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Best Linear Approximation of Nonlinear
Continuous-Time Systems Subject to Process

Noise and Operating in Feedback
Rik Pintelon , Fellow, IEEE, Maarten Schoukens , Member, IEEE, and John Lataire , Member, IEEE

Abstract— In many engineering applications, the level of non-
linear distortions in frequency response function (FRF) measure-
ments is quantified using specially designed periodic excitation
signals called random phase multisines and periodic noise. The
technique is based on the concept of the best linear approximation
(BLA), and it allows one to check the validity of the linear
framework with a simple experiment. Although the classical BLA
theory can handle measurement noise only, in most applications,
the noise generated by the system—called process noise—is the
dominant noise source. Therefore, there is a need to extend the
existing BLA theory to the process noise case. In this article,
we study in detail the impact of the process noise on the BLA
of nonlinear continuous-time systems operating in a closed loop.
It is shown that the existing nonparametric estimation methods
for detecting and quantifying the level of nonlinear distortions in
FRF measurements are still applicable in the presence of process
noise. All results are also valid for discrete-time systems and
systems operating in an open loop.

Index Terms— Best linear approximation (BLA), continuous-
time, feedback, frequency response function (FRF), nonlinear
systems, nonparametric estimation, process noise.

I. INTRODUCTION

S INCE most real-life systems behave—to some extent—
nonlinearly, it is important to quantify the impact of the

nonlinearities on the linear modeling framework. A powerful
tool for detecting and quantifying the presence of nonlinear
(NL) distortions in frequency response function (FRF) mea-
surements is the best linear approximation (BLA) introduced
in [1] for nonlinear time-invariant systems operating in open
loop, and generalized in [2] for the closed-loop case. The
major limitation of the classical BLA framework is that it can
handle measurement noise only [3], [4], while, in practice,
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Fig. 1. Noisy input u(t), noisy output y(t) measurement of a nonlinear (NL)
time-invariant plant subject to process noise w(t) and operating in closed loop.
nu(t) and ny (t) are—possibly jointly correlated—stationary random processes
that are independent of the known reference signal r(t). The process noise
w(t) is independently distributed of the reference r(t) and the input–output
measurement noise nu(t) and ny(t).

the noise generated by the system—called process noise—is
most dominant. Hence, it is important to analyze the impact
of the process noise on the BLA.

Beside control applications [5], [6] and amplifiers operating
in closed loop [7], feedback is present in any experimental
setup where the plant is excited by a nonideal actuator [8].
It emphasizes the importance of handling nonlinear systems
subject to process noise and operating in a closed loop (see
Fig. 1).

Using the BLA, one can easily check the validity of the
linear framework in practical applications, such as operational
amplifiers [7], industrial robots [5], bit-error-rate measure-
ments in telecommunication [9], characterization of lithium
ion batteries [10], control of a medical X-ray system [6],
voltage instrument transformers [11], and current transform-
ers [12]. In addition, the dependence of the BLA on the
excitation power spectrum also provides some guidance for
nonlinear model selection [13], [14].

Recently, the influence of process noise on the BLA
has been studied for discrete-time Wiener–Hammerstein sys-
tems [15] and for nonlinear discrete-time systems that can
be approximated arbitrarily well in a mean square sense by
a finite degree discrete-time Volterra series [16]. Compared
with [15], [16], the new contributions of this article are as
follows.

1) Nonlinear continuous-time systems are handled.
2) Additional properties of the BLA and its output residual

are proven.
3) The full feedback case is considered where all dynamical

systems can be nonlinear and subject to process noise,
and where the output and the input measurements are
noisy (see Fig. 4).
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4) A multiple experiment procedure is proposed to differ-
entiate nonlinear input–output behavior from nonlinear
input-process noise interactions.

5) All results are valid for continuous-time and
discrete-time nonlinear systems.

6) Verification of the theory on simulations (discrete-time)
and real measurements (continuous-time) of nonlinear
feedback systems.

This article is organized as follows. First, the class of
excitation signals (Section II) and the class of nonlinear
feedback systems (Section III) for which the theory applies
are defined. Next, the BLA and its output residual are studied
in detail (Section IV). Furthermore, the theory is illustrated on
simulations (Section V) and real measurements (Section VI).
Finally, some conclusions are drawn (Section VII).

II. CLASS OF EXCITATION SIGNALS

A special class of periodic excitation signals that plays an
important role in the detection and quantification of nonlinear
distortions in FRF measurements are random phase multisines.

Definition 1 (Random Phase Multisine): A real signal r(t)
is a random phase multisine if

r(t) =
N
2 −1∑

k=− N
2 +1

Rke j2π k
N fs t (1a)

with Rk = R−k = |Rk |e j � Rk , fs the clock frequency of
the arbitrary waveform generator, and N ∈ N the number
of samples within one signal period. The random phases
� Rk ∈ [0, 2π), k �= 0, of the Fourier coefficients Rk are
independently (over k) distributed such that

E{e j � Rk } = 0 and E{e j2� Rk } = 0. (1b)

The deterministic amplitudes of the Fourier coefficients Rk

are either zero (the harmonic is not excited) or satisfy Rk =
R̂(k fs/N)/

√
N , where the function SR̂ R̂( f ) = |R̂( f )|2 is

uniformly bounded 0 � SR̂ R̂( f ) � MR < ∞ with a finite
number of discontinuities on [0, fs/2].

Note that the dc-value, rdc = R0, of the random phase
multisine (1) defines the set point of the nonlinear system.
It can have a major impact on the nonlinear distortions in the
FRF measurement.

If the amplitudes of the Fourier coefficients in (1a) are also
randomly distributed, then r(t) is a periodic noise signal.

Definition 2 (Periodic Noise): Consider the signal (1a),
where the amplitudes |Rk | = |R̂(k fs/N)|/√N of the Fourier
coefficients are either zero, or the realization of an independent
(over k) random process, with SR̂ R̂( f ) = E{|R̂( f )|2} a
uniformly bounded function with a finite number of discon-
tinuities on the interval [0, fs/2]. If the random phases � Rk

satisfying (1b) are independently distributed of the random
amplitudes |Rk |, then r(t) is a periodic noise signal.
The discrete Fourier transform (DFT) of random phase multi-
sines and periodic noise signals has the following property.

Property 1 (DFT of Random Phase Multisines and Periodic
Noise Signals): The scaled DFT

X (k) = DFT{x(nTs)}√
N

= 1√
N

N−1∑
n=0

x(nTs)e
− j2πkn/N (2)

of N samples covering one period of a random phase multi-
sine (1) or periodic noise signal, equals

R(k) = 1√
N

R̂(k fs/N)√
N

N = R̂(k fs/N) (3)

for k = 1, 2, . . . , N/2 − 1 (proof: see [4, Sec. 2.3]),
where E{|R(k)|2} is uniformly bounded [proof: SR̂ R̂( f ) =
E{|R̂( f )|2} is uniformly bounded; see Definitions 1 and 2].

