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Summary

In the coming decades, numerous locks and bridges in the Netherlands have to be
renovated or replaced, as they reach their end-of-life or have capacity problems. In the
past, these infrastructural systems have been engineered, built, and maintained on a
project basis, resulting in a variety of unique solutions to almost the same engineering
problem. This uniqueness has proven to be disadvantageous for quality, evolvability,
and life-cycle costs. For future infrastructural systems, Rijkswaterstaat, part of the
Dutch Ministry of Infrastructure and Water Management, is seeking methods for
modularization and standardization to increase quality, increase evolvability, and
decrease life-cycle costs. The supervisory controller of an infrastructural object, which
controls and monitors its components, is identified as one of the subsystems having a
significant impact on these three aspects.

The aim of this thesis is to investigate the applicability of supervisory control
theory (SCT) for the design of supervisory controllers for locks and bridges. SCT
is concerned with systems that are discrete in time and state space, and where the
behavior is driven by instantaneous events. SCT provides techniques to automatically
derive supervisors, called supervisor synthesis. For supervisor synthesis, a model of
the behavior of the system’s components and a model of the desired behavior (the
requirements) are required. The synthesis result is correct-by-construction with respect
to the modeled requirements. From the synthesized supervisor, a supervisory controller
can be derived. SCT may contribute to the aim of Rijkswaterstaat to increase the
quality and the evolvability of the supervisory controller.

While supervisor synthesis is an active research topic, only a few studies exist
on industrial applications. One of the reasons is the lack of acquaintance of control
engineers with modeling in the framework of automata. In addition to this, there
are no clear guidelines for obtaining the necessary models for synthesis. As the first
contribution of this thesis, a way of modeling the plant and the requirements is
proposed. The models result in a supervisor from which a supervisory controller
can be derived that can straightforwardly be implemented on a programmable logic
controller (PLC). This way of modeling is illustrated with an industrial case study in
which a supervisor has been synthesized for the Algera complex.

A major incentive to use supervisor synthesis is that from the resulting supervisor a
supervisory controller can be derived, which in turn can be used to generate controller
code for a PLC. As a second contribution of this thesis, an overview of the steps to go
from a supervisor model to controller code is given, as well as the potential problems
that can be encountered during these steps. For each problem, it is shown how to
verify that the supervisory controller is not affected by it. Furthermore, optimization
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techniques are applied to structure the generated code in such a way that the execution
time and its variability can be reduced.

In industry, supervisory controllers have to adhere to strict safety standards. To
achieve these standards, safety PLCs (SPLCs) are used. For an SPLC implementation,
the supervisory controller has to be split into a regular part and a safety part. The third
contribution described in this thesis is a method to automatically split a supervisor
into a supervisor for the regular part and a supervisor for the safety part. These two
resulting supervisors can be used to derive supervisory controllers for the two parts.

Even though the supervisory controller satisfies the requirements by construction,
it is not always known whether the requirements are complete and correct. Therefore,
the supervisory controller has to be validated. For this, model simulation is commonly
used. While model simulation is a powerful tool for validation, it offers only a
partial analysis. Aspects related to the execution of the supervisory controller on
a hardware platform like a PLC and communication with subsystems, such as a
graphical user interface, cannot be validated with model simulation. To bridge the
gap between model simulation and realization, hardware-in-the-loop (HIL) validation
can be performed after model simulation and before implementation on the system.
The fourth contribution described in this thesis is a method for HIL validation for
synthesized supervisory controllers.

The previously described contributions have been demonstrated in an industrial
application. A supervisory controller for a swing bridge has been synthesized, validated,
implemented, and tested on the real system. The fifth contribution described in this
thesis is the demonstration of all the necessary steps to go from a specification to
an implementation of a supervisory controller for an infrastructural system. This
case study shows that synthesis techniques have matured to a point where they are
powerful enough to be applied to industrial-size problems.

Finally, supervisor synthesis for a family of similar systems is investigated. To
this end, a graphical modeling method based on standardized modules is presented
as the sixth contribution. In this method, the subsystems in the plant are modeled
by instantiating modules from a library. A prototype tool has been developed that
illustrates the proposed method in the development of supervisory controllers for
movable bridges. Using this method, supervisory controllers for a family of seventeen
bridges have been developed.
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Samenvatting

In de komende decennia worden verschillende sluizen en bruggen in Nederland gere-
noveerd of vervangen, omdat deze het einde van hun levenscyclus naderen of capaci-
teitsproblemen hebben. In het verleden zijn deze infrastructurele systemen ontworpen,
gebouwd en onderhouden op projectbasis, wat heeft geleid tot een grote verscheiden-
heid aan oplossingen voor bijna dezelfde ontwerpproblemen. Deze verscheidenheid
is nadelig gebleken voor de kwaliteit, de herbruikbaarheid en de levenscycluskosten.
Voor toekomstige infrastructuur zoekt Rijkswaterstaat, onderdeel van het Nederlandse
Ministerie van Infrastructuur en Waterstaat, naar methoden voor modularisatie en
standaardisatie om de kwaliteit te verhogen, de herbruikbaarheid te vergroten en de
levenscycluskosten te verlagen. Het is gebleken dat het besturingssysteem van deze
infrastructurele systemen een onderdeel is dat een significante invloed heeft op deze
drie aspecten.

