient amount
100 unit on expanding the network during 5 periods. The cash flow
diagram of this process is depicted in Fig. 2. The arrows in the figure
represent the cash.

Accordingly, the allowable investment on opening hubs in the pe-
riod 2 is calculated by 𝐴𝑅𝐶 + 𝐸𝐼2, that equals to 300 units.

3.2. The MSHMP-BC-BP modeling framework

The mathematic model for MSHMP-BC-BP problem can be formu-
lated as follows:

𝑀𝑖𝑛
∑

𝑖

∑

𝑗≠𝑖

∑

𝑘

∑

𝑙≠𝑘

∑

𝑛

∑

𝑡
[𝐶𝑡(𝑑𝑖𝑘 + 𝑑𝑙𝑗 ) + 𝛼𝐶𝑡(𝑑𝑘𝑛 + 𝑑𝑛𝑙)]𝑥𝑘𝑛𝑙𝑡𝑖𝑗 𝐷

𝑡
𝑖𝑗 (P∕F,%i, t)

+
∑

𝑖

∑

𝑗≠𝑖

∑

𝑘

∑

𝑛

∑

𝑡
[𝐶𝑡(𝑑𝑖𝑘 + 𝑑𝑘𝑗 )]𝑥𝑘𝑛𝑘𝑡𝑖𝑗 𝐷𝑡

𝑖𝑗 (P∕F,%i, t)

+
∑∑

𝐹 rent
𝑘𝑡 𝑝𝑡𝑘 (P∕F,%i, t) (1)
𝑡 𝑘

5

+
∑

𝑡

∑

𝑘
𝐹 excrete
𝑘𝑡 𝑞𝑡𝑘 (P∕F,%i, t) −

∑

𝑡
𝑆𝑡𝑧𝑡 (P∕F,%i, t)

−
∑

𝑡
𝑒𝑡 (P∕F,%i, t) +

∑

𝑛
𝐹 Fix
𝑛 𝑂𝑛

∑

𝑛
𝑂𝑛 = 1 (2)

∑

𝑡

∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑙
𝑥𝑘𝑛𝑙𝑡𝑖𝑗 ≤ 𝑀.𝑂𝑛 ∀𝑛 (3)

∑

𝑛

∑

𝑙

∑

𝑘
𝑥𝑘𝑛𝑙𝑡𝑖𝑗 = 1 ∀𝑖, 𝑗, 𝑡 (4)

𝑂𝑛 ≤
∑

𝑡
𝑤𝑡

𝑛𝑛 ∀𝑛 (5)

2 ×
∑

𝑛
𝑥𝑘𝑛𝑙𝑡𝑖𝑗 ≤ 𝑤𝑡

𝑗𝑙 +𝑤𝑡
𝑖𝑘 ∀𝑖, 𝑗, 𝑡, 𝑘, 𝑙 (6)

𝑤𝑡
𝑖𝑘 ≤ 𝑤𝑡

𝑘𝑘 ∀𝑖, 𝑘, 𝑡 (7)
∑

𝑘
𝑤𝑡

𝑖𝑘 = 1 ∀𝑖, 𝑡 (8)

∑

𝑘
𝐹 rent
𝑘𝑡 𝑤𝑡

𝑘𝑘 + 𝑒𝑡 = 𝐴𝑅𝐶 + 𝐸𝐼𝑡 ∀𝑡 (9)

𝑝𝑡𝑘 − 𝑞𝑡𝑘 = 𝑤𝑡𝑘𝑘 −𝑤𝑡−1𝑘𝑘 ∀𝑘, 𝑡 (10)

𝑝𝑡𝑘 + 𝑞𝑡𝑘 ≤ 1 ∀𝑘, 𝑡 (11)

𝑧𝑡 = min

{

∑

𝑘
𝑝𝑡𝑘,

∑

𝑘
𝑞𝑡𝑘

}

∀𝑡 (12)

𝑥𝑘𝑛𝑙𝑡𝑖𝑗
(

𝑑𝑖𝑘 + 𝑑𝑘𝑛 + 𝑑𝑛𝑙 + 𝑑𝑙𝑗
)

≤ 𝑈𝑡 ∀𝑖, 𝑗, 𝑡, 𝑘, 𝑛, 𝑙 (13)

𝑒𝑡 ≥ 0 ∀𝑡 (14)

𝑂𝑛, 𝑝𝑡𝑘, 𝑞𝑡𝑘, 𝑥
𝑘𝑛𝑙
𝑡𝑖𝑗 , 𝑤

𝑡
𝑖𝑘 ∈ {0, 1} (15)
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Fig. 2. An example of cash flow diagram for available investments.
The objective function (1) minimizes the total costs by considering
avings in different periods. All the financial flows for each period are
iscounted to the beginning of the planning horizon by a financial
actor (𝑃∕𝐹 ,%𝑖, 𝑡). The objective function includes:

• Total transportation cost from various origins to destinations. We
consider a discount factor 𝛼 to reflect the economies of scale
associated with the use of links between non-central hubs and the
central hub (part 1).

• The second part is dedicated to the opening (renting) or closing
(excreting) periodic non-central hubs on each period (part 2).

• The third part considers the benefits of movable facilities in
periodic non-central hubs (part 3).

• Interest rates related to the unused budget available (for expand-
ing the network) during different periods are calculated in the
fourth part (part 4).

• Finally, the cost of installing the central hub is considered in the
last part (part 5).

Constraint (2) ensures that one hub is selected to be installed as a
entral hub. Constraint (3) forces that the flow from node 𝑖 to 𝑗 are zero
nless hub 𝑛 is assigned to the central hub. Constraint (4) forces the
low to go through one or two hubs and a central hub. Constraint (5)
nsures that a central hub should be chosen among the hubs. Constraint
6) ensures that the path from 𝑖 to 𝑗, using hubs k and l can be utilized,
f both 𝑖 and j are connected to hubs k and l, respectively. Constraint (7)

assures that in each period, ordinary node 𝑖 may be connected to 𝑘, if it
is set as a hub. Constraint (8) ensures that on each period every node is
exactly assigned to one hub (single allocation constraint). Constraint (9)
assures that the amount of budget, invested in non-central hubs should
not exceed the available budget at each period. According to constraint
(10), for a given node 𝑘 in period 𝑡, when a hub is newly rented, a
binary variable 𝑝𝑡𝑘 equals 1,a binary variable 𝑞𝑡𝑘 equals 0 and when the
existing hub in a node is closed, 𝑞𝑡𝑘 equals 1 and 𝑝𝑡𝑘 equals 0. Otherwise,
both variables will be zero. Constraint (11) enforces that a non-central
hub node can be opened or closed in each period. Constraint (12)
specifies the number of possible movements in each period. It equates
to the minimum number of rented and closed hubs. These constraints
can be expressed as a lemma as follows:

Lemma: As a rule, in each period, three possible cases can be
considered (Ebrahimi-Zade et al., 2016):

• ∑

𝑘 𝑝𝑡𝑘 >
∑

𝑘 𝑞𝑡𝑘 : In this case, the total number of established
(leased) PHs is more than the total number of closed PHs. It states
that all movable facilities associated to close PHs can be reused.
Consequently, the total numbers of movements equal to ∑

𝑘 𝑞𝑡𝑘.
• ∑

𝑘 𝑝𝑡𝑘 =
∑

𝑘 𝑞𝑡𝑘 : In this case, total numbers of opened and closed
PHs are equal to each other. Consequently, we can dedicate all
movable facilities from closed PHs to established PHs and the
total numbers of movements equal to ∑

𝑘 𝑝𝑡𝑘 or ∑

𝑘 𝑞𝑡𝑘.
• ∑

𝑘 𝑝𝑡𝑘 <
∑

𝑘 𝑞𝑡𝑘 : In this case, the total numbers of opened
(leased)PHs are less than the total number of closed PHs (for
example due to the decline in demands or an increase in the
cost of opening PHs). Thereupon, only ∑

𝑘 𝑝𝑡𝑘 number of moving
facilities of closed PHs can be used in newly opened PHs.
6

Constraint (13) controls that 𝑈𝑡 can be the length of the longest path
between origin–destination pairs in the resulting star/star network in
period 𝑡. Constraint (14) shows that the unused budget on each period
should take positive value. Finally, constraint (15) defines the types of
decision variables.

Solving of the MSHMP-BC-BP problem formulation is computation-
ally intractable. In particular, even when the MSHMP-BC-BP is studied
under a single period and the set of CH and PHs are given, the achieved
sub-problem that concerns the optimal assignment of non-hub nodes to
the selected hubs is proven to be NP-hard (see Kratica et al., 2007).
The proposed MSHMP-BC-BP belongs to the class of NP-hard problems.
Therefore, in order to solve the problem in a reasonable computation
time, efficient solution meta-heuristic algorithms and Lagrangian relax-
ation method need to be developed. We discuss our proposed methods
in the next section.

