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Summary

Safety of automated vehicles: design, implementation, and
analysis

Road transport demand is ever increasing while road capacity is limited. Addi-
tionally, the societal quest for safer and environmentally friendly transportation is
growing. Intelligent transportation systems can contribute to improve both road
throughput and safety. The primary reason for this is that driver-related error
is the most critical factor leading to accidents. Currently, several commercially
available driver assistance systems already help to improve road safety by assisting
the driver. Automated and cooperative vehicles can reduce human driving tasks
even further and are therefore considered a promising way to improve road safety
and traffic throughput.

However, to develop automated and cooperative vehicles, a research and devel-
opment platform is required. The vehicle has to be able to perform the driving
tasks normally executed by the driver. In this research, an automated and coop-
erative vehicle is developed by converting a simple electrical vehicle—a Renault
Twizy. This vehicle performs the basic automotive functions such as drive, brake,
and steering but has no additional on-board intelligence or actuators. Additional
sensors and actuators have to be installed to achieve full vehicle automation.
These add-on features have to be designed with safety in mind to guarantee safe
vehicle operation. To address this safety need, a hardware design is proposed that
integrates safety features, such as sensor monitoring and a reliable communication
structure.

As hardware safety features alone are not sufficient to guarantee safe automated
vehicle operation, the real-time application that processes sensor signals, plans
control actions, and executes these actions also integrates safety measures. A
functional software architecture has been developed in this research that includes
sensor monitoring, actuator monitoring, and automated driving mode selection
based on the status of the sensors and actuators as well as user inputs. The
designed architecture enables modular automated driving system development
while ensuring safe vehicle operation. In case of any automated system fault, all
control outputs are disabled and the safety driver regains control of the vehicle.



Besides actual automated driving system faults, it is also possible that the
safety driver tries to intervene by, for example, grabbing the steering wheel or
depressing the brake pedal. In these cases, the control system should also be
able to detect the interruptions and react accordingly. This thesis shows both
in simulation and with experiments that user interventions can be detected by
applying a combinations of techniques, such as model-based fault diagnosis.

To validate the designed hardware and software systems before commencing
road tests, a common practice in automotive industry is to perform hardware-
in-the-loop tests. To this end, a hardware-in-the-loop test setup is developed,
consisting of two connected computers. One computer executes the real-time con-
trol model as in the automated Renault Twizy and the other computer executes
a virtual representation of the automated Renault Twizy. The virtual represen-
tation consists of a multibody model to mimic the vehicle dynamical behavior
as well as sensor and actuator blocks to model their characteristics. To simulate
and evaluate the system as a whole, the real-time computers are coupled with the
exact same physical communication interfaces as in the real automated Renault
Twizy. Several identification experiments are conducted to obtain the model
parameters, such as tyre and suspension properties. The dynamical behavior
of the whole model is validated using data obtained from full-scale driving test
experiments. These tests show that the model is capable of accurately predicting
the dynamical behavior of the real automated Renault Twizy. In contrast to
the real automated Renault Twizy, the sensors and actuators as well as vehicle
properties can be easily manipulated in the virtual representation. Therefore, the
hardware-in-the-loop setup is used to test the behavior of the designed control
system safety features in a controlled environment. The setup can also be used
for performance evaluation and optimization of the automated controllers.

In addition to fault diagnosis of the control system, correctness of the environ-
mental perception system is also important to verify. Fusing observations from
different sources leads to one coherent image of the surroundings, but it can also
be used to detect sensor faults with cooperative driving. By combining radar,
vehicle-to-vehicle communication, and vehicle sensor data, it is possible to detect
when incorrect information is received from the preceding vehicle or when a wrong
object is tracked. Simulations and experiments show that the proposed method
is able to detect faults, thereby avoiding unsafe cooperative driving situations.

The main contributions of this work are on the safe operation of an automated
vehicle. It covers the steps from hardware and software design to validation and
testing. The result is an available set of tools to further develop automated and
cooperative vehicles, consisting of a research and development platform on which
automated controllers can be tested in a safe and controlled manner. In addition,
a hardware-in-the-loop setup is available that can be used to validate and improve
the automated and cooperative algorithms before commencing road tests.
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1.

Introduction

The major factor (94 percent) leading to fatal crashes in road transportation is
human driving error (Singh 2015). Out of the human driving error 41 percent
is classified as recognition error and 33 percent as decision error. Automated
Driving Systems (ADSs) have the potential to significantly reduce the recognition
and decision error as sophisticated systems can be more vigilant, competent, and
reliable than the average human driver. In addition to safety, ADSs can also
increase driver comfort, road throughput, and efficiency by taking over driving
tasks (Van Arem et al. 2006). To help ADSs in becoming a reality, this thesis aims
to contribute to the safe operation of automated vehicles. This chapter provides
an introduction to the field of ADSs and is organized as follows. Section 1.1
briefly introduces ADSs and explains the development process involved with
ADSs. Section 1.2 identifies a set of current unsolved technological challenges
within the field of ADSs. Section 1.3 addresses these challenges by formulating
and listing the thesis objectives and contributions. Finally, Section 1.4 presents
the thesis outline.

1.1. Driving Automation System

The main goal of driving automation is to increase safety and comfort of the pas-
sengers and other traffic participants. Unlike human drivers, driving automation
systems are never tired or distracted from driving as they are based on predefined
rules. The performance of driving automation systems may also be better than a
human driver as they have multi-sensor environmental perception systems, faster
decision making and responses, and more precise execution of commands.

1.1.1. Driving automation levels

The level of driving automation is classified by the Society of Automotive Engi-
neers (SAE) in their J3016 standard (SAE International 2018). The standard
defines 6 levels ranging from level 0: no driving automation to level 5: full driving
automation. A schematic overview of all these levels is depicted in Figure 1.1.
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1.1. Driving Automation System

Levels 1 and 2 are considered driver assistance systems and belong to the
domain of Advanced Driver-Assistance Systems (ADASs). An example of such
a system is Adaptive Cruise Control (ACC) which utilizes range sensors such as
camera and radar to measure relative distance and velocity to a preceding vehicle.
Based on this sensor info, the system tries to maintain a desired inter-vehicle
distance by control of the driveline and brakes.

A system belongs to the domain of ADSs when it is classified as level 3 or higher.
An example of such a system is an autonomous or self-driving vehicle, which
perform all aspects of the driving task, such as accelerating/decelerating, steering,
and monitoring of the driving environment. The main difference between ADASs
(levels 1 and 2) and ADSs (levels 3 through 5) is the location of responsibility for
driving. With ADASs, the human driver must monitor the driving environment,
whereas with ADSs, the ADS has to monitor the driving environment and alert
the driver in case of a situation that may lead to discontinued ADS operation.
On level 3, the driver must respond to the take-over request by regaining control
of the vehicle. On levels 4 and 5, the ADS must also be capable of performing
the fallback and bring the vehicle to a safe stop in case the driver does not regain
control of the vehicle.

1.1.2. Road vehicles safety

The Intelligent Transport Systems (ITSs) designed to make traffic safer and more
comfortable may also introduce new safety hazards. A safety hazard can, for
example, be a malfunctioning component or a software bug, but it can also be
a driver neglecting to monitor the driving environment while it was supposed
to do so. With malfunction, a temporary interruption of the system’s ability
to perform a desired function is defined. The malfunction may lead to a failure
in which a permanent interruption of the ability of the system to perform the
desired function is achieved. Both malfunction and failure result from one or more
faults which is defined as the deviation of a system property from the standard
condition. In safety critical systems, faults must be detected as early as possible
to prevent undesired and possibly unsafe behavior.

An approach to detect sensor faults is by implementing redundant sensors.
Sensor faults can be detected by comparing the sensor value with the redundant
sensor value. The hardware redundancy design approach makes the design more
expensive and complex. Next to hardware redundancy, analytical redundancy
can be employed to detect faults. With analytical redundancy, a mathematical
model of the system is used to predict sensor measurements, and faults can be
detected by comparing the sensor output with the predicted output.

Random hardware failures and systematic design failures are covered by the
ISO 26262 standard (ISO 26262 2011). This functional safety standard is designed
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1. Introduction

for electrical and/or electronic systems in series production vehicles and covers
aspects from functional safety concept to design. Functional safety is defined
as how the system should detect and react to failures and errors. The standard
defines requirements and provides guidance to avoid and control random hardware
and systematic faults that could violate the safety goal.

Figure 1.2 depicts the main steps of the ISO 26262 design process, known as
the safety life cycle. The design process starts with the item definition that de-
scribes the function at the vehicle level from a functional non-technical perspective.
Based on the item definition, the list of possible malfunctions leading to hazards
are identified. The hazards are categorized based on exposure, severity, and con-
trollability. Each hazardous event is assigned to a certain Automotive Safety
Integrity Level (ASIL) ranging from A to D. The strongest safety requirements
are on ASIL D. For each hazardous event, safety goals must be formulated that
serve as a basis for the functional safety concept. The safety goals are addressed
by defining appropriate safety measures in the functional safety requirements.
The functional safety requirements are refined during the development phase into
technical safety requirements, and all technical safety requirements are allocated
to architectural components, such as hardware and software components. The
safety requirements are tested and validated during the final stages of the design
process.

item definition

hazard and risk assessment

functional safety concept

co
n
ce

p
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en
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p
h
a
se technical safety concept

hardware requirements

hardware development

software requirements

software development

integration, testing, validation

Figure 1.2.: Main steps of the ISO 26262 development process (adapted from (Schild-
bach 2018))

Even in the absence of hardware and software faults in the system as covered
by the ISO 26262 standard, potential hazardous events can happen caused by
functional insufficiencies or by misuse by persons. For example, one can think of a
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1.1. Driving Automation System

system designed for highway driving being employed on urban roads. The imple-
mented system designed for the highway might inadequately react to situations
encountered on urban roads as the driving conditions between these situations
can significantly differ. For instance, on highways the traffic flow is one direction
with the same class of vehicles while on urban roads oncoming traffic and other
type of traffic participants can be encountered that do not match the expected
behavior model of the system.

To address these and other events, the Safety Of The Intended Functionality
(SOTIF) standard (ISO/PAS 21448 2019) has been defined. The SOTIF is com-
plementary to the ISO 26262 standard. The SOTIF classifies all possible scenarios
into four areas: known safe, known unsafe, unknown unsafe, and unknown safe.
Figure 1.3 depicts the four categories. The purpose is to make all unsafe (known
and unknown) scenarios safe, which can be achieved by, for example, limiting
the Operational Design Domain (ODD). The ODD defines the conditions under
which the system is designed to operate, such as weather conditions, geographic
domain, and dynamic scene properties. Known scenarios can be evaluated using
requirement-based testing. To identify and evaluate unknown unsafe scenarios,
the standard recommends various testing approaches, such as test cases with
high coverage of relevant scenarios, fault injection tests, and in the loop testing
of relevant scenarios. Where the SOTIF is designed for ADASs, it can also be
considered for ADSs. Additional steps, however, might be required in the future
as ADSs are currently still in development phase (Khabbaz Saberi 2020).

area 2

area 3

area 1

area 4

safeunsafe

known

unknown

nominal behavior

identified system limitations

edge cases

system robustness

Figure 1.3.: Visualization of the known/unknown and safe/unsafe scenario categories
(adapted from (ISO/PAS 21448 2019))

The highest level on current commercially available vehicles is level 2 (Bigelow
2019). These systems support the driver in longitudinal and lateral control tasks,
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1. Introduction

but the driver should always remain alert and monitor the driving environment.
Driver monitoring is important when systems are released to the public that
require supervision because drivers might get overconfident and rely too much on
the systems. In these cases, severe accidents can happen. Consider for example
the Tesla Model S that was involved in a fatal accident with an automated vehicle
(NTSB 2017) by crashing into a truck that was turning in front of it. The vehicle
was operating under Tesla’s Autopilot software which is an adaptive cruise control
system with automated lane keeping. The camera system of the Tesla was unable
to distinguish the white trailer against a bright lit sky and the radar sensor falsely
assumed the trailer for a construction sign.

Another fatal example with a Tesla operating under Autopilot was with a Tesla
Model X (NTSB 2018a) driving on a highway. The vehicle was following a lead
vehicle on the left lane until it steered out of the lane and entered the gore area
seven seconds prior to the crash. The lead vehicle was lost four seconds prior to
the crash, resulting into the vehicle accelerating onto a crash attenuator. The
crash attenuator was mounted on a concrete median barrier which divides the
main travel lanes from the exit lane. No pre-crash braking or evasive steering
event was detected prior to the crash, indicating that the crash attenuator was
not recognized by the autopilot system as an object.

The first fatal accident with an ADS was with an Uber self-driving test vehicle
(NTSB 2018b). The Volvo XC90 was driving 70 km/h on an urban road when a
pedestrian was crossing the road while walking a bicycle. While the Volvo was
equipped with an auto emergency brake system and a driver alertness monitoring
system from factory, these system were disabled by Uber when the car was driving
with their self-developed ADS. The radar and lidar sensors detected the pedestrian
6 s prior to the crash with different classifications as unknown object, vehicle, and
pedestrian. At 1.3 s before impact, the ADS determined that a braking action
was needed to mitigate a collision. However, auto emergency braking was not
enabled by Uber when the system was under their computer control to avoid
unpredictable vehicle behavior. The safety driver that was monitoring the ADS
was also not informed. Instead, they completely relied on the safety driver to
intervene when the system fails to react appropriately. The safety driver, however,
was monitoring the ADS instead of monitoring the driving environment. Less
than a second before impact, the safety driver intervened by using the steering
wheel. However, too late to avoid the collision with the pedestrian.

1.1.3. Development process

While certain Original Equipment Manufacturers (OEMs) currently test their
automated vehicles on public roads (Herger 2019), there are many unsolved tech-
nical challenges to overcome before ADSs becomes reality. Therefore, several
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1.1. Driving Automation System

academic institutions and research institutes also develop solutions and methods
for testing ADSs. To validate and enhance their ADSs algorithms, a research and
development platform is required. As most commercial vehicles do not provide
complete automated functionality, vehicles have to be modified, which requires
knowledge of the installed sensors, actuators, communication interfaces, and soft-
ware architecture. Hence, support of an OEM would be convenient when building
a research and development platform. However, most OEMs do not share any
information as this is valuable data for competitors. In addition, the information
might pose security risks to the integrity of the in-car systems. Therefore, original
systems will have to be explored and decoded before it is possible to make the
required changes.

As there currently are no state of the art and development standards on how to
develop ADSs, road authorities and certain OEMs publish their vision on safety.
For example, NHTSA (2017) published their vision on safety for ADSs which
covers a design best practices for testing and safe deployment of ADSs. Similarly,
Waymo (2019), General Motors (2018), and Aptiv et al. (2019) published their
visions on safety for ADSs, along with their experiences with developing ADSs.

The verification and validation phase starts after the vehicle is developed. Safety
and validation of ADSs can be a major challenge since the systems are composed of
several hardware components and complex processing algorithms. The admittance
to open roads without the need for an accumulation of road distance is highly
desirable. Kalra and Paddock (2016) indicate that a credible safety argument
requires millions of road miles. Obtaining these road miles are costly and it can
even result in unsafe situations. A safer approach is closed-course testing but
this is not scalable and therefore time consuming. As quality of the data is more
important than the amount of data, scenario based testing can be more valuable
in requiring a safety statement than driving for million of miles. Also scenarios
can be tested which are unsafe or do not exist in current traffic.

No matter what level of sophistication ADSs will achieve, accidents will always
happen. When these accidents involve automated vehicles, questions of liability
will arise. Therefore, a legal framework must be developed for accidents that
happen during automated driving. To cope with this, the Netherlands Vehicle
Authority (RDW), suggests there must be a vehicle driving license (Feddes 2016).
Their view is that with software constantly being updated the vehicles are ever-
changing, and therefore, an one-off admittance is not adequate. Instead, they
propose a performance-based testing approval method consisting of virtual testing,
behavior testing on a closed track, and admittance to open roads with in-use
compliance.

As the human driver is responsible for monitoring of the driving environment
on (levels 1 to 2), safety admittance of ADASs limits to safe operation of the
implemented system. Cooperative vehicles with system as Cooperative Adaptive
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Cruise Control (CACC) also belong to the class of ADASs. CACC systems utilize a
wireless link between vehicle enabling driving with a shorter inter-vehicle distance
compared to a normal driver operated vehicle, thereby increasing road throughput
and driver comfort. However, at these reduced vehicle following intervals, the
driver cannot be considered as a backup and the CACC system must supervise
itself to avoid unsafe driving situations.

On levels 3 to 4, the driver cannot be assumed to be alert at all times and it
might be harder for the driver to notice certain faults, such as a flat tire, as it is
also not actively controlling the vehicle. Therefore, additional safety checks must
be performed by the ADS. A common approach is to use an extensive sensor
set with hardware redundancy similar to those used in aviation (Zolghadri et al.
2014). While this is a workable solution for a research and development platform
in which costs are not most important, it limits full scale deployment. The
additional hardware costs of the ADS must be limited otherwise no one can afford
an automated vehicle. To reduce hardware costs while ensuring safety, smart fault
diagnosis approaches must be developed. Also on levels 3 and 4, it is possible
that the driver tries to intervene the ADSs. These takeover situations must be
reliable detected and the control must be handed over in a smooth transition.

1.2. Challenges in Automated Driving Systems

Several road authorities and OEMs published their vision on safety (General Mo-
tors 2018; Aptiv et al. 2019; NHTSA 2017; Waymo 2019). These documents
provide recommendations and guidelines on how to design safe automated vehi-
cles with high levels of redundancy. However, high levels of redundancy increases
cost and complexity and might not be the optimal solution for a research and
development platform. The actual challenge in designing a research and develop-
ment platform is designing a system that achieves a sufficient reliability level and
includes self-monitoring mechanisms.

All the examples in Section 1.1.2 show why it has the utmost importance to
design a safe and robust ADSs. Succes of a new technology, such as ADSs, can
be prohibited by one example of neglecting safety. Higher levels of safety and
reliability of environmental perception systems may be achieved by including
information from other sources, such as wireless communication. The challenge
that yet has to be solved is the design of safety mechanisms that include the
additional information. The examples also show why testing must be performed
in a careful and safe manner in which, for example, user interventions must be
reliable and fast detected.

Especially with safety-critical systems such as ADSs, verification of the safety
mechanisms is desired before starting road tests. Verification strategies of ADSs
can consists of using virtual prototypes and closed-course testing. To limit the
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time for verification, a layered simulation approach is desired in which the right
level of model fidelity can be selected based on the to be tested use case since
running lower fidelity models is usually less time-consuming.

1.3. Research Objectives and Contributions

Given the aforementioned challenges, this thesis aims to contribute to the safety
aspect of automated vehicles, in particular on how to develop a safe and reliable
test bed for SAE level 3 and beyond driving. In addition, fault detection strategies
are pursued to, for example, detect user interventions or when incorrect infor-
mation is received from preceding vehicles. Consequently, the following research
objectives are defined:

• develop a systematic design approach of a safe and robust research and
development platform by identifying the relevant components for the design
and taking into account the safety aspects required for SAE level 3 and
beyond driving;

• build the research and development platform and verify the design, thereby
ensuring that the automated vehicle is safe to operate;

• develop and validate a simulation framework for testing and validating
automated driving controllers;

• develop fault diagnosis algorithms to detect actuator faults and user inter-
ventions, and deploy and operate them on the research and development
platform; and

• develop fault diagnosis strategies for connected vehicles, including environ-
mental perception systems.

These objectives are addressed through the following contributions:

1. Safe research and development platform design
The first contribution is a systematic design approach in developing addi-
tional features required for automated driving, guaranteeing safe and reliable
vehicle operation. This starts in Chapter 2 with identifying the requirements
for an experimental platform and based on that proposes a set of additional
sensors and actuators. Related to this, the communication architecture with
diagnosis capability is discussed. A functional software architecture is devel-
oped in Chapter 3 to structure the software development. This architecture
ensures safe vehicle operation and handles the automated mode based on
user inputs.
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1. Introduction

2. Design verification of automated vehicles
The second contribution covers the aspect of design verification strategies
for automated vehicles by developing a simulation framework for safety
testing and validating automated driving controllers. The framework, which
is described in Chapter 4, uses a virtual prototype of the research and
development platform. The developed simulation framework can be used in
two different simulation modes: accelerated-time or real-time, which makes
it suitable for requirement generation and refinement, design verification,
and automated controller performance evaluation.

3. Fault diagnosis of actuators
Next to hardware and software faults, an automated vehicle (levels 3 and 4)
needs to detect when a user tries to regain control of the vehicle. Therefore,
in Chapter 5, a method is proposed to detect actuator faults and user inter-
ventions, employing model-based fault diagnosis techniques. The specific
use case here is the steering system. The potential of the developed meth-
ods are illustrated using computer simulations as well as experiments. The
developed methods enable fast and reliable detection of user interventions.

4. Fault diagnosis for connected vehicles
Finally, this thesis contributes to the safety of connected vehicles. Con-
nected vehicles employ a wireless link to share information to other traffic
participants. The wireless link allows vehicles to drive with small inter-
vehicle distances, thereby increasing the road capacity. At these reduced
intervals, the human driver cannot be considered as backup and the sys-
tem must supervise itself to avoid unsafe driving situations. Therefore,
Chapter 6 presents a method used to detect when incorrect information is
received from a preceding vehicle or when a wrong object is tracked. The
presented method applies model-based fault diagnosis principles. Computer
simulations as well as experimental results show that the system is able
to timely detect when incorrect information is received from the preceding
vehicle or when a wrong object is tracked.

1.4. Outline

The organization of the thesis can be presented in a V-cycle design process as
shown in Figure 1.4. Chapter 2 starts with a detailed overview of the base vehicle
selected for the research and development platform to determine the required
changes to achieve full vehicle automation. Based on that, additional hardware
with integrated safety features have been selected and are installed in the vehicle.

Chapter 3 presents the real-time control application which contains all the
algorithms for the automated driving platform, such as host tracking, target
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1.4. Outline

item definition
(Chapter 1,5,6)

functional
safety concept
(Chapters 2,3)

hardware and
software design

(Chapters 2 and 3)

verification tests
(Chapter 4)

vehicle
validation tests
(Chapter 5,6)

Figure 1.4.: Overview of the thesis presented as a V-cycle design process

tracking, and vehicle control. A functional software architecture is presented to
structure the real-time control application. Fault injection tests are conducted
to verify the implemented design. Chapters 2 and 3 have been combined and are
under review for journal publication.

Chapter 4 covers the development of a simulation framework for safety testing
and validating automated driving controllers. The created simulation framework
can be used in two configurations: accelerated-time in which (a part of) the
control system is integrated in the simulation environment and real-time in which
the control system is separate from the simulation environment. The layered
simulation approach enables selection of simulation fidelity based on the use case,
thereby reducing simulation and development time.

Chapter 5, which is based on Hoogeboom et al. (2018), focusses on fault
diagnosis of an automated vehicle. Model-based fault diagnosis is applied to
detect user-interventions as well as actuator faults.

Chapter 6 focusses on fault diagnosis for connected vehicles. Connected vehi-
cles allow driving with short inter-vehicle distances due to the wireless received
information. When the wireless link fails or wrong information is received, this
results in an inherently unsafe situation.

Finally, Chapter 7 summarizes the main conclusions of this thesis and provides
recommendations for further research into these topics.
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2.

Development Vehicle Instrumentation

Abstract - Many vehicles sold today are capable of some level of automated driving.

This number is expected to grow rapidly in the near future as automated driving promises

many benefits, such as improved road safety and reduced traffic congestions. A research

and development platform is required to validate and demonstrate technical feasibility

of the developed automated driving algorithms. This chapter presents a systematic

design approach to convert a small electric vehicle into a demonstrator/test platform

with as objective to comply with SAE level-3 driving. As base vehicle, a Renault Twizy

is selected, which performs the basic automotive features, such as drive, brake, and

steering, but has no additional on-board intelligence or actuators. Since no information

was shared by the manufacturer, steps are presented to decode the original network

structure, consisting of identifying the original functionality, locating the control units,

and decoding the messages being communicated. The additional hardware mounted in

the vehicle to obtain the required automated functionality is discussed, and their safety

features are described.

2.1. Introduction

Automated driving has made a tremendous progress over the past decade as it has
many potential benefits to society, such as reducing the number of traffic accidents
(NHTSA 2016) and improving driver comfort. The level of vehicle automation
in automated cars varies from systems that assist the driver (Advanced Driver-
Assistance System (ADAS)) to systems that entirely take over control of the
vehicle (Automated Driving System (ADS)).

ADSs actuate the vehicle in longitudinal and lateral direction and therefore
control of the drive, brake, and steering system is required. In addition to dynamic
vehicle actuation, control of auxiliary vehicle functions is desired, such as indicator
signals or brake lights. Normally, these control commands are communicated over
bus communication structures on vehicles with drive-by-wire technology. Hence,
drive-by-wire vehicles can easily be controlled by an ADS by sending the right
messages over the bus. This requires system knowledge which is proprietary
information of the Original Equipment Manufacturers (OEMs).
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To enable drive-by-wire on existing vehicles without support from an OEM,
hacking or decoding of existing systems is required, such as self-parking or adaptive
cruise control. Dataspeed (2018), for example, converts a selected set of American-
made vehicles to drive-by-wire capable vehicles that can be used to develop and
test automated vehicle functionality. Similarly, AutonomouStuff (2019) delivers
drive-by-wire controls for a Lexus RX450h. They provide control to core driving
functions as well as ancillary components.

