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Summary 

Gaze - Based Interaction for Effective Tutoring with Social Robots 

 

The central thesis of this work is that effective gaze behavior can help build a shared understanding and 

mutual awareness between humans and robots, leading to positive outcomes in a tutoring interaction. 

Gaze behavior is an essential cue for social engagement and coordinated action, principally for tasks 

that imply human-robot collaboration, such as tutoring. The work presented in this dissertation is a 

compilation of findings from three empirical studies designed to explore the design space of gaze-based 

interaction to enrich human-robot interaction in educational settings where robots assume tutor or 

trainer roles. 

In the first study, we examined how people perceive and interpret social cues from gaze provided by 

either a human or a robot tutor during a collaborative tutoring activity. The objective was to investigate 

whether people can notice and accurately interpret gaze-based cues from a tutor and whether they can 

accept the cues as help during learning interactions. We incorporated eye-tracking to examine gaze 

interaction during human-human and human-robot communications. We found that participants 

noticed the gaze cues from the robot tutor significantly more often than those of the human tutor. 

Consequently, we found that participants performed better with the robot tutor compared to the human 

tutor. These initial findings provide design recommendations for gaze-based communications to 

improve learning performance during human-robot tutoring. 

Based on the results from the first study, we investigated how to implement gaze-based communication 

as an efficient help mechanism for robot-child tutoring. The objective was to examine child-robot gaze 

mechanisms to inform the robot's behavior design as a facilitator of children's task-solving. We carried 

out simultaneous observations of the child's gaze and the robot to examine the events of mutual gaze 

and gaze following patterns during the tutoring activity and to assess the impact of different child-robot 

coordinated gaze patterns on children's behavior and performance. We found that if a robot tutor 

provides gaze-based support, children perform better during the tutoring activity than when a tutor 
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does not offer such cues. We also found that more events of mutual gazing patterns between the child 

and the robot tutor improve children's awareness of the tutor's intention during the activity leading to 

better performance. Therefore, we concluded that increasing gaze coordination between the child and 

the robot can improve performance and build mutual awareness during robot-based educative 

interventions. 

In the last study, we investigated the nature and dynamics of gaze-based human-robot interaction 

(HRI) in tutoring. The objective was to examine intricate patterns of gaze interchanges between a child 

and a robot during the tutoring activity and to assess the impact of child-robot coordinated gaze on 

children's behavior and performance. We combined both observational and sequential lag methods to 

examine the relevant gaze sequences during a collaborative tutoring activity.  We found that 

appropriate sequences and timing of the dyad's gaze behaviors between a child and a robot can lead to 

effective interactions between a child and a robot tutor. Based on these findings, we concluded that a 

robot tutor could positively influence the flow of the child's actions if the child interprets the social cues 

appropriately, improving the task execution and the play experience. This new understanding of the 

dynamic nature of gaze behavior during child-robot interaction contributes to the design of robot gaze 

behavior, to build better robot-based interventions in education and therapy settings. Overall, the 

findings from the user studies contribute to new design guidelines for gaze-based communications to 

improve learning performances and promote positive human-robot tutoring interactions. 

In addition to the findings of the user studies, the main contributions of this dissertation include; First, 

an experimental framework for studying how gaze-based cues of robots can be applied to improve 

performance and quality of tutoring interaction. The experimental setting allows for simultaneous 

analyses of humans (adult-child) and the robot's gaze during a collaborative tutoring activity. Second, a 

coding scheme developed to measure the dynamics of child-robot interaction with an emphasis on 

coordinated and sequential gaze patterns between children and robots. The third is the use of 

simultaneous observational and lag-based methods to examine coordinated and interaction sequences 

of gaze between children and robots, helping unravel the dynamics of child-robot interaction in a 

tutoring setting. The lag-based methods provide an opportunity to investigate complex gaze sequences 

that—to our best knowledge—have not been previously explored in robot-based educational 

backgrounds or other human-robot interactions. The lag methods can be extended to analyze, in-depth, 

other interactive behaviors during human-robot interaction (HRI). 
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Chapter 1. Introduction 

Advances in robotic technology have enabled robot integration into settings where they can interact 

collaboratively with human users. Accordingly, robots are gaining prominence, including within 

education (Belpaeme, Kennedy, Ramachandran, Scassellati, and Tanaka, 2018) therapeutic facilities for 

children (Albo-Canals et al., 2018; Henkemans et al., 2013; Scassellati et al., 2018) and in nursing homes 

for elderly (Fasola and Mataric, 2013; Feng et al., 2019; Perugia, Diaz-Boladeras, Catala-Mallofre, 

Barakova, and Rauterberg, 2020). A promising use of social robots is in tutoring, where robots take the 

role of tutors or trainers, for example, in rehabilitation centers for children with special needs. Besides, 

robots taking the tutor's role is inevitable, with schools facing teacher scarcity and the projected increase 

in student numbers.* 

In the last few years, research has demonstrated the prospect for social robots to support tutoring 

(Belpaeme et al., 2018; Johal, Castellano, Tanaka, and Okita, 2018; Vogt et al., 2019). For instance, robot 

tutors can provide self-regulated learning (Jones and Castellano, 2018) and personalized interactions to 

children's affective and cognitive needs (Gordon et al., 2016;  Ramachandran, Huang, and Scassellati, 

2017). Robots can also elicit curiosity and foster engagement in children, which makes them useful 

learning tools (Gordon, Breazeal, and Engel, 2015). In therapy (social training), robots can help train 

fundamental social skills to children with autism (Huskens, Verschuur, Gillesen, Didden, and 

Barakova, 2013; Marino et al., 2020; Scassellati et al., 2018). 

Although an increasing number of studies confirm the potential of robots in educational settings, much 

theoretical and practical work is required to make it a reality. Accordingly, to improve interaction 

outcomes in tutoring and other persuasion tasks, the design of intuitive interactions between robots and 

users is crucial. Human interactions are an excellent foundation on which to examine the design space 

for social robotic behaviors. For example, previous work shows that adding social communicative cues 

* This chapter is partly based on selected paragraphs from the following publications (Mwangi et al., 2016; Mwangi, Barakova, 
Díaz-Boladeras, et al., 2018a; Mwangi, Barakova, Díaz, et al., 2018b; Mwangi, Barakova, Diaz, Mallofre, et al., 2017a;  Mwangi et
al., 2017b) 
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to robot behavior, both verbal or nonverbal, can improve task performance and learning (Admoni, 

Weng, Hayes, and Scassellati, 2016). Additionally, such cues can provide positive experiences; including 

engagement (Tapus et al., 2012; van Straten et al., 2018), emotional bonding (Diaz-Boladeras,2018), 

enhance compliance and persuasiveness (Ham, Cuijpers, and Cabibihan, 2015; Ghazali et al., 2018), and 

regulate human-robot collaboration (Huang and Mutlu, 2016). 

While there is considerable progress towards natural interactions between robots and humans, how to 

design effective robot behavior to support human-robot tutoring interactions is still an open problem. 

This dissertation is aimed at understanding human-robot gaze-based interactions to inform the design 

of robots with credible and effective gaze behavior in tutoring and social training settings. To do so, we 

describe three user studies designed to investigate the concepts of mutual coordination — gaze-

following and complex sequences of gaze behavior within robot tutoring interactions. These are well-

controlled laboratory and field-based studies — with human participants (adults or children) 

interacting with a tutor (human or robot) in a board game tutoring activity. The dissertation adopts a 

multi-modal measurement and analysis approach that combines observational analysis and objective 

measurement techniques, including eye-tracking and lag methods, to analyze the interactive gaze 

behavior embedded in realistic tutoring settings. The findings from the user studies provide new 

guidelines to inform the design of gaze behavior to create effective and interactive human-robot 

tutoring interactions. The new knowledge of gaze-based communication can contribute to building 

relationships between robots and humans, to facilitate positive interaction outcomes, particularly 

concerning child-robot tutoring. 

The remainder of this chapter describes the research background and the motivation for this research 

(Section 1.1) and outlines the research questions (Section 1.2). Section 1.3 describes the methodology 

followed in conducting this research. Section 1.4 describes the robotic platform, and Section 1.5 details 

the design of the board game activity used to perform the studies described in chapters 3 through 5. 

Lastly, Section 1.6 outlines the structure of the rest of the dissertation. 

1.1. Motivation 

In interactions between people, non-verbal cues such as gestures, facial expressions, body movements, 

and gaze help to establish understanding, mutual awareness, and a common ground for interaction 

(Frith, 2009). Gaze, in particular, is an essential part of nonverbal communication. According to 

Kleinke’s (1986) review of human-human interaction, gaze provides information, regulates interaction, 

and expresses an emotional state. Besides, the gaze is fundamental in the learning and development of 
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children and is the basis of critical cognitive abilities such as the theory of mind and perspective-taking 

(Astington and Jenkins, 1995; Frischen, Bayliss, and Tipper, 2007; Hunnius, 2007). Therefore, gaze plays 

an essential role in enabling positive human social interactions. 

Consequently, designing social gaze behaviors for a robot that are effective and credible is crucial. Prior 

work in human-robot interaction has shown that gaze can help build effective interactions between 

humans and robots (Admoni and Scassellati, 2017; Broz, Lehmann, Nakano, and Mutlu, 2012; Ruhland 

et al., 2015). In turn, this can result in positive outcomes, such as better recall (Mutlu, Forlizzi, and 

Hodgins, 2006), improved quality of communication (Kompatsiari, Ciardo, Tikhanoff, Metta, and 

Wykowska, 2019), and enhanced task performance (Boucher et al., 2012). There is also evidence that 

gaze is a powerful communicative signal as an implicit cue during collaborative activities (Mutlu et al., 

2009) or in turn-taking (Palinko et al., 2015). However, how a social robot can apply its gaze behavior to 

achieve positive outcomes — in a tutoring scenario is still an open question — particularly regarding 

the role of deliberate — explicit attention-directing gaze cues and their relevance in learning scenarios. 

For example, is a robot tutor more effective when it provides (more) evident gaze cues or without cues 

or covert cues? 

Research in child-robot tutoring and social training — autism therapy — has primarily investigated 

gaze as a communication signal with one-directional interactivity, paying little attention to the 

coordination and the interaction sequences between the child and robot. However, gaze interaction 

involves sequences of intertwined and coordinated looking behaviors. Moreover, the sequencing and 

timing of the gaze interactions, in particular, can be a reason for unnatural and, thus, ineffective human-

robot interaction. Therefore, synchronized simultaneous observations of both the robot and the 

human’s behavior can reveal dynamic patterns of gazing behavior that could impact communication 

and interaction outcomes. For instance, Kompatsiari et al. (2017, 2019) suggest that people feel more 

engaged when they establish mutual gaze interaction with the robot. However still, this and related 

studies do not explore the intricate gaze patterns of mutual interaction. Therefore, further investigation 

of these coordinated and sequential gaze patterns, particularly during child-robot tutoring, is needed. 

This dissertation aims to investigate gaze-based communication in the space of creating effective 

tutoring interactions between humans and robots, and especially in the context of child-robot tutoring. 
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Figure 1-1 Research context: this dissertation investigates gaze-based communication to create effective tutoring 

interactions between humans and robots, and especially in the context of child-robot tutoring. 

1.2. Research Questions 

The main question addressed in this dissertation is how we can design effective and credible gaze 

behavior between people and robots, to facilitate a shared understanding and mutual awareness in a 

tutoring interaction? 

The dissertation poses several sub-questions to answer the above question, addressed in chapters 3, 4, 

and 5. These questions focus on the following topics: exploring the influence of gaze-based cues in the 

context of tutoring, comparing the development of human-tutored and robot-tutored activities, and 

investigating the dynamic patterns of gaze-based interaction during human-robot tutoring. 

The research questions are:  

RQ1 — Do tutors’ social cues of gaze influence performance in the context of a board game tutoring 

activity (either with a robot or with a human tutor)? To what extent? 

(a) Do participants notice and properly interpret the gaze-based hints (i.e., tutor pointing with the 

eyes to a particular card) exhibited by the tutor while performing the card-matching task? 

i. Do participants notice the tutors’ gaze behavior during the game? 

ii. Do participants attribute the tutor the intent to help with the gaze? 

(b) Does the gaze behavior influence the choices of players in the card game? 
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RQ2 — Who is a better tutor: the human or the robot tutor? 

(a) Is there any difference in task execution between the two conditions? 

i. Is there any difference in the time required to complete the game? 

ii. Is there any difference in the number of tries?  

(b) Is there any difference in the participants’ awareness of the tutors’ behavior between the two 

conditions? 

(c) Is there any difference in participants’ judgment about the tutor (e.g., likeability, perceived 

presence) between the two conditions? 

RQ3 — What are the dynamics of dyadic gaze-based interaction (mutual gaze, gaze-following, and joint 

attention) in the context of tutoring? 

(a) How do we describe and identify the key patterns of coordinated gaze behavior in the context 

of tutoring? 

(b) Which are the contextual and individual variables that affect their occurrence? 

(c) How do we model the sequence of coordinated behavior according to individual and 

situational variables of interest, such as the flow of the game (i.e., a sequence of failed and 

successful tries)? 

RQ4 — Does the coordinated gaze (mutual gaze, gaze-following) influence performance? 

(a) Do dyadic patterns influence participants’ awareness of the robot’s behavior? 

(b) Does the coordinated gaze influence task execution performance? 

i. Is there any difference in the time required to complete the game? 

ii. Is there any difference in the number of tries?  

(c) Do dyadic patterns influence participants’ social engagement? 

1.3. Methodology 

This dissertation presents three empirical studies designed to answer a combination of the research 

questions in section 1.2. The systematic studies follow a human-centered process that involves gaining a 

theoretical understanding from the literature on gaze interaction as it occurs in human interactions and 

through preliminary observations of people interacting in the same scenario in laboratory settings (see 

section 1.5). After gaining this knowledge, the next step involves conceptualizing a theoretical 

framework, including writing hypothetical statements that guide the study's design. The next step 

involves preparing the platform for testing, including programming the robot's behavior, as well as a 
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series of preliminary tests in the lab, to observe how people perceive the gaze motions, as well as the 

timing and the experimental task. The last step involves testing the research hypotheses in human-robot 

interaction evaluations to assess whether gaze influences human behavior, as is hypothesized. 

We designed an experimental setting based on a board game scenario — memory game (Figure 1-4) to 

provide opportunities for gaze-based interactions. The interactivity of the robot behavior was gradually 

increased to make it possible for more complex interactive patterns to be created, as shown in Figure 

1-2. The aim is to gather empirical evidence on how the participants respond to different manipulations 

in the robot's gaze behavior. Study 1 and Study 2, detailed in chapters 3 and 4, respectively, are 

laboratory-based, and Study 3 — the final experiment, is a field study conducted at an elementary 

school with children. 

 

 

 
  

 

(a)  (b) 

 
(c) 

Figure 1-2  (a) Study 1: comparing gaze-based interaction between a human and a robot tutor (b) Study 2: concepts 

of dyadic gaze behavior — mutual gaze — gaze following in child - robot tutoring (c) Study 3: complex coordinated 

sequences of the child - robot gaze during a collaborative tutoring game interaction. 
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This dissertation adopts a multi-modal measurement and analysis approach that combines 

observational analysis, objective measurement techniques, including eye-tracking, self-reports, and lag 

sequential methods. The objective measures used in this dissertation cover the dimensions of task 

performance (e.g., the time to complete the game and number of tries to finish the game) and 

observable behavior (e.g., duration of gazes to the robot's face or the cards on the board). In this 

dissertation, the term performance is used as an overarching concept referring to participants' observed 

behavior during the trials, including execution (time and number of tries) and frequency and duration 

of gaze behavior. Therefore, performance refers to all the participant's observable behavior, including 

but not limited to task execution. Subjective measures include users' judgments of the tutor (e.g., 

likeability, social presence, intent) and a report on the subjective experience (e.g., engagement, 

enjoyment). 

Study 1: In addition to the objective measures (task performance) and subjective self-reports, we 

incorporated eye-tracking to investigate participants' gaze behavior during human-human and human-

robot communications (Figure 1-2 (a)). The benefit of using eye-tracking is that it provides data with 

high temporal resolution and can reveal detailed patterns of gaze behavior (Blascheck et al., 2014). 

Study 2: We used observational analysis to examine child-robot dyad's gaze behavior during the game 

(including patterns of mutual gaze and gaze-following) (Figure 1-2 (b)). Observational methods are an 

effective way to assess child-robot interactions as children can sometimes not give direct answers to 

interview questions or when completing a questionnaire. Besides, prior studies have used observation 

methods to analyze child - robot interaction with success. For example, Díaz-Boladeras (2017) used 

observational and ethographic techniques to study emotional bonding in child - robot interactions. De 

Haas et al. (2017) used observational methods to evaluate gameplay interactions between children and 

robots. 

Study 3: We combined observational and lag-based methods (Bakeman and Quera, 1995; Pohl, Wallner, 

and Kriglstein, 2016) to make a detailed analysis of the dynamic gaze interactions between the robot 

and the child (Figure 1-2 (c)). The lag-based methods provide an opportunity to look at more complex 

gaze sequences that have never been previously explored in robot-child tutoring, which is a necessary 

part of developing successful robotic interventions in tutoring and therapy settings.  
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Table 1-1 A summary of research questions, experimental designs, robot interactivity, and evaluation methods for 
all three studies. 

 Robot behavior and interactivity Study design and evaluation 

Study1 
(RQ1; RQ2) 
 

Simple attention directing gaze behavior 
Initial verbal instructions 
Closing verbal remarks 
 

Mixed factorial design experiment 
Two-by-two (Between-subject; Tutor_Type: 
Human or Robot) and (Within-subject; 
Tutoring_Style: Gaze vs. No_Gaze)  
 
Objective measurements—performance 
Eye-tracking—gaze behavior 
Subjective (self-reports)—participants’ perceptions 
 
 

Study2 
(RQ1; RQ3) 

Simple attention directing gaze behavior 
Initial verbal instructions 
Closing verbal remarks 
 

One-factor (Tutoring_Style) Within-subjects 
design with two conditions (Help (Gaze) vs. No_ 
Help (No gaze cues) 
 
Objective measurements performance 
Observational analysis—child and robot gaze 
units, dyadic gaze patterns (mutual gaze and gaze 
following) 
Subjective (self-reports)—children’s perceptions 
 
 

Study3 
(RQ3; RQ4) 

Complex joint attention gaze—improved 
timing and sequencing of the head/gaze 
movement of the robot based on Study 1 and 
study2 
 
NAO face tracking—initial gaze interaction  
Initial verbal instructions  
Closing verbal remarks 
Verbal feedback throughout the game 
Expressive explanation /instructional gestures  
Winning and losing gestures accompanying 
verbal feedback 
 

One-factor (Tutoring_Style) Within-subjects 
design with two conditions (Gaze with feedback 
vs. No gaze with feedback) 
 
Objective measurements—performance 
Observational analysis—child and robot gaze 
units and dyadic gaze patterns (mutual gaze and 
gaze following) 
Lag sequential analysis—patterns of joint 
attention gaze, the timing of dyad gaze behavior 
Subjective (self-reports)—children’s perceptions 

1.4. Research Platform 

The robot platform used to perform the studies in this research is the programmable humanoid NAO 

from Softbank Robotics (Softbank, 2013). NAO is 58 cm tall, with 21 degrees of freedom. It can walk, 

speak, gesture, pan, and tilt its head and has a multitude of sensors. NAO has minimal facial features 

with a static mouth and eyes, and its face bears a resemblance to that of a child.  NAO has been adopted 

widely for research focused on interactions with children with autism spectrum disorders, either for 

therapeutic (Gillesen et al., 2011) or for general educational—pedagogical purposes (Belpaeme et al., 

2018). Plausible reasons could be its availability and minimalistic appearance, which make it suitable for 

young children, and its sensing and acting capabilities.  
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Figure 1-3 (b) shows a coordinate system that can help us describe its behavior in terms of the 

movement of different actuators from the perspective of the observer. The HeadYawAngleVal of NAO’s 

gaze direction is the angle between the positive y-axis and a line drawn from the center to a fixed 

position. The yaw angle of the y-axis is 0, and a positive head yaw angle value is on the left side of 

NAO. NAO head yaw angles range from -119 to 119 degrees. The HeadPitchAngle of NAO’s gaze 

direction is the angle between the XY plane and a line drawn from NAO’s head location to a target 

square. The pitch (head joint front and back) angle increases from 0 to 29.5. 

  
(a) (b) 

Figure 1-3 (a) Research platform: design of the head movements for NAO robot (b) NAO coordinate system: the 

positioning of the robot during the experiments and the coordinate system that will be determining its head/gaze 

orientation. 

Robot capabilities differ significantly from those of humans, and hence their ability to communicate 

gaze information. Therefore, to increase the effectiveness of robot gaze behaviors, it is crucial to 

establish how people perceive gaze cues while interacting with a robot in a specific context. Cheaper 

and more accessible robots are the feasible choice for use in education, as is illustrated in the review by 

Belpaeme et al. (2018). However, a notable challenge of designing gaze for a robot platform like NAO is 

that it lacks articulated eyes and, therefore, has to turn its entire head to direct its gaze. Even so, 

previous studies have shown that robots with no movable eyes can also direct gaze with head 

orientation (Cuijpers and Van Der Pol, 2013). For example, Cuijpers and Van Der Pol (2013) measured 

the region of eye contact with NAO and concluded that perception of gaze direction with NAO is 

similar to that of a human. 
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1.5. Interaction Setting — Board Game Design 

We contextualized the user studies detailed in chapters 3, 4, and 5 in a play situation based on a board 

game activity, the 'Memory' game. In this task, participants played a card-matching game—finding 

matching pairs of cards—collaboratively either with a human or a robot tutor. 

Figure 1-4 shows the design of the interaction setup used to conduct the studies detailed in chapters 3, 

4, and 5. The participant and NAO sat at opposite sides of a table facing each other. A board grid with 

the card positions resembling a memory game was fixed on a table. The layout had 18 squares (8*8cm) 

organized in six (6) columns and three (3) rows. The 18 squares corresponded to 18 card positions. The 

squares were 10 cm apart in depth (y-axis) and 6 cm apart in width (x-axis).   

To measure NAO head angles to different card locations on the board, we placed NAO on a small desk 

56 cm in height at the "Stand-init" pose (0, 0). The design grid had six squares in the x-direction, which 

was from the left to the right side of NAO, and three squares in the y-direction, which was the depth 

direction of NAO. The distance between NAO and the closest square position was approximately 20 cm 

away, and the furthest at the corner was about 60 cm. We attached a laser beam on the mid-section of 

the NAO head and adjusted it to point at the middle of the layout, using the "look at" module in 

Choregraphe program. We estimated the head pitch and head yaw angles for all the target positions 

using the motion screen on Choregraphe. 

Card Position= {HeadYawAngleVal, HeadPitchAngleVal} 

In our preliminary study (Mwangi et al., 2016)  — "See where I'm looking at – Perceiving Gaze cues 

with a NAO Robot": we examined whether people accurately perceive NAO gaze cues and head angles 

directed towards different target positions on the board layout (Figure 1-4 (b)). Our motivation was that 

many settings used for therapeutic training and educational purposes are in the form of board games 

and other settings when the tutor and tutee are on the opposite sides of a table — as is the case in this 

research. Therefore, it is necessary to establish how people perceive gaze cues while interacting with the 

robot, and whether NAO can communicate gaze based on head movements, independent of eye 

movements. 

From the results, we found that the NAO robot can provide gaze cues through appropriate head 

movements - facial orientation. Specifically, we found that when the head pitch angle is higher (24±2), 

and the depth is less, approximately 20 cm from the robot, participants detect the positions with good 

accuracy (Mwangi et al., 2016). These initial results informed the design of our interactive setting – 
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board game design and especially the card placement on the board, as shown in Figure 1-4 (c) (see a 

complete description of the preliminary study and the board game design in Appendix A). 

 

 
 

(a) (b) 

 

(c) 

Figure 1-4  (a) Schematic illustration of the interaction setup (b) Participant marking the card positions NAO was 

looking at on the board layout (c) The design of the board game based on gaze perception results for NAO: the 

game consists of an arrangement of cards (14 cards), designed such that the head angles of NAO (facial orientation) 

can direct attention at different card locations when the participants and the robot are facing the board. 

1.6. Thesis Overview 

Chapter 2 - provides a review of related work on non-verbal communicative skills in human-social 

robot interaction. The emphasis is on both the design perspective of implementing gaze cues for social 

robots and on understanding how humans perceive robots' gaze behaviors. 

Chapter 3 - investigates how people perceive and interpret social hints from gaze exhibited by either a 

robot or a human tutor during a tutoring interaction. 

Chapter 4 - investigates dyadic gaze patterns during child-robot collaborative tutoring interaction 

regarding children's awareness of the tutor's intention, performance, and children's perceptions in a 

tutoring activity. 

Chapter 5 - investigates the nature and dynamics of gaze-based human-robot interaction (HRI) and 

specifically, the dynamics of successful gaze sequences in the context of the child - robot tutoring. 
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Chapter 6 - provides a comprehensive discussion of the main findings and limitations of this research, 

including open challenges that inform future research directions. 

Chapter 7 - provides conclusions based on the significant findings of the research and outlines the 

contributions of this dissertation. 
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Chapter 2. State of the Art 

This chapter begins with a broader background reviewing non-verbal communicative cues in social 

human-robot interaction. Among these abilities, the emphasis is on studying the literature in human-

robot interaction (HRI), which includes both the design perspective of implementing gaze cues for 

social robots and how humans perceive the robot’s gaze behavior.  In this context, the literature review 

focuses on the role-related specific skills needed to perform effective tutoring with an emphasis on 

intuitive non-verbal communicative abilities. Finally, this chapter highlights the implications from the 

literature, identifies gaps in the corps of knowledge, and develops the conceptual framework for 

empirical research.† 

2.1. Non - Verbal Communication in HRI 

Nonverbal cues, such as gestures, facial expressions, body posture, and body movements, form an 

essential part of human social interactions (Frith, 2009). Accordingly, non-verbal cues contribute 

significantly to the meaning exchanged in communication. Human-robot interaction has made 

considerable progress in mapping non-verbal human behavior to robots in an attempt to reach natural 

interaction. These studies show non-verbal cues can help build effective interactions between humans 

and robots in diverse domains (Admoni, 2016; Breazeal, Kidd, Thomaz, Hoffman, and Berlin, 2005; 

Kirchner, Alempijevic, and Dissanayake, 2011). For example, embedding nonverbal cues in robots can 

enhance task performance during human-robot interaction in diverse applications (Admoni, Weng, 

Hayes, and Scassellati, 2016; Boucher et al., 2012; Mutlu, Forlizzi, and Hodgins, 2006). Breazeal et al. 

(2005), for example, provides evidence that non-verbal communication, including gestures, can enable 

effective human-robot teamwork. Admoni et al. (2016) demonstrated how to achieve effective 

interactions with robots using nonverbal in various domains, for example, robot tutors, robot therapists, 

 

† This chapter is partly based on selected paragraphs from the following publications (Mwangi et al., 2016; Mwangi, Barakova, 
Díaz-Boladeras, et al., 2018a; Mwangi, Barakova, Díaz, et al., 2018b; Mwangi, Barakova, Diaz, Mallofre, et al., 2017a;  Mwangi et 
al., 2017b) 
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and robot coaches. Huang and Mutlu (2013) developed a toolkit to generate useful social behavior for 

robots to achieve positive outcomes in an educational setting. 

Adding social cues to a robot's behavior can provide positive experiences, including enhanced 

engagement (Kompatsiari et al., 2019), improved compliance (Ghazali et al., 2018), emotional bonding 

(Diaz-Boladeras, 2018), and a common ground for interaction (Huang et al., 2015). 

Humans naturally use many social cues to synchronize their operations in collaborative tasks. As a 

result, nonverbal cues, including gaze and gestures, have been applied to support fluent turn-taking 

during human-robot collaboration (Chao and Thomaz, 2012; Palinko et al., 2015). Hart et al. (2014) also 

found that non-verbal cues can help coordinate human-robot cooperative tasks in manufacturing 

settings. 

Implications: These research efforts on mapping non-verbal human behavior to robots signify 

substantial progress towards natural and intuitive interactions with robots in diverse domains. The 

studies collectively support the notion that nonverbal communication patterns are essential aspects of 

human-robot interactions and may influence interaction outcomes in the context of tutoring. Thus, 

intuitively providing nonverbal cues is crucial for the successful application of robots in settings like 

education, coaching, or therapy. Thus, nonverbal communication is beneficial for understanding 

important design variables to improve human-robot relationships. For example, facial expressions — 

gaze — body posture — can provide information about attention and engagement. Therefore, 

examining non-verbal cues can help inform robot design guidelines for human-robot tutoring. While 

the above researchers have found potential benefits of enriching human-robot interaction with 

nonverbal cues, few methods available provide specific guidelines for designing them effectively, 

specifically in robot tutoring interactions. The next segment focuses on gaze behavior, which is an 

integral part of nonverbal communication and, therefore, in human-robot interaction. 

2.2. Gaze in Human Communications 

The gaze is a crucial non-verbal cue in human social interaction. Gaze facilitates a range of social 

functions during human-human interactions, including signifying attention (Frischen et al., 2007; 

Langton, Watt, and Bruce, 2000), coordinating turn-taking (Kendon, 1967), and communicating 

emotions and mental states (Argyle, Ingham, Alkema, and McCALLIN, 1973; Kleinke, 1986). The 

earliest social psychological studies and reports on the role of gaze in human behavior were by Argyle, 

Cook, and Cramer (1994), Kendon (1967), and Kleinke (1986). In this review, we focus mainly on the 
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social function of gaze to the direction of attention to areas of information in the environment and to 

facilitate learning during social interactions. 

Gaze and Attention: Attention is a crucial component of learning interactions. The gaze is particularly 

useful in directing another person's attention to areas of information in an environment during human 

social interactions (Emery, 2000; Frischen et al., 2007). Besides, humans are highly sensitive to the gaze 

behavior of the interacting partner. The sensitivity begins from a young age with newborns (three 

months) showing sophisticated gaze-following while interacting with their parents and caregivers 

(Brooks and Meltzoff, 2014; Brooks and Meltzoff, 2002; Meltzoff and Brooks, 2007). Such gaze-based 

interaction (gaze-following) facilitates the formation of joint attention, which is the basis of early 

childhood learning and the development of critical social cognition abilities such as the theory of mind 

and perspective-taking (Baron-Cohen, 2008; Frischen et al., 2007). Besides, deficits in gaze interaction in 

either dyadic or triadic joint attention abilities are some of the core communicative deficits associated 

with an autism spectrum disorder (Baron-Cohen, Leslie, and Frith, 1985; Baron-Cohen, 2008; Frischen et 

al., 2007). 

Gaze and Learning: Neuropsychological evidence shows that perceiving and recognizing the gaze of 

the other person enables one to understand the intentions of the interacting partner (Emery, 2000). 

Therefore, seeing where another person is looking can guide attention to objects of interest that could be 

beneficial to the decision-making and reasoning during an activity (Emery, 2000; Langton et al., 2000). 

In turn, this could have a significant impact on task solving performance during activities. Such is 

particularly true for a tutor/coach who is always using gaze to keep the students engaged and to direct 

them to areas of information, which can influence their task solving. For example, in a classroom 

setting, teachers use their gaze to guide students' attention to points of information during learning — 

either on the board or elsewhere. Moreover, experienced tutors manipulate their gaze, either using 

more eye contact or directing their gaze towards students to keep the students engaged and to show 

attention. 

Dyadic Gaze: Dyadic gaze behavior like mutual gaze, gaze-following, and joint attention indicate both 

engagement and the quality of social interaction. Farroni, Csibra, Simion, and Johnson (2002), argued 

that eye - gaze behavior helps to establish mutual coordination and a common ground for interaction. 

Coordinated gaze also influences how humans perceive and interpret interactions. For instance, mutual 

gaze indicates social engagement, gaze-following shows an understanding of others' attention, and gaze 

alternation is used to assess joint attention (Kaplan and Hafner, 2004; Kendon, 1967; Kleinke, 1986).  
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Several studies demonstrate the importance of mutual gaze in social interactions. Mutual gaze is the 

earliest form of interaction between a parent -caregiver dyad; therefore, social exchanges between 

mother and infant using mutual gaze create the first dyadic system in which the two individuals have 

similar control (Brooks and Meltzoff, 2002). Furthermore, eye contact is a very significant behavior for 

the caregiver, especially in the early phase of development, because it signals that the infant is 

participating in the interactive exchange (Brooks and Meltzoff, 2002; Meltzoff and Brooks, 2007).  

Implications: The above sections highlight the significant role of gaze in communicating the direction 

of attention during social interactions and that persons are susceptible to the interacting partner's gaze 

behavior. Thus, at a minimum, seeing where another person is looking helps obtain cues that can act 

both implicitly and explicitly to direct attention and shape thoughts and decisions. In turn, such cues 

can be beneficial to the cognitive processes of the interacting partner, thereby improving their task 

solving and their experiences. Therefore, this characteristic of gaze is important to consider in the space 

of creating effective human-robot interaction. Besides, the ability of the gaze to facilitate such mutual 

coordination and awareness facilitates positive outcomes during interactions. 