According to the central limit theorem (see [17, Th. 27.3]),
the random phase multisine (Definition 1) and the peri-
odic noise (Definition 2) are—within one signal period—
asymptotically (N → ∞) normally distributed with mean
value E{r(t)} = E{R0} and asymptotic variance ρ 2

r =
limN→∞ var(r(t))

ρ 2
r = 2

fs

∫ fs
2

0
SR̂ R̂( f )d f (4)

where SR̂ R̂( f ) = E{|R̂( f )|2} (proof: see Appendix A).
Although the central limit theorem indicates an asymptotic

(N → ∞) equivalence between, on the one hand, random
multisines and periodic noise, and on the other hand, Gaussian
noise, their power spectral densities are fundamentally differ-
ent. Indeed, stationary Gaussian noise has a continuous power
spectral density, while that of a periodic signal consists of
the sum of Dirac impulses. To establish an equivalence class
between periodic and random signals we need the concept of
the Riemann equivalent power spectra [18].

Definition 3 (Riemann Equivalent Power Spectra): Two
stationary random and/or periodic signals r1(t) and r2(t),
with respective power spectral densities Sr1r1( jω) and
Sr2r2( jω), have Riemann equivalent power spectra if for any
0 < f1 < f2 < fs/2∫ f2

f1

Sr1r1( jω)d f =
∫ f2

f1

Sr2r2( jω)d f + O(N−1). (5)

The O(N−1) term, with N/2 − 1 the number of harmonics,
is present if at least one of the signals is periodic. If ri (t) is
periodic, then Sri ri ( jω) is a sum of Dirac impulses and the
integral in (5) is replaced by∫ f2

f1

Sri ri ( jω)d f = 1

N

k2∑
k=k1

E

{
|R̂i

(
k

N
fs

)
|2

}
(6)

with R̂i ((k/N) fs )/
√

N the kth Fourier coefficient, k1 =
�N f1/ fs�, and k2 = 	N f2/ fs
, where �x� (	x
) is the
smallest (largest) integer larger (smaller) than or equal to x .
In addition, SR̂i R̂i

( f ) = E{|R̂i( f )|2} is a uniformly bounded
function with a finite number of discontinuities on the interval
[0, fs/2].

Using Definition 3, the class of random phase multisines
(Definition 1) and periodic noise (Definition 2) signals can
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be extended to asymptotically (N → ∞) normally distributed
signals with the Riemann equivalent power spectrum.

Definition 4 (Class U of Asymptotically Normally Distrib-
uted Signals with Riemann Equivalent Power Spectrum): U is
the class of asymptotically (N → ∞) normally distributed
signals with the Riemann equivalent power spectrum (see
Definition 3).

Stationary Gaussian noise, random phase multisines
(Definition 1), and periodic noise (Definition 2) are examples
of signals belonging to the Riemann equivalence class U. The
dc-value of the class U defines the set point of the nonlinear
system.

III. CLASS OF NONLINEAR SYSTEMS

In this section, we consider the setup of Fig. 1 without
the input–output measurement noise sources nu(t) and ny(t).
The resulting setup can be considered as a two-input r(t)
and w(t), two-output y(t), and u(t) nonlinear system. Hence,
to describe the class of nonlinear feedback systems for which
the BLA framework is valid, we need the concept of a
multiple-input, multiple-output finite degree Volterra series
(see Section III-A). Using this concept, the classes of non-
linear time-invariant systems without and with process noise
w(t) necessary to develop the BLA theory, are defined in
Sections III-B and III-C, respectively.

A. Finite Volterra Series

Definition 5 (Finite Degree Volterra Series): The response
z(t) ∈ Rnz of a causal finite degree Volterra series to an input
x(t) ∈ Rnx has the form

z(t) =
K∑

α1,...,αnx =0

zα1,...,αnx
(t) (7a)

with K ∈ N the finite nonlinear degree. z0,...,0(t) is a con-
stant, and zα1,...,αnx

(t) is defined through a multidimensional
convolution integral of the kernel

gα1,...,αnx
(τ11, . . . , τ1α1 , . . . , τnx 1, . . . , τnx αnx

) ∈ R
nz (7b)

and the nx input signals x[l](t), l = 1, . . . , nx ,

zα1,...,αnx
(t) =

∫ ∞

0
. . .

∫ ∞

0
gα1,...,αnx

(τ11, . . . , τnx αnx
)

×
nx∏

l=1

αl∏
i=1

x[l](t − τli )dτli . (7c)

If αl = 0, then the product
∏αl

i=1 . . . in (7c) is equal to one,
and the kernel (7b) does not depend on the corresponding τli ,
i = 1, . . . , αl .

The kernel (7b) can be interpreted as a multidimensional
vector impulse response and is called the Volterra kernel
of degree α = ∑nx

l=1 αl [19]. The multidimensional integral
(7c) remains the same if the kernel is replaced by a sym-
metrized kernel, which is the average of the original kernel
overall

∏nx
l=1 αl ! permutations within the nx groups of variables

{τl1, . . . , τlαl }, l = 1, . . . , nx .

The DFT (2) of the periodic steady state response z(t) of
the finite Volterra series (7) to nx random phase multisines or
periodic noise inputs x(t) is given by

Z(k) =
K∑

α1,...,αnx =0

Zα1,...,αnx
(k), for k �= 0 (8a)

Zα1,...,αnx
(k)

= 1

N
α−1

2

nx∑
l=1

αl∑
i=1

N
2 −1∑

kli =− N
2 +1

Gα1,...,αnx
( jωk11 , . . . , jωknx αnx

)

×
nx∏

l=1

αl∏
i=1

X [l](kli )

s. t. k =
nx∑

l=1

αl∑
i=1

kli and with α =
nx∑

l=1

α. (8b)

(proof: see [20]). Gα1,...,αnx
( jωk11 , . . . , jωknx αnx

), with ω =
2π f , is the multidimensional Fourier transform of the sym-
metrized kernel (7b) evaluated at the DFT frequencies
fkli = kli fs/N , l = 1, . . . , nx and i = 1, . . . , αl [19].
Hence, the order of the angular frequencies in each group
{ωkl1 , . . . , ωklαl

}, l = 1, . . . , nx , has no importance in (8b).

B. Nonlinear Systems Without Process Noise

Fading memory nonlinear systems excited by the class of
Gaussian signals with the same Riemann equivalent power
spectrum (see Definition 4) can be approximated arbitrar-
ily well in mean-squared sense by a finite degree Volterra
series (7) [4], [21]. For this system class, the steady-state
response to a periodic excitation with period T is periodic
with the same period T . This excludes systems generating sub-
harmonics, autonomous oscillations, bifurcations, and chaos.
However, hard nonlinearities, such as clipping, dead zones,
relays, quantizers, . . ., are allowed. Although—in general—
the Volterra series expansion of a nonlinear feedback system
does not exist [19] on a restricted input domain, the response
of nonlinear feedback systems can be approximated arbitrarily
well in a mean-squared sense by a finite degree Volterra
series (7). It motivates the following definition of the class
of nonlinear systems considered.