4. Solution approaches

Over the past decade, the genetic operators are hybridized with vari-
ous evolutionary algorithms and yield to achieve high-quality outcomes
for combinatorial optimization problems. In addition, variants of PSO
algorithm are employed in the literature to efficiently solve different
complex problems (e.g. De et al., 2016, 2017; Maiyar and Thakkar,
2019). In the current study, we apply GA’s operators couple with
some innovative techniques in two improved evolutionary algorithms
including genetic algorithm and particle swarm optimization to handle
MSHMP-BC-BP in an efficient way. In what follows, our proposed
optimization algorithms are discussed.

4.1. Modified caching genetic algorithm

The genetic algorithm, as proposed by Holland (1975), imitates
the mechanics of genetic evolution and natural selection. An evolution
process in a typical GA consists of a selection procedure, crossover
operator, and mutation operator. The cycle of reproduction of the
populations and elitism is re-iterated until a well-defined stopping cri-
terion is met. The proposed genetic algorithm exploits an immigration
operator and an internal data storage that guides the search process to
obtain better solutions. The next sub-sections are dedicated to details
of the proposed genetic algorithm.

4.1.1. Representation of chromosome
In addition to simplicity, the structure of chromosome contains the

necessary information for defining a solution to the problem. In the hub
location problem a chromosome represents the network configuration
by locating the hub facilities and the assignments of simple nodes to the
located hubs. In the present context, direct use of location–allocation
matrix as a chromosome is too complicated due to the genetic oper-
ators. To this end, we applied a continuous solution representation
(CSR) form of the chromosomes to prevent generation of infeasible
solutions by the operators. It makes the searching process smoother
and easier. In detail, we designed a [𝑲 × (𝒕 × 𝑲)] dimension matrix
containing the numbers between [0,1] to represent the given network
in which 𝑲 denotes the number of nodes and t represents the number
of periods. The procedure of finding number of PHs on each period t in
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the network (𝑵𝑯 𝒕) is described in Algorithm 1. This algorithm benefits
the caching strategy, which is described in more details in Section 4.1.6.
In order to complete the network structure, we proposed a decoding
process that transfers the chromosome to a network with one central
hub and a 𝑵𝑯 𝒕 number of hubs on each period (correspond to Step 4
and 5 in Algorithm 1) as follows:

tep1: Sorting the numbers in the diagonal matrix of the first period.
tep2: The largest number (among potential nodes) denotes the central

hub for all periods.
tep3: Assigning the PHs according to the sorted list until the numbers

of hubs are completed (𝑁𝐻𝑡 number of hubs should be chosen
in period 𝑡).

tep4: Assigning the non-hub nodes to the hubs by comparing the val-
ues at the intersection of non-hub node’s column and the rows,
which are assigned as hubs (the highest number determines the
assignment).

Step 3 and Step 4 in the above process are repeated for all periods.
This approach guarantees that each non-hub node is connected to
only one hub. In order to clarify the method, we illustrate a sample
chromosome for the network with six nodes in Fig. 3. Assume that
Algorithm 1 proposes one PH for the first period and two PHs for
the second and third periods based on the budget constraints. In the
decoded structure, the one value at the main diagonal denotes the hubs,
while other elements with value 1 represent the allocated user nodes.
The corresponding network configurations after decoding process are
depicted in Fig. 3.

The chromosome representation and the associated decoding pro-
cess are proposed in such a way to handle most of the constraints.
In detail, the suggested method aims to satisfy all constraints ex-
cept Constraints (9) and (13). In the following, a method is provided
to select a set of hubs regarding the budget constraint. Although
the proposed method does not necessarily satisfy the maximum path
length constraint, it steers the explorations toward achieving feasible
solutions.

In order to specify the numbers of PHs (Step 3 in Algorithm 1), we
apply an approach based on a roulette wheel selection for selecting
the numbers of PHs. In this method, the probability of selecting each
set of hubs is estimated based on the deviation in corresponded path
length constraints, in particular: (Maximum deviation in path length
constraints ↓ ∝ the probability ↑). This problem can be considered

as a star p-hub location problem with limited path length, which is
abbreviated with (SpHP-lPl). The SpHP-lPl aims at minimizing the
deviation between the largest path in the network and predetermined
upper bound. Before presenting the mathematical model of SpHP-lPl,
we describe the decision variables and parameters:

𝑦𝑘𝑛𝑙𝑖𝑗 A binary decision variable, which is 1 if flow from node 𝑖 to node
j goes through hubs located at node 𝑘 and 𝑙 and central hub 𝑛, it
takes 0 otherwise.

𝑣𝑖𝑘 A binary decision variable, which is 1 if node 𝑖 is assigned to hub
𝑘, it takes 0 otherwise.

𝑈𝑃 The longest possible path between nodes.
𝛽𝑚𝑖𝑛 Deviation of largest path.
𝑃 Number of hubs in the network.

The mathematical formulation of SpHP-lP is written as follows:

Min 𝛽𝑚𝑖𝑛 (16)
∑

𝑛
𝑂𝑛 = 1 (17)

∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑙
𝑦𝑘𝑛𝑙𝑖𝑗 ≤ 𝑀.𝑂𝑛 ∀𝑛 (18)

∑∑∑

𝑦𝑘𝑛𝑙𝑖𝑗 = 1 ∀𝑖, 𝑗 (19)

𝑛 𝑘 𝑙
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𝑂𝑛 ≤ 𝑣𝑛𝑛 ∀𝑛 (20)

2 ×
∑

𝑛
𝑦𝑘𝑛𝑙𝑖𝑗 ≤ 𝑣𝑗𝑙 + 𝑣𝑖𝑘 ∀𝑖, 𝑗, 𝑘, 𝑙 (21)

𝑣𝑖𝑘 ≤ 𝑣𝑘𝑘 ∀𝑖, 𝑘 (22)
∑

𝑘
𝑣𝑘𝑘 = 𝑃 (23)

∑

𝑘
𝑣𝑖𝑘 = 1 ∀𝑖 (24)

𝑘𝑛𝑙
𝑖𝑗

(

𝑑𝑖𝑘 + 𝑑𝑘𝑛 + 𝑑𝑛𝑙 + 𝑑𝑙𝑗
)

− 𝑈𝑃 ≤ 𝛽𝑚𝑖𝑛 ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑙 (25)

𝑛, 𝑦
𝑘𝑛𝑙
𝑖𝑗 , 𝑣𝑘𝑘 ∈ {0, 1}, 𝛽𝑚𝑖𝑛 ≥ 0 (26)

Eq. (16) represents the objective function of SpHP-lP. Eq. (17) exerts
hat one hub should be selected as a central hub. Eq. (18) states that
he flow from node 𝑖 to 𝑗 is to be zero unless hub 𝑛 is assigned to be a
entral hub. Eq. (19) forces the flow to go through one or two hubs and
central hub. Eq. (20) guarantees that central hub should be chosen

mong the set of hubs. Eq. (21) imposes that a path from 𝑖 to 𝑗 by
using the hubs k and l is usable if both 𝑖 and j are linked to hubs k and
l, respectively. Eq. (22) assures that it is possible for an ordinary node
𝑖 to be connected to hub 𝑘, if it is set as a hub. Eq. (23) enforces that
exactly, 𝑃 hubs should be selected. Eq. (24) applies the single allocation
trategies in hub network. Eq. (25) implies that 𝛽𝑚𝑖𝑛 equals to the largest
eviation between predetermined upper bound and the longest existed
ath. Finally, Eq. (26) propagates the types of decision variables.

.1.2. Initial population
The initial population of the proposed genetic algorithm consists of

𝑲×(𝒕×𝑲)]-dimensional matrices where the number of matrices equals
he number of individuals.

.1.3. Fitness evaluation
One of the usual methods to overcome the constraints in meta-

euristic algorithms is considering intermediate infeasible solutions
uring the searching process by relaxing some of the constraints. In
he proposed meta-heuristic, we relaxed the constraints, which re-
ated to the path lengths in order to enhance the method exploration
apabilities. Let 𝑠 represents an infeasible solution for the proposed
odel. Consequently, the penalized objective function with constraint

elaxation can be achieved by Eq. (27). In Eq. (27), 𝜑 is a non-negative
oefficient, which is initialized by the user.
(

𝑠
)

= 𝐶
(

𝑠
)

+ 𝜑 ×𝑤(𝑠) (27)

where 𝐶(𝑠) represents the standard objective function and 𝑤(𝑠) mea-
sures the maximum path length violation over all connections.

4.1.4. Crossover operator
The crossover operator in the genetic algorithm exchanges the

information between two selected chromosomes (parents) in order to
generate a new offspring with better features according to the evolution
theory. Here, roulette wheel selection is utilized to choose the individ-
uals, which undergo crossover. Moreover, we applied convex crossover
with a one-cut point. In detail, two new offsprings, 𝑝1𝑛𝑒𝑤 and 𝑝2𝑛𝑒𝑤 can
be achieved by two parents 𝑝𝑓𝑛 and 𝑝𝑠𝑛 using Eqs. (28) and (29). In
these equations 𝑏 is a random matrix with size of the parents on the
interval [0, 1].