However, when manipulating inputs, safety features of the existing system
might be bypassed and safety of the overall system can not be guaranteed. In
addition, the permitted control actions of the existing system can be limited. For
example, a lane-keeping system designed for highway driving normally requires
small steer corrections with low torque, while parking maneuvers at low speed
usually require large steering angles with high torque. When the lane-keeping
system is used to perform parking maneuvers, the permitted controls can be
limited and the system might react inadequate. An ADS must be aware when the
permitted controls are limited otherwise the implemented controllers may show
unpredictable and/or unstable behavior. In addition, large time delays are not
uncommon in commercial system and these delays can significantly reduce control
performance or even result in instability when not taken into account.

Therefore, unlike many other automated vehicles on the market, a simple
vehicle has been selected as basis for the research platform that does not have
any intelligence or any of the common ADAS functionalities. This vehicle—a
Renault Twizy (Renault 2015)—was selected because of its simple design, electric
drivetrain, and lack of advanced safety features. The body consists of a space-
frame with clip-on panels, enabling installment and access of additional hardware.
The maximum speed of the vehicle is 80 km/h, and the electric range is specified
as 90 km on one charge which should be suitable for a normal day of testing.

The aim of this chapter is to present a systematic design approach in developing
the add-on features required for automated driving guaranteeing a safe and reliable
vehicle operation. It provides insight into the required functionality for automated
driving, and it describes the base vehicle plus the additional instrumentation
needed to convert this vehicle into an automated vehicle. The integrated safety
features in the implemented hardware are explained as well.

The outline of this chapter is as follows. Section 2.2 describes the vehicle that
is used as basis for the research and development platform. Section 2.3 lists the
hardware requirements for the automated driving platform. Next, Section 2.4
describes the additional instrumentation required to convert the basis vehicle into
an automated vehicle. Finally, Section 2.5 summarizes the main conclusions.
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2.2. Renault Twizy

2.2. Renault Twizy

The basis vehicle used as research and development platform is a Renault Twizy,
which is a small two-seated electric vehicle. This vehicle has to be modified to
make it suitable for automated driving. As the Renault Twizy can be considered
as a generic vehicle without any intelligence, the approach to convert this vehicle
to an automated vehicle can be applied to any vehicle. When making changes
to a vehicle, it is required to know how the vehicle works. Therefore, as a first
step identification of the control units and network structure is required. This
section explains the approach. The first step is to identify the control units and
their functionality. After that, the Controller Area Network (CAN) messages
communicated among these control units can be decoded.

2.2.1. Control units

To identify the hardware components and their functionality, a list of the original
control units can be obtained from the manufacturer together with their locations
and communication interfaces. Figure 2.1 shows the hardware components of a
Renault Twizy with their locations and communication interfaces. The original
equipment level and communication structure of a Renault Twizy is simple com-
pared to most modern vehicles, as some modern vehicles can have up to 100 control
units (Möller and Haas 2019). The advantage of the limited equipment level is
that less problems are expected with interference between modules compared to
most modern vehicles. The following subsections explain the components in more
detail. This detailed information is necessary to decode the CAN messages as it
must be clear what information can be expected on the CAN bus.

Power Electronics Block

The Power Electronics Block (PEB) is mounted next to the electric drive motor
and contains the power electronics that drive the three main coils of the 13 kW
(17 hp) electric drive motor. The PEB is a Sevcon Gen4 (Sevcon 2012) controller
that uses CAN bus communication to communicate with other devices in a Renault
Twizy. An accelerator pedal is used to inform the PEB about the requested drive
torque. The pedal sensor contains two potentiometers with different gains and
offsets, enabling sensor diagnosis.

The PEB controller uses up to 330 A or 16 kW in standard configuration and
recuperates up to 70 A or 3.5 kW. These and other configuration parameters
can be changed since the device uses CANopen, which is higher layer protocol
based on CAN. The CANopen protocol enables communication between nodes
of different manufactures. The CANopen protocol defines a set of device and
application profiles and every CANopen device is described by an object dictionary.
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Figure 2.1.: Overview of the Renault Twizy’s original hardware components with their
installed locations and corresponding communication interfaces: vehicle
CAN bus ( ), battery CAN bus ( ), crash signal ( )
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This register has the same structure for all CANopen devices and contains the
configuration and communication parameters. The indices in the object dictionary
can be read and, depending on access rights, also be written. The powertrain
characteristics in terms of regenerative behavior have been changed by making
changes to the object dictionary (OVMS 2018; Jafarnejad et al. 2015) to make
them more suitable for automated driving.

Body Control Module

The Body Control Module (BCM) is mounted above the steering column under
the dashboard and controls and monitors various body electronic functions, such
as the exterior lights and windscreen wipers. The BCM also checks whether the
right coded ignition-starter key is being used to prevent unauthorised vehicle use.
The BCM is not connected to the CAN network and uses a K-line for diagnostic
purposes. This means that to be able to control the indicator and brake lights
this cannot be achieved by software alone. Hardware changes are necessary to be
able to control the indicator and brake lights.

Battery Charge Box

The Battery Charge Box (BCB) is mounted in front of the traction battery case
under the floor and can charge both the high-voltage (60 V) as well as the low-
voltage (12 V) battery. The high-voltage system is used for the driveline, while
the low-voltage system is used to power other electrical components, such as the
heated windscreen, radio, and lighting. The BCB is an Elips 2000W (ies-synergy
2018) and can charge the high-voltage battery with a maximum of 60 V and 40 A
when connected to a power outlet. The BCB can charge the low-voltage battery
with a maximum of 12 V and 25 A while driving. This power limit must be taken
into account when selecting the additional hardware.

Airbag computer

The airbag computer is mounted underneath the seat in front of the electric motor.
The airbag computer uses K-line and is connected to the instrument panel for
diagnostic purposes. The airbag computer is also connected to the BCM and
BCB such that in case of severe accident, both the BCM and BCB are informed.
The BCB will respond to this by opening the main relay, thereby disconnecting
the power supply to the other components.

Battery Management System

The Battery Management System (BMS) is included in the traction battery case
underneath the seat together with the 6.1 kWh lithium-ion 58 V traction battery.
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The BMS monitors the cell voltages and temperatures of the 42 battery cells,
which are arranged in seven modules of six cells each. Based on these parameters,
the BMS communicates the maximum allowed drive and regeneration currents to
the PEB via the battery CAN bus, and the PEB broadcasts this information on
the vehicle CAN bus.

Instrument panel

An instrument panel is mounted on top of the dashboard. This panel informs the
driver about vehicle states, such as velocity, battery state of charge, and estimated
range. The instrument panel obtains these vehicle states via the CAN bus. The
display also contains warning lights for the different nodes to notify the user in
case of a fault.

2.2.2. Decoding CAN messages

With the components and their functionality identified, the remaining part is to
decode the CAN messages being communicated between these devices. While
CAN bus is a standardized protocol, the CAN message IDs and signal information
are manufacturer proprietary information. Therefore, decoding of the CAN mes-
sages is necessary to extract the required signals, such as motor speed, selected
gear, and brake status. The following five step approach can be used to decode
the CAN messages (Hermans et al. 2009):

(i) research, i.e., investigating which control units are present in the CAN
bus;

(ii) interface, i.e., making the physical connection to the CAN bus with a
CAN tool;

(iii) linking identifiers, i.e., disconnecting control units one by one to determine
which identifiers belongs to the control units;

(iv) finding essential data, i.e., identifying data that must be present from a
functional point of view; and

(v) finding the meaning of unknown data.

The decoded CAN network information can be stored in a DBC file. This is a
CAN database format, containing the network nodes, CAN messages and signals
in these messages, signal bit count, physical units and linear conversion formulas.
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2.3. Automated Driving Platform Hardware Requirements

2.3. Automated Driving Platform Hardware
Requirements

The developed vehicle is a research platform which means that the hardware and
software setup evolves over time. The followed design process is therefore not
completely according to ISO 26262, but the most important tools of ISO 26262 are
employed. During the concept phase of ISO 26262, an item definition should be
made, which gives an overview of the function, its nominal behavior, system limits,
as well as its interfaces. The developed vehicle will be used for automated driving
in an urban environment with speeds up to 50 km/h. The aim of the research
and development platform is to achieve Society of Automotive Engineers (SAE)
level-3 driving, which means that the automated driving platform should monitor
its own performance and notify the user in case of a fault, such that the fallback-
ready user can take over control of the vehicle. In other words, fault detection
should be included in the ADS, and the vehicle always has to be occupied with a
fallback-ready user that can intervene or take over control in case of a fault.

Based on the item definition and safety analysis, a functional safety concept is
formulated. This concept is refined during the development phase into the techni-
cal safety concept and the hardware requirements. The six hardware requirements
for the automated driving platform are:

(i) fall back to original functionality must always be possible, which means
that no invasive changes to vehicle CAN bus and/or drive, brake, and
steering system are allowed;

(ii) control of longitudinal and lateral vehicle motion, which means that for
the selected basis vehicle accelerator pedal override and add-on steer and
brake actuator are required;

(iii) add-on hardware components must have fault diagnosis capability, which
means that the components should have integrated self-diagnosis func-
tions, such as range checks or redundancy;

(iv) all vehicle control sensors and actuators must have CAN bus communica-
tion. CAN bus communication is used for its extendibility and high data
transfer reliability properties;

(v) the vehicle should always be occupied by two persons: one to act as a
fallback-ready user who monitors the driving environment and which can
intervene when necessary. The second person controls and monitors the
automated driving system to evaluate whether everything functions as
it should. As such, the fallback-ready user can never be distracted from
monitoring the driving environment; and
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(vi) for development purposes and maintenance, the implemented components
should be accessible for updates and/or repairs.

In addition to the requirements, there is a strong preference to use Commercial
Off-The-Shelf (COTS) components. By using COTS products, time and cost
can be reduced involved with designing and testing custom solutions. However,
some custom solutions are inevitable for complex systems such as a research and
development platform for automated driving.

2.4. Additional Vehicle Instrumentation

Based on the hardware requirements, a considerable amount of additional hard-
ware is needed to realize the research and development vehicle. Storing these
components is normally not a problem for passenger cars as the trunk provides
significant space. The selected basis vehicle, however, has limited space to store
additional components. Borraz et al. (2018) solved the additional instrumenta-
tion placement issue by sacrificing the back seat of the Renault Twizy to place
a rack with control and decision-making systems and batteries to power these
systems. Similarly, New Atlas (2018) adapted the back seat of the vehicle to make
space for the additional components. Sacrificing the back seat was no option for
the research and development platform as it is a safety requirement to occupy
the vehicle with two persons. Therefore, all additional hardware components
are integrated in various places, as is schematically shown in Figure 2.2. The
components are explained in more detail in the following subsections.

Real-time computer

To implement the control software, a real-time computer is required. This com-
puter executes the real-time application that processes sensor information, per-
forms calculations on it, and controls the actuators based on the processed infor-
mation. As real-time computer, an Advantech ARK-3520P is selected (Advantech
2019). This fanless embedded PC is mounted behind the passenger seat in a wa-
terproof box. As operating system, Simulink RealTime is selected, which provides
hard real-time guarantees (Buttazzo 2011) and allows rapid prototyping in a graph-
ical environment. The real-time application runs at 100 Hz, equaling the update
rate of the fastest sensors. Two Softing CAN-AC2-PCI (Softing 2012) interface
boards are installed in the real-time computer to enable CAN bus communication.
Each hardware interface board supports two independent CAN channels. The
other available and supported interfaces on the real-time computer are: three
Ethernet ports, four serial RS-232 ports, and four configurable RS-232/422/485
ports.
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Figure 2.2.: Overview of the additional hardware components of the Renault Twizy
with their installed locations, power supply, and corresponding commu-
nication interfaces: vehicle CAN bus ( ), control CAN bus ( ),
perception CAN bus ( ), RS232 ( )
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The CAN busses in the vehicle are split based on functionality. The following
four CAN busses are defined:

(i) vehicle CAN bus (V-CAN), which is the native vehicle CAN bus, as
described in Section 2.2.2;

(ii) control CAN bus (C-CAN), which interfaces all the components used for
the drive-by-wire functionality;

(iii) perception CAN bus (P-CAN), which interfaces with a front mounted
radar sensor; and

(iv) instrumentation CAN bus (I-CAN), which interfaces with additional de-
vices such as a Nvidia DrivePX2 (not considered in this thesis).

As a consequence, when, for example, a faulty component grounds a CAN bus,
the other CAN busses are not influenced. The real-time computer is connected
to all of them and can act as a gateway relaying information from one bus to
another. The real-time computer is silent on the vehicle CAN bus meaning that
it only listens and it adds no information. This is done to avoid any possible
interference with other nodes on the vehicle bus which might result in erroneous
or unsafe behavior.

CAN hub

All components on a CAN bus need to be physically connected to that bus and
the bus must be terminated on both ends with 120 Ω resistors. For a research and
development vehicle, the number of components connected to a bus and also the
bus routing might change as the project develops. Therefore, to make an adaptable
bus design, a CAN hub is developed that connects all C-CAN devices. The other
CAN busses are point-to-point connections and do not need extra connections.
The CAN hub board can connect up to 11 devices in a star connection and is
mounted in the right-hand storage compartment. Each connector contains a
CAN bus, 12 V power, and a reset signal. The board contains a debug/service
connector on top of the board for diagnostic purposes on which a CAN logger can
be connected to monitor the CAN bus.

CAN node

Besides the serial communication ports, the real-time computer does not have
other I/O capabilities. Therefore, a CAN node is developed which acts as a
CAN to I/O interface for the real-time computer. This CAN node is mounted
behind the right headlamp next to the CAN hub. The CAN node controls the
status LEDs for the fallback-ready user, high-voltage power take-off relay, brake
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light relay, and reads and perform diagnosis of the analog sensor signals, such as
steering torque and brake pressure signal. The node checks whether the signals
lie in their specified range, and if available, compares it with a redundant signal.

Drive system

To control the drivetrain, accelerator pedal take-over is required. An accelerator
pedal position sensor normally consists of two independent signal lines with dif-
ferent values used for fault detection. Therefore, a take-over module is required
which can emulate the accelerator pedal position sensor signal. The take-over
module must have two switched outputs that can be connected to the control
platform or to the accelerator pedal, as fall back to original functionality is a
basic safety requirement (see Section 2.3 requirement (i)).

There are no COTS solutions available as the sensor signal range of the basis
vehicle (0 V to 10 V) was different than normal vehicles (0 V to 5 V). Therefore,
a custom solution is designed. The designed take-over module contains two take-
over relays to switch between normal driving, where the accelerator pedal signal is
connected to the PEB, or automated driving, where the control signal is connected
to the PEB. The take-over relays defaults to the accelerator pedal so that in case
of power outage or fault, the vehicle can still be normally driven. The take-over
module is mounted behind the right headlamp and is connected to the real-time
computer via CAN bus. Integrated self-diagnosis functions and watchdogs timers
are implemented to guarantee safe behavior. The input values of the accelerator
pedal as well as the relay output values are measured and broadcasted on the
CAN bus to be able to detect user interventions and to perform fault diagnosis
of the TPS node.

Steering system

To control the lateral motion of the vehicle, control of the steering system is
required. When a vehicle is equipped with electrical power steering, this motor
can be used to control the steering system (see e.g., Loof 2018). A Renault Twizy
does not have power steering and it can therefore not be electrically controlled by
making use of the power-steering motor. To make the steering column suitable for
control, a custom solution would be to mount an electric motor with gears to the
steering column, similar to Borraz et al. (2018). However, there is an off-the-shelf
solution that makes use of the steering column of a Renault Clio II, which has
column type electric power-steering assist. This column fits in the Renault Twizy
with some minor modifications.

Figure 2.3 shows an overview of the new steering system, consisting of a steering
wheel, steering column, and steering rack. The original steering wheel, steering
axis, and steering rack have not been modified. The electric motor is connected
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to the steering column via a worm gear. To measure the torque exerted on the
steering wheel, the steering column contains a torsion bar with a redundant torque
sensor system. The two analog sensor outputs are processed by the CAN node
which compares both signals and check whether they lie in their specified range.
The steering torque and sensor status are broadcasted on the CAN bus.
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Figure 2.3.: Overview of the steering system

A steering angle sensor is mounted on the steering rack to measure the steering
angle and angular velocity. The sensor is a Bosch LWS3 (Bosch 2014) which
uses two Anisotropic Magneto Resistance (AMR) elements both attached to the
steering column with a different gear ratio. By making use of the Nonius/Vernier
principle, the steering angle can be unambiguously measured over more than
four full steering wheel rotations with an accuracy of 0.1° and angular velocity
resolution of 4 °/s. The sensor is a fault tolerant sensor which means that if one
of the AMR elements fails the sensor is still able to provide a measurement of
the steering angle. Sensor evaluation and fault detection is performed by two
separate micro controllers which supervise each other. The steering angle and
velocity as well as sensor status are communicated via CAN.

To drive the electric power steering motor, a motor controller is used. The
controller is a Maxon Epos2 70/10 (Maxon motor 2017) which can supply 10 A
continuous and up to 20 A peak. The controller is connected to the high-voltage
system of the Renault Twizy as the low-voltage power supply is limited. Commu-
nication between the amplifier and the real-time control platform is performed
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through CANopen.

Brake system

Besides control of the driveline, actuation of the brakes is required to control
the vehicle in longitudinal motion. In case a vehicle has an Electronic Stability
Control (ESC) or Electronic Hydraulic Brake (EHB) system, this can be used to
control the braking system. The Renault Twizy does not have an ESC or an EHB
system and thus control of the brake system requires hardware modifications.
Instead of fitting it with an ESC or an EHB system, a brake actuator is added to
the brake master cylinder. This keeps the original system intact, while mounting
an ESC or EHB system would require modifications to the brake system.

Figure 2.4 shows an overview of the brake system, consisting of a brake motor
that is connected to a cam-follower mechanism via a gearbox. The advantage of
this system is that it does not alter the original brake system, and it is not directly
coupled to the brake pedal system. This means that the cam follower mechanism
can only apply pressure on the brake master cylinder. It can not pull the brake
master cylinder. As a consequence, the fallback-ready user can always operate
the brakes more without additional effort compared to the original situation, even
with automated mode engaged. In case the brake motor or gearbox fails during
a braking operation and the camshaft is locked, the vehicle will slow down to a
full stop. This is assumed to be a safe situation.
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Figure 2.4.: Overview of the brake system assembly

The rotation angle of the camshaft is required to control the brake system.
This angle can be measured with the brake motor encoder. This is, however, a
relative sensor and it will always start at zero after a power cycle. Therefore, an
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absolute sensor is added similar to the one that is used for the steering system.
This avoids problems with power outages during operation. Additionally, the two
sensors are compared to detect mechanical failures of the brake system.

In addition to the camshaft rotation angle, the brake pressure is also used in
the control loop of the brake system. The brake pressure is measured with a
Bosch DS brake pressure sensor (Bosch 2018b, p. 70). The measurement range
of this sensor is 0 bar to 250 bar with an accuracy of ≤ 0.7 percent in the range
0 bar to 35 bar and an accuracy of ≤ 5 percent in the range 35 bar to 250 bar. The
brake pressure sensor uses two internal signal paths, enabling the detection of
offset and amplification errors. In addition, several other self-diagnosis functions
are included. A CAN node processes the analog sensor output and places the
brake pressure and sensor status on the CAN bus.

To drive the camshaft, a Moons TSM23C (Applied Motion Products 2013) step
servo motor is used. This motor combines the motor and controller in one package.
The motor output is coupled to the camshaft through a gearbox, amplifying motor
torque. The Moons TSM23C is connected to the real-time computer via CAN
bus and utilizes the CANopen protocol.

ETSI ITS-G5 modem

To connect with other vehicles, a communication module (Severinson 2018) is
mounted next to the CAN hub. The router is a PC Engines APU2 computer
running the open-source software GeoNetworking (Voronov et al. 2016). The
software stack facilitates IEEE 802.11p wireless communication compliant with
the ETSI ITS-G5 standard (ETSI 2019). The V2X router support Cooperative
Awareness Message (CAM), Decentralized Environmental Notification Messages
(DENM), and custom messages. The CAM message is periodically broadcasted
to other vehicles in the neighborhood and contains basic vehicle information, such
as position, velocity, and acceleration. The DENM message is event-triggered
and is used to alert road users in case of a hazardous event, such as a passing
emergency vehicle.

GNSS receiver

Automated driving requires precise knowledge of the vehicle’s pose in terms
of position, velocity, and attitude to guide the vehicle along a certain path or
trajectory. The required information in terms of a navigation solution can be
obtained from a Global Navigation Satellite System (GNSS) receiver. As GNSS
receiver, an u-blox EVK M8T (u-blox 2018a) is used and is mounted under the
roof. The GNSS update frequency is set to 5 Hz and is communicated with the
real-time computer via a serial RS-232 interface. The acquired precision of the
module is improved from 3 m to 2.4 m (2σ) by using European Geostationary
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Navigation Overlay Service (EGNOS) and an improved antenna. To increase the
navigation solution accuracy further without using a costly RTK-GPS, sensor
fusion of the GNSS and inertial sensors is applied. This is discussed in Chapter 6.

To synchronize a local clock on the real-time computer to the absolute time,
the GNSS receiver provides a precise digital time pulse every second. The local
clock can be used to determine the message age of the wireless received messages
as well as the GNSS time delay resulting from data transmission and internal
processing.

IMU

To measure the inertial signals, an Inertial Measurement Unit (IMU) is mounted
underneath the driver seat near the center of gravity. The IMU is a Bosch
MM5.10 (Bosch 2018a) and measures the following five signals: yaw rate, roll
rate, longitudinal, lateral, and vertical acceleration. The signals are internally low-
pass filtered at 15 Hz. The resulting signals and sensor status are communicated
via CAN bus.

Front facing radar

To detect preceding vehicles and other objects in front of the vehicle, a front
facing radar sensor is mounted at the center of the vehicle behind the front
bumper. The radar sensor is a Bosch MMRevo14 (Bosch 2015) and measures the
relative distance, velocity, and acceleration of objects. The radar has a maximum
range of 160 m and uses four independent receiving channels and digital beam
forming. Figure 2.5 visualizes the sensor coverage. The narrow main antennas
are used to detect vehicles driving in front at long range, and the wide close-
range elevation antennas are used to detect objects at close range. The height
and vertical position of objects can be measured using the elevation antenna,
enabling reliable tracking and classification of objects, even when the objects are
stationary. The radar is able to distinguish the following objects: unknown, car,
motorcycle, pedestrian, and construction element. A maximum of 32 objects can
be simultaneously detected and tracked. The objects are communicated via CAN
bus to the real-time platform with a refresh time of roughly 60 ms.

Power supply

All additional components need a power supply. The power supply to additional
components is switched to ensure that no unexpected events can happen, for
example, during maintenance or when driving the car manually. The low-voltage
power supply of the Renault Twizy has limited electrical power, as explained in
Section 2.2.1, and is not sufficient to power both the steer and brake actuators.
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Figure 2.5.: Radar sensor coverage visualization: ego vehicle outline ( ), main
antenna ( , , ), and elevation antenna ( , )

Therefore, both the steer and brake actuators are powered from the high-voltage
system. To this end, a fused relay box is mounted near the PEB and connected
to the PEB motor output. The relay box outputs going to the brake and steer
system are mounted within small boxed sections on the right side of the vehicle
to prevent interference with the communication and signal lines routed on the
left side of the vehicle.

The CAN hub distributes power to the other additional components besides the
real-time computer. The CAN hub itself is powered via the original accessoires
supply lead, which is fused and ignition-switched. An additional switch is added
in series with the supply wire and mounted on the operator panel to be able
to power-off all additional hardware in case of manual driving. The real-time
computer is powered by a fused constant 12 V power supply. Similarly, an extra
switch is added in series with the supply wire and mounted on the operator panel
to control the power to the real-time computer. The reason to use a always-on
power supply for the real-time computer is to be able to save and retrieve log files
in case of an accident when the Renault Twizy powers itself off, as explained in
Section 2.2.1.

Operator panel

To control and monitor the status and of the automated control system, an
operator panel is required for the fallback-ready user. The operator panel is
mounted on top of the left-hand storage compartment in view of the fallback-
ready user, as can be seen in Figure 2.6. The operator panel contains two toggle
switches: one to power the real-time computer and the other one to power the
additional devices via the CAN hub. In addition, a red emergency switch is
mounted that can be operated in case of an emergency situation. This switch is
connected in series with the CAN hub. When the emergency switch is operated,
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the CAN hub sends a reset signal to the TPS and CAN node putting them in
emergency reset mode, which disables their output. As a consequence, the high-
voltage power take off is disconnected as the CAN node controls the high-voltage
power take off relay.

Figure 2.6.: Operator panel for the fallback-ready user with LEDs to indicate the
automated control system status

To inform the fallback-ready user of the automated driving system status, the
operator panel contains three LEDs. A orange LED is wired to the high-voltage
power take-off relay and indicates whether the 60 V power take-off is enabled. The
red LED indicates ‘system on and disarmed’ and turns automatically on when
the system is booted. The green LED indicates ‘system on and armed’ and goes
on when any automated mode is selected. In that case, the red LED turns off.
When the green LED is on, the system is active and the fallback-ready user must
be alert and intervene when necessary.

Below the operator panel, an Ethernet connector is installed to connect a laptop
to the real-time computer. This connection can be used by the back-seat passenger
to monitor and control the automated drive system. It can also be used to upload
the real-time application to the real-time computer.