2.2.1. Social Gaze Definitions and Eye -Tracking Concepts 

We have adopted the following definitions of interaction concepts of social gaze and task-solving eye-

tracking concepts that are relevant to this research from different literature perspectives: 
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Table 2-1 Social gaze definitions and eye-tracking concepts 

Social Gaze Definition 
 

Gaze - eye-gaze –  
looking at - look at 

Looking at the other in the eyes, or the upper half of the face (Argyle, Cook, 
and Cramer, 1994). 

Mutual gaze The reciprocal gaze directed at the face region from one agent to the other 
(Argyle, Cook, and Cramer, 1994). 

Gaze-following Following the gaze direction of another and looking at the same target as the 
partner (Emery, 2000). 

Joint attention A sequence of coordinated gaze including mutual gaze and gaze-following 
that leads to sharing an attentional focus on an object of interest (Emery, 
2000; Frischen et al., 2007). 
 

Shared attention   Dyadic gaze whereby both persons attend the same object, as with joint 
attention, and are aware of each other's direction of attention (Emery, 2000). 

Gaze cueing “Use of perceived gaze direction to shift visual attention, that is, the 
seemingly automatic propensity to orient to the same object that other people 
are looking at”  (Frischen et al., 2007). 
 

Referential gaze or deictic 
gaze 

Gaze at an object or location in space. Such a gaze sometimes occurs in 
combination with verbal references to an object, though it need not 
accompany speech (Emery, 2000). 
 

Eye - Tracking Metric Definition 

Area of Interest (AOI) Regions of a stimulus that are of interest to the researcher for a particular 
hypothesis. The researcher defines the AOIs either before or after an eye-
tracking experiment. In our case, the area of interest is the face of a tutor 
(either the human or robot) (Blascheck et al., 2014; Holmqvist, 2011). 
 

Fixation The eyes' focus is on a particular scene lasting for approximately 200–300 
milliseconds (Blascheck et al., 2014). Fixations are excellent measures of 
visual attention. 

Fixation_count Number of fixations within an area of interest 

Fixation _time (ms) Total fixation time on an area of interest. Fixation time is often associated 
with attention and visual processing. For example, more fixations on a 
particular AOI may indicate that the AOI is more important or more 
noticeable  (draws attention) -  of the participant than the other areas 
(Blascheck et al., 2014; Holmqvist, 2011). 
 

Dwell_time (ms) The time spent looking within a particular AOI, calculated by summing up 
the time the gaze coordinates were within the area of interest (Holmqvist, 
2011). Dwell time can be used to answer the question of participant’s interest 
- attention towards certain parts of the stimulus. 

Revisits The number of times the eye returns to an AOI that has already been visited 
(Farnsworth, 2018; Holmqvist, 2011). Revisits allow a researcher to study 
which areas of a stimulus repeatedly attract the attention of the participant. 
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2.3. Gaze in Human-Robot Interactions  

Given the critical role of gaze in human communication, research into designing social gaze for robots 

has been extensive. There are several comprehensive reviews on gaze with social robots and designing 

effective gaze-based interactions for diverse human-robot interactions (Admoni and Scassellati, 2017; 

Broz et al., 2012; Mutlu, 2009; Ruhland et al., 2015). 

Perceiving and Responding to a Robot's Gaze Behavior: Several studies have investigated how people 

perceive and respond to the robot's gaze behavior in diverse settings. For example, in a storytelling 

setting by Mutlu et al. (2006), participants recalled the story better when the robot looked longer at 

them. Previous works have also established that gaze is a powerful communicative signal without the 

observer's explicit awareness. For example, in object selection games, Mutlu et al. (2009) showed that 

participants could read and interpret unconscious leakage cues from the robot's gaze directed toward 

objects or locations in the environment. The authors claim that, in general, the gaze cue led to better 

performance in a guessing game task and even better with Robovie, which is more human-like than 

Geminoid. Palinko, Rea, Sandini, and Sciutti (2016a, 2016b) studied the impact of eye-gaze or head-

based gaze estimation in a human-robot interaction experiment using the iCub robot. Yu, 

Schermerhorn, and Scheutz (2012) compared the timing of gaze behavior when interacting with either a 

robot or a human in a word-learning task. Their eye-tracking result revealed that people pay more 

attention to the robot's face than the human face during a word-learning task. Admoni, Hayes, Feil-

Seifer, Ullman, and Scassellati (2013) examined the impact of frequency and the duration of gaze on the 

perception of attention during human-robot interaction, concluding that shorter, more frequent 

fixations are better for signifying attention than more prolonged and less frequent fixations. Andrist, 

Tan, Gleicher, and Mutlu (2014) combined three functionalities, including face-tracking and head 

detection, to design gaze aversion behaviors for conversational robots. Their findings showed that 

participants perceived the designed gaze as more 

Gaze and Effective HRI: Prior work shows that gaze cues can enhance task performance and promote 

positive experiences during human-robot interaction. For example, Yoshikawa et al. (2006) explored 

both responsive and non-responsive gaze cues. They found that responsive gazes had a strong effect on 

the "feeling of being looked at" during the interaction. Moon et al. (2014) studied the effects of gaze 

behaviors in a handover task. They found that gaze cues can improve the handover timing and the 

subjective experiences in handover tasks. Boucher et al. (2012) examined the effects of gaze on the speed 

of communication in both human-human and human-robot interaction cooperative tasks. Their findings 

show that participants can use the gaze cues a robot to perform in an anticipatory manner and improve 
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their performance in physical interaction tasks. Robots that establish mutual gaze with a human partner 

lead to positive evaluations. For example, Kompatsiari et al. (2017) suggest that people are sensitive to 

an artificial agent's mutual gaze, and they feel more engaged with the robot when they establish mutual 

gaze. Pfeiffer-Lessmann et al. (2012) examined the timing of gaze behavior in interactions between 

humans and a virtual human to build a joint operational model for artificial agents. Yonezawa, 

Yamazoe, Utsumi, and Abe (2007) showed that when a robot companion establishes a mutual gaze with 

human users, this leads to positive robot evaluations. 

Gaze Interactions in Robot Learning — (robot coach -robot therapist-robot tutor): Studies have also 

addressed the implicit role of gaze to support tutoring in collaborative settings. For example, Palinko et 

al. (2015) examined mutual gaze as a mechanism to enhance turn-taking in a collaborative teaching 

dictation scenario. Jokinen, Furukawa, Nishida, and Yamamoto (2013) demonstrated the importance of 

timing of gaze in turn-taking interactions during collaborative work, and as a mechanism to control 

turn-taking. Gaze behavior is important to examine in child tutoring, and therapy settings as the deficit 

in gaze interaction is argued to be a significant cause of autism. Previous work has shown that children 

with ASD show increased gaze behavior and shared attention during robot interactions than human 

interactions (Mavadati, Feng, Gutierrez, and Mahoor, 2015; Tapus et al., 2012). Therefore, for robots to 

be used in social training settings, especially for children with autism, the gaze is an important cue. 

Implications: The above studies have found potential benefits of enriching HRI with gaze behavior 

with the unintentional and unconscious influence of gaze cues in a competitive -collaborative setting. 

However, how a social robot can utilize deliberate/explicit attention-directing gaze cues, particularly in 

learning settings, is still an open question. There is still no conclusive evidence whether robot tutors are 

more useful when providing (more) evident gaze cues or without cues or covert cues. Besides, as 

cheaper and accessible robots are a more feasible choice for use in educational settings, further 

investigation is required to figure out whether robots, such as NAO, can convey meaning through gaze 

cues based on head movements rather than on independent movements of the eyes. 

In child-robot interaction (tutoring and social training), examining the coordinated and sequential gaze 

patterns can quantify, for example, whether the robot is gazing at the child mutually or whether the 

child is reflexively following the robot's gaze. Such data can inform the design of interventions to create 

effective robot tutors or for social training to improve learning outcomes. For instance, robot behavior 

could be designed in a manner such as to increase the level of mutual gaze in an interaction. A different 

intervention may be needed if the aim is to increase the child's' mutual gaze, such as increasing the 

robot's verbal cues or gestures or creating more prospects to encourage the child to look at the robot.   
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2.4. Designing Gaze Behavior for Social Robots 

Table 2-2 recaps prior work on designing social gaze behavior for robots, including the type of robot 

used, the participants' details, methodologies and significant findings from the studies. The outlined 

studies follow different approaches to study gaze in various interactive robot applications, including 

educational settings, assistive robots, entertainment, and manufacturing. This dissertation draws from 

these previous research efforts to design gaze-based interactions for social robots in tutoring settings. 

 

 

Table 2-2 Summaries of prior work on designing social gaze behavior for robots
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Title Robot —  
participants 

Research objectives — questions Methodological approach Main results 

(Admoni et al., 2013) 
 
Are You Looking at 
Me? 
Perception of Robot 
Attention is Mediated 
by Gaze 
Type and Group Size 
 

myKeepon 
 
53 participants (20 male, 33 
female) 

To examine which features of a 
robot's gaze make the robot 
appear to be attending to 
someone: frequency and gaze 
duration. 
 
Examined the influence of two 
types of gaze behaviors — short, 
frequent glances and long, less 
frequent stares. 

Mixed 3 (group size) x 4 (gaze 
duration) between- and within 
subject’s design 
 
 

People feel the robot is looking at 
them when the robot uses shorter, 
more frequent glances than longer, 
less frequent glances. 

(Boucher et al., 2012) 
 
I Reach Faster When I 
See You Look: Gaze 
Effects in Human and 
Human-Robot Face to 
Face Cooperation 

I -Cub 
 
5 participants 

To determine whether the 
effects of the robot gaze can be 
generalized to performance 
improvements in a cooperative 
object selection task. 

Object selection task 
 
Quantitative evaluation 
Qualitative evaluation 

A robot can use gaze to support its 
speech in a cooperative object 
selection task. 
Humans can use the robot gaze to 
perform in an anticipatory manner 
in a cooperative task leading to 
better performance. 
 

(Kinoshita et al., 2017) 
 
Trans gazer:  
Improving Impression 
by Switching Direct 
and Averted Gaze 
Using Optical Illusion 
 

Trans gazer 
 
12 (6 pairs) students (10 
male; 2 female; Native 
Japanese) 
 
Age: 21 - 24  
 

To evaluate the effects of Trans 
gazer's convex and hollow eyes,  
in one-to-many communication. 
 
To examine the impact of direct 
and averted gaze to multiple 
people simultaneously by 
changing the shape of the 
robot's eyes. 

Seven-minute lecture about a 
cooking method to two listeners 
 
Within-participants design 
 
Likert method to quantify the 
participants’ impressions of Trans 
gaze 
Video camera to ensure that the 
participants were looking at Trans 

Hollow eyes can direct gaze more 
broadly, whereas convex eyes can 
convey gaze direction more 
correctly. 
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gazer 
 

(Mutlu et al., 2006) 
 
A storytelling robot: 
Modeling and 
evaluation of human-
like gaze behavior 

Honda's ASIMO 
 

To examine the impact of 
frequency of the robot gaze on 
recall during a storytelling task 
with two participants. 
 

Storytelling activity with a robot 
and two participants  
 
ASIMO gaze was manipulated 
between the two participants 
during storytelling 
 
Pre and post questionnaires 
 

Participants performed 
significantly better in recalling 
ASIMO's story when the robot 
looked at them more. 
 

(Mutlu et al., 2009) 
 
Nonverbal Leakage in 
Robots: 
Communication of  
Intentions through 
Seemingly 
Unintentional Behavior  
 

Geminoid and Robovie R-2 
Geminoid—a near-human 
android 
Robovie—a humanoid  
with abstract, stylized 
human-like features 
 
26 participants (17 male; 9 
female; Native Japanese) 

To examine whether people 
detect nonverbal leakages in 
robots.  
 
Do people attribute intentions to 
the robot? 
How do the physical 
characteristics of the robot affect 
these inferences? 
 

Object selection task  
 
Performance evaluation: time 
Subjective evaluations: affective 
states 
 

Participants could read and 
interpret unconscious leakage cues 
from the robot's gaze directed 
toward objects, which led to better 
performance in a guessing game 
task and even better with Robovie, 
which is more human-like than 
Geminoid. 

(Yoshikawa et al., 2006) 
 
Responsive Robot 
Gaze to Interaction 
Partner 

Robovie-R2, ATR Robotics) 
 
39 Participants 
(20 male, 19 female) 
 
Ages: 18 - 24 
 

To explore the effects of 
responsive gazes: 
 
Responsive: following gaze and 
aversive gaze 
Non-responsive:  100% staring 
gaze and independent gaze 

Subjective evaluation  
Gaze detection tool 

A robot that gazes responsively 
toward a human user is capable of 
eliciting a stronger feeling of being 
‘looked at’ than a robot that uses 
non-responsive gaze behavior. 

CHAPTER 2
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(Yu et al., 2012) 
 
Adaptive Eye - Gaze 
Patterns in Interactions 
with  
Human and Artificial 
Agents 
 

Humanoid torso with a 2 
DoF, 
Movable head and two 3 
DoF arms. 
 
48 students’ participants 

To investigate the micro-level 
behaviors of humans in 
interaction with human and 
artificial agents. 

Word learning as an experimental 
task 
 
Comparative experimental design: 
Human confederate vs artificial 
agent 
Eye-tracking study 

Participants—look more—to a 
robot partner's face than a human 
partner's face during a word-
learning task. 

(Palinko et al., 2015)  
 
Gaze Contingency In 
Turn-Taking  For 
Human Robot 
Interaction 

I Cub  
 
8 participants (2 male; 6 
female) 
 

To examine whether mutual 
gaze can implicitly facilitate 
turn-taking in a dictation 
scenario. 
 
To compare a contingent 
behavior where the robot reacts 
to its partner glances to a purely 
rhythmic one. 

Dictation scenario 
 
Objective  and subjective 
evaluations of different strategies  
 
 
 
 

Mutual gaze for a robot is an 
efficient means to seamlessly 
interact with human partners with 
different needs in a turn-taking 
task. 

STATE OF THE ART
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2.5. Summary 

This review suggests that adding social cues to robots can lead to effective human-robot interactions. 

From this review, we draw the following: First, gaze and non-verbal communication, in general, are 

platform and context-dependent. Therefore, while there is extensive work focusing on designing gaze 

cues in human-robot interaction, how non-verbal cues and, especially, gaze can be manipulated to 

improve learning outcomes in human-robot tutoring is still an open question. The second relates to the 

importance of timing in gaze-based communication, which is crucial in designing effective interactions. 

Most of the prior studies have paid little attention to the interactive behavior and how gaze interactions 

unfold overtime during human-robot interaction. Therefore, further investigation of dyadic components 

-timing and sequences - of gaze interaction between humans and robots is needed to create more 

effective robot tutors. The following chapters (Chapters 3 through 5) will describe user studies designed 

to explore gaze interaction, mainly focusing on attention, mutual coordination, and intricately 

coordinated gaze patterns during human-robot collaborative tutoring. The next chapter focuses on the 

role of gaze in directing attention, which is a critical component of learning interactions. 
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Chapter 3.      Gaze-Based Interaction in 

Human-Human and Human-Robot 

Tutoring  

Attention is a crucial component of learning interactions. Gaze is particularly useful in directing another 

person's attention to objects of interest in an environment during social interactions (Emery, 2000; 

Frischen et al., 2007).  Therefore, seeing the gaze of another person can guide attention to information of 

interest that could be beneficial to one's decision-making process and reasoning during an activity 

(Emery, 2000; Langton, Watt, and Bruce, 2000). In turn, such cues can be beneficial to the cognitive 

processes of the interacting partner, thereby improving their task solving. In classroom settings, for 

example, teachers manipulate their gaze to keep their students engaged and to direct their attention to 

points of interest during learning. Therefore, designing effective gaze behavior for robots is crucial to 

foster social engagement and coordinated interactions in human-robot tutoring.3 

Prior research has demonstrated that gaze can help build better interactions with robots (Admoni and 

Scassellati, 2017; Broz et al., 2012). However, how a robot should apply its gaze behavior to improve 

learning performances in a tutoring context is still an open question. In this chapter, we examine 

whether gaze-based cues from a human or a robot can direct attention and influence participants' 

decisions and choices during a tutoring activity and whether humans can perceive and interpret such 

cues accurately. The underlying assumption is that gaze can help cue attention, influence decisions and 

thoughts, and improve performance. 

To investigate the above, we conducted a well-controlled laboratory study in which participants played 

a matching board game in the presence of a tutor (either a human or a robot tutor), in two sets. In one of 

 

3 This chapter is largely based on the following publications ( Mwangi, Barakova, Díaz-Boladeras, et al., 2018a; Mwangi, 
Barakova, Diaz, Catala, et al., 2017b) 
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the setups, the tutor provided gaze-based hints — looking towards the correct match — during the 

interaction. In the other case, the tutor did not provide help to the participants during the tutoring task.  

We incorporated eye-tracking to examine participants' gaze behavior during the two tutoring styles and 

with the two different tutors. We assessed how the gaze-based tutoring style impacts participants' 

performance, gaze behavior, and the tutor's judgments compared to the no-gaze style. We identified 

two primary measures that are notably used to measure performance in memory games tasks. The 

duration the participant takes to complete the game and also the number of tries — moves — required 

to find all the matching cards.  

We found that when a robot tutor provides gaze-based cues during tutoring, participants perform 

better using fewer tries to complete the task than when the robot tutor does not offer such cues. Further, 

we found that people identified the robot tutor's gaze hints more than the human tutor gaze hints and, 

as a result, performed significantly better using — fewer tries — with the robot tutor than with the 

human tutor. This chapter provides new recommendations for designing effective gaze-based 

communication to improve task performance in a robot-tutoring interaction. 

The rest of this chapter is structured as follows: Section 3.1 provides background on prior works in 

human-robot gaze interaction, describes the objectives and the research questions. Section 3.2 describes 

the experiment design — the hypothesis, study conditions, measures, and participants' details. Section 

3.3 details the experimental setup, the platform, and the design of the interaction scenario and the board 

game, "Memory." Section 3.4 outlines the results of the user study. Section 3.5 provides a 

comprehensive discussion of the main findings. Finally, Section 3.6 summarizes the main 

recommendations for designing a credible and effective gaze behavior robot-based educational setting 

from this chapter. 

3.1. Background 

The literature reviewed in Chapter 2 highlights the significant role of gaze in communicating the 

direction of attention during social interactions. Thus, at a minimum, seeing where another person is 

looking helps obtain cues that can act both implicitly and explicitly to direct attention and shape 

thoughts and decisions. Accordingly, following the gaze of another person can direct attention to 

various objects in the environment, allowing knowledge to be directly shared. Previous work has 

demonstrated that people are also sensitive to the robot's gaze directed at objects or locations in the 

environment. For example, the work of (Mutlu et al., 2009) shows that "leakage cues" — which are 

unintentional and unconscious both in their production and perception — can express intent during 

CHAPTER 3
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activity and improve task performance using the Robovie and Geminoid platforms. The above works 

focus on the implicit and unconscious influence of gaze cues in a collaborative setting.  

This chapter investigates deliberate/explicit gaze-based interaction cues to build awareness and shared 

understanding to improve learning outcomes. Palinko et al. (2016) studied the impact of the eye- or 

head-based gaze estimation in a human-robot interaction experiment with the iCub robot. The robots 

used in these studies can move their eyes independently of the head. This poses the question of to what 

degree simpler and more available robots can perform gaze cueing effectively. Therefore, to increase the 

effectiveness of robot gaze behaviors, it is crucial to establish how people perceive gaze cues while 

interacting with a robot. As cheaper and better accessible robots are the more feasible choice for use in 

education and social training, we investigate whether robots such as NAO can convey such deliberate 

meaning through gaze cues. 

The overall goal of this chapter is to examine whether gaze hints from a tutor (either human or robot) 

can direct attention and, therefore, influence the choices of human partners in a game-play tutoring 

task.  We further examine whether humans can read such cues and accept help from a tutor, and, in 

turn, if these cues influence their decision-making and the performance of the interacting human. 

In this regard, this chapter addresses the following questions:  

RQ1 — Do tutors’ social cues of gaze influence performance in the context of a board game tutoring 

activity (either with a robot or with a human tutor)? To what extent? 

(a) Do participants perceive and interpret the gaze-based hints (i.e. tutor pointing with the eyes to 

a particular card) exhibited by the tutor while performing the card-matching task? 

i. Do participants notice the tutors’ gaze behavior during the game? 

ii. Do participants attribute the tutor the intent to help with the gaze? 

(b) Does the gaze behavior influence the choices of players in the card game? 

RQ2 — Who is a better tutor: the human or the robot tutor? 

(a) Is there any difference in the participants’ awareness of the tutors’ behavior between the two 

conditions? 

(b) Is there any difference in task execution between the two conditions? 

i. Is there any difference in the time required to complete the game? 

ii. Is there any difference in the number of tries?  

(c) Is there any difference in participants’ judgement about the tutor (e.g., likeability, perceived 

presence) between the two conditions? 

GAZE-BASED INTERACTION IN HUMAN-HUMAN AND HUMAN-ROBOT TUTORING
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To answer the above questions, we designed an experimental study to evaluate the effects of gaze hints 

in educational gameplay. We asked participants to play a matching card game with a human or a 

robotic tutor.  

 

As depicted in Figure 3-1, we expected that the participants would notice the tutors’ gaze while the 

tutor was looking at different cards on the board and follow the tutors’ lead to the matching card. Thus, 

we hypothesized that gaze cues (facial orientation and gaze direction) from the tutor would draw the 

participants’ attention to the matching card and, subsequently, influence their choices. 

 

 

(a) (b) 

Figure 3-1 The interaction flow: (a) P(1) - participant (left) turns over a card T(1) - tutor (right) looks at the selected 

card (b) T(2) - tutor gazes at the participant to draw attention P(2) - participant looks at the tutor T(3)  - tutor moves 

on to look at a matching card P(3) - finally, the participant follows the tutor’s gaze and looks to the matching card. 

3.2. Experiment Design 

In the following sections, we describe an experimental study investigating the influence of different 

gaze-based tutoring styles, as deployed by either a human or a robot tutor during a game tutoring 

activity, on participant’s performance, gaze behavior and judgments of the tutor (presence and 

likeability). Figure 3-1 describes the interaction flow of the designed study. 

3.2.1. Participants 

The 20 participants who took part in the study (11 males and 9 females, between 19 and 33 years) were 

students recruited from TU/e university. The participants were from different cultural backgrounds, 

namely, Europe, Asia, and Africa. The game sessions took approximately thirty minutes. Participants 

received a coupon worth ten euro at the end of the experiment for their participation. 

CHAPTER 3
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Ethics statement: Written consent was acquired from each participant prior to the experimental 

sessions. This was a non-clinical study without any harming procedure and all data were collected 

anonymously. Therefore, according to the Netherlands Code of Conduct for Scientific Practice 

(Principle 1.2 on page 5), ethical approval was not sought for the execution of this study. 

3.2.2. Study Conditions 

The study followed a two-by-two (Tutor_Type: Human or Robot) and (Tutoring_Style: Help vs 

No_Help) mixed factorial design experiment. The Tutor_Type variable was manipulated using a 

between-participants design and the Tutoring_Style variable was of a within-participants design. The 

two types of tutoring styles deployed by the tutor are as described below: 

Help (presence of gaze cues): In this condition, the tutor (human or robot) provided gaze cues during 

the game. While introducing the game, the tutor informed the participant that they would help them. 

However, the tutor did not explicitly reveal the modality they would use to help. The tutor remained 

silent for the entire session. The tutor first looked at the card picked by the participant, then looked to 

the player, and, finally, to the matching card to attract and draw the participant’s attention to the 

matching card.  

No_Help (absence of gaze cues): In this condition, the tutor (human or robot) did not provide gaze 

cues during the game. The tutor only looked toward the participant and remained silent during the 

entire duration of the game. 

Participants were assigned evenly to play in the presence of either the robot or the human tutor. Each 

participant interacted with the tutor in both the Help and No_Help conditions and the order of 

conditions was counterbalanced across trials. 

Practical issues determined a between-subjects design between the two tutors due to availability and 

convenience for participants, who were requested to attend only one session. It was challenging to 

change the setting from one tutor to the other during the session. Therefore, one group was sent to the 

setting with the robot tutor and the other to the setting with a human tutor. 

 It is also important to note that we did not measure participants previous knowledge of the game or 

other individual variables such as the familiarity or attitude towards the robot, or psychological 

features like extroversion/introversion. Therefore, these individual variables can be considered 

confounding variables and they affect the strength of the main effect between the independent variables 

(Tutor_Type; Tutoring_Style) and the dependent variables: task execution, gaze, subjective experiences, 

and perceptions. 

GAZE-BASED INTERACTION IN HUMAN-HUMAN AND HUMAN-ROBOT TUTORING
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3.2.3. Hypothesis 

We formulated the following hypotheses, as outlined below, regarding how the tutoring style 

(presence/absence of help gaze cues) and the type of tutor (human/robot) would affect participants' 

performance of the task and interactive behavior, and how the participants' gaze would differ between 

interactions with the human and the robot tutor. 

(H1) The tutoring style (Help/No_Help) will influence task performance 

H1.1: Participants will complete the task in less time in the Help condition than in the No_Help 

condition 

H1.2: Participants will complete the task with fewer tries in the Help condition than in the No_Help 

condition 

(H2) The type of tutor (human/robot) will influence task performance 

H2.1: The type of tutor will influence the time of task completion 

H2.2: The type of tutor will influence the number of tries 

(H3) The tutoring style (Help/No_Help) will influence participants' gaze-based interaction during play 

H3.1: Participants will look more into the tutors' face in the Help condition than in the No_Help 

condition 

(H4) The type of tutor (human/robot) will influence participants' gaze-based interaction during play 

H4.1: Participants will look more into the robot tutor's face than in the human tutor's face 

H4.2: Participants will notice the gaze cues from the robot tutor more than from the human tutor. 

(H5) The tutoring style (Help/No_Help) will influence participants perceptions 

H5.1: Participants will evaluate the tutor more positively (perceived likeability and presence), during 

Help condition than in the No_Help condition 

(H6) The type of tutor (human/robot) will influence participants perceptions 

H6.1: Participants will evaluate the robot tutor more positively (perceived likeability and presence) 

compared to the human tutor 

3.2.4. Measures 

To evaluate the hypotheses detailed in 3.2.3, we employed the following measures: 

CHAPTER 3
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Task performance: We identified two primary objective measures that are notably used to measure 

performance in memory games:  

(a) Duration: the time it took participants to find all pairs of matching cards on the table. 

(b) Number of tries: the total number of attempts required to find all the matching cards. A “try” 

consisted of choosing two cards. 

Gaze behavior: Gaze direction was provided by the eye-tracking log. During the game, the participants 

were fitted with SMI eye-tracking glasses to capture their gaze direction. Eye-tracking provides data 

with high temporal resolution and can reveal detailed patterns of gaze behavior. We focused on the 

following eye-tracking metrics (see definitions in Table 2-1). 

(a) Fixation_count: refers to the number of fixations within an area of interest (AOI_Face). 

(b) Fixation_time:  refers to the total fixation time within an area of interest (AOI_Face). 

(c) Dwell_time: refers to the time spent looking at the area of interest, calculated by summing up 

the time the gaze coordinates were within the area of interest (AOI_Face). 

(d) Revisits: The number of revisits provides information about how often participants returned 

their gaze to an area of interest (AOI_Face). 

(e) Glances count: number of glances that occur during an interval of time, and specific to a target 

Area of Interest (AOI_Face). 

Participants’ perceptions: We used a questionnaire to evaluate participants’ perceptions of the tutors’ 

behavior, particularly perceived likeability, perceived presence of tutors, and judgments about the task. 

We included open-ended questions in the questionnaire asking the subjects to list the cues they 

observed or searched for in the tutors’ behavior. In the end, we conducted semi-structured interviews to 

assess whether participants perceived any differences between the two conditions of the game (see 

Appendix B  for the  questionnaire and a list of the post-experiment interview questions used to evaluate 

participants’ perceptions). 

3.3. Methods 

3.3.1. Board Game Scenario 

The game used in this experiment was the card-matching game “Memory.” The game was played with 

fourteen cards (seven matching pairs) with images of black dogs that varied slightly in shape. The dogs 

being the same color and not having much variance in shape increased the difficulty level of the game, 

as the number of pairs was relatively low. On the table, 14 cards were arranged in a rectangular layout. 
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The layout had six columns and three rows for a total of 18 cards or nine pairs. We placed the cards in 

the first two rows and two cards in the middle positions of the third row (Figure 3-2). This arrangement 

was informed by our preliminary experiment (see Appendix A  for a complete description of the board game 

design), where we examined whether the participants could accurately perceive the gaze direction of the 

NAO robot and the resolution needed for the head angles of the robot to direct at different card 

locations on the board. 

 

Figure 3-2 Board layout design: card arrangement configurations  

The game began with the cards laid down on the board. The player then selected a card and tried to 

find a matching card. If the cards turned face up were similar (a pair of matching cards), the player took 

the couple and continued to match the cards; otherwise, the participant turned the cards face down and 

made a new try/move. The goal was to find all pairs in the smallest number of tries/attempts and in the 

shortest time possible. An attempt (try) consisted of choosing two cards. The game ended when the 

participant found all the matching pairs. Although the game is better and more enjoyable when two 

players play against each other, a single player could also play it. In this experiment, each participant 

played alone in the presence of either a human or a robot tutor. 

3.3.2. Experimental Setup 

Human Tutoring Setup 

Figure 3-3 (a) depicts the human–human set-up. The tutor and the participant sat across from each other 

at the table, approximately 160 cm apart. The human tutor followed a pre-defined protocol of steps that 
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detailed the rules of how to introduce the game and the sequence of how to shift her gaze during the 

game. Figure 3-4 captures the sequence of the tutors’ gaze (human and robot tutor) from the eye-

tracking videos in the Help condition. The tutor first looked at the chosen card, then looked to the face 

of the participant, and then looked to the matching card. This sequence of shifts in gaze direction was 

consistent for both tutors (human or robot) in the Help condition. 

The same person acted as the tutor for all the participants and during all sessions. In front of the tutor 

was a printed photo of the card locations on the board layout. After each session with a participant, the 

cards were re-arranged. In this set-up, we logged the gaze of both the tutor and the participant. The Eye 

Tribe gaze direction tracker registered the gaze data of the tutor while the participants wore SMI eye-

tracking glasses to capture their eye gaze behavior. The experiment was recorded using I-view ETG 

software and with a video camera. The reason for recording the gaze of the tutor was to examine if the 

tutor’s gaze was consistent in all sessions and if varying behavior on the part of the tutor influenced the 

participants’ gaze data in any way. 
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(a) 

 

(b) 

Figure 3-3 The experiment set-up: (a) human tutoring set-up and (b) the robot tutoring set-up  

 
Robot Tutoring Setup 

The human-robot setup included a humanoid robot, NAO, developed by Softbank robotics (Softbank, 

2013), a personal computer, a webcam, and the same memory game ( Figure 3-3; (b)). NAO is a 54 cm 

tall robot with a moveable head and facial features that bear resemblance to those of a child. To build 

the game, each card was placed in a fixed position on the board layout marked with a head pitch and 

yaw angle on the computer layout (Figure 3-2). The gaze cues were programmed such that each time a 

participant picked a card on the board, the robot’s head angled to the position of the chosen card, then 

to the face of the participant (assumed at NAO’s initial position), and, finally, to the location of the 

matching card. The cards on the board were matched using assigned card codes on the computer layout 

(see Appendix A for a complete description of the board game design). The design of the help condition gaze 

for the robot followed the concept of attention-directing gaze movement in human communication as 

shown in  Figure 3-4. 
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Figure 3-4 Tutors’ gaze captured from eye-tracking videos: The tutor looks at the chosen card, looks to the 

participant, and then looks to the matching card. 

3.3.3. Procedure 

On receiving informed consent, the experimenter verbally provided the participants with details 

regarding the task and directions on how to play the game, including the use of the SMI eye-tracking 

glasses. At this point, the experimenter made sure not to disclose the study’s objective. The SMI eye-

tracking glasses were fitted on the participants. The experimenter then performed a calibration 

procedure for the eye-tracking system. 

The tutor’s (human or robot) instructions at the beginning of the game session Help_Condition: 

“Hello, welcome to the game session. My name is Maka (replaced with the name of the 

human tutor) I am your tutor. I have a task for you. You are going to find pairs of matching 

cards on the table. You flip a first card and then flip a second card. If they do not match, turn 

both back and start over. If they match, leave them turned up. I am your tutor and I know the 

positions of all the cards on the table.  I am going to help you! Please go ahead and flip the 

first card!” 

Notice that while introducing the game in the Help condition, the tutor (human or robot) informed the 

participants they would help him/her without revealing the modality it would use to help. 

During the No_Help Condition, the tutors omitted the following line during the instructions: 

“I know the positions of all the cards on the table.  I am going to help you!” 
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The participants followed the tutors’ instructions to complete the game. Once the game ended, the 

participants completed a post-experiment questionnaire (see Appendix B). After each session, the study 

paused for around four minutes and the participants waited outside the room for the experimenter to 

rearrange the game for the second session. The same procedure was then repeated for the other 

condition. After interacting with the tutor in both conditions (the Help and No_Help conditions), the 

experimenter collected the demographic details and interviewed the participants to get more 

information on any differences they may have observed in the tutors’ behavior between the two 

conditions. 