𝑝1𝑛𝑒𝑤 = 𝑏.𝑝𝑓𝑛 + (1 − 𝑏).𝑝𝑠𝑛 (28)

𝑝2𝑛𝑒𝑤 = (1 − 𝑏).𝑝𝑓𝑛 + 𝑏.𝑝𝑠𝑛 (29)

4.1.5. Mutation operator
The mutation process is an important building block of the GA

aiming to escape local optima moving to a global solution. Hence,
we devised some random changes for the chromosomes to steer the
explorations in the solution space. For each mutation, one of the pre-
pared operators is randomly chosen to produce an offspring with new
characteristics. The process of the designated mutations are expressed
as follows:



H. Tikani, R. Ramezanian, M. Setak et al. Engineering Applications of Artificial Intelligence 97 (2021) 104056

Fig. 3. Decoding process for sample network.
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• CH Exchange Mutation: This operator exchanges the central hub.
In particular, the related gene 𝜌 that causes the node to be central
hub is selected and then the value of the related gene (value𝜌) is
replaced by (value𝑛𝑒𝑤𝜌 = 1−value𝜌), so the next priority is selected
to be the central hub.

• PH Exchange Mutation: This operator removes a node from the set
of PHs, randomly. In fact, one of PHs (for example 𝜃) is elected by
chance and then the value of the related gene (value𝜃) is replaced
by (value𝑛𝑒𝑤𝜃 = 1−value𝜃) such that the hub node (𝜃) converses to
an ordinary node and the next priority can be selected as a PH.

• Transposition Mutation: In this operator, the associated matrix of
each period is transposed separately before the decoding process.
Thus, the set of hubs (include CH and PHs) remains unchanged
but the assignments of the ordinary nodes to hubs entirely rear-
range.

• Swap Mutation: This mutation operator selects two columns on
the chromosome with a chance, and then interchange the allele
values among them to generate new offspring.

Fig. 4 visualizes the performance of proposed mutation operators on
a part of the chromosome that relates to the first period.

4.1.6. Caching strategy
The caching genetic algorithm prevents excess calculation of fitness

values relates to repetitive chromosomes during the searching opera-
tions (Kratica et al., 2011, 2007). In this method, a caching table is
prepared to store the fitness values of the chromosomes. If we recognize
a genetic code that exists in cache table, we use the cache information
instead of re-computing the objective function. Same as Kratica et al.
(2007), we employed simple but practical caching strategy named Least
Recently Used (LRU) to limit the data storage with storage size 𝑁𝑐𝑎𝑐ℎ𝑒 =
8000.

4.1.7. Migration operator
In this study, we employ an immigration operator in addition to

the crossover and mutation operators. The immigration operator helps
to search the solution space more widely and prevents converging
to a (non-acceptable) local optimum. The basic idea of immigration
relates to societies in which some new individuals (i.e. immigrants) join
the current population, perpetually. The immigrant’s chromosomes are
randomly created by some distribution. Thus, no genetic material of the
present generation is brought in. On the whole, in the proposed genetic
algorithm, some new offsprings and several immigrants attach to the
main population. After sorting the individuals based on their finesses,
better individuals go through to the next generation. This process is
repeated until a stopping criterion is met.

The complete flowchart of proposed CGA is given in Fig. 5. The
algorithm exploits a feature which seeks to fill the population list
as varied as possible. To this end, the objective value of repetitive
individuals in each population is set to the upper bound. It eventuates
the non-existence of members with the identical genetic code in the
next generation. It eventuates the non-existence of members with the
identical genetic code in the next generation and reduce the size of
population list without any loss of quality.

4.2. Proposed hybrid particle swarm optimization (HPSO)

Over the past decade, the genetic operators have been hybridized
with various evolutionary algorithms to efficiently solve different com-
plex problems. Another useful trend, which has been utilized in the
literature to achieve higher quality solutions, is embedding local search
strategies in the evolution process. In this study, we applied these
features to devise an improved algorithm based on particle swarm
optimization. In what follows, the process of proposed optimization

algorithm is discussed.

9

Particle swarm optimization (PSO) is an evolutionary computation
algorithm based on the foraging of birds and fish schooling. The pro-
cedure of the algorithm is initially proposed by Kennedy and Eberhart
in 1995 (Kennedy and Eberhart, 1995). Same as many meta-heuristic
algorithms PSO is a population-based method and contains various
particles, which represent the potential solutions to a certain problem.
PSO employs a simple mechanism that imitates swarm behavior of
birds. In details, it starts with a group of random particles as an
initial population and then iteratively seeks for the globally optimal
solution. Here, we combine PSO with proposed genetic operators in
Section 4.2.6. Moreover, some local search (LS) strategies are added
to the proposed algorithm in order to make better particles in Sec-
tion 4.2.7. The features of the proposed hybrid approach are the
following:

• We employed a continuous solution representation (CSR) form of
the particles to keep the feasibility of solutions after updating the
positions.

• In many variants of PSO algorithms, the 𝑃𝑏𝑒𝑠𝑡-𝐺𝑏𝑒𝑠𝑡 based for-
mula is utilized to create new solutions and explore the solution
space. The 𝑃𝑏𝑒𝑠𝑡 represents the best fitness discovered by each
particle and 𝐺𝑏𝑒𝑠𝑡 denotes the best position observed by the
whole population. We proposed a new update strategy for the
particles by incorporating the genetic operators (crossover and
mutation). Proposed probabilistic-based method strives to keep
the diversity of the solutions during the searching process.

• In order to prevent premature convergence through the local op-
tima, we applied immigration operator. In this approach, we de-
vised a strategy to exchange a poor particle with a new immigrant
particle.

• We employed the LS heuristic to a sub-swarm of the whole
population on each iteration. This approach helps to explore the
solution space with more precision and keep the particles far
away from a local optimum.

The mentioned improvements of the proposed hybrid method solu-
tion are as follows:

4.2.1. Participles representation
The solution representation in the modified HPSO is similar to pro-

posed CGA and employs real values. The mentioned decoding process
(Algorithm 1) can be implemented to transfer the particle to a hub
configuration.

4.2.2. Initial population
The initial population in the proposed method is a group of random

particles represented by some matrices. The entries in the matrices have
a uniform distribution in [0, 1].

4.2.3. Fitness evaluation
We employed a penalized objective function same as proposed CGA

in Section 4.1.3. Clearly, the particles with lower objective values are
evaluated with higher fitness.

4.2.4. Migration operator
In the proposed hybrid method, we incorporate immigration op-

erator to escape from local optima and explore the new areas of the
solution space. To do this, after M iterations (M is set by user); one-
tenth of population that has the lowest 𝑥𝑘𝑃𝑏𝑒𝑠𝑡,𝑖 in the swarm are replaced
by immigrant individuals.

4.2.5. Caching strategy
Same as proposed CGA, we incorporated caching techniques into the

presented HPSO to improve the computational times in the searching
procedure. The complete information about the caching method is
presented in Section 4.1.6.
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Fig. 4. The effect of different mutations on chromosomes and the resulting network created by (a) CH-Exchange, (b) PH-Exchange, (c) Transposition, (d) Swap.

Fig. 5. Flowchart process of modified caching genetic algorithm.
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4.2.6. Updating process
This process aims at updating the particle to achieve new solution

𝑥𝑘+1𝑖 form 𝑥𝑘𝑖 . In the proposed hybrid algorithm, we define an updating
formula like Lüer-Villagra et al. (2019) by utilizing genetic operators.
The formula is presented in the below:

𝑥𝑘+1𝑖 =
(

𝑥𝑘𝑃𝑏𝑒𝑠𝑡,𝑖 ⊠ 𝑥𝑘𝑖
)

⊙
(

𝑥𝑘𝐺𝑏𝑒𝑠𝑡,𝑖 ⊠ 𝑥𝑘𝑖
)

⊙ 𝑥̂𝑘𝑖 (30)

In Eq. (30), 𝑥𝑘𝑃𝑏𝑒𝑠𝑡,𝑖 denotes the best fitness value discovered by 𝑖th
particle. 𝑥𝑘𝐺𝑏𝑒𝑠𝑡,𝑖 presents the best fitness value observed by the whole

swarm and 𝑥𝑘𝑖 expresses the position of the 𝑖th particle at the kth
iteration. The mark ⊠ in Eq. (30) denotes the crossover operator of
two particles. The convex crossover with one-cut point is utilized to
create offsprings (see Section 4.1.4). Moreover 𝑥̂𝑘𝑖 Specify the particle
obtained by mutation operator on 𝑥𝑘𝑖 (see Section 4.1.5). The mark ⊙
also expresses the selection strategy among the archived individuals.