2.5. Discussion

Practical implementation of an ADS requires a vehicle equipped with drive-by-
wire technology and additional hardware. Starting with a vehicle that is equipped
with automated features, such lane-keep assist and/or adaptive cruise control, can
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save time to implement drive-by-wire functionality but this requires knowledge
of system limitations and message information. Without the support of an OEM,
this information must be decoded, which is a time consuming task. The presented
research and development vehicle is constructed by using a simple vehicle without
any intelligence or any of the common ADAS functionalities as basis and equipping
it with mainly COTS components. The presented systematic design approach and
vehicle implementation provides valuable insights in how to construct a research
and development vehicle for automated driving and can be used for other candidate
vehicles.
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3.

Safety Framework for Automated

Driving

Abstract - The previous chapter provides an overview of the research and development

vehicle and the additional hardware with its integrated safety features. To operate

the automated vehicle, a real-time application is required that processes sensor signals,

plans control actions, and executes these actions. The integrated hardware features are

however not enough to guarantee safe operation of the automated vehicle. The software

also needs to comply to certain standards. Therefore, an automated driving software

framework is developed, consisting of a layered functional architecture. The layered

approach with the safety framework enables safe development of automated driving

functionality. The designed safety mechanisms are verified using fault injection tests.

3.1. Introduction

Automated driving vehicles are the subject of enormous research interest as they
promise many benefits to society, such as improved road safety and new mobility
solutions. Automated driving requires large amounts of software development as
an Automated Driving System (ADS) must sense the environment, determine its
exact position on a road or map, and need to determine which control actions to
take.

As the complexity of the software increases with the amount of automated driv-
ing functionality, open software platforms and frameworks are emerging, enabling
collaborations and reducing complexity. For example, Apollo (2019) provides an
open platform to autonomous driving, consisting of an extensive collection of mod-
ules starting from automatic predefined GPS waypoints following to geo-fenced
autonomous driving. The system requires a vehicle equipped with drive-by-wire
technology and a selected set of hardware that depends on the chosen architecture.
The selected set of hardware can be a combination of supported sensors, such as
cameras, lidars, and radars. The current implementation heavily relies on lidar
sensors to sense the environment, but they are also planning to release an Apollo
lite version, which relies completely on cameras to achieve Society of Automotive
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Engineers (SAE) level-4 driving. Similar to Apollo, Kato et al. (2018) is an
open-source project to enable self-driving. Their software includes a rich set of
packages and libraries for autonomous driving, including algorithms and packages
for perception, mapping, localization, and planning. Similarly to the Apollo plat-
form, a limited set of hardware is supported and the system requires at minimum
3D map data and lidar sensors. Also, NVIDIA (2019) launched an open platform
series called ‘Drive’, which mainly focusses on environmental perception using
deep learning techniques. Out of the box, only basic functionality is provided
and a limited sensor set is supported. A software development kit is provided to
speed up the development process. Next to highly automated driving, Comma.ai
(2019) enables via retrofit a highway driving pilot using existing vehicles. The
highway pilot system consists of a camera module and car interface. The car
interface reads vehicle states and sends the control commands. The highway pilot
runs completely on dedicated hardware but the software is open-source, such that
changes to the implementation can easily be made.

All the discussed platforms provide automated functionality, but they assume
a drive-by-wire capable vehicle. When this is not the case, vehicle controls (drive,
steer, and brake) along with fault diagnosis, such as sensor and actuator diagnosis,
must be implemented. The discussed platforms have architectures suitable for
environmental perception, but these systems are less suitable for safety-critical
systems requiring real-time guarantees. In addition, a safety layer and cooperative
vehicle control is not included in most of the discussed platforms.

Therefore, a different approach has been chosen in this research to split the
functionality related to vehicle control and environmental perception. The vehicle
controls (drive, steer, and brake), including a safety layer, are implemented on
a real-time computer, and the environmental perception will be implemented
on other systems. To handle the software development in a structured way, a
decomposition of the modules as well as data flows between them can be made.
Such a decomposition is called a functional software architecture which improves
readability, maintainability, and reliability (Faitelson et al. 2018).

The aim of this chapter is to describe the functional software architecture
of the automated driving control platform. The architecture gives an overview
the functional software building blocks for automated driving. By specifying
the interactions and dividing functionality, software blocks can be separately
developed and tested, encouraging collaborations. The systematic design approach
also helps to prevent programming errors.

The outline of this chapter is as follows. Section 3.2 lists the software require-
ments for the automated driving platform. Section 3.3 describes the functional
software architecture used on the real-time control platform. The software ap-
plication is developed in MATLAB Simulink, which is a graphical environment
providing an intuitive development suite for complex systems. Section 3.4 verifies
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the design of the safety framework by performing fault injection tests. Finally,
Section 3.5 summarizes the results and provides conclusions.

3.2. Automated Driving Platform Software
Requirements

Based on the item definition and safety analysis, a functional safety concept is
formulated. During the development phase, this concept is refined into a technical
safety concept and software requirements. The six software requirements for the
automated driving platform are:

(i) the fallback-ready user must be able to take immediate control of the
vehicle by stepping on the brake, accelerator, or applying a steering
correction;

(ii) the vehicle must not alter its trajectory too quickly, such that the fallback-
ready user is able to intervene when necessary;

(iii) the control system must prevent for the user unexpected start-up opera-
tions;

(iv) all data elements in the application must have units according to the SI
system to prevent confusion and conversion errors;

(v) the control system must disable control in case of a fault in a sensor that
is critical to the control system. The fallback-ready user must be notified
of this event; and

(vi) the actuators must disable their outputs in case of a control system fault.

3.3. Functional Software Architecture

The selected functional software architecture for the real-time application is based
on Serban et al. (2019), EB robinos (2017), and Kochanthara et al. (2020) and
is shown in Figure 3.1. As can be seen, not all layers described by Serban et
al. (2019) are present in the real-time application as some of the functionality
required for automated driving will be implemented on other platforms, such as
the Nivdia Drive PX 2. These platforms have architectures that are more suited
to perform tasks related to environmental perception, such as image processing
and sensor fusion.

The data stream in the diagram is from the left to right following a sense-plan-
act structure, starting with the interface layer that receives and translates the
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Figure 3.1.: Functional software architecture for real-time application, based on (Ser-
ban et al. 2019; EB robinos 2017)

received data into physical signals. Then, these signals are filtered and merged in
the sensor fusion layer to produce consistent and accurate signals. Next, in the
vehicle control layer, based on the filtered signals, a preceding vehicle is followed
or a trajectory is planned and tracked (Van Hoek et al. 2018). After that, the
by the vehicle control layer generated setpoints are transformed by the actuator
layer into actuator setpoints. Finally, the interface layer converts the actuator
setpoints into data again and transit them. The control model is available from
(Hoogeboom 2020a).

3.3.1. Interface layer

The real-time application interfaces with other devices/computers by using com-
munication channels. The interface layer converts the received data bytes into
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physical signals. In addition, the interface layer checks for correctness of the
received data. The ISO 26262 part 5 Annex D (ISO 26262 2011) recommends a
combination of information redundancy and a frame counter to detect communi-
cation bus faults.

The Controller Area Network (CAN) protocol uses the Cyclic Redundancy
Check (Lawrenz 1997) to check for message correctness. In addition to this, all
implemented sensors have a message counter and checksum in the data field. The
message counter is used to detect whether messages are lost between the reception
of two messages and the checksum is used to verify correctness of the received
data bytes. The receiver re-calculates the checksum of the received message
using a checksum algorithm and compares this with the received checksum. All
implemented sensors have a message counter in the message to detect whether
messages are lost between reception of two messages. A CAN node timeout is
generated when five or more subsequent messages are lost or contain an invalid
checksum. The threshold is set to five missed or incorrect messages to avoid false
alarms due to, for example, bus timing issues. With the update rate of the sensors
of 100 Hz, the response time of 0.05 s is fast enough in case of a real error given
the timescales of the actuator dynamics.

The Global Navigation Satellite System (GNSS) receiver uses a serial RS-232
connection for data exchange. To encapsulate the message data, the UBX protocol
is used (u-blox 2018b) which contains a checksum to verify whether the message
is correctly received. The GNSS message does however not include a message
counter. Therefore, a GNSS receiver error is triggered when no new messages are
received for 0.5 s, which equals two missed or incorrect messages.

The V2X router employs a UDP connection to interface with the real-time com-
puter. The message does not contain a checksum or message counter. Therefore,
a V2X timeout is generated when no new messages are received for 0.1 s, which
equals two missed messages.

Besides communication bus faults, signal conversion faults must be avoided
in the interface layer. Therefore, all CAN interface blocks, which translate the
received bytes to physical signals and physical signals to be transmitted bytes,
are automatically generated using DBC files. Each CAN bus has its own DBC
file and contains the network information, such as network nodes, CAN messages,
and signals in these messages.

3.3.2. Sensor layer

The next layer is the sensor layer, which monitors the status of the sensors. Sensor
fault diagnosis is required to guarantee safe behavior of the controlled outputs. As
all C-CAN sensors have integrated self-diagnosis functions, only the communicated
status has to be monitored.
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3.3.3. Actuator layer

Besides sensor monitoring, the status of the actuators must also be monitored.
Since both the steer and brake actuator use the CANopen protocol, the CANopen
heartbeat protocol is utilized for this. This supervisory service requires every node
to cyclically send a short heartbeat message that contains its current status to
prove its communication ability. The time interval between these messages is the
producer time and is set to 0.25 s for all CANopen nodes. The other nodes in the
network can analyze these heartbeat messages to verify whether particular nodes
relevant for them are online. The maximum time in which a heartbeat message is
expected by a particular node is the consumer time. When the consumer time of
a receiving node expires without receipt of the corresponding heartbeat message,
the receiving node generates a timeout event and a fault is triggered. The brake
and steer actuator are both configured as such that when two heartbeat messages
from the real-time computer are missed, i.e., the consumer time of 0.5 s expires,
they both go in fault mode. The output of both actuators is disabled in this
mode.

A custom protocol is developed for the TPS and CAN node, containing a
handshake initialization procedure and a time triggered message called lifeline.
This message is comparable to the heartbeat protocol. The time triggered message
contains the takeover command and is sent upon a takeover command change or
when the timeout of 0.25 s expires. The handshake procedure prevents undesired
behavior in case the real-time application hangs for some time and then eventually
resumes. This can happen when, for example, the real-time computer is rebooted
and the accelerator pedal override switch is still enabled on the remote control
panel.

In case of hardware or software error, resulting in that the same CAN messages
are retransmitted, the counter and checksum in the CAN message to the CAN and
TPS node will not be updated. The CAN node will respond to this by signaling an
error and opening the high-voltage relay. As a consequence, the steer and brake
actuator are powered off. The TPS node will also respond to this by signaling an
error and disables the accelerator pedal override, resulting in the vehicle returning
to the manual mode.

To reduce the bus load of the C-CAN bus, a new setpoint for the actuators is
only communicated when it differs from the previous time step. The actuators
continue executing the previous setpoint when no new setpoint is communicated.
In this way, the number of messages on the C-CAN bus is reduced.

The maximum torque delivered by the electric motor of the steering system is
limited to make user interventions on the steering system possible. The fallback-
ready user should always be able to counteract the steering wheel and therefore the
maximum torque is limited to 10 Nm. This limit must be taken into account when
designing the steering controller. To prevent for the user fast and unexpected
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steering events, the bandwidth of the steering controller is limited at 1 Hz, while
a higher bandwidth would be possible.

3.3.4. System and safety management layer

On top of the model architecture, is the system and safety management layer.
This layer monitors the status of the sensors and actuators as well as the user
inputs. Based on these inputs, the system and safety management layer handles
the mode selection. The following four modes are implemented in the real-time
application:

(i) manual, in which the modified vehicle can be driven by the operator like
a normal car, all ADS outputs are disabled;

(ii) service, in which the actuators can be controlled from a remote control
panel to test functionality or evaluate control performances;

(iii) cooperative, in which drive, brake, and steering are automated to auto-
matically follow a predecessor; and

(iv) autonomous, in which the drive, brake, and steering are automated to
track a certain path (not considered in this thesis and the required auto-
mated functionality will have to be developed in the future).

Each mode has two sets of conditions, the first set of conditions are evaluated
before the automated mode is engaged. For example, the service mode can only
be engaged from standstill with the gear selector set in neutral. The second
set of conditions are evaluated when an automated mode is engaged and checks
whether it is still safe to be in that mode. For example, when a sensor fault or user
intervention is detected the runtime conditions evaluate to true and the automated
mode is disengaged. Switching between modes and unexpected operation is
prevented by making sure that an automated mode can only be engaged by an
explicit user action. All dynamic controller states are reset upon automated
mode switch to prevent undesired effects, such as integrator windup (Astrom and
Rundqwist 1989).

3.3.5. Other layers

The fusion, control, user input, and user output layers are open to automated
driving system developers. With the safety framework and fallback-ready user in
place, safe design and evaluation of automated driving algorithms is supported.
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3.4. Software Design Verification

The software architecture has been implemented and the design has been tested
by performing design reviews, unit tests, and full scale tests. Fault injection tests
are performed to verify whether the designed and included safety features from the
previous sections actually function as intended. As not all cases can be presented
here, only two critical fault cases are considered. The first test is a faulty sensor
that is critical to the control system and the second test is a real-time application
crash which is similar to when it is powered-off during operation.

3.4.1. Camshaft angle sensor fault

In case a for the control system critical sensor is faulty, such as the brake camshaft
angle sensor, the control system should respond by turning off the brake controller
to avoid any unsafe behavior. In addition, it should inform the fallback-ready
user to take over control of the brake system. To test this fault case, a checksum
fault is injected at t = 1 s to the brake camshaft angle sensor while the brake
controller is on. Figure 3.2 shows the results of this test. As can be seen, a brake
sensor fault is detected after 0.05 s which corresponds to five invalid messages.
The safety system responds to this by disengaging the brake controller. When the
injected fault is turned off, the brake sensor fault vanishes but the brake controller
stays off. The brake controller must first be disabled on the remote control panel
before it can be re-enabled to prevent unexpected behavior. The same principle
is implemented for the drive and steering controllers.
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Figure 3.2.: Brake sensor fault response: fault injection ( ), brake sensor error
( ), and brake actuator output ( )
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3.4.2. Real-time application fault

In case the real-time application crashes or is powered-off during operation, the
controlled outputs must be disabled. This is achieved by the heartbeat message
which is used to let other nodes know it is alive. When the real-time appli-
cation crashes or is powered-off during operation, this message will also stop.
The response of the actuators monitoring this signal should then be to disable
their outputs, as explained in Section 3.3.3. To test this on the control plat-
form, both heartbeat and lifeline signals are first active and then at time t = 1 s
they are turned off. The last messages sent are then somewhere in the interval
t = 0.75 s to 1 s. The results of this test are shown in Figure 3.3. As can be seen,
both the steer and brake actuator respond to the vanishing heartbeat signal by
disabling their output at 0.5 s after the last received heartbeat message t = 1.3 s,
and stay in that state even when the heartbeat is enabled again at t = 2.5 s. The
TPS node responds to the vanishing lifeline signal disables its output 0.5 s after
the last received lifeline message at t = 1.5 s. To enable the actuators again, they
first must be disabled to prevent unexpected behavior.
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Figure 3.3.: Real-time application fault response: heartbeat signal ( ), lifeline sig-
nal ( ), drive actuator output ( ), steer actuator output ( ), and
brake actuator output ( )

3.5. Discussion

A software framework is presented consisting of several layers. The layered ap-
proach specifies clear boundaries, enabling separate design and testing of software
components. The developed architecture ensures safe operation of the research
and development vehicle, without having to explicitly take safety into account
when developing automated driving functionality. The effectiveness of the safety
mechanisms has been successfully demonstrated by testing two critical fault cases.
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4.

Automated Driving Safety Verification

Framework

Abstract - Automated driving vehicles contain complex and sophisticated systems to

perceive and interpret its surroundings, plan its driving strategy based on the received

information, and execute the driving plan. A vast amount of vehicle testing is required

to provide certain confidence levels. Closed course testing and validation is commonly

employed as most automated vehicles are adapted and not road legal. Simulations are

also used to reduce time and costs. Assumptions and gaps in lower-fidelity simulations

might however result in residual risks. This chapter presents a simulation framework for

testing and validating automated driving controllers, consisting of a layered simulation

approach. The automated driving controllers can be validated in simulation as well

as using a hardware-in-the-loop setup. The simulation framework is validated using

full-scale driving experiments. The results show a good resemblance between the model

and experimental output. Using the framework, automated driving algorithms can be

developed and validated in a controlled simulated environment before deployment on

the automated platform.

4.1. Introduction

Automated driving vehicles have the potential to increase road safety as nine
out of ten fatal accidents are related to human driver error (Singh 2015). Hence,
several companies and institutes around the world are currently developing and
testing their automated vehicles (e.g., Waymo 2019; General Motors 2018).

To allow these automated vehicles on the road, safety assessment of the auto-
mated driving functionality is necessary to guarantee that they are safe. However,
a credible safety statement requires millions of road miles (Kalra and Paddock
2016). Obtaining these road miles are costly, time consuming, and it can result
in unsafe situations. A safer approach is closed-course testing, but during closed-
course testing no out of the ordinary situations are encountered as in real-world
traffic. Closed-course testing is also not scalable and is therefore time consuming.
Real automated driving platforms can also be very expensive or not available
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in the required amount. Simulations, on the other hand, are scalable and may
therefore be a good option for safety validation of automated driving functionality.
The benefit is that testing is reproducible and safety-critical tests can also be
performed without risk. At this time of writing, there is no agreed strategy to
validate and approve automated vehicles.

Proving that the system does what it is designed to do can be extremely difficult,
which is especially the case with opaque techniques, such as machine learning
(Nguyen et al. 2015). These techniques are commonly used for environmental
perception systems in automated vehicles (Koopman and Wagner 2016). Even
when these systems are fault free, potential unsafe situations can happen, for
instance, due to limitations of sensor performance. To cover these and other
events, the Safety Of The Intended Functionality (SOTIF) standard is designed.
The SOTIF is developed for Advanced Driver-Assistance Systems (ADASs) but it
will be extended in the future to also cover Automated Driving Systems (ADSs)
(Khabbaz Saberi 2020). The SOTIF (ISO/PAS 21448 2019) addresses hazardous
events resulting from external causes, such as sensor performance limitations
or driver misuse, whereas the ISO 26262 standard addresses hazardous events
resulting from internal causes, such as malfunctions. The SOTIF classifies all
possible scenarios into four areas: known safe, known unsafe, unknown unsafe,
and unknown safe, and its purpose is to make the unsafe (known and unknown)
scenarios safe. This can, for example, be achieved by limiting the operational de-
sign domain. To identify and test the unsafe scenarios, the standard recommends
various activities such as test cases with high coverage of relevant scenarios, fault
injection tests, and in the loop testing of relevant scenarios.

However, assumptions and gaps in lower-fidelity simulation models can result in
residual risks. Therefore, for safety validation, higher-fidelity simulation models
are desired. By using a layered simulation approach, which includes lower- and
higher-fidelity simulation models, the right model can be selected based on the
scenario to be tested (Koopman and Wagner 2018). In this way, the validation
approach is more efficient compared to solely using the higher-fidelity simulations
or road testing.

The aim of this chapter is to develop a simulation framework for safety testing
and validating automated driving controllers. The developed automated driving
controllers can be validated with the digital prototype in simulation as well
as using a Hardware-In-the-Loop (HIL) setup. The HIL setup model uses the
same communication interfaces as the real automated vehicle. The model must
be capable of running in real-time, such that it can be coupled to the real-time
control system, as presented in Chapter 3. After the automated driving controllers
are tested and validated, they can be deployed on the real automated platform.

The outline of this chapter is as follows. Section 4.2 explains the model frame-
work consisting of a highly representative dynamic model of the automated vehicle.
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Section 4.3 presents the HIL setup consisting of two connected real-time comput-
ers: one running the virtual automated vehicle model and the other running the
real-time control model. Section 4.4 validates the simulation framework with data
obtained from real driving experiments. Finally, Section 4.5 lists the conclusions.

4.2. Simulation Framework

The simulation framework for safety testing and validating automated driving
controllers can be used in two configurations: accelerated-time in which the control
system is integrated in the simulation environment and real-time in which the
control system is separated from the simulation environment. Figure 4.1 shows
a comparison of the two options. The accelerated-time configurations runs on a
single computer and can be used when many iterations or small changes to the
design have to be made. The control system to be tested can just be a small
part of the whole control system. The real-time configuration is more complex
and needs two PCs running Simulink real-time operating system (Matlab 2020c).
One to run the real-time virtual automated vehicle simulation and the other to
run the real-time control system. The real-time virtual automated vehicle model
runs at 1000 Hz and the real-time control system model at 100 Hz. Both real-time
applications can be controlled via a control panel running on a PC with Windows.
The control panel for the real-time simulation model mimics the driver inputs,
such as accelerator pedal position, steering torque and ignition switch status. The
simulation framework is available from (Hoogeboom 2020b).

accelerated-time simulation

PC: Windows

real-time virtual vehicle simulation
PC1: Simulink real-time

PC2: Simulink real-time

actuator
simulation

vehicle
dynamics
simulation

sensor
simulation

control
system

actuator
simulation

vehicle
dynamics
simulation

sensor
simulation

real-time
control
system

physical
signals

physical
signals

Figure 4.1.: Simulation framework options: accelerated-time simulation (left) and real-
time hardware-in-the-loop simulation (right)
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As the real-time applications exchange data in the same way as the real auto-
mated vehicle exchanges data with the real-time control platform, the complete
real-time control system must be used, including the interface blocks responsible
for signal conversions and communicating over a serial line. In this way, all the
code is tested on realistic hardware, thereby increasing the simulation fidelity.
After the system is tested and validated, the system can be deployed on the real
automated vehicle in accordance with the V-cycle development process.

4.2.1. Vehicle dynamics simulation

The vehicle dynamics simulation block, as shown in Figure 4.1, is based on
(Baaij 2019). The block is modeled in Simscape Multibody (Matlab 2020b),
which provides a multibody environment to model 3D mechanical systems. The
actual vehicle and its virtual representation are shown in Figure 4.2. The virtual
representation consists of a body shell to which the suspension components and
tyres are mounted. The vehicle dynamics model inputs are the drive torque, front
and rear brake torque, and steering rack position.

Figure 4.2.: Renault Twizy (left) and corresponding virtual representation (right)

Figure 4.3 gives an overview of the multibody model, consisting of subsystems
for suspension, wheels, anti-roll bar, and steering rack. The chassis is modeled as
a rigid body to which the suspension components are connected. The McPherson
suspension is modeled with a lower wishbone, wheel carrier, and suspension strut.
The left and right suspensions are connected via toe links and a steering rack.
The coordinates of all the joints have been measured using a tactile measurement
device. The detailed schematic representations of all these individual components
are shown in Appendix A.
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Figure 4.3.: Multibody simulation model layout (adapted from (Baaij 2019))

Suspension bushing compliance is neglected as the model must be able to
simulate real-time. This would otherwise not be possible as the elements cause
fast dynamics that require a small time step size of the fixed step solver to
accurately describe the dynamics (Miller and Wendlandt 2010). The spring and
damper characteristics are determined using a spring and damper test setup and
have been included in the multibody simulation model via lookup tables. The
corresponding characteristics are shown in Appendix A. Similarly, the front and
rear stabilizer bars have been tested on a test setup to measure their stiffness.

The electric motor torque is actuated at the wheel side similar to the brake
system. This is a simplification as the drive moment is applied to the upright
instead of the vehicle body which results into suspension travel during accel-
eration/regenerative braking. Modeling of the drive shafts is neglected in the
real-time environment as these elements cause fast dynamics that require a small
time step size of the fixed step solver to accurately describe the dynamics (Miller
and Wendlandt 2010). The effect might however be negligible in relation to the
limited available electric motor torque.

The tyres have been modeled using MFeval (Marco Furlan 2019), which is
an open-source MATLAB toolbox that implements the Magic Formula equations
(Pacejka 2005). The tyre model has been integrated in the multibody environment
similar to the Delft tyre model (TASS International 2020). The MFeval tyre
model can be used in real-time mode without an additional license. The real-time
capabilities of the tyre model have been improved by removing all for the model
unnecessary elements, such as unused operating modes or outputs. The required
front and rear tyre characteristics, such as the cornering stiffness, vertical stiffness,
and pneumatic trail, have been measured on a flat plank tyre tester (Besselink
2019, p.99) as well as with a tyre measurement tower on a drum (Besselink 2019,
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p.106). More details about the tyre testing as well as identification of other vehicle
dynamics parameters can be found in (Baaij 2019).

4.2.2. Actuators simulation

The inputs to the multibody vehicle model are the drive torque, brake torque
front, brake torque rear, and steering rack position, while the outputs of the
control system are the acceleration pedal position, brake motor current, and steer
motor current. The actuator simulation block converts the outputs of the control
system to the required inputs for the vehicle dynamics simulation. The brake
and steering system are included as models while the driveline characteristic is
included via a lookup table.

Driveline

The driveline of the automated Renault Twizy consists of an electric motor, gear
reduction with differential, and drive shafts. The driveline characteristics are
identified on a chassis dynamometer, as depicted in Figure 4.4. During the
identification tests, the chassis dynamometer speed is kept constant while the
accelerator pedal position αp is varied with discrete steps of 10 % on the interval
0 % to 100 %. This test is repeated for all chassis dynamometer speeds on the
interval 5 km/h to 100 km/h with a step size of 5 km/h. The resulting grid of
electric motor torque τdm as function of accelerator pedal position αp and motor
speed ωdm is included as a lookup table which is shown in Figure 4.5. Gear
selection (drive, neutral, and reverse) is implemented which multiplies the output
torque τdm with one, zero, or minus one, respectively, to allow for forward driving,
coasting, and reverse driving.