Het doel van dit proefschrift is om de geschiktheid van supervisory control theory
(SCT) te onderzoeken voor het ontwerpen van besturingssystemen voor sluizen en
bruggen. SCT houdt zich bezig met het besturen van systemen die discreet zijn
in tijd en in toestandsruimte en waarvan het gedrag wordt gestuurd door externe
gebeurtenissen. SCT biedt technieken om automatisch deze besturingen te berekenen.
Deze wijze van berekening wordt besturingssynthese genoemd. Voor besturingssynthese
zijn een model van het gedrag van de componenten in het systeem en een model van
het gewenste gedrag (de eisen) nodig. Het resultaat van synthese voldoet per definitie
aan de gemodelleerde eisen. Uit dit resultaat kan vervolgens een besturing worden
verkregen. SCT kan bijdragen aan de doelstelling van Rijkswaterstaat om de kwaliteit
en de herbruikbaarheid van het besturingssysteem te verhogen.

Hoewel besturingssynthese een actief onderzoeksgebied is, bestaan er maar enkele
studies over industriële toepassingen. Een van de redenen hiervan is het gebrek aan
ervaring bij ingenieurs om te modelleren met automaten. Daarnaast zijn er ook geen
duidelijke richtlijnen voor het verkrijgen van de benodigde modellen voor synthese.
De eerste bijdrage van dit proefschrift is een manier om het systeem met zijn eisen te
modelleren. Deze modellen resulteren in een syntheseresultaat waaruit een besturing
kan worden verkregen die vervolgens eenvoudig op een programmeerbare logische
besturing (Eng. programmable logic controller, PLC) kan worden geïnstalleerd. De
manier van modelleren is geïllustreerd met het onderzoek van een industriële casus
waarin een besturing voor het Algera complex is gesynthetiseerd.

Een belangrijke stimulans om synthese te gebruiken, is dat uit het resultaat een
besturing kan worden afgeleid die op zijn beurt gebruikt kan worden om besturingscode
te genereren voor een PLC. De tweede bijdrage van dit proefschrift geeft een overzicht
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om vanuit het syntheseresultaat tot de besturingscode te komen. Daarbij worden de
mogelijke problemen geanalyseerd. Voor elk probleem wordt inzichtelijk gemaakt hoe
geverifieerd kan worden dat de besturing hier niet gevoelig voor is. Tevens worden
optimaliseringstechnieken gebruikt om de code zo te structureren dat de uitvoeringstijd
en de variabiliteit van een programmacyclus worden gereduceerd.

In de industrie moeten besturingen aan strikte veiligheidsstandaarden voldoen.
Om aan deze standaarden te voldoen, worden veiligheids-PLCs (Eng. Safety-PLCs,
SPLCs) gebruikt. Voor de implementatie op een SPLC moet de besturing in een
regulier deel en een veiligheidsdeel worden gesplitst. De derde bijdrage beschreven in
dit proefschrift is een methode die een besturing automatisch splitst in een regulier
deel en in een veiligheidsdeel. Vanuit deze twee resulterende delen kan besturingscode
voor de gehele SPLC worden verkregen.

Ondanks dat de besturing per definitie aan de eisen voldoet, is het niet altijd bekend
of de eisen compleet en correct zijn. Daarom dient de besturing te worden gevalideerd.
Hiervoor wordt vaak modelsimulatie gebruikt. Hoewel modelsimulatie een krachtig
hulpmiddel is voor validatie, biedt het slechts een gedeeltelijke analyse. Aspecten die
verband houden met de uitvoering van de besturing op een hardwareplatform, zoals een
PLC, en communicatie met subsystemen, zoals een mens-machine-interface, kunnen
niet worden gevalideerd met modelsimulatie. Om de kloof tussen modelsimulatie en
realisatie te overbruggen, kan hardware-in-the-loop (HIL)-validatie worden uitgevoerd
na modelsimulatie en vóór implementatie op het systeem. De vierde bijdrage die in dit
proefschrift wordt beschreven, is een methode voor HIL-validatie van gesynthetiseerde
besturingen.

De voorgaande bijdragen zijn gedemonstreerd in een industriële toepassing. Een
besturing voor een draaibrug is gesynthetiseerd, gevalideerd, geïmplementeerd en
getest op het echte systeem. De vijfde bijdrage die in dit proefschrift wordt beschreven,
is het demonstreren van alle stappen die nodig zijn om van een specificatie naar een
implementatie van een besturing voor een infrastructureel systeem te gaan. Deze casus
laat zien dat synthesetechnieken een punt hebben bereikt waarop ze krachtig genoeg
zijn om te worden toegepast op industriële schaal.