The following method is proposed to choose the new particle among
the individuals created by 𝑥𝑘𝑃𝑏𝑒𝑠𝑡,𝑖 ⊠ 𝑥𝑘𝑖 and 𝑥𝑘𝐺𝑏𝑒𝑠𝑡,𝑖 ⊠ 𝑥𝑘𝑖 and 𝑥̂𝑘𝑖 . Fig. 6
illustrates the procedure of ⊙ operator. In this process, first, we choose
a use number E to specify that which operator should be applied. Let C
be a constant number in the interval of [0,1] which should be initialized
by the user. Moreover, consider a real random number 𝑅𝑖 in the interval
of [0,1] is produced for particle 𝑖. If 𝑅𝑖 ≥ 𝐶 then offspring 1 or offspring
3 should be chosen to replace with the particle, otherwise offspring 2
or offspring 4 is selected to update the particle. The offspring 5, which
is created by mutation operator is sent, directly.

Premature convergence is the main deficiency of the PSO method. In
detail, it is plausible for the algorithm to be stuck in a poor local optima
when all of the members are unable to find a better feasible solution. To
prevent this state we utilized immigration operator and employ some
LS strategies to enhance the particles. The scheme of proposed hybrid
PSO is depicted in Fig. 7.

4.2.7. LS improvements
Local search is a classical optimization method, which generates

solutions from an initial solution by employing local changes (neighbor-
hoods). Implementing appropriate movements to generate the neigh-
borhood structures helps to achieve acceptable solutions. Furthermore,
designing various neighborhood structures slower leads to a local opti-
mum.

In the proposed method, we enhance a sub-swarm implementing
LS heuristics. In each iteration, one-tenth of the swarm is randomly
selected and improved by LS strategies. Each of the proposed meth-
ods is a simple rule that reassigns some of the nodes to hubs or
changes the hubs. For this purpose, we adopt five various neighborhood
structures for the hub network design. Fig. 8 illustrates the proposed
neighborhood structures, which are defined as follows:

a. Shift node: it switches the assignment of a single non-hub node
to a different hub (includes central hub).

b. Swap node: it exchanges allocations of two non-hub nodes with
each other.

c. Exchange hub: it exchanges a hub node with a non-hub. Accord-
ingly, some of the assignments will be changed.

d. Decrease number of hubs by one: delete one of the non-central
hubs and update the assignments.

e. Increase the number of hubs by one: add additional non-central
hubs and update the assignments. This operator is employed
with regard to the budget constraint.

Base on above descriptions, the procedure of the proposed HPSO
algorithm is summarized in the Algorithm 2.
11
4.3. MSHMP-BC-BP: Lagrangian lower bound

As mentioned earlier, the MSHMP-BC-BP is an NP-hard problem.
Consequently, we may face excessively large resultant problem even
for average sized instances. Indeed, the computational time increases
non-polynomially with the size growth of the problem using commer-
cial solvers (i.e. CPLEX). This motivates us to develop a Lagrangian
relaxation-based algorithm to achieve proper lower bounds for the
problem.

To this end, we relaxed the set of constraints (5) and (6) using
Lagrange multipliers 𝜆𝑖𝑗𝑘𝑛 and 𝑢𝑡𝑛 yields the following problem:
(MSHMP-BC-BP_LG):

𝐿 (𝜆, 𝑢) = 𝑀𝑖𝑛
∑

𝑖

∑

𝑗≠𝑖

∑

𝑘

∑

𝑙≠𝑘

∑

𝑛

∑

𝑡
[𝐶𝑡(𝑑𝑖𝑘 + 𝑑𝑙𝑗 ) + 𝛼𝐶𝑡(𝑑𝑘𝑛 + 𝑑𝑛𝑙)]𝑥𝑘𝑛𝑙𝑡𝑖𝑗

× 𝐷𝑡
𝑖𝑗 (P∕F,%i, t) (31)

+
∑

𝑖

∑

𝑗≠𝑖

∑

𝑘

∑

𝑛

∑

𝑡
[𝐶𝑡(𝑑𝑖𝑘 + 𝑑𝑘𝑗 )]𝑥𝑘𝑛𝑘𝑡𝑖𝑗 𝐷𝑡

𝑖𝑗

(P
F
,%i, t

)

+
∑

𝑡

∑

𝑘
𝐹 rent
𝑘𝑡 𝑝𝑡𝑘

(P
F
,%i, t

)

+
∑

𝑡

∑

𝑘
𝐹 excrete
𝑘𝑡 𝑞𝑡𝑘

(P
F
,%i, t

)

−
∑

𝑡
𝑆𝑡𝑧𝑡

(P
F
,%i, t

)

−
∑

𝑡
𝑒𝑡
(P
F
,%i, t

)

+
∑

𝑛
𝐹 Fix
𝑛 𝑂𝑛

+
∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑛
𝜆𝑖𝑗𝑘𝑛

(

2 ×
∑

𝑛
𝑥𝑘𝑛𝑙𝑡𝑖𝑗 − (𝑤𝑡

𝑗𝑙 +𝑤𝑡
𝑖𝑘)

)

+
∑

𝑡

∑

𝑛
𝑢𝑡𝑛(𝑂𝑛 −𝑤𝑡

𝑛𝑛)

Subject to constraints (2)–(4) and (7)–(15).
Note that the obtained 𝐿 (𝜆, 𝑢) can be decomposed into two sub-

problems: the first problem (1) is in the solution space of two binary
variables 𝑂𝑛, 𝑥𝑘𝑛𝑙𝑡𝑖𝑗 , and the second problem (2) should be solved in the
space of the binary variables 𝑝𝑡𝑘, 𝑞𝑡𝑘, 𝑤𝑡

𝑖𝑘 and positive variable 𝑒𝑡.
The first sub-problem is:

Sub problem 1:

𝐿𝑅𝑥𝑜 = 𝑀𝑖𝑛
∑

𝑖

∑

𝑗≠𝑖

∑

𝑘

∑

𝑙≠𝑘

∑

𝑛

∑

𝑡
[𝐶𝑡(𝑑𝑖𝑘 + 𝑑𝑙𝑗 ) + 𝛼𝐶𝑡(𝑑𝑘𝑛 + 𝑑𝑛𝑙)]𝑥𝑘𝑛𝑙𝑡𝑖𝑗

𝐷𝑡
𝑖𝑗

(P
F
,%i, t

)

(32)

+
∑

𝑖

∑

𝑗≠𝑖

∑

𝑘

∑

𝑛

∑

𝑡
[𝐶𝑡(𝑑𝑖𝑘 + 𝑑𝑘𝑗 )]𝑥𝑘𝑛𝑘𝑡𝑖𝑗 𝐷𝑡

𝑖𝑗

(P
F
,%i, t

)

+
∑

𝑛
𝐹 Fix
𝑛 𝑂𝑛 + 2

×
∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑛
𝜆𝑖𝑗𝑘𝑛

∑

𝑛
𝑥𝑘𝑛𝑙𝑡𝑖𝑗 +

∑

𝑡

∑

𝑛
𝑢𝑡𝑛𝑂𝑛

Subject to constraints (2)–(4) and (13) where 𝑂𝑛, 𝑥𝑘𝑛𝑙𝑡𝑖𝑗 ∈ {0, 1}.
The solution to 𝐿𝑅𝑥𝑜 is given by choosing one central hub (con-

straint 2) and presents one path between two various nodes (constraint
4) such that the path should pass through the central hub (constraint
3) and finally controls the maximum allowable distance between two
nodes constraint (13). It is notable that the feasible solutions of 𝐿𝑅𝑥𝑜
do not consider the non-central hubs. Moreover, in the achieved so-
lutions, nodes are not necessarily connected to a single open hub on
each period. Furthermore, the second sub-problem can be rewritten as
follows:
Sub problem 2:

𝐿𝑅𝑝𝑞𝑤𝑒 = 𝑀𝑖𝑛
∑

𝑡

∑

𝑘
𝐹 rent
𝑘𝑡 𝑝𝑡𝑘 (P∕F,%i, t) +

∑

𝑡

∑

𝑘
𝐹 excrete
𝑘𝑡 𝑞𝑡𝑘 (P∕F,%i, t)

−
∑

𝑡
𝑆𝑡𝑧𝑡

(P
F
,%i, t

)

(33)

−
∑

𝑡
𝑒𝑡
(P
F
,%i, t

)

−
∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑛
𝜆𝑖𝑗𝑘𝑛

(

𝑤𝑡
𝑗𝑙 +𝑤𝑡

𝑖𝑘

)

−
∑∑

𝑢𝑡𝑛𝑤
𝑡
𝑛𝑛
𝑡 𝑛
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Fig. 6. The selection procedure in the proposed hybrid PSO.

Fig. 7. The sketch of proposed hybrid PSO.