3.4. Results 

3.4.1. Task Performance 

We analyzed the results of 20 participants (10 for the robot tutor condition and 10 for the human tutor 

condition, for a total of 20 tries in the Help condition and 20 tries in the No_Help condition).  

We conducted a mixed-model ANOVA in SPSS, with the repeated measure Tutoring_Style (Help vs. 

No_Help) as the within-subjects factor and Tutor_Type (human or robot) as the between-subjects factor. 

We analyzed the effect of Tutoring_Style and Tutor_Type on the following two performance measures:  

(a) Duration: We obtained the duration from video recordings, this being the period between the 

participant starting to play the game and completing it.  

(b) Number of tries: We counted the number of tries/attempts that participants used from our 

video recordings.  

The paragraphs below report on the results from performance, gaze behavior, and subjective measures. 

We first describe results from the performance measures to provide background information for the 

eye-tracking and subjective measures. 

Table 3-1;Table 3-2 and  Figure 3-5  provide results of the defined performance measures. 

Table 3-1 Performance measures: duration (s) and number of tries 

 
Tutor_Type Help No_Help N 
 Mean SD Mean SD  
Durations (s) 
Human 118.00 38.31 118.70 45.02 10 
Robot 124.40 27.77 145.10 83.52 10 
Average 121.20 32.73 131.90 66.69 20 
Number of tries 
Human 16.20 5.12 19.00 5.12 10 
Robot 11.30 3.06 17.00 5.93 10 
Average 13.75 4.81 18.00 5.49 20 40 
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Effect of Tutor_Type on Performance  

Tests of between-subject effects showed a significant multivariate effect of Tutor_Type on performance 

measures (p=0.048*). There was no significant main effect of Tutor_Type on duration (F (1, 18) =0.913, 

p=0.352). However, we found a significant main effect of Tutor_Type on the number of tries (F (1, 18) 

=5.253, p=0.034*). 

Effect of Tutoring_Style on Performance  

Tests of within-subject effects showed a significant multivariate effect of Tutoring_Style (p=0.003*). 

There were no significant main effects on the duration between the Help and No_Help conditions (F (1, 

18) =0.428, p=0.521). However, there was a significant main effect of Tutoring_Style on the number of 

tries (F (1, 18) =7.009, p=0.016*). 

We found no significant Tutoring_Style by Tutor_Type interaction effects (p=0.654). Similarly, there was 

no significant Tutoring_Style by Tutor_Type interaction effects on the duration (F (1, 18) =0.374, p=0.549) 

and number of tries (F (1, 18) =816, p=0.378). 

Table 3-2 Effect of Tutoring_Style at different levels of Tutor_Type 

Tutor_Type Tutoring_Style MD SE Sig. 

Duration (s) 

Human Help No_Help -.7 23.13 0.976 

Robot Help No_Help -20.7 23.13 0.383 

 
Number of tries 

Human Help No_Help -2.8 2.27 0.233 

Robot Help No_Help -5.7 2.27 0.022* 

*statistical significance, p < 0.05 

Effect of Tutoring_Style on Performance at Different Levels of Tutor_Type 

Duration: For the human condition, there was no significant difference in duration between the Help 

and No_Help conditions (p=0.976). Similarly, the mean difference in duration between the Help and 

No_Help conditions was not significant for the robot condition (p=0.383). (Table 3-2) 

Number of tries: For the human condition, there was no significant difference in the number of tries 

between the Help and No_Help (p=0.233) conditions. However, for the robot condition, the mean 

difference in the number of tries between the Help and No_Help conditions (MD=5.7) was significant 

(p=0.022*), indicating participants performed significantly better with fewer tries with help from the 

robot tutor than without help. 
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(a) 

 
(b) 

 
(c) 

  

 
(d) 

 
(e) 

 

Figure 3-5 (a) Number of tries with and without help (b) the duration (s) it took participants to find matching cards 

with and without help (c) the number of tries with and without the help for the two tutors (d) the duration(s) it 

took to match all the cards with and without help from the two tutors (e) the number of participants who noticed 

the gaze cues during the Help condition for the two tutors. 
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Comparisons Between the Robot and the Human Conditions  

Comparing both groups on duration, we found no significant differences  in duration between the 

(Human condition M=118.00s  SD=38.31) and (Robot condition (M=124.40s SD=27.77)  (p=0.674, two-

tailed) assuming equal variances during Help condition .Similarly there was no significant  differences 

in duration between the (Human condition M=118.70s  SD=45.02) and (Robot condition  M=145.10s 

SD=83.52) (p=0.391, two-tailed) during the No_Help conditions assuming equal variances. We found 

significant differences in number of tries between the (Human condition M=16.20 SD=5.11) and (Robot 

condition M= 11.30 SD= 3.06) (p=0.018*, two-tailed) assuming equal variances during the Help tutoring 

style. However, there were no significant differences in the number of tries between (Human condition 

M= 19 SD=5.12) and (Robot condition M=17 SD=5.93) during the No_Help tutoring style (p=0.430, two-

tailed), assuming equal variance.  

Awareness of Tutor’s Gaze Cues and Performance 

From the post-experiment questionnaire, eight out of the twenty participants in both tutor conditions 

said they noticed help gaze cues from the tutor. Six out of the ten  participants in the robot condition 

said they recognized gaze cues from the robot tutor while four  did  not see the help gaze cues .Two  out 

of the ten participants in the human condition noticed help gaze cues from the tutor while the rest eight 

said they did not notice the gaze cues.  

Table 3-3 shows the descriptive statistics regarding the duration(s) and number of tries alongside the 

participants' gaze awareness for both tutors. 

 
Table 3-3 Awareness of tutor’s gaze cues and performance  

 
Noticed Gaze Hints 
(YES group) 
N=8 

Did Not Notice Gaze Hints 
(NO group) 
N=12  

Mean  SD Mean SD 

Duration (s) 122.13 31.62 120.58 34.83 

Number of tries  9.75 1.98 16.42 4.25 

 

We conducted an independent sample T-test using SPSS to compare the duration(s) and number of tries  

for participants who noticed gaze hints (reported as YES) and those who did not notice gaze hints 

(reported as NO) .There was no significant difference in the duration (s) —the time taken to complete 

the task — between those who noticed gaze (YES group M= 122.13 s, SD=31.62) and those who did not 

notice the gaze hints (NO group M= 120.58s, SD=34.83): p= 0.921 two-tailed, assuming equal variances). 

There was a significant difference in the number of tries  between participants  who noticed the gaze 
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hints (YES group M=9.75, SD=1.98) and those who did not notice the gaze hints ((NO group M=16.42, 

SD=4.25): p=0.001*; two-tailed, assuming equal variances.)  

Table 3-4 shows the descriptive statistics regarding the duration(s) and number of tries alongside the 

participants' gaze awareness for the human condition. Two out of the ten in the human condition 

noticed help gaze cues from the tutor while the rest eight said they did not notice the gaze cues 

Table 3-4 Awareness of tutor’s gaze cues and performance (duration(s) and number of tries) for the human 
condition 

 
Noticed Gaze Hints 
(YES group) 
N=2 

Did Not Notice Gaze Hints 
(NO group) 
N=8  

Mean  SD Mean SD 
Duration (s) 111.50 2.12 119.63 43.25 

Number of tries  11.50 3.54 17.38 4.89      

We conducted an independent sample T-test using SPSS to compare the duration(s) and the number of 

tries for participants who noticed gaze hints (reported as YES) and those who did not notice gaze hints 

(reported as NO) for the human condition. There was no significant difference in the duration (s) — the 

time taken to complete the task — between those who noticed gaze (YES group M= 111.50 s, SD=2.12) 

and those who did not notice the gaze hints (NO group M= 119.63s, SD=43.25): p=0.806 two-tailed, 

assuming equal variances). Similarly ,there was  no significant difference in the number of tries between 

the participants who noticed the gaze hints (YES group M=11.50, SD=3.54) and those who did not notice 

the gaze hints ((NO group M=17.38, SD=4.89): p=0.156; two-tailed, assuming equal variances) in the 

human condition.  
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(YES group) 
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(NO group) 
N=4  

Mean  SD Mean SD 
Duration (s) 125.67 36.59 122.50 8.66 
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Number of tries  9.17 1.17 14.50 1.73 

 

Similarly, we conducted an independent sample T-test using SPSS to compare the duration(s) and the 

number of tries for participants who noticed gaze hints (reported as YES) and those who did not notice 

gaze hints (reported as NO) for the robot condition. We found no significant difference in the duration 

(s) — the time taken to complete the task — between participants  who noticed gaze (YES group M= 

125.67 s, SD=36.59) and those who did not notice the gaze hints (NO group M= 122.50s, SD=8.66): 

p=0.872 two-tailed, assuming equal variances). There was a significant difference in the number of tries 

between those participants who noticed the gaze hints (YES group M=9.17, SD=1.17) and those who did 

not notice the gaze hints ((NO group M=14.50, SD=1.73): p=0.001*; two-tailed, assuming equal 

variances). Figure 3-6 shows how individuals who did not recognize the tutor was helping performed 

compared with participants who recognized the gaze cues. Figure 3-6 shows the duration (a) and 

number of attempts (b) in the help condition with text representing participants’ awareness of the gaze 

cues (YES or NO) for both the human and robot tutors. 
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gaze hints (reported as NO) for the robot condition. We found no significant difference in the duration 

(s) — the time taken to complete the task — between participants  who noticed gaze (YES group M= 

125.67 s, SD=36.59) and those who did not notice the gaze hints (NO group M= 122.50s, SD=8.66): 

p=0.872 two-tailed, assuming equal variances). There was a significant difference in the number of tries 

between those participants who noticed the gaze hints (YES group M=9.17, SD=1.17) and those who did 

not notice the gaze hints ((NO group M=14.50, SD=1.73): p=0.001*; two-tailed, assuming equal 

variances). Figure 3-6 shows how individuals who did not recognize the tutor was helping performed 

compared with participants who recognized the gaze cues. Figure 3-6 shows the duration (a) and 

number of attempts (b) in the help condition with text representing participants’ awareness of the gaze 

cues (YES or NO) for both the human and robot tutors. 
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Figure 3-6 Awareness of tutor’s gaze cues and performance  (a) duration(s)  and (b) number of tries  
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3.4.2. Gaze 

In this subsection, we analyze the gaze behavior when the participants interacted with the human and 

the robot tutors.  To analyze the recorded gaze data from the video, we used Begaze software to create 

custom trials of the video recordings, which included only the segment from the participant starting to 

play the game until game completion. From the trial images, we selected the face of the robot and that 

of the human tutor as the area of interest (AOI_Face), as shown in Figure 3-7 . We analyzed the results 

of 19 participants (10 for the robot tutor condition and 9 for the human tutor condition). There was a 

technical error in gaze recording for one participant in human condition during the No_Help condition. 

 

 
(a) (b) 

Figure 3-7 Area Of Interest (AOI) region: face of the (a) human tutor and (b) the robot tutor 

We exported the metrics related to the trials and area of interest (AOI_Face for this case) to SPSS 

software. We conducted a mixed model analysis of variance in SPSS with the repeated measure 

Tutoring_Style (Help vs. No_Help) as the within-subjects factor and the Tutor_Type (human or robot) 

as the between-subjects factor. We analyzed the effect of Tutoring_Style and Tutor_Type on the 

following eye gaze measures: Fixation_count, Fixation_time, Dwell_time, Revisits and Glances (see the 

definitions for these metrics in Chapter 2; Table 2-1). 

Effects of Tutor_Type on Eye - Gaze Measures 

We found significant effects of the Tutor_Type on eye-gaze measures (p=0.018*). We found significant 

effects of Tutor_Type on Fixation_count (F (1, 17) =6.594, p=0.020*), Revisits (F (1, 17) =10.487, p=0.005*), 

Glances (F (1, 17) =12.066, p=0.033*) and dwell time (F (1, 17) =4.421, p=0.051). However, there was no 

significant effect of Tutor_Type on Fixation_time (F (1, 17) =4.112, p=0.059). 
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Table 3-6 Eye-gaze measures  

Tutor_Type  Help   No_Help  N 

  Mean SD  Mean SD  
Fixation_count        
Human  4.67 5.83  2.89 4.91 9 

Robot  19.80 21.40  5.60 6.19 10 

Average  12.63 17.44  4.32 5.64 19 

 
Fixation_time        
Human  1097.97 1415.01  558.27 856.05 9 

Robot  4205.72 5184.73  1001.52 1056.75 10 

Average  2733.63 4107.58  791.56 967.35 19 

 
Dwell_time        
Human  1245.78 1602.45  687.54 1044.21 9 

Robot  5137.19 6309.69  1214.49 1330.52 10 

Average  3293.89 5003.24  964.88 1201.18 19 

 
Revisits        
Human  1.33 2.18  0.67 1.66 9 

Robot  8.70 8.86  2.30 3.59 10 

Average  5.21 7.46  1.53 2.89 19 

 
Glances        
Human  2.11 2.37  1.00 2.00 9 

Robot  9.60 8.97  3.20 3.68 10 

Average  6.05 7.58  2.16 3.13 19 
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Effect of Tutoring_Style on Eye -Gaze Measures 

There was no significant effect of Tutoring_Style on the eye gaze measures : Fixation_count (F (1, 17) 

=3.444, p=0.081) ; Fixation_time (F (1, 17) =3.753, p=0.070) ; Dwell_time (F (1, 17) =3.582, p=0.076); Revisits 

(F (1, 17) =3.520,  p=0.078) and Glances (F (1, 17) =3.726, p=0.070). 

Effect of Tutoring_Style on Gaze at Different Levels of Tutor_Type  

Pairwise comparisons on the effect of Tutoring_Style on eye gaze measures at different levels of the 

Tutor_Type found significant differences between the Help and the No_Help conditions for 

Fixation_count (p=0.028*), Fixation_time (p=0.028*) and Dwell time (p=0.028*) for the robot condition. 

There were also significant differences for Revisits (p=0.024*) and Glances (p=0.029*) between the Help 

and the No_Help condition for the robot condition. For the human condition, there were no significant 

differences in Fixation_count (p=0.779), Fixation_time (p=0.705) and Dwell_time (p=0.749) between the 

Help and the No_Help conditions. There were also no significant differences between the Help and the 

No_Help condition for Revisits (p=0.810) and Glances (p=0.699) in the human condition. 

Comparisons between the Robot and the Human Tutor on Eye Gaze Measures 

Pairwise comparisons based on the estimated marginal means between the two tutors on the eye gaze 

measures found significant differences during Help for Revisits (p=0.027*) and Glances (p=0.027*) 

between the human and robot condition. There were significantly more revisits and more glances at the 

robot tutor's face than the human tutor's face. However, there were no significant differences in 

Fixation_count (p=0.056), Fixation_time (p=0.101), and Dwell_time (p=0.091) between the Human 

condition and Robot condition during the Help conditions. We found no significant differences between 

the human and the robot conditions during the No_Help conditions on all eye gaze measures : 

Fixation_count (p=0.309); Fixation_time (p=0.333); Dwell_time (p=0.354); Revisits (p=0.229) and Glances 

(p=0.130). 
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Figure 3-8 Comparing the effect of Tutoring_Style on eye-gaze measures at different levels of Tutor_Type 

(a) Fixation_count (b) Fixation_time (c) Dwell_time (d) Revisits (e) Glances  50 
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(e)  

Figure 3-8 Comparing the effect of Tutoring_Style on eye-gaze measures at different levels of Tutor_Type 

(a) Fixation_count (b) Fixation_time (c) Dwell_time (d) Revisits (e) Glances  
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3.4.3. Participants’ Perceptions 

For the subjective measures, we conducted a mixed model analysis of variance in SPSS with the 

repeated measure Tutoring_Style (Help vs. No_Help) as the within-subjects factor and the Tutor_Type 

(human or robot) as the between-subjects factor. We analyzed the results of 20 participants (10 for the 

robot tutor condition and 10 for the human tutor condition, for a total of 20 tries in the Help condition 

and 20 tries in the No_Help condition). Regarding the aspect of tutors' likeability and presence, 

participants rated the tutor on a five-point Likert scale: To facilitate the analysis of the Likert scale data, 

we coded the data as follows: 1: completely disagree; 2: disagree; 3: neutral; 4: agree, and 5: completely 

agree. We also included the 'not applicable' option, and these data were treated as missing values 

during the analysis. Figure 3-9 summarizes the results from our subjective measures, particularly the 

tutor's perceived likeability and presence. 

Presence 

A test of the within-subjects effect shows a significant multivariate effect of Tutoring_Style on presence 

measures (p=0.003*). There were significant main effects of Tutoring_Style on tutor’s presence (F (1, 18) 

= 15.059, p=0.001*); ‘tutor caught the participants’ attention’ (F (1, 18) = 9.529, p=0.006*); and tutor was 

attentive (F (1, 18) = 6.600, p=0.019*). A test of the between-subjects effect shows a significant 

multivariate effect of Tutor_Type on presence measures (p=0.001*). There was a significant main effect 

of Tutor_Type on the ‘tutor caught the participant’s attention’ measure (F (1, 18) = 5.921, p=0.026*). 

However, the main effects of Tutor_Type on tutor presence (F (1, 18) = 3.009, p=0.100) and ‘tutor was 

attentive’ (F (1, 18) = 1.638, p=0.217) were not significant. 

We found no significant multivariate interaction (Tutor_Type * Tutoring_Style) effects on presence 

measures (p=0.090). We found significant interaction effects on tutors’ perceived presence (F (1, 18) = 

4.366, p=0.051*) and ‘tutors’ behavior caught the attention of the participant’ (F (1, 18) = 4.235, p=0.054*) 

but the interactions effects on tutors’ perceived attentiveness (F (1, 18) = 0.492, p=0.491) were not 

significant.  

Pairwise comparisons on the effect of Tutoring_Style on-presence measures at different Tutor_Type 

levels show that participants rated the robot tutor as more socially present (p=0.001*) and more attentive 

(p=0.033*) in the Help condition than in the No_Help condition. Moreover, they indicated that the robot 

tutor’s behavior caught their attention more during the help condition than when there was no help 

(p=0.002*). However, we found no significant difference in how the participant rated the human tutor 

across all presence measures between the Help and No_Help conditions. 
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Pairwise comparisons based on the estimated marginal means between the two tutors on the presence 

measures show the robot tutor’s behavior caught the attention of the participants significantly more 

compared to the human tutor (p=0.026*). However, there was no significant mean difference in how 

participants rated both tutors for the other two measures. 

Likeability  

A test of within subject effects  found significant main effects of Tutoring_Style on the pleasant measure 

(F (1, 18) = 7.309, p=0.015*). However, there was no significant effect of Tutoring_Style on the 

participants’ rating of tutors’ kindness (F (1, 18) = 1.246, p=0.279) and friendliness (F (1, 18) = 2.000, 

p=0.174). There were no significant main effects of Tutor_Type on any of the likeability variables; tutors’ 

kindness (p=0.167), pleasant (p=0.643) and friendliness (p=0.180). 

We found no significant multivariate interaction (Tutor_Type * Tutoring_Style) effects on likeability 

measures (p=0.390). We found significant interaction effects on the pleasant measure (F (1, 18) = 4.893, 

p=0.040*). However, there were no significant interaction effects on other measures; tutor’s kindness 

(p=0.714) and tutor’s friendliness (p=1.000). 

Pairwise comparisons on the effect of Tutoring_Style on likeability measures at different levels of the 

Tutor_Type show that the participants rated the robot tutor as more socially pleasant (p=0.005*) in the 

Help condition than in the No_Help condition. However, there was no significant difference for robot 

tutor’s kindness or friendliness ratings of the tutor between the two Tutoring styles. On the other hand, 

there was no significant difference on the rating of the human tutor in both the Help and No_Help 

conditions, across all the evaluated likeability measures. 

Pairwise comparisons based on the estimated marginal means between the two tutors on the likeability 

measures found no significant difference regarding how participants rated both tutors for all likeability 

measures during both Help and No_Help conditions used. 
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Figure 3-9 Comparing the effect of Tutoring_Style on (a) presence  measures  and (b) likeability at different levels of 

the Tutor_Type 

 

 

 

 

 
 

 (a)  

 

(b) 

 1: completely disagree; 2: disagree; 3: neutral; 4: agree, and 5: completely agree. 
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3.4.4. Post-Experiment Interview 

In the end, we conducted a post-experiment interview in which we asked participants whether they 

noticed the helping cues from the tutor during the game and, if they did, whether that influenced their 

choice of cards. We also asked them what cues they expected the tutor would have used to help them in 

the game. Lastly, we examined how they perceived the robot’s head movements, whether they 

regarded the movements as natural, too fast, or too slow, and if they considered the robot tutor’s 

behavior to be automatic. (See the list of the post-experiment interview questions at the end of Appendix B). 

Eight (8) participants in the Human condition said they did not notice the help, i.e., the tutors’ gaze 

cues. Most of them indicated they focused on the game and did not look at the tutor. At least eighteen 

(18) of all the twenty (20) participants in both the Human and Robot conditions said they expected 

verbal —vocal—audio help from the tutor, as illustrated in the excerpts below: 

“I expected verbal gaze cues from the tutor; I didn’t pay attention to the tutor.” 

“I noticed the gaze hint, but it took a while to get to the eyes. I expected speech; for example, 

when I get closer to the matching card, the tutor says something like warmer! Or hey, you 

have seen this card before.  If there is no help, you are forced to remember, but now I relied on 

help.”  

“I was focused on the game, so I did not look at the tutor; maybe in the future, you can put 

lights with different colors under the card or give some sound instructions. Audio feedback 

could be important”. 

“I noticed and used the help as direction, but I prefer speech.” 

Four (4) participants in the robot group did not notice the gaze cues. However, all of them reported 

seeing the head movements, but felt like the robot followed their moves rather than directing their 

attention to the matching cards as illustrated in the following excerpts: 

“I noticed the robot was looking around, but it felt like it was following my moves, not 

showing me the positions. I felt as if we were both looking.” 

“I did not get help! It seemed like he sees what I see!  I was more focused on the task, and I 

thought he was watching what I was doing.”  

“I was focusing on the cards and not looking at the robot. I thought the help would be vocal; 

the robot looked like it was moving with me, following me.” 
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“I did not feel like it was helping, just thought he was looking at the cards I was turning. I 

did not get the hint.” 

We recorded mixed responses from participants regarding how they perceived the direction of gaze for 

the robot tutor. 

“I got that the robot was helping; it was looking at the right card. Later, I felt the movements 

of the head were slower.” 

“I got the tutor help—it looked at my card, then me, and then to the matching card. I just got 

one problem—to read the gaze direction from the angle. The head movements were pretty 

well-paced, not too slow, not too fast.” 

“I got that the tutor was helping, was looking at the right card, but it was not easy to tell 

which one it was looking at. The robot felt natural, and the speed was nice. I felt like the robot 

was fully automatic.” 

“Yes, I noticed the help, pretty natural, difficult to see the direction. I was not sure which 

card the robot was looking at when the cards were closer.” 

3.5. Discussion  

The work described in this chapter contributes to the design of gaze-based communication to improve 

learning performances in human-robot tutoring. The chapter presents a user study investigating how 

gaze-based hints from either a human or a robot tutor might influence performance (measured by the 

duration and number of tries for completing the task) and participants' judgments of a tutor during a 

card-matching game in a tutoring interaction. The study employed a two-by-two mixed design; 

Tutor_Type (Human or Robot) manipulated as a between-subject design and Tutoring style (Help vs. 

No_Help) manipulated as a within-subject design. The Help condition refers to the presence of gaze 

cues, and No_Help refers to the absence of the gaze hints during tutoring. In the following paragraphs, 

we outline our findings and discuss whether they support the formulated hypotheses in Section 3.2.3. 

We further give plausible explanations for our results. 

In our first hypothesis (H1), we projected that the tutoring style (Help/No_Help) would influence task 

performance measured using duration and number of tries. We found no significant difference in the 

duration between the two tutoring styles (Help vs. No-Help tutoring style) (H1.1). However, we found 

that participants used fewer tries to complete the task when the tutor helped with gaze hints during 

interaction compared to when the tutor did not help with gaze cues (H1.2). We found that participants 
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identified all the matching cards pairs with significantly fewer tries with help from the robot tutor than 

without help. However, there was no significant difference in the number of tries, with or without help, 

in the human tutor condition. 

In our second hypothesis (H2), we predicted that the type of tutor (human/robot) would influence the 

participants' task performance regarding time and number of tries. The findings partially support our 

hypothesis: we found a significant effect of Tutor_Type on performance measures. There was no 

significant difference in the duration between the robot and the human tutor either during the Help or 

No_Help tutoring styles (H2.1). However, we found significant differences in the number of tries 

between the human and robot condition during the Help tutoring style (H2.2). We found no significant 

differences in the number of tries between the human and robot condition during the No_Help tutoring 

style.   

In (H3), we predicted that the tutoring style (Help/No_Help) would influence participants' gaze-based 

interaction during play. There was no significant effect of tutoring style on eye gaze measures; we 

found no significant difference in participants' eye gaze measures during the Help condition compared 

to the No_Help condition (H3.1). We found no significant differences in the eye gaze measures between 

the Help and No_Help conditions during the robot condition. We also found no significant differences 

in the eye gaze measures between the Help and No_Help condition during the human condition. 

In (H4), we predicted that the type of tutor (human/robot) would influence participants' gaze-based 

interaction during play. The findings support our hypothesis; we found a significant impact of 

Tutor_Type on eye gaze measures. Results of Fixation_count, Revisits, and Glances on the AOI face of 

the tutor from the eye-tracking data set revealed that participants looked significantly more often at the 

robot tutor's face than the human tutor's face (H4.1). Moreover, we found substantial differences in the 

number of participants that noticed the robot and the human tutor's gaze cues. Twenty percent 

recognized the gaze cues from the human tutor, while sixty percent recognized the gaze cues from the 

robot tutor (H4.2). 

In (H5), we projected that the tutoring style (Help/No_Help) would influence participants' perceptions 

of the tutor. The findings partially support our hypothesis; We found significant main effects of 

Tutoring_Style on presence measures: tutor's presence; 'tutor caught the participants' attention;' and the 

tutor was attentive. We found that the participants rated the robot tutor as more socially present; and 

more attentive in the Help condition than in the No_Help condition. Moreover, they indicated that the 

robot tutor's behavior caught their attention more during the help condition than when there was no 

help (H5.1). However, there was no significant difference in how the participant rated the human tutor  
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across all presence measures between the Help and No_Help conditions 

On likeability measures, we found that the participants rated the robot tutor as more socially pleasant in 

the Help condition than in the No_Help condition (H5.1). However, there was no significant difference 

in the tutor's kindness or friendliness ratings of the robot between the two Tutoring styles. On the other 

hand, there was no significant difference in the human tutor's rating in both the Help and No_Help 

conditions, across all the evaluated likeability measures. 

In (H6), we projected that the type of tutor (human/robot) would influence participants' perceptions. 

The findings partially support our hypothesis: Regarding the presence measures, we found that 

participants evaluated the robot tutor more positively (tutor caught my attention) compared to the 

human tutor (H6.1). However, there were no significant differences in how participants rated both 

tutors for all likeability measures during both Help and No_Help conditions.  

The significant difference between the number of participants who noticed the human gaze cues or the 

robot tutor might relate to diverse factors. First, the robot's novelty effect increased participants' 

attention, supported by the fact that participants with the robot tutor spent more time completing the 

task even with fewer tries. Moreover, the eye gaze data analysis indicated that participants spent more 

time looking at the robot; hence, they took more time to complete the task. Another explanation could 

be the robot's motors' sounds. While performing the gaze behavior by turning its head, it possibly 

attracted the participants' attention, making the robot's gaze behavior more salient than the human's. 

Further, for the NAO robot, gaze behavior is achieved with large head movements, compared to the 

human tutor's gaze, which is subtler and is based more on the eye's movements than head motion. 

Therefore, we can consider that the robot's gaze behavior was overt. However, that of the human was a 

covert cue that affected its communicative effectiveness in assisting the players. Though covert cues can 

influence interaction even without one being aware of them, in this particular context and regarding the 

game flow, the gaze cues providing information about the matching card position have to be noticed by 

participants to be effective. 

Moreover, the concept of intimacy regulation, where humans control their gazes to regulate the level of 

intimacy with their interaction partners, also applies (Argyle et al., 1994). We conjecture that 

participants restricted the gaze behavior according to social rules in the human condition, which was 

not present in the robot case. Additionally, in the human condition, the subjective reports indicated that 

most participants expected verbal help from the tutor, as the more natural modality of communication 
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in the face-to-face situation, even more, provided the human tutor addressed the participant verbally at 

the introduction of the activity. 

Results do not show significant effects on completion time (duration), even during the robot condition. 

There are several possible explanations for this fact. Firstly, as soon as the participant noticed the robot 

tutor was helping, they waited until the robot gazed at the matching card, even when they had an idea 

of where the matching card was. Secondly, as revealed in the interview responses, it took a while for 

some of the participants to read the robot's gaze direction. The difficulty in reading the robot's gaze may 

be attributed to the limitations of the robot used as the experimental platform for this study, as it lacks 

articulated eyes. The third probable reason is the duration of head motions during attention shifts from 

the flipped card to the participant's face and then to the matching card. Again, as shown in the 

qualitative responses, some participants indicated that the robot tutor's head movements were slow. 

Further analysis shows that participants who reported seeing the tutor's gaze cues used fewer tries to 

complete the game than those who did not report noticing the gaze cues. However, there was no 

significant difference in duration for those who identified gaze cues in the robot condition and those 

who did not. For the human condition, there was no significant difference in performance between 

those who reported identifying the gaze cues and those who did not identify the gaze cues across both 

numbers of tries and duration measures. In this respect, our findings differ from Mutlu et al. 's (2009) or 

in collaborative scenarios by Palinko et al. (2015). These studies showed that gaze is a powerful 

communicative signal without explicit awareness from the observer. In the current study, the lack of 

awareness overrides the informative content of gazing. We believe it is because of the lack of subtlety of 

NAO's eyes, which do not have the impactful embodiment of human-like eyes as the robots used in the 

Mutlu et al. 's (2009) and Palinko et al. 's (2015) studies. We highlight the role of overt and covert gaze 

cues and their relevance in the learning scenarios in Chapter 6. 

We recorded diverse responses from participants concerning how they perceived the direction, timing, 

and intent of the robot tutor's head movement (gaze). A few of the participants reported identifying the 

robot's head movements. However, they felt like it was following their tries rather than directing their 

attention to the matching card, missing the tutor's gaze informative content. These observations bring 

up the timing of gaze behavior and direction of head movements, highlighting two aspects of future 

work in Chapter 6. 

Finally, we observed that participants in the robot condition appeared unperturbed; however, 

participants seemed a little uneasy in the human condition. One possible explanation is the 

unnaturalness of the human tutor's interactive behavior, shifting from casual, verbal-based 
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communication during the introduction and the briefing phase to an absence of verbal communication 

during the game in both the Help and No_Help conditions. 

The results from this chapter have positive implications for creating effective, human-robot gaze 

mechanisms to facilitate tutoring interactions. While there were no significant differences in the time 

taken to complete the task during the Help and No_Help conditions with the robot and human tutors, it 

is right to note that waiting for the robot's gaze cues increased the execution time but improved the 

accuracy of the selections. Therefore, for this case, the playful situation of following the smart cues of 

the robot should be very appealing as they provide a playful interactive situation. Furthermore, 

especially for a robot to be used in training social skills for children with development impairments 

(e.g., ASD), where the main goal is to be interactive and to take advantage of the help and interpret 

social cues and other's intent. 

3.6. Summary 

The findings in this chapter provide design recommendations that can help build effective gaze-based 

communication to improve performance in human-robot tutoring. 

There are three significant conclusions from this chapter: 

First, when a robot tutor provides gaze-based cues during a tutoring interaction, participants use fewer 

tries to complete the task than when a robot tutor does not give such cues. Therefore, providing gaze-

based communication during learning can improve the robot's effectiveness as a tutoring 

agent. Second, participants notice the gaze cues (awareness of the tutor's intention to help) from a robot 

tutor more compared to a human tutor and, consequently, perform better with a robot 

tutor. Third, awareness of the tutor's intention to help (noticing the gaze hints) leads to better 

performance (fewer tries —increased accuracy of selections) during the tutoring game interaction. 

In the future, researchers can further analyze the eye-tracking datasets to investigate finer- micro-level 

details of the interactive player-tutor-looking behavior, including intricate gaze patterns, to understand 

the differences between human-robot and human-human nonverbal communication. Such findings can 

further inform the design of computational gaze models in tutoring interactions. 

In the next chapter, we investigate child-robot gaze mechanisms to inform the robot's behavior design 

as a facilitator of children's problem-solving competencies. We focus on gaze interaction concepts, 

including mutual gaze, gaze-following patterns, and coordinated sequences of joint attention to 

building capable robot tutoring agents for children. 
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Chapter 4. Dyadic Gaze in Child-Robot 

Collaborative Tutoring Interaction 

The findings from the previous chapter have established design recommendations for how gaze-based 

communication can be manipulated to improve task performance during a human-robot tutoring 

interaction. In this chapter, we investigate how to implement gaze-based communication as an efficient 

help mechanism for robot-child tutoring. Specifically, we examine how children perceive and interpret 

gaze-based cues from robots and whether they can interpret such cues appropriately and under which 

conditions these social cues impact their performance and their cognitions about the robot. Beyond 

examining the influence of gaze cues from a robot on children's behavior, we adopt an observational 

approach to explore the dynamics of mutual gazing patterns and coordination of gaze direction during 

a tutoring game activity. Dyadic gaze behavior like mutual gaze, gaze-following, and joint attention 

indicate both engagement and the quality of social interaction. Therefore, examining the coordinated 

gaze behavior during child - robot interactions can promote more accurate interventions and, thus, 

further educational gains. Therefore, examining the coordinated gaze behavior during child - robot 

interactions can promote more accurate interventions and, thus, further educational gains.4 

To achieve the above goal, we adopted the same setup as the one in the previous chapter to investigate 

the influence of the robot's gaze on children's performance and explore patterns of coordinated gaze 

between a child and a robot (NAO) during a card-matching game, "Memory." As in the previous 

chapter, children interacted with a robot tutor in a play tutoring situation in two sets.  The robot tutor 

provided gaze clues in the first set—looking at the matching card—to assist children during the tutoring 

situation. In the other setting, the robot tutor did not provide such clues during the play. Consistent 

with previous findings, we found that children also improve their task performance when tutored by a 

robot, and this performance improves when the robot tutor uses more gaze cues. We found that more 

occurrences of mutual gaze and gaze-following patterns increase children's awareness of the robot's 

 

4 This chapter is largely based on the following publications (Mwangi, Barakova, Díaz, et al., 2018b;  Mwangi, Barakova, Diaz, 
Mallofre, et al., 2017a;Mwangi et al., 2017c) 
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gaze hints and improve the efficacy of the robot tutor as a helping agent. These findings show that 

mutual coordination between the child and the robot can facilitate awareness of the tutor's intentions 

and, in turn, improve the performance of children during a tutoring task. The work in this chapter, 

therefore, demonstrates that robots can use gaze behavior effectively to enrich child-robot interaction in 

a tutoring context. 

The rest of this chapter is structured as follows: Section 4.1 provides background on prior works in 

human-robot gaze interaction and describes the objectives and the research questions. Section 4.2 

describes the experiment design — participants' details, study conditions, the hypothesis, and 

measures. Section 4.3 details the experimental setup, the platform, the interaction scenario, and the 

board game, "Memory," and describes the procedure followed during the experiment. Section 4.4 

describes the behavioral system; Section 4.5 describes the coding process of the child-robot behaviors, 

and Section 4.6 shows the visualizations of the child -robot observations. Section 4.7 outlines the results 

of the user study; Section 4.8 discusses the main findings. Finally, Section 4.9 summarizes the main 

implications for designing credible and effective gaze behavior mechanisms in child-robot tutoring and 

education. 

4.1. Background 

In human social interactions, gaze facilitates mutual coordination and establishes a common ground for 

communication. Farroni et al. (2002) argued that gaze behavior is the most dominant mode of creating a 

communication link between interacting partners.  This chapter focuses on gaze interaction concepts of 

mutual gaze, gaze-following, and joint attention, which are of substantial importance for natural 

human-human communication (Brooks and Meltzoff, 2005; Emery, 2000; Gernsbacher, Stevenson, 

Khandakar, and Goldsmith, 2008). Coordinated gaze behavior, including mutual gaze, indicates social 

engagement and the quality of interaction. Subsequent gaze-following shows an understanding of 

others' attention, and gaze alternation helps to assess joint attention. Consequently, as detailed in 

Chapter 2, Section 2.2, such gaze coordination is the foundation of children's learning, including the 

development of critical cognitive abilities such as the theory of mind and perspective-taking (Baron-

Cohen et al., 1985; Brooks and Meltzoff, 2014; Brooks and Meltzoff, 2002). Therefore, examining the 

coordinated child -robot gaze behavior can promote more accurate robotic interventions and further 

educational gains. 

Previous work shows that mutual gaze interaction can foster performance and promote positive 

experiences during human-robot interactions. For example, Kompatsiari et al. (2019) and Kompatsiari et 

al. (2017) suggest that people are sensitive to an artificial agent's mutual gaze and feel more engaged 
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when a robot establishes mutual gaze. Yonezawa et al. (2007) show that when a robot companion 

establishes mutual gaze with human users, this leads to positive robot evaluations. A robot also seems 

more intentional when it provides a ''responsive'' gaze with the interacting partner compared to 

providing a fixed gaze (Yoshikawa et al., 2006). Admoni and Scassellati (2017) provide a comprehensive 

review of the design of robots' social gaze cues. Although a few studies have examined mutual gaze 

interaction in human-robot interaction research in diverse domains, the importance of dyadic gaze in 

child-robot collaborative tutoring and social training—autism therapies—is still an open question. 

For instance, in the context of child-robot tutoring and autism therapies, research has mainly focused on 

whether children can read and follow the gaze cues exhibited by a robot (Mavadati et al., 2015; Robins, 

Dickerson, Stribling, and Dautenhahn, 2004). However, to date, the methodologies used to evaluate 

child-robot tutoring interactions only record the child's actions without noting the robot's concurrent 

behaviors. The drawback of such assessments is that they do not capture the interaction dynamics 

between the child and robot, which could impact the interaction outcomes. We argue that as dyadic 

gaze interaction involves sequences of intertwined and coordinated looking behaviors between child 

and robot, further investigation into these dyadic patterns is needed. 

In this chapter, we developed a behavioral system to measure child-robot interaction regarding gaze 

behavior, engagement, and emotions. The emphasis is on coordinated and sequential gaze patterns—

and the dynamics of—mutual gazing patterns between a child and a robot in a tutoring task. The aim is 

to identify the occurrences of mutual gaze and coordination of gaze direction patterns and assess how 

child-robot coordinated gaze behavior can improve the performance and participants' experiences 

during a tutoring game activity. Looking at these patterns, we aim to investigate whether children can 

read, interpret, and attribute intentions to gaze hints exhibited by a robot in a play situation. 

In this regard, this chapter addresses the following questions:  

RQ1 — Do tutors' social cues of gaze influence children's performance in the context of a board; To 

what extent? 

(a) Do children perceive and interpret the gaze-based hints (i.e., the tutor pointing with the eyes to 

a particular card) exhibited by the tutor while performing the card-matching task? 

i. Do children notice the tutors' gaze behavior during the game? 

ii. Do children attribute the tutors' intention to help with the gaze? 

RQ4 — Does the coordinated gaze (mutual gaze, gaze-following) influence performance? 

(a) Do dyadic patterns influence children's interactive social engagement? 
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(b) Do dyadic patterns influence children's awareness of the robot's behavior? 

(c) Do dyadic patterns influence task execution? 

i. Is there any difference in the time required to complete the game? 

ii. Is there any difference in the number of tries? 

To examine the abovementioned questions, we used the designed board game task described in 

Chapter 3 in which a child plays "Memory" (a card-matching game) in the presence of a robot tutor 

(NAO). We propose that occurrences of appropriate sequences of the dyad's gaze behaviors (i.e., mutual 

gaze, gaze-following, and joint attention) would facilitate the effectiveness of the robot tutor as a 

helping agent and, consequently, improve the performance of the child fulfilling the task. 

4.2. Experimental Design 

In the following sections, we describe an experimental study investigating the influence of different 

gaze-based tutoring styles, as deployed by a robot during a game tutoring activity, on children's 

performance, gaze behavior, and children's judgments of the tutor. 

4.2.1. Participants  

Eighteen typically developing children (Age: 4 - 11 yrs.; Gender: Male: 10, Female: 8) took part in the 

study. The children were from a day-care center in the Netherlands and children of staff at the 

university. Most of the children were of European-Dutch and Asian backgrounds. The game sessions 

took approximately thirty minutes. We excluded three (3) children from further analysis for the 

following reasons. One of the children declined to participate in one of the sessions, and the other two 

were very young (below age 5) and needed a lot of help from the facilitator to play the game. All 

children received game gifts for their participation. 

Ethics statement: This study was voluntary, and written consent was acquired from each child signed 

by their parents or guardians before the experimental sessions. This was a non-clinical study without 

any harming procedure, and all data were collected anonymously. Therefore, according to the 

Netherlands Code of Conduct for Scientific Practice (Principle 1.2 on page 5), ethical approval was not 

sought for the execution of this study. 

 

CHAPTER 4



65 

 

   

Figure 4-1 NAO gaze behavior: The NAO robot looking at different cards on the board  

4.2.2. Study Conditions 

The experiment followed a one-factor (Tutoring_Style) within-subjects design with two conditions 

(Help and No_ Help): The two types of tutoring styles deployed by the tutor are as described below: 

Help: In this condition, the tutor provided gaze cues during the game. The robot’s gaze cues were 

designed to point with the head — eye’s direction to the matching card. The sequence of actions was 

similar to the previous chapter (Figure 3-1). The robot tutor would look at the card picked by the 

children, then look to the child’s face, and then to the matching card to attract and draw the child’s 

attention to the matching card. 

No_Help: In this condition, the tutor (robot) did not provide gaze cues during the game. The tutor only 

looked at the child and remained silent during the entire duration of the game. 

In both the Help and No_Help conditions, the tutor remained silent for the entire game duration. 

4.2.3. Hypothesis 

Based on the results of the previous study and the nonverbal theories of gaze in human-human 

communication (Emery, 2000; Frischen et al., 2007; Kleinke, 1986), we projected that higher levels—

occurrences of mutual gaze and gaze-following patterns between the child and the robot would help 

draw the child’s attention to the matching card, facilitate the robot tutor’s effectiveness as a helping 

agent and, in turn, improve the performance of the child fulfilling the task. 

In this regard, we formulated the following hypotheses: whether and how the help tutoring style 

influences children’s gaze behavior and the influence on performance as a result of a richer gaze-based 

interaction.  

(H1): The tutoring style (Help/No_Help) will influence task performance 

H1.1: Children will complete the task in less time in the Help condition than in the No_Help condition 
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H1.2: Children will complete the task with fewer tries in the Help condition than in the No_Help 

condition 

(H2): The tutoring style (Help/No_Help) will influence children's gaze-based interaction during play 

H2.1: Children will look more into the tutors' face in the Help condition than in the No_Help condition 

H2.2: Children will establish more eye contact with the robot tutor in the Help condition than in the 

No_Help condition 

(H3): Child-robot coordinated gaze will influence the children's performance  

H3.1: Child-robot coordinated gaze will influence children's awareness of the robot's 

behavior/engagement with the tutor)  

H3.2: Child-robot coordinated gaze will influence execution in either execution time or the number of 

tries 

4.2.4. Measures 

To test the hypotheses in section 4.2.3, we employed the following measures: 

Task performance:  As in Chapter 3, we used the following two objective measures that are notably 

used to measure performance in memory games: 

(a) Duration: the time it took the children to find all pairs of matching cards on the table. 

(b) Tries: the number of tries required to find all matching cards. A try consisted of picking up two 

cards. 

The goal of the game was to get all the cards flipped face-up (i.e., find all the matching card pairs) in the 

least number of tries and as quickly as possible. 

Next, we developed a behavioral system to measure child - robot interaction regarding gaze behavior, 

engagement, and emotions during the play tutoring interaction. 

Gaze behavior: Observations of gaze directions to indicate the child's attention to the robot, child - 

robot interaction, and child behaviors, such as searching for cards on the board and interactions with 

the facilitator. The behavioral system emphasizes the coordinated gaze — mutual gaze  — gaze-

following and sequential gaze patterns—and the dynamics of — mutual gazing patterns between a 

child and a robot in a tutoring task (see Table 4-1 and Table 4-2  for the definitions of gaze behaviors) 
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Physiological state:  

(a) Engagement: We defined two categories as states: (1) disengaged and (2) The engaged state, 

which is complementary to the "disengaged" state. The assumption was that if the child was not 

disengaged, i.e., did not exhibit either of the disengaged cues detailed in Table 4-4, then she/he 

was engaged. 

(b) Emotion: We defined three categories (positive, negative, and neutral) to be assessed by the 

researchers from facial expressions, body movements, and verbal behavior (more details on the 

definitions of these measures are in Table 4-4). 

Perceptions:  We used a post-test interview to evaluate children's perceptions of the tutor's behaviors. 

Particularly we asked the children whether they were aware of the tutor's help and the modality the 

tutor used to help them, their judgments about the tutor, and their perceptions of the task in the two 

conditions. All sessions were video-recorded to facilitate the offline analysis of these measures. 

 

 

Figure 4-2 Experimental setting: child interacting with the NAO robot in a card-matching task. The facilitator is 

present at the session to support the child, if necessary. This setting is typical for child-robot interaction sessions. 

4.3. Materials and Methods 

4.3.1. Experiment Setup 

The experimental setup included the NAO robot, a memory game, a webcam, and a personal computer 

(Figure 4-2). NAO is a 58cm tall robot from Softbank robotics (Softbank, 2013) with a moveable head 

and facial features that resemble those of a child. The robot tutor and the child sat across the table 

approximately 160 cm apart; there were fourteen (14) cards arranged in a rectangular board layout 

placed on a table (see Appendix A for details regarding the board game design). The algorithm is such that 
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the robot automatically executed a sequence of head movements, as follows: the head angles shifted to 

the position of the chosen card (referred in this dissertation as card1), then to the face of the child, and 

then to the location of the matching card. Each card on the board was identified using a code, e.g., 1, 2, 

3, and was placed in a specific position (head yaw and pitch). 

4.3.2. Procedure 

The child entered the experimental room (accompanied by the teacher, the parent, or the guardian). The 

robot was in a standing position on one side of a table, and the child sat on the opposite side of the 

table.  A researcher who controlled the robot’s behaviors was also present in the experimental room. 

The researcher sat in the corner of the room and followed the game using a webcam connected to her 

machine, to not be in the child’s visual field so she would not interfere with the flow of the game. A 

facilitator was also present in the room to guide the children if they had any difficulties or answer any 

questions. The facilitator provided the child with a brief introduction of the robot and the game.  The 

game began with the robot introducing himself as a tutor and giving the child instructions on how to 

play the game. The robot spoke either in Dutch or in English, depending on the language the child was 

comfortable using. 

The tutor’s instructions at the beginning of the game session Help_Condition 

“Hello, welcome to the game session. My name is Maka. I am your tutor. I have a task for 

you. You are going to find pairs of matching cards on the table. You flip the first card and 

then flip a second card. If they do not match, turn both back and start over. If they match, 

leave them turned up. I am your tutor, and I know the positions of all the cards on the table.  

I am going to help you! Please go ahead and flip the first card!” 

Notice that while introducing the game in the Help condition, the robot tutor informed the child that it 

would help him/her without revealing the modality it would use to help. 

During the No_Help Condition, the tutor omitted the following line during the instructions: 

“I know the positions of all the cards on the table.  I am going to help you!” 

After providing instructions, NAO remained silent and performed its gaze behavior as designed for 

either the Help or the No_Help condition, and the child played the first move by selecting one of the 14 

cards (seven matching pairs) placed face down on the board and tried to find the matching one. If the 

cards turned face up were identical (a pair of matching cards), the child continued by making a new 

move; otherwise, the child turned the cards face down and made a new try/move. The game ended 

when the child found all the matching pairs.  
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Each child played the card game “Memory” in the presence of the robot tutor in both conditions of Help 

and No_Help, as described in Section 4.2.2. The order of conditions was counterbalanced. After playing 

the first game, the child waited for a few minutes for the experimenter to rearrange the card game. At 

the end of each game, the robot thanked and congratulated the child for playing the game. After both 

games, the facilitator asked the child the post-experiment questions on whether they noticed the tutor’s 

help cues and how they perceived the robot tutor in both conditions and the game.   

4.4. Behavioral System 

We developed a behavioral analysis system focused both on child and robot behaviors. There were four 

categories of a child's behavior: gaze (units and patterns), verbal, manipulation, and psychological state 

(engagement and emotions). For analyzing the robot's behavior, we registered both verbal and gaze 

behavior. Table 4-1 shows the child and the robot's gaze behavioural units, Table 4-2 shows the dyad's 

gaze patterns, including mutual gaze, gaze-following, joint attention, and the descriptions. The dyadic 

gaze analysis aims to examine the interaction between the child and the robot's gaze behavior. We focus 

on the following dyadic gaze patterns: mutual gaze, gaze-following, and joint attention, as illustrated in 

Table 4-2— (see the definitions of social gaze behaviors in Chapter 2; (Table 2-1). 

Table 4-3 shows the verbal, behavioral units for both the child and the robot and the descriptions. Table 

4-4 defines the behaviors used to assess the children's physiological state, i.e., engagement and 

emotions. Table 4-5 shows the behaviors of the children during card manipulation. Finally,  Figure 4-3 

shows snapshots of child and robot behaviors captured from the video observations depicting various 

robot and child gaze behaviors during the interaction. 
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Table 4-1 Child and robot’s gaze units 

Subject Behavior Categories Description  
Child Gaze Child_look_robot  Look at the facial area of the NAO tutor.   

 Child_look_card1  Look at "Card1," which is the first card the child turns. 
     

 Child_look_card2  Look at "Card2," which is the second card the child turns.   
 Child_look_match  Look at "Matching," which is the correct card that matches 

Card1. If Card2 is the correct match, then it is coded as a match.    
 Child_look_board  Looking generally at cards on the board or the board, for 

example, when the child is searching or thinking about which 
card to turn next.   

 Child_look_facilitator  Look at the person helping during the experiment sessions.   
 Child_look_else  Look at objects outside the game and its associated components 

(robot, board, and experimenter), for example, computers, 
windows, chairs, doors, or the roof. Also, an unknown gaze, i.e., 
when the coder cannot tell what object the child is looking at—
the child is out of the screen or facing away from the camera or 
child is looking at another person other than the facilitator.  

    
Robot  Robot_look_child  Look at the face/eyes of the child. 
  Robot_look_card1 NAO tutor looks at Card1, i.e., the first card the child turns. 
  Robot_look_match  NAO tutor looks at the matching card during the gaze condition 
    

      

Table 4-2 Dyad’s gaze patterns: in plain (transitions) — in blue italics (behavior continuity—not a transition): joint 
attention is depicted as a composite sequence of behaviors 
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Table 4-3 Child and robot verbal behavioral units 

Subject  Behavior Categories Description 
Child Verbal  Talk_to_robot  The child talks to the robot   

 Talk_to_facilitator The child talks to the person 
facilitating the experiment   

 Talk_(expressive) General verbal expressions during 
play  

 
  

Robot  Opening_speech  NAO’s instructions to the child on 
how to play the game. 

  Positive_feedback  Statements when the child finds a 
matching card (fantastic, very good, 
well done) 

  Negative_feedback  Statements such as “try again” and 
“not correct” if the child misses the 
correct match. 

  Closing_speech  NAO congratulating and thanking 
the child at the end of each session. 
 

 

Table 4-4 Physiological measures 

Subject Behavior Categories Description 

Child Engagement 
 

Dis-engagement  (Closes eyes, looks down/head 
down; child covers face; a child is 
impatient; looks elsewhere) 

Engagement 
 

If the child is not dis-engaged, 
then she/he is engaged 

Emotion 
 

Positive Enjoyment (clapping; winning 
sounds/gestures; Giggling) 
Happy (smiling/laughter/raising 
hands; positive verbal response 
(cool!)) 

Negative Frustration (negative verbal 
response; child impatient; 
uncomfortable) Fear, Confusion, 
Anger 

Neutral 
 

When you cannot code any of the 
previous behavior (Positive or 
Negative) 
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Table 4-5 Child gameplay 

Subject Behavior Behavior Description 
Child Play Touch_card1 

Touch_card2  
Turn-up_card1  
Turn-up_card2  
Turndown_card1  
Turndown_card2  

Playing the game (Turning 
cards) 

 

 

 

Robot_look_card1> 
Child_look_robot   

Robot_look_match > Child_look_robot - child following the gaze of the 
tutor 

 

  
 

 
Robot_look_match<>Child_look_match     

 
 

 
Child_look_robot<> -  

Robot_look_child – Mutual gaze 

   

 
Robot_look_match> 

Child_look_robot – gaze-
following 

 
Child_look_facilitator 

(person guiding and answering 
children questions) 

 
 

  

 

Figure 4-3 Snapshots of child and robot behaviors captured from the video observations depicting various robot 

and child gaze behaviors during the interaction. 
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4.5. The Coding Process 

The first step involved developing the coding scheme based on the established behavioral analysis 

system presented in Section 4.4. We used Noldus Observer XT software (Zimmerman, Bolhuis, 

Willemsen, Meyer, and Noldus, 2009) to conduct a behavioral analysis and to score the videos. First, we 

defined the two subjects—child and robot—i.e., that can initiate behavior during observations. 

Afterward, we identified the set of behaviors for each of the subjects. Figure 4-4 shows the coding 

scheme as captured from the observer software — the subjects on the left and the set of defined 

behaviors. 

Gaze behaviors were defined as state behaviors, and behaviors by the same subject were mutually 

exclusive and exhaustive, meaning the behaviors excluded each other. And the subject state was known 

at any time. The set of gaze codes were both mutually exclusive and exhaustive (Bakeman and 

Gottman, 1997; Bakeman and Quera, 2011; Bakeman and Quera, 2012).  

The coding process was done by having the researcher watch the videos and record the behaviors 

observed according to the coding scheme. During the experiment, we recorded thirty-five videos using 

a high-resolution webcam to capture the view of both the robot and the child. Thirty videos of 15 

children in the Help and No_Help conditions were recorded and included in the analysis. There were 

15 observations in the Help condition and 15 observations in the No_Help condition. The behaviors of 

the child and the robot were coded separately; that is, the researcher first coded the videos for child 

behaviors and then, in the second round, for robot behaviors. Reliability checks were performed 

throughout the coding process by randomly selecting and checking videos.  
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Figure 4-4 Initial coding scheme captured from the Noldus Observer XT 14 

4.6. Visualizing Behaviors from the Observations 

Figure 4-5 depicts a game situation in the Help condition of the coordinated interaction between the 

child and the robot and the corresponding sequences of mutual behaviors. The plot shows all the coded 

behaviors for the child in the top row and for the robot in the bottom row. In the top row is a timeline of 

the interaction in seconds. The rectangular bar indicates the duration of the occurrence of each event. In 

the figure, we can see the mutual relations between the behaviors. At the same time, in the second row, 

we see the child’s behavior and the corresponding behavior of the robot in the bottom row. Each 

behavior appears on the visualization if it is coded at least once in the system. The length of the boxes 

indicates the duration, and the incidences of similar colored bar rectangles show the frequency of the 

occurrences of each behavior. A coordinated back-and-forth gaze alternation between the child and the 

robot’s gaze and the cards (card1 or matching card) is a sign of a successful occurrence of joint attention, 

as illustrated in the visualization with a rectangle. Figure 4-6 shows mutual gaze occurrences, i.e., 

instances when the Child_look_robot and Robot_look_child behaviors co-occurs. In Figure 4-7, the 

highlighted instances show the moments when the behaviors Child_look_robot and Robot_look_match 

co-occur which is sign of successful occurrence of gaze following. 
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Figure 4-5 Video footage and visualization of events plotted horizontally against a time axis of coded child and 

NAO behavior from one play session in the Help condition. The red rectangular bar shows the instances of mutual 

gaze coordination between the child and the robot. 
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Figure 4-6 Higligting mutual gazing from child-robot observations: highlighted instances show the moments when 

mutual gazing occurred between the child and the robot, i.e., the behaviors Child_look_robot and Robot_look_child 

co-occur. 

 

Figure 4-7 Higligting gaze following pattern from child-robot observations: highlighted instances show intervals 

when the following child and robot behaviors co-occurred: Child_look_robot and Robot_look_match. The pattern 

implies the child is looking at the robot while the robot is looking at the matching card. 

CHAPTER 4



77 

 

4.7. Results 

In this chapter, we analyzed the data of 15 children (age 6 -11) for 15 trials in the Help condition and 15 

trials in the No_Help conditions. We excluded three (3) children from this analysis. The three children 

were exempted from the analysis due to the following reasons: one of the children failed to participate 

in one of the sessions of the game, and the other two were very young (below age 5) and could not play 

the game on their own. 

4.7.1. Task Performance  

To evaluate the effect of Tutoring_Style on children’s performance - duration and number of tries, we 

conducted a repeated measure ANOVA with the Tutoring_Style (Help vs. No_Help) as the within-

subjects factor using IBM SPSS statistics 25. 

Table 4-6 Descriptive statistics: performance measures 

 Help No_Help N 

 Mean SD Mean SD 
Duration (s) 167.87 75.70 169 79.18 15 
Tries 14.07 4.90 17 3.65 15 

 

Duration: There was no significant difference in the duration of the game between the Help and 

No_Help conditions (Help M=167.87s; No_Help M=169s; F (1, 14) =0.015, p=0.905).  

Number of tries: There was a significant difference in the number of tries of the game between the Help 

and No_Help conditions (Help M= 14.07 tries; No_Help M=17 tries; F (1, 14) =5.331, p=0.037*).  

4.7.2. Gaze  

We conducted a repeated measure ANOVA with the Tutoring_Style (Help vs. No_Help) as the within-

subjects factor using IBM SPSS statistics 25. The sections below report on the results. We analyzed thirty 

video observations of fifteen children (age: 6 -11 yrs.). There were fifteen trials in the Help condition 

and fifteen trials in the No_Help condition.  

Child’s Gaze Behavior 

Duration(s): Based on quantified-coded data, we analyzed the durations children’s gaze behavior for 

each condition (Help and No_Help conditions). The duration was defined as the time between the child 

picking the first card and taking the last one. The percentage shows the relative duration of gaze to the 

total time the child took to play the game, as duration varied with every game session. 
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Table 4-7 Children’s gaze duration percentages (s) between Help and No_Help conditions (SE: standard error) 

 
Help No_Help  
Mean SE Mean SE 

Child_look_robot 28.41 5.53 7.21 1.87 
Child_look_card1 21.91 2.05 32.88 1.51 
Child_look_card2 42.62 3.62 47.98 1.64 
Child_look_board 1.38 0.81 4.46 1.53 
Child_look_facilitator 5.39 1.76 7.21 2.39 
Child_look_else 0.29 0.21 0.17 0.15 

 

We found a significant difference in gaze duration percentages for Child_look_robot between the Help 

and No_Help conditions (Help = 28.41% (observation duration(s)); No_Help =7.21% (observation 

duration(s)); F (1, 14) =14.06, p=0.002*). Children looked at the robot significantly longer during the Help 

condition compared to the No_Help Condition. Similarly, there was a significant difference in gaze 

durations for Child_look_card1 between the Help and No_Help conditions (Help = 21.91% (observation 

duration); No_Help =32.88% (observation duration(s)); F (1, 14) =18.25, p=0.001*). Children looked 

significantly longer towards card1 during the Help condition compared to the No_Help condition. 

However, there was no difference in looking duration at card2 in between the two conditions. A 

plausible explanation for this is given in the discussion section. In the percentage duration for 

Child_look_board (Help = 1.38%(observation duration(s)); No_Help = 4.46% (observation duration); 

duration; F (1, 14) =3.75, p=0.073), children looked longer at the board when there was no help than 

when there was help. However, the difference was not significant. There was no significant difference 

in percentage durations of Child_look_facilitator (p=0.56) and Child_look_else (p=0.65) between Help 

and the No_Help conditions. 

Mutual Gaze (MG)  

To highlight mutual gaze from the observations, we reduced the video observations to intervals when 

the behaviors—Child_look_robot and Robot_look_child—co-occurred, as shown in Figure 4-6, using the 

Observer XT. We examined the frequency and duration of mutual gaze (MG) patterns in both the Help 

and No_Help conditions. We conducted a repeated measure ANOVA in SPSS, with Tutoring_Style 

(Help vs. No_Help) as the within-subjects factor. We analyzed the results of 15 participants, for a total 

of 15 tries in the Help condition and 15 tries in the No_Help condition. We found a significant 

difference in the number of occurrences (frequency) of mutual gaze between the Help and No_Help 

conditions (p=0.001*). We also found significant differences in duration(s) of mutual gaze (MG) between 

the Help condition and No_Help condition (p=0.004*). 
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Table 4-8 Frequency and duration (s) of mutual gaze behavior in the Help and No _Help conditions 

 
 

Help 
Condition (N=15) 

No_Help 
Condition (N=15) 

 Mean SD Mean SD 

Frequency 5.2 3.1 1.7 1.1 
Duration(s) 32.4 1.1 13 12.2 

 

Mutual Gaze and Awareness of the Tutor’s Hints 

Gaze awareness refers to whether the participant noticed the gaze hints of the robot tutor. From the 

post-experiment interview, eight children said they noticed the gaze hints from the tutor while the rest 

stated that they did not see the gaze hints. 

 

Table 4-9 Frequency and duration (s) of mutual gaze behavior with and without awareness of the tutor’s hints 

 Noticed Gaze Hints 
(YES group) 
N=8 

Did Not Notice Gaze Hints 
(NO group) 
N=7 

 Mean SD Range Mean SD Range 
   Min Max   Min Max 
Frequency 7.6 1.9 4 10 2.4 1.3 1 4 
         
Duration (s) 40.6 17.3 24.5 78.9 20.3 18.5 1.0 56.3 

 

 

Table 4-9 shows the descriptive statistics regarding the frequency and duration of mutual gaze patterns 

alongside the children’s gaze awareness. We conducted an independent sample T-test using SPSS to 

compare the frequency and duration of mutual gaze for participants who noticed gaze hints (reported 

as YES) and those who did not notice gaze hints (reported as NO). There was a significant difference in 

the frequency of mutual gaze between  children who noticed the gaze hints (YES group M=7.63, 

SD=1.92) and those who did not notice the gaze hints ((NO group M=2.43, SD=1.27): p=0.001*; two-

tailed, assuming equal variances). We also found a significant difference in the duration of mutual gaze 

between children who noticed gaze (YES group M=40.62 s, SD=17.34) and those who did not notice the 

gaze hints (NO group M=20.27 s, SD=18.46): p=0.046*; two-tailed, assuming equal variances). 
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Gaze-Following and Awareness of Tutor’s Hints 

To highlight gaze-following from the video observations, we reduced the video observations to 

intervals when the following child and robot behaviors co-occurred: Child_look_robot and 

Robot_look_match. The pattern implies the child is looking at the robot while the robot is looking at the 

matching card. This co-occurrence is the key feature of joint attention, and a subsequent shared view 

pattern, Robot_look_match – Child_look_match, implies that both the robot and the child are looking at 

the correct card match at the same time. 

Table 4-10 Frequency and duration (s) of gaze-following behavior with and without awareness of the tutor’s gaze 
hints 

 Noticed Gaze Hints 
(YES group) 
N=8 

Did Not Notice Gaze Hints 
(NO group) 
N=7 

 Mean SD Range Mean SD Range 
   Min Max   Min Max 
Frequency 8.9 2.8 4 12 2.1 1.1 1 4 
Duration (s) 22.4 15 9.6 55.7 4.2 3.6 1.0 10.3 

 

We conducted an independent sample T-test in SPSS to compare the frequency and duration of gaze-

following (Table 4-10) for children who noticed gaze hints as the robot was trying to help (reported as 

YES) and those who did not notice the robot hints (reported as NO). We found significant differences in 

the frequency of gaze-following patterns between children who noticed gaze hints (YES group M=8.88, 

SD=2.75) and those who did not recognize gaze hints ((NO group M=2.14, SD=1.07): p=0.001*; two-

tailed, assuming equal variances). There were also significant differences in the duration of the gaze-

following pattern between children who noticed the help through gaze hints (YES group M=22.43 s, 

SD=14.95) and those who did not notice the gaze hints ((NO group M=4.20 s, SD=3.63): p=0.008*; two-

tailed, assuming equal variances). Figure 4-8 shows box plots showing the frequency and duration of 

mutual gaze and gaze-following pattern alongside the gaze awareness of the children.  
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(a) (b) 

Figure 4-8 (a) Frequency of mutual gaze and gaze-following patterns (b) Duration (s) of mutual gaze and gaze-

following patterns: Awareness — YES (noticed gaze hints) — NO (did not notice gaze hints) 

4.7.3. Engagement 

We examined the percentage levels of engagement during the Help and No_Help tutoring styles. From 

our findings, there was no significant difference in engagement during the game between the Help and 

No_Help conditions (Help = 99.38% (observational duration); No_Help = 97.89%; p = 0.247).  

4.8. Discussion  

This chapter continues the previous research line on how to design gaze-based communication to foster 

interaction outcomes during human-robot tutoring. We used a similar setting used in Chapter 3 to 

investigate whether gaze cues from a robot tutor can influence children's behavior during game 

tutoring tasks. Children interacted with a robot tutor in two conditions: one in which the robot 

provided gaze cues to help the children find matching cards on the table, and one in which the robot 

did not provide gaze help to the children. We analyzed execution performance, gaze behavior, and 

engagement level during the child-robot interaction to examine the impact of robot gaze cues. We also 

investigated the occurrences of repeating gaze patterns in the dyadic interaction between a child and 

the robot during gameplay. 

In the following paragraphs, we outline whether the findings support the formulated hypothesis in 

Section 4.2.3:  

In (H1), we projected that the tutoring style (Help/No_Help) would influence task performance. The 

findings partially support this hypothesis. We found no significant difference in duration(s) —time 

DYADIC GAZE IN CHILD-ROBOT COLLABORATIVE TUTORING INTERACTION



82 

 

taken to complete the game (H1.1); however, children used significantly fewer tries to finish the card-

matching game with gaze hints from the robot tutor than without the gaze hints from the tutor (H1.2). 

In (H2), we projected that the tutoring style (Help/No_Help) would influence participants' gaze-based 

interaction during play. We found that children looked significantly longer to the robot tutor when the 

tutor provided gaze hints during the game than when the tutor did not give such hints (H2.1). The 

findings support hypothesis (H2.2); there were more occurrences and longer durations of mutual gaze 

patterns during the Help condition than in the No_Help condition. 

On other child's gaze measures, we found that children looked at card1 significantly longer in the 

No_Help condition than the Help condition. The plausible reason could be because when the child 

flipped the first card (card1), they did not look at it, as they knew the robot would help with the clues. 

Again, interestingly, we found no significant difference in gaze duration on card2. The plausible 

explanation is that during the Help condition, the children looked at card2 longer to confirm it was the 

match. We found negligible percentages of durations of looking elsewhere in both conditions of Help 

and No_Help. These match our results on engagement, as we found no significant differences during 

the Help and No_Help conditions. There was a higher percentage of engagement during both sessions 

of the game. Only with two children did we notice some instances of disengagement. 

In (H3), we projected that the child-robot coordinated gaze would influence the children's performance. 

During the Help condition, eight children out of the fifteen children reported they noticed the gaze 

hints from the robot tutor—head movements of NAO to different cards on the table—while the rest did 

not see the gaze hints. The findings support (H3.1): We found significant differences in occurrences and 

durations of mutual gaze and gaze-following patterns for children that recognized the tutor's hints vs. 

those that did not notice it. These findings suggest that more occurrences and higher durations of 

coordinated mutual gaze and gaze-following pattern increased the children's awareness of the robot's 

helping cues. In turn, when children noticed that the robot tutor tried to help with the gaze hints, they 

looked more to the robot to take advantage of its cueing and performed significantly better (H3.3). 

We found no significant effects on the duration to complete the task between the Help and No_Help 

conditions. There are several possible explanations for this. Firstly, we observed that when children 

noticed that the tutor was helping with gaze, they waited until the robot showed them the matching 

card, even when they had an idea of where the matching card was. Secondly, the robot's novelty effect, 

supported by the longer duration for the robot even when the number of tries was less, indicates that 

children who noticed gaze probably spent more time looking at the robot. Another probable reason is 

the duration of head motions during attention shifts from the flipped card to the participant's face and  
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then to the matching card. This delay suggested the child was faster in picking the second card than the 

robot pointing with the eyes, with the subjective impression that the robot was following the child's 

gaze rather than trying to guide it. Lastly, a few of the children spent some time asking the 

experimenter questions during the game either because of confusion or when they saw the robot's 

movement and could not interpret it. Therefore, on a more conceptual level, the potential risk is that the 

robot tutor's hints might induce slacking, encouraging children to rely on his Help even when it would 

not be necessary. However, this might be the result of the use of explicit, overt cues. We discuss this 

further in Chapter 6 as an open question for human-robot interaction researchers to investigate the role 

of covert vs. overt gaze in learning scenarios and particularly in social training We examine the timing 

and sequencing of the gaze behavior between the child and the robot in Chapter 5. 

In the post-experiment interview, eight out of the fifteen children said they noticed the robot's hints 

during the game while the rest said they did not see the hints. Gender and age are two factors to 

consider in future research regarding how children perceive and interpret robot cues, especially in 

tutoring interactions. However, it is good to note that from our observations, we noticed that age did 

influence the capacity of children to read Help from gaze with older children being more aware of the 

tutor's intent and following accordingly. In comparison, most of the younger children could not 

interpret the robot was helping them despite noticing the cues. This can be explained by social cognition 

developmental theories for children, including the theory of mind (Baron-Cohen et al., 1985). For 

example, the majority said they noted the robot tutor's head movements but could not interpret the 

head movements as gestures pointing to the matching card. From our research, we could not make such 

conclusions regarding age and gender, and we outline these as open questions in Chapter 6 that need 

further investigation. 

This study compares with the findings from the previous chapter with adult participants using a similar 

setting on performance. In Chapter 3, the findings showed the participants performed better with the 

tutor's help gaze cues than without the help cues. Likewise, in both settings for the adults and children, 

most indicated they expected verbal cues from the tutor. We assume the design of the robot's behavior 

may have led participants to expect verbal help cues from the tutor because, in the beginning, the robot 

verbally introduced itself and gave instructions to the participant but remained silent during the entire 

interaction, only giving gaze clues. However, from our observation, we can highlight notable 

differences in how children perceive and interpret the robot's gaze cues. For example, in the child 

experiment, we observed a few children who proceeded to select different cards despite noticing the 

robot tutor was looking at a particular card, which was not the case for the adult participants. Again,  
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these observations could be attributed to social cognitive theories of development—such as perspective-

taking and agency attribution—which are fascinating to study with robots in the future (Baron-Cohen, 

2008). 

4.9. Summary  

These results provide design recommendations that can be applied to create effective robot-child 

tutoring systems. There are two significant conclusions from this chapter:  

First, when a robot tutor provides gaze cues during a tutoring interaction, children use fewer tries to 

complete the task than when a robot tutor does not give such cues. Second, more coordinated gaze 

interaction patterns (mutual gaze and gaze-following) increase children's awareness of the tutor's 

intention to help during the gameplay activity. Consequently, when children notice that the robot tutor 

tries to help with the gaze hints, they look more to the robot tutor, hence increasing the gaze interaction 

and performance.  

In the following chapter (Chapter 5), we further our understanding of the dynamics of gaze interaction 

during child-robot tutoring. We combine observation analysis with lag-based methods to examine the 

interaction sequences of gaze between a child and a robot during a gameplay tutoring activity. We 

focus on identifying the sequential interaction patterns associated with joint attention (JA). Joint 

attention is a sequence of looking at behaviors (mutual gazing, gaze-following), leading to the sharing 

of attentional focus on an object of interest to ensure shared understanding. Such gaze sequences are 

known to be important in children's learning and development and are the basis of the theory of mind 

and perspective-taking (Baron-Cohen, 2008). As such, understanding how gaze coordination and 

interaction sequences of gaze unfold during child-robot interaction is of great importance to 

developmental robotics.    
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Chapter 5. Identifying Dynamic Gaze 

Interactions during Child-Robot  

Tutoring 

This chapter investigates dynamic patterns of dyadic gaze behaviors between a child and a robot in a 

collaborative card-matching game (based on Memory game). The aim is to understand the effects of 

robot gaze behavior on child-robot interaction and attention during a tutoring task. Gaze is a social cue 

that indicates the children's attention to the robot, the mutual gaze, and joint attention to objects ( cards 

in our case) (Frischen et al., 2007; Kleinke, 1986) that could be a basis for rapport, and the increase in the 

quality of child-robot interaction, and eventually result in better tutoring. Moreover, repeating 

sequences of behavior may encode typical and meaningful interaction patterns, which can help us 

provide guidelines for designing successful tutoring interactions.5 

This chapter combines observational measures and lag methods to investigate the nature and dynamics 

of intricate patterns of gaze interchanges between the children and the robot. The lag-based method 

provides an opportunity to analyze dynamic and reciprocal gaze sequences in child-robot interaction 

rather than instances of (mutual) gaze or one-directional attention patterns that have never been 

previously explored in robot-child tutoring. 

We conducted a field study in a classroom environment using the same interaction scenario as in the 

previous chapters, where a child plays a card-matching game in the presence of a robot tutor under two 

conditions. In one condition, the robot provides gaze-based interaction (e.g., glancing towards the 

correct match). In contrast, in the other condition, the robot tutor does not deploy any 'look at' behavior 

and keeps the gaze fixed on the child's face. However, in this chapter, the gaze sequence for the robot 

was specially designed to enhance its power to draw the child's attention to the matching card. 

 

5 Part of the work in this chapter is currently in submission 
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Moreover, we enriched the robot's behavior with verbal feedback after each move and expressive 

gestures of arms and hands to reinforce the robot's liveliness and eventual appeal. 

We again coded the individual gaze behaviors of the child and robot from the video recordings of the 

game sessions using the extended coding scheme described in section 5.3.4. We included not only 

simple gaze behaviors (e.g., the child looks at the robot; robot looks at the matching card, and mutual 

gaze instance), as we did in Chapters 4, but also the complex coordinated sequences of joint attention. 

We have provided the definitions for the mentioned social gaze concepts in Chapter 2; Table 2-1. The 

descriptions of coordinated gaze patterns and sequences, as described in the behavioral system, are in 

Chapter 4; Table 4-2. Table 5-1 shows the gaze behavioral sequences examined in this study related to 

joint attention with the robot's gaze as the initial behavior and the child's gaze as the response behavior. 

We analyzed the gaze data using sequential lag methods, both event-based and time-based, to examine 

if there are patterns of reappearing gaze sequences and the coupling of these patterns in helping the 

child pair the cards. Our particular focus was to investigate dyadic and sequences of gaze behavior—

regarding efficacy and efficiency in task-solving and the quality of interaction with the robot—in a 

collaborative tutoring interaction. 

We found that the robot’s gaze significantly impacts interactions between the children and robots 

during a collaborative tutoring task. Similarly, with the results from Chapter 4, we found more 

occurrences and longer durations of mutual gaze behavior with the presence of helping gaze cues from 

the robot tutor than when the robot did not provide such cues. We compared dyadic and sequential 

behavior pairs for two groups: The Socially attentive group — children with higher events of look at the 

robot behavior— and the Non - socially attentive group — children with lower events of looking at the 

robot. Looking at the robot, in this case, signals engagement with the tutor during the gameplay 

interactions. Children in the Socially attentive group performed significantly better than those in the Non - 

socially attentive group. 

In line with findings from Chapter 4, we found more occurrences and longer durations of mutual gaze 

and gaze following patterns for the children in the Socially attentive group than the children in the Non - 

socially attentive group. Furthermore, we identified significantly more gaze sequences between the child 

and robot-related to joint attention in the Socially attentive group. However, there was no significant gaze 

sequences of joint attention in the Non - socially attentive group. These findings show that children who 

followed the robot tutor's gaze orientation performed better on the task than children who did not 

follow the tutor's gaze. The time-based lag analysis revealed that the timing of the child's response gaze 

occurred from zero up to six seconds after the initial gaze of the robot tutor. The interpretation is that 
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any association between an initial and response gaze behavior for the Socially attentive group occurred 

from zero seconds up to six seconds and disappeared after six seconds. 

These findings support the hypothesis that the occurrence of successful sequences of coordinated gaze 

behavior between the children and the robot facilitates children's awareness of the robot tutor's 

intentions in the interaction and the robot efficacy as a tutor. 

The rest of this chapter is structured as follows: Section 5.1 provides the background on the importance 

of sequencing and coordinated gaze interaction and introduces lag-based analysis. Section 5.2 describes 

the experiment's design — participants' details, the hypothesis, study conditions, and the measures. 

Section 5.3 provides the experimental setup, the platform, and the design of the interaction scenario and 

the board game, and Section 5.4 outlines the results of the user study. Section 5.5 provides a 

comprehensive discussion of the results. Finally, Section 5.6 summarizes the significant contributions 

for designing effective gaze behavior mechanisms for robot interventions in tutoring and social training. 

5.1. Background 

The timing and the right sequences of interactions can make or break the quality of human 

communication, as shown in studies with newborns and children with autism spectrum disorder 

(Baron-Cohen, 1997; Brooks and Meltzoff, 2002; Meltzoff and Brooks, 2007). For example, turn-taking 

between infants and adults relies on sensitive timing and sequencing to the point that 

desynchronization during interaction results in the infants showing distress and avoidance, such as 

looking away (Brooks and Meltzoff, 2002,2014; Meltzoff and Brooks, 2007; Meltzoff, Brooks, Shon, and 

Rao, 2010).  

Thus, the sequencing and timing of gaze interactions, in particular, can be a reason for unnatural and, 

therefore, ineffective human-robot interaction. However, there is limited evidence on how exactly the 

dynamic and interactive aspects of the social cues affect the interaction and the tutoring outcomes. 

Gaze interaction involves sequences of intertwined and coordinated looking behaviors between 

interacting partners. Successful coordination of gaze leads to the transfer of information in a shared 

visual space. For instance, during conversational interactions, participants monitor their conversation 

partner's gaze to regulate their gaze behavior, control turn-taking, and indicate attention (Vertegaal et 

al., 2001). Although a large number of studies over the past decades have investigated gaze behavior 

and the crucial role it plays in communication (Admoni and Scassellati, 2017; Broz et al., 2012), how 

gaze interaction unfolds over time in child-robot interaction is still not understood.  Besides, most of the 

present methods used to assess child-robot interactions mostly observe the child's behaviors without  
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recording the robot's behaviors, and ignore reciprocal interactive behaviors. The disadvantage of such 

evaluations is that they do not capture the dynamics of the interaction, which can be seen in sequential 

intricacies of interactions between the child and the robot and could have an impact on the cognitive or 

affective learning outcomes. To address this gap, in the current chapter, we combine observational and 

lag sequential analysis methods to examine the sequential coordination of child and robot gazing 

behavior during a collaborative tutoring activity. The analysis of coordinated sequences of behavior 

during the child-robot interaction can provide a deeper understanding of how children interact with a 

robot during the task-solving and help design robots that are effective tutors. 

Lag sequential analysis is a common method for examining sequential behavior pairs (Bakeman and 

Quera, 1995; Faraone and Dorfman, 1987; Pohl et al. ,2016) and has extensively been applied in 

behavioral research. For example, Montague and Asan (2014) and Montague et al. (2011) used the lag 

method to study and understand the dynamics of gaze interaction between patients and doctors within 

health systems. Borrero, England, Sarcia, and Woods (2016) and Woods, Borrero, Laud, and Borrero 

(2010) applied lag analysis to examine children's behaviors before and after parental attention during 

mealtime. Robinson, Anderson, Porter, Hart, and Wouden-Miller (2003) used lag analysis to study 

transition patterns of preschoolers' social play to identify precursors of problem behavior in individuals 

with autism. 

However, to our knowledge, lag sequential analysis has not been applied in human-robot interaction to 

examine nonverbal communication and especially sequences of gaze interaction between the robot and 

the human. Previously in  Chapter 4  (Mwangi, Barakova, Díaz, Mallofre, and Rauterberg, 2018), we 

found that if the robot is helping the children, i.e., uses its gaze to point at a matching card, 

simultaneous gaze between the child and the robot to each other and towards a card take place, and 

continues for the children who have noticed the gaze of the robot.  We expect that the use of sequential 

analysis methods in human-robot interaction will help unravel the dynamics of child-robot interaction, 

which is a necessary part of developing successful robotic interventions in tutoring and therapy 

settings. In particular, the analysis of coordinated sequences and directions of gaze behavior provides a 

deeper understanding of whether, how, and under which conditions children can recognize and take 

advantage of robots' nonverbal prompts. Specifically, lag-sequential analysis helps examine whether 

one event contributes to the likely occurrence of another. 

In this regard, this chapter addresses the following questions: 

RQ3 — What are the dynamics of dyadic gaze-based interaction (mutual gaze, gaze-following, and joint 

attention) in the context of tutoring? 
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(a) How do we describe and identify the key patterns of coordinated gaze behavior in the context 

of? 

(b) Which are the contextual and individual variables that affect the occurrence of key patterns of 

coordinated gaze? 

(c) How do we model the sequence of coordinated behavior according to individual and 

situational variables of interest, such as the flow of the game (i.e., a sequence of failed and 

successful tries)? 

RQ4 — Does the coordinated gaze (mutual gaze, gaze-following) influence performance? 

(a) Do dyadic patterns influence the participants’ awareness of the robot’s behavior? 

(b) Do dyadic patterns influence task execution?  

i. Is there any difference in the time required to complete the game? 

ii. Is there any difference in the number of tries?  

(c) Do dyadic patterns influence participants’ interactive behavior (i.e., social engagement)? 

 

To explore the questions mentioned above, we used the same card game described in Chapter 3 and 

Chapter 4, where the child plays a card game in the presence of a robot tutor. For the study described in 

this chapter (see Table 1-1), we modified the timing and sequencing of the head/gaze movement of the 

robot based on earlier subjective reports where subjects (implicitly) assumed the tutor was performing 

gaze-following rather than gaze-cueing (see gaze concepts definitions in section 2.2.1). Because of a 

particular delay—reaction time—between the child choosing the first card and the robot looking at the 

matching card which suggested the child was faster in picking the second card than the robot pointing 

with the eyes, with the subjective impression that the robot was following the child's gaze rather than 

trying to guide the child. In this study, the "reaction time" of the robot was reduced to overtake the 

child's move after the first choice. 

The design of the gaze sequence for the robot tutor was modified as follows: (Figure 5-1) 

The robot, from an initial state of looking at the child, gazed at the card the child picked—looked at the matching 

card—looked at the child's face—looked again at the matching card—and, finally, looked at the child's face again. 

This sequence repeated itself once the child picked a new card. Doing so, we expected that the child would follow 

the robot's gaze to the matching card and subsequently look back at the robot, i.e., perform joint attention (see 

definitions in Table 2-1; Table 4-2), as it occurs in human-human interaction. 

Further, to enrich the interaction, in the present setup, the robot tutor deployed a friendly approach  
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through verbal and nonverbal behavior. At the start, when the child entered the room, NAO tracked the 

child's face to create initial gaze interaction, to show interest and readiness of communication, and to 

increase its believability and friendliness. During the game, the robot gave verbal feedback to the child 

as to whether the card was correct or incorrect: when the child turned the right card, the robot said 

“very good” or “fantastic,” and when the child turned the wrong card, the robot gave statements such 

as “try again” or “not correct.” 

Moreover, the robot deployed expressive gestures of the arms and hands, emphasizing verbal 

communication in the instruction section with pre-programmed explanation gestures and, during the 

game, it accompanied the verbal feedback with winning or losing gestures. 

In the previous chapters, we have established that gaze behavior is an important nonverbal cue in 

human -robot interaction , as in human-human interaction, to convey information, attention, and 

awareness in a collaborative activity with a robot tutor. In this setting, therefore, gaze behavior indicates 

not only the child's attention to the robot but also the child's cognitive activity in the game, such as 

observing the images on the cards or scanning the board searching for the matching card. The 

assumption underlying this study is that the occurrences of appropriate sequences and coordination of 

the dyad’s gaze behaviors between the child and the robot would facilitate the effectiveness of the robot 

tutor as a helping agent and improve the performance of the child fulfilling the task. Thus, the robot 

could then positively influence the flow of the child’s actions—if the child takes the cues—improving 

the task execution and the play experience. 

 

 
(a) (b) 

 

Figure 5-1 The improved interaction flow for the Gaze condition: (a) P(1) - child participant (left) turns over a card 

T(1) - tutor (right) looks at the selected card  (b) T(2) - tutor gazes at the matching card and then towards the child 

T(3) to draw attention T(2) - tutor glances again at the matching card, and then to the child's face - T(3) 

 

CHAPTER 5



93 

 

5.2. Experimental Design 

5.2.1. Participants 

Twenty-three children (Age: 7-8 years; Gender: Male: 11; Female: 12) from the primary school El 

Margalló in Vilanova i la Geltrú, Barcelona participated in the study. El Margalló is an inclusive 

education school where children with learning difficulties are in age-appropriate general education 

classes, fully participating in the classroom’s regular activities, with the support of specialized staff, 

when required. The children with special needs attending the school include children with autism 

spectrum disorder and other psychological and physical conditions, such as cerebral palsy. The 

participants in this study were the whole class of grade 3. In this group, there were two children with 

autism spectrum disorder (ASD) and one with a congenital condition impairing motor and intellectual 

development. The teachers/parents/guardians of the children voluntarily completed written informed 

consent before the start of sessions (see Appendix D for more details regarding the children's data). 

5.2.2. Study Conditions  

The experiment followed a one-factor (Tutoring_Style) within-subject design with two conditions (the 

Gaze condition and No_Gaze condition). The two types of tutoring styles deployed by the tutor are as 

described below: 

Gaze condition: In this condition, the robot provides gaze-based interaction (glancing towards the 

correct match). As mentioned in Section 5.1, the designed gaze sequence for the robot is an 

improvement over our previous studies to enhance its power to draw the child’s attention to the 

matching card.  

No_Gaze condition: In this condition, the robot tutor does not deploy any “look at” behavior and keeps 

the gaze fixed on the child’s face. 

In both conditions, the robot’s behavior was enriched according to the results of the previous studies to 

reinforce the robot’s appeal with verbal feedback after each move, with the more naturalistic and 

expressive movement of the arms and hands. Each participant interacted with the tutor in both 

conditions of Gaze and No_Gaze, and the order of conditions counterbalanced across trials. 

5.2.3. Hypothesis 

We formulated three hypotheses, as outlined below:  

(H1): The tutoring style (Gaze /No_Gaze) will influence task performance 

H1.1: Children will complete the task in less time in the Gaze condition than in the No_Gaze condition 
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H1.2: Children will complete the task with fewer tries in the Gaze condition than in the No_Gaze 

condition 

(H2): The tutoring style (Gaze/No_Gaze) will influence participants' gaze-based interaction during play 

H2.1: Children will look more and longer into the tutors' face in the Gaze condition than in the No_Gaze 

condition. 

H2.2: Children will establish more eye contact with the robot tutor in the Gaze condition than in the 

No_Gaze condition 

(H3): Child-robot coordinated gaze will influence the children's performance 

H3.1: Child-robot coordinated gaze will influence participants' awareness of the robot's 

behavior/engagement with the tutor)  

H3.2: Child-robot coordinated gaze will influence performance either  in  time or the number of tries 

5.2.4. Measures 

To evaluate the hypothesis mentioned above, we used the following measures:  

Task Performance:  

(a) Duration: The time it takes the participants to find all pairs of matching cards on the table; 

(b) Tries: The total number of attempts required to find all matching cards. A "try" consists of 

choosing two cards. 

Gaze behavior: To analyze the gaze behavior, we adopted the previously developed behavioral 

analysis scheme detailed in Chapter 4, Section 4.4. The structure of gaze analysis, as described in the 

previous chapter, is in three categories: child, robot, and dyad gaze (mutual gaze and joint attention) 

behavior. The additional gaze behavioral sequences - examined in this study are shown in Table 5-1. 

The highlighted and (in italic) are the specific sequences associated with mutual gaze, gaze-following, 

and joint attention. 

Children Perceptions: At the end of the experiment, we performed semi-structured interviews to 

evaluate children's judgments of the tutor and task. To examine whether the child was aware of the 

robot's intent to help, the children were asked which cues they observed in the tutor's behavior. The 

questions also assessed whether children perceived any differences between the conditions of the 

game/task difficulty (see Appendix C  for more details on the experimental procedure and post-experiment 

interview). All sessions were video-recorded to facilitate the analysis of performance and behavioral 

measures. 
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5.3. Materials and Methods 

5.3.1. Interaction Scenario 

The interaction set is the same card-matching game called "Memory," previously described in chapters 3 

and 4. In this game, the child plays the card game alone, but in the presence of an expert (robot tutor). A 

detailed description of the board game design and arrangement of cards on the layout is in Appendix 

A. 

5.3.2. Experimental Setup 

This study was an “in situ” experience—at school with a whole class group, including children with 

special needs. The trials took place in a room familiar to the children, often used as a classroom. The 

robot was put in a standing position on one side of a small table where the game was placed (Figure 

5-2), and the child sat on the opposite side. The camera was positioned to capture the behavior of both 

the robot and the child.  A researcher who controlled the robot’s behavior sat in the corner of the room 

outside the child’s visual field, so she did not interfere with the flow of the game. Each card on the 

board was identified using a code, e.g., 1, 2, 3, and was placed in a specific position (head yaw and 

pitch).  

 

 

Figure 5-2 A child playing the card memory game in the presence of the NAO tutor in a classroom. The child looks 

at the robot tutor while the robot is looking at the matching card. 
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In the Gaze condition, the experimenter controlled the robot’s behavior: After entering the code for the 

chosen card, the robot executed a preprogrammed gaze sequence. First, the robot’s head angled to the 

position of the first chosen card (referred here as card1), to the position of the matching card, towards 

the child again, back to the matching card, and then to the child’s face.  The automatic sequence of the 

robot’s gaze behavior repeated each time the child picked a new card. In doing so, the robot alternated 

its gaze between the matching card and the child’s face following a timed sequence and cycled back to 

mutual gaze to ensure a shared experience to elicit coordinated gaze behavior. This prompted the child 

to follow its gaze to the matching card and then similarly performed joint attention, as occurs in human-

human interaction.  

5.3.3. Procedure 

At the beginning of each trial, the child entered the experimental room, accompanied by the facilitator. 

At this moment, the robot-tracking mode was on, and the robot was always looking to the door when 

the child entered. Then, the facilitator asked the child to take a seat beside him/her, provided the child 

with a brief introduction of the robot and the game, and handed over to the robot. 

After the briefing, the robot tutor welcomed the child, introduced itself as a tutor, and instructed the 

child on the rules of the game in Catalan, as all children were conversant with the language. 

In the Gaze condition, the text for the tutor’s instructions  was as follows: 

"Hi, welcome to this play session. My name is Maca, and I am your tutor. I have a task for 

you. You have to find pairs of matching cards on the board. 

First, you take a card and turn it up on the board, and then you pick another one and turn it 

up. 

If they do not match, you turn both cards upside down so that the picture is hidden, and you 

start again. If the second card matches the first, you take the two cards and keep the pair next 

to you. 

You have to find all the pairs in the least number of possible attempts, choosing as few cards 

as possible. 

I know the positions of all the cards on the table. I am going to help you! 

Please, let us start and choose the first card!" 
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Notice that while introducing the game in the Gaze condition, the robot tutor informed the child that it 

would help him/her, without revealing the modality it would use to help. 

 In the No_Gaze condition, the briefing is the same except for the sentence referring to the help—in 

bold—that is substituted by the sentence "You will have to play alone, I cannot help you now." 

After the briefing, the facilitator asked the child about the robot's role. If the child was not capable of 

referring to the tutor's role or did not understand NAO's instructions, the robot repeated the 

instructions, after which the child would begin playing the game. 

During the flow of the game, the tutor provided feedback to the child using statements such as "very 

good" and "fantastic" when the child found a matching pair or "try again" and "you picked the wrong 

card" when the child made an incorrect move. At the end of every session, the tutor thanked and 

congratulated the child. 

During the flow of the game, the facilitator answered questions from the children. After each session, 

the facilitator walked out with the child so that they could complete a post-experiment questionnaire 

regarding the awareness of the tutor's help, the game, and perceptions of the tutor's behavior in both 

conditions.  

During this time, the investigator re-ordered the cards for the second session or the next participant. 

Each child played the card game in both conditions of Gaze and No_Gaze, with each session lasting 

approximately 20 minutes. This included the instruction period, the play, and the 

interview/questionnaire session. The order of presentation of conditions (Gaze/No_Gaze or 

No_Gaze/Gaze) was counterbalanced. All the sessions were videotaped to facilitate the analysis of 

performance and behavioral measures (see Appendix C  for the complete experiment protocol). 

5.3.4. Coding Child-NAO behavior 

The coding of the video recordings was done using Noldus Observer XT 14 software (Zimmerman et 

al., 2009). There were three separate stages in each child-robot session: child entrance, the game session, 

and the closing part. All videos were coded for the duration between when the child sat down until the 

robot gave the closing remarks. Figure 5-3 shows the modified coding scheme, and the definitions for 

the behaviors used in this study are as defined in detail in the previous chapter (Chapter 4, section 4.4). 

The coder first coded the video in its entirety for child behavioral units and then again for robot 

behaviors u s i n g  the Observer XT software. The process of coding took approximately 28 days. Forty 

videos were coded: 19 in the Gaze condition and 21 in the No_Gaze condition. The total duration for the  
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videos in the Gaze condition was approximately 6082 sec, and the entire length of the videos in the 

No_Gaze condition was 4880.96 sec — the coder trained with five practice videos first before moving to  

the primary analysis to ensure reliability. Coding one video for all the behavior took approximately 30 

minutes. Throughout the coding process, videos were randomly checked by members of the research 

team to assess reliability.  

Figure 5-3 shows the modified coding scheme captured from the Noldus Observer XT 14, and Figure 

5-4 shows video footage and a time event plot of the behavior visualization in the Gaze condition. The 

plot shows coded behaviors for the child in the top row and the robot in the bottom row. Each behavior 

appears on the visualization if it is coded at least once. On top is a timeline of the interaction in seconds. 

Below the timeline, we can see the child’s behavior and, at the bottom, the concurrent robot behaviors. 

This visualization allows for identifying the timed relationships between both agents and figuring out 

particular patterns. The length of the boxes indicates the duration, and the number of rectangles of the 

same color shows the frequency of the occurrences of each behavior (see Appendix E for all child - robot 

coordinated gaze visualizations— Gaze condition). 
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Figure 5-3  Modified coding scheme captured from the Noldus Observer XT 14  
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Figure 5-4 Video footage and visualization of events plotted horizontally against a time axis of coded child and 

NAO behavior units from one play session in the “Gaze” condition.  

5.3.5. Gaze Behavior Patterns: Contingency Tables 

In Chapter 4, Table 4-2, we presented the dyadic gaze behavior and their corresponding definitions. The 

joint attention gaze involves the coordination of gaze sequences between the child and the robot. These 

behavioral patterns include mutual gaze and gaze-following, and a subsequent sharing of attentional 

focus on an object of interest—shared gaze (Argyle et al., 1994; Emery, 2000; Frischen et al., 2007) (see 

joint attention definition in Table 2-1 and Table 4-2). We examined the transitions from the robot’s 

behavior to the child’s behavior (i.e., the robot’s gaze as the antecedent or initial behavior and the 

child’s the consequent or response), as the robot’s gaze was predetermined and followed a 

preprogrammed sequence. We considered the child and robot observations during the gaze condition, 

i.e., when the robot tutor provides gaze cues during the interactions. 

The assumption was that during the Gaze condition, children would follow the social prompts from the 

robot tutor’s gaze while the tutor was looking at different cards on the table and use these gaze cues 
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from the tutor to select the matching card. Therefore, the projected pattern of coordinated behavior in 

the case of successful joint attention between the child and the robot was: 

The child looks at the robot, and the robot looks at the child (mutual  gaze) > the robot looks 

at the match > the child looks at the robot (gaze-following ) > and the robot looks at the match  

and child looks at the match (shared gaze) (see Chapter 4; Table 4-2) for a complete 

description of dyadic gaze patterns — mutual gaze, gaze following and joint attention) 

The “and” means co-occurrence and “>” means the following events.  

In this case, joint attention is highlighted as a complex sequence of gaze patterns as follows: (see 

definitions for social gaze concepts in Table 2-1). 

Mutual gaze: refers to the instances when the Child_look_robot and Robot_look_child behavior co-

occurs (Figure 5-6). 

Gaze-following: The pattern — Robot_look_match and Child_look_robot — implies the child is looking 

at the robot while the robot is looking at the matching card and is noticing the robot’s gaze direction to 

a particular card. And then a subsequent pattern — Robot_look_match > Child_look_match — indicates 

the orientation of the children’s gaze to the robot's direction if the robot looks at the matching card, and 

the child turns to look at the matching card. 

Shared gaze: The co-occurrence of — Robot_look_match and Child_look_match, behavior codes that 

depict shared attention on an object. 
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Figure 5-5 Child-NAO gaze coordination during the Gaze condition: A coordinated back-and-forth gaze alternation 

between the child and the robot gaze and the cards (card1 or matching card)  signfies a successful occurrence of 

joint attention, as illustrated in the visualization with a rectangle.  
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Figure 5-6 Highlighting mutual gazing: co-occurrences of ‘Child_look_robot’ and ‘Robot_look_child’ behavior 
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Table 5-1 Gaze behavioral sequences examined in this study — robot gaze as the initial behavior and the child gaze 
as the response behavior: highlighted patterns are joint attention gaze sequences. We use the short abbreviations to 

present the gaze behavior units for child and robot in the results tables. 

 Sequential behavior pairs 

Robot Initiated Gaze  Initial Gaze Response gaze 

 Robot_look_child (RLC) Child_look_card1 (CLC1) 
 Robot_look_match (RLM) Child_look_card1 (CLC1) 
 Robot_look_card1 (RLC1) Child_look_card1 (CLC1) 
 Robot_look_child (RLC) Child_look_robot (CLR) 

 Robot_look_match (RLM) Child_look_robot (CLR) 

 Robot_look_card1 (RLC1) Child_look_robot (CLR) 

 Robot_look_child (RLC) Child_look_match (CLM) 
 Robot_look_match (RLM) Child_look_match (CLM) 

 Robot_look_card1 (RLC1) Child_look_match (CLM) 
 Robot_look_child (RLC) Child_look_card2 (CLC2) 
 Robot_look_match (RLM) Child_look_card2 (CLC2) 
 Robot_look_card1 (RLC1) Child_look_card2 (CLC2) 
 Robot_look_child (RLC) Child_look_board (CLB) 
 Robot_look_match (RLM) Child_look_board (CLB) 
 Robot_look_card1 (RLC1) Child_look_board (CLB) 
 Robot_look_child (RLC) Child_look_facilitator (CLF) 
 Robot_look_match (RLM) Child_look_facilitator (CLF) 
 Robot_look_card1 (RLC1) Child_look_facilitator (CLF) 
 Robot_look_child (RLC) Child_look_else (CLE) 
 Robot_look_match (RLM) Child_look_else (CLE) 
 Robot_look_card1 (RLC1) Child_look_else (CLE) 

 

5.3.6. Lag-Based Analysis 

As previously stated, to examine the gaze behavior sequences between the child and the robot, we used 

the sequential lag method (Bakeman and Gottman, 1997; Bakeman and Quera, 1995, 2011). Lag 

sequential analysis is based on the contingency tables and is mainly used to determine how events 

follow each other. We applied the two methods associated with lag analysis to generate the contingency 

tables—event-based lag and time-based lag — described in the following subsections. The children 

were divided into two groups based on their frequency of looking at the robot. In the literature, the 

frequency of looking at the interacting partner is highly linked to engagement during social interaction 

(Kleinke, 1986). In our case, frequency represents the number of times the gaze occurred regardless of 

the gaze duration. Children with a “Child_look_robot” count > 10 were assigned to the Socially attentive 

group and those with a “Child_look_robot” count < 10 were assigned to the Non - socially attentive group. 

Twelve (12) children were categorized in the Socially attentive group and six (6) children in the Non - 

socially attentive group.   
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Event-Based Lag Sequential Analysis 

For the event-based lag sequential analysis, we used a state lag order= +1 to generate the contingency 

tables, which means that, if the Robot_look_match was the initial gaze (Lag 0), the frequency of the 

Child_look_match as the response gaze (Lag 1) that happened right after Robot_look_match was 

recorded irrespective of time. To generate the contingency tables, we used the Noldus Observer XT 14 

lag sequential module. The module calculates the frequency and transition probability. The transition 

probability refers to the number of transitions for a combination of criterion and target divided by the 

number of transitions from that criterion. Using the event-based lag, we generated two contingency 

tables for the Socially attentive group and the Non - socially attentive group, showing child gaze behaviors 

following the robot’s gaze behaviors. 

Time-Based Lag Sequential Analysis 

For the time-based lag, we defined lag - based on a two-second interval. Lag zero (0) represents the 

moment the initial robot gaze behavior occurs, and Lag 1 [0 - 2 s] represents the first gaze behavior of 

the child that happened zero to two seconds later after lag zero (0). Lag 2 [2 - 4 s] constitutes the first 

behavior of the child that occurred two to four seconds after lag zero (0). Lag 3 [4- 6 s] and Lag 4 [6 - 8 

s] represent intervals of four to six seconds and six to eight seconds, respectively. We generated two 

tables for each lag—for both the Socially attentive group and the Non - socially attentive group. Thus, 

there were eight contingency tables based on this method showing child gaze behaviors following the 

robot gaze behaviors.

Several statistical techniques are involved in lag sequential analysis. First is the likelihood ratio chi-

square test by fitting a general log-linear model to the contingency tables to examine whether the cell 

values are independent. With a significant chi-square test, the next step is to calculate the expected 

count and adjusted standardized residuals. The adjusted residual indicates whether sequential 

behaviors are significant, assuming independence (Bakeman and Quera, 1995; Faraone and Dorfman, 

1987; Pohl et al.,2016). 
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5.4. Results 

We observed and analyzed thirty-six video recordings of child-robot interaction in two conditions 

(Gaze/No_Gaze). There was a total of 18 trials in the Gaze condition and 18 trials in the No_Gaze 

condition. Five (5) children were excluded from the primary analysis - (four) because of technical issues 

during the recording of the sessions and one of the children because s/he could not play the game. 

We compared gaze behavior between two groups of children: The  Socially attentive group vs. Non - 

socially attentive group. As highlighted earlier, the children were grouped based on the frequency of 

occurrence of Child_look_robot behavior during the game. Here, frequency represents the number of 

times the gaze (Child_look_robot) occurred regardless of the duration of gaze. Twelve (12) children 

were categorized in the Socially attentive group and six (6) children in the Non - socially attentive group.   

Using the Observer XT Software, we selected the interval between the children picking the first card to 

the last card, i.e., the entire gameplay session. We excluded the instruction phase and the closing session 

when the child was saying goodbye and walking out of the room. The duration of the game session 

varied with different trials, depending on how long the child took to complete the game in both 

conditions (Gaze condition and No_Gaze condition). 

5.4.1. Task Performance 

Effect of Tutoring_Style on Performance 

For this analysis, we conducted repeated tests ANOVA with the style of tutoring (Gaze vs. No_Gaze) as 

the within-subject factor. We excluded one participant who was considered as an outlier in this analysis. 

We found no significant difference in duration (s) (p=0.797) and tries (p=0.195) between the Gaze and 

No_Gaze conditions. 

Table 5-2 Performance: descriptive statistics 

Gaze No_Gaze 
Mean SD N Mean SD N 

Tries 15.00 3.89 17 16.88 5.15 17 
Duration(s) 185.78 58.88 17 180.38 73.64 17 

Task Performance: Socially Attentive Group vs. Non - Socially Attentive Group  

After performing an independent sample T-test using SPSS Statistics 25, we found a significant 

difference in the number of tries to complete the game between the Socially attentive group and the Non - 

socially attentive group (p=0.030*). Children in the Socially attentive group used significantly fewer  
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attempts to find all the matching cards compared to the children in the Non - socially attentive group. 

However, there was no significant difference in duration between Socially attentive group and the Non - 

socially attentive group (p=0.240). 

5.4.2. Gaze 

Child’s Gaze Behavior 

We examined the effect of the Tutoring_Style (Gaze vs. No_Gaze conditions) on the children’s gaze 

behavior frequency and durations. We analyzed both the frequency and the percentage duration of 

different gaze behavior units. We used the percentage duration as children took different durations to 

finish the game trials—the length varied with every game session. We performed a repeated measure 

ANOVA with the Tutoring_Style (Gaze vs. No_Gaze) as the within-subject factor using SPSS statistics 

25. The sections below report on the results: 

Table 5-3 Frequency of child gaze behavior between the Gaze and No_Gaze condition 

 
Gaze No_Gaze  
Mean SD Mean SD 

Child_look_robot  11.11 6.01 4.89 3.46 
Child_look_card1 16.78 8.37 16.5 5.16 
Child_look_card2 10.78 8.59 11.06 5.15 
Child_look_else 0.39 0.85 0.83 1.2 
Child_look_match 7.11 0.32 7.56 2.26 
Child_look_board 4.78 4.88 4.06 3.73 
Child_look_facilitator 4.67 3.77 2.11 1.97 

 

 

Table 5-4 Percentage duration (s) of child gaze behavior between the Gaze and No_Gaze conditions 

 
Gaze No _Gaze  
Mean SD Mean SD 

Child_look_robot  17.37 11.06 5.11 4.18 
Child_look_card1 24.17 5.35 28.46 5.2 
Child_look_card2 27.56 13.11 36.34 7.43 
Child_look_else 0.84 2.65 0.62 1.13 
Child_look_match 17.23 6.62 21.24 7.48 
Child_look_board 5.96 4.78 5.41 6.24 
Child_look_facilitator 6.86 5.91 2.81 3.45 

 

Frequency: There was a significant difference in the number of occurrences of the child looking at the 

robot during the game between the Gaze and No_Gaze conditions (p=0.001*). Children looked  
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significantly more frequently to the robot tutor during the Gaze condition compared to the No_Gaze 

condition. There were significantly more occurrences of the child looking at the facilitator during the 

Gaze condition compared to the No_Gaze condition(p=0.007*). However, we found no significant 

differences in the frequency of occurrence for the rest of the categories of gaze behavior: 

Child_look_card1, Child_look_card2, Child_ look_board, and Child_look_else. 

Duration: The interval duration is the time between the child picking the first card and taking the last 

one, i.e., the play session. The percentage shows the relative period of gaze to the total time the child 

used to play the game. There was a significant difference in percentage duration for looking at the robot 

between the Gaze and No_Gaze conditions (p=0.001*). Children looked at the robot significantly longer 

when the tutor provided gaze cues than without the gaze cues. Similarly, there was a significant 

difference in percentage durations of the child looking at card1 between the Gaze and No_Gaze 

conditions (p=0.009*). Children looked significantly longer at card1 when the tutor did not provide gaze 

cues than when the tutor provided gaze cues. 

Equally, we found a significant difference in the percentage duration of the child looking at card2 

between the two conditions (p=0.005*). Children looked significantly longer at card2 when the tutor was 

not helping than when the tutor was helping. A plausible explanation for this is given in the discussions 

section. We also found a significant difference in the percentage duration of the child looking at the 

facilitator between the Gaze and No_Gaze conditions (p=0.011*). Children looked significantly longer to 

the facilitator during the Gaze condition than in the No_Gaze condition.  There was no significant 

difference in percentage durations of the Child_look_match, the Child_look_board, and the 

Child_look_else between the Gaze and No_Gaze conditions. 

Effect of Tutoring_Style on Mutual Gaze  

To highlight mutual gaze from the observations, we selected the intervals when the behaviors 

Child_look_robot and Robot_look_child behaviors co-occur, as shown in Figure 5-6 using Observer XT 

14. Table 5-5 illustrates the descriptive statistics for the frequency and duration of mutual gaze (MG) 

patterns in both the Gaze and No_Gaze conditions. After performing a repeated measure ANOVA 

using SPSS Statistics 25, we found significant mean differences in frequency (p=0.001*) and duration (s) 

(p=0.002*) of mutual gaze between the Gaze and No_Gaze conditions (see Appendix D for mutual gaze 

data for each child during Gaze and No_Gaze Conditions).  
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Table 5-5 Frequency and duration (s) of mutual gaze between the Gaze and No_Gaze conditions 

Gaze Condition 
(N=18) 

No - Gaze Condition 
(N=18)    

Range 
   

Range  
Mean SD Min Max 

 
Mean SD Min Max 

Duration 
(s) 

22.17 15.55 0.93 52.35 
 

9.56 8.13 1.27 30.60 

Frequency 11.11 6.94 2 26 
 

5.44 3.70 1 12 

 

In the next sections, we compare the mutual gaze, gaze-following patterns, and joint attention gaze 

sequences between the two groups of children. 

Mutual Gaze: Socially Attentive Group vs. Non - Socially Attentive Group  

Table 5-6  shows the descriptive statistics regarding the frequency and duration(s) of the mutual gaze 

for children in the Socially attentive group and the Non - socially attentive group. 

Table 5-6 Frequency and duration (s) of mutual gaze for the Socially attentive group vs.  Non - socially attentive group 

 Socially attentive group 
(N=12) 

 Non - socially attentive group 
(N=6)   

Range 
  

Range  
Mean SD Min Max 

 
Mean SD  Min Max 

Duration(s) 28.50 15.17 0.93 52.35 
 

9.52 5.28 2.54 15.18 
Frequency 14.33 6.16 3 26 

 
4.67 2.34 2 8 

 

We conducted an independent sample T-test using SPSS Statistics 25 to compare the (frequency and 

duration of mutual gaze) for children in the Socially attentive group and those in the Non - socially 

attentive group. There was a significant difference in the frequency of mutual gaze between children in 

the Socially attentive group (M=14.33, SD= 6.16) and those in the Non - socially attentive group (M=4.67, 

SD=2.34); p=0.002*; two-tailed, assuming equal variances. We also found a significant difference in 

duration of mutual gaze between the children in the Socially attentive group (M=28.50 s, SD=15.17) and 

those children in the Non - socially attentive group (M=9.52 s, SD=5.28); p=0.010*; two-tailed, assuming 

equal variances). 

Gaze-Following: Socially Attentive Group vs. Non - Socially Attentive Group 

To highlight gaze-following from the video observations, we selected the intervals when the following 

child and robot behaviors co-occur: Child_look_robot and Robot_look_match. This pattern implies the 

child is looking at the robot while the robot is looking at the matching card and is noticing the robot’s 

gaze direction to a particular card. This co-occurrence is the crucial feature in the pattern of joint 

attention and a subsequently shared view pattern formed by the co-occurrence of Robot_look_match 

IDENTIFYING DYNAMIC GAZE INTERACTIONS DURING CHILD-ROBOT TUTORING



110 

 

and Child_look_match. This pattern implies the robot and the child are looking at the correct card 

match at the same time. 

Table 5-7 Frequency and duration (s) of gaze-following for Socially attentive group vs. Non – socially attentive group 

 Socially attentive group 
(N=12) 

 Non - socially attentive group 
(N=6) 

   Range    Range  
Mean SD Min Max  Mean SD Min Max 

Duration(s) 41.30 17.60 16.14 72.04  12.12 6.23 4.50 20.19 
Frequency 13.83 5.38 7 23  5.67 2.42 2 9 

 

We conducted an independent sample T-test in SPSS to compare the (frequency and duration of gaze-

following) between the children in the Socially attentive group and those in the Non - socially attentive 

group. We found significant differences in the frequency of gaze-following-related patterns between 

children in the Socially attentive group (M=13.83, SD=5.38) and those in the Non - socially attentive group 

((M=5.67, SD=2.42); p=0.003*; two-tailed, assuming equal variances). There were also significant 

differences in the duration(s) of gaze-following between children in the Socially attentive group (M=41.30 

s, SD=17.60) and children in the Non - socially attentive group (M=12.12 s, SD=6.23 p=0.001*; two-tailed) 

assuming equal variances. 

Patterns of Joint Attention Behavior: Gaze Sequences 

We performed both event-based and time-based lag-sequential analyses to examine the gaze behavior 

sequences associated with joint attention occurrence in both the Socially attentive and Non - socially 

attentive groups. We focused on the gaze behavioral sequences in Table 5-1, with the robot gaze as the 

initial behavior and the child’s gaze as the response behavior, and the highlighted patterns are joint 

attention gaze sequences. We use the short abbreviations as illustrated in Table 5-1 to present the gaze 

behavior units for the child and the robot in the contingency — results tables. 

Event-Based Lag Sequential Analysis 

Table 5-8 and Table 5-9 are the contingency tables for the Socially attentive group and the Non - socially 

attentive group, respectively. 

Table 5-8 Observed counts: Socially attentive group (N=12) 

Initial Gaze 
 

Response Gaze Total 
ClC1 CLR CLM CLC2 CLB CLF 

 RLC 55 50 14 28 15 16 178 
RLM 6 36 33 29 15 13 132 
RLC1 3 22 13 10 1 3 52 

Total 64 108 60 67 31 32 362 
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Table 5-9 Observed counts: Non - socially attentive group (N= 6) 

Initial_Gaze Response_Gaze Total 

ClC1 CLR CLM CLC2 CLB CLF CLE  

 RLC 64 14 6 19 7 3 1 114 
RLM 10 3 10 41 8 7 0 79 

RLC1 5 3 11 10 1 1 0 31 

Total 79 20 27 70 16 11 1 224 

 

The likelihood ratio chi-square was 65.622 (df = 12) for the Socially attentive group table, and the 

likelihood ratio chi-square for the Non - socially attentive group table was 75.509 (df = 12). Therefore, cell 

values are significant and not distributed by chance. 

Table 5-10 and Table 5-11 indicate the results of the event-lag sequential analysis for the Socially attentive 

group and the Non - socially attentive group, respectively, when the robot gaze is the initial behavior, 

respectively. The highlighted in italic indicate a significant association of the sequential patterns. 

 

Table 5-10 Observed counts, expected count, adjusted standardized residuals of the children’s gaze in response to 
the robot’s gaze based on event lag for the Socially attentive group 

Initial_Gaze Response_Gaze 

ClC1 CLR CLM CLC2 CLB CLF 

 RLC 
 

Count 55 50 14 28 15 16 

Expected Count 31.5 53.1 29.5 32.9 15.2 15.7 

Adjusted Residual 6.5 -.7 -4.4 -1.3 -.1 .1 

 
RLM 

Count 6 36 33 29 15 13 

Expected Count 23.3 39.4 21.9 24.4 11.3 11.7 

Adjusted Residual -5.0 -.8 3.3 1.3 1.4 .5 
RLC1 Count 3 22 13 10 1 3 

Expected Count 9.2 15.5 8.6 9.6 4.5 4.6 

Adjusted Residual -2.4 2.1 1.8 .1 -1.8 -.8 
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Table 5-11 Observed counts, expected count, adjusted standardized residuals of the children’s gaze in response to 

the robot’s gaze based on event lag for the Non - socially attentive group 

Initial_Gaze Response_Gaze 
ClC1 CLR CLM CLC2 CLB CLF CLE 

 RLC 
 

Count 64 14 6 19 7 3 1 
Expected Count 40.2 10.2 13.7 35.6 8.1 5.6 .5 
Adjusted Residual 6.7 1.8 -3.2 -4.8 -.6 -1.6 1.0 

 
RLM 
 

Count 10 3 10 41 8 7 0 
Expected Count 27.9 7.1 9.5 24.7 5.6 3.9 .4 
Adjusted Residual -5.2 -2.0 .2 4.9 1.3 2.0 -.7 

 
RLC1 Count 5 3 11 10 1 1 0 

Expected Count 10.9 2.8 3.7 9.7 2.2 1.5 .1 
Adjusted Residual -2.4 .2 4.3 .1 -.9 -.5 -.4 

 

Time-Based Lag Sequential Analysis 

Socially attentive group: The likelihood chi-square test showed significant dependence between the 

behavior pairs for Lag 1 [0 -2 s], Lag 2 [2 - 4 s], and Lag 3 [4 -6 s] tables. However, for Lag 4 [6 -8 s], the 

likelihood chi-square test was not significant. Thus, the children’s responses occurred at between zero 

seconds up to six seconds after the tutor’s initial behavior.  

 

Table 5-12 Goodness-of-fit tests: likelihood ratio chi-square results for each time-based lag for the Socially attentive 
group 

  Value df Sig. 
Lag 1 [0 -2 s] Likelihood Ratio 24.816 12 .016 
 Pearson Chi-Square 23.376 12 .025 

 
Lag 2 [2 - 4 s] Likelihood Ratio 47.149 12 .000 
 Pearson Chi-Square 46.899 12 .000 

 
Lag 3 [4 -6 s] Likelihood Ratio 41.709 12 .000 
 Pearson Chi-Square 38.530 12 .000 

 
Lag 4 [6 -8 s] Likelihood Ratio 5.008 12 .958 
 Pearson Chi-Square 3.977 12 .984 
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Table 5-13, Table 5-14, and Table 5-15 shows the observed counts, expected count, adjusted 

standardized residuals of the children’s gaze in response to the robot’s gaze based on the time -based 

lag for the Socially attentive group for Lag 1 [0 -2 s], Lag 2 [2 - 4 s] and Lag 3 [4 -6 s], respectively. The 

significant behavior patterns observed are highlighted in italic. 

 
Table 5-13 Observed counts, expected count, adjusted standardized residuals of the children’s gaze in response to 

the robot’s gaze based on the time lag for the Socially attentive group — Lag 1 [0 -2 s]    

Initial_Gaze Response_Gaze 

ClC1 CLR CLM CLC2 CLB CLF CLE 
 RLC Count 17 59 17 37 16 16 0 

Expected Count 9.9 54.5 30.6 37.1 14.6 15.0 .3 

Adjusted Residual 2.9 .9 -3.4 .0 .5 .3 -.7 

RLM Count 9 60 45 43 21 19 1 

Expected Count 12.1 66.6 37.4 45.3 17.9 18.3 .4 

Adjusted Residual -1.2 -1.3 1.8 -.5 1.0 .2 1.2 

RLC1 Count 3 41 28 29 6 9 0 

Expected Count 7.1 39.0 21.9 26.6 10.5 10.7 .2 

Adjusted Residual -1.8 .5 1.7 .6 -1.7 -.6 -.6 

 
 

Table 5-14 Observed counts, expected count, adjusted standardized residuals of the children’s gaze in response to 
the robot’s gaze based on the time lag for the Socially attentive group — Lag 2  [2 - 4 s]   

Initial_Gaze Response_Gaze 
ClC1 CLR CLM CLC2 CLB CLF CLE 

 RLC Count 42 49 12 30 13 14 0 
Expected Count 28.6 45.9 22.4 31.4 16.1 15.3 .4 

Adjusted Residual 
 

3.5 .7 -3.0 -.4 -1.0 -.4 -.8 

RLM Count 27 47 17 31 14 17 0 

Expected Count 27.4 43.9 21.4 30.0 15.4 14.6 .4 
Adjusted Residual 
 

-.1 .7 -1.3 .3 -.5 .8 -.8 

RLC1 Count 4 21 28 19 14 8 1 
Expected Count 17.0 27.2 13.3 18.6 9.5 9.1 .2 
Adjusted Residual -4.0 -1.6 5.0 .1 1.7 -.4 1.8 
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Table 5-15 Observed counts, expected count, adjusted standardized residuals of the children’s gaze in response to 
the robot’s gaze based on the time lag for the Socially attentive group — Lag 3  [4 -6 s]. 

Initial_Gaze Response_Gaze 
ClC1 CLR CLM CLC2 CLB CLF CLE 

 RLC Count 62 33 27 18 17 20 2 
Expected Count 50.8 45.7 21.4 27.8 14.5 17.9 .9 
Adjusted Residual 
 

2.4 -2.9 1.7 -2.7 .9 .7 1.6 

RLM Count 50 42 16 28 12 15 0 

Expected Count 46.3 41.6 19.5 25.3 13.2 16.3 .8 
Adjusted Residual 
 
 

.8 .1 -1.1 .8 -.5 -.4 -1.1 

RLC1 Count 7 32 7 19 5 7 0 
Expected Count 21.9 19.7 9.2 11.9 6.2 7.7 .4 

Adjusted Residual -4.2 3.6 -.9 2.5 -.6 -.3 -.7 

 

 

Non - socially attentive group: The likelihood chi-square test showed significant dependence between 

the behavior pairs for the Lag 2 [2 - 4 s] only, and no other lags were significant.  

Table 5-16 Goodness-of-fit tests — likelihood ratio chi-square results for each time-based lag for the Non - socially 
attentive group 

  Value df Sig. 

Lag 1 [0 -2 s] Likelihood Ratio 15.147 12 .234 
 Pearson Chi-Square 16.147 12 .185 
     
Lag 2 [2 - 4 s] Likelihood Ratio 33.620 12 .001 
 Pearson Chi-Square 31.633 12 .002 
     

Lag 3 [4 -6 s] Likelihood Ratio 11.338 12 .500 
 Pearson Chi-Square 9.813 12 .632 
     

Lag 4 [6 -8 s] Likelihood Ratio 6.359 12 .897 
 Pearson Chi-Square 5.866 12 .923 
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Table 5-17 shows the observed counts, expected count, adjusted standardized residuals of the children’s 

gaze in response to the robot’s gaze based on the time -based lag for the Non - socially attentive group for 

Lag 2 [2 - 4 s]. The highlighted values in italic show a significant association between sequential 

behavioral patterns. 

 
Table 5-17 Observed counts, expected count, adjusted standardized residuals of the children’s gaze in response to 

the robot’s gaze based on the time lag for the Non - socially attentive group — Lag 2  [2 - 4 s] 

Initial_Gaze Response Gaze 
 ClC1 CLR CLM CLC2 CLB CLF CLE 
 RLC Count 37 15 12 22 5 3 1 

Expected Count 27.3 11.2 10.4 34.1 5.6 5.6 .8 
Adjusted Residual 2.9 1.6 .7 -3.3 -.3 -1.5 .3 

RLM Count 25 9 7 32 4 3 1 
Expected Count 23.2 9.6 8.9 29.1 4.8 4.8 .7 
Adjusted Residual .5 -.2 -.8 .8 -.5 -1.0 .5 

RLC1 Count 6 4 7 31 5 8 0 
Expected Count 17.5 7.2 6.7 21.9 3.6 3.6 .5 
Adjusted Residual -3.8 -1.5 .1 2.8 .9 2.8 -.8 

 

 

5.4.3. Children Perceptions 

In the end, the facilitator conducted a post-experiment interview with the children. The facilitator asked 

the children the following questions:  

Q1:  Was the game difficult? [Not at all difficult/A bit difficult/Not easy or difficult/Easy/Very easy] 

Q2:  Have you played the game before? YES/NO 

Q3:  Did the tutor help you? YES/NO; if yes, how did the tutor help you? 

In the following sections, we present the children’s answers to the above interview questions: 

Q1: Based on the children’s answers, there was no significant difference in regards to how the children 

perceived the task difficulty in the Gaze and No_Gaze conditions. 

Q2: All children said they had played the game before, but with different images, for example, with 

other animals, cars, fruits, or houses. 

 Q3: Most of the children said they noticed the tutor’s help. However, different children interpreted the 

cues from the robot differently, and most of the children answered that the robot tutor helped them  

with verbal feedback.  Five (5) children, however, noted and followed the gaze cues from the robot tutor 
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to find the matching cards on the board. In this section, we include some excerpts from the children 

regarding how they interpreted the tutor’s verbal feedback and gaze cues.  

Five children in the Gaze condition said they noticed the tutor’s gaze cues while the tutor was looking 

at different cards on the game board. Below are the responses from children who saw the robot’s gaze 

cues.   

P02 [Gaze]: “He looked there, and I knew, he was looking over there because the card was 

there, it sometimes helps and sometimes not [points out] but with the gaze.” 

P04 [Gaze]: “He moved his head to the sides — he moved his hands. I do not know, because I 

thought that if he looked, I thought ‘it must be this one’ But sometimes he fooled me and 

sometimes not.” 

P08 [Gaze]: “He showed me the cards.” 

P12 [Gaze]: “It helped me a lot, for example, he makes with the face where your pair was.” 

P22 [Gaze]: “So, it looked at the right card — to give me a clue. With the face looking at the 

right cards.” 

A number of children also noticed the movements of the robot’s head. However, they said the robot 

was watching or looking at them while playing and were, therefore, not able to take advantage of the 

gaze cues from the robot tutor. Below are some excerpts from children’s answers: 

P05 [Gaze]: “He was looking at how I performed. When I took the two equals, he said to me, 

“fantastic, fantastic, fantastic.” 

P06 [Gaze]: “Watch me and tell me things when I did not guess, ‘try again,’ and when I 

guessed, ‘very well.’” 

P20 [Gaze]: “He was looking at how I was doing.” 

As earlier mentioned, most children in the Gaze condition said the robot was using verbal feedback to 
help them. Below are some excerpts from children that interpreted the verbal feedback to be the 
modality the tutor was using to help. 

P01 [Gaze]: “If I do not guess the right one, said: ‘try again.’”  

P07 [Gaze]: “He said ‘very well,’ he gave me clues, when I was approaching [the right one] 

he said ‘very well,’ and that was a clue.” 
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P10 [Gaze]: “Telling me yes or no.” 

P11 [Gaze]: “He told me if I had done it right or not, as before.” 

P16 [Gaze]: “Telling me if I had done it right.” 

P17 [Gaze]: “He explains to me the instructions. And he told me if I did it right and if I 

didn’t try again.” 

Remarkably, also in the No_Gaze condition, we found that children interpreted the verbal feedback 

from the robot as helpful clues. 

P01 [No_Gaze]: “If I was right, he said ‘great’ or ‘very good,’ and if it did not guess he said 

‘try again.’” 

P02 [No_Gaze]: “If I did it right, he said ‘fantastic’ or something like that.” 

P08 [No_Gaze]: “Tell me ‘very well’ or ‘Try again.’” 

P11 [No_Gaze]: “Telling me if I had done it well. If I had done right, he said ‘very well.’” 

P12 [No_Gaze]: “He was telling me when I was getting another: when it was not the right 

one, he said “try again” and when I got the right one ‘Very good.’” 

5.5. Discussion  

The discussion presented in this chapter is a step forward in determining how sequential gaze 

coordination between the robot and the child affects awareness of the tutor's intention, social 

engagement performance, and the quality of interaction with the robot. To study the sequential 

occurrences of the gaze behavior pairs, we used both the event-based and the time-based lag methods. 

We compared sequential behavior pairs for two groups: The Socially attentive group—children with 

higher events of looking at the robot—and the Non - socially attentive group—children with lower events 

of looking at the robot behavior. The 'child_look_robot' behavior indicates instances when the child 

looks towards the robot's face. As is depicted in literature, looking at the interacting partner in this case, 

"look at the robot" measure is linked positively to engagement with the robot (Kleinke, 1986). Looking 

at the robot, in this case, signals social engagement during the tutoring interactions. 

To conduct sequential analysis, we focused only on the transitions from the robot's behavior to a child's 

behavior as a following, as the other perspective—the robot gaze behavior is deterministic—always 

occurs in the same order. We generated two event-based contingency tables, one for the Socially attentive 
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group and the other Non - socially attentive group, and eight time-based contingency tables, four for the 

Socially attentive group and four for the Non - socially attentive group: showing children's gaze behaviors 

following the robot's gaze behaviors. 

In (H1), we projected the tutoring style (Gaze vs. No_Gaze) would influence task performance. We 

found no significant difference in the duration the children used to complete the task between the Gaze 

condition and the No_Gaze condition (H1.1). Similarly, we found no significant difference in the 

number of tries between the Gaze condition and the No_Gaze condition (H1.2) (Table 5-2). We 

identified the plausible reason for this from children's perceptions; most of the children interpreted the 

verbal cues as the helping behavior, and, in this case, the robot provided verbal feedback in both 

conditions. In Chapter 6, we provide further discussion concerning combining gaze with spoken 

interaction to build effective robotic tutors for children. 

In (H2), we projected that tutoring style (Gaze /No_Gaze) would influence the children's gaze-based 

interaction during play. The findings support the hypothesis. We found that children looked 

significantly more frequently and for longer durations at the robot tutor's face in the Gaze condition 

compared to the No_Gaze tutoring style (H2.1). The mean frequencies and durations for the child's gaze 

behavior are in (Table 5-3) and (Table 5-4). Frequencies represent the number of times gaze occurred 

regardless of the duration of the gaze. Consequently, we found more occurrences and longer durations 

of mutual gaze during the Gaze condition than in the No_Gaze condition (H2.2). Children established 

eye contact more often and for longer durations with the robot tutor with the presence of gaze cues 

from the robot tutor than without the gaze cues from the tutor (Table 5-5). 

In (H3), we projected that the child-robot coordinated gaze would influence the children's performance. 

The findings support our hypothesis; There were more occurrences and longer durations of mutual 

gaze and gaze-following patterns in the Socially attentive group compared to the Non - socially attentive 

group (Table 5-6 and Table 5-7) (H3.1). Based on the event-based lag analysis, we identified significant 

gaze behavior sequences associated with joint attention (Table 5-10) in the Socially attentive group (H3.1). 

However, we found no significant gaze behavior patterns associated with joint attention for the Non - 

socially attentive group (Table 5-11).  Consequently, we found that children in the Socially attentive group 

performed significantly better —using fewer tries to complete the game—when compared to children in 

the Non - socially attentive group (H3.2). 

Table 5-10 indicates the results of the event-based lag analysis for the Socially attentive group. The 

highlighted values in italic indicate a significant association of the sequential patterns. We identified the 

following significant gaze sequences for the Socially attentive group: 
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Robot_look_child > Child_look_card1; 

Robot_look_card1 > Child_look_robot; 

Robot_look_match > Child_look_match. 

These sequences can be interpreted as follows: 

"Robot_look_child > Child_look_card1" —indicates the start of an interaction instance. The robot is looking 

at the child as if waiting for the child's move, and the child looks at the first card (referred here as 

card1). 

"Robot_look_card1 > Child_look_robot"—suggests the child sees the gaze of the robot shift when the robot 

turns to look at the first card the child has picked, and the child looks towards the robot. 

"Robot_look_match > Child_look_match" —indicates gaze-following to the gaze orientation of the robot 

tutor while the tutor shifts its gaze (head orientation) to the matching card, and the child follows the 

gaze to look at the matching card as well. 

Thus, the potential interpretation of these findings is the children in the Socially attentive group 

responded to the robot's behaviors by looking at the robot when the robot looked at the first card they 

turned—referred to in this article as card1—and then followed the gaze orientation of the robot tutor to 

the matching card. Therefore, this sequence can be interpreted as a successful occurrence of joint 

attention or a shared gaze. It could be because of the child's implicit/explicit awareness concerning the 

robot's cues or the child implicitly or explicitly following the robot's gaze.  

Table 5-11 shows the results of the event-based lag sequential analysis for the Non - socially attentive group. 

The highlighted values in italic indicate a significant association of the sequential patterns. We 

identified the following significant gaze sequences for the Non - socially attentive group: 

Robot_look_child > Child_look_card1; 

Robot_look_match > Child_look_card2; 

Robot_look_card1 > Child_look_match. 

 

These sequences can be interpreted as follows: 

"Robot_look_child > Child_look_card1"—As earlier mentioned, this indicates the start of an interaction 

instance.  
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"Robot_look_card1 > Child_look_match" —indicates the child does not notice the robot's gaze shift when 

the robot turns to look at the first card the child has picked, and the child moves to find a matching card 

without looking at the robot. 

"Robot_look_match > Child_look_card2"—shows unsuccessful gaze-following or lack of gaze-following, 

where the child misses the cues from the robot tutor while the tutor is looking at the matching card and, 

instead, selects a different card (card2 is when a child picks a second card that is incorrect). 

The potential interpretation is that the children in the Non - socially attentive group were already gazing 

at the matching card when the robot looked at the first card they turned—referred to in this article as 

card1—and, therefore, did not follow the gaze orientation of the robot tutor to the matching card. There 

is not a coordinated exchange of non-verbal cues for supporting the right selection of the card. 

Therefore, this sequence can be interpreted as a lack of joint attention or a shared gaze. It could be 

because of the explicit unawareness of the child concerning the robot's cues or the failure in following 

the robot's gaze. 

Table 5-13, Table 5-14, and Table 5-15 indicate the results of the time-based lag sequential analysis for the 

Socially attentive group. The highlighted values in italic indicate a significant association of the sequential 

patterns. For the Socially attentive group, the findings from the time-based lag analysis were as follows. 

First, Lag 1 [0 -2 s], Lag 2 [2 - 4 s], and Lag 3 [4 - 6 s] contingency tables showed significance in the 

likelihood ratio chi-square test; however, Lag 4 [6 - 8 s] was not significant. The interpretation is that 

any association between an initial and response gaze behavior for the Socially attentive group occurred 

from zero seconds up to six seconds and disappeared after 6 seconds. 

Table 5-16 and Table 5-17 indicate the results of the time-based lag sequential analysis for the Non - socially 

attentive group. The highlighted values in italic indicate a significant association of the sequential 

patterns. For the Non - socially attentive group, only the Lag 2 [2 - 4 s] contingency table showed 

significance in the likelihood ratio chi-square test. Furthermore, the likelihood ratio chi-square test for 

all the other Lags were not significant. The interpretation is that any association between an initial and 

response gaze behavior in the Non - socially attentive group occurred from two seconds up to four 

seconds and disappeared after four seconds. 
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5.6. Summary 

This chapter contributes new insights regarding how the lag-based method can be applied to analyze 

non-verbal communication in human-robot interaction. There are four significant findings from this 

chapter:   

First, we found that more occurrences and higher durations of coordinated - mutual gaze and gaze 

following pattern - increased the children's social engagement with the robot tutor and their 

performance. Second, the event-based analysis shows that the robot's gaze significantly affects child gaze 

behavior during the interaction. Third, we found significant gaze sequences associated with joint 

attention in the Socially attentive group. Therefore, we have established that appropriate sequences of the 

dyad's gaze behaviors between a child and a robot during a tutoring interaction increase children's 

probability of successfully taking advantage of the robot's cues. 

Fourth, proper timing of response of the child's gaze to the robot's gaze can lead to effective interactions 

between a child and a robot tutor. We found that the response gaze of children that were able to take 

advantage of the tutor's social cues effectively occurred from 0 to 6 seconds after the initial robot gaze. 

Therefore, understanding the dynamic nature of the robot-child gaze patterns adds to robot behavior 

designs, which can lead to more positive experiences during child–robot interaction. 

For this analysis, twelve children - with higher events of look at robot behavior were pooled into 

the Socially attentive group, and six children - with lower events of look at robot behavior were pooled 

into the Non - socially attentive group. Thus, a limitation of these findings is that we could not examine 

whether the gaze sequences are consistent throughout each child's entire interaction. In the appendix 

section (Appendix E), we provide 18 gaze visualizations for all child- robot observations during the 

gaze condition showing how the child's gaze interacts with that of the robot in the entire interaction.  

In Chapter 6, we discuss the main findings and the limitations of this work, including future research 

directions.   
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Chapter 6. General Discussion  

In this dissertation, we present a body of work aimed at understanding human-robot gaze mechanisms 

to inform the robot’s behavior design with effective gaze-based interaction to foster performance, social 

engagement, and mutual coordination in a tutoring setting. Towards this goal, we conducted three 

empirical studies (chapters 3, 4, and 5) to explore interactive gaze behaviors of mutual coordination 

with increasing complexity —from noticing of gaze to mutual gaze to gaze-following and complex 

sequences of gaze behavior within human-robot tutoring interactions. The empirical studies are well-

controlled experiments in which participants interact with a tutor (human or robot) in the first study 

and robots with different levels of interactivity in the second and third studies in a designed board 

game task as a tutoring activity. The findings from this dissertation contribute new design implications 

for interactive and effective robot gaze-behaviors to improve learning performance and facilitate 

positive experiences in robot tutoring settings.  This chapter presents the main findings and limitations 

of this work and open challenges that inform future research directions. 

The rest of this chapter is structured as follows: Section 6.1 provides a discussion of the main findings of 

this work, Section 6.2 describes the research limitations, and Section 6.3 highlights open questions that 

inform future research directions on the topic of designing credible and effective gaze behavior 

mechanisms for robot interventions in tutoring and social training. 

6.1. Main Findings 

In the following sections, we discuss the main findings from the user studies described in chapters 3, 4, 

and 5. These include the experimental framework — interaction setting and board game; design 

guidelines for effective gaze-based interaction in robot tutoring; legibility of gaze behavior — 

comparing a human and robot tutor; sequential gaze analysis with lag-based methods; and laboratory 

vs. field user studies. 
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6.1.1. Experimental Framework  

We contextualized the user studies detailed in chapters 3, 4, and 5 in a play situation based on a board 

game activity "Memory." The use of a board game that can be played by people with different 

developmental abilities and profiles is an important part of this work as it adds to the research line on 

social inclusion. Our motivation behind the design was that many settings used for therapeutic training 

and educational purposes are in the form of board games and other settings when the tutor and tutee 

are on the opposite sides of a table — as is the case in this research. 

We validated the experimental setup with user studies involving adults and children (typically 

developing children) interacting with a robot in a tutoring context. However, this framework can be 

adapted and extended to engage children with autism disorder and older adults in activities through 

gaze interaction. Besides, the design of the board game targets a human and a robot's simultaneous 

gaze interaction to achieve a collaborative task, which is a common deficit with children with autism 

spectrum disorders. 

Previous studies have also used games in social training of children with autism (Albo-Canals et al., 

2018; Barakova, Bajracharya, Willemsen, Lourens, and Huskens, 2014). In such settings, games are 

designed to encourage children to engage in training practices better. Therefore, additional gaze-based 

interactions can increase this engagement. In elderly settings, Perugia et al. (2017) and Perugia et al. 

(2018) used cognitive games and robots to engage the elderly by mental stimulation on an emotional 

level. They found that the gaze is a crucial component of both cognitive and emotional engagement. 

Thus, gaze interaction can be included in the design of robots for the elderly, especially those with 

cognitive impairments. 

Therefore, the interaction setting and the game used in the dissertation contribute a plausible testbed 

framework for designing gaze behaviors in general education — as a tool in tutoring and therapy. 

6.1.2. Design Guidelines for Gaze-Based Interactions in Tutoring 

The findings from the user studies we have conducted contribute new design recommendations on 

designing effective gaze behavior for robots, particularly in the context of tutoring and social training. 

We outline them below:  

 People (both adults and children) are sensitive to the gaze directions of a robot tutor. They can notice and 

interpret such cues accurately to improve their task performance — accuracy during robot tutoring 

activities. The results in (Chapter 3 and Chapter 4) show that when a robot tutor provides gaze 

hints during tutoring interactions, people improve their task performance - use significantly 

fewer tries to complete the task. 
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 People perform better when they are explicitly aware of robot tutor gaze cues in a tutoring interaction 

than when they don't notice the gaze cues. In Chapter 3, the findings showed that persons that 

noticed the gaze hints of the tutor performed better during the interaction compared to those 

who did not recognize the cues (see Table 3-3; Table 3-5). In a follow-up study (Chapter 4), we 

also found that children that noticed the gaze cues of the tutor performed better than children 

who did not notice the helping cues. Further, in Chapter 5, we found that children in the Socially 

attentive group - with a higher frequency of look at the robot behavior, performed better 

compared to the children in the Non-socially attentive group -children with lower events of look 

at the robot behavior. 

 Coordinated child-robot gaze (mutual gaze and gaze following) increases children's knowledge of the 

helping cues from the robot during a tutoring interaction and the probability of taking advantage of the 

robot's cues successfully. In chapters 4 and 5, we found that more occurrences and longer 

durations of mutual gaze and gaze following patterns for children in the YES group — children 

who noticed the helping cues from the robot tutor compared to children in the NO group — 

children who did not notice the helping cues. In turn, we found that when children are aware 

that the robot tutor tries to help with the gaze hints, they look more to the robot to take 

advantage of its cueing (see Table 4-9; Table 4-10; Figure 4-8; Table 5-6 and Table 5-7). In 

Chapter 5, we found that children in the Socially attentive group - had higher frequency and 

longer durations of mutual gaze and gaze following patterns compared to the children in the 

Non-socially attentive group. 

 More salient (Overt) gaze from the tutor may lead to better performance as the social cues are more 

noticeable compared to covert vs. no gaze in tutoring scenarios. In Chapter 3, the results showed that 

participants noticed the gaze cues (awareness of the tutor's intention to help) more in the robot 

condition than in the human condition (see Figure 3-5 (e)). We identified that the NAO robot 

provides more salient gaze behavior compared to the gaze of a human tutor, which is subtle, 

and thus the robot gaze is much easier to notice due to several factors which we discuss in 

detail in Chapter 3; 3.5. A summary of these factors is in the following section 6.1.3. Thus, if a 

tutor provides (more) evident gaze cues, participants perform better than with no cues or covert 

cues during a tutoring activity. 

 Designing a robot with a dynamic gaze increases the effectiveness of the robot tutor as a helping agent. In 

chapter 5, the results show that appropriate sequences of the dyad's gaze behaviors between a 

child and a robot can lead to effective interactions between a child and a robot tutor (see Table 

5-10). Furthermore, proper timing of the response of the child's gaze to the robot's gaze can lead  
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to positive interactions between a child and a robot tutor (see Table 5-12). Thus, a robot tutor can 

influence the flow of the child's actions positively—if the child interprets the social cues 

appropriately during the interaction —and, in turn, improve the task execution and the play 

experience. 

6.1.3. Legibility of Gaze Behaviors 

Overall, the findings in this dissertation demonstrate that effective gaze interaction during human-robot 

tutoring can enhance performance and promote positive experiences for human partners (adults or 

children). These findings contribute to the growing body of work showing that gaze can help build 

effective interactions between humans and robots in diverse applications (Admoni and Scassellati, 2017; 

Boucher et al., 2012; Broz et al., 2012; Moon et al., 2014; Mutlu et al., 2006, 2009). An important finding 

from our work (Chapter 3) is that participants who noticed the robot tutor's gaze cues performed 

shown that the gaze is a powerful communicative cue without the observer's awareness. For example, 

in an object selection game, Mutlu et al. (2009) showed that participants could read and interpret 

unconscious leakage cues from the gaze of the robot directed toward objects or locations in the 

environment. Additionally, the authors showed that gaze cue led to better performance and even better 

performance with Robovie, which is more human-like than Geminoid. Palinko et al. (2015) found that 

mutual gaze can implicitly facilitate effective turn-taking in a dictation scenario using the I-cub robot. 

The plausible reason for this result is the use of explicit, overt cues from the NAO robot. As previously 

mentioned, the NAO platform used for this research has no articulated gaze. Therefore, it has to turn its 

entire head to communicate gaze while the robots used by Mutlu et al. (2009) and Palinko et al. (2015) 

have articulated eyes. Such robots can provide covert signals, with a gaze cueing that is effective even 

without reaching conscious awareness, while NAO achieves gaze interaction with an overt cue. 

Furthering our discussion on the role of overt vs. covert cues in learning scenarios, results from Chapter 

3 shows substantial differences between the human and the robot tutor concerning performance, 

participants' perceptions, and participants' awareness of the tutor's gaze cues. 20% of participants 

interacting with the human tutor noticed the helping gaze cues, whereas 60% of participants interacting 

with the robot recognized the tutor's gaze hints (Figure 3-5 (e)). As a result, people performed better 

when tutored by a robot (Table 3-1). Further, we found that persons that noticed the gaze hints of the 

tutor (either human or robot) performed better during the interaction compared to those who did not 

(Table 3-3; Table 3-5). Thus, we identified that the findings are not entirely dependent on the nature of 

the tutors (human or robot) but instead on the legibility of their gaze behaviors, which might depend on  
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different factors. We outlined some of the factors in Chapter 3, section 3.5. 

These include the need to rotate the robot's head to communicate gaze, owing to NAO's lack of 

articulated eyes, the sound produced during the motion of the head, and the curiosity the robot 

awakens (novelty effect). Other factors consist of the dynamics of the human tutor's gaze, which might 

look unnatural when scripted, and the intimacy regulation aspect (Argyle et al., 1973, 1994). This occurs 

during human social interactions. Therefore, the robot's gaze behavior for the NAO platform is 

achieved with large head movements. In contrast, the human tutor's gaze is much subtler, based more 

on the eye movements than on head motion. 

Therefore, as mentioned in section 6.1.2,  a potential interpretation is that the robot's gaze behavior is an 

overt cue. In contrast, the human's gaze is a covert cue that affects its communicative effectiveness in 

assisting the player during collaborative tutoring. We suggest that future work should delve more on 

this perspective to investigate the role of covert vs. overt signals and their relevance in learning 

scenarios. Future work should consider comparing our results, preferably with platforms with more 

articulated eye - gaze behavior, and examine how human perception and interpretation of gaze cues 

might differ.  

6.1.4. Sequential Gaze Analysis with Lag-based Methods 

In Chapter 5, we used the lag-based method to investigate complex sequences of gaze behavior between 

a child and a robot in a collaborative tutoring task. Lag sequential analysis is a common approach used 

to identify behavior pairs that follow each other (Bakeman and Quera, 1995; Faraone and Dorfman, 

1987). The lag sequential method has previously been used to examine behavioral patterns in various 

research domains (Montague and Asan, 2014; Robinson et al., 2003; Woods et al., 2010). However, to our 

knowledge, there are still no studies that have used lag-based methods to analyze nonverbal 

communication in human-robot interaction research. Therefore, the work described in Chapter 5 is 

among the first studies in human-robot interaction to investigate the sequences of gaze interaction 

between humans (child) and robots during a tutoring interaction.  We applied both event-based and 

time-based lag methods to examine gaze interaction between a child and a robot during the interaction. 

In our case, the event-based analysis answers the question of how robot and child gaze events follow 

each other during the interaction, irrespective of the time component. The time-based approach 

responds to the timing of the child's gaze in response to the robot's gaze behavior, distinguishing the 

association between gaze pairs in a different time window. 

127 

 

 

different factors. We outlined some of the factors in Chapter 3, section 3.5. 

These include the need to rotate the robot's head to communicate gaze, owing to NAO's lack of 

articulated eyes, the sound produced during the motion of the head, and the curiosity the robot 

awakens (novelty effect). Other factors consist of the dynamics of the human tutor's gaze, which might 

look unnatural when scripted, and the intimacy regulation aspect (Argyle et al., 1973, 1994). This occurs 

during human social interactions. Therefore, the robot's gaze behavior for the NAO platform is 

achieved with large head movements. In contrast, the human tutor's gaze is much subtler, based more 

on the eye movements than on head motion. 

Therefore, as mentioned in section 6.1.2,  a potential interpretation is that the robot's gaze behavior is an 

overt cue. In contrast, the human's gaze is a covert cue that affects its communicative effectiveness in 

assisting the player during collaborative tutoring. We suggest that future work should delve more on 

this perspective to investigate the role of covert vs. overt signals and their relevance in learning 

scenarios. Future work should consider comparing our results, preferably with platforms with more 

articulated eye - gaze behavior, and examine how human perception and interpretation of gaze cues 

might differ.  

6.1.4. Sequential Gaze Analysis with Lag-based Methods 

In Chapter 5, we used the lag-based method to investigate complex sequences of gaze behavior between 

a child and a robot in a collaborative tutoring task. Lag sequential analysis is a common approach used 

to identify behavior pairs that follow each other (Bakeman and Quera, 1995; Faraone and Dorfman, 

1987). The lag sequential method has previously been used to examine behavioral patterns in various 

research domains (Montague and Asan, 2014; Robinson et al., 2003; Woods et al., 2010). However, to our 

knowledge, there are still no studies that have used lag-based methods to analyze nonverbal 

communication in human-robot interaction research. Therefore, the work described in Chapter 5 is 

among the first studies in human-robot interaction to investigate the sequences of gaze interaction 

between humans (child) and robots during a tutoring interaction.  We applied both event-based and 

time-based lag methods to examine gaze interaction between a child and a robot during the interaction. 

In our case, the event-based analysis answers the question of how robot and child gaze events follow 

each other during the interaction, irrespective of the time component. The time-based approach 

responds to the timing of the child's gaze in response to the robot's gaze behavior, distinguishing the 

association between gaze pairs in a different time window. 

GENERAL DISCUSSION



128 

 

Using the lag-based methods to examine gaze interaction between the child and the robot during the 

tutoring activity, we found the following: 

 The robot gaze significantly impacts child gaze behavior during tutoring interactions. Thus, 

understanding the robot's gaze behavior and its impact on children's gaze during interaction can 

contribute to successful robotic interventions in tutoring settings.  

 There are different gaze patterns — sequences for children in the Socially attentive group and children in 

the Non - socially attentive group. 

 Appropriate sequences of gaze behaviors between a child and a robot can lead to effective child-robot 

tutoring interactions.  

 Proper timing of the response of the child's gaze to the robot's gaze can lead to effective child-robot 

tutoring interactions. 

 Understanding the dynamic nature of the robot-child gaze patterns adds to robot behaviors, leading to 

more positive experiences during child–robot tutoring. 

 

There is a growing body of research on nonverbal communication to improve human-robot interaction 

(Admoni et al., 2016; Kompatsiari et al., 2017). In the future, these studies can incorporate lag sequential 

analysis methods to evaluate robot-based interventions in different domains. Lag based methods would 

especially be useful for robots intended to act as trainers to children with autism spectrum disorder 

(ASD). For instance, Tapus et al. (2012) found that children with ASD show spontaneous social gaze 

interactions in response to robot behavior compared to human interactions. We suggest that lag-based 

methods can be applied to investigate gaze patterns for children with autism and compare with gaze 

behavior for typically developing children. Such gaze patterns evaluations can inform the development 

of computational models that can help diagnose and evaluate ASD. Therefore, future studies could go 

beyond measuring the frequency or duration of non-verbal behavior to understand intricate patterns 

during interactions. Understanding the significance of nonverbal communication in human-robot 

interactions may influence design guidelines, especially for the robot in the educational and social 

training context. 

6.1.5. Laboratory vs. Field Studies 

In this dissertation, we conducted both lab-based and field-based studies. The user studies described in 

chapters 3 and 4 are laboratory-based studies conducted in the social robotics lab at TU/e. The final 

experiment (Chapter 5) was a field study conducted at an elementary school in Barcelona with children 

of the same class in a room often used as a class by the children. We identified various benefits and  
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limitations to these two different experiment locations:  

It was possible to control the setting and potential confounding variables to a higher degree in the 

laboratory. Furthermore, it was easier to use more instrumentation; for example, in Chapter 3, we fitted 

the participants with eye trackers to register their gaze data. However, a limitation of the lab-based 

study is the restrictive nature of these environments, which decreases the validity of the research 

findings to real tutoring settings. Thus, the conclusions from these studies may not necessarily represent 

how people and robots or children and robots will behave in the real world. Therefore, the mutual 

benefit of the investigation in the school is that it more accurately revealed children's interactions with 

robots in the naturalistic setting—a class in which, eventually, the robot could be used in the role of a 

tutor.  

However, conducting a field study is much more challenging compared to lab-based studies—for 

example, we experienced technical challenges during setup—and loss of data. There is also a need for 

additional resources—more people—and time required to carry out the investigations. While there are 

challenges as mentioned, a significant benefit of the field study at the school with a whole classroom of 

children contributes to the bigger goal of how a robot might work in a real tutoring environment. 

6.2. Limitations 

This work presented in this dissertation has several limitations that should be noted to improve future 

work. In the following subsections, we discuss the participant profiles (age, gender, and culture), the 

interaction scenario and robot platform (NAO), behavioral coding, and human-controlled experiments. 

6.2.1. Participants’ Profiles  

There are three points to be noted about the profiles of the participants for the user studies discussed 

below: 

Age:  The user study in Chapter 3 involved adult participants between the ages of 18 and 33 years 

recruited from TU/e university. In Chapter 4, children participants were between the ages of 4 and 11 

from a daycare center, including children of staff at the TU/e university. The study in Chapter 5 

involved a homogenous group, a whole class, and children who were either 7 or 8 years. While we 

found that gaze cues could be applied to improve outcomes in both a child and adult context, we made 

various observations about how children and adults interact with a robot tutor and how they perceive 

the tutor's gaze. To some extent, we observed that age did influence the capacity of children to read 
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help from gaze with older children being more aware of the tutor's intent and interpreting gaze 

accurately. 

In comparison, some younger children were not able to accurately interpret the robot tutor cues despite 

noticing them. For example, in the children experiments (chapters 4 and 5), we observed a few children 

who proceeded to select different cards despite noticing that the robot tutor was looking at a particular 

card, which was not the case for the adult participants. These observations could be attributed to social 

cognitive theories of development—such as perspective-taking and agency attribution (Zwickel, 2009)— 

which are fascinating to study with robots in the future. This work provides initial findings on the 

ability of people (adults and children) to read and attribute intentions to a robot's gaze during a 

tutoring task. Future work should examine more in details regarding how adults and children interact 

with robots, mainly focusing on the subjective and participants' judgments of robots in a tutoring 

context. 

Cultural - language: Gaze behavior is sensitive to cultural context and language (Argyle et al., 1973; 

Kleinke, 1986). We conducted the studies in different countries— the Netherlands and Spain —and, 

therefore, cultural differences associated with gaze behavior may have influenced the findings. The 

participants in Chapter 3 were mainly from Europe- Dutch, Asia, and Africa. Most of the children 

(Chapter 4) were of European-Dutch and Asian backgrounds. In Chapter 5, all the children were 

Catalan—Spanish native speakers. While we included participants from different backgrounds, we did 

not explore these cultural differences. Thus, future work should address this gap provided gaze is 

known to be highly culturally dependent. 

Gender: Rese

people produce and respond to gaze cues (Argyle et al., 1994; Kleinke, 1986). In all our studies, we 

included participants of different genders; however, we did not balance the gender of participants or 

evaluate the impact of gender on our findings.  

Future studies should consider investigations on how diverse populations, cultures, languages, gender, 

and age impact interactions with robots. In the final group of children (Chapter 5), there were two 

children with autism spectrum disorder (ASD). However, we did not compare the differences in 

behavior between these children with typically developing children. Future work should also consider 

examining differences in gaze interactions between these groups of children. 

6.2.2. Interaction Scenario and the Robot Platform 

All the studies described in chapters 3 through 5 involved a board game activity. Participants were 

required to find pairs of matching cards in the presence of either a human or a robot tutor. The task 
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involved a face-to-face interaction, a board game on a table, primarily involving easy cognitive 

competencies and easy manipulative motor competences (manipulating the cards).  

The NAO platform adopted for this research (Softbank, 2013) (see Figure 1-3) has no articulated eyes 

and is, therefore, incapable of eye movements. Instead, the NAO robot relies on head turns to indicate 

gaze direction. From our preliminary findings, we found that people can follow the orientation of 

NAO's head and its movements to judge gaze direction (see appendix A). In addition, in Chapter 3, we 

found that participants noticed the gaze cues of the robot tutor significantly more compared to those of 

the human tutor. Therefore, our findings support that robots such as NAO, without movable eyes, can 

provide gaze communication through appropriate head movements/facial orientation. These findings 

add to prior works that have found that robots without movable eyes can also communicate gaze 

direction. For example,  Cuijpers and Van Der Pol (2013) measured the region of eye contact with NAO 

and concluded that perception of gaze direction with NAO is similar to that of a human. 

However, the variability in appearance and capability of the robot's eyes is a significant aspect to 

examine in future studies. Previous research in human-robot interaction has used robots with varying 

levels of physical capabilities to study gaze interactions. These platforms range from simple cartoon-like 

robots to remarkably lifelike humanoids. For example, looking at the work of Mutlu et al. (2009), the 

authors compared the perception of "leakage cues" across two platforms:  Robovie and Geminoid 

robots. Their findings show that participants perceived gaze cues more effectively with Robovie, which 

is more humanlike than Geminoid. 

Consequently, future studies should explore whether the registered improvements, either in task 

performance and participants' experiences (perceived presence and likeability), can be achieved in 

different interaction scenarios and with different platforms.  Future work should consider comparing 

our findings, preferably with platforms with more articulated eye gaze behavior, and examine how 

human's perception and interpretation of gaze cues might differ. For example, as earlier mentioned, 

robots with articulated gaze might be able to provide more covert signals compared to NAO, which 

provides more overt/explicit gaze cues. Based on social psychological literature, the gaze is highly 

linked to context (Argyle et al., 1973; Kleinke, 1986)  and, therefore, how humans perceive gaze. It is, 

therefore, important to note that our findings are based on a specific interaction task—the board game 

scenario with a particular robotic platform (NAO).  Therefore, whether the conclusions of these studies 

would generalize to other tasks, for example, remains unknown. 
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6.2.3. Behavioral Coding and Analysis 

In chapters 4 and 5, we used observational methods to investigate simultaneous gaze-based interaction 

between a child and a robot in a collaborative tutoring activity. It is important to note that the 

behavioral system and coding scheme are context and platform-dependent and should be adapted to be 

useful for other HRI studies. However, the overarching categories more related to the theoretical 

framework of the gaze-based communicative behavior can be applied to a broader range of studies on 

human-robot gaze interaction. All coding in chapters 4 and 5 were carried out by a human coder using 

the observer XT 14 software (Zimmerman et al., 2009). While the observer XT helps to automate the 

coding process to a great extent and ease the coding process, there are still reliability concerns - errors 

associated with human coding. 

One issue relates to the accuracy of the timestamps of the gaze events from the coding. For example, to 

examine mutual gazing - between the child and the robot (see Figure 4-6 and  Figure 5-6 for mutual gaze 

visualizations), we selected the instances when the Child_look_robot and Robot_look_child behaviors 

from child -robot observations co-occur. We suggest that future work can modify our scheme to define 

how long an overlap is needed to count as a mutual gaze. Depending on the accuracy of timestamps, 

frequency, and duration of mutual gaze, events can change. Besides, from the eye-tracking, the gaze 

often goes back and forth between the target and another object at a very high speed (milliseconds), 

which is not possible to achieve through human coding. 

6.2.4. Human-Controlled Experiment 

One more limitation of our work is the use of human control on some behaviors of the robot. While the 

sequencing and timing of the NAO head movements occurred automatically depending on the entered 

card code, the researchers had to control the robot behaviors, including the initial card reading and the 

verbal feedback behaviors. Whereas participants (Chapter 3) said they perceived the robot behaviors to 

occur naturally and autonomously, future studies can implement fully autonomous and intelligent 

applications to perform human-controlled behaviors in our experiments. For example, computer vision 

methods that can help detect when the card is correct or incorrect and gaze tracking to the locations of 

the human to provide more intuitive and responsive gaze behaviors. 

6.3. Open Questions and Future Work  

In this section, we discuss two open challenges that future work should take up towards designing 

effective gaze mechanisms for robots in the educational setting. While, in this dissertation, we have 

examined these issues to an extent, there are still open problems that need further investigation. 
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6.3.1. Timing of Gaze Behavior   

In this dissertation, we have strived to investigate design guidelines for effective gaze behavior to build 

capable robot tutors. The gaze is a complex communicative cue involving many aspects that influence 

how it is perceived and interpreted. There are different facets to consider when designing gaze cues for 

a robot from the communication context to the particular robot's behaviors. Timing is a crucial aspect 

that impacts how people perceive gaze information. In our case, to design gaze behavior for NAO 

(Figure 3-4), we followed a systematic process that involved gaining a theoretical grounding on gaze 

interaction as it occurs in human interactions and preliminary observations of people interacting in the 

same scenario in the laboratory settings. We played the robot gaze motions to different cards on the 

board and asked participants how they perceived the head directions and timing of gaze behavior— 

natural, too fast, or too slow. We programmed the head movements of NAO based on these subjective 

reports and with the timing regarded as more natural. 

However, from participants' perceptions (Chapter 3), we recorded diverse responses from participants 

concerning how they perceived the direction, timing, and intent of the robot tutor's head movements 

(gaze). A few of the participants reported they noticed the robot's head movements but felt as if it was 

following their tries rather than directing their attention to the matching card, missing the informative 

content of the tutors' gaze. Based on these reports, we identified that the readability of the gaze cues 

could have been compromised by wrong timing, letting the participants (implicitly) assume the tutor 

was performing gaze-following rather than gaze-cueing. To address these reports, in the last study 

(Chapter 5), we reduced the delay of the robot's head movements—reaction time—towards the first 

card (referred here as Card1). We also programmed the robot to give repeated short glances towards the 

matching card rather than a prolonged stare. In the previous studies, the robot was looking at the 

matching card for a long duration. However, in the final evaluation, we modified that so the NAO 

glanced twice at the matching card. 

While we addressed the issue of timing to an extent, future work should examine the temporal aspects 

of gaze and movements in human-human interactions to build more realistic interactive robot gaze 

behaviors. Therefore, we recommend further analysis of the eye-tracking data sets (human-human and 

human-robot data) collected in Chapter 3 to investigate micro-level details of the interactive player-

tutor-looking behavior. For example, to investigate responsive gaze behavior to either the robot or the 

human tutor during head turns or gaze shifts. The data can also reveal complex interaction sequences of 

gaze patterns to gain a better understanding of the differences between human-robot and human-

human communication. Future studies should also investigate whether people perceive the robot's gaze 

timing in the same way as they do with humans, which we were not able to determine from our 
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evaluations. Such works can utilize and extend our findings based on – time-based lag method to 

investigate the proper timing of human response behavior to the robot behavior to be able to use the 

social cues from the robot effectively. Additionally, for future improvements to our gaze behavior 

design and NAO communication capabilities, it would be important to include a gaze tracker to detect 

gaze directions of the human to create more intuitive, natural robot responses.   

6.3.2. Gaze and Other Social Cues 

In chapters 3 and 4, we examined gaze behavior in isolation from other social cues that form natural 

communicative interactions. At the beginning of the game, the tutor (human or robot) verbally 

provided instructions and the rules of the game to participants. During the entire play, the tutor silently 

gazed at different cards on the table in Help Setup. The tutor remained silent without providing any 

gaze cues in the No_Help case, only looking towards the participant until the game ended. While 

findings from these studies showed that participants—adults and children—improve their performance 

by utilizing the gaze help from the tutor, singling out gaze is a significant limitation for this research. 

In social interactions, gaze occurs in coordination with other cues such as speech, gestures, body 

movements, touch, and facial expressions (smiling). Consequently, in Chapter 5, we enriched the robot 

tutor with a friendlier approach by combining verbal feedback with gaze cues. In this case, the robot 

tutor informed the children whether the card was wrong or correct after every try. Moreover, the robot 

deployed expressive gestures of the arms and hands, emphasizing verbal communication in the 

instruction section with pre-programmed explanation gestures and during the game. Also, the robot 

tutor accompanied the verbal feedback with winning or losing gestures. However, a limitation of our 

study design is we could not quantitatively establish the impact of these added social cues—verbal 

feedback—gestures in comparison to gaze, or as a combination gaze and spoken interaction on 

participants' performance and judgments. The reason is that the robot tutor provided verbal feedback in 

both game sessions (Gaze and No_Gaze condition). However, from our observations and children's 

perceptions (in Chapter 5), we found that most children would not make a new attempt in the game 

until the robot tutor gave them feedback on whether the card was correct or incorrect. 

Similarly to the initial studies' (chapters 3 and 4) subjective reports, we found that most of the 

participants expected that the tutor would use verbal cues to help them in the game. Equally was the 

case with adult participants in Chapter 3—at least eighteen (18) of all the twenty (20) participants in 

both the human and robot conditions said they expected verbal/vocal/audio help from the tutor. We 

assume these expectations were grounded in verbal-based communication when the tutor introduced 

the activity at the beginning of the session. Therefore, we can establish that, possibly, the gaze in 

combination with feedback can improve the credibility and naturalness of the human-robot 
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evaluations. Such works can utilize and extend our findings based on – time-based lag method to 

investigate the proper timing of human response behavior to the robot behavior to be able to use the 

social cues from the robot effectively. Additionally, for future improvements to our gaze behavior 

design and NAO communication capabilities, it would be important to include a gaze tracker to detect 

gaze directions of the human to create more intuitive, natural robot responses.   
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by utilizing the gaze help from the tutor, singling out gaze is a significant limitation for this research. 

In social interactions, gaze occurs in coordination with other cues such as speech, gestures, body 

movements, touch, and facial expressions (smiling). Consequently, in Chapter 5, we enriched the robot 

tutor with a friendlier approach by combining verbal feedback with gaze cues. In this case, the robot 

tutor informed the children whether the card was wrong or correct after every try. Moreover, the robot 

deployed expressive gestures of the arms and hands, emphasizing verbal communication in the 

instruction section with pre-programmed explanation gestures and during the game. Also, the robot 

tutor accompanied the verbal feedback with winning or losing gestures. However, a limitation of our 

study design is we could not quantitatively establish the impact of these added social cues—verbal 

feedback—gestures in comparison to gaze, or as a combination gaze and spoken interaction on 

participants' performance and judgments. The reason is that the robot tutor provided verbal feedback in 

both game sessions (Gaze and No_Gaze condition). However, from our observations and children's 

perceptions (in Chapter 5), we found that most children would not make a new attempt in the game 

until the robot tutor gave them feedback on whether the card was correct or incorrect. 

Similarly to the initial studies' (chapters 3 and 4) subjective reports, we found that most of the 

participants expected that the tutor would use verbal cues to help them in the game. Equally was the 

case with adult participants in Chapter 3—at least eighteen (18) of all the twenty (20) participants in 

both the human and robot conditions said they expected verbal/vocal/audio help from the tutor. We 

assume these expectations were grounded in verbal-based communication when the tutor introduced 

the activity at the beginning of the session. Therefore, we can establish that, possibly, the gaze in 

combination with feedback can improve the credibility and naturalness of the human-robot 
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interactions. However, how to integrate the design of these social cues to impact learning outcomes—

performance—participants' judgments—is still an open question. Therefore, future work should look at 

how different nonverbal and verbal behaviors could be combined to create more intuitive interactions 

with robots, particularly in tutoring and social training. For example, Boucher et al. (2012) showed that 

a robot could use gaze to support its speech in a cooperative task. Thus, in the design of human-robot 

tutoring interaction, we recommend further research on a combination of gaze with other non-verbal 

cues to foster the efficacy of the robot either in tutoring or trainer roles. 
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Chapter 7. Conclusion 

Robots will play a significant role in society, be it in health, entertainment, education, manufacturing. 

Amongst these domains, robots hold great potential in education and therapeutic training for children 

with special needs. In this dissertation, we aimed to investigate the human-robot gaze mechanisms to 

inform the design of robot behavior as a facilitator during tutoring interactions. Towards our goal, we 

conducted a series of user studies with children and adult participants both in a laboratory setting and 

in a regular classroom. First, we investigated gaze as a mechanism for directing attention during 

human-robot tutoring activities(chapters 3 and 4). Subsequently, we examined the concepts of mutual 

coordination—gaze-following and complex sequences of gaze behavior and their impact on children's 

performance and judgments within robot tutoring interactions(chapters 4 and 5). 

The results of the user studies provide new insights and design recommendations for how to build 

effective, gaze behavior for robot tutors to impact learning outcomes positively. In Chapter 3, we found 

that participants perform significantly better when a robot tutor provides gaze-based hints during the 

tutoring activity than when the tutor does not offer such cues. We also found that people noticed the 

robot tutor's gaze hints more often compared to those of the human tutor. As a result, participants 

performed significantly better with the robot tutor compared to the human tutor. In Chapter 4, we 

found that children perform better and feel more engaged when the robot provides gaze cues and 

establishes mutual gaze during the interaction. Furthermore, we found that more mutual gaze 

interaction between the child and the robot increases children's awareness of robot tutors' intentions in 

a tutoring activity. 

The study described in Chapter 5 is among the first studies in human-robot interaction that investigates 

the sequences of interaction between the robot and children in tutoring interactions. The study 

combines observational and lag sequential methods to capture the complexity of the dynamics of child-

robot interaction, including complex gaze sequences between the child and the robot. The analysis of 

coordinated sequences and directions of gaze behavior provides a deeper understanding of whether, 

how, and under which conditions human partners—children—take advantage of robots' nonverbal 
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gaze prompts. We found that successful sequences of gaze interaction between the child and robot 

tutors can facilitate better performance during the child- robot tutoring interactions.  

We outline the contributions of this dissertation in Section 7.1 and a closing remark in Section 7.2. 

7.1. Contributions 

7.1.1. Methodological Contributions 

This research adopts a multi-modal measurement and analysis approach. It combines observational 

analysis, objective measurement techniques, including eye-tracking, subjective (self-report), and lag 

sequential methods. Table 7-1 provides a detailed list of these contributions.  

Table 7-1 Methodological contributions  

Chapters 3, 
4, and 5 

An experimental board game design to study how gaze-based interaction can be applied to improve 
interaction outcomes both in performance (task execution) and participants’ judgment (e.g., 
perceived presence and likeability) in the context of tutoring, coaching, and therapy. 
 

Chapters 3 
and 4 

Simultaneous measurement of human and robot gaze, to improve the analysis of the HRI. Use of 
synchronized simultaneous observations of both the robot and the human’s behavior to reveal 
precise patterns of gazing behavior and to describe and understand the complete phenomenon of 
human-robot communication.  
 

Chapter 3 Eye-tracking data to investigate intricate gaze patterns - interactive player-tutor looking behavior 
(i.e., gaze-following, joint attention), to gain an understanding of the differences between human-
robot and human-human nonverbal communication.  
 

Chapter 4 Observational analyses based on the behavioral systems and coding schemes both for robot and 
child behavioral units. The observational analyses include the gaze pattern (as particular meaningful 
sequences of coordinated behaviors) as a unit of analysis. 
 

Chapter 5 Implementation of sequential analysis methods in human-robot interaction to unravel the complex 
dynamics of child-robot interaction, which is a necessary part of developing successful robotic 
interventions in tutoring and therapy settings. 
 

7.1.2. Theoretical Contributions 

The theoretical contributions provide the basis for gaze-based interaction design to improve 

robot-based educational interventions. This work contributes three facets of new knowledge: designing 

gaze-based cues in the context of tutoring, comparisons between human tutors and robot tutors, and 

intricate patterns of gaze-based interaction during child -robot tutoring activities. Table 7-2 provides a 

detailed list of these contributions. 

CHAPTER 7
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Table 7-2 Theoretical contributions 

Chapter 3 Evidence that participants perform better with fewer tries to complete the card-matching activity 
when the tutor (either human or robot) provides gaze cues during gameplay than when the tutor 
does not give the gaze cues. 
 
Evidence that participants perform better with fewer tries to complete the game with the robot 
tutor than with the human tutor. 
 
Evidence that participants look more into the tutor’s face when the tutor (human or robot) 
provides gaze cues during gameplay than when the tutor does not provide the gaze cues. 
  
Evidence that the participants look more into the robot tutor’s face than to the human tutors’ face 
during the gameplay interaction. 
 
Evidence that participants notice the gaze cues (awareness of the tutor’s intention to help) more in 
the robot condition than in the human condition. 
 

Chapter 4  Evidence that children perform better with fewer tries to complete the card-matching activity 
when the tutor provides gaze cues than without gaze cues from the robot tutor. 
 

Chapters 
 4 and 5 
 

Evidence that children look more into the robot tutor’s face when the tutor provides gaze cues 
during gameplay than without gaze cues from the robot tutor. 
 
Evidence that children establish more eye contact with the robot tutor when the tutor provides 
gaze cues during gameplay than without gaze cues from the robot tutor. 
 
Evidence that more occurrences and higher durations of coordinated (mutual gaze and gaze-
following) between the child and the robot tutor during gameplay increase the children’s 
awareness of the robot’s intent to assist, which, in turn, improves the task-solving performance 
regarding accuracy. 
 

Chapter 5 Evidence that successful sequences of coordinated gaze behavior between the child and the robot 
during gameplay increases children’s knowledge of the helping cues from the robot, which, in 
turn, improves the task-solving performance regarding accuracy. 
 

 

7.1.3. Practical Contributions  

The main practical contributions of this dissertation are the design and development of the board card 

game setting and the design of the robot’s communicative behavior. Table 7-3 provides a list of these 

contributions. 

Table 7-3 Practical contributions  

Chapters 3, 4  and 5 The design and development of a board game as a tool in education and therapy. 
Chapters 3, 4  and 5 The guidelines for gaze-based interactive behavior design –in diverse platforms. 
Chapters 3, 4 and 5 The development of gaze-based communication for the NAO robot. 
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7.2. Closing Remarks 

The findings from this dissertation provide recommendations for the design of credible and effective 

gaze behavior for robots in educational settings (tutoring and social training) to improve learning 

performance. Apart from the findings of the user studies, the main contributions of this dissertation 

include; First, an experimental framework to study simultaneous gaze interaction during human-robot 

tutoring activities. Second is a coding scheme developed to measure child-robot interaction with an 

emphasis on coordinated and sequential gaze sequences between children and robots. The third is the 

use of simultaneous observational and lag-based methods to examine coordinated and interaction 

sequences of gaze between children and robots, helping unravel the dynamics of child-robot interaction 

in a tutoring setting. The lag-based method, in particular, provides an opportunity to look at more 

complex gaze sequences, which is a necessary part of developing successful robotic interventions in 

tutoring and therapy settings. This dissertation also has several limitations, which we have outlined and 

open challenges that inform future research directions towards designing effective gaze behavior for 

robots in social training and tutoring settings. 
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Appendix A. Board Game Design 
 

This section presents a preliminary study designed to examine how people perceive gaze cues and head 

angles directed towards different target positions on a table when a human and a robot (NAO) are 

sitting against each other as in board game scenarios. The findings from this study informed the design 

of the board game layout and card arrangement and the overall design of interaction settings between 

the human and robot used to conduct the studies in Chapters 3 through 5. 

Experimental setup  

The experimental setup was as shown in Figure A-1(b). The participant and NAO sat at the two sides of 

a table facing each other. The table was approximately 80 cm in width, and the height of the table was 

72 cm. A board grid with the card positions resembling a memory game was fixed on the table. The 

layout had 18 squares (8*8cm) organized in six (6) columns and three (3) rows. The 18 squares 

corresponded to the 18 card positions for the game. The squares were 10 cm apart in depth (y-axis) and 

6 cm apart in width (x-axis).  The layout was 600 mm in width and 900 mm long. 

To measure the head angles, we placed NAO on a small desk 56 cm in height at “Stand-init” pose (0, 0). 

The design grid had six squares in the x-direction, which was from the left to the right side of NAO, and 

three squares in the y-direction, which was the depth direction of NAO. The distance between NAO 

and the closest square position was approximately 20 cm away, and the furthest at the corner was about 

60 cm.  We attached a laser beam on the mid-section of the NAO head and adjusted it to point at the 

middle of the layout, using the “look at” module in the Choregraphe program. We estimated the head 

pitch and head yaw angles for all the target positions using the motion screen on Choregraphe.  6 

Position= {HeadYawAngleVal, HeadPitchAngleVal} 

NAO’s coordinate system is as shown in (Figure A-1(a)). The HeadYawAngleVal of NAO’s gaze 

direction is defined as the angle between the positive y-axis and a line drawn from the center to a fixed 

position. The yaw angle of the y-axis is 0, and a positive head yaw angle value is on the left side of 

NAO. NAO head yaw angles range from -119 to 119 degrees. The HeadPitchAngle of NAO’s gaze 

direction is the angle between the xy plane and a line drawn from NAO’s head location to a target 

square. The pitch (head joint front and back) angle increases from 0 to 29.5. For the setup, the highest  

 
 

6 This work is largely based on the following publication(Mwangi et al., 2016)  153 
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angle pitch value used was 24± degrees for the two middle positions in the first row. The highest yaw 

angle was 48± for position 1 and -48± for position 6. For the second row, the angle pitch decreases to 

10±1 for the middle positions. The pitch angle decreased with an increase in the yaw angle for the 

positions on the sides. 

 

                                                   
(a)                                                                           (b) 

Figure A-1 (a) NAO coordinate system (b) schematic  illustration of the setup 

Procedure 

Six students from the university participated in the preliminary study. Three were female, and three 

were male. The robot was placed on a small table 56 cm tall at (0, 0) with its face directed to the face of 

the person (Figure A-2(a)). The participant sat on a chair, which was adjusted to give an eye-height 

position with the robot. The distance between the robot and the participant was approximately 110 cm. 

The experimenter informed the participants of their role and gave them instructions regarding the 

experiment. We implemented a Java algorithm to turn NAO’s head randomly to the 18 positions on the 

layout.  Each participant interacted with the robot only in one trial. When the robot moved its head to a 

certain location, the participant wrote a number between 1 and 18 on a post-it and placed it where they 

perceived the robot was looking on the layout. Each trial lasted for about 5 minutes. 

Implications for Design of the Board Game Layout 

From the graph (Figure A-2 (b)) , we found that people are better able to perceive the square positions 

correctly more for the card locations that are in the row closest to NAO, i.e., when the head pitch angle 

is higher (24±2), and there is less depth in the y-direction), which is approximately 20 cm from NAO. 

The ability to perceive seems to lessen with the increase in depth. For example, the number of 

participants who perceived the gaze correctly decreased rapidly when the rows were far from NAO.  
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The number of correct perceptions was lower in Row 2 compared to Row 1 and continued to lessen for 

the third row, which is approximately 60 cm away from NAO for this layout. An interesting 

observation from the result is when NAO is looking at positions on its right. The participants were 

better able to perceive more than when the robot was gazing at the locations on its left. Observers were 

also able to correctly perceive the positions in the middle of the layout more. Observations also show 

that participants understood head yaw angles quite better as opposed to head pitch angles for this 

robot. However, with the increase in depth, the perception of yaw information seemed to lessen. The 

(Figure A-2(c)) shows the final gaze board design based on participants perceptions of the gaze cues of 

the NAO robot. We placed 12 cards on the first two rows (Row 1and Row 2) — 6 for each row — nearest 

to NAO and 2 cards in the middle positions of the third row farthest from NAO.  
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Figure A-2 (a)  Participant marking the card positions NAO was looking at on the board game (b) Gaze perception 

results for NAO: the number of participants who perceived the robot gaze correctly for each card location: Row 1; 

Row 2; Row 3. (c) The design of the board game based on the findings in (b) — 14 cards placed on the board layout, 

6 cards placed in Row 1; 6 cards placed in Row 2, and 2 cards placed in the middle positions of Row3 (d) The final 

interaction setting design and the board game showing a human participant and a robot sitting across each other —

(Chapter 3) (e) The robot setup in the classroom — (Chapter 5) (f) A child playing the matching card game and 

interacting with the robot tutor during the tutoring game activity in the classrom. 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 
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Appendix B. Questionnaire 
 

In this section, we present the study questionnaire used to evaluate participants' perceptions regarding 

either the human or the robot tutor and the tutoring style (Chapters 3). 

 

Dear Participant 

I am undersigned, currently undertaking a Ph.D. Degree in Interactive and Cognitive Environments at 

the Eindhoven University of Technology. My research pertains to the use of social robots for the 

educational training. We are designing behaviors for social robots, and we would like you to assist in 

improving their designs. 

Procedure 

There are two sessions in this experiment, and you are kindly requested to answer the questions in the 

survey regarding each of the sessions. The whole survey will take approximately 8 minutes of your 

time. Please complete all of the items. Your participation in this study is voluntary, and all responses 

and data collected will be used only for the intended purpose of the research and will be treated in the 

strictest of confidence. Your name or any other personal identification will be not be collected or 

recorded at any time during the study. 

Participant's Responsibilities 

I voluntarily agree to participate in this study. I have the following responsibilities: perform 

experimental tasks, and answer the questionnaire to the best of my ability. I have read the conditions of 

the experiment, and I hereby acknowledge the above and give my voluntary consent: 

Date______________________________ 

Participant signature______________________________  

Please direct any inquiries concerning this survey to: 

PhD Student: Eunice N. Mwangi 

Contact e-mail:  e.n.mwangi@tue.nl /njeri.eunice@gmail.com  

Supervisors: Prof. Emilia Barakova, Prof Matthias Rauterberg 
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* Required 

Part 1: Demographic data 

1. You are: * 

Mark only one oval. 

Female 

Male 

2. Your age: * 

 

Part 2: Experiment Questions 

3. To what extent do you agree/disagree with the following statements about the task you 

performed during the experiment: * Mark only one oval per row. 

 

 

 

 

 

 

Completely 

Disagree 
Disagree Neutral Agree 

Completely 

Agree 
N/A 

I enjoyed this task 

I found the task hard 

It was important for me 

to do a good job 

I would like to continue 

with this task 

I found this task easy to 

understand 

I have done a task like 

this before 

I needed help in this task 
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Experiment: First Session 

4. Please rate the following statements about the behavior of the tutor: * Mark only one oval per row. 

 

 

Completely 

disagree 
Disagree Neutral Agree 

Completely 

agree 
N/A 

The tutor was 

pleasant 

The tutor was kind 

The tutor was 

friendly 

The tutor was 

likeable 

The tutor was 

attentive 
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5. Please rate the following statements about your interaction with the tutor: *  

Mark only one oval per row. 

 

 

Completely 

disagree 
Neutral Disagree Agree 

Completely 

agree 
N/A 

The tutor presence was 

obvious to me 

My presence was 

obvious to the tutor 

The tutor caught my 

attention 

I caught the tutors 
attention 

I was easily distracted 

from the tutor when other 

things were going on 

I remained focused on 

the tutor throughout our 

interaction 

The tutor did not receive 

my full attention 

The tutor behavior 
caught my attention 

I noticed the tutor 's help 
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Experiment: Second Session 

6. Please rate the following statements about the behavior of the tutor: * Mark only one oval per row. 

 

7. Please rate the following statements about your interaction with the tutor: * Mark only one oval 

per row. 

 

 

Completely 
disagree 

Disagree Neutral Agree 
Completely 

agree 
N/A 

The tutor was 
pleasant 

The tutor was kind 

The tutor was 
friendly 
The tutor was 
likeable 
The tutor was 
attentive 

Completely 
disagree 

Disagree Neutral Agree 
Completely 

agree 
N/A 

The tutor presence was 
obvious to me 
My presence was 
obvious to the tutor 
The tutor caught my 
attention 
I caught the tutors 
attention 
I was easily distracted 
from the tutor when other 
things were going on 
I remained focused on 
the tutor throughout our 
interaction 
The tutor was not 
attentive to my problems 
during 
I only focused on my 
task throughout the 
session 
I noticed the tutor's help 
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Interactive Social Behaviors for the Tutor 

8. Please list the kind of cues that you observed in the tutor behavior that helped you identify the 

matching card: * 

 

9. Please list the kind of cues you think might be effective in improving the tutor's interactive 

behavior: 

 

10. Any other comments about the study 

 

Thank you for participating in this study 

 

Post-Experiment Interview 

 

The facilitator conducted a brief post-experiment interview with the participants. The facilitator asked 

the participants the following questions: 

Q1:  Did you notice the tutor's help? YES/NO; if yes, how did the tutor help you? 

Q2:  What behavior /cues did you expect the tutor would use to help you during the game? 

Q3:  How did you perceive the robot's head movements:  were they natural, too fast, or too slow? 

Q4:  Did you consider the behavior of the robot tutor to be automatic? 
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Appendix C. Experiment Protocol 
 

In this section, we present the experimental protocol and questionnaire for the child - robot study 

described in Chapter 5.  

PROTOCOL NAO MARGALLÓ  

    First name: _______________      

    Age: ______ 

    Consent:  YES 

    Date:    ___ / ___ / _______                             

    Start time (getting in): _____ / ______                           End time (getting out): ____ / _____ 

    Facilitator: Eunice/ Andreu / Marta 

Presentation (Facilitator) 

   "Hello, thank you for taking part in this activity.  

We will play two rounds of this game. You must play on your own. You will have a tutor 

who will give you the instructions. After the first round, we will have some time outside of 

class, a couple of minutes, and then we’ll enter the second part. 

Here you have the board game and your tutor who will give instructions for the game." 

Round_1 NO HELP 

Instructions Robot: 

"Hello, welcome to this session of play. My name is Maca, and I am your tutor. 

I have a task for you. You have to find pairs of identical cards on the board. First, you pick up 

a card, and you turn it over, and then pick a second card. If the cards do not match, you turn 

them upside down so that the pictures are hidden and start again. If they match, you remove 

the two cards and keep them close to you. 

You have to find all pairs with the smallest number of attempts, selecting as few letters as 

possible.  

NH / H          
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You have to play alone; I cannot help you now. 

Please go ahead and choose the first card!" 

Round_1 Questionnaire: 

1- Was the game difficult?  

Not at all / A bit difficult / Neither easy nor difficult / Easy / Very easy 

2- Have you ever played before?   YES/NO 

3- What was the robot doing while you played? ________________________________ 

      _______________________________________________________________________ 

Round_2: HELP 

Instructions Robot: 

"Now we'll play another game of making pairs. 

Remember, you must find all pairs with the least number of attempts by selecting as few 

letters as possible.  

In this game, we will play together, we will make a team. I’m going to help you.  

Please go ahead and choose the first card! " 

Round_2 Questionnaire: 

1- Was the game difficult?  

Not at all / A bit difficult / Neither easy nor difficult / Easy / Very easy 

2- What was the robot doing while you played? ________________________________ 

      _______________________________________________________________________ 

3- The robot, did it want to help you? YES / NO  

HOW? ____________________________ 

Questionnaire at the End of the Game: 

1- Have you ever played this game before?   YES/NO 

2- Did you like playing?      

Not at all / Not much / Neither liked nor disliked playing / I liked / I liked it a lot 
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Goodbye: 

Great. Thank you very much. We appreciate that you wanted to come and play. We need it to 

learn how to program the robot to make it more useful. Thank you so much! 

 

 PROTOCOL NAO Margalló 

    First name: _______________      

    Age: ______ 

    Consent:  YES 

    Date:    ___ / ___ / _______                             

    Start time (getting in): _____ / ______                           End time (getting out): ____ / _____ 

    Facilitator:  Eunice/ Andreu / Marta 

Presentation:  

      "Hello, thank you for taking part in this activity.  

We will play two rounds of this game. You must play on your own. You will have a tutor 

who will give you the instructions. After the first round, there will be time outside of class, a 

couple of minutes, and then we will enter for the second part. 

Here you have the board game and your tutor who will give instructions for the game." 

Round_1: HELP 

Instructions Robot: 

"Hello, welcome to this session of play. My name is Maca, and I am your tutor. 

I have a task for you. You have to find pairs of identical cards on the board. First, you take a 

card, and you turn it over and then a second card. If the cards do not match, you turn them 

upside down so that the pictures are hidden, and start again. If they match, you remove the 

pair and keep it close to you. 

You have to find all pairs with the least number of attempts, selecting as few letters as 

possible.  

H / NH      
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In this game, we will play together, we will make a team. I know where the cards are placed. 

I’m going to help you.  

Please go ahead and choose the first card! " 

Round_1 Questionnaire: 

1- Was the game difficult?  

Not at all / A bit difficult / Neither easy nor difficult / Easy / Very easy 

2- What was the robot doing while you played? ________________________________ 

 _______________________________________________________________________ 

3- The robot, did it want to help you? YES / NO  

HOW? ____________________________ 

Round_2: NO_HELP 

Instructions Robot: 

"Now we'll play another game of making pairs. 

Remember, you must find all pairs with the least number of attempts by selecting as few 

letters as possible.  

You have to play alone; I cannot help you now. 

Please go ahead and choose the first card! " 

Round_2 Questionnaire: 

1- Was the game difficult?  

Not at all / A bit difficult / Neither easy nor difficult / Easy / Very easy 

2- What was the robot doing while you played? ________________________________ 

    _______________________________________________________________________ 

3- The robot, did it want to help you? YES / NO  

HOW? ____________________________ 
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Questionnaire End Game: 
3- Have you ever played this game before?   YES/NO 

4- Did you like playing?      

Not at all / Not much / Neither liked nor disliked playing / I liked / I liked it a lot 

Closing and Farewell: 

Great. Thank you very much. We appreciate that you wanted to come and play. We need it to 

learn how to program the robot to make it more useful. Thank you so much! 
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Appendix D. User Study Data  
Below we present each participant's details, including age, gender, awareness of tutor’s gaze 

cues and performance (number of tries and duration(s)). We also provide gaze behavior data 

regarding frequency and duration of mutual gaze and gaze following patterns for the child - 

robot study described in Chapter 5.  

Table D-1 Children details and performance (Chapter 5) 

Participants Gender Age Order 
Noticed_ 
Gaze 

Tries_ 
Gaze 

Tries_ 
No_Gaze 

Duration_ 
Gaze 

Duration_ 
No_Gaze 

P01 Girl 7 H_NOH No 22 16 250.71 147.58 

P02 Boy 7 H_NOH Yes 10 15 194.36 114.21 

P03 Girl 7 H_NOH No 46* 21 453.24 214.51 

P04 Girl 7 H_NOH Yes 17 11 287.55 168.73 

P05 Boy 7 H_NOH No 15 12 128.03 106.17 

P06 Boy 7 H_NOH No 17 12 233.16 135.87 

P07 Boy 7 H_NOH No 15 11* 187.58 192.49 

P08 Boy 8 NOH_H Yes 9 12 154.52 140 

P10 Boy 8 NOH_H No 14 15 146.21 122.12 

P11 Girl 7 NOH_H No 11 26 101.1 316.88 

P12 Girl 7 NOH_H Yes 15 19 186.38 184.68 

P13 Girl 7 NOH_H No 17 15 227.16 185.25 

P16 Girl 7 NOH_H No 24 29 303.4 378.1 

P17 Boy 8 NOH_H No 15 18 142.91 173.84 

P18 Girl 7 NOH_H No 13 14 130.23 121.45 

P20 Boy * H_NOH No 14 24 132.2 259.25 

P21 Boy * H_NOH No 16 15 208.1 150.31 

P22 Girl 8 H_NOH Yes 11 19 144.74 169.5 
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Table D-2 Mutual gaze (MG) data (Chapter 5) 

 
Gaze 
Condition 

No_Gaze 
Condition 

Participants Frequency 
Total 
Duration 

Min 
Duration 

Max 
Duration 

% 
Duration Frequency 

Total 
Duration 

Min 
Duration 

Max 
Duration 

% 
Duration 

P01 3 2.54 0.37 1.47 0.57 1 1.27 1.27 1.27 0.62 

P02 21 52.35 0.30 10.31 14.52 7 6.87 0.33 2.00 3.44 

P03 4 5.24 0.23 2.37 1.09 1 1.94 1.94 1.94 0.76 

P04 26 39.97 0.13 4.94 10.07 6 14.21 0.60 5.61 6.67 

P05 7 15.18 0.67 4.10 4.44 2 1.84 0.53 1.30 1.06 

P06 12 29.90 0.21 5.11 6.72 8 20.55 0.70 4.54 8.29 

P07 13 25.92 0.32 4.08 8.13 12 30.60 0.30 5.17 8.66 

P08 16 34.42 0.20 8.87 12.86 5 5.81 0.57 2.00 2.50 

P10 8 17.46 0.40 5.77 7.82 3 4.47 0.03 2.84 0.85 

P11 3 0.93 0.17 0.47 0.54 8 11.81 0.50 3.07 3.83 

P12 19 16.02 0.10 1.87 6.18 5 6.44 0.57 1.90 1.65 

P13 11 25.02 0.13 6.97 8.36 2 8.04 0.93 7.11 1.68 

P16 8 15.15 0.43 6.41 4.17 2 5.34 1.07 4.27 1.73 

P17 2 7.44 0.17 7.27 3.49 3 2.04 0.47 1.03 0.80 

P18 4 11.56 1.27 6.34 6.06 2 1.40 0.50 0.90 0.77 

P20 11 15.54 0.13 3.30 3.92 11 17.95 0.47 4.20 5.90 

P21 14 52.02 0.60 11.04 10.43 9 15.01 0.60 5.07 7.88 

P22 18 32.48 0.10 9.11 7.94 11 16.45 0.37 3.87 7.78 
 

17
4 

 

T
ab

le
 D

-2
 M

u
tu

al
 g

az
e 

(M
G

) d
at

a 
(C

ha
p

te
r 

5)
 

 
G

az
e 

C
on

di
tio

n 
N

o_
G

az
e 

C
on

di
tio

n 

Pa
rt

ic
ip

an
ts

 
Fr

eq
ue

nc
y 

To
ta

l 
D

ur
at

io
n 

M
in

 
D

ur
at

io
n 

M
ax

 
D

ur
at

io
n 

%
 

D
ur

at
io

n 
Fr

eq
ue

nc
y 

To
ta

l 
D

ur
at

io
n 

M
in

 
D

ur
at

io
n 

M
ax

 
D

ur
at

io
n 

%
 

D
ur

at
io

n 

P0
1 

3 
2.

54
 

0.
37

 
1.

47
 

0.
57

 
1 

1.
27

 
1.

27
 

1.
27

 
0.

62
 

P0
2 

21
 

52
.3

5 
0.

30
 

10
.3

1 
14

.5
2 

7 
6.

87
 

0.
33

 
2.

00
 

3.
44

 

P0
3 

4 
5.

24
 

0.
23

 
2.

37
 

1.
09

 
1 

1.
94

 
1.

94
 

1.
94

 
0.

76
 

P0
4 

26
 

39
.9

7 
0.

13
 

4.
94

 
10

.0
7 

6 
14

.2
1 

0.
60

 
5.

61
 

6.
67

 

P0
5 

7 
15

.1
8 

0.
67

 
4.

10
 

4.
44

 
2 

1.
84

 
0.

53
 

1.
30

 
1.

06
 

P0
6 

12
 

29
.9

0 
0.

21
 

5.
11

 
6.

72
 

8 
20

.5
5 

0.
70

 
4.

54
 

8.
29

 

P0
7 

13
 

25
.9

2 
0.

32
 

4.
08

 
8.

13
 

12
 

30
.6

0 
0.

30
 

5.
17

 
8.

66
 

P0
8 

16
 

34
.4

2 
0.

20
 

8.
87

 
12

.8
6 

5 
5.

81
 

0.
57

 
2.

00
 

2.
50

 

P1
0 

8 
17

.4
6 

0.
40

 
5.

77
 

7.
82

 
3 

4.
47

 
0.

03
 

2.
84

 
0.

85
 

P1
1 

3 
0.

93
 

0.
17

 
0.

47
 

0.
54

 
8 

11
.8

1 
0.

50
 

3.
07

 
3.

83
 

P1
2 

19
 

16
.0

2 
0.

10
 

1.
87

 
6.

18
 

5 
6.

44
 

0.
57

 
1.

90
 

1.
65

 

P1
3 

11
 

25
.0

2 
0.

13
 

6.
97

 
8.

36
 

2 
8.

04
 

0.
93

 
7.

11
 

1.
68

 

P1
6 

8 
15

.1
5 

0.
43

 
6.

41
 

4.
17

 
2 

5.
34

 
1.

07
 

4.
27

 
1.

73
 

P1
7 

2 
7.

44
 

0.
17

 
7.

27
 

3.
49

 
3 

2.
04

 
0.

47
 

1.
03

 
0.

80
 

P1
8 

4 
11

.5
6 

1.
27

 
6.

34
 

6.
06

 
2 

1.
40

 
0.

50
 

0.
90

 
0.

77
 

P2
0 

11
 

15
.5

4 
0.

13
 

3.
30

 
3.

92
 

11
 

17
.9

5 
0.

47
 

4.
20

 
5.

90
 

P2
1 

14
 

52
.0

2 
0.

60
 

11
.0

4 
10

.4
3 

9 
15

.0
1 

0.
60

 
5.

07
 

7.
88

 

P2
2 

18
 

32
.4

8 
0.

10
 

9.
11

 
7.

94
 

11
 

16
.4

5 
0.

37
 

3.
87

 
7.

78
 

 

APPENDIX D



175 

 

 

Table D-3 Gaze-following data (Chapter 5) 

Participants Frequency 
Total 
duration 

Minimum 
duration 

Maximum 
duration 

%observation 
duration 

% 
Analyzed 
duration 

Analyzed 
duration Duration 

P01 4 4.5 0.37 1.97 1.02 1.8 250.71 443.24 

P02 23 72.04 0.67 10.31 19.98 37.06 194.36 360.49 

P03 6 8.11 0.23 2.37 1.69 1.79 453.24 480.9 

P04 21 56.09 0.41 9.34 14.14 19.51 287.55 397.68 

P05 7 20.19 0.93 6.61 5.91 15.77 128.03 341.63 

P06 12 37.75 0.9 5.55 8.49 16.19 233.16 444.79 

P07 11 34.05 1.39 5.17 10.68 18.15 187.58 318.9 

P08 11 51.14 0.73 8.87 19.11 33.09 154.52 267.66 

P10 8 22.77 0.3 14.96 10.19 14.03 162.27 223.4 

P11 7 16.14 0.01 6.42 9.29 15.95 101.15 173.63 

P12 18 48.35 0.63 4.9 18.67 25.94 186.38 258.95 

P13 9 29 0.67 6.97 9.68 12.76 227.16 299.49 

P16 9 17.85 0.23 6.41 4.92 5.88 303.4 363.09 

P17 2 7.87 0.43 7.44 3.69 5.51 142.91 213.14 

P18 6 14.16 0.1 6.34 7.43 10.87 130.27 190.57 

P20 12 18.32 0.4 3.3 4.62 13.86 132.2 396.85 

P21 14 54.62 0.83 11.04 10.95 26.25 208.1 498.91 

P22 20 55.36 0.7 9.11 13.54 38.25 144.74 408.96 
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Appendix E. Coordinated Gaze Patterns 
 

This section presents 18 visualizations of child – robot (NAO) observations in the gaze condition 

(Chapter 5). The time event plots show the interaction of the gaze behavior between the child and the 

robot during the Gaze condition, i.e., when the tutor provides gaze-based cues during the interaction. 

The upper row of each visualization shows the behaviors of the child, and the bottom row shows the 

gaze and the verbal behaviors for the robot tutor.  The length of the boxes indicates the duration, and 

the occurrences of similar colored bar rectangles show the frequency of the events of each behavior. 

From the visualization, we can see the sequences and coordination of child and robot gaze during the 

interaction. 
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Figure E-1 Child –Robot coordinated behavior visualizations for 18 children in Gaze condition 
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