Tenslotte wordt besturingssynthese voor een familie van vergelijkbare systemen
onderzocht. Een grafische modelleermethode op basis van gestandaardiseerde modules
wordt hier als zesde bijdrage gepresenteerd. Bij deze methode worden de subsystemen
gemodelleerd door middel van het instantiëren van modules uit een bibliotheek. Er is
een prototype van een computerprogramma ontwikkeld dat de voorgestelde methode
illustreert voor de ontwikkeling van besturingen van beweegbare bruggen. Met deze
methode zijn de besturingen voor een familie van een zeventiental bruggen ontwikkeld.
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Chapter 1

Introduction

In this chapter, the research context and infrastructural systems, like waterway
locks and movable bridges, are introduced. Subsequently, the problem of designing
supervisory controllers for these systems is discussed. Then, the synthesis-based
engineering method is described. This chapter continues with providing the research
questions and main contributions. Finally, the outline of this thesis is provided.

1.1 Research context
The Dutch waterway network is the densest in Europe. It consists of more than
6,000 kilometers of rivers and canals, forming a network serving all parts of the
country. The main waterway network, consisting of 3,500 kilometers of waterways
(Rijkswaterstaat, 2020), is state-owned, operated, and maintained by Rijkswaterstaat
(RWS), the executive branch of the Dutch Ministry of Infrastructure and Waterway
Management. Smaller waterways are managed by different stakeholders, like provinces
and municipalities.

In the main waterway network, a total of 129 locks and 344 bridges is present
to facilitate water and land traffic. The main function of a lock is to maintain the
difference in water level on each of its sides while at the same time allowing vessels to
pass from one side to the other. Other lock functions are separating salt and fresh
water, protecting against floods, and protecting against drought. Figure 1.1 shows the
waterway lock, consisting of three chambers, located in Maasbracht, the Netherlands.
The main function of a bridge is to allow land traffic to cross a river or a canal. A
movable bridge is a bridge that contains a section that can be opened to give clearance
for large vessels to pass the bridge. Figure 1.2 shows the Prins Bernhard bridge, a
movable bridge, located in Zaandam, the Netherlands.

In the coming decades, numerous locks and bridges have to be renovated or replaced,
as they have reached their end-of-life or have capacity problems. In the past, these
infrastructural systems have been engineered, built, and maintained on a project basis.
This resulted in a large variety of unique solutions to almost the same engineering
problems. This uniqueness has a negative impact on the quality, the evolvability, and
the life-cycle costs. The negative impact is primarily due to the need for specialized
knowledge to operate and maintain these systems. The supervisory controller of an

1
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Figure 1.1: A waterway lock consisting of three chambers, located in Maasbracht, the
Netherlands [Source: https://sluizenenstuwen.nl, Stichting Historische Sluizen en Stuwen
Nederland].

Figure 1.2: A movable bridge, located in Zaandam, the Netherlands [Source: Politie,
Landelijke Eenheid, Dienst Infrastructuur, Afdeling Luchtvaart].

infrastructural system, which controls and monitors its components, is identified as one
of the subsystems having a significant impact on these three aspects. RWS is seeking
methods for modularization and standardization to improve these three aspects for
future infrastructural systems.

To this end, RWS initiated the MultiWaterWerk (MWW) project. In this project,
RWS collaborates with Eindhoven University of Technology to establish a shift from
an Engineering-to-Order to a Configure-to-Order production method, see Wilschut
(2018). With the Engineering-to-Order method, each infrastructural system is uniquely
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designed. With the Configure-to-Order method, (partially) standardized components
and modules are combined to configure the design of a specific infrastructural system.
Within the area of supervisory control, the MWW project seeks new methods for
designing supervisory controllers for infrastructural systems. In Goorden (2019),
formal model-based methods are described that can be used for the development of
these supervisory controllers. There, the focus is on improving the performance of
the so-called synthesis techniques for supervisory controllers such that they can be
used for large-scale infrastructural systems. Goorden et al. (2020a) reports on recent
research advances in supervisor synthesis, as well as industrial applications and future
research challenges, in the context of the MWW project.

1.2 Control systems of infrastructural systems

The control structure of an infrastructural system, shown in Figure 1.3, is similar to
that of most computer-controlled mechanical systems. The control structure consists
of five layers. The bottom three layers, 1 through 3, constitute the physical part of the
system (depicted by the dashed box). This physical part consists of the mechanical
components, such as boom barriers, traffic lights, and lock gates. The state of these
components can be influenced by actuators and can be measured by sensors. A
resource controller acts as a low-level controller (e.g., for the control of a frequency
converter controlling the speed of a bridge deck). The supervisory controller, layer 4,
is responsible for the safe coordination between the various components. Based on the
signals received from the other layers, it decides when actuators should be switched on
or off. Typically, for infrastructural systems, the supervisory controller is implemented
on a programmable logic controller (PLC), located close to the system. A graphical
user interface (GUI), layer 5, is connected to the supervisory controller to facilitate
the interaction between a (human) operator and the system. This GUI visualizes
information about the system’s state (such as the water level in a lock chamber or
the position of a boom barrier at a bridge) to the operator and contains buttons
allowing the operator to send commands to the supervisory controller. The operator
controls the system from a control center located elsewhere. There, the system can be
monitored via camera images. The operator is responsible for communicating with
arriving vessels, giving commands to the supervisory controller, and monitoring the
system.