12



H. Tikani, R. Ramezanian, M. Setak et al. Engineering Applications of Artificial Intelligence 97 (2021) 104056

𝑒

c
v

3
u

5

s
o
t
c
t
b
s
d

a
r
L
a
w
d
s
o
𝛼
t

f

Fig. 8. Neighborhood structures.
o

Subject to constraints (5) and (7)–(12) where 𝑝𝑡𝑘, 𝑞𝑡𝑘, 𝑤𝑡
𝑖𝑘 ∈ {0, 1} and

𝑡 ≥ 0.
The solution to 𝐿𝑅𝑝𝑞𝑤𝑒 is given by choosing non-central hubs ac-

ording to the budget constraints (constraint 9) and determines the
ariables 𝑝𝑡𝑘 and 𝑞𝑡𝑘, which relate to the opening or closing the hubs.

The process of the sub-gradient algorithm is provided in Algorithm
. The algorithm gives a lower bound z𝐷 and up represents a known
pper bound obtained from meta-heuristic methods. The parameter 𝜌𝑘

is initially set to 2 and halved after 30 consecutive iterations without
any improvement in the lower bound. The optimization algorithm will
be terminated by three conditions include: (1) all the components of
the subgradients (𝜆𝑖𝑗𝑘𝑛 and 𝑢𝑡𝑛) are equal to zero. In this case, the algo-
rithm reaches an optimal solution; (2) the maximum computation time
𝑡𝑚𝑎𝑥 is reached; (3) the convergence criteria with optimality tolerance
up−z𝐷

z𝐷
≤ E is met.

. Experimental results

In this section, we validate the performance and report the results of
everal computational experiments. The instances are generated based
n a real case of passenger transportation in Iran. The real transporta-
ion case is introduced by Karimi and Bashiri (2011) and includes 37
ities in Iran. This data set is created based on two criteria, containing
ourism and industry and can be found in http://www.shahed.ac.ir/
ashiri/Lists/List13/Attachments/1/IAD(dataset).rar. In this study, the
tudied instances with different sizes exploit some subsets of mentioned
ata set.

In order to find an optimum solution for the problem, the instances
re coded in GAMS 24.1.3 with ILOG CPLEX 12.5 64-Bit optimization
outines. Moreover, the meta-heuristic algorithms are coded in MAT-
AB 2014a software. All programs are executed on a computer with
n Intel Core i5-3337U (1.8 GHz) with 6 GB of RAM. In all instances,
e consider three courses of the planning horizon. In order to create
ifferent scales of problems; the proposed model was implemented on
ome subsets of the mentioned data set by taking the first 𝑛 number
f cities participating in the network with two discounting factors
= 0.2 and 04. Additional required parameters are generated according

o Table 2.
In Table 2, 𝑈 [𝑎, 𝑏] denotes a continuous uniform of distributional

unction on the interval of a and b, and DU(a, b) represents a discretional
13
Table 2
Generated input parameters for the experiments.
𝐶𝑡 𝑡 = 1 → 5∕𝑡 = 2 → 6∕𝑡 = 3 → 7 ∀𝑡
𝛼 𝛼 = 0.2, 0.4
𝐷𝑡

𝑖𝑗 𝑡 = 1 → 𝐷𝑈 (100, 500)∕𝑡 = 2 → 𝐷𝑈 (200, 600)∕𝑡 = 3 → 𝐷𝑈 (300, 700) ∀𝑖, 𝑗, 𝑡

𝐹 Fix
𝑛 𝑈 (7500, 25000) ∀𝑛

𝐹 rent
𝑘𝑡 𝑈 (500, 1000) ∀𝑘, 𝑡

𝐹 excrete
𝑘𝑡 U(300, 900)

𝑆𝑡 𝑈 [250, 850] ∀𝑡
𝑈𝑡 (in
thousand
kilometers)

5 − 𝑡∕3 ∀𝑡

𝐴𝑅𝐶 1500
𝐸𝐼𝑇 𝑡 = 1 →0/𝑡 = 2 →600/𝑡 = 3 →1200 ∀𝑡
Interest rate 0.25

uniform distribution on the interval of a and b, where a < 𝑏. Parameter
C is a transferring cost per unit distance between OD pairs. It is
discounted by parameter 𝛼 in inter-hub links. The potential cities for
the establishment of central hub include Tehran, Esfahan, Shiraz, and
Ahvaz.

5.1. Algorithms parameter tuning

In this section, we calibrate the parameters involved meta-heuristic
algorithms by Taguchi design method. This method finds the optimal
level of the signal factors by minimizing the variances of quality
characteristics. In particular, it uses a measure of variation called
signal-to-noise (S/N) ratio to ascertain the best level for each factor.
In order to change objective values to non-scale data, the relative
percentage deviation (RPD) is utilized. The RPD is computed according
to the following equation:

𝑅𝑃𝐷 =
|

|

𝐴𝑙𝑔𝑠𝑜𝑙 −𝑀𝑖𝑛𝑠𝑜𝑙||
|

|

𝑀𝑖𝑛𝑠𝑜𝑙||
× 100 (34)

In Eq. (34), 𝐴𝑙𝑔𝑠𝑜𝑙 represents the value of objective function that
btained by the meta-heuristic algorithms while 𝑀𝑖𝑛𝑠𝑜𝑙 presents one

optimal solution obtained by the GAMS software. The results of algo-
rithms are comparable when their parameters are tuned with caution
and uniformly. In this regard, the parameters of employed evolutionary

algorithms are divided into three different levels and then adjusted

http://www.shahed.ac.ir/bashiri/Lists/List13/Attachments/1/IAD(dataset).rar
http://www.shahed.ac.ir/bashiri/Lists/List13/Attachments/1/IAD(dataset).rar
http://www.shahed.ac.ir/bashiri/Lists/List13/Attachments/1/IAD(dataset).rar
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s
p

for a medium-sized problem. Here we selected the instance 20 and
determined the most appropriate level by analysis of experiments in
Minitab 16.2 software. The levels of each parameter are presented in
Fig. 9.

According to the Taguchi’s plan, we employed the L9 design. The
results of the S/N ratio for the meta-heuristic algorithms are shown in
Fig. 9. The largest value of the S/N ratio on each graph and for each
parameter shows a higher performance level.

5.2. Numerical instances

In this section, we solve various problems with different features
such as numbers of nodes and discounting factors. The results of
computational experiments are reported to assess the effectiveness of
the proposed algorithms in comparison with optimal solutions obtained
by CPLEX and LR. Table 3 contains the sample features and experi-
mental outputs of GAMS using CPLEX solver. In the first and second
columns, instance’s numbers and the features are given, respectively.
The instances are considered with two discounting factors 𝛼 = 0.2, 0.4.
The optimum results of the mathematical model and associated com-
putational times are given in the third and fourth column of Table 3.
By paying attention to Table 3, it is obvious that by increasing the size
of the instances the computation times increase exponentially. From
sample 15 onwards, it is not possible anymore to obtain an optimal
solution using GAMS/CPLEX in less than one hour. As a result, we use
our algorithms to tackle the problem for larger instances. The total
number of iterations is set to (𝑀𝐴𝑋_𝐼𝑇 = 150) for the GAs and HPSO.
From instance 13, we set population size to 90 individuals to achieve
high quality solutions.

The results of solving the problems with GAs are tabulated in
Tables 3 and 4. We run the GA algorithms 25 times for each of
the instances. The best-achieved solution among all runs is reported
in the CGA and GA columns. If the algorithm obtains an optimum
solution (by comparison with mathematical model) it is marked with
opt. The averaged required time that GA consumes to reach the best
value during the execution is shown in the column 𝑡(𝑠) (in seconds),
𝑡𝑡𝑜𝑡 represents the average of total time that GA needed to complete
the searching process. Moreover, the average number of iterations in
which GA reaches the best answer is given in Gen. As described earlier,
caching GA prevents computations for repetitive individuals. Thus, the
algorithm does not calculate the fitness function for all the members of
generations. In this regard, column 𝑒𝑣𝑎𝑙 in Table 4 presents the average
amount of evaluations. On each execution, the CGA uses the cache-

table instead of calculation of the objective function, many times. We M

14
applied the criterion cache to indicate the average percentage of using
internal storing data to achieve the fitness function. In practice, this
criterion can be applied to denote the run-time savings. Note that the
computational results are indeed a fair comparison since the number
of calls to the evaluation function in all algorithms is similar. The
existing difference in the values of 𝑒𝑣𝑎𝑙 for CGA and HPSO is mainly
due to the use of caching techniques and the performance of operators
in diversifying the members and generating high-quality individuals
during the searching process.

We calculate the relative gap to evaluate the quality of the solutions.
For this purpose, we used the following equation for each run:

𝐺𝑎𝑝 = 100 ×
𝐴𝑙𝑔𝑠𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑠𝑜𝑙

𝐵𝑒𝑠𝑡𝑠𝑜𝑙
(35)

In Eq. (35) 𝐴𝑙𝑔𝑠𝑜𝑙 expresses the solution found by the algorithms (the
best objective function among all the executions) and 𝐵𝑒𝑠𝑡𝑠𝑜𝑙 shows one
optimal solution obtained by mathematic model and otherwise, it is the
tight lower bound found by the Lagrangian relaxation method.