Definition 6 (Class SNL of Nonlinear Systems—No Process
Noise): Consider the setup of Fig. 1, where the measurement
noise sources nu(t) and ny(t) and the process noise w(t)
are set to zero. SNL is the class of nonlinear time-invariant
systems whose response z(t) = [y(t) u(t)]T to the input
x(t) = r(t), around the set point xdc = E{r(t)} and zdc =
[E{y(t)} E{u(t)}]T can be approximated arbitrarily well in
mean-squared sense by a stable one-input, two-output finite
degree Volterra series (7) of sufficiently high nonlinear degree
K , for the class U of asymptotically (N → ∞) normally
distributed excitation signals r(t) with the Riemann equivalent
power spectrum (see Definition 4). In addition, there exists a
positive definite matrix C1 > 0 and a constant C2 > 0 such
that the DFT (2) of z(t) (7) and r(t) ∈ U fulfill

lim
K→∞

E{Z(k)Z H (k)} � C1 < ∞ (9a)
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∣∣∣ lim
K→∞

E{Z(k)R(k)}
∣∣∣ � C2 < ∞ (9b)

for k = 1, 2, . . . , N/2 − 1 and N → ∞, and where the
magnitude in (9b) is taken elementwise.

Definition 6 guarantees the existence of the auto- and
cross-power spectra (or spectral densities) of the reference r(t)
and the input–output signals u(t) and y(t). Conditions (9)
also impose the convergence (K → ∞) of the one-input,
two-output finite degree Volterra series (7), and the uniformly
boundedness of the elementwise taken magnitudes of all
Gα1,...,αnx

( jωk11 , . . . , jωknx αnx
) in (8). Note that the stability

of the closed-loop system in Fig. 1 without process noise is
assured by the stability of open-loop system from reference
r(t) to input–output z(t) = [y(t) u(t)]T .

C. Nonlinear Systems Subject to Process Noise

To quantify the impact of the process noise w(t) on the BLA
of the plant, the expected value—conditioned on the reference
signal r(t) —of the response of the nonlinear feedback system
in Fig. 1 is calculated. It requires a suitable assumption on the
process noise w(t). Note that a similar approach is utilized
in [22] for estimating parametric nonlinear dynamical models
of nonlinear systems subject to process noise.

Assumption 1 (Process Noise): The process noise w(t) is a
stationary Gaussian process with finite second-order moments.
It is independently distributed of the reference signal r(t).

Under Assumption 1, the following important property of a
finite Volterra series can be shown.

Property 2 (Conditional Expected Value Finite Volterra
Series): Consider the finite degree Volterra series (7) from
input x(t) = [r(t) w(t)]T to output z(t) = [y(t) u(t)]T . Under
Assumption 1, the system from input x(t) = r(t) to the
expected value of the output conditioned on r(t), ž(t) =
E{z(t)|r(t)}, defines a single-input, dual-output finite degree
Volterra series (7) with kernels

gα1(τ11, . . . , τ1α1)

=
K∑

α2=0

∫ ∞

0
. . .

∫ ∞

0
gα1,α2(τ11, . . . , τ1α1 , τ21, . . . , τ2α2)

× E{w(t − τ21) . . .w(t − τ2α2)}dτ21 . . . dτ2α2 . (10)

Proof: Direct application of E{.|r(t)} to (7) gives (10).
Under Assumption 1, the expected value in the right-hand
side of (10) can be written as the sum of products of finite
second-order moments [19] and, hence, is finite.

Property 2 motivates the following definition of the class of
nonlinear feedback systems subject to process noise.

Definition 7 (Class SNL,w of Nonlinear Systems Subject to
Process Noise): Consider the setup of Fig. 1, where the
measurement noise sources nu(t) and ny(t) are set to zero.
SNL,w is the class of nonlinear time-invariant systems whose
response z(t) = [y(t) u(t)]T to the input x(t) = [r(t) w(t)]T ,
around the set point xdc = [E{r(t)} E{w(t)}]T and zdc =
[E{y(t)} E{u(t)}]T , can be approximated arbitrarily well in
mean-squared sense by a stable two-input, two-output finite
degree Volterra series (7) of sufficiently high nonlinear degree
K , for the signal class U (see Definition 4), and process noise

Fig. 2. Taking the expected value conditioned on the reference signal r(t) of
the nonlinear feedback system ∈ SNL,w (see Definition 7 and Fig. 1), defines
a new nonlinear feedback system ∈ SNL (see Definition 6), with ǔ(t) =
E{u(t)|r(t)} and y̌(t) = E{y(t)|r(t)}.

w(t) satisfying Assumption 1. In addition, R(k) and Z(k),
the DFT (2) of, respectively, r(t) ∈ U and z(t) (7) satisfy
conditions (9), where the expected values are taken w.r.t. r(t)
and w(t).

Definition 7 guarantees the existence of the cross- and
autopower spectra (or spectral densities) of the reference r(t),
the input u(t) and the output y(t) signals in the presence of
process noise w(t). Conditions (9) impose the convergence
(K → ∞) of the two-input, two-output finite degree Volterra
series (7) and its expected value w.r.t. the process noise, and
the uniformly boundedness of the multidimensional Fourier
transform of the kernels gα1,α2(τ11, . . . , τ1α1 , τ21, . . . , τ2α2) and
their expected value (10).

Note that the stability of the closed-loop system in Fig. 1
is assured by the stability of the open-loop system from
reference r(t) and process noise w(t) to input–output z(t) =
[y(t) u(t)]T . Note that the system class SNL,w is also a two-
input, two-output version of the system class SNL (see Defini-
tion 6). The system class SNL,w has the following key property.

Lemma 1 (Property System Class SNL,w): The expected
value w.r.t. the process noise w(t) transforms the system
class SNL,w (see Definition 7) into the system class SNL (see
Definition 6).

Proof: See Appendix B.
Lemma 1 motivates the block diagram shown in Fig. 2 and

justifies the definition of the BLA given in Section IV.

IV. BEST LINEAR APPROXIMATION

First, assuming that no measurement noise is present,
the best linear approximation (BLA) of nonlinear systems
∈ SNL,w (see Definition 7) is defined and its properties are
proven (Section IV-A). Next, the impact of the input-output
measurement noise on the BLA framework is discussed
(Section IV-B). Furthermore, it is shown that the theory is also
valid for discrete-time systems and the setup of Fig. 1 is gen-
eralized to the case where the nonlinear actuator and feedback
dynamics are also subject to process noise (Section IV-C).
Finally, some nonparametric estimation methods are briefly
discussed (Section IV-D) that allow one to detect and quantify
the nonlinear behavior (Section IV-E).

A. Definition and Properties

Taking into account Lemma 1, the BLA of nonlinear
systems ∈ SNL,w (see Definition 7) is defined as in [2] for
nonlinear systems ∈ SNL (see Definition 6). The justification
for the denotation “best” is given at the end of this section.
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Definition 8 (BLA in the Presence of Process Noise): The
BLA, GBLA( jω), of a nonlinear system belonging to the class
SNL,w (see Definition 7) is defined as, for k = 1, 2, . . . N

2 − 1

GBLA,N ( jωk) = E{Y (k)R(k)}
E{U(k)R(k)} (11a)

GBLA( jω) = lim
N→∞ GBLA,N ( jωk) with fk = k

N
fs (11b)

where ω = 2π f , with f = limN→∞ fk ∈ (0, 0.5 fs),
and where the expected values are taken w.r.t. the random
realization of the reference r(t), and the process noise w(t).