Infrastructural systems are becoming increasingly complex due to the high demands
in terms of safety, quality, and functionality. As a result, supervisory controllers
for these systems are getting more complex as well. Traditionally, the supervisory
controllers are programmed in PLC code by hand and then manually tested. Designing
error-free control systems with this way of working is challenging, as illustrated by the
recent discovery of urgent problems in the control systems of locks and bridges at the
Afsluitdijk, see van Nieuwenhuizen (2019). Moreover, there exist concerns about the
safety of control systems of movable bridges, as reported in Dijsselbloem et al. (2019).
There, it was specifically noted that the lack of uniformity in the control system can
lead to serious accidents.
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Figure 1.3: Control structure of an infrastructural system.

At the same time, for the development process, it is desired to decrease time-
to-market and costs. Model-based development methods have been promoted as a
solution to handle the difficulties arising in control-system development by raising the
abstraction level (away from implementation details) and automating error-prone and
repetitive tasks, see Ramos et al. (2011), Vyatkin (2013), Vogel-Heuser et al. (2014),
and Thramboulidis (2015). Combining model-based methods with formal methods
can further enhance the design of control systems, by mathematically proving that
certain properties are guaranteed.

Within the MWW project, RWS aims to develop methods for the specification,
design, realization, implementation, and maintenance of supervisory control systems
to cope with the above mentioned problems and to increase quality, decrease life-cycle
costs, and increase evolvability.

1.3 Problem description
Supervisory control theory (SCT), as initiated by Ramadge and Wonham (1987),
is a research area focused on developing techniques for the automatic synthesis of
supervisors. SCT is developed for systems for which the uncontrolled behavior of the
system and a set of requirements that the controlled system must adhere to are given.
From these, a supervisor for the system can be calculated that always satisfies the
requirements. This calculation step is called supervisor synthesis. A more in-depth
introduction to supervisor synthesis is provided in Chapter 2. From this supervisor, a
supervisory controller can be derived.

Applying a formal method like SCT in the design of supervisory controllers provides
several advantages. SCT guarantees that the derived supervisory controller controls
the system such that all formulated requirements are satisfied. In other words, the
supervisory controller is correct-by-construction. As safety is of great concern, this
advantage is essential for the design of supervisory controllers for infrastructural



1.4. Synthesis-based engineering method 5

systems. Moreover, the use of formal models allows for a more consistent and less
ambiguous description of the system and its desired behavior in comparison to textual
documents. Other advantages include the possibility for early validation and automatic
implementation code generation. In Baeten et al. (2016), the integration of SCT in
the engineering process for supervisory controllers is discussed. This method is called
synthesis-based engineering (SBE). In the following section, SBE is explained in more
detail.

While synthesis techniques have been under development for over 30 years, their
use in industry has not been widespread (Wonham et al., 2018; Laing et al., 2020).
One of the main reasons for this is that until recently synthesis techniques were unable
to deal with industrial-size problems. Advances in algorithms, such as Vahidi et al.
(2006), Miremadi et al. (2011), Ouedraogo et al. (2011), and Goorden (2019) facilitated
the use of synthesis techniques for industrial-size problems.

The aim of this thesis is to investigate whether SBE is suitable for the design of
supervisory controllers for infrastructural systems. In doing so, this (formal) model-
based approach can contribute to an increase in quality, a decrease in the cost, and an
increase in evolvability when building and renovating infrastructural systems.

1.4 Synthesis-based engineering method
This section provides an overview of the synthesis-based engineering method. The
mathematics behind the modeling and the synthesis procedure are given in Chapter 2.
Figure 1.4 schematically shows the synthesis-based engineering process, adapted from
Baeten et al. (2016), of designing and implementing a supervisory controller for a
system. First, a set of high-level requirements for the overall system HR is defined.
After this, several parallel design tracks are initiated. To illustrate SBE, only two parts
are shown: the plant and the supervisory controller. For the supervisory controller, a
set of control requirements is defined and formalized, this yields CR. For the plant, a
set of requirements PR is defined, and from PR a plant design PD, and a plant model P
are made. Alternatively, if the plant realization already exists, for example in case of a
renovation, the realization can be modeled. From CR and P , a model of the supervisor
S can be synthesized. From this supervisor, a model of the supervisory controller
C is derived. There exist subtle differences between a supervisor and a supervisory
controller, which are explained in Chapter 4. The synthesis and derivation step together
are sometimes called supervisory-controller synthesis. The behavior of the supervisory
controller might not be as desired, as it is not always known beforehand whether the
requirements are complete and correct. Hence, the resulting supervisory controller
has to be validated. For validation, the supervisory controller is simulated together
with the plant model. To match the simulated behavior to the observed behavior in
reality as closely as possible, this plant model is often enriched with continuous-time
behavior (called a hybrid plant model) and an interactive visualization. When the
observed behavior is consistent with the intended behavior, the PLC controller code C
can be generated automatically and implemented on a PLC. To validate the behavior
of the supervisory controller on the PLC and its interaction with all subsystems,
hardware-in-the-loop (HIL) simulation can be used. Here, the real PLC is connected
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to a model of the system. Finally, the plant is built and the PLC can be connected to
the real plant.