The results of solving the problems with HPSO are presented in
Table 5. Again, we run HPSO algorithm 25 times for each of the
instances. Most of the columns in Table 5 are same as Table 4. Column
𝑖𝑡𝑒𝑟 represents the average number of iterations in which HPSO reaches
the best answer. In addition, column 𝐿𝑅 shows the tight lower bounds
obtained by the proposed Lagrangian relaxation method.

By referring to the Tables 3–5, variations of discounting factor 𝛼
do not provide a meaningful effect on the total computational times
for both exact and meta-heuristic algorithms. However, the objective
function value increases by decreasing the discounts. As can be seen
from Tables 3–5, in all experiments, except the problem with only five
nodes, HPSO and CGA solve faster than CPLEX. The exponential growth
in the computational time of the CPLEX solver in comparing with the
required time of meta-heuristics is depicted in Fig. 10(a). In addition,
Fig. 10(b) shows the benefit of using the caching technique in the CGA
by comparing the computation times with the pure GA. The figure
confirms that generally increasing the instance size yields a lower cache
usage. All in all, this feature significantly improves the computation
times in all instances.

The superiority of the CGA and HPSO to pure GA can be concluded
from the Fig. 10(b) and Tables 3–5. The average of total times and Gens
in Table 4 (or 𝐼𝑡𝑒𝑟𝑠 in Table 5) indicates that proposed meta-heuristics
can reach the solutions relatively short computation times (𝑡𝑡𝑜𝑡 ≤ 156
) with fewer iterations. From Tables 4 and 5, it is evident that the
rovided meta-heuristics are capable to obtain acceptable solutions for
SHMP-BC-BP in relatively short computation times (𝑡 ≤ 156 s).
𝑡𝑜𝑡



H. Tikani, R. Ramezanian, M. Setak et al. Engineering Applications of Artificial Intelligence 97 (2021) 104056

Fig. 9. Mean S/N ratios for the meta-heuristics.

Fig. 10(a). Comparison the computational time of various method solutions.

Fig. 10(b). Benefit of caching process in the CGA comparing to the pure GA.

15
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Table 3
Features of the sample problems solved by GAMS and standard GA.

NO. Sample
feature

Number of
variables

Number of
constraints

GAMS 𝑡 (s) 𝐺𝐴 𝑡 (s) ttot (s) 𝐺𝑒𝑛 𝐺𝑎𝑝%

Ave Best Worst 𝜎 Ave Best Worst 𝜎

1 5-0.4 9426 7718 101 935 241.87 2.273 Opt 4.111 7.491 6.876 8.149 0.214 27.1 0 0 0 0
2 5-0.2 9426 7718 89 328 316.85 2.205 Opt 4.042 7.392 6.323 8.397 0.353 26.3 0 0 0 0
3 6-0.4 23 394 15 847 193 168 663.85 11.055 Opt 3.653 11.19 10.24 12.12 0.351 29.5 0 0 0 0
4 6-0.2 23 394 15 847 174 466 358.34 11.019 Opt 3.484 11.63 10.54 12.84 0.408 27.6 0 0 0 0
5 7-0.4 50 504 29 196 315 373 505.34 52.033 Opt 8.190 17.41 16.68 18.17 0.265 37.6 0 0 0 0
6 7-0.2 50 504 29 196 286 143 475.92 58.351 Opt 9.332 18.01 17.25 18.75 0.233 38.4 0 0 0 0
7 8-0.4 98 406 49 637 331 132 832.28 165.19 Opt 10.44 25.15 23.70 26.42 0.465 48.4 0 0 0 0
8 8-0.2 98 406 49 637 268 473 263.93 158.33 Opt 12.07 24.78 24.27 25.34 0.181 50.0 0 0 0 0
9 9-0.4 177 270 79 330 462 618 576.08 365.92 Opt 20.11 35.87 34.94 36.87 0.346 60.4 0 0 0 0
10 9-0.2 177 270 79 330 394 089 945.76 354.18 Opt 19.40 33.46 31.64 35.24 0.630 59.1 0 0 0 0
11 10-0.4 300 146 120 723 568 803 119.88 992.67 Opt 26.44 48.11 44.41 51.15 1.142 64.1 0 0 0 0
12 10-0.2 300 146 120 723 497 643 399.19 1101.3 Opt 27.09 49.82 45.63 53.95 1.469 65.3 0 0 0 0
13 11-0.4 483 324 176 552 712 653 516.78 2029.18 714 230 785.19 44.06 58.61 53.73 63.48 1.728 70.1 0.2213 0 0.4610 0.0411
14 11-0.2 483 324 176 552 620 984 784.41 2618.29 Opt 47.50 67.18 59.84 75.79 2.695 77.3 0 0 0 0
15 12-0.4 746 694 249 841 838 453 018.15 >3600 848 563 032.45 78.91 115.2 108.6 120. 6 2.050 89.1 1.2058 0 1.3503 0.0513
16 12-0.2 746 694 249 841 716 576 090.62 >3600 726 216 108.31 82.42 117.1 106.2 127. 2 3.726 91.5 1.3453 0 1.5830 0.0830
17 13-0.4 1114 106 343 902 – – 1 087 089 732.25 104.4 162.7 149.9 174. 4 3.943 97.8 1.2315 0.1601 1.5413 0.0701
18 13-0.2 1114 106 343 902 – – 957 697 579.26 110.1 165.0 152.3 178.7 4.272 99.2 0 0 0 0
19 14-0.4 1613 730 462 335 – – 1 359 280 369.17 148.9 206.6 193.1 220.6 4.804 105.0 2.0885 0.7501 2.7710 0.0774
20 14-0.2 1613 730 462 335 – – 1 192 977 046.96 157.2 221.2 204.5 239.4 5.868 114.6 1.1015 0.8320 1.9510 0.8310
21 15-0.4 2278 416 609 028 – – 1 596 211 292.10 163.5 283.1 265.2 300.6 6.143 122.0 2.9004 1.0161 3.1035 0.9016
22 15-0.2 2278 416 609 028 – – 1 385 569 409.64 158.3 270.9 249.2 292.8 7.421 119.2 1.5018 1.0018 1.8430 0.0832
23 16-0.4 3146 054 788 157 – – 1 808 418 821.09 223.9 329.2 306.9 352.3 8.350 123.8 0.4539 0 1.0694 0.0840
24 16-0.2 3146 054 788 157 – – 1 604 837 705.27 229.7 334.0 306.1 365.7 10.02 125.1 1.4332 0.9713 1.7101 0.1012
25 17-0.4 4 259 934 1 004 186 – – 2 060 608 548.72 313.4 421.8 391.5 449.5 9.863 127.4 2.3097 1.3521 2.7310 0.1004
26 17-0.2 4 259 934 1 004 186 – – 1 884 144 900.35 329.1 430.4 398.2 466. 9 11.01 131.1 0.9798 0.5716 1.2910 0.0943
27 18-0.4 5 669 106 1 261 867 – – 2 297 636 676.19 412.0 509.3 475.1 542. 5 10.69 141.3 1.4505 1.0813 2.8127 0.1051
28 18-0.2 5 669 106 1 261 867 – – 2 089 676 851.45 418.3 514.2 485.7 548. 2 10.39 145.7 3.1514 1.8613 3.5615 0.1362
Total average : – – – – – 113.2 160.60 149.23 172.35 3.893 82.64 0.7633 0.3427 0.9921 0.0985
Table 4
Features of the sample problems solved by modified CGA.