Brake system

The brake system of the automated Renault Twizy consists of disc brakes front and
rear. The automated vehicle does not contain an ABS system but the rear brakes
contain a brake pressure limiter to prevent rear wheel lock-up. The mapping from
brake pressure pb to brake torque τb is determined by placing the automated
vehicle on the chassis dynamometer similar to measuring the driveline. The speed
of the chassis dynamometer is kept constant at 30 km/h and a constant brake
pressure pb is applied for several seconds to let the chassis dynamometer settle
to steady state. This test is repeated for every brake pressure on the interval
0 bar to 70 bar with a step size of 5 bar. Figure 4.6 presents the measured brake
pressure and wheel torque in which the effect of the brake pressure limiter is
clearly visible. The influence of brake temperature is neglected in the mapping.
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Figure 4.4.: Driveline characteristics identification of the automated Renault Twizy
(courtesy: Brian Rensen)
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Figure 4.5.: Electric motor torque τdm as function of accelerator pedal position αp and
electric motor speed ωdm
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Figure 4.6.: Brake torque τbm as function of brake pressure pb: front ( ) and rear
( )

When the brakes are controlled by the ADS, a cam follower mechanism applies
pressure on the brake master cylinder, as shown in Chapter 2. The relation
of the camshaft angle to brake pressure is determined using a dynamic test in
which on the cam position δc steps are provided as input and the brake pressure
pb is measured as output. The steady state values are extracted and shown in
Figure 4.7, along with a third order polynomial model fit. As can be seen, the
model fit represents the data trend well besides some hysteresis effects, which are
mainly caused by friction in the brake master cylinder (Dardanelli et al. 2010).
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Figure 4.7.: Brake pressure pb as function of camshaft angle δc: measurement ( )
and third order model fit ( )

To obtain a relation of motor torque τbm to camshaft position δc, a model of the
brake system is created. Here, it is assumed that the time constant of electrical
dynamics is considerably smaller than the time constant of the mechanical system,
so the brake motor electrical dynamics is neglected and a torque τbm is modeled
on the brake motor inertia Jbm. The camshaft with follower and gearbox is
modeled as lumped mass with inertia Jc, and the resistance provided by the
brake hydraulics is modeled as a nonlinear spring and damper. Based on the
brake pressure pb to camshaft angle δc relation shown in Figure 4.7, the nonlinear
spring is modeled as linear spring plus a cubic spring. Figure 4.8 depicts the
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brake system model in which τbm is the motor torque, δc the camshaft position,
Jc the motor, gearbox, and camshaft inertia, kc the nonlinear spring, and Tc the
dry friction.

JcJbm

τbm

δcδbm

kcFc

Figure 4.8.: Brake system model of the brake assembly as depicted in Figure 2.4

Given the schematic depiction of the brake system in Figure 4.8, the equation
of motion for this system is given as

(Jc + Jbmi
2
bm)δ̈c = τbmibm − klδc − kcδ3

c − Tc sign (δ̇c), (4.1)

where Jc is the camshaft moment of inertia, Jbm the motor moment of inertia,
kl the linear spring stiffness, kc the cubic spring stiffness, ibm = δbm/δc the gear
ratio, and Tc the Coulomb friction.

The parameter values for the motor inertia Jbm and gearbox ratio ibm are
obtained from specsheets (Apex 2017; Applied Motion Products 2013). The
Coulomb friction torque in the system has been identified by slowly moving the
camshaft over its full range by controlling it with the electric motor and measuring
the required brake motor torque τbm. Figure 4.9 shows the brake motor torque τbm

and camshaft position δc. As can be seen, the system contains stick-slip friction
as steps in torque results in interrupted motion instead of smooth motion. The
stick-slip friction is modeled as Coulomb friction as the rapid changes of stick-slip
friction model can be difficult for a fixed-step solver (Miller and Wendlandt 2010).
The Coulomb friction torque Tc has been calculated from half of the average value
between the forward motion and backward motion multiplied with the gear ratio
ibm.

The other unknown parameters are identified via a nonlinear grey-box identifi-
cation procedure (Bohlin 2006). With grey-box identification, the model repre-
sentation is fixed and experimental data is used to estimate the parameters. A
random phase multisine signal is used as identification signal. The signal consists
of 50 sine waves linearly spaced on the interval of 0.05 Hz to 50 Hz. A multisine
identification signal is selected for the experiments as the base frequency sine wave
keeps the system in motion to reduce dry friction influences. In addition, the
energy in the input signal is concentrated at discrete frequency points, thereby
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Figure 4.9.: Brake motor torque τbm and camshaft position δc: forward motion ( ) and
backward motion ( )

increasing the signal-to-noise ratio. The multisine signal is a segment of 2048 sam-
ples and with a sample time of 0.01 seconds, the generated signal has a period of
20.48 seconds. The signal is constantly repeated during the experiment to obtain
multiple segments of data. The periodicity and continuity of the signal enables
averaging of sequences to improve the signal-to-noise ratio without the need for
tools, such as windowing.

While the brake system is a constrained system in terms of maximum camshaft
rotation, open loop system identification is applied. This is possible with the
hydraulic brake pressure that acts as a nonlinear spring and a careful selection of
the identification signal gain and offset. The gain and offset are selected such that
the system operates over a wide range during the identification experiments while
making sure contact with the end stops is avoided since this introduces unwanted
nonlinear effects.

The model parameters are estimated by utilizing MATLAB’s function ‘nlgreyest’
which uses a least squares algorithm. The quality of the fit is assessed by the
Normalized Root Mean Squared Error (NRMSE) expressed as a percentage

εfit =

(
1− ‖ym − yp‖
‖ym − ȳm‖

)
· 100 %, (4.2)

where ‖·‖ denotes the 2-norm of a vector, ym the measured outputs, yp the
predicted model output, and ȳm the mean of the measured output. A εfit value
of 100 % indicates a perfect fit where the predicted outputs are identical to the
measured outputs while a value of 0 % indicates the model is no better than a
straight line through the mean of the data.

Figure 4.10 shows one segment length of the identification signal and a com-
parison between the model outputs and the measured outputs. As can be seen,
the model outputs and measured outputs agree fairly well. The εfit percentage
for camshaft angle δc is 72.60 %, which indicates that the model is suitable as
a digital prototype for the brake system. Table 4.1 lists the model parameter
values.
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Table 4.1.: Brake system model parameter values

Description Symbol Value Source

Camshaft moment of inertia Jc 0.0393 kg m2 Identification
Brake motor moment of inertia Jbm 0.26e−4 kg m2 Specsheet
Motor gear ratio ibm 20 Specsheet
Linear spring stiffness kl 0.1291 Nm/rad Identification
Cubic spring stiffness kc 0.0604 Nm/rad Identification
Coulomb friction torque Tc 2.5340 Nm Identification
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Figure 4.10.: Comparison between model output and measured camshaft angle δc
with the multisine identification signal as brake motor torque τbm input:
measurement data ( ) and model output ( )
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4. Automated Driving Safety Verification Framework

Steering system

As shown in Chapter 2, the steering system of the automated vehicle consists
of a steering column with electric power-assist. The steering wheel is coupled
to the steering column via a torsion bar. This torsion bar is used to measure
the torque exerted on the steering wheel. The electric motor is coupled to the
steering column via a worm gear. The measurable outputs on the real system
are steering column angle δsc, steering column angular velocity δ̇sc, and steering
column torque τtb.

Figure 4.11 presents a model of the steering system where the steering wheel is
modeled as inertia Jsw, coupled to the steering column via the torsion bar modeled
as a spring ktb and damper ctb. The torque exerted on the steering wheel by
the driver is denoted by τd. The electric motor has inertia Jsm and is coupled to
the steering via a worm-gear with gear ratio ism = δm/δsc. The rotational motion
of the steering column is converted to translational motion of the steering rack
via a rack and pinion with radius rp. Coulomb friction torque Tsc is added as
rack and pinion based designs contain significant dry friction (Harrer and Pfeffer
2017). The self-centering effect as a result of suspension geometry often referred
as jacking torque is modeled with a spring kr and damper cr. The steering motor
torque is given as τsm = ksmIsm in which the electrical dynamics of the steering
motor are neglected since the time constant of the electrical system is considerably
smaller than that of the mechanical system.

Jsw

τd

δswsteering
wheel

Jsc

δsc

steering
column

ktbctb

Jsm

τsm

δsm

steering
motor

rp

mr

xr

steering
rack

cr

kr

Fsc

Figure 4.11.: Nonlinear steering system model of the steering system as depicted in
Figure 2.3
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Given the schematic representation of the brake system in Figure 4.11, the
equations of motion for this system are given as (Marouf et al. 2012)

Jswδ̈sw = τd − ctb(δ̇sw − δ̇sc)− ktb(δsw − δsc), (4.3a)

Jeqδ̈sc = τsmism + ctb(δ̇sw − δ̇sc) + ktb(δsw − δsc)− Tsc sign (δ̇sc)

− crr2
pδ̇sc − krr

2
pδsc,

(4.3b)

where Jeq = Jsc + Jsmi
2
sm +m2

r r
2
p. The required steering system parameters are

obtained from specsheets, component identification tests (Stoffels 2019), and a
nonlinear grey box identification procedure. Table 4.2 lists the estimated steering
model parameter values.

Table 4.2.: Steering system model parameter values

Description Symbol Value Source

Steering wheel inertia Jsw 0.0114 kg m2 Identification
Steering column inertia Jsc 0.005 kg m2 Identification
Steering motor moment of inertia Jsm 3.28e−4 kg m2 Specsheet
Steering rack mass mr 3 kg Specsheet
Steering motor gear ratio ism 13.67 Identification
Motor constant ksm 0.052 Nm/A Specsheet
Torsion bar damping ctb 0.029 Nms/rad Identification
Torsion bar stiffness ktb 80.97 Nm/rad Identification
Jacking torque stiffness kr 16 132 N/m Identification
Jacking torque damping cr 3645 Ns/m Identification
Steering rack pinion radius rp 5.6e−3 m Identification
Coulomb friction torque Tsc 2.43 Nm Identification

To evaluate the model performance, the automated vehicle has been placed
turn plates to reduce static friction between the tyres and road surface, thereby
aiming to represent normal driving conditions. As input signal, a random signal
has been applied. This input signal is obtained by applying alternating steering
actions via the remote control panel of the real-time control system. Figure 4.12
shows a comparison between the measurement and model output for the discussed
input signal. As can be seen, the model represents the measurement data well.
The εfit percentage for steering column angle δsc is 89.20 %, which indicates that
the steering system is able to serve as a digital prototype for the real system.

The steering system is included in the complete vehicle model by modeling it
in Simscape. This one-dimensional model is coupled to the Simscape Multibody
environment by using the Simscape Multibody Multiphysics library (Miller 2020).

53



4. Automated Driving Safety Verification Framework

0 20 40 60 80 100 120

−5

0

5
I s

m
(A

)

0 20 40 60 80 100 120
−10

−5

0

5

10

time (s)

δ s
c

(r
ad

)

Figure 4.12.: Comparison between model output and measured steering column angle
δsc with the random steering motor current Ism signal as input: measure-
ment data ( ) and model output ( )

The jacking torque spring and damper are not modeled as this is already included
in the suspension geometry of the vehicle model. By using damped transition
regions for the nonlinear effects such as hard stops, the model is suitable for
real-time simulation.

4.2.3. Sensor simulation

Next to the vehicle inputs, it is necessary to mimic the sensor outputs as well.
This means that the physical sensors need to be modeled with their corresponding
properties such as update rate, signal filtering, and sensor noise. The implemen-
tation depends on the measurement model. The sensors that are mimicked are
the native automated vehicle sensors and the additional sensors as described in
Chapter 2. The interface blocks are automatically selected depending on the sim-
ulation mode. In the accelerated-time simulation mode, the signals are directly
coupled to the outputs whereas in the real-time mode they are transmitted to
the PC via an electrical interface, such as Controller Area Network (CAN)-bus,
RS-232, or Ethernet.

For a high-fidelity simulation, a representive CAN-bus load is required as this
might introduce issues with message latencies. Therefore, all the information
present on the native automated vehicle CAN bus is simulated, even when the
information is not used in the real-time control system. The required information
of update rate, identifiers, message content of the native automated vehicle CAN
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bus is decoded in Chapter 2. The automated control CAN-bus contains all the
additional sensors and actuators needed for the automated functionality. All
the checksums are added to the CAN messages as the real-time control system
verifies the checksums. For the custom hardware this is a simple addition, while
the implemented Bosch sensors use a more complicated algorithm (Miller and
Valasek 2015, p.82).

Additional sensors can be included in the simulation environment to determine
the influence on the CAN bus load or to measure quantities which is not possible
on the real automated vehicle, such as ground truth data. Also, fault injection
tests can easily be performed with the simulated sensors.

4.3. Simulation Hardware Setup

The real-time simulation setup consist of two Dell OptiPlex 7010 PCs, as depicted
in Figure 4.13. Softing CAN-AC2-PCI (Softing 2012) interfaces have been in-
stalled to enable CAN bus communication. Each interface board provides two
CAN busses. The CAN bus interfaces are used to simulate the vehicle (V-CAN)
and control (C-CAN) CAN bus. A RS-232 interface is used to transmit the sim-
ulated Global Navigation Satellite System (GNSS) receiver data. An Ethernet
connection can be used to include data from the environment, such as radar,
camera, or V2X communication.

Driving scenarios will be designed with the help of the automated driving
toolbox (Matlab 2020a). With the toolbox, radar and vision sensors can be
configured and simulated before implementing them on the automated driving
platform. The simulated object data can be included in the control model. The
driving scenario is advanced using the updated state information of the simulation
model, such as position and velocity.

4.4. Simulation Model Validation

Full-scale driving tests have been conducted on a proving ground to identify the
vehicle parameters that cannot be easily measured and to validate the complete
simulation model. These test have been performed on a dry day at Ford Lommel
Proving grounds in Lommel, Belgium. The automated vehicle was manually
driven during the tests since that was a safety constraint from Ford. To identify
vehicle dynamic parameters, several tests were executed, such as a coast down
and steady-state cornering. The results and model fits are shown in Appendix A.

Test data from a handling track test is used to validate the simulation model
including the actuator and sensor simulation. The handling track is a relatively
long test and includes acceleration, deceleration, and cornering. Hence, most of
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Figure 4.13.: Real-time simulation setup consisting of two Dell OptiPlex 7010 PCs
running Simulink real-time (Matlab 2020c)

the various model aspects can be validated at once. Since the vehicle was not
automated during the test day, not all relevant data of the steer and brake system
is available to validate the actuator simulation. These parts have been separately
validated. Figure 4.14 depicts the driven path during the test in which the start
and end of the driven path are indicated by an circle and square, respectively.
The track contains a section with cobble stones that is indicated by the white
line in the figure.

The accelerator pedal position αp, steer wheel torque τd, and brake pressure pb

are used as model inputs. These signals are converted in the actuator simulation
block into the inputs of the multibody block which are drive torque, front and rear
brake torque, and steering rack displacement. The outputs of the multibody block
are fed through the sensor abstraction block to include sensor characteristics, such
as low pass filtering, signal noise, and sampling. The simulated sensor signals are
compared with the measured outputs.

Figure 4.15 shows the simulation results. The top three figures show the mea-
sured inputs to the actuator simulation block which are the accelerator pedal
position αp, brake pressure pb, and driver torque τd, respectively. The follow-
ing five figures show the measured and simulated sensor signals, namely steering
column angle δsc, forward velocity vx, longitudinal acceleration ax, lateral acceler-
ation ay, and yawrate wz. As can be seen, the simulated and measurement data
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Figure 4.14.: Handling track test at the Ford Lommel proving grounds. The driven
path starts at the circle and ends at the box. The white line indicate a
section with cobble stones
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show a good resemblance. During the interval 27 s to 50 s, the automated vehicle
drives over the cobble stones, while in the simulation a flat road is used. Therefore,
some differences are noticeable between the measured and the simulated sensor
signals.

To provide an objective measure of fit, the Pearson product-moment correlation
coefficient ρ is used, which is defined as (Freedman et al. 2007)

ρx,y =
cov (x, y)

σ(x)σ(y)
, (4.4)

where cov(x, y) denotes the covariance of x and y and σ(x) denotes the standard
deviation of x. The Pearson correlation coefficient is a number between -1 and
1 in which 0 means no correlation, 1 perfect correlation, and -1 perfect negative
correlation. Since this measure does not include signal offsets, an additional
measure is used to identify signal offsets. The following measure is used (Loof
2018)

µ =
x̄− ȳ

|max (x)−min (x)| · 100 %, (4.5)

where x̄ denotes the mean value of x. An µ of 0 % indicates the means x̄ and ȳ
are equal. A µ of 100 % indicates the mean of x̄ is higher than ȳ with the same
value as the range of x is. Similarly, a µ value of −100 % indicates the mean of
x̄ is lower than ȳ with the same value as the range of x is. Any ρ above 0.7 and
offset µ below 10 % is considered a good model fit.

Table 4.3 lists the model performance expressed in Pearson product-moment
correlation coefficient ρ and offset µ. As can be seen, all signals have a ρ value
above 0.9 and offset µ below 4 %, which indicates that the model provides a
good fit to the measurement data and that the framework can be used a digital
prototype to validate automated driving controllers.

Table 4.3.: Simulation model performance expressed in Pearson product-moment cor-
relation coefficient and offset

Description Symbol ρ µ (%)

Forward velocity vx 0.9826 3.5531
Steering column angle δsc 0.9714 0.6264
Longitudinal acceleration ax 0.9180 0.4875
Lateral acceleration ay 0.9132 -0.1764
Yawrate wz 0.9407 -1.7557
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Figure 4.15.: Handling track test results: measurement data ( ) and model output
( ). The top three figures are the model inputs
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4.5. Conclusion

A simulation framework for testing and validating automated driving controllers is
developed. The created simulation framework can be used in two configurations:
accelerated-time in which (a part of) the control system is integrated in the
simulation environment and real-time in which the control system is separate
from the simulation environment. The real-time setup can be used to verify the
safety mechanisms of the real-time application developed in Chapter 3 and to
test automated driving controllers in a controlled environment, for example, as a
final step before deployment on the real research and development platform. The
model framework has been validated with vehicle data obtained from full-scale
driving tests. The data obtained from a handling track shows that the model is
able to closely match the measured outputs. The framework can be adapted to
other vehicle characteristics by changing the vehicle parameters.
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5.

Model-Based Fault Diagnosis of an

Automated Steering System

Abstract - With an automated vehicle, the driver is not actively controlling the vehicle

and the driver might not notice certain faults, such as a flat tyre. An ADS must therefore

supervise itself by including fault diagnosis. This chapter presents a model-based fault

diagnosis method applied on the steering system of an automated vehicle. The steering

system is modeled in concatenation with a driver model and a single track vehicle model.

The faults of interests are a steering actuator fault and a user intervention in which the

driver tries to regain control of the vehicle. The fault detection filter performance is

evaluated in simulation and with experiments. The results show that it is possible to

detect and isolate a steering actuator fault and a user intervention.

5.1. Introduction

Automated vehicle development aims at increasing safety and comfort of the road
users by taking over driving tasks. In doing so, the driver loses the contact with
the steering wheel and thereby its most important tool of vehicle feedback. As
a consequence, the driver might not notice certain faults with the automated
steering system, and therefore, early detection and timely handling of faults is
important in safety critical systems, such as the steering system of an automated
vehicle, is important to prevent any undesired and possibly unsafe behavior.

A fault is defined as the deviation of a system property from the expected
behavior, and determining the occurrence of a fault is called fault detection,
whereas localization of the fault corresponds to fault isolation. To detect and
isolate faults in a system, model-based fault diagnosis can be applied which uses
the available measurements and a mathematical model of the system (Chen and
Patton 1999). The difference between the actual measurements and the on the
mathematical model based estimated measurements are defined as the residuals.
Faults can be detected by comparing these residuals with a static or dynamic
threshold, and a fault is triggered when this residual surpasses the threshold. By
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making certain residuals sensitive for a specific fault, the faults can be isolated
by evaluating the pattern of the residuals exceeding their threshold.

Fault detection and isolation for automated vehicles has been studied by various
researchers. For instance, Jeong et al. (2015) used a bank of Kalman filters to
detect sensor and actuator faults for automated vehicles. Similarly, Li et al.
(2017) used Extended Kalman filters to detect and isolate a yawrate fault, lateral
acceleration fault, and/or steering angle sensor fault. Fault-detection filter design
for a steer-by-wire vehicle has been addressed by Gadda (2009), which uses a
variety of observers to generate the residuals. The drawback of these filter methods
is that normally unnecessary technical assumptions are required (Chen and Patton
1999) and/or full order state observers are employed, requiring high complexity
and computational load. Therefore, Ho and Ossmann (2014) investigated fault
detection and isolation of vehicle dynamic sensors and actuators for a constant
longitudinal velocity by applying numerical nullspace computations to synthesize
the residual generators, resulting in minimal order filters. They show via computer
simulations that it is possible to detect and isolate various faults within a x-by-wire
vehicle.

Besides sensor and actuator faults, user intervention detections are also of inter-
est when considering fault detection for an automated vehicle. A user intervention
is when the Automated Driving System (ADS) is performing the dynamic driving
task and a user tries to take over control of the vehicle, i.e., the system response is
changed due to the user intervening. In that case, the automated control system
should not fight the user but instead hand over the control.

To detect these user interventions, torque sensor signal based approaches can be
applied, but this requires excessive low-pass filtering to eliminate the disturbances
introduced by the automated steering system when steering (Kruiswijk et al. 2012).
Also, additional sensors can be applied (Maguire and Bennett 2016; IEE 2020).
However, the extra sensors do increase the costs of the vehicle, and therefore, a
better solution might be to apply model-based fault diagnosis techniques to detect
user-interventions. Low order filtering approaches are desired to limit execution
time on the real automated driving platform.

The aim of this chapter is to address the issues of fault detection and user
intervention by answering how to design fault detection and isolation filters for a
steering system of an automated vehicle. While most existing literature focusses
on computer simulations or experiments with small laboratory setups, the in
this chapter developed methods are implemented on a real automated platform,
thereby providing insight in the fault diagnosis techniques when operating under
real-life circumstances.

The outline of this chapter is as follows. Section 5.2 starts with a brief introduc-
tion of model-based fault diagnosis for linear systems. Next, Section 5.3 models
the complete steering system, consisting of a driver model, steering-system model,
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and single track vehicle model. After Section 5.4 estimates the unknown model
parameters using a system identification procedure. Then, Section 5.5 presents
the fault diagnosis strategy using the complete steering system model. After
that, Section 5.6 validates the fault diagnosis system by performing computer
simulations followed by Section 5.7, which presents experimental results. Finally,
Section 5.8 provides the main conclusions.

5.2. Model-Based Fault Diagnosis

Model-based fault diagnosis relies on a mathematical model of the system to be
monitored. Figure 5.1 shows a schematic representation of a model-based fault
diagnosis architecture. The fault diagnosis system uses the known inputs u(t),
outputs y(t), and a model of the system to generate residuals r(t). These residuals
provide information about the possible faults and serve as a fault indicator signal.
A residual evaluator and decision maker are included to filter the residuals and
decide based on the filtered residuals χ(t) whether a fault is active or not ι(t).
The following section describes the fault diagnosis system blocks in more detail
and is based on Varga (2017b).

actuators

actuator
faults

E
plant

dynamics

parametric
faults

E
sensors

sensor
faults

E

residual
generator

residual
evaluator

decision
maker

u(t) ũ(t) ỹ(t) y(t)

r(t) χ(t) ι(t)

fault diagnosis system

open-loop system

Figure 5.1.: Model-based fault diagnosis architecture
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5.2.1. Linear system model with additive fault
representation

The systems considered in this chapter are linear time-invariant systems with
additive faults and are given by

ẋ(t) = Ax(t) + Buu(t) + Bfd(t) + Bff(t), (5.1a)

y(t) = Cx(t) + Duu(t) + Dfd(t) + Dff(t), (5.1b)

where x(t) is the n-dimensional state vector, d(t) are the unknown disturbances,
and f(t) are the unknown faults. The system (5.1) can be formulated in Laplace
domain as

y(s) = Gu(s)u(s) + Gd(s)d(s) + Gf(s)f(s), (5.2)

where y(s),u(s),d(s), f(s) denote the Laplace transformed vectors of known out-
puts, known inputs, unknown disturbances, and unknown faults, respectively.
The matrices Gu(s), Gd(s), and Gf(s) denote the Transfer-Function Matrices
(TFMs) from control input, disturbance input, and fault input to the output,
respectively. The corresponding TFMs are given by

Gu(s) = C(sI−A)−1Bu + Du,

Gd(s) = C(sI−A)−1Bd + Dd,

Gf(s) = C(sI−A)−1Bf + Df.

5.2.2. Residual generation

The linear residual generator uses the known signals to generate the residuals
which serve as a fault indicator signal. The residual generator is described in the
form

r(s) = Q(s)

[
y(s)
u(s)

]
, (5.3)

which is called the implementation form. The fault detection filter Q(s) must be
stable and proper. By substituting the input-output description (5.2) into (5.3),
the internal form

r(s) = Q(s)

[
Gu(s) Gd(s) Gf(s)

I 0 0

] u(s)
d(s)
f(s)

 ,
is obtained. This form shows that the residuals depend on all system inputs. The
internal representation R(s) is defined as[

Ru(s) Rd(s) Rf(s)
]

:= Q(s)

[
Gu(s) Gd(s) Gf(s)

I 0 0

]
.
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5.2.3. Fault detectability

Fault detectability and complete fault detectability is about the sensitivity of a
residual to a particular or all faults, respectively. The system (5.2) is j-th fault
detectable when there exist a stable filter Q(s) such that

(i) r(t) = 0 if f(t) = 0 for all u(t) and d(t),

(ii) r(t) 6= 0 if fj(t) 6= 0 and fk(t) = 0 for all k 6= j.