HR

CR CR S C C

PR PD P P

extract

extract

define

formalize

design

synthesize

model

derive
generate and
implement

realize

= model simulation, = hardware-in-the-loop simulation, = implementation and testing.

= documents, = models, = realizations.

H = high-level, P = plant, C = supervisory controller, S = supervisor, R = requirements, D = design.

Figure 1.4: A schematic overview of the synthesis-based engineering method, adapted from
Baeten et al. (2016).

Compared to traditional engineering methods and other model-based engineering
methods (see, e.g., Frey and Litz (2000) and Swartjes et al. (2017)), the major difference
is that no supervisory controller is programmed (or modeled) by hand when using
synthesis-based engineering. Instead, much effort is put into defining and formalizing
the requirements, such that the supervisory controller can be derived from those.
Hence, the focus shifts from developing and debugging the implementation code to
designing and improving the requirements.

For infrastructural systems, the necessary documents are already available, as
RWS has developed several specifications. The design of waterway locks is described
in ‘Basisspecificatie Schutsluis’ (Nieman, 2016) and the design of movable bridges
in ‘Basisspecificatie Beweegbare Brug’ (van der Heide, 2019), these can be used as
a basis for the plant model. The requirements for the control systems for waterway
lock and movable bridges are defined in ‘Landelijke Bruggen- en Sluizenstandaard’
(Rijkswaterstaat, 2019).

1.5 Research questions
This thesis investigates the applicability of supervisor synthesis to the design of
supervisory controllers for infrastructural systems. Specifically, this thesis tries to find
an answer to the following question.
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How suitable is the synthesis-based engineering method for the design,
validation, and implementation of supervisory controllers for infrastructural
systems?

To answer this question, five research questions have been defined that need to be
answered first. These research questions (RQs) are given below.

Research question 1

What is a suitable way to model infrastructural systems and their require-
ments for the purpose of supervisor synthesis?

For supervisor synthesis, it is crucial to have meaningful and correct models of the
system and its control requirements. So far, in the literature, no modeling guidelines
are provided that can help in obtaining these models. In Wonham et al. (2018), it
was argued that the lack of applications for supervisor synthesis is partly due to the
difficulty of obtaining the necessary models for supervisor synthesis. To increase the
applicability of supervisor synthesis, a suitable way of modeling is necessary.

Research question 2

Which steps are necessary to derive a supervisory controller, and subse-
quently, implementation code, from a synthesized supervisor model?

A major incentive to use supervisor synthesis is that from the resulting supervisor
a supervisory controller can be derived, which in turn, can be used to generate
implementation code. In the literature, it has been shown that some difficulties exist
in the derivation and implementation steps, and not every supervisor is suitable for
implementation as a supervisory controller. It has to be determined which additional
properties a supervisor needs to satisfy such that it can be used as a supervisory
controller, and how these properties can be verified for large supervisors.

Research question 3

Which additional steps have to be performed to use a synthesized supervisor
as a safety PLC controller?

For infrastructural systems, the supervisory controller has to adhere to strict safety
standards as defined in the machinery directive (European Commission, 2006). To
comply with the hardware standards of this directive, safety PLCs are used. Safety
PLCs require a split between the ‘safety’ part of the supervisory controller and the
‘regular’ part of the supervisory controller. To comply with these standards, it is
necessary to have a method to automatically split the supervisory controller.
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Research question 4

How can a supervisory controller for a real infrastructural system be syn-
thesized, implemented, and tested?

To assess whether synthesis-based engineering is a valid option for the development
of the supervisory controllers, case studies have to be performed. Aspects related to
the scalability of the methods can only be evaluated with real cases. In these case
studies, all the necessary steps have to be performed for a real infrastructural system.
Special attention should be given to the failure of components in a real system and
the integration of GUIs.

Research question 5

In what way can the similarities between similar systems be exploited to
efficiently develop the plant and the requirements models?

As mentioned, Rijkswaterstaat has to renovate and replace numerous waterway locks
and movable bridges in the foreseeable future. These systems show lots of similarities.
Designing the necessary models for each case is laborious and error-prone. It should
be determined whether the similarities can be exploited such that the models can be
obtained more efficient.

1.6 Main contributions
The thesis has the following six main contributions. While the presented research
focuses on waterway locks and movable bridges, these contributions are also applicable
and useful in other application domains that have similar system characteristics, as
for example: theme park attractions (Forschelen et al., 2012), manufacturing lines
(Reijnen et al., 2018a), tunnels (Moormann et al., 2020a), and automotive systems
(Korssen et al., 2018).