Using the BLA definition for nonlinear systems operating
in open loop [4], the BLA (11a) of the nonlinear plant can be
written as the ratio of the BLA G RY,N ( jωk) from reference to
output and the BLA G RU,N ( jωk) from reference to input

G RY,N ( jωk) = E{Y (k)R(k)}
E{|R(k)|2} (12a)

G RU,N ( jωk) = E{U(k)R(k)}
E{|R(k)|2} . (12b)

The difference between the actual response z(t) = [y(t) u(t)]T

(Z(k)) of the nonlinear feedback system to the reference
r(t) (R(k)), and the response zBLA(t) = [yBLA(t) uBLA(t)]T

(ZBLA(k)) predicted by the BLAs (12) depends nonlinearly
on the reference r(t) and the process noise w(t). It can be
split into two different contributions.

1) The terms in z(t) that do not depend on the actual
realization of w(t). Their sum is called the observed
stochastic nonlinear distortion z̃S(t) (Z̃ S(k)). Z̃ S(k) is
formally defined as

Z̃ S(k) = E{Z(k)|r(t)} − ZBLA(k) (13)

and it depends—in general—on the power spectral den-
sities of r(t) and w(t). The latter is a major difference
w.r.t. the classical framework without process noise.

2) The terms that depend on the actual realization of
w(t). Their sum is called—with some dual-use of
terminology—the observed process noise z̃P (t) (Z̃ P(k)).
Z̃ P(k) is formally defined as

Z̃ P (k) = Z(k) − ZBLA(k) − Z̃ S(k)

= Z(k) − E{Z(k)|r(t)}. (14)

Note that the observed process noise (14) might depend
on the actual realization of the reference r(t). This is a
major difference w.r.t. the linear case.

It can easily be verified that the following condition holds:
Z(k) = ZBLA(k) + Z̃ S(k) + Z̃ P(k) (15)

where

ZBLA(k) =
[

G RY,N ( jωk)
G RU,N ( jωk)

]
R(k) +

[
TG RY ( jωk)
TG RU ( jωk)

]
(16)

and with TGRY( jωk) and TGRU( jωk) the transient terms [4].
Using (15), (16), GBLA,N = G RY,N /G RU,N , and TGBLA =

TG RY /TG RU , the difference between the actual output Y (k) of

Fig. 3. BLA GBLA,N ( jω) (11a) of a nonlinear system belonging to the class
SNL,w (see Definition 7). The stochastic nonlinear distortion YS(k) and the
process noise YP (k) are mutually uncorrelated and uncorrelated with—but not
independent of—the reference R(k).

the nonlinear plant and the output YBLA(k) predicted by the
BLA (11a) is readily found

Y (k)−(GBLA,N ( jωk)U(k)+TGBLA( jωk))=YS(k)+YP(k)

(17a)

where YS(k) and YP(k) are, respectively, the stochastic non-
linear distortion and the process noise of the nonlinear plant

YS(k) = ỸS(k) − GBLA,N ( jωk)ŨS(k) (17b)

YP(k) = ỸP(k) − GBLA,N ( jωk)ŨP (k). (17c)

Fig. 3 shows the corresponding block diagram.
The properties of the BLA (11), the stochastic nonlinear

distortion (17b) and the process noise (17c) are established in
the following theorem.

Theorem 1 (Best Linear Approximation, Stochastic Non-
linear Distortion, and Process Noise): Consider the class
of nonlinear systems SNL,w (see Definition 7). The
BLA (11), the stochastic nonlinear distortion (17b), and
the process noise (17c) have the following properties for
k, l = 1, 2, . . . , N/2 − 1.

1) The BLA of the nonlinear plant from u(t) to y(t)
(see Fig. 1—no measurement noise) is equal to the
BLA of the new nonlinear plant from E{u(t)|r(t)} to
E{y(t)|r(t)} (see Fig. 2).

2) GBLA( jω) (11b) is the same for all Gaussian-like signals
r(t) ∈ U (see Definition 4), and only depends on the
odd degree Volterra kernels (10) and the power spectral
densities of r(t) and w(t). In addition, (11a) and (11b)
are related as

GBLA,N ( jωk) = GBLA( jωk) + O(N−1) (18)

with ωk = 2π fk and fk = k fs/N .
3) YS(k) has the properties as follows.

a) Zero mean value

E{YS(k)} = 0. (19a)

b) Asymptotically (N → ∞) uncorrelated with—but
not independent of—R(k)

E{YS(k)R(k)} = O(N−1). (19b)

c) Asymptotically (N → ∞) circular complex nor-
mally distributed

E{Y 2
S (k)} = O(N−1). (19c)
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d) Asymptotically (N → ∞) uncorrelated over the
frequencies

E{YS(k)YS(l)} = O(N−1) for k �= l. (19d)

e) var(YS(k)) is a smooth function of the excited
frequencies.

4) YS(k) and YP (k) are mutually uncorrelated

E{YS(k)YP(l)} = 0 and E{YS(k)YP (l)} = 0. (20)

5) YP (k) has the same properties 3a–3e as YS(k).

Proof: See Appendix C.
In the remainder of this section, we explain in which

sense (11) is the “’best’ approximation. Recall that (12) is
the solution of the Wiener–Hopf equation

arg ming(t)E
{∥∥z(t) − E{z(t)} − g(t) ∗ (r(t) − E{r(t)})∥∥2

2

}
with z(t) = [y(t) u(t)]T , g(t) the 2×1 impulse response of the
linear approximation, and ∗ the convolution product [23], [24].
Hence, the spectral analysis estimate (12) is the “best” in the
sense that it minimizes the mean-squared difference between
the zero mean part of the actual response and that of the linear
approximation. This property is inherited by (11) because it is
the ratio of two BLAs (12a) and (12b).

B. Impact Measurement Noise

The impact of the measurement noise on the BLA (11) is
discussed under the following assumption.

Assumption 2 (Measurement Noise): The input nu(t) and
output ny(t) measurement noise are—possibly jointly
correlated—stationary random processes that are independent
of the known reference signal r(t) and the process noise w(t).
nu(t) and ny(t) have finite second-order moments.
Under Assumption 2, the input nu(t) and output ny(t) mea-
surement noise sources do not introduce a bias error in the
expected values of (11a), which are now taken w.r.t. the
random realizations of r(t), w(t), nu(t), and ny(t).

C. Extensions

The results of Theorem 1 are also valid for the discrete-time
case because, at the sampling instants, a continuous-time
Volterra system excited by a piecewise constant input can be
described exactly by a discrete-time Volterra model (proof: see
Appendix D). Hence, for discrete-time systems, the impact of
the process noise on the BLA and the stochastic nonlinear
distortion is exactly the same as for the continuous-time case.

Consider the set-up shown in Fig. 4. If the process noise
sources w(t) = [wpl(t) wact(t) wfb(t)]T satisfy a multivariate
version of Assumption 1 and the system from input x(t) =
[r(t) w(t)]T to output z(t) = [y(t) u(t)]T belongs to the
system class SNL,w, then the results of Theorem 1 remain valid.
Under Assumption 2, the measurement noise does not affect
the BLA (11a).