The system (5.2) is completely fault detectable when there exists a stable filter
Q(s) such that

(i) r(t) = 0 if f(t) = 0 for all u(t) and d(t),

(ii) r(t) 6= 0 if fj(t) 6= 0 and fk(t) = 0 for all k 6= j, j = 1, . . . ,m,

where m denotes the number of faults. Condition (i) ensures that the residual is
decoupled from the input and outputs which implies that

Q(s)

[
Gu(s) Gd(s)

I 0

]
= 0, (5.4)

while the condition (ii) ensures proper fault to residual response which implies
that

Q(s)

[
Gf(s)

0

]
6= 0. (5.5)

The system (5.2) is j-th fault detectable if and only if

rank
[

Gd(s) Gfj(s)
]
> rank Gd(s),

where Gfj
(s) is the j-th column of Gf (s), and system (5.2) is complete fault

detectable if and only if

rank
[

Gd(s) Gfj
(s)

]
> rank Gd(s), j = 1, . . . ,m.

The notion of strong fault detectability ensures that a persistent residual is pro-
duced in case of persistent faults, such as a step or sinusoid.

5.2.4. Fault isolability

To isolate faults, the interactions among all fault inputs must be handled. There-
fore, the residual vector r(s) is decomposed into p filters of the type

r(i)(s) = Q(i)(s)

[
y(s)
u(s)

]
,
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where r(i)(s) is the i-th residual subvector and p is the number or residuals. The

internal fault representation R
(i)
fj

(s) describes how j-th fault influences the i-th
residual and is denoted as

R
(i)
fj

(s) := Q(i)(s)

[
Gfj(s)

0

]
. (5.6)

Using (5.6), the block-structured p×m TFM from faults to residuals is obtained

Rf(s) =


R

(1)
f1

(s) · · · R
(1)
fm

(s)
...

. . .
...

R
(p)
f1

(s) · · · R
(p)
fm

(s)

 ,
where m denotes the number of faults and p the number or residuals. Using the
elements of Rf(s), a matrix SRf

is associated to Rf(s) whose elements are defined
as

SRf
(i, j) = 1 if R

(i)
fj

(s) 6= 0,

SRf
(i, j) = 0 if R

(i)
fj

(s) = 0.

The structure matrix SRf
defines how the residuals are related to faults. The

i-th residual is decoupled from the j-th fault when SRf
(i, j) = 0, whereas with

SRf
(i, j) = 1 the i-th residual is sensitive to the j-th fault. For example, the

structure matrix

SRf
=

 0 0 1
1 1 1
0 1 1

 , (5.7)

shows that the first residual is only sensitive to the third fault while the second
residual is influenced by all faults. Based on the structure matrix, the isolability
of the system can be determined. The structure matrix (5.7) shows weak fault
isolability, which means that any individual fault can be isolated with one fault
occurring at a time. Strong fault isolability allows to isolate any number of
simultaneous faults. This is not possible with (5.7) as it is not possible to isolate
the faults with two active faults. Strong fault isolability can, for example, be
achieved with SRf

= I.

5.2.5. Model detection

A different approach in fault detection is when each fault is physically modeled.
In that case, a set of N models is obtained and the active fault can be determined
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by identifying the model that best fits to the input-output measurement data.
The set of models can be given as a multiple model description

y(i)(s) = G(i)
u (s)u(i)(s) + G

(i)
d (s)d(i)(s), (5.8)

where y(i) are known outputs, u(i) are known inputs, and d(i) are unknown
disturbances. The task of the to be designed filter is to detect the model from
the collection of models, which best matches the current input-output behavior.
This can be achieved by designing a residual generator of the following form

r(i)(s) = Q(i)(s)

[
y(s)
u(s)

]
, i = 1, . . . , N, (5.9)

such that

(i) r(i) = 0 if y(t) = y(i)(t),

(ii) r(i) 6= 0 if y(t) = y(j)(t) for j 6= i.

Condition (i) implies that

Q(i)(s)

[
G(i)

u (s) G
(i)
d (s)

I 0

]
= 0,

while condition (ii) implies

Q(i)(s)

[
G(j)

u (s) G
(j)
d (s)

I 0

]
6= 0, i 6= j.

The multiple model (5.8) is model detectable for all i = 1, . . . , N and j = 1, . . . , N
if and only if

rank
[

G
(i)
d (s) G

(j)
d (s) G(i)

u (s)−G(j)
u (s)

]
> rank G

(i)
d (s) ∀j 6= i.

Similar as to the notion of strong fault detection, strong model detection refers
to the ability to detect a particular model out of the set of N models in case of
persistent input and disturbance signals.

5.2.6. Residual evaluation

The residual signals r(t) generated by the residual generator Q(s) are further
processed in the residual evaluator block. This block evaluates the magnitude of
the residuals by taking a suitable norm of the signals. For most applications, a
Narendra signal evaluation scheme (Narendra and Balakrishnan 1997) is suitable.
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This scheme provides a weighted combination of instantaneous and low pass
filtered values and is given as

χ(i)(t) = α(i)|r(i)(t)|+ β(i)

∫ t

0

e−γ
(i)(t−τ)|r(i)(τ)| dτ,

where α(i) ≥ 0 is the instantaneous weight, β(i) > 0 the long term weight, and
γ(i) > 0 the forgetting factor. With the weights, a trade-off can be made between
fast detection and robustness for model imperfections and disturbances. The
scheme can be implemented as a first-order filter with a direct feed through term

ξ̇(i)(t) = −γ(i)ξ(i)(t) + β(i)|r(i)(t)|, (5.10)

χ(i)(t) = ξ(i)(t) + α(i)|r(i)(t)|, (5.11)

where ξ(t) is an internal filter state.

5.2.7. Decision making

The filtered residual χ(i)(t) is further evaluated as

ι(i)(t) =

{
1, if χ(i)(t) ≥ ζ(i),

0, otherwise,
(5.12)

where ι(i)(t) = 1 indicates that the i-th fault has occurred and ζ(i) is a suitable
threshold. The threshold ζ(i) must be selected large enough to avoid false alarms
but small enough to avoid missed detections.

Regarding decision making for the model detection, all components ι(i)(t) must
be nonzero, except the one to indicate the active model. No model fault is detected
in case all components are nonzero or several components are zero.

5.3. Steering System Modeling

To apply model-based fault diagnosis on the steering system, a complete model of
the system is required. Modeling a system is commonly split in two groups: white-
box modeling or black-box modeling. White-box modeling refers to first-principles
modeling by writing down the equations that govern the system. One of the major
advantages is that such a model can easily be adjusted by changing parameters,
thereby providing insight in system behavior (Nelles 2013). Drawback of the
approach is that the models become unwieldy when dealing with complex systems
or systems with many uncertain parameters. Black-box modeling, on the other
hand, only selects a model structure with usually a limited number of parameters
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such that a wide variety of phenomena can be captured. Drawback of black-box
modeling is that physical interpretation of the parameters is not possible. A
combination of white box and black-box modeling is gray-box modeling (Bohlin
2006) in which system knowledge is included in the modeling process.

Gray-box modeling is used in this chapter to model the complete steering
system as not all required input-output relations can be obtained with black-box
modeling and not all system parameters are known. Figure 5.2 shows an overview
of the complete steering system model that is a concatenation of a driver model,
steering system model, and single-track vehicle model. The inputs of the model
are the driver torque τd and steering motor torque τsm. The torque around the
steering axis τw is experienced when the vehicle is turning and tends to resist the
attempted turn. The torque is a combination of the self-aligning torque of the
tire and a torque resulting from the suspension geometry. The measurable sensor
outputs are steering column angle δsc, steering column angular velocity δ̇sc, and
steering column torque τtb.
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Figure 5.2.: Complete steering system model
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5.3.1. Steering system model

The steering system model is a linearized variant of the model presented in Chap-
ter 4. The jacking torque stiffness and damping is approximated by an equivalent
spring and damper on the steering rack to compensate for the Coulomb friction
effect. The steering system consists of a steering wheel modeled as inertia Jsw

connected to the steering column via a torsion bar modeled as spring ktb and
damper ctb. This torsion bar is part of the torque sensor (Yoshida 2002). The
torque τd represents the torque applied by the driver, and the driver’s arm are
represented as inertia Jdr attached to fixed world with spring kdr and damper
cdr (Pick and Cole 2007). The steering motor with inertia Jsm is coupled to the
steering column via a worm gear with gear ratio ism. As both universal joints in
the steering axis operate roughly under the same angle, their eccentricity effect is
assumed to be negligible (Harrer and Pfeffer 2017). The rotational motion of the
steering column is converted to a translational motion of the steering rack via a
linear rack and pinion with radius rp. The self-centering effects due to suspension
geometry often referred as jacking torque is modeled as a spring keq and damper
ceq on the steering rack (Parmar and Hung 2004). The steering rack with mass
mr is coupled with a steering link to the knuckle arm with length `n (Marouf et al.
2012). Both front wheels are lumped in one axle modeled with inertia Jw.

Given the schematic depiction of the steering system in Figure 5.2, the equations
of motion for the steering model are derived using Lagrange’s equations of motion
and are given as (Marouf et al. 2012)

Jswδ̈sw = τd − ctb(δ̇sw − δ̇sc)− ktb(δsw − δsc), (5.13a)

Jeqδ̈sc = τsmism + τwiss + ctb(δ̇sw − δ̇sc) + ktb(δsw − δsc)

− ceqr
2
pδ̇sc − keqr

2
pδsc,

(5.13b)

where Jeq = Jsc + Jmi
2
sm + Jwi

2
ss +m2

r r
2
p and iss = rp/̀ n. The equivalent jacking

torque damping and stiffness coefficients are given as ceq = cr+cf and keq = kr+kf,
respectively, where cf and kf are additional factors to approximate the dry friction
effects at certain operating conditions. The steering model inputs are the torque
applied by the steering motor τsm, the torque applied by the driver τd, and the
resulting torque around the steering axis τw. The steering motor torque is given by
τsm = ksmIsm in which the electrical dynamics of the steering motor are neglected
since the time constant of the electrical system is considerably smaller than that
of the mechanical system. The measured steering model outputs are steering
column angle δsc, steering column angular velocity δ̇sc, and steering column torque
τtb = ktb(δsw−δsc). Similar to Loof (2018), most of the steering model parameters
are obtained via direct measurements, calculations, or component identification
(Stoffels 2019; Baaij 2019). Table 5.1 lists these parameters. The other unknown
steering model parameters are estimated in Section 5.4.
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Table 5.1.: Steering model parameter values

Description Symbol Value Source

Steering wheel inertia Jsw 0.0114 kg m2 Identification
Steering column inertia Jsc 5e−3 kg m2 Identification
Axle mass moment of inertia Jw 0.3940 kg m2 Identification
Motor mass moment of inertia Jm 3.28e−4 kg m2 Specsheet
Steering rack mass mr 3 kg Specsheet
Motor constant ksm 0.052 Nm/A Specsheet
Torsion bar stiffness ktb 80.97 Nm/rad Identification
Steering knuckle length `n 0.078 m Identification
Steering rack pinion radius rp 0.0056 m Identification
Steering motor gear ratio ism 13.67 Identification

5.3.2. Driver’s arm model

A driver touching the steering wheel can be modeled as a spring-damper system
(Pick and Cole 2007). The torque exerted by the driver on the steering wheel τd
is then modeled as

τd = −cdrδ̇sw − kdrδsw, (5.14)

where cdr is the driver’s arm damping and kdr the driver’s arm stiffness. In
addition, the driver’s arm inertia Jdr must be added to the steering wheel inertia
Jsw when the driver is holding the steering wheel.

The dynamic properties of a driver holding the steering wheel are obtained
from Pick and Cole (2007) and are listed in Table 5.2. Two cases are presented:
one with relaxed muscle state in which the drivers hold the steering wheel with
just enough force to prevent slipping as the steering wheel moved. The second
case is with contracted muscle state in which the drivers firmly hold the steering
wheel to maintain it in a certain position.

Table 5.2.: Averaged driver’s arm parameters (source: (Pick and Cole 2007))

Description Symbol Relaxed Contracted

Driver’s arms inertia Jdr 0.11 kg m2 0.11 kg m2

Driver’s arms damping cdr 0.61 Nms/rad 1.1704 Nms/rad
Driver’s arms stiffness kdr 2.9 Nm/rad 56.4225 Nm/rad
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5.3.3. Single track model

The operating regime of the considered automated vehicle is low speeds and
accelerations. Therefore, a linear single track vehicle model can be employed
to obtain the exerted torque around the steering axis τw. The steering model
is concatenated with a single track vehicle model that includes tyre relaxation
behavior (Genta 1997)

m(v̇y + ωzvx) = −Cfαf − Crαr, (5.15a)

Jzzω̇z = −Cf`fαf + Cr`rαr, (5.15b)

σfα̇f = −vxαf + vy + `fωz − vxδscis, (5.15c)

σrα̇r = −vxαr + vy − `rωz, (5.15d)

where αf is the sideslip angle of the front axle, αr is the sideslip angle of the rear
axle, Cf the cornering stiffness of the front axle, Cr the cornering stiffness of the
rear axle, σf the relaxation length of the front equivalent tire, σr the relaxation
length of the rear equivalent tire, `f the length from front axle to the center of
gravity, `r the length from rear axle to the center of gravity, vx the longitudinal
velocity, vy the lateral velocity, and ωz the yawrate. Using the single track model
(5.15), the torque around the steering axis is obtained by

τw = Cmzαf,

where Cmz = (rm + rt)Cf is the self-centering stiffness with rm the mechanical
trail and rt the pneumatic trail. Table 5.3 lists the parameters of the single track
model which are obtained from the vehicle and tyre identification tests performed
in Chapter 4. A longitudinal velocity vx = 10 m/s is selected given the operating
regime of the considered automated vehicle, see Chapters 2 and 3

Table 5.3.: Single track model parameters (source: (Baaij 2019))

Description Symbol Value

Cornering stiffness front axle Cf 38.893 kN/rad
Cornering stiffness rear axle Cr 58.054 kN/rad
Relaxation length front axle σf 0.2667 m
Relaxation length rear axle σr 0.5200 m
Self-centering stiffness Cmz 1337.9 Nm/rad
Vehicle mass m 708 kg
Vehicle mass moment of inertia Jzz 350 kg m2

Front axle to center of gravity `f 0.9978 m
Rear axle to center of gravity `r 0.6882 m
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5.4. Gray-Box System Identification

A reliable model of the system is important when using model-based fault diagnosis
approaches. Therefore, a gray-box system identification procedure is employed to
estimate the unknown steering model parameters (Bohlin 2006), such as damping,
after which the steering model is validated using experimental data.

5.4.1. Experiment design

For the identification experiment, the vehicle is placed with its front wheels on
turn plates to reduce static friction between the tyres and road surface, thereby
aiming to represent normal driving conditions. The measured outputs during the
experiment are the steering column angle δsc, steering column angular velocity δ̇sc,
and steering column torque τtb. The input current Ism is applied by the steering
motor.

As identification signal, a random phase multisine signal is used, consisting of 50
sine waves linearly spaced on the interval 0.05 Hz to 50 Hz. A multisine is selected
for the experiments as the base frequency sine wave keeps the system in motion,
thereby reducing dry friction influences. In addition, the energy in the input signal
is concentrated at discrete frequency points, thereby increasing the signal-to-noise
ratio. The multisine signal is a segment of 2048 samples and with a sample time
of 0.01 seconds, the generated signal has a period of 20.48 seconds. During the
experiment the signal is constantly repeated to obtain multiple segment of data.
The periodicity and continuity of the signal enables averaging of sequences to
improve the signal-to-noise ratio without the need for tools such as windowing.

The amplitude of the excitation signal is scaled as the multisine signal amplitude
range lies between -1 and 1. The identification signal gain is designed such that
typical driving conditions are mimicked in terms of steering column angle and
steering column angular velocity. The typical maximum values obtained during
normal driving are 2 radians for the steering column angle, 4 radians/s for the
steering column angular velocity, and 10 Nm for the steering wheel torque. These
values agree with the identified normal driving behavior values presented in (Van
der Sande et al. 2012).

While the steering system is a constrained system in terms of maximum steering
rack displacement, open loop system identification is applied. This is possible
with a careful selection of the identification signal gain and the vehicle resting
on its wheel as the jacking torque results in a self centering effect. Contact of
the steering rack with its end stops and torque sensor with its end stops must be
avoided during the identification experiments as this introduces nonlinear effects,
which are undesired for linear system identification.
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5.4.2. Estimation model

For the gray-box identification (Bohlin 2006), the estimation model must be

represented in state space formulation. By defining q(t) =
[
δsw δsc

]T
and

τ (t) =
[
Ism τd τw

]T
, the steering system model (5.13) can be written as

Mq̈(t) + Dq̇(t) + Kq(t) = Sτ (t), (5.16)

with

M =

[
Jsw 0
0 Jsc + Jsmi

2
sm + Jwi

2
ss +mrr

2
p

]
, D =

[
ctb −ctb
−ctb ctb + ceqr

2
p

]
,

K =

[
ktb −ktb

−ktb ktb + keqr
2
p

]
, and S =

[
0 1 0

ismksm 0 iss

]
.

By introducing the input array u(t) = τT, state array x(t) =
[

qT q̇T
]T

, and

output array y(t) =
[
δsc δ̇sc τtb

]T
, model (5.16) is transformed into standard

the state-space form

ẋ(t) = Ax(t) + Bu(t), (5.17a)

y(t) = Cx(t) + Du(t), (5.17b)

with

A =

[
0 I

−M−1K −M−1D

]
, B =

[
0

M−1S

]
,

C =

 0 1 0 0
0 0 0 1
ktb −ktb 0 0

 and D =
[

0
]
.

In case all unknown matrix elements of (5.17) are independent, state-space model
identification with structured parameterizations can be applied (Yu et al. 2015).
For the steering model, there are matrix element dependencies, and therefore, the
parameters are estimated using a numerical minimization procedure.

5.4.3. Model estimation

The model parameters are estimated by minimizing the error between the mea-
sured data and the model output. The cost function is a weighted least square
error defined as

V (ε) =
1

N

N∑
t=1

eT(t, ε)We(t, ε), (5.18)
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where N is the number of samples, e(t, ε) is the difference between the measured
and predicted output parameterized by the parameter vector ε, and W is a
weighting matrix. The weighting matrix is used to control the relative weights
of the outputs and is selected as W = diag(3, 1, 1) to give more importance to
the steering column angle δsc as this signal contains less noise compared to the
steering column angular velocity δ̇sc and steering column torque τtb signal.

The cost function (5.18) is minimized by utilizing MATLAB’s function ‘greyest’
which uses a least squares algorithm. The quality of the fit is assessed by the
Normalized Root Mean Squared Error (NRMSE) expressed as a percentage

εfit =

(
1− ‖ym − yp‖
‖ym − ȳm‖

)
· 100 %, (5.19)

where ‖·‖ denotes the 2-norm of a vector, ym the vector of measured outputs, yp

the vector of predicted model outputs, and ȳm the vector with the means of the
measured outputs. A εfit value of 100 % indicates a perfect fit where the predicted
outputs are identical to the measured outputs while a value of 0 % indicates the
model is no better than a straight line through the mean of the data.

Figure 5.3 compares the model outputs with the measured outputs for one
segment length. As can be seen, the model outputs and measured outputs agree
reasonably well. The fit percentage for steering column angle δsc, steering column
angular velocity δ̇sc, and steering column torque τtb are 83.94 %, 33.55 %, and
31.33 %, respectively. The lower fit values for the angular velocity and steering
column torque might be due to the noise levels on both signals, and the resolution
of the angular velocity sensor signal is limited (0.0698 rad/s).

Table 5.4 lists the corresponding estimated steering model parameter values.
The values show an increase in jacking torque damping and stiffness compared to
the values presented in Chapter 4 on Page 53 as the Coulomb friction is neglected
in this linear model.

Table 5.4.: Estimated steering model parameter values

Description Symbol Value

Torsion bar damping ctb 0.005 Nms/rad
Jacking torque damping ceq 96.02 kNs/m
Jacking torque stiffness keq 33.825 kN/m

5.4.4. Model validation

As the model output comparison in Figure 5.3 does not guarantee that the es-
timated model is able to represent other dynamics of the system, the quality
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Figure 5.3.: Comparison between model output and measurement data for multisine
excitation signal: measurement data ( ) and model output ( )

of the model is validated using a different data set. This validation data set is
obtained with the same experimental setup but with a Pseudo-Random Binary
Sequence (PBRS) as excitation signal. The selected PBRS signal consists of 1024
samples that with the sample time of 0.01 s corresponds to a sequence length of
10.24 s. The signal is constantly repeated during the experiment which results in
a periodic signal whose frequency properties mimic white noise. The values of the
PBRS signal lie within the range -1 and 1. Therefore, a suitable gain is applied
to scale the signal such that the typical driving conditions are mimicked, similar
as with the multisine excitation signal.

Figure 5.4 presents the results of the validation data set in which the model
output is compared with the measured data for one segment length. As can be
seen, the model outputs and measured outputs agree reasonably well. The fit
percentage for steering column angle δsc, steering column angular velocity δ̇sc,
and steering column torque τtb are 63.93 %, 34.16 %, and 32.07 %, respectively.

To compare the estimated gray-box model with other solutions, Figures 5.5
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Figure 5.4.: Comparison between model output and measurement data for pseudo-
random binary sequence excitation signal: measurement data ( ) and
model output ( )

and 5.6 depict the transfer functions from steering motor current Ism to steering
column angle δsc and torsion bar torque τtb, respectively. The figures show
a comparison between the gray-box model estimate with a state space model
estimate and the measured frequency-response function. The state space model
estimate is a fourth order model generated with the MATLAB function ‘n4sid’.
The model order equals the order of the gray box to allow for a fair comparison.
The difference in low frequent behavior in the transfer function from steering
motor current Ism to torsion bar torque τtb indicates a dry friction or spring
effect. This can be included in the model by adding a spring from the steering
wheel to the fixed world to approximate the dry friction. Besides that, the models
show more or less the same behavior, indicating that the gray-box model is able
to serve as a model for the steering system for normal driving conditions.
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Figure 5.5.: Transfer function from steering motor current Ism to steering column
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5.5. Fault Diagnosis

The validated model is used to detect faults in the steering system of the automated
vehicle. As the sensor faults have already been covered in the hardware and
software design, as shown in Chapters 2 and 3, this section covers the steering
system actuator faults.

5.5.1. Actuator faults

The automated steering system, as presented in Figure 5.2, has three inputs of
which one is controlled: the steering motor torque τsm. The torque on the steering
wheel τd is the results from the driver input. The torque around the steering axis
τw is experienced when the vehicle is turning and tends to resist the attempted
turn. The torque is a combination of the self-aligning torque of the tire and a
torque resulting from the suspension geometry.

Fault modeling

The actuator faults must be modeled to be able to detect them. Most faults can
be represented as an additive fault as shown by Chen and Patton (1999). Hence,
the steering motor actuator fault is modeled as

τsm = Ismksm + fsm, (5.20)

where τsm is the actual steering motor torque, Ism the commanded steering motor
current, ksm the steering motor constant, and fsm the additive fault signal. A user
intervention can also be considered as an actuator fault in which the controlled
input is zero when the ADS is performing the dynamic driving task. Therefore,
the user intervention fault is modeled as

τd = 0 + fd, (5.21)

where τd is the actual torque exerted on the steering wheel, 0 the by the ADS
commanded steering wheel torque, and fd an additive fault signal.

Filter synthesis

By substituting the fault models (5.20) and (5.21) into the complete steering
model, consisting of the steering system model (5.13) coupled with the single
track model (5.15), its input-output description can be written as

y(s) = Gu(s)u(s) + Gf(s)f(s), (5.22)
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where y(s), u(s), and f(s) are vectors transformed to the Laplace domain of

the outputs y(t) =
[
δsc τtb ay ωz

]T
, inputs u(t) =

[
Ism 0

]T
, and faults

f(t) =
[
fsm fd

]T
, respectively. The 4× 2 TFM Gu(s) and 4× 2 TFM Gf(s)

describe the input to output and fault to output relations, respectively. As the
faults directly influence the inputs, Gf(s) equals Gu(s).

To produce the fault indicator signals, a general linear residual generator is
employed which is given by

r(s) = Q(s)

[
y(s)
u(s)

]
, (5.23)

where Q(s) is the to be designed filter such that the residuals are zero in the
fault-free case and at least one of them distinctively nonzero when a fault is
present. The filter Q(s) must be stable and proper to be physical realizable.
By substituting the input-output description (5.22) into (5.23), the following is
obtained

r(s) = Q(s)

[
Gu(s)

I

]
u(s) +

[
Gu(s)

0

]
f(s), (5.24)

where Gf(s) has been replaced by Gu(s). To ensure the residuals r(t) are zero
when no fault f(t) is present for any control input u(t), the residuals must be
decoupled from the control input. In other words, the filter Q(s) must satisfy

Q(s)

[
Gu(s)

I

]
= 0. (5.25)

To solve for the fault detection filter basis, a left null-space basis of
[

Gu(s) I
]T

can be computed. However, a trivial filter is Q1(s) =
[

I −Gu(s)
]

which is
always possible when no disturbances are included in the input-output description
(5.22). In case disturbances are included in the input-output descrption, they
have to be decoupled from the residuals which is not always possible, as explained
in Section 5.2.