NO. Sample feature 𝐶𝐺𝐴 𝑡 (s) ttot (s) 𝐺𝑒𝑛 𝐺𝑎𝑝% 𝑒𝑣𝑎𝑙 𝑐𝑎𝑐ℎ𝑒

Ave Best Worse 𝜎 Ave Best Worse 𝜎%

1 5-0.4 Opt 2.112 4.421 3.963 4.879 0.164 24.4 0 0 0 0 1162.0 0.827
2 5-0.2 Opt 2.061 4.393 3.850 4.936 0.194 23.8 0 0 0 0 1298.3 0.814
3 6-0.4 Opt 2.823 5.860 4.974 6.745 0.269 27.0 0 0 0 0 1503.8 0.783
4 6-0.2 Opt 2.682 5.724 5.084 6.363 0.201 25.5 0 0 0 0 1476.1 0.770
5 7-0.4 Opt 4.081 7.847 7.173 8.520 0.212 32.8 0 0 0 0 1712.1 0.743
6 7-0.2 Opt 4.576 8.030 7.523 8.537 0.191 34.6 0 0 0 0 1771.4 0.739
7 8-0.4 Opt 8.441 12.14 11.09 13.18 0.341 44.1 0 0 0 0 2123.1 0.730
8 8-0.2 Opt 8.912 11.52 10.82 12.21 0.251 46.5 0 0 0 0 2101.0 0.744
9 9-0.4 Opt 12.02 16.40 15.51 17.28 0.289 57.6 0 0 0 0 2481.6 0.663
10 9-0.2 Opt 11.33 15.80 14.49 17.10 0.462 55.3 0 0 0 0 2404.2 0.652
11 10-0.4 Opt 15.07 23.05 20.53 25.56 0.914 60.7 0 0 0 0 2590.1 0.608
12 10-0.2 Opt 16.92 25.10 22.03 28.16 1.077 63.1 0 0 0 0 2641.6 0.620
13 11-0.4 Opt 25.07 36.18 30.16 42.19 1.825 54.4 0 0 0 0 3011.7 0.704
14 11-0.2 Opt 27.15 37.02 31.34 42.69 2.046 56.7 0 0 0 0 3185.5 0.691
15 12-0.4 Opt 32.92 44.18 37.69 50.66 2.440 63.4 0 0 0 0 2946.0 0.701
16 12-0.2 Opt 37.09 48.33 40.73 55.92 2.656 68.9 0 0 0 0 3192.7 0.693
17 13-0.4 1 073 864 858.01 46.19 59.08 50.40 67.75 3.154 76.0 0 0 0 0 3385.0 0.670
18 13-0.2 957 697 579.26 45.20 63.12 52.53 73.70 3.560 79.8 0 0 0 0 3506.4 0.680
19 14-0.4 1 331 472 836.43 56.44 75.11 63.86 86.35 3.843 83.4 0 0 0 0 3464.0 0.659
20 14-0.2 1 179 979 429.40 54.17 74.19 59.35 89.02 4.695 81.2 0 0 0 0 3427.9 0.662
21 15-0.4 1 551 246 188.61 59.45 89.57 74.93 104.2 4.914 82.5 0.0017 0.0011 0.0231 0.0087 3582.4 0.637
22 15-0.2 1 365 569 409.64 64.12 88.22 71.27 105.1 5.442 85.0 0.0167 0.0096 0.0342 0.0128 3654.8 0.619
23 16-0.4 1 800 336 608.80 84.57 101.0 80.36 121.6 6.923 92.1 0.0150 0.0115 0.0377 0.0108 3708.5 0.570
24 16-0.2 1 582 244 247.28 87.20 106.1 84.47 127.7 7.349 94.2 0.0202 0.0173 0.0398 0.0114 3749.0 0.553
25 17-0.4 2 014 810 426.10 109.1 133.0 110.1 155.8 7.891 105.8 0.0358 0.0231 0.0501 0.0149 3896.1 0.531
26 17-0.2 1 866 162 654.46 114.7 137.2 110.7 163.6 8.075 111.3 0.0260 0.0156 0.0492 0.0141 3915.7 0.547
27 18-0.4 2 266 162 654.46 133.2 149.0 125.9 172.0 8.199 119.5 0.0608 0.0425 0.1014 0.0224 4001.0 0.507
28 18-0.2 2 037 663 162.54 135.0 155.4 130.6 180.1 8.319 124.9 0.0333 0.0210 0.1120 0.0276 4022.2 0.491
Total average : – 42.95 54.89 45.77 63.99 3.067 66.94 0. 0074 0.0050 0.01598 0.0043 2854.0 0.664
Moreover, the average of gaps shows that the HPSO can achieve higher
quality solutions with better computational times.

The convergence curves related to the executions of meta-heuristic
algorithms for the instance 11 are presented in Fig. 11. The initial
population is generated randomly and used for all proposed algorithms.
As seen from Fig. 11, the proposed HPSO and CGA are able to reach one
16
optimal solution with less iterations, because these methods are able to
diverge the population and explore the solution space more properly.

As described earlier, we implemented a LR method to obtain a
tight lower bound for all instances. For better illustration, the proposed
algorithm is conducted for instance 11, and changes in the objective
function during various iterations are presented in Fig. 12. The figure
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Table 5
Features of the sample problems solved HPSO and Lagrangian relaxation.

NO. Sample feature 𝐻𝑃𝑆𝑂 𝑡 (s) 𝑡𝑡𝑜𝑡 (s) 𝑒𝑣𝑎𝑙 𝑐𝑎𝑐ℎ𝑒 𝐼𝑡𝑒𝑟 𝐺𝑎𝑝% 𝐿𝑅

Ave Best Worst 𝜎 Ave Best Worst 𝜎%

1 5-0.4 Opt 1.220 3.716 3.286 4.180 0.143 989.20 0.814 21.7 0 0 0 0 Opt
2 5-0.2 Opt 1.416 3.810 3.177 4.551 0.236 1049.4 0.804 20.1 0 0 0 0 Opt
3 6-0.4 Opt 2.216 5.001 4.281 5.780 0.246 1374.6 0.776 24.1 0 0 0 0 Opt
4 6-0.2 Opt 2.340 5.044 4.274 5.841 0.286 1401.0 0.755 23.2 0 0 0 0 Opt
5 7-0.4 Opt 3.822 6.942 6.349 7.460 0.186 1612.1 0.713 31.2 0 0 0 0 Opt
6 7-0.2 Opt 4.019 7.045 6.521 7.543 0.164 1627.3 0.722 32.4 0 0 0 0 Opt
7 8-0.4 Opt 7.291 9.048 8.027 10.06 0.326 1933.0 0.680 42.1 0 0 0 0 Opt
8 8-0.2 Opt 7.582 9.175 8.777 9.531 0.127 1976.5 0.696 44.3 0 0 0 0 Opt
9 9-0.4 Opt 9.284 14.02 13.35 14.67 0.231 2209.2 0.602 54.1 0 0 0 0 Opt
10 9-0.2 Opt 8.723 13.80 12.49 15.20 0.462 2151.7 0.629 50.6 0 0 0 0 Opt
11 10-0.4 Opt 12.05 18.73 15.96 21.47 0.838 2380.1 0.524 53.6 0 0 0 0 Opt
12 10-0.2 Opt 14.72 19.45 16.63 22.51 0.980 2490.4 0.550 58.2 0 0 0 0 Opt
13 11-0.4 Opt 22.17 34.06 30.97 37.73 1.152 2909.5 0.652 52.4 0 0 0 0 Opt
14 11-0.2 Opt 24.73 34.65 29.12 40.30 1.887 2916.0 0.674 55.5 0 0 0 0 Opt
15 12-0.4 Opt 30.03 46.30 41.69 50.87 1.504 3071.9 0.640 59.7 0 0 0 0 Opt
16 12-0.2 Opt 27.23 42.07 35.01 52.04 2.484 2916.3 0.622 56.0 0 0 0 0 Opt
17 13-0.4 1 073 864 858.01 40.54 57.11 49.39 65.09 2.760 3163.5 0.631 68.3 0 0 0 0 1 073 864 858.01
18 13-0.2 957 697 579.26 43.12 60.28 52.04 69.27 2.991 3220.2 0.622 70.4 0 0 0 0 957 697 579.26
19 14-0.4 1 331 472 836.43 53.10 73.20 62.80 83.20 3.203 3316.7 0.601 72.3 0 0 0 0 1 331 472 836.43
20 14-0.2 1 179 979 429.40 52.78 78.14 66.14 90.69 3.913 3410.8 0.579 75.8 0 0 0 0 1 179 979 429.40
21 15-0.4 1 551 231 046.23 57.44 80.16 67.10 93.51 4.505 3590.1 0.540 77.1 0.0007 0.0005 0.0009 0.0064 1 551 220 286.13
22 15-0.2 1 365 274 302.01 60.83 83.20 66.67 99.75 5.442 3644.3 0.534 80.5 0.0151 0.0090 0.0158 0.0093 1 365 068 652.29
23 16-0.4 1 800 336 608.80 75.06 87.60 71.25 104.2 5.845 3720.0 0.539 88.2 0.0050 0.0038 0.0068 0.0071 1 800 247 328.91
24 16-0.2 1 582 231 369.56 79.33 90.88 68.10 112.0 7.349 3806.7 0.515 90.9 0.0043 0.0031 0.0049 0.0083 1 582 162 627.06
25 17-0.4 2 014 563 287.85 101.2 118.7 100.6 139.0 6.576 3797.1 0.529 97.3 0.0235 0.0130 0.0280 0.0114 2 014 089 443.75
26 17-0.2 1 866 162 654.46 110.6 126.6 101.5 152.7 8.075 3862.8 0.502 103.7 0.0160 0.0106 0.0183 0.0116 1 865 863 888.56
27 18-0.4 2 266 036 654.12 120.7 139.4 118.1 160.6 7.843 4014.2 0.471 100.3 0.0553 0.0349 0.0579 0.0173 2 264 784 961.49
28 18-0.2 2 037 403 621.96 126.2 141.2 127.6 162.9 7.626 3970.6 0.452 107.4 0.0206 0.0117 0.0223 0.0189 2 036 983 990.53
Total average : – 39.27 50.33 42.54 58.66 2.763 2733.0 0.620 61.12 0.0050 0.0031 0.0055 0.0032 –
Fig. 11. Comparison of convergence curves of meta-heuristics.
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ndicates that the difference between the lower bound of the problem
nd the cost of one optimal solution decreases for a higher number
f iterations. In particular, this approach succeeded to provide a good
ower bound for medium and large instance sizes.

.3. Pairwise statistical analysis of the solution approaches

In order to compare the solution methods, statistical tests are con-
ucted. The aim is to justify whether there are significant differences
etween the solutions of the proposed meta-heuristics. Applying the
olmogorov–Smirnov test with a significance level of 0.05 shows that

he obtained results are not normally distributed. Therefore, the non-
arametric Wilcoxon signed rank test is employed with a significance
evel of 0.05. The values of asymptotic significance (A.S.) levels and
he Z statistic are presented in Table 6. Based on the outcomes of the
tatistical tests, the differences between the solutions of the algorithms
re statistically significant. In detail, both HPSO and Modified CGA
utperform the pure GA. Moreover, the proposed HPSO outperforms
he modified CGA in a statistical sense.
 o

17
Table 6
Wilcoxon signed rank test for the solution approaches.

Solution methods CGA-Pure GA HPSO-CGA HPSO-Pure GA

Z −3.296 −2.201 −3.296
A.S. 0.001 0.028 0.001

5.4. Evolution of diversity in the genetic algorithms

The diversity of population greatly impacts the efficiency of genetic
algorithms. A too rapid decrease in the diversity of generations leads
to a premature convergence in the search process. In this study, we
employed a measure proposed by Topcuoglu et al. (2005) to evaluate
the diversity. They proposed the hamming distance between Assign
arrays as a measure of diversity. The hamming distance between two
assigned matrices 𝐴1 and 𝐴2 equates to the numbers of rearrangements
n the assignments for converting 𝐴1 into 𝐴2. The diversity of each pop-
lation is computed by average hamming distance among each member
f the population with the best individual and all other members of that
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Fig. 12. Convergence of Lagrangian relaxation method to one optimal solution.
Fig. 13. Diversity values for the algorithms with two different problem sizes.
population. Fig. 13 shows the diversity of population for two sample
problems with 16 and 14 nodes. For a more accurate comparison, we
applied an identical initial population (which is randomly generated)
with 100 numbers of iterations for both algorithms.

As seen from Fig. 13, instances with 14 and 16 nodes have an initial
population with diversity values of 11 and 14, respectively. These
values imply that the initialization phase of the algorithm is completely
able to create the distinct initial individuals to avoid premature con-
vergence. It is clear that diversity values decrease by increasing the
numbers of generations, gradually. As can be seen from Fig. 13, in
both instances, modified GA can provide a better diversification in the
searching procedure rather than pure GA.

6. Sensitivity analysis and managerial insights

In what follows, a sensitivity analysis is provided for some spe-
cific parameters of MSHMP-BC-BP to identify their influences on the
system’s performance. Then, some managerial insights have been ex-
tracted for the decision makers.

6.1. Sensitivity analysis on discount factor and interest rate

In the majority of hub-and-spoke transportation systems, a discount
factor is incorporated to reflect the savings due to economies of scale
compared to hub-to-hub arcs. Fig. 14 presents the effects of the discount
factor variation on the total cost for the instance with 10 number of
18
nodes. It is clear that decreasing the discount rate increases the total
costs.

To evaluate the effect of interest rate on the objective function, we
consider an instance with 10 nodes and a discount factor of 0.2 for
different interest rates. The results are depicted in Fig. 15. Increasing
the interest rate leads to a lower objective function value. In fact, when
the periodic costs are converted by the higher interest rate the present
expense becomes lower. We also prepared a detailed breakdown on
the components of objective function for the aforementioned instance
in Fig. 16. The first point that can be drawn from the figure is that
in MSHMP-BC-BP the transportation cost has a significant share of the
total cost. The present value of renting/excreting costs for non-central
hubs is the second major role. The other determinant cost among the
defined components is the establishment of CH. In overall, we conclude
that transportation cost and the related costs for opening or closing
hubs have a large share in the overall costs and the unused budget
or benefits from movable facilities only helps to partially decrease the
operational cost in each period.

6.2. Evaluating significance of a multi-period network with leased hubs

To demonstrate the necessity of multi-period hub location problem,
we ignore the possibility of opening or closing during the planning
horizon. In fact, we consider a hub location problem with the star/star
design in which some numbers of hubs should be established in the
beginning of the horizon and it is not acceptable to change the location
of hubs during the planning horizon. In this case, the installation
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Fig. 14. Total costs for various discount factors.
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Fig. 15. Total costs for various interest rates.

Fig. 16. The results of objective function and its components.

costs for non-central hub are decuple of opening (renting) a hub in
MSHMP-BC-BP. We also consider an initial budget of 40 000, which
is available for establishing the network. This traditional HLP and
proposed MSHMP-BC-BP are solved for an instance with 37 numbers
of nodes and the results are shown in Fig. 17. As expected the obtained
objective function, in the case of the multi period HLP, is much better
than the case of the traditional hub location model (see Table 7). In
both problems, the model chooses Isfahan (one of the central provinces
of Iran) as a central hub. Other employed hubs are listed in Table 7.
19
Table 7
Comparing MSHMP-BC-BP with traditional HLP.

Model Central hub Employed Non-central hubs Total objective
function

MSHMP-BC-BP Isfahan Tehran, Kerman, Ahvaz,
Shiraz, Hamedan

3 658 675 440.74

Traditional
HLP

Isfahan Sanandaj, Shahrud, Kerman 5 426 430 837.08

6.3. Managerial insights

This paper provides some important suggestions and effective prin-
ciples for scientific decision making especially in newly emerged com-
panies.

1. Establishing a hub-and-spoke network is very costly as the initial
investment is large. While by using MSHMP-BC-BP, a company
can start its own business by less initial investment and gradually
expands the network according to the various conditions using
leased hubs.

2. The analysis shows that, according to the budget constraints,
MSHMP-BC-BP chooses better hubs with strategic locations. Con-
versely, traditional HLP should operate with a non-flexible initial
set of facilities and cannot employ appropriate hubs due to the
limited budget and service quality considerations. Moreover, the
proposed model makes it possible to cover a part of costs relating
to expand the network with the incomes earned by the company
during the periods.

3. In MSHMP-BC-BP the service quality can be improved over the
time by adjusting the threshold parameter 𝑈𝑡. In this regard,
MSHMP-BC-BP considers the defined threshold and might relo-
cated some of the leased hubs due to fluctuations in demand if
it is cost effective.

4. We add this point that the proposed MSHMP-BC-BP model can
be extended to provide the initial funds and capital using loans.
In this situation, some further analysis is required to deter-
mine the business’ capability to repay loans and incorporate the
financial process in the objective function.

. Conclusions and future remarks

In this study, we presented a multi-period hub location problem
ith the possibility of opening (leasing) new facilities or closing current

acilities proportionate to variation in demands, costs, sales strategies,
nd other parameters that involved in the decisions making processes.
he proposed hub-and-spoke structure arises in the form of a star/star
etwork. It exploits a strategic central hub that should be established by
company and several periodic hubs that can be opened (leased) for a
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Fig. 17. Comparison between network structures for MSHMP-BC-BP and traditional HLP.
specific time horizon. Central hub applied as a centralized point in the
backbone network that connects to the periodic hubs with a star shape.
A pre-specified threshold value is defined to control the path lengths
among each pair as a measure of service quality constraint. The aim
of the proposed model is to minimize the total financial costs, which
is converted to present value by knowing the interest rate and using
the formula in the factor of the conversion table. The amount of the
budget that is available to invest in opening new hubs is limited and
an interest rate is accounted for the unused budget during the periods.
To this end, a mixed integer mathematical model is presented to model
the problem.

A computational study with various numerical instances is carried
out. According to the studied instances, the proposed model substan-
tially helps to decrease the total network costs in comparing with the
traditional hub location models. Due to the computational complex-
ity of proposed model, the CPLEX solver is only able to solve small
instances. Therefore, we developed and tested efficient algorithms in-
cluding a modified caching genetic algorithm and a hybrid particle
swarm optimization to solve the large-scale problems in a reasonable
20
time. The proposed evolutionary algorithms include an immigration
operator in order to keep the diversity and increase the explorations. A
caching technique is also embedded in the algorithms to improve the
computational time of the searching process. The performance of the
algorithms is compared with a pure GA and the mathematical model.
Moreover, the Lagrangian relaxation method is employed to achieve
tight lower bounds for the samples. The results demonstrate the value
and quality of proposed algorithms. The methods are able to reach
high-quality solutions with less computational time.

Further research directions include incorporating other actual fac-
tors such as maintenance costs or government regulations, applying
robust optimization, finding some sets of valid inequalities to enhance
the model and solving the problem with other exact method solu-
tions. Moreover, the uncertainty of the parameters can be taken into
consideration by formulating the problem using a two-stage stochastic
programming approach.
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