D. Nonparametric Estimation

There are basically two methods for estimating nonparamet-
rically the BLA, the variance of the nonlinear distortions and
the noise variance, due to the measurement and process noise.

Fig. 4. Noisy input u(t), noisy output y(t) measurement of a nonlinear
time-invariant plant subject operating in closed loop. wpl(t), wact(t), and
wfb(t) are the process noise sources of, respectively, the plant, the actuator
and the feedback. nu(t) and ny(t) are—possibly jointly correlated—stationary
random processes that are independent of the known reference signal r(t). The
process noise sources are independently distributed of the reference and the
input–output measurement noise.

Both methods use random phase multisine signals r(t) (see
Definition 1) which belong to the class U of asymptotically
(N → ∞) normally distributed signals with the Riemann
equivalent power spectrum (see Definition 3).

The robust method (see [4, p. 130]) imposes no special
conditions on the harmonic content of the random phase
multisines (1). All (odd) harmonics can be excited, or some
fraction can randomly be eliminated (random harmonic grid
multisines). P consecutive periods of the steady-state response
to a random phase multisine (1) are measured, and the
DFT (2) of each period of the known reference and the
noisy input–output signals are calculated. This experiment is
repeated for M independent random phase realizations of the
multisine with exactly the same harmonic content. Since the
stochastic nonlinear distortion yS(t) has the same periodicity
of r(t), the sample variances—called noise variances—of
the spectra over the P consecutive periods only depend on
the measurement and the process noise; while the sample
variances—called total variances—over the M independent
random phase realizations depend on the stochastic nonlinear
distortion and the measurement and process noise. Subtracting
the noise variances from the total quantifies the variance of the
nonlinear distortions.

The fast method (see [4, p. 135]) starts from one exper-
iment with a full or odd random phase multisine (1) with
random harmonic grid [18]. P consecutive periods of the
steady state response are measured, and the DFT (2) of each
period of the known reference and the noisy input–output
signals are calculated. At the nonexcited frequencies of the
random phase multisine r(t), the input–output spectra only
depend on the stochastic nonlinear distortion, the process
noise, and the measurement noise and, hence, their magnitudes
quantify the total standard deviation. A comparison of the total
standard deviation with the sample standard deviation over the
periods (= noise standard deviation) quantifies the level of the
nonlinear distortions.

Transients due to the plant and/or disturbing noise dynamics
increase the variability of the robust and fast BLA estimates
and introduce a bias error (plant transients only). Therefore,
using the smoothness of the BLA and the plant and noise
transient terms as a function of the frequency, robustified
versions of the fast and robust methods have been developed
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TABLE I

CONNECTION BETWEEN THE TYPE I AND TYPE II NONLINEARITIES AND
THE IMPACT OF THE REFERENCE POWER ON THE BLA, ITS NOISE

VARIANCE ρ 2
BLA,n AND ITS VARIANCE DUE TO THE NONLINEAR

DISTORTION ρ 2
BLA,S

that decrease the impact of the transients on the estimates
significantly. These methods are based on a local polynomial
(see [4, Ch. 7]) or a local rational [25] approximation of the
BLA and the transient terms.

E. Detection of the Nonlinear Behavior

Using the nonparametric techniques of Section IV-D, we can
distinguish two types of nonlinear contributions of the plant
dynamics.

1) Type I: Nonlinear relationship between the input u(t)
and the output y(t) that is independent of the actual
realization of the process noise w(t). This part of the
response only affects the BLA and/or the nonlinear
distortion yS(t).

2) Type II: Nonlinear interactions between the input u(t)
and the process noise w(t) that only influence the
process noise yP(t).

Note that a particular nonlinear term can contribute to both
types of nonlinearities. Consider, for example, a system oper-
ating in open loop with the nonlinear term u2(t)w2(t). Using
definitions (13) and (14), where r(t) is replaced by u(t),
the term can be split as

u2(t)w2(t) = u2(t)(w2(t) − ρ 2
w(t)) + (u2(t) − γu)ρ

2
w + γuρ

2
w

with γu = E{u2(t)}, and where the first and the second term
in the right-hand side only contribute to, respectively, yP(t)
(Type II nonlinearity) and yS(t) (Type I nonlinearity).

If the total variance is larger than the noise variance, then
Type I and/or Type II nonlinearities are present. On the other
hand, if the total variance is equal to the noise variance, then it
is likely that the system behaves linearly. However, the Type I
and Type II nonlinearities can be hidden by the measurement
noise and/or the process noise (see Sections V and VI).

To distinguish the Type I from the Type II contributions
(total variance > noise variance) and/or to confirm or reject the
hypothesis of a linear system (total variance = noise variance),
additional experiments with one or more different reference
power spectral densities are required. Based on the (lack of)
variation of the BLA, the variance of the nonlinear distortions,
and the noise variance, the presence of the Type I and Type II
nonlinear contributions can be detected, as shown in Table I.

V. SIMULATION EXAMPLE

Analytic calculation of the impact of the process noise on
the BLA of a nonlinear system operating in feedback is possi-
ble for the following nonlinear finite impulse response (NFIR)
system

y(t) = u(t − 1) + u(t − 2)w2(t) (21a)

u(t) = r(t) − αy(t) (21b)

with t ∈ Z. The reference signal r(t) is a zero mean
random phase multisine (1), with N = 1024 and R0 = 0.
All amplitudes |Rk |, k = ±1,±2, . . . ,±N/2 − 1 are equal
and chosen such that the standard deviation of r(t) is equal to
one (ρr = std(r(t)) = 1). The process noise w(t) is zero mean
discrete-time white Gaussian noise with variance var(w(t)).
For stability reasons α in (21b) is constrained as

0 < α < min(4ρ 2
w, ρ−2

w ), for ρw �= 0 (22a)

|α| < 1, for ρw = 0 (22b)

(proof: see Appendix E). Here, the choice α = 0.3 is made.
The true values of the BLA and its total variance,

the process noise, and the stochastic nonlinear distortion, equal

GBLA( jω) = e− jωTs + ρ 2
w e−2 jωTs (23a)

var(ĜBLA( jω)) ≈ |1 + αGBLA( jω)|2 2ρ 2
u ρ 4

w

ρ 2
r

(23b)

yS(t) = 0 (23c)

yP(t) = u(t − 2)[w2(t) − ρ 2
w] (23d)

with ρ 2
u = var(u(t)), and where ρ 2

u /ρ 2
r is independent of ρ 2

r
(proof: see Appendix E). Hence, the BLA and its total variance
are independent of the variance of the reference signal. While
the property of the BLA is consistent with a linear time-
invariant (LTI) system, that of the variance is not. The latter
is due to the nonlinear interaction between the input and the
process noise.