The fault to residual response can be shaped by pre-multiplying Q1(s) with
suitable transfer functions Qi(s) to obtain the final filter in factored form as
Q(s) = Qk(s) · · ·Q2(s)Q1(s), where Q2(s) to Qk(s) are the filters to shape the
response or to address synthesis requirements such as being physical realizable.

As the dynamical behavior of the filter can be freely chosen, the poles of the
filter Q(s) have been set to -5 by employing the Fault Detection Toolbox (Varga
2017a) for the numerical computations of the filter. The selection of the poles
allows fast detection of faults while filtering out high frequency measurement
noise. A bank of three filters is obtained and each filter is of order two, so the
total order of the overall filter Q(s) is six.
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Filter assessment

To assess the obtained residual generator Q(s), the internal fault representation

Rf(s) = Q(s)

[
Gu(s)

0

]
, (5.26)

is used. Figure 5.7 shows the response of Rf(s) to unit fault step inputs f(t) =[
fsm fd

]T
with all initial conditions set to zero. As can be seen, the actuator

and user intervention fault can be detected as the fault to residual response is
nonzero. The corresponding fault signature matrix is given as

SRf
=

 0 1
1 0
1 1

 , (5.27)

from which it is clear that it is possible to isolate both faults as well. The filter
is validated in Sections 5.6 and 5.7 in which simulation and experimental results
are presented.
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Figure 5.7.: Step response plot of Rf(s) (5.26) from actuator faults fsm and fd to
residuals r(t)
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5.5.2. Driver state detection

The previous fault diagnosis method does not differentiate between holding the
steering wheel and applying a corrective torque. With automated driving, it
might be undesirable to disengage the ADS each time the driver is holding the
steering wheel. Disengagements must however occur when the driver is applying
a corrective torque, therefore, driver state detection is required.

Multiple model modeling

The steering model (5.13) coupled with the single track model (5.15) and the
driver’s arm model (5.14) with the three cases hands-off, hands-on relaxed muscle
state, and hands-on co-contracted muscle state can be described with multiple
models as

y(i)(s) = G(i)
u (s)u(s), (5.28)

where y(i)(s) and u(s) are vectors transformed to the Laplace domain of the

outputs y(t) =
[
δsc τtb ay ωz

]T
and inputs u(t) =

[
Ism 0

]T
. The 4× 2

TFMs G(i)
u (s) describe the inputs to outputs relation depending on the driver’s

arm state.
Figure 5.8 shows a comparison between the models G(i)

u (s) in which the transfer
functions are presented from input to outputs for the three cases hands-off, hands-
on relaxed muscle state, and hands-on co-contracted muscle state. As can be seen,
the driver’s arm plays an important role as the low frequent magnitude differs
significantly between the responses. Also, the eigenfrequency shifts from roughly
14 Hz to 7 Hz. These observations agree with the measurement data obtained by
Loof (2018) with a modified VW Lupo. This vehicle has a comparable steering
geometry to a Renault Twizy.

Filter synthesis

To detect which model of (5.28) best fits the current input-output behavior, a
bank of three residual generators can be constructed of the following form

r(i)(s) = Q(i)(s)

[
y(s)
u(s)

]
, (5.29)

where Q(i)(s) are the to be designed filters. The filters must be designed such
that the residual r(i)(t) is close to zero when the measurement y(t) agrees with
the by model i expected measurement y(i)(t) and distinctively nonzero when the
measurement agrees with model j y(t) = y(j)(t) for i 6= j. The overall residual
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Figure 5.8.: Transfer functions from steering motor current Ism to steering column
angle δsc, torsion bar torque τtb, lateral acceleration ay, and yawrate
wz: hands-off ( ), hands-on relaxed muscle state ( ), and hands-on
contracted muscle state ( )
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generator Q(s) is obtained by stacking the three filters Q(i)(s) as

r(s) =

 Q(1)(s)

Q(2)(s)

Q(3)(s)

[ y(s)
u(s)

]
, (5.30)

where the Fault Detection Toolbox (Varga 2017a) has been employed for the
numerical computations of the filter.

Filter assessment

Similar to the previous filter as shown in Figure 5.7, the internal representation

Ru(s) = Q(s)

[
Gu(s)

I

]
, (5.31)

is used to assess the obtained residual generator Q(s). Figure 5.9 shows the
response of Ru(s) to an unit control step input u(t) = Ism with all initial conditions
set to zero. Each column corresponds to a specific model and the rows show the
residual outputs. All diagonal entries are zero as the input-output behavior fits
to that model. The off diagonal elements grow with distance from the diagonal to
indicate a larger mismatch between that model and the input-output behavior.

5.6. Simulation Results

To evaluate the residual generators designed in Sections 5.5.1 and 5.5.2, a simula-
tion model is used. The high-fidelity nonlinear simulation model that is presented
in Chapter 4 is employed for the evaluation. The simulation model consists of
a multibody model of the vehicle including sensors and actuators. The model
is validated using data obtained from full-scale driving tests. Sensor noises are
added to the model to simulate real-life conditions. The selected noise intensities
and sample times are based on the specifications of the real sensors and are listed
in Table 5.5.

The simulation starts with a constant longitudinal velocity of 2.5 m/s and
without hands on the steering wheel. Two faults are subsequently and individual
injected. First, a steering motor fault fsm = 3 A is injected during the interval
t = 5 s to 10 s. Then, the driver’s arm state transitions to a relaxed muscle state
during the interval t = 14 s to 23 s. Next, the driver’s arm state transitions to
contracted muscle state during the interval t = 23 s to 32 s. Finally, the last
part of the simulation interval, t = 32 s to 35 s, consists again of a fault-free and
hands-off situation.
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Figure 5.9.: Step response plot of Ru(s) (5.31) to an unit input u(t) = Ism with all
initial conditions set to zero

As the driver’s arm are modeled as a passive spring and damper, no driver state
detection is possible without dynamic excitation. Therefore, a realistic steering
column reference signal must be applied. The reference signal must also be safe
to test with the experimental setup to be able to compare the simulation with an
experiment. The reference signal

δref(t) = 0.3 sin(0.6πt) + 0.2 sin(1.2πt), (5.32)

is selected, which is composed of two sinusoids with a different frequency and
amplitude, and where t denotes the simulation time.

Figure 5.10 shows the measured outputs and input signal during the simulation,
which are the steering column angle δsc, steering column torque τtb, lateral accel-
eration ay, yawrate ωz, and steering motor current Ism. The steering motor fault
(t = 5 s to 10 s) can be noticed by a small increase in steering motor current Ism.
The driver’s arm with relaxed muscle state (t = 14 s to 23 s) and user intervention
(t = 24 s to 32 s) can be noticed from the increase in steering column torque τtb
and decrease of the steering column angle δsc compared to the fault-free situation.
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Figure 5.10.: Measured outputs y(t) and input u(t) signals during the simulation:
steering column angle δsc, steering column torque τtb, lateral acceleration
ay, yawrate ωz, and steering motor current Ism
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Table 5.5.: Simulation model sensor noise standard deviations

Description Symbol Value

Steering column angle noise σδsc 0.002 rad
Steering column torque στtb 0.1 Nm
Lateral acceleration σay 0.1 m/s2

Yawrate σωz
0.01 rad/s

Steering motor current σIsm 0.5 A

5.6.1. Actuator faults

To detect the actuator faults, the output signals y(t) and input signal u(t) obtained
from the simulation are put through the filter Q(s) as constructed in Section 5.5.1.
The filter outputs are the residual signals r(t) which are then filtered in the
Narendra filter (5.10) with filter parameters α = 0.35, β = 0.65, and γ = 2 to
obtain the filtered residuals χ(t). The faults are detected by applying suitable
thresholds on the filtered residuals χ(t) to obtain the fault index signal ι(t). The
selected thresholds are ζsm = 2.75 for the steering motor fault, ζd = 2 for the user
intervention, and ζf = 14 for the fault signal. The threshold are ad hoc selected
and fine tuning of the thresholds is needed to obtain the optimal values, which is
a trade off between quick response time and low false alarm rate.

Figure 5.11 shows the residuals r(t) along with the filtered residuals χ(t) and
the fault index signals ι(t). As can be seen, the steering motor fault and user
intervention are both detected. The user intervention is detected by residuals r(2)

and r(3) after 0.84 s. The steering motor fault is detected with r(1) after 1.4 s but
not with r(3) while residual r(3) is sensitive to both faults, as shown in Figure 5.7.
The difference in signal amplitude between both fault intervals, however, makes
it unsuitable to apply a single threshold ζ. Therefore, the steering motor fault is
not detected with residual r(3). The user intervention is also wrongly detected
with r(1) as steering motor fault. This means that for reliable detection of the
steering motor fault, residual r(2) should also be evaluated. A steering motor
fault is only detected when the steering motor fault is detected with r(1) and no
user intervention is detected.

5.6.2. Driver state detection

To detect the driver’s arm state, the output signals y(t) and input signal u(t)
obtained from the simulation are put through the filter Q(s) as constructed in
Section 5.5.2. The filter outputs are the residual signals r(t) which are normalized
by dividing through their maximum values over the interval. The normalized
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Figure 5.11.: Detected actuator faults during the simulation: fsm ( ), fd ( ),
and f ( ). The shaded areas ( ) indicate when faults are intro-
duced in the simulation

residuals are then filtered in the Narendra filter (5.10) with filter parameters
α = 0.35, β = 0.65, and γ = 2 to obtain the filtered residuals χ(t). The faults are
detected by applying suitable thresholds on the filtered residuals χ(t) to obtain
the fault index signal ι(t). However, since the residuals r(t) are normalized and
always one of the models should be active, the active model can also be selected
as the lowest filtered residual χ(t). The model with the lowest filtered residual
χ(t) best fits the current input-output behavior.

Figure 5.12 shows the residuals r(t) along with the filtered residuals χ(t) and
the fault index signals ι(t). As can be seen, the driver’s arm states are detected
but not always correctly. For instance, during the relaxed muscle interval a
contracted muscle state is detected four times while during the contracted muscle
state interval a hands-off state is detected once. The main reason for this is that
the difference between the hands-off and relaxed muscle state residual during the
simulation is close to zero.
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Figure 5.12.: Detected driver’s arm state during the simulation: r(1)(t) ( ), r(2)(t)
( ), and r(3)(t) ( ). The shaded area ( ) indicates relaxed arm
muscle state and the area ( ) indicates contracted arm muscle state

5.7. Experimental Results

The experiment is executed with the automated vehicle described in Chapters 2
and 3. The experiment is performed in the same manner as the simulation to
be able to compare the results. The only difference between the simulations and
experiments is the road surface, which is smooth in simulations while additional
road disturbances are encountered during the experiments. Figure 5.13 shows the
measured outputs and input signal during the experiment, which can be compared
with the simulation results shown in Figure 5.10. The measured outputs during the
experiment show similar behavior compared to the simulation but the amplitude
of the steering column angle δsc and yawrate ωz are slightly lower than in the
simulation, which likely is caused by the fact that steering motor current Ism is
also slightly lower than in the simulation. Since the same steering controller is
used in the simulations and experiments, the difference is probably caused by
unmodeled amplifier characteristics. The user intervention is clearly visible in
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the interval t ≈ 24 s to 32 s but the steering motor fault (t = 5 s to 10 s) or the
driver’s arm with relaxed muscle state (t ≈ 14 s to 23 s) are nearly unnoticeable
in the unprocessed vehicle response.

5.7.1. Actuator faults

To detect the actuator faults, the output signals y(t) and input signal u(t) obtained
from the experiment are put through the filter Q(s) as constructed in Section 5.5.1.
The filter outputs are the signals r(t) which are then filtered in the Narendra filter
(5.10) with filter parameters α = 0.35, β = 0.65, and γ = 2 to obtain the filtered
residuals χ(t). The faults are detected by applying suitable thresholds on the
filtered residuals χ(t) to obtain the fault index signal ι(t). The selected thresholds
are ζsm = 1.65 for the steering motor fault, ζd = 4 for the user intervention, and
ζf = 10 for the fault signal. The threshold are ad hoc selected and fine tuning of
the thresholds is needed when implementing the algorithm to obtain the optimal
values, which is a trade off between quick response time and low false alarm rate.

Figure 5.14 shows the residuals r(t) along with the filtered residuals χ(t) and
the fault index signals ι(t). As can be seen, the steering motor fault and user
intervention are both detected. The user intervention is detected by residuals r(2)

and r(3). The steering motor fault is detected with r(1) but not with r(3) while
residual r(3) is sensitive to both faults, as shown in Figure 5.7. The difference in
amplitude, however, makes it unsuitable to apply a static threshold ζ. Therefore,
the steering motor fault is not detected with residual r(3) similar to the simulation
result.

5.7.2. Driver state detection

The residual signals r(t) to detect the driver’s arm state are obtained by feeding the
output signals y(t) and input signal u(t) obtained from the experiment through the
filter Q(s) as constructed in Section 5.5.2. The residuals r(t) are then normalized
and filtered in the Narendra filter (5.10) with filter parameters α = 0, β = 1, and
γ = 1 to obtain the filtered residuals χ(t). The model that best fits the current
input-output behavior is then selected as the model with the lowest filtered residual
χ(i)(t).

Figure 5.14 shows the residuals r(t) along with the filtered residuals χ(t) and the
fault index signal ι(t). As can be seen, the driver’s arm with relaxed muscle state
is correctly detected for two short periods but stays most of the time undetected.
The contracted muscle state is also correctly detected for a short period but most of
the time it is detected as a relaxed arm muscle state. A probable cause is that the
dynamic properties of the test person’s arm does not match the dynamic driver’s
arm properties as presented by Pick and Cole (2007). Another reason might be
that in the current test environment not enough excitation of all dynamics is
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Figure 5.13.: Measured outputs y(t) and input u(t) signals during the experiment:
steering column angle δsc, steering column torque τtb, lateral acceleration
ay, yawrate ωz, and steering motor current Ism
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Figure 5.14.: Detected actuator faults during the experiment: fsm ( ), fd ( ),
and f ( ). The shaded areas ( ) indicate when faults are intro-
duced in the simulation

achieved (ay ≤ 0.5 m/s2, ωz ≤ 0.04 rad/s). Higher velocities and larger steering
angles can unfortunately not be achieved in a safe manner at the current available
test site.

5.8. Conclusion

In this chapter, model-based fault diagnosis for an automated steering system
is considered. The proposed strategy uses a linear approximated model of the
complete steering system consisting of a driver’s arm model, a steering system
model, and a single track vehicle model. The linear steering system model captures
the system well in the frequency range 1 Hz to 50 Hz. Nonlinear effects, such as
dry friction in the steering system, become important below 1 Hz. The fault
diagnosis method to detect a user intervention and a steering actuator fault has
been successfully demonstrated in simulation and validated experimentally. Also
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Figure 5.15.: Detected driver state during the experiment: r(1)(t) ( ), r(2)(t) ( ),
and r(3)(t) ( ). The shaded area ( ) indicates relaxed arm muscle
state and the area ( ) indicates contracted arm muscle state

driver state detection is successfully shown, but the initial tests show that the
method is sensitive to the size of the input signals. The fault diagnosis method is
also sensitive to model inaccuracies arising from the linear approximation of the
nonlinear steering system model. Wear and other long-time vehicle effects can
change the system behavior and must be taken into account when designing the
filters and thresholds. The model-based fault diagnosis techniques remove the
need for extra sensors, thereby reducing cost and eliminating possible points of
failure. The technique can also be employed to act as a redundant measure to
provide higher levels of safety.
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6.

Fault Diagnosis for Connected Vehicles

Abstract - Cooperative Adaptive Cruise Control (CACC) systems utilize a wireless link

between vehicles which allows driving with shorter inter-vehicle distances compared to a

normal driver, thereby increasing road throughput and driver comfort. At these reduced

vehicle following distances, the driver cannot be considered as backup and the CACC

must supervise itself to avoid unsafe driving situations. This chapter presents a fault

diagnosis strategy to detect when incorrect information is received from the preceding

vehicle or when a wrong object is tracked. The strategy is implemented in two prototype

CACC vehicles. Simulations and experiments shows that the proposed method is able

to detect faults, thereby avoiding unsafe situations.

6.1. Introduction

Cooperative driving in which real-time information of other traffic participants is
shared using a wireless connection is a promising field to improve driver comfort
and safety (Reichardt et al. 2002). The wireless received information complements
the information received by using the onboard sensors, such as radar or vision
systems. Whereas the onboard sensors only provide information in the line-of-
sight of the sensors, the wireless communication receives information from all
traffic participants in the vicinity, thereby extending the information horizon.
Additionally, states and inputs that cannot be measured with environmental
sensing systems can be communicated via this wireless link.

One example of cooperative driving is Cooperative Adaptive Cruise Control
(CACC) (Shladover et al. 2012; Sheikholeslam and Desoer 1990) which is a
vehicle following system that automatically maintains a desired distance to a
preceding vehicle. To this end, a radar sensor is commonly used to measure the
inter-vehicle distance and velocity. The wireless link is employed to communicate
extra information from the preceding vehicle to the following vehicle, such as
position and acceleration. The wireless information enables CACC equipped
vehicles to follow each other with shorter inter-vehicle distances compared to a
normal driver-operated vehicle, thereby increasing road throughput and driver
comfort.
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The type of CACC controller can vary between different implementations. For
example, Ploeg (2014) employed CACC on a string of identical vehicles control-
ling the longitudinal motion of each vehicle. The lateral vehicle motion of the
following vehicles is still manually controlled by applying the correct steering
actions. Extending on the work of Shaw and Hedrick (2007), Naus et al. (2010),
and Ploeg (2014), a method is presented by Bayuwindra (2019) to control the
vehicle in longitudinal and lateral motion. The proposed controller objective is to
follow exactly the same path as the preceding vehicle. Similarly, Van Hoek et al.
(2018) developed a CACC algorithm that follows a predecessor by controlling
the longitudinal and lateral vehicle motion with taking dynamic obstacles into
account.

The discussed methods allow driving at short inter-vehicle distances with time
headways smaller than what is recommended by most road authorities (SWOV
2012). At these reduced distances, the driver might not react in time in case of a
fault situation, such as wireless package loss, and cannot be considered as backup
(Dajsuren and Loupias 2019). Therefore, it is important for a CACC system to
timely detect faults and react accordingly.

Possible faults are when the vehicle with which the wireless link is established
is different to the one that is tracked with the environmental perception system.
Environmental perception systems detect multiple objects and from all these
detected objects a target vehicle must be selected. The target vehicle is commonly
selected as the vehicle driving closest in front of the vehicle on the same predicted
path. This vehicle might however be a different one compared to the one with
which the wireless link is established as the wireless communication is not a line of
sight sensor. This situation can happen when, for instance, an unequipped vehicle
cuts-in or through a platoon or when platooning on a curved multi lane road.
With a right hand corner coming ahead, the environmental perception system
might incorrectly select a target vehicle in the faster driving left-hand lane. This
would cause the vehicle to accelerate as the CACC tries to maintain a certain
inter-vehicle distance. To prevent these unsafe situations, a fault must be quickly
detected because driving with reduced inter-vehicle distances makes the system
inherently unsafe in case of failure.

The aim of the research presented in this chapter is to detect when incorrect
information is received from the preceding vehicle or when a wrong object is
tracked without assuming a specific CACC controller structure. A fault is detected
when the preceding vehicle that is tracked by the environmental perception system
behaves differently compared to the data received via the wireless link. In case of
a detected fault, the countermeasure is to disable CACC and switch to Adaptive
Cruise Control (ACC) or switch to a degraded CACC as presented in Ploeg et al.
(2014). The ACC controller will then automatically increase the following distance
to a safe distance. The countermeasure in case of an environmental perception

96



6.2. CACC System Implementation

system failure is to bring the vehicle to a safe stop using a controlled deceleration.
The outline of this chapter is as follows. Section 6.2 provides an overview of

the CACC implementation, consisting of localization, target tracking, and control
blocks. Section 6.3 models the CACC system and provides the relevant model
parameters. In addition, the fault diagnosis strategy is explained. Section 6.4 vali-
dates the fault diagnosis system by performing simulation results. Section 6.5 then
presents experimental results. Finally, Section 6.6 provides the main conclusions.

6.2. CACC System Implementation

Before the system can be modeled and faults are injected, the relevant system
implementation must be known. Therefore, the CACC system implementation is
described together with the relevant parameters. To this end, consider Figure 6.1
that shows a top view of two connected vehicles in which xh, yh are the global
coordinates of the host vehicle expressed in a tangent local reference frame L, `r
the distance between the rear axle and the rear bumper of the target vehicle, `f
the distance between rear axle and the front bumper of the host vehicle, ψh the
heading angle of the host vehicle, vh the longitudinal velocity of the host vehicle,
ah the longitudinal acceleration of the host vehicle, d the distance between the
rear axle of the host vehicle and rear bumper of the target vehicle, and α the angle
between the rear axle of the host vehicle and rear bumper of the target vehicle.
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Figure 6.1.: Schematic illustration of a CACC scenario showing the kinematical states
and coordinate system (adapted from (Ploeg 2014))
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6.2.1. Host-tracking

Not all relevant kinematic states can be acquired directly or with sufficient accu-
racy, such as the heading angle ψh. Therefore, a host-tracking block is used to
estimate the relevant kinematic states with their covariances. The kinematical
states are determined by fusing the position p(t) and velocity v(t) data obtained
from the Global Navigation Satellite System (GNSS) receiver with the output
data from a Inertial Measurement Unit (IMU). The output data of the IMU
consists of the angular velocity ω(t) and specific force s(t), which is defined as
the difference between inertial and gravitational acceleration.

The implemented scheme is shown in Figure 6.2, which is referred as a loosely-
coupled closed-loop GNSS-aided Inertial Navigation System (INS) configuration
(Farrell 2008). The idea behind the scheme is that the INS constantly provides
the navigation solution in terms of position p(t), velocity v(t), and attitude q(t)
by integrating information received from the motion sensors. Whenever there
is an update from the GNSS receiver, the position and velocity differences are
used as input to an error-state Kalman filter (ESKF). The ESKF uses these
differences to estimate correction data for the navigation solution (δp̂, δv̂, δq̂) as
well as correction data for the IMU (bs,bω). The relevant equations are discussed
block by block below.
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Figure 6.2.: Loosely-coupled closed-loop GNSS-aided INS

Navigation equations

The navigation equations in the INS modeling the vehicle motion are represented
in a tangent local reference frame L by using the North-East-Down (NED) coor-
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dinates. The navigation equations are given as (Farrell 2008) (omitting the time
argument t for readability)

ṗl = vl, (6.1a)

v̇l = Rl
bsb + gl − 2Ωl

iev
l, (6.1b)

Ṙ
l

b = Rl
b(Ωb

ib −Ωb
ie), (6.1c)

where pl denotes the position vector expressed in frame l; vl denotes the velocity
vector expressed in frame l; Rl

b represent the direction cosine matrix transforming
vectors from the body frame b to the tangent local reference frame l (i.e., the
attitude of the vehicle); the vector gl denotes the gravity in the l-frame which
is the difference between gravitational acceleration and centrifugal acceleration
due to earth rotation; sb denotes the specific force vector in the body frame b
as measured by the accelerometers; and Ωb

ib is a skew-symmetric matrix of the
angular velocity of the body frame b relative to the inertial frame i as resolved
in the body frame b which is measured by the gyroscopes; and Ωb

ie is a skew-
symmetric matrix of the angular velocity of the earth-fixed earth-centered frame
e relative to the inertial frame i, which is the earth rotation as resolved in the
body frame b, respectively. The quaternion representation ql is used to represent
the rotational transformation Rl

b for its lack of singularities and computational
efficiency.

Sensor error model

Every time step, the INS computes the a priori navigation solution in terms of
position p(t), velocity v(t), and attitude q(t) by numerically integrating (6.1).
The navigation solution would perfectly track position, velocity, and attitude in
case the IMU signals would be without error and neglecting discretization and
quantization errors. Disturbances are however inevitable in practice and the
accelerometer and gyroscope sensor measurements include random noise terms
and instrument calibration factors, such as slowly varying measurement bias, scale
factors, nonlinearity, and non-orthogonality. The instrumenten calibration factors
can be estimated using an ESKF by including them in the estimation problem.
Since the complexity and number of augmented states increases with the number
of included calibration factors, only the bias errors are considered in the following
implementation. The accelerometer and gyroscope sensors measurements are
modeled as

s̃(t) = s(t) + bs(t) + ηs(t), (6.2)

ω̃(t) = ω(t) + bω(t) + ηω(t), (6.3)
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where s̃(t) and ω̃(t) are the measured values, s(t) and ω(t) the actual values, bs(t)
and bω(t) the sensor biases, and ηs(t) and ηω(t) sensor noise. A random walk
process (Farrell 2008) is used to model the sensor biases as

ḃs(t) = ηbs
(t), (6.4)

ḃω(t) = ηbω
(t), (6.5)

with ηbs
(t) and ηbω

(t) the bias noise. Both the sensor as well as bias noise
are assumed to be zero-mean Gaussian white noise. With the biases estimated
with the ESKF, the accelerometer and gyroscope measurements are corrected by
applying

ŝ(t) = s̃(t)− bs(t), (6.6)

ω̂(t) = ω̃(t)− bω(t). (6.7)

As only the biases are removed from the IMU signals, the filter introduces no
phase lag.