Contribution 1

Various case studies on infrastructural systems have led to a method for the design of
the plant model and the requirements model. The case study of Lock III in Reijnen
et al. (2017), a waterway lock in Tilburg, showed that it is possible to model the
system and the control requirements and subsequently synthesize a supervisor. Similar
modeling has been done for lock Empel and lock Hintham (Verbakel, 2017). Another
study has been conducted on the Algera complex (Reijnen et al., 2020a), where a
waterway lock and a bridge are controlled together. Another bridge that has been
modeled is the Oisterwijksebaan bridge in Tilburg (Reijnen et al., 2020e). The lessons
learned from these case studies have led to a component-based modeling method that
can be used to model infrastructural systems. This contribution relates to RQ 1.
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Contribution 2

When a supervisor has been synthesized successfully, the next step is to derive a
supervisory controller from it. For this, the supervisor needs to satisfy three additional
properties, which are confluence, finite response, and nonblocking under control, as
shown in Malik (2003). This thesis proposes sufficient conditions for confluence and
finite response that are useful if the modeling method as proposed in Contribution 1
is applied. It is also shown how nonblocking under control can be verified. When the
supervisory-controller model is used to generate PLC code, sequencing algorithms, see
Steward (1981) and Eppinger and Browning (2012), are used to optimize the execution
time of the generated code. This contribution allows a synthesized supervisor to be
used as a supervisory controller for an infrastructural system. This contribution relates
to RQ 2.

Contribution 3

If safety PLCs are used as the implementation platform for the supervisory controller,
the model first has to be split into two parts. A method has been developed that
automatically splits a model for this purpose. To validate the method, a case study
on the Oisterwijksebaan bridge has been performed. The result is compared to a
manual splitting result made by experts. Furthermore, the supervisory controller has
been implemented to control the real bridge. This contribution allows the supervisory
controller to be used in combination with safety PLCs. This contribution relates to
RQ 3.

Contribution 4

Going from a model of the supervisory controller to a realization on a real system
remains a large step. Model simulation is often used to validate that the behavior of the
supervised system is as intended. Even though simulation is a valuable tool for early
validation, it provides only a partial analysis. One of the main shortcomings is that
the models are used, and not the actual implementation code and the implementation
hardware. To bridge the gap between model simulation and implementation on the real
system, hardware-in-the-loop (HIL) simulation can be used (Bullock et al., 2004). For
HIL simulation, the real implementation code and the implementation hardware are
connected to a model of the system. In this thesis, HIL simulation has been integrated
in the engineering method by automatically generating the necessary models. With
this way of working, almost no additional effort is required for HIL simulation. This
is illustrated with a case study on the Prinses Marijke complex. This contribution
relates to RQ 4.

Contribution 5

To demonstrate the applicability of the synthesis-based engineering method, a case
is described where a supervisory controller for the Oisterwijksebaan bridge, a swing
bridge, has been developed. The case study illustrates all the necessary steps, i.e.,
modeling, synthesis, validation, code generation, and implementation of the supervisory
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controller. Moreover, identification of failures and handling of failures, so-called fault-
diagnosis and fault-tolerant control, are included as well. This case study, performed
on the real system, shows that synthesis techniques have matured to a point where
they are powerful enough to be applied to industrial-size problems. This contribution
relates to RQ 4.

Contribution 6

In the performed case studies, it has been observed that different infrastructural
systems consist of similar models. Inspired by the work of Grigorov et al. (2011), the
use of standardized modules for the design of the necessary models for synthesis and
simulation has been investigated. A graphical modeling method based on standardized
modules is presented. A prototype tool has been developed that illustrates the proposed
method for the development of supervisors for movable bridges. Using this method,
the models for a family of seventeen bridges have been developed. This contribution
relates to RQs 1 and 5.

1.7 Thesis outline
This thesis is structured as follows. Chapter 2 describes the preliminaries of supervisory
control theory. In Chapter 3, a way of modeling for supervisor synthesis is proposed.
In this chapter, a case study on a lock-bridge combination is described as an example.
Chapter 4 describes the steps needed to go from a synthesized supervisor to an
implemented (PLC) supervisory controller. Sufficient conditions are described that
can be used to verify that a supervisor can be implemented as a supervisory controller.
Moreover, it is shown how code can be generated from the model. Chapter 5 is an
extension to the previous chapter. In this chapter, a method is described that splits a
supervisory controller into two parts that can be used for safety PLCs. Validation of
the implemented supervisory controller with the use of hardware-in-the-loop simulation
is described in Chapter 6. To illustrate this method, a case study on the Prinses
Marijke locks is described. In Chapter 7, a case study on the Oisterwijksebaan bridge
is described, where the concepts developed in this thesis are applied on the real
system. In this case study, a fault-tolerant supervisory controller has been synthesized,
validated, implemented, and tested on the actual bridge. In Chapter 8, a graphical
modeling method is proposed for the synthesis of supervisors for a family of systems.
Finally, answers to the research questions and recommendations for future work are
provided in Chapter 9.



Chapter 2

Supervisory control theory

This chapter provides a brief introduction to modeling of discrete-event systems and
supervisory control theory. This introduction is based on the work of Ramadge and
Wonham (1987), Sköldstam et al. (2007), Cassandras and Lafortune (2009), Ouedraogo
et al. (2011), and Wonham and Cai (2019). First, modeling of discrete-event systems
is discussed. Second, it is shown how requirements are modeled. Third, supervisor
synthesis is explained. Then, normalization of models is discussed. Finally, the
mathematics behind the synthesis algorithm are provided.

2.1 Modeling of discrete-event systems
In the context of supervisor synthesis, systems are usually modeled as (extended)
finite-state automata (FAs) or Petri nets. Both formalisms are used to represent event-
driven behavior. In this thesis, extended finite-state automata (EFAs) are used as the
modeling formalism. This allows for more compact and elegant models compared to
FAs, as demonstrated in Miremadi et al. (2010). As EFAs are an extension to FAs,
first FAs are introduced, followed by EFAs.

2.1.1 Finite-state automata
An FA is formally defined as a 5-tuple, A = (L,Σ, δ, l0, Lm), where L is a finite set
of locations, Σ a finite set of events, δ ⊆ L× Σ× L a transition relation, l0 ∈ L the
initial location, and Lm ⊆ L a set of marked locations. A location is marked (by
the modeler) when this location represents a ‘safe’ situation. The event set can be
partitioned into controllable events Σc and uncontrollable events Σu, which denote
actions that can and cannot be disabled by the supervisor, respectively. With Σ∗ the
set of all finite strings of events in Σ is denoted and Σ+ = Σ∗ \ {ε}, where ε is the
empty string.

An FA is called deterministic if for each location l ∈ L and event σ ∈ Σ there
exists at most one location l′ ∈ L such that (l, σ, l′) ∈ δ; otherwise, it is called
nondeterministic. Given the nature of the infrastructural systems, only deterministic
FAs are considered in this thesis.

11
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For most systems, it is not feasible to model their behavior with a single FA, as
the state space of the model is often too large. Instead, a system can be modeled as a
set of several interacting FAs Ai (referred to as component models). The behavior
of the combined set of FAs is given by the synchronous product A = A1 ‖ . . . ‖ Am
(Cassandras and Lafortune, 2009), which requires simultaneous execution of transitions
labeled with the same event. This means that an event can only be executed when
all FAs that contain this event can execute this event. Let Ak = (Lk,Σk, δk, l

0
k, L

m
k ),

k = 1, 2 be FAs. The synchronous product of A1 and A2 is

A1 ‖ A2 = (L1 × L2,Σ1 ∪ Σ2, δ, (l01, l02), Lm
1 × Lm

2 )

where the transition relation δ is defined as:

• if σ ∈ Σ1∩Σ2, then ((l1, l2), σ, (l′1, l′2)) ∈ δ, for all (l1, σ, l′1) ∈ δ1 and (l2, σ, l′2) ∈ δ2.

• if σ ∈ Σ1 \ Σ2, then ((l1, l2), σ, (l′1, l2)) ∈ δ, for all (l1, σ, l′1) ∈ δ1 and l2 ∈ L2.

• if σ ∈ Σ2 \ Σ1, then ((l1, l2), σ, (l1, l′2)) ∈ δ, for all (l2, σ, l′2) ∈ δ2 and l1 ∈ L1.

FAs can be displayed graphically as well. Here, a (labeled) circle denotes a location,
an unconnected incoming arrow indicates the initial location, and a filled circle indicates
a marked location. Controllable and uncontrollable events are visualized by (labeled)
solid and dashed arrows, respectively. Controllable-event names start with c_ and
uncontrollable-event names start with u_. It is assumed that the event set consists
only of the events displayed on a transition. An example is shown in Figure 2.1.
The right-hand side FA is the synchronous product of the other two FAs. The FAs
synchronize over the u_transfer event.

A B

V:
C D

W:
(A,C) (B,C)

(A,D) (B,D)

V ‖ W:

u_transfer

u_transfer

u_transfer

c_produce

c_process

c_produce

c_produce

c_process c_process

Figure 2.1: Graphical representation of FAs (left and middle) and their synchronous product
(right).

2.1.2 Extended finite-state automata
In Cheng and Krishnakumar (1996), Chen and Lin (2000), and Sköldstam et al.
(2007), EFAs are used for modeling systems. EFAs are FAs parameterized by bounded
discrete variables. A model consists of several interacting EFAs, called an EFA system,
E = {E1, . . . , Em} together with a set of variables XE = {x1, . . . , xn}. Transitions in
an EFA may contain guards (i.e., logical conditions) over the variables, and updates
(i.e., assignments) to the variables.
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With each variable x, a finite discrete domain is associated, dom(x). A valuation
v ∈ V is a function v : XE →

⋃
x∈XE dom(x), for which v(x) ∈ dom(x) for every

x ∈ XE . The set of all valuations is V , the initial valuation is v0 ∈ V , and the set of
marked valuations is V m ⊆ V .

Formally, an EFA is defined as E = (L,X,Σ,→, l0, Lm), where X ⊆ XE is a set
of local variables, → is the extended transition relation, and the other elements are
equal to those for FAs. The transition relation is defined as →⊆ L×G× Σ× U × L,
with G the set of guards and U the set of updates. We assume that each variable in
the EFA system is local to exactly one EFA in the EFA system.

A guard is a function, g : V → {T,F}, where T and F are the Boolean literals. For
clarity, v |= g is used instead of g(v). In the models, guards are written as propositional
formulas over the variables in the EFA system. It is assumed that each EFA contains
a variable that represents the current location, called the location pointer LP, with
dom(LP) = L. As a result, locations of other EFAs can be used in the guards. An
example of a guard is x > 5 ∧ E.On, where E.On means that EFA E is in location On.
This guard evaluates to T for some v ∈ V if v(x) > 5 and v(LPE) = On.

An update is a function u : V → V . Only the values of the local variables of an
EFA can be updated, i.e., v(x) = u(v)(x) for all x ∈ XE \X. In the models, updates
are written as (conditional) assignments. An example of an update is x := x + 3,
which increases the value of x by 3. An example of a conditional update is x := if(x <
5) : x+ 1 else : x, which increases the value of x by 1 as long as the value of x is less
than 5. Only deterministic updates are considered, e.g., x+ y := 7 is not considered.
An assignment of a value outside of the variable’s domain is undefined.

A state of an EFA is a combination of the current location and the current valuation.
The set of states is Q = L × V , the initial state is q0 = (l0, v0), and the marked
states are Qm = Lm × V m. A transition (l, g, σ, u, l′) ∈→ is enabled in a state (l, v) if
v |= g. This transition updates the location to l′ and the valuation to u(v). An event
is enabled in a state if a transition labeled with this event is enabled in this state. An
EFA is deterministic if in each state there is at most one transition enabled for each
event. Given the nature of the infrastructural systems, only deterministic EFAs are
considered in this thesis.

The transition function on states, δ : Q×Σ→ Q, is defined as follows. δ(q, σ) = q′

if and only if there exists a (l, g, σ, u, l′) ∈→ that is enabled in q = (l, v) and the state
is updated to q′ = (l′, u(v)). With δ(q, σ)! it is denoted that an enabled transition
exists from state q labeled with event σ. The set of eligible events in state q is defined
as Elig(q) = {σ ∈ Σ | δ(q, σ)!}.

The transition function can be extended in a natural way to strings. For string
s ∈ Σ∗ and event σ ∈ Σ, δ(q, sσ) = δ(δ(q, s), σ), and δ(q, sσ)! if and only if δ(q, s)!
and δ(δ(q, s), σ)!. For the empty string ε, δ(q, ε) = q and δ(q, ε)! = T.

State q is called reachable if there exists a string s ∈ Σ∗ such that δ(q0, s) = q. An
EFA is called nonblocking if for every reachable state q, there exists string s ∈ Σ∗ such
that δ(q, s) ∈ Qm. EFA E1 is called controllable with respect to EFA E2 (with set of
uncontrollable events Σu) if for every s ∈ Σ∗12 and σ ∈ Σu such that δ12(q0

12, s)! and
δ2(q0

2, sσ)!, then δ12(q0
12, sσ)!, where subscripts 2 and 12 refer to elements belonging to

E2 and E1 ‖ E2, respectively.
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Two EFAs in an EFA system can be combined by using the synchronous product.
Let Ek = (Lk, Xk,Σk,→k, l

0
k, L

m
k ) be EFAs, k = 1, 2. The synchronous product of E1

and E2 is

E1 ‖ E2 = (L1 × L2, X1 ∪X2,Σ1 ∪ Σ2,→, (l01, l02), Lm
1 × Lm

2 )

where the transition relation → is defined as:

• if σ ∈ Σ1∩Σ2, then ((l1, l2), g1∧g2, σ, u1⊕u2, (l′1, l′2)) ∈→, for all (l1, g1, σ, u1, l
′
1) ∈

→1 and (l2, g2, σ, u2, l
′
2) ∈→2.

• if σ ∈ Σ1 \ Σ2, then ((l1, l2), g1, σ, u1, (l′1, l2)) ∈→, for all (l1, g1, σ, u1, l
′
1) ∈→1

and l2 ∈ L2.

• if σ ∈ Σ2 \ Σ1, then ((l1, l2), g2, σ, u2, (l1, l′2)) ∈→, for all (l2, g2, σ, u2, l
′
2) ∈→2

and l1 ∈ L1.

In the definition above, g1 ∧ g2 evaluates to T for some v ∈ V if v |= g1 and v |= g2.
The update u1 ⊕ u2 denotes that the valuations of the variables from X1 and X2 are
updated according to u1 and u2, respectively. This is well-defined, as X1 and X2 are
disjoint. If a guard contains a location l ∈ L1 ∪ L2, the location is substituted by T if
for that transition l = l1 or l = l2, and by F otherwise.
E‖ = E1 ‖ . . . ‖ Em denotes the synchronous product of all the component models

in EFA system E .
An example of synchronizing EFAs is shown in Figure 2.2. The EFA system is

E = {Button, Lamp}, and XE = {Q}, where Q is a Boolean variable. In the graphical
representation, the keywords when and do are used to denote guards and updates,
respectively. For the local variables, the initial value is denoted near the initial-location
arrow. In this example, the events c_on and c_off are only enabled when EFA Button
is in location Pushed and in location Released, respectively. When c_on or c_off
occur, the value of Q is negated. The synchronous product is shown in Figure 2.3.
Transitions with a guard that always evaluates to F are not displayed.

Released Pushed

Button:

Q = F
Off On

Lamp:