Starting from P = 2 consecutive periods of the transient
response to the random phase multisine r(t), the fast local
polynomial estimates of the BLA and its total and noise
variances are calculated from the known reference r(t) and
the noisy input u(t) —output y(t) signals (see [4, Ch. 7] for
the details). For this purpose, a second-order local polynomial
approximation (R = 2) of the transient and the BLA with
ten degrees of freedom (dof = 10) is used. Given their
high variability, the estimates are averaged over M = 100
independent realizations of r(t) and w(t).

Fig. 5 shows the results for the cases ρw = 0 and ρw = 0.75.
It can be seen that the estimates of the BLA and its total vari-
ance coincide with the true values (23a) and (23b) divided by
dof (the local polynomial approximation of the BLA reduces
the variance of the estimate by a factor dof). Note that in the
absence of process noise, ρw = 0, the feedback system (21)
is linear and noiseless, which results in a BLA estimate with
zero variability. Note also that the shape of the BLA strongly
depends on ρ 2

w (compare the black dashes with the black line).
Despite the nonlinear interaction between the input and the

process noise, it follows from Fig. 5 that the total (red) and
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Fig. 5. BLA (11) of the closed-loop NFIR system (21), with α = 0.3, for
ρw = 0 (black dashes: true value and gray “×”: estimate) and ρw = 0.75
(black: true value and gray: estimate). Fast estimates averaged over M = 100
independent realizations of r(t) and w(t) for the case ρw = 0.75: the BLA
(gray: estimate and black: true value), its total variance (pink: estimate and
red: true value and noise variance (green: estimate).

Fig. 6. (a) Nonlinear electrical circuit (c) operating in closed loop. It consists
of three high gain operational ammplifiers (TL071), three voltage-dependent
resistors R(p(t)), four resistors (R1 = R2 = 10 k�, R3 = 5.31 k�, and
R4 = 100.8 k�), and two capacitors (C1 = C2 = 10 nF). (b) Shows the
practical realization of R(p(t)). It is made using an operational amplifier,
a 330 � resistor, and an electrooptical component (VTL5C1) consisting of
a light-dependent resistor and a light-emitting diode. The voltage p(t) =
p0 + w(t), with p0 the dc-value and w(t) the process noise.

noise (green) variances of the BLA estimate coincide. It illus-
trates that—similar to the measurement noise—the process
noise can hide the nonlinear behavior in FRF estimates.
To reveal the nonlinear behavior, the BLA and its variance
should be calculated for (two) different values of ρ 2

r . In this
simulation example, changing ρ 2

r will not modify the BLA
(23a) nor its total variance (23b). The first observation is due
to the linear input–output relation (21a), while the second
observation originates from the nonlinear process noise-input
interaction in (21a).

VI. MEASUREMENT EXAMPLE

Three experiments are performed on a nonlinear electronic
circuit operating in feedback [see Fig. 6(c)]. The electronic

Fig. 7. BLA of the nonlinear circuit in Fig. 6(a) for three different values of
the process noise w(t) standard deviation ρw . Top: voltage p(t). Bottom left:
BLAs (black/gray lines) and the magnitude of the complex difference w.r.t.
the zero process noise BLA (blue lines). Bottom right: noise (green lines) and
total (red lines) variances of the BLAs. Black, dark green, and red: ρw = 0.
Dark gray, dark blue, medium green, and dark pink: ρw = 14.8 mV. Light
gray, light blue, and light pink: ρw = 58.2 mV.

circuit [see Fig. 6(a) and (b)] is a high gain bandpass filter
whose nonlinear behavior is due to the nonlinearity of the
operational amplifier and voltage-dependent resistor charac-
teristics. The process noise w(t) is introduced in the circuit
via the voltage p(t) of the voltage-dependent resistors R(p(t))

p(t) = p0 + w(t) (24)

where p0 = 1.6 V. At the sampling instances, w(t) is
a zero mean, white Gaussian noise process with standard
deviation ρw .

For each experiment, the reference signal r(t) is a zero
mean random phase multisine (1) consisting of the sum
of 522 sinewaves with uniformly distributed phases � Rk

and equal amplitudes |Rk | in the band [228.9 Hz, 39.98 kHz]
chosen such that the standard deviation of r(t) equals 1.34 V
( fs = 625 kHz, N = 16384, |R±k | = A for k = 3, 4, . . . , 524
and |R±k | = 0 for k = 0, 1, 2, 525, 526, . . ., N/2 − 1).
P = 2 consecutive periods of the transient response of the
input u(t) and output y(t) are acquired using a band-limited
measurement setup (all signals are lowpass filtered before
sampling). In the first experiment, the process noise in (24) is
set to zero [ρw = 0], while in the second and third experiments
ρw = 14.8 mV and ρw = 58.2 mV, respectively (see Fig. 7,
top). The linear resistors and operational amplifiers also add
some process noise to the circuit but in the second and third
experiments, their contribution can be neglected w.r.t. the
externally applied w(t).

Via a fourth-order local polynomial approximation over
12 neighboring nonexcited frequencies of the transient and
a fourth-order local polynomial approximation over eleven
neighboring excited frequencies of the FRF, the BLA and
its noise and total variances are estimated from the known
reference r(t) and the noisy input u(t) and output y(t) signals
(see [4, Ch. 7] for the details). Fig. 7 shows the results.

The bottom left Fig. 7 shows the impact of the process noise
on the BLA: the resonance shifts to the left for increasing
values of ρw . This can only be explained by a nonlinear
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interaction between the process noise w(t) and the input u(t).
Indeed, the differences between the BLAs (blue lines) are
well above the total variances of the BLA estimates (red/pink
lines). From the bottom right plot, it can be seen that the
total variance (red and pink lines) is well above the noise
variance (dark and medium green lines) for the first two
experiments (ρw = 0 and ρw = 14.8 mV), which reveals the
nonlinear behavior of the electrical circuit. However, for the
third experiment (ρw = 58.2 mV), the total variance (light pink
line) coincides with the noise variance (light green line). Due
to the increased variability of the BLA estimate—caused by
the process noise—the nonlinear behavior is hidden.

VII. CONCLUSION

The properties of the BLA of a certain class of continuous-
time nonlinear feedback systems subject to process noise have
been studied in detail. Compared with the open-loop case [16],
the BLA GBLA( jω), the stochastic nonlinear distortion YS(k),
and the process noise YP(k) depend on the reference r(t)
instead of the input u(t). Compared with the case without
process noise w(t), GBLA( jω) and YS(k) depend on the power
spectral density of w(t). By construction, YS(k) does not
depend on the actual realization of w(t), while YP(k) does.
YS(k) and—in general—YP(k) depend on the actual realization
of r(t).

Using random phase multisine excitations, it is possible
to estimate nonparametrically the BLA, the variance of the
nonlinear distortions, and the noise variance due to the process
and input–output measurement noise. Similar to the mea-
surement noise, the process noise can mask the nonlinear
behavior (total variance = noise variance); even in the case of
nonlinear interaction between the process noise w(t) and the
input u(t). Unlike the measurement noise, the process noise
power spectral density affects the BLA. Finally, a multiple
experiment procedure is proposed to confirm or reject the
linearity hypothesis (total variance = noise variance), and/or
to distinguish nonlinear input–output behavior from nonlinear
input-process noise interactions (total variance > noise vari-
ance).

APPENDIX A
PROOF OF (4)

The variance of r(t) (1a) is given by

var(r(t)) =
N
2 −1∑

k, l=− N
2 +1, k,l �=0

E{Rk Rl}e j2π k+l
N fs t . (25)

Since the amplitudes and phases of the Fourier coefficients
are—by construction—independently distributed, we find for
E{Rk Rl}

E{Rk Rl} =

⎧⎪⎨
⎪⎩

0, k �= ±l

E{|Rk |2}, k = −l

E{|Rk |2}E{e j2� Rk }, k = l.

(26)

Combining (1b) with (26) allows us to simplify (25) as

E{r2(t)} = 2

N

N
2 −1∑
k=1

E

{∣∣∣∣R̂

(
k

N
fs

)∣∣∣∣
2}

. (27)

Fig. 8. BLA GBLA,N ( jω) (11a) of a nonlinear system belonging to the class
SNL (see Fig. 2), where Ǔ(k) = E{U(k)|r(t)} and Y̌ (k) = E{Y (k)|r(t)}.
The stochastic nonlinear distortion YS(k) is uncorrelated with—but not
independent of—the reference R(k).

Taking the limit for N → ∞ of the Riemann sum (27) finally
proves (4).

APPENDIX B
PROOF OF LEMMA 1

To prove the lemma, we will show that conditions (9), where
the expected values are taken w.r.t. r(t) and w(t), imply

lim
K→∞

E{Ž(k)Ž H (k)} � C1 < ∞ (28a)∣∣∣ lim
K→∞

E{Ž(k)R(k)}
∣∣∣ � C2 < ∞ (28b)

with Ž(k) = E{Z(k)|r(t)}.
Since r(t) and w(t) are independently distributed (Assump-

tion 1), the expected values in (9) can be calculated as

E{.} = E{E{.|r(t)}}. (29)

Applying (29) to (9a), taking into account that E{Z Z H } =
Cov(Z) + E{Z}E{Z}H � E{Z}E{Z}H , we find

E{Z(k)Z H (k)} � E{Ž(k)Ž H (k)}. (30)

Combining (29) with (9b) gives

E{Z(k)R(k)} = E{Ž(k)R(k)}. (31)

Collecting (9), (30), and (31) proves (28).

APPENDIX C
PROOF OF THEOREM 1

Since r(t) and w(t) are independently distributed (Assump-
tion 1), the expected values in (11a) can be calculated as
in (29), for example

E{Y (k)R(k)} = E{E{Y (k)R(k)}|r(t)}
= E{E{Y (k)|r(t)}R(k)}

and similarly for E{U(k)R(k)}, which proves Property 1 of
the theorem.

From Lemma 1, it follows that the new nonlinear plant
in Fig. 2 can be replaced by its BLA and an output residual
(see Fig. 8)

YS(k) = E{Y (k)|r(t)} − GBLA,N ( jωk)E{U(k)|r(t)} (32)

that satisfy Properties 2 and 3 of the theorem (proof: the
conditions of [4, p. 94, Th. 3.22] are fulfilled). Property 1
guarantees that the BLAs in Fig. 3 and 8 are the same, and it
can easily be verified that (32) is identical to (17b).

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 07,2021 at 05:45:48 UTC from IEEE Xplore.  Restrictions apply. 



PINTELON et al.: BLA OF NONLINEAR CONTINUOUS-TIME SYSTEMS 8609

Following the same lines of the proof of Property 1,
the expected values in (20) are calculated using (29). We find

E{YS(k)YP (l)} = E{E{YS(k)YP (l)
∣∣r(t)}}

= E{YS(k)E{YP (l)
∣∣r(t)}}

= 0

where the second equality results from the fact that YS(k) is
fixed for a given r(t) [combine (13), (16), and (17b)], and
where the last equality uses E{YP (l)} = 0 [combine (14)
and (17c)].

Since the nonlinear feedback system belongs to the class
SNL,w (see Definition 7), it is a two-input x(t) = [r(t) w(t)]T ,
two-output z(t) = [y(t) u(t)]T version of the class SNL (see
Definition 6). Therefore, the residual Z res(k) = Z(k)−ZBLA(k)
satisfies Property 3 of the theorem (proof: the conditions of
[4, p. 86, Th. 3.16] are fulfilled). Since Z res(k) = Z̃ S(k) +
Z̃ P(k) [see (15)], it follows from (17b) and (17c) that

Yres(k) − GBLA,N ( jωk)Ures(k) = YS(k) + YP (k). (33)

Given that YS(k) and YP (k) are mutually uncorrelated (Prop-
erty 4 of the theorem), that Yres(k), Ures(k), and YS(k) all
satisfy Property 3 of the theorem, and relationship (33), it can
easily be shown that YP (k) also satisfies Property 3. For
example, taking the expected value of the square of (33),
using (19c) and (20), gives

O(N−1) = O(N−1) + E
{
Y 2

P(k)
}

(34)

which proves Property 3c of YP (k). The other properties are
proven in exactly the same way.

APPENDIX D
STEP-INVARIANT TRANSFORM OF THE

VOLTERRA KERNELS

First, we handle Volterra kernels of degree one and two.
Next, the results are generalized to higher degree kernels.

The first degree Volterra kernel corresponds to the impulse
response of an LTI system and its discretization is handled
in standard text books (see [26]). Consider a continuous-time
Volterra kernel of degree one with impulse response g1(t)
excited by a piecewise constant input u(t)

u(t) =
+∞∑

n=−∞
unzoh(t − nTs) (35a)

where

zoh(t) =
{

1, 0 � t < Ts

0, elsewhere
(35b)

and with Ts the sampling period. It is shown that the
input–output samples of the linear continuous-time system
with impulse response g1(t) are exactly related by the fol-
lowing linear discrete-time transfer function:

G1,zoh(z
−1) = (1 − z−1)Z

{
L−1

{ G1(s)

s

}}
(36)

where G1(s) = L{g1(t)}, with L{} the Laplace transform,
L−1{} the inverse Laplace transform, and Z{} the Z transform

of the sampled signal. Equation (36) is called the step-invariant
transform of the continuous-time transfer function G1(s).