Error-state Kalman filter

To account for the random noise terms and instrument calibration factors, such as
slowly varying measurement bias, scale factors, nonlinearity, and non-orthogonality,
a loosely-coupled closed-loop GNSS-aided INS scheme is employed that is based
on a linearized Kalman filter. This filter estimates the correction data for the
navigation solution (δp̂, δv̂, δq̂) and the correction data for the IMU (bs,bω)
using the position and velocity differences between the INS and GNSS as input.

In contrast to an ordinary extended Kalman filter, only the estimation errors
are determined in the filter while the actual state vector is stored outside the
filter. The state vector prediction is conducted in the INS mechanization and
excluded from the filter. Therefore, the filtering scheme is commonly denoted as
an ESKF. The error-state always operates close to the origin as the error-state
δx(t) is small compared to the real state x(t). The errors are collected in the
error-state vector δx(t).

The dynamic error model structure of the ESKF in continuous time is given as

δẋ(t) = F(t)δx(t) + G(t)w(t), (6.8)

where δx(t) is the error vector, F(t) the state transition matrix, G(t) the noise
gain matrix, and w(t) the noise vector with noise covariance w ∼ N (0,Q). The
error vector consists of the position error δp(t), velocity error δv(t), attitude error
represented as euler angles δε(t) (Farrell 2008), accelerometer bias error δbs(t),
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and gyroscope bias error δbω(t). The dynamic error equations can be obtained
by linearization of the Taylor series expansion of the actual solutions around the
estimated solution and subtracting the estimated solution. For the considered
system, the error-state kinematics are given as (Solà 2017) (omitting the time
argument t for readability)

δṗl = δvl, (6.9a)

δv̇l = [Rl
bŝ]×δq

l −Rl
bδbs, (6.9b)

δε̇l = Rl
bδbω, (6.9c)

δḃs = ηbs
, (6.9d)

δḃω = ηbω
, (6.9e)

where [·]× denotes a skew-symmetric matrix of the vector [·]. The equation can
be written in the form of (6.8) as

δṗl

δv̇l

δε̇l

δḃs

δḃω

 =


0 I 0 0 0

0 0 [Rl
bs]× −Rl

b 0

0 0 0 0 Rl
b

0 0 0 0 0
0 0 0 0 0




δpl

δvl

δεl

δbs

δbω

+


0 0 0 0

−Rl
b 0 0 0

0 Rl
b 0 0

0 0 I 0
0 0 0 I



ηs

ηω

ηbs

ηbω

 . (6.10)

The measurement update of the considered system consists of the position p̃l and
velocity ṽl expressed in the l frame. These measurements can be modeled as

p̃l(t) = pl(t) + ηp(t), (6.11a)

ṽl(t) = vl(t) + ηv(t), (6.11b)

where pl(t) and vl(t) are the true values and ηp(t) and ηv(t) are additive zero
mean white noises. The measurements (6.11) have to be converted into the
following measurement model structure

δy(t) = H(t)δy(t) + v(t), (6.12)

with δy(t) the observation vector, H(t) the observation matrix, and v(t) the
measurement noise vector with noise covariance v ∼ N (0,R). The measurement
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model of (6.11) is given as

[
δpl

δvl

]
=

[
I 0 0 0 0
0 I 0 0 0

]
δpl

δvl

δεl

δbs

δbω

+

[
ηp

ηv

]
, (6.13)

in which the contributions of the distance from GNSS antenna to IMU mounting
position is neglected as they are roughly mounted at the same position.

To be able to implement the ESKF, the models (6.10) and (6.13) have to be
converted to the discrete time domain, yielding

δxk+1 = Fkδxk + Gkwk, (6.14)

δyk = Hkδxk + vk, (6.15)

where Fk is the discretized version of F(t), expressed as Fk = exp(F∆t), Gk is
the discretized version of G(t), expressed as Gk = G∆t, and Hk is the discretized
version of H(t). As the full state vector x̂k is stored outside the filter, the time
update step of the ESKF limits to

P̄k = Fk−1Pk−1F
T
k−1 + Gk−1Qk−1G

T
k−1,

where P̄k is the estimation error covariance matrix and Qk−1 the discrete time co-
variance matrix given by Qk−1 = Q/∆t with ∆t the sample time. The correction
step

Kk = P̄kH
T
k(HkP̄kH

T
k + Rk)−1,

δx̂k = Kk(ỹk −Hkx̂k),

Pk = (I−KkHk)P̄k,

is performed when a new GNSS measurement is received where Rk = R denotes
the measurement noise covariance matrix. After the correction step, the estimated
navigation state perturbations (δpl

k, δv
l
k, δε

l
k) and sensor biases (δbsk, δbωk) are

injected in the INS (6.1) and (6.6) by

p̂l
k = p̂l

k−1 + δpl
k, (6.16a)

v̂l
k = v̂l

k−1 + δvl
k, (6.16b)

R̂
l

b = (I− [ε]×)Rl
b (6.16c)

bsk = bsk−1 + δbsk, (6.16d)

bωk = bωk−1 + δbωk. (6.16e)

where [·]× denotes a skew-symmetric matrix of the vector [·]. The error state δx̂k
is reset to zero after the correction, because per definition the error is zero after
applying (6.16).
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Time delayed GNSS measurement

GNSS measurements are commonly affected by time delays due to internal pro-
cessing and data transmission. These time delays can be significant and time
varying. To be able to compensate for them, the time delays must be measured.
To measure the exact time delay, the real-time computer must be synchronized to
the same clock as the GNSS receiver such that the time delay can be computed by
comparing the time of reception with the time indicated in the received message.

The real-time computer is synchronized to the GNSS receiver clock by using
the time indicated in the received message and a pulse per second signal. This
precise digital time signal is transmitted every second by the GNSS receiver and
indicates the exact top of a second. By triggering on this clock pulse, the local
clock on the real-time computer is resynchronized to the absolute clock each time
a pulse is received.

Figure 6.3 depicts the GNSS time delay observed in an experimental evaluation.
As can be seen, the GNSS time delay is significant with a mean time delay of 0.18 s.
Considering a speed of 50 km/h and the mean time delay of 0.18 s, a mismatch
of 2.5 m is obtained between the measured and estimated position.
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Figure 6.3.: GNSS receiver time delay during an experimental evaluation

To fully account for the time delayed measurement, reprocessing of the ESKF
is required at the time when the delayed measurement is available but this is
not practicable in a real-time environment. Therefore, a suboptimal solution has
been implemented by storing the INS output x̂k for a certain amount of samples.
When at time k a GNSS measurement ỹk = [p̃k, ṽk] is received that was valid
at time k − θ with θ the GNSS time delay in samples, the position and velocity
difference is computed using ỹk − h(x̂k−θ). The change in covariance matrix P
due to the time delayed measurements is neglected.
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Motion model

The navigation solution is improved by adding a motion model in the scheme
(Dissanayake et al. 2001). During normal low speed driving with low lateral
accelerations, a vehicle experiences almost no side slip or motion normal to the
road surface. These non-holonomic vehicle constraints can be added in the scheme
as virtual sensors. In addition, the vehicle speed sensor signal vx(t) can be used
as aiding sensor to improve the navigation solution between GNSS updates. Both
sensors can be modeled as

y = [vx, 0, 0]T −Rb
l vl + ηv,

where ηv is zero-mean Gaussian white noise used to relax the constraints.

Filter parameterization

The filter is parameterized by the variances in the process noise covariance
matrix Q = diag(σ2

s , σ
2
bs
, σ2

ω, σ
2
bω

) and measurement noise covariance matrix
R = diag(σ2

p, σ
2
v, σ

2
vx , σ

2
y). The selected filter parameter values are listed in Ta-

ble 6.1 of which most of them are derived from sensor specifications (Bosch 2018a;
u-blox 2016). Only the values for the relaxed constraint equations are determined
by experimental evaluation.

Table 6.1.: Host-tracking filter noise standard deviations

Description Symbol Value Source

Accelerometer noise σs 5e−2 m/s2 IMU
Accelerometer bias noise σbs 5e−4 m/s2 IMU
Gyroscope noise σω 1e−1 °/s IMU
Gyroscope bias noise σbω 5e−3 °/s IMU
Horizontal position noise σp 2.5 m GNSS
Horizontal velocity noise σv 5e−2 m/s GNSS
Speedometer noise σvx 1 m/s Experimental evaluation
Non-holonomic noise σy 2 m/s Experimental evaluation

Host-tracking test results

Ground truth data can be used to evaluate the filter performance in terms of
absolute navigation state errors. Ground truth data can for example be obtained
with a high precision measurement equipment, such as RTK-GPS. As this is
not readily available, the filter performance is evaluated by comparing the GNSS
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position data and the navigation solution of a field test with satellite map data.
The results are depicted in Figure 6.4, and as can be seen, both the GNSS data
and the INS agree reasonably well with the map data.
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Figure 6.4.: Host-tracking field test result: GNSS measurements (white) and INS
solution (black)

6.2.2. Course prediction

Course prediction plays an important role in determining the area in which the
detected objects are relevant for the CACC system. The course of the host vehicle
is predicted using the course-curvature that can be calculated by using a kinematic
steering assumption (Bosch 2003) expressed as

κs =
δsw
isg`

, (6.17)

where δsw is the steering wheel angle, isg is the steering-gear ratio, and ` the wheel-
base. This method assumes kinematic driving and provides a good approximation
for low vehicle speeds and low lateral accelerations. For higher velocities and ac-
celerations, the course-curvature can be calculated by κy = ωz/vx or κa = ay/v

2
x,

where ωz is the yawrate, vx longitudinal velocity, and ay the lateral acceleration.
As the vehicle is designed for low speed driving (up to 50 km/h), κs is selected to
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calculate the course-curvature. The predicted course is then given as

ycourse(d) =
κs

2
d2, (6.18)

where d is the longitudinal distance from the vehicle to the predicted course and
ycourse is the lateral distance from the vehicle centerline to the predicted course.
The predicted course area, shown in Figure 6.1, is calculated using the predicted
course and by assuming a lane width that is expanding over distance to account
for the uncertainty.

6.2.3. Wireless communication

To communicate with other vehicles in the vicinity, a wireless link is employed.
This link is used to receive the required kinematic states from a target vehicle as
well as other relevant information such as time of message and vehicle dimensions.
The Cooperative Awareness Message (CAM) message protocol (Severinson 2018)
is used for this. The most important content of this message is listed in Table 6.2.
The CAM requirements specify an update rate that depends on the dynamics
of the vehicle and channel congestion varies between 1 Hz to 10 Hz (ETSI 2011).
However, as no other vehicles are using the communication channel during the
experiments, the update rate of the CAM is set to 25 Hz.

Table 6.2.: CAM message content (excerpt)

Description Symbol Purpose

Time of message generation (ms) tcam Determine message age and com-
munication delay θ

Rear-axle position (°) Glat Bearing angle α calculation; dis-
tance d calculation

Rear-axle position (°) Glon Bearing angle α calculation; dis-
tance d calculation

Heading (rad) ψt Distance d calculation
Longitudinal velocity (m/s) vt Relative velocity calculation in

host vehicle frame
Longitudinal acceleration (m/s2) at Relative acceleration calculation

in host vehicle frame
Desired acceleration (m/s2) ut Longitudinal vehicle following

control

The wireless communication delay is considered an important factor in the
CACC system (Xing 2019). As the time of transmission is included in the CAM
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message, the communication delay is computed online by comparing the time
of transmission with the time of reception. The only prerequisite is that both
the host and target vehicle are synchronized to the same clock. This is achieved
by using the local clock of the host-tracking block, which is synchronized to the
absolute time via the GNSS receiver.

Figure 6.5 shows the communication delay measured during a driving exper-
iment. As can be seen, the communication delay is nearly constant over the
experiment and relatively small with a mean of 0.02 s. The jitter effect is most
likely caused by the fact that both the pulse per second required for the abso-
lute clock resynchronization and the communication delay are sampled signals
(Ts = 0.01 s) instead of flank triggered. The communication delay is expected to
grow when the number of vehicles communicating on the same network increases.
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Figure 6.5.: Wireless communication delay during a driving experiment

6.2.4. Target selection

Objects in the vicinity of the host vehicle are detected using an environmental
perception system and depending on the object also via Vehicle-to-Everything
(V2X) communication. As environmental perception system, a radar sensor is
employed that can detect and track up to 32 objects. The most relevant one must
be selected out of the potentially large set of detected objects. To illustrate this,
Figure 6.6 shows a bird’s-eye plot of an experiment in which the radar sensor
coverage, V2X detections, and tracked objects are displayed. In total ten objects
are detected which are indicated by the black boxes. The line segments indicate
the relative velocity of the objects towards the host vehicle. From the set of
potentially relevant tracked objects S, the Most Important Object (MIO) must
be selected. The MIO is the vehicle driving closest in front of the vehicle on the
same predicted path.
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The first step is to filter out the static objects when driving. The absolute
velocity of objects is calculated by

vj(t) = vh(t) + ∆vj(t), (6.19)

where vj(t) is the absolute velocity of object j ∈ S with S the set of detected
objects, vh(t) is the velocity of the host vehicle, and ∆vj(t) is the relative velocity
as measured by the radar sensor. Objects with an absolute velocity less than
2 m/s are considered stationary for this research and are ignored as possible target
vehicle when driving (vh > 2 m/s).
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Figure 6.6.: Radar sensor coverage, V2X detections, and tracks visualization: host
vehicle outline ( ), main antenna ( ), elevation antenna ( ),
close elevation antenna ( ), V2X relative position ( ), tracked object
relative position ( ), tracked object relative velocity ( ), MIO ( ),
predicted course ( ), and predicted course area ( )

Traditional ACC systems are primarily designed for use on motorways with large
corner radii. The objective of the research and development vehicle designed in this
thesis is urban driving, which includes sharp bends. As a consequence, situations
are possible in which the target is out of the field-of-view of the radar sensor.
Therefore, the bearing angle α(t), computed from the wireless communication
message, is used to check whether the target vehicle is in the field-of-view of the
radar sensor. When the target vehicle is not in the field-of-view of the radar
sensor, the wireless data is used to determine the relative distance, velocity, and
acceleration. Otherwise the radar data is used.

The radar and wireless data can be fused when the target is in the field-of-
view of the radar sensor. However, the radar sensors provides object level data,
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which means that the radar detections are processed inside the radar. As a
consequence, the radar output data proved to be sufficiently accurate in practice.
To illustrate this, the wireless and radar sensor data of a CACC experiment are
compared. Figure 6.7 shows the path driven during the experiment of the target
and host vehicle. To be able to compare the sensor data, the sensor data must
be converted to a common frame of reference, as illustrated in Figure 6.1. The
radar data is converted from the radar coordinate frame to the vehicle coordinate
frame attached to the rear axle to be in agreement with the wireless received
data. Figure 6.8 shows a comparison between the wireless sensor data and radar
sensor data in which dx(t) is the relative longitudinal distance, dy(t) the relative
lateral distance, α(t) the bearing angle between the vehicles, ∆v(t) the relative
longitudinal velocity, and ∆a(t) the relative longitudinal acceleration. As can be
seen, a good agreement is obtained between the radar sensor data and the data
received via the wireless link. Also the missing line segments in the radar data,
when no target is detected with the radar sensor, align well with predicted out
field-of-view based on the wireless received data.
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Figure 6.7.: Driven path during CACC experiment: target vehicle (white) and host
vehicle (black). The inset shows a close up of the s-curved path

The current implementation uses the sensors that are normally available for
CACC systems, such as radar and wireless communication. The radar sensor
is able to accurate measure longitudinal position, velocity, and acceleration but
has limited field-of-view and angular resolution. To complement the radar sensor
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Figure 6.8.: Environmental perception sensor signals during CACC experiment: V2X
( ), radar ( ), and the with the V2X data predicted periods when
the target vehicle is out the field-of-view of the radar sensor ( ). The
missing line segments in the radar data indicate that no target vehicle is
detected
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and to improve the angular resolution and field-of-view, additional environmental
perception sensors can be included, such as camera or lidar. As vision system
have good angular resolution but limited position and velocity accuracy, fusion
of these systems would result in a coherent image of the surroundings.

6.2.5. Longitudinal vehicle dynamics model

To be able to apply linear CACC controllers, input-output linearization of the
longitudinal driveline dynamics is required. The longitudinal dynamics of the
vehicle are linearized using an inverted map of the torquemap as presented in
Chapter 4. In addition, the road load forces are compensated, such as the rolling
resistance and aerodynamic losses. The following vehicle model is adopted to
describe the longitudinal driveline dynamics of the vehicle (Ploeg 2014)

G(s) =
ax(s)

u(s)
=

1

τs+ 1
e−φs, (6.20)

where τ is the vehicle driveline time constant and φ the time delay in the driveline.
The driveline of the automated Renault Twizy including longitudinal acceleration
controller is identified using step responses, as can be seen in Figure 6.9. The
estimated linear vehicle model is only valid in a small acceleration range as the
available driveline torque and power are limited.
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Figure 6.9.: Step response of the research and development vehicle with the inverted
torquemap and road load compensation: reference acceleration ( ),
measured acceleration ( ), and model simulated acceleration ( )

6.2.6. CACC controller

While the fault diagnosis method does not assume a cooperative control strategy
and works for various types of cooperative controllers, a longitudinal and lateral
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cooperative control strategy must be adopted to be able to perform simulations
and experiments. As longitudinal cooperative controller, the following CACC
controller has been adopted (Ploeg 2014):

u̇h(t) = − 1

h
uh(t) +

1

h
(kpe(t) + kdė(t)) +

1

h
uff(t), (6.21)

where e(t) = d(t)− (r + hvh(t)) and ė(t) = ∆v(t)− hah(t), with r the standstill
distance, h the headway time, vh(t) the longitudinal velocity of the host vehicle,
ah(t) the longitudinal acceleration of the host vehicle, d(t) the relative distance,
and ∆v(t) the relative velocity between the vehicles.

The feedforward term uff(t) depends on the control mode. During normal fault-
free CACC operation, the communicated desired acceleration of the target vehicle
ut(t) is used similar to Ploeg (2014). In case of a wireless communication fault,
the controller switches to normal ACC operation where the relative acceleration
∆a(t) of the radar sensor plus the host acceleration ah(t) is used to estimate the
longitudinal acceleration of the target vehicle at(t). The system is switched-off
in more severe fault cases, such as a radar sensor fail.

As lateral cooperative controller, a pure pursuit controller is implemented
(Campbell 2007). This control strategy is based on geometric path following
and works well for low speeds and accelerations. As the vehicle in this thesis is
designed for urban driving, the pure pursuit control strategy suits the objective.
Figure 6.10 illustrates the pure pursuit geometry in which R(t) denotes the radius
of a circle that the rear axle is turning at, d(t) is the distance from the rear axle
to the target point, and α(t) the bearing angle to the target point. The required
path curvature κ(t) to reach the target point can be calculated by applying the
law of sines

R(t)

sin(π2 − α(t))
=

d(t)

sin 2α(t)
,

R(t)

cosα(t)
=

d(t)

2 sinα(t) cosα(t)
,

R(t) =
d(t)

2 sinα(t)
,

κ(t) =
2 sinα(t)

d(t)
.

Using the path curvature κ(t) and a kinematic bicycle model, the required steering
angle δ(t) is given as:

δ(t) = arctan (`κ(t)), (6.22)

= arctan

(
2` sinα(t)

d(t)

)
, (6.23)
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where δ(t) is the steering angle of the front axle and ` is the wheelbase. The
distance to the target point d(t) is controlled by the longitudinal controller and
increases with forward velocity, thereby decreasing the gain of the lateral controller
to avoid aggressive maneuvers at high speed.

host vehicle

target vehicle

path

d

α

R
2α

R

Figure 6.10.: Pure pursuit coordinate system

To verify the CACC control performance, data from the experiment shown in
Figure 6.7 is used. The results are shown in Figure 6.11 in which the desired
and measured inter-vehicle distance, target and host velocity, and target and host
acceleration are shown. As can be seen, the host-vehicle mimics the motion of
the target vehicle well as the velocity and acceleration profiles are nearly identic.
The measured inter-vehicle distance follows the desired inter-vehicle distance
reasonably well as the distance error remains within roughly 2 m during the
experiment.

6.3. CACC Fault Diagnosis

With the CACC implementation described and validated for the developed vehicle,
the next step is to apply model-based fault diagnosis to detect when an incorrect
target is tracked with the environmental perception system or when incorrect
information is received from the preceding vehicle. Complete wireless dropouts
or environmental perception system failures are not of interest here as they easily
detected when no new messages are received for a certain time period. This is
discussed in Chapter 3.
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Figure 6.11.: Vehicle following control signals during CACC experiment: desired inter-
vehicle distance dr = r + hvh ( ), inter-vehicle distance d ( ),
target vehicle ( ), and host vehicle ( ). The shaded areas ( )
indicate when the target vehicle was out of the field-of-view of the radar
sensor and only wireless data was used in the CACC controller
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6.3.1. System modeling

To apply model-based fault diagnosis, a model of the CACC system is required.
To this end, consider a two vehicle platoon as depicted in Figure 6.12, where
vt(t), at(t), ut(t), τt, and θt are the wireless communicated velocity, acceleration,
external input, driveline time constant, and driveline time delay, respectively. The
sensor signals consist of the relative velocity ∆v(t) = vt(t) − vh(t) and relative
acceleration ∆a(t) = at(t) − ah(t). These signals are directly measured by the
radar sensor when the target is in the field-of-view of the radar sensor. Otherwise
they are computed from the data received via the wireless link, as explained in
Section 6.2. Using the vehicle model (6.20), the platoon model can be written as[

v̇t(t)
ȧt(t)

]
=

[
0 1
0 − 1

τt

] [
vt(t)
at(t)

]
+

[
0 0 0
0 0 1

τt

] vh(t)
ah(t)

ut(t− φ)

 ,
(6.24a)[

∆v(t)
∆a(t)

]
=

[
1 0
0 1

] [
vt(t)
at(t)

]
+

[
−1 0 0
0 −1 0

] vh(t)
ah(t)

ut(t− φ)

 ,
(6.24b)

where vh(t) and ah(t) are the velocity and acceleration of the host vehicle, respec-
tively.

host target∆v(t), ∆a(t)

vt(t), at(t), ut(t), τ t, θt

Figure 6.12.: (Hetereogenous) cooperative equipped platoon

6.3.2. Fault modeling

The objective of the CACC fault diagnosis is to detect when incorrect information
is received from a preceding vehicle, for example, due to an incorrect target
selection. In addition, a fault in the relative acceleration measurement is of
interest. Faults are less likely to occur with the relative velocity measurement as
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the signal is directly measured by the radar sensor and/or with the vehicle speed
sensor, while the relative acceleration is a filtered signal coming from either the
radar sensor or the difference between the acceleration signals coming from the
host tracking blocks.

To be able to detect these faults, they must be modeled. Since most faults
can be modeled as additive faults as indicated by Chen and Patton (1999), the
external input fault is modeled as

ut(t) = ũt(t) + fut(t), (6.25)

where ut(t) is the wireless-communicated external input, ũt(t) is the real external
input, and fut

(t) is an additive fault signal. Driveline saturation of the target ve-
hicle is also considered an external input fault as the commanded vehicle response
is different to the actual vehicle motion. Faults with the relative acceleration are
modeled as

∆a(t) = ∆ã(t) + f∆a(t), (6.26)

where ∆a(t) is the relative acceleration obtained with the radar sensor or via the
wireless link, ∆ã(t) is the real relative acceleration, and f∆a(t) is an additive fault
signal.

6.3.3. Model-based fault diagnosis

By substituting the fault models (6.25) and (6.26) into the platoon model (6.24),
its input-output description can be written as

y(s) = Gu(s)u(s) + Gf(s)f(s), (6.27)

where y(s), u(s), and f(s) denote the Laplace transformed vectors of the out-

puts y(t) =
[

∆v(t) ∆a(t)
]T

, inputs u(t) =
[
vh(t) ah(t) ut(t− φ)

]T
, and

faults f(t) =
[
fut(t) f∆a(t)

]T
, respectively. To produce fault indicator signals,

a linear residual generator is employed which is given by

r(s) = Q(s)

[
y(s)
u(s)

]
, (6.28)

where Q(s) is the to be designed filter such that the residual close to zero in
the fault-free case and at least one of them distinctively nonzero when a fault
is present. By substituting the input-output description (6.27), the following is
obtained

r(s) = Q(s)

[
Gu(s)

I

]
u(s) +

[
Gf(s)

0

]
f(s). (6.29)
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6.3. CACC Fault Diagnosis

To ensure the residuals r(t) are zero when no fault f(t) is present for any control
input u(t) and disturbance d(t), the residuals must be decoupled from the control
inputs and disturbance, as explained in Chapter 5. Since no disturbances are
included in (6.27), a trivial fault detection filter is Q1(s) =

[
I −Gu(s)

]
,

which in essence compares the measured outputs with the predicted ones. The
fault to residual response can be shaped by pre-multiplying Q1(s) with suitable
transfer functions Qi(s) to obtain the final filter in factored form as Q(s) =
Qk(s) · · ·Q2(s)Q1(s), where Q2(s) to Qk(s) are the filters to shape the response
or to address synthesis requirements, such as being physical realizable.