The response y2(t) of a second degree Volterra kernel to
the input u(t) (35) is given by [use (7c)]

y2(t) =
∫ ∞

0

∫ ∞

0
g2(τ1, τ2)u(t − τ1)u(t − τ2)dτ1dτ2. (37)

Sampling (37) at t = lTs , taking into account (35), we find

y2(lTs) =
+∞∑

n1,n2=−∞
un1 un2

∫ (l−n1)Ts

(l−n1−1)Ts

∫ (l−n2)Ts

(l−n2−1)Ts

g2(τ1, τ2)dτ1dτ2. (38)

Introducing the intermediate function

h2(t1, t2) =
∫ t1

0

∫ t2

0
g2(τ1, τ2)dτ1dτ2 (39)

the sampled reponse (38) can be rewritten as

y2(lTs) =
+∞∑

n1,n2=−∞
g2,zoh(l − n1, l − n2)un1un2 (40)

where

g2,zoh(n1, n2)

= h2(n1Ts, n2Ts)

+ h2((n1 − 1)Ts, (n2 − 1)Ts) − h2(n1Ts, (n2 − 1)Ts)

− h2((n1 − 1)Ts, n2Ts). (41)

It proves that the input–output samples of the continuous-time
Volterra kernel of degree two are exactly related by a
discrete-time Volterra kernel of degree two. Taking the 2-D
Z -transform of (41) gives the following relationship between
the 2-D discrete-time G2,zoh(z

−1
1 , z−1

2 ) = Z{g2,zoh(n1, n2)} and
continuous-time G2(s1, s2) = L{g2(τ1, τ2)} transfer functions
of the second degree Volterra kernels

G2,zoh
(
z−1

1 , z−1
2

) = (
1 − z−1

1

)(
1 − z−1

2

)Z{
L−1

{G2(s1, s2)

s1s2

}}
(42)

with L{} and L−1{} the 2-D Laplace and inverse Laplace trans-
forms, respectively. Equation (42) is the step-invariant trans-
form of the 2-D continuous-time transfer function G2(s1, s2).

Generalization of results (36) and (42) to a Volterra kernel
of degree α is straightforward

Gα,zoh
(
z−1

1 , . . . , z−1
α

)=
α∏

i=1

(1 − z−1
i )Z

{
L−1

{Gα(s1,. . ., sα)∏α
i=1 si

}}
(43)

which concludes the proof.

APPENDIX E
PROOF OF CONSTRAINT (22) AND (23)

A. Calculation of the Best Linear Approximation of (21a)

To calculate the BLA, we take the expected value of (21),
given the reference signal r(t). Using the notation

x̌(t) = E{x(t)|r(t)} (44)
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with x = u, y, and the independence of u(t − 2) and w2(t),
we find

y̌(t) = ǔ(t − 1) + ǔ(t − 2)ρ 2
w (45a)

ǔ(t) = r(t) − α y̌(t) (45b)

which corresponds to a LTI system. Elimination of ǔ in (45),
gives the following LTI relationship between r(t) and y̌(t)

y̌(t)+α y̌(t−1)+αρ 2
w y̌(t−2)=r(t−1)+ρ 2

wr(t−2). (46)

Hence, the BLA from reference r(t) to output y(t) equals

GBLA,ry(z
−1) = z−1 + ρ 2

wz−2

1 + αz−1 + αρ 2
wz−2

. (47)

(proof: take the Z -transform of (46)). Eliminating y̌(t) in (45),
we find in a similar way the BLA from reference r(t) to input
u(t)

GBLA,ru(z
−1) = 1

1 + αz−1 + αρ 2
wz−2

. (48)

Dividing (47) by (48) gives the BLA from input u(t) to output
y(t)

GBLA(z−1) = GBLA,ry(z−1)

GBLA,ru(z−1)
= z−1 + ρ 2

wz−2 (49)

which proves (23a).

B. Derivation of the Stability Constraints (22)

Imposing that the poles of the BLAs (47) and (48)

z = 0.5
( − α ±

√
α2 − 4αρ 2

w

)
(50)

are complex conjugate (α2 < 4αρ 2
w), and results in the

constraint

0 < α < 4ρ 2
w. (51)

Stability of the poles (50) satisfying (51) requires that

|z|2 < 1 ⇒ α < ρ−2
w . (52)

Combining (51) and (52) proves (21a).
If ρw = 0, then the pole of the BLAs (47) and (48) equals

z = −α, which shows (22b).

C. Nonlinear Distortion (23c) and Process Noise (23d)

Since (45) are linear, the stochastic nonlinear distortion is
zero. Using (49) and taking into account that ys(t) = 0,
we find

yP(t) = y(t) − GBLA(q)u(t)

= u(t − 2)
[
w2(t) − ρ 2

w

]
(53)

where q is the backward shift operator [qx(t) = x(t − 1)].
This leads to the block diagram shown in Fig. 9.

Fig. 9. BLA (49) and process noise (53) of the closed-loop NFIR system (21).

D. Variance of the BLA Estimate (23b)

First, the variance of the BLA estimate is calculated assum-
ing that the closed-loop NFIR system (21) operates under
periodic steady state. Next, it is shown that the variance (23b)
is independent of ρ 2

r . Finally, the connection with the local
polynomial estimate from the transient response to a random
phase multisine excitation r(t) is established.

Under the periodic state state assumption, the input–output
DFT spectra U(k) and Y (k) are related to the periodic refer-
ence R(k) and the process noise YP (k) as

U(k) = R(k)

1 + αGBLA( jωk)
− αYP (k)

1 + αGBLA( jωk)
(54a)

Y (k) = GBLA( jωk)R(k)

1 + αGBLA( jωk)
+ YP (k)

1 + αGBLA( jωk)
. (54b)

From (54), follow the input–output (co-)variances, given the
reference R(k)

ρ 2
U (k) = α2ρ 2

P (k)

|1 + αGBLA( jωk)|2 (55a)

ρ 2
Y (k) = ρ 2

P (k)

|1 + αGBLA( jωk)|2 (55b)

ρ 2
YU (k) = −αρ 2

P (k)

|1 + αGBLA( jωk)|2 (55c)

with ρ 2
P (k) = var(YP(k)).

For one realization of the random phase multisine excita-
tion r(t), the spectral analysis definition (11a) of the BLA
simplifies to

ĜBLA( jωk) = Y (k)

U(k)
. (56)

The variance of the BLA estimate (56) can be approximated
as

var(ĜBLA( jωk)) ≈ |GBLA( jωk)|2
(

ρ 2
Y (k)

|Y0(k)|2 + ρ 2
U (k)

|U0(k)|2

−2Re

(
ρ 2

YU (k)

Y0(k)U0(k)

))
(57)

where U0(k) and Y0(k) are the parts of U(k) and Y (k) depend-
ing on R(k) (see [4, Sec. 2.4, pp. 44–47]). Combining (55)
and (57) gives

var(ĜBLA( jωk)) ≈ |1 + αGBLA( jωk)|2 ρ 2
P (k)

|R(k)|2 . (58)

Approximating yP(t) by a white noise process, taking into
account that |R(k)| is independent of k, allows one to simplify
the ratio in (58)

ρ 2
P (k)

|R(k)|2 ≈ var(yP(t))

var(r(t))
. (59)
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Since u(t − 2) is independent of w(t) and since w(t) is
normally distributed, the variance of yP(t) (53) equals

var(yP(t)) = ρ 2
u 2ρ 4

w. (60)

Combining (58)–(60) proves (23b).
Eliminating y(t) in (21), gives

u(t) + αu(t − 1) + αw2(t)u(t − 2) = r(t). (61)

Multiplying both sides of (61) by β �= 0 shows that βu(t)
is response to βr(t). Hence, the ratio ρ 2

u /ρ 2
r in (23b) is

independent of ρ 2
r .

Compared with the BLA estimate (56), the local polynomial
estimate of the BLA reduces the estimation variance with
a factor equal to the difference between the local number
of frequencies used for the polynomial approximation and
the number of local parameters. This difference is called the
degrees of freedom dof.
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