A filter Q(s) with three residuals is found after filter synthesis by employing
the Fault Detection Toolbox (Varga 2017a) for the numerical computations. The
first residual filter is given as

r1(s) =
1

ρ1s+ 1
∆a(s) +

1

ρ1s+ 1
ah(s)− s

ρ1s+ 1
∆v(s)− s

ρs+ 1
vh(s),

(6.30a)

=
1

ρ1s+ 1
(∆a(s) + ah(s))− s

ρ1s+ 1
(∆v(s) + vh(s)), (6.30b)

=
1

ρ1s+ 1
at(s)−

s

ρ1s+ 1
vt(s), (6.30c)

with filter parameter ρ1. The residual filter can be used to detect faults with the
relative acceleration f∆a(t). The second residual filter is given as

r2(s) =
s

ρ2s+ 1
∆v(s) +

s

ρ2s+ 1
vh(s)− 1

(ρ2s+ 1)(τs+ 1)
e−φsut(s),

(6.31a)

=
s

ρ2s+ 1
(∆v(s) + vh(s))− 1

ρ2s+ 1
at(s), (6.31b)

=
s

ρ2s+ 1
vt(s)−

1

ρ2s+ 1
at(s), (6.31c)

with filter parameter ρ2. The residual filter can be used to detect the external
input faults fut

(t). The third and last residual filter detects both faults and can
be used as an additional fault indicator signal. The third filter is given as

r3(s) = ∆a(s) + ah(s)− 1

τs+ 1
e−φsut(s), (6.32a)

= ∆a(s) + ah(s)− at(s). (6.32b)

The last residual filter has no tunable parameters whereas the filter parameters
ρ1 and ρ2 of the first two residual filters shape the fault to residual response.
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6. Fault Diagnosis for Connected Vehicles

These parameters must be selected with care, as a fast response makes it more
susceptible to noise. The common approach is to tune the filter parameters based
on simulation or measurement data.

To assess the obtained residual filters ri(s), the internal representation

Rf = Q(s)

[
Gu(s)

0

]
,

is used. Figure 6.13 presents the unit step response of Rf to the faults f(t) =[
fut(t) f∆a(t)

]T
with all initial conditions set to zero and with the parameter

values ρ1 = π/2 and ρ2 = π/2. The columns indicate the faults fut(t) and f∆a(t)
and the rows indicate the residuals ri(t) corresponding to the filters. As can be
seen, both faults can be detected as for each fault at least one residual is nonzero.
In addition, the fault can be isolated as well as each of the first two residuals r1(t)
and r2(t) are only sensitive to a particular fault.
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Figure 6.13.: Unit step response plot from faults f(t) to residuals r(t)

6.4. Simulation Results

To evaluate the filter performance, a simulation model is constructed, consisting
of a platoon to two vehicles. One target (lead) vehicle and a host (follower)
vehicle. The CACC controller that is explained in Section 6.2 is implemented to
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6.4. Simulation Results

control the inter-vehicle distance. The CACC controller gains have been obtained
from Ploeg (2014) that guarantees string stable behavior for the identified vehicle
parameters. Sensor noises are added to the model to simulate real-life driving
conditions. The selected noise intensities and sample time are based on the real
sensors (u-blox 2016; Bosch 2015) and are listed in Table 6.3, along with the
vehicle model and CACC controller parameters.

Table 6.3.: Simulation model parameters

Description Symbol Value

Wireless communication delay θ 0.02 s
Driveline time constant τ 0.0687 s
Driveline time delay φ 0.15 s
Maximum acceleration amax 2 m/s2

Minimum acceleration amin −1 m/s2

Proportional CACC gain kp 0.2
Derivative CACC gain kd 0.7
Standstill distance r 4 m
Headway time h 0.6 s
Variance of measured relative distance σ2

∆d 0.0144 m2

Variance of measured relative velocity σ2
∆v 0.0121 m2/s2

Variance of measured relative acceleration σ2
∆a 0.0025 m2/s4

Variance of measured host vehicle velocity σ2
vh

0.0100 m/s2

Variance of measured host vehicle acceleration σ2
va

0.0100 m2/s4

Noise sample time ∆tn 0.1 s

During the simulation, the platoon drives in a straight line. The simulation
starts with an initial velocity of 2.5 m/s and with a desired acceleration profile
as depicted in Figure 6.14. Two faults are injected during the simulation. The
reference and fault signals are selected such that the inter-vehicle distance is
automatically increased when injecting the faults. This makes it safer to execute
the experiments when the same reference and fault signals are applied. The first
fault fut

(t) = 1 m/s2 is active during the interval t = 4 s to 7 s, and the second
fault f∆a(t) = 1 m/s2 is active during the interval t = 10 s to 13 s. As can be
seen in Figure 6.14, during the first fault interval t = 4 s to 7 s an increase in
relative acceleration is noticeable. The feedback part of the CACC controller
compensates for the increased relative distance and velocity by increasing the
host vehicle acceleration.

The external input and relative acceleration fault can be detected by feeding
the output and input signal shown in Figure 6.14 through the filter Q(s) (6.30),
(6.31), and (6.32) to obtain the residuals r(s). The residuals r(t) are then filtered
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Figure 6.14.: Measured output y(t) and input u(t) signals during the simulation: rel-
ative velocity ∆v(t), relative acceleration ∆a(t), host vehicle velocity ah,
host vehicle acceleration ah, and desired acceleration ut. The shaded
areas ( ) indicate when faults are introduced in the simulation
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in the Narendra filter as explained in Chapter 5 with filter parameters α = 0.01,
β = 0.99, and γ = 2 to obtain the filtered residuals χ(t). The faults are detected
by applying suitable thresholds on the filtered residuals χ(t) to obtain the fault
index signal ι(t). The selected threshold is ζ = 0.15 for all faults.

Figure 6.15 shows the residuals along with the filtered residuals χ(t) and the
fault index signals ι(t). As can be seen, the external input and relative acceleration
faults are both detected. The external input fault fut

(t) is detected after 0.49 s
with ι1(t) and after 0.33 s with residual ι3(t). The relative acceleration fault f∆a(t)
is detected after 0.52 s with ι2(t) and after 0.1 s with residual ι3(t). After the
faults are removed, the faults are still detected for a time interval due to the filter
parameters in the residual generator and in the Narendra scheme.
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Figure 6.15.: Detected faults during the simulation: fut(t) ( ), f∆a(t) ( ), and
f ( ). The shaded areas ( ) indicate when faults are introduced
in the simulation
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6.5. Experimental Results

To validate the designed method, experiments have been performed using the
vehicle and implementation as described in Section 6.2. The experiment is per-
formed in the same manner as the simulations to be able to compare the results.
Figure 6.16 shows the measured output y(t) and input u(t) signals during the
experiment, which can be directly compared with the simulation results, as de-
picted in Figure 6.14. The relative velocity, host vehicle velocity, and host vehicle
acceleration clearly show similar behavior to those shown in the simulation. The
offset of the host vehicle velocity is caused by the fact that the initial velocity
of the vehicles during the experiment is lower than in the simulation and the
achieved acceleration of the vehicles in the experiment is slightly lower than in
the simulation. Even though the longitudinal dynamics are linearized using an
inverted torquemap, the system is sensitive to disturbances, such as road surface
or battery state of charge. The difference in relative acceleration signal is probably
caused by unmodeled sensor characteristics of the radar sensor.

The external input fault and relative acceleration fault can be detected by
feeding the output and input signals, as shown in Figure 6.14, through the filter
Q(s) (6.30), (6.31), and (6.32) to obtain the residuals r(s). The residuals r(t) are
then filtered in the Narendra filter as explained in Chapter 5 with filter parameters
α = 0.15, β = 0.85, and γ = 1.25 to obtain the filtered residuals χ(t). The selected
values are different than the ones that are used in the simulation as the residuals
contain more noise than in the simulations. The faults are detected by applying
suitable thresholds on the filtered residuals χ(t) to obtain the fault index signal
ι(t). The selected thresholds are ζfut

= 0.34 for the external input fault fut
(t),

ζf∆a
= 0.32 for the relative acceleration fault f∆a(t), and ζf = 0.6 the fault signal

f .
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Figure 6.16.: Measured output y(t) and input u(t) signals during the experiment:
relative velocity ∆v(t), relative acceleration ∆a(t), host vehicle velocity
ah, host vehicle acceleration ah, and desired acceleration ut. The shaded
areas ( ) indicate when faults are introduced in the experiment
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Figure 6.17.: Detected actuator faults during the experiment: fut(t) ( ), f∆a(t)
( ), and f ( ). The shaded areas ( ) indicate when faults are
introduced in the experiment

6.6. Conclusion

A fault detection method for CACC is presented to detect when incorrect infor-
mation is received from the preceding vehicle or when a wrong object is tracked
without assuming a specific CACC controller structure. The proposed strategy
utilizes a model of the CACC system to timely detect these faults. The method
can be used with the current equipment level of CACC systems. To demonstrate
the technical feasibility, the fault detection method is successfully implemented
on a research and development vehicle along with mitigating measures to increase
the inter-vehicle distance to a safe distance in case of a fault situation.
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7.

Conclusions and Recommendations

There is a growing public demand for safer and more efficient road transportation.
Automated Driving Systems (ADSs) have the potential to comply with this de-
mand as sophisticated systems can be more vigilant, competent, and reliable than
the average human driver. In addition to safety, the ADSs can improve driver
comfort, road throughput, and efficiency by taking over driving tasks.

This thesis aims to contribute to the safety aspect of automated vehicles, in
particular on how to develop a safe and reliable research and development for
Society of Automotive Engineers (SAE) level 3 and beyond driving. Consequently,
the following objectives are defined:

• develop a systematic design approach for a safe and robust research and
development platform by identifying the relevant components for the design,
while taking into account the safety aspects required for SAE level 3 and
beyond driving;

• build the research and development platform and verify the design, thereby
ensuring that the automated vehicle is safe to operate;

• develop and validate a simulation framework for testing and validating
automated driving controllers;

• develop fault diagnosis algorithms to detect actuator faults and user inter-
ventions, and deploy and operate them on the research and development
platform; and

• develop fault diagnosis strategies for connected vehicles, including environ-
mental perception systems.

The main conclusions from these objectives are provided in Section 7.1, and the
recommended topics for further research identified from this thesis are given in
Section 7.2.
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7.1. Conclusions

Practical implementation of an ADS requires a vehicle equipped with drive-by-
wire technology and additional hardware. As most commercially available vehicles
do not have full drive-by-wire capability, these vehicles have to be modified to
be used as a research and development platform. In Chapter 2 a systematic
design approach is presented to convert a small electric vehicle into a research
and development platform, with the objective to comply with SAE level-3 driving.
This chapter shows that a safe and reliable automated driving platform can be
constructed by using a simple vehicle as a base and equipping it with mainly Com-
mercial Off-The-Shelf (COTS) components. The approach followed in this work
is to split the automated vehicle design in building blocks and integrates safety
in every step. This approach leads to safety by design instead of safety through
testing, i.e., statistical safety. By designing the automated driving platform from
scratch, an open system is obtained that allows for safe and predictable behavior
of the implemented controllers. The presented systematic design approach and
vehicle implementation provides valuable insights in how to construct a research
and development vehicle for automated driving and can be used for other simple
candidate vehicles.

Next to the hardware design of the automated vehicle, a real-time application
is required that processes sensor signals, plans control actions, and executes these
actions. In Chapter 3, a well-defined automated driving software framework is
developed, consisting of a layered functional architecture. The clear boundaries
of the layered approach enables separate design and evaluation of software com-
ponents, thereby managing the complexity. The developed architecture together
with the hardware design of Chapter 2, allowing safe operation of the research
and development vehicle, without having to explicitly take safety into account
when developing automated driving functionality.

Testing safety-critical systems, such as an automated vehicle, requires virtual
testing before starting road tests. Therefore, in Chapter 4 a simulation framework
is developed for testing and validating automated driving controllers. The created
simulation framework can be used in two configurations: accelerated-time in which
(a part of) the control system is integrated in the simulation environment and real-
time in which the control system is separated from the simulation environment.
The model framework is able to run in real-time and the results quite closely
matches with the data obtained from a full-scale driving test. The framework can
be adapted to other vehicle characteristics by changing the vehicle parameters.

With an automated vehicle, a driver might not notice certain faults when an
ADS performs the dynamic driving tasks. Therefore, an ADS must supervise
itself by including fault diagnosis. Model-based fault diagnosis for an automated
steering system is discussed in Chapter 5. The fault detection filters can detect a
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steering actuator fault and an user intervention. Also driver’s arm state detection
is possible, but the method heavily relies on an accurate system description. The
model-based fault diagnosis techniques remove the need for extra sensors, thereby
reducing cost and eliminating possible points of failure. This technique can also
be employed to act as a redundant measure to provide higher levels of safety.

Next to a single automated vehicle, connected vehicles can improve road safety
and efficiency even more by employing a wireless link to share information with
other traffic participants. Cooperative Adaptive Cruise Control (CACC) is a
system that uses a wireless link to allow vehicles to follow each other with shorter
inter-vehicle distances compared to a normal driver operated vehicle, thereby
increasing road throughput and driver comfort. At these reduced intervals, the
human driver cannot be considered as backup and the system must supervise itself
to avoid possible unsafe driving situations. In Chapter 6 a method is presented
that can be used to detect when incorrect information is received from a preceding
vehicle or when a wrong object is tracked. The presented method applies model-
based fault diagnosis principles and is evaluated in simulation and in practice.
This method can be used with the current equipment level of CACC systems.
The results show that it is possible to detect the fault within 0.5 s.

7.2. Recommendations

This work touches upon various aspects of safety in automated vehicles, but it
does not guarantee safe automated driving in all circumstances. The research
and development vehicle as considered in this thesis is based on a small electric
vehicle. While most added components are COTS, the developed brake actuator
for example is a custom part as no suitable off-the-shelf solutions were available.
With the ongoing developments in recent years, there might be a COTS available
for the numerous custom solutions.

Next to reliable hardware, robust software is required. The vehicle-to-vehicle
communication as used on the research and development platform consists of a
router that receives and transmits the wireless messages. The router also checks
for every signal that is being communicated whether it lies in their specified range.
That does, however, not guarantee reliable data transmission as incorrect data
might still fall in the specified range. In addition, the communication channel from
the router to the real-time application is not included in this check. Therefore,
it would be advisable to adapt the protocol and add an information redundancy
check to the message, such as a checksum.

Additionally, a redundant communication channel can be included based on a
different protocol, such as cellular communication. The redundant communication
channel can be used to communicate with other traffic participants in case the
current main wireless link is compromised. The bandwidth requirements of the
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redundant channel can be smaller compared to main channel as only the most
vital information is required in case of a safety critical situation, such as whether
the vehicle in front is applying the brakes.

As shown in this thesis, model-based fault diagnosis heavily relies on an accurate
system description. Therefore, an interesting direction for future research is to
investigate online model learning techniques to reduce model inaccuracies. To be
able to distinguish model inaccuracies from faults, the model adaptations should
be relatively slow compared to the fault dynamics.

Another possibility is to extend the fault detection method for connected vehicles
is by including other high resolution sources, such as camera. By combining
high-resolution sensors with extended object tracking methodologies, additional
vehicle states of the target can be observed. These states can be compared with
the wireless obtained data to increase the detection reliability.

Machine learning techniques are commonly used for environmental perception
systems. The machine learning approaches are aimed at mimicking human driving
behavior by gathering real-life driving data. This approach works well for certain
traffic situations. The drawback however is that these systems behave as a black
box, giving out control commands based on sensor data, making it difficult or
even impossible to understand certain failures and/or to guarantee safe behavior.
To cope with these situations from a fault detection perspective, two or more
techniques can be implemented and their outputs compared, similar to what is
common in aviation. A fault can be triggered when their outputs significantly
differ.

The fault detection strategies examined in this thesis range from sensor and
actuator level, in which the functioning of an individual component is considered,
to a system level in which safety of connected vehicles is considered. The fault
detection strategies can be extended and applied on the whole vehicle.
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A.

Multibody Model

This appendix contains detailed schematic representations of the multibody model.
Figure A.1 gives a schematic representation of the McPherson suspension, indi-
cating the joints and bodies. The design of the front and rear suspension is
almost similar besides the implementation of the driveshaft. Figure A.2 provides
a schematic representation of the steering rack, showing the connections to the
chassis and toe links. Figure A.3 gives a schematic representation of the stabilizer
bar, indicating all the joints and bodies.

The spring and damper characteristics are depicted in Figures A.4 and A.5,
respectively. Figure A.6 shows the result of two coastdown tests and compares it
with the simulation model. Figure A.7 the results of a steady-state cornering test
on a radius of 120 m. During the test, the longitudinal velocity is slowly increased
till a maximum lateral acceleration is achieved of 7 m/s2.
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CHAPTER 2. MULTIBODY VEHICLE MODEL
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Figure 2.3: Suspension corner of the Renault Twizy (left) and its schematic representation, indicating
the joints and bodies (right).

by a prismatic joint (P). The position and the velocity of the prismatic joint determine the force
of the spring and damper respectively instead of a linear spring and damper. Further, the toe link
is attached to the wheel carrier by a spherical joint (S) similar to the lower ball joint. Finally, the
wheel carrier has a revolute joint (R) allowing the wheel to rotate.

Stabilizer bar

The stabilizer bar is an additional spring, which increases the vehicle roll stiffness without affecting
the vertical stiffness [16]. The ride springs act on the individual wheel travel, while the stabilizer
bar act on the difference in vertical wheel travel of left and right wheels. The stabilizer bar
connects the left and right lower control arms, as can be seen in Figure 2.4, to reduce the vehicle
body roll. The arms of the stabilizer bar are attached to the lower control arm by means of a
small link and the centre section of the stabilizer bar is mounted to the chassis by rubber bushes.

stabilizer bar

lower control arm

= chassis hard point
= lower ball joint of wheel carrier

Figure 2.4: Top view (left) and front view (right) of lower control arms and stabilizer bar.

In normal driving conditions, the ride spring travel is only several centimetres and the lower
control arms are oriented almost horizontally with respect to the vehicle body. Therefore, the
force transmitted by the stabilizer bar is in the vertical direction. Thus, the bar is modelled as a
spring, acting in the vertical direction on the differential spring travel of the left and right wheel.
This can be seen on the left side of Figure 2.5. Here, the vehicle body is represented by the sprung

10 Development and validation of a multibody model of a Renault Twizy

Figure A.1.: Schematic representation of a McPherson suspension (courtesy: (Baaij
2019))
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mass which is connected to the unsprung mass by the ride spring with stiffness kr. The left and
right unsprung masses are connected by the stabilizer bar with stiffness ks. The stabilizer bar
will act when there is a height difference dz between the left and right unsprung masses. In the
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Figure 2.5: Model of the stabilizer bar as a vertical spring with stiffness ks acting on the vertical
deflection dz (left). Implementation in the multibody model, showing the joints and bodies (right).

model, the height difference between left and right lower control arms is determined with respect
to the chassis. The implementation can be seen on the right side of Figure 2.5. The difference
is measured by prismatic joints which are connected to the lower control arm. This connection
comprises a spherical joint and two dummy bodies with low mass. These bodies are used in
between the spherical joint, the prismatic joint and the rectangular joint since Simscape does not
allow a direct connection between the joints. The prismatic joint is attached to the chassis origin
by means of a rectangular joint. The rectangular joint has two translational degrees of freedom
and allows the prismatic joint to move in the x,y plane. Next, the difference in vertical deflection
is calculated and multiplied by the spring stiffness of the stabilizer bar. The resulting force, with
an opposite sign for left and right, is applied to the prismatic joints. The downside is that the low
mass body connected to high forces increases the numerical stiffness of the model such that the
computation time increases, which is not good for fixed step real time evaluation.

Steering rack

The steering rack is modelled separately because it connects the left and right uprights in a similar
way as the stabilizer bar. The steering rack is modelled as a body attached to the chassis by a
prismatic joint (P) with a lateral degree of freedom. This can be seen in Figure 2.6. The steering
input is converted from steering angle to lateral displacement of the steering rack and a prescribed
motion of the prismatic joint. The toe links are attached to the steering rack by means of spherical
joints (S) representing inner toe link ball joints. Because of the front-rear suspension similarity,

racktoe link toe linkS S S Swheel carrier wheel carrier

chassis

P
prescribed motion or force

Figure 2.6: Diagram of the steering rack showing connections to the chassis and toe links.

the rear toe links are attached to a steering rack as well. The motion input of this rear steering
rack is set to zero, because the toe link inner ball joints are mounted to the chassis.

Drive shaft and driveline

The driveline of the Twizy consists of an electric motor, a reduction gear and driveshafts to both
of the rear wheels. Since the Twizy contains a gearbox with only a fixed reduction gear, selection
between the gear modes drive, neutral and reverse is purely electrical. In the model, the gear
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Figure A.2.: Schematic representation of the steering rack (courtesy: (Baaij 2019))
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mass which is connected to the unsprung mass by the ride spring with stiffness kr. The left and
right unsprung masses are connected by the stabilizer bar with stiffness ks. The stabilizer bar
will act when there is a height difference dz between the left and right unsprung masses. In the
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Figure 2.5: Model of the stabilizer bar as a vertical spring with stiffness ks acting on the vertical
deflection dz (left). Implementation in the multibody model, showing the joints and bodies (right).

model, the height difference between left and right lower control arms is determined with respect
to the chassis. The implementation can be seen on the right side of Figure 2.5. The difference
is measured by prismatic joints which are connected to the lower control arm. This connection
comprises a spherical joint and two dummy bodies with low mass. These bodies are used in
between the spherical joint, the prismatic joint and the rectangular joint since Simscape does not
allow a direct connection between the joints. The prismatic joint is attached to the chassis origin
by means of a rectangular joint. The rectangular joint has two translational degrees of freedom
and allows the prismatic joint to move in the x,y plane. Next, the difference in vertical deflection
is calculated and multiplied by the spring stiffness of the stabilizer bar. The resulting force, with
an opposite sign for left and right, is applied to the prismatic joints. The downside is that the low
mass body connected to high forces increases the numerical stiffness of the model such that the
computation time increases, which is not good for fixed step real time evaluation.

Steering rack

The steering rack is modelled separately because it connects the left and right uprights in a similar
way as the stabilizer bar. The steering rack is modelled as a body attached to the chassis by a
prismatic joint (P) with a lateral degree of freedom. This can be seen in Figure 2.6. The steering
input is converted from steering angle to lateral displacement of the steering rack and a prescribed
motion of the prismatic joint. The toe links are attached to the steering rack by means of spherical
joints (S) representing inner toe link ball joints. Because of the front-rear suspension similarity,

racktoe link toe linkS S S Swheel carrier wheel carrier

chassis

P
prescribed motion or force

Figure 2.6: Diagram of the steering rack showing connections to the chassis and toe links.

the rear toe links are attached to a steering rack as well. The motion input of this rear steering
rack is set to zero, because the toe link inner ball joints are mounted to the chassis.

Drive shaft and driveline

The driveline of the Twizy consists of an electric motor, a reduction gear and driveshafts to both
of the rear wheels. Since the Twizy contains a gearbox with only a fixed reduction gear, selection
between the gear modes drive, neutral and reverse is purely electrical. In the model, the gear
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Figure A.3.: Schematic representation of the stabilizer bar (courtesy: (Baaij 2019))
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Figure A.4.: Spring force Fs as function of spring displacement zs: front ( ) and
rear ( ) (source: (Baaij 2019))
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Figure 4.5: Steady-state cornering test on a marked constant diameter circle of 120 m. The mean
radius of the left hand circle is 61.4 m. At the top, the steering angle δs is plotted against the lateral
acceleration ay, where the measurement data (green) and the simulation (blue), the second order
polynomial fitted to the measurement (black) and simulation (red). The bottom plot represents the
measurement (black) and the simulation (red) of the yaw velocity gain ωz/δs against the forward
velocity vx.

stiffness of the tyres is scaled to match the simulation model to the experimental data of the
left hand cornering test as shown. To achieve a more average value of the cornering stiffness,
the data from the left and right turn should be combined as a base for the fit. Either the front
wheel cornering stiffness can be increased or the rear wheel cornering stiffness decreased. Due to
unmodeled compliance effects, it is more representative to lower the cornering stiffness than to
increase it, since compliance results in lower effective axle characteristics. The rear tyre cornering
stiffness is scaled to 90%. Changing the cornering stiffness results in a slight increase in the yaw
response as can be seen at the bottom of Figure 4.5. In addition to the constant radius test, a
ramp steer test is executed as well.

During the ramp steer test, the steering angle is increased almost linearly over time, while
trying to keep a constant accelerator pedal position. This test is repeated for both left and right
turn. During this test, the forward speed decreases slightly. The initial forward velocity is about
20 m/s for both left and right turns. The result can be seen in Figure 4.6. The left hand turn
is shown because it covers a wider range of lateral acceleration compared to the right hand turn,
while the right hand turn also has less agreement between model and measurement.

To calculate R and offset, curves are fitted to the measurement and simulation signals of the
constant radius circle test and the ramp steer test. Because of the fitting, the correlation is good,
but an offset still exists as can be seen in Table G.2. For the left hand turn constant radius test,
R is equal to 1.00 and the offset is 0.41% for the steering angle as function of lateral acceleration,
and for the yaw velocity gain, those R and offset are 0.99 and -3.75% respectively. For the left
hand turn ramp steer test, the R-value is 0.99 and the offset is 1.34%. Without changing the rear
tyre cornering stiffness, R and offset for the left hand constant radius circle are 1.00 and -4.03%
for the steering angle as function of lateral acceleration, and for the yaw velocity gain they are 0.98
and 0.59% respectively. In this case, the offset improves for the steering angle signal as function
of lateral acceleration, while the yaw velocity gain signal becomes worse.

36 Development and validation of a multibody model of a Renault Twizy

Figure A.7.: Steady state cornering test with a radius of 120 m: steering angle (top)
and yaw velocity gain (bottom) (courtesy: (Baaij 2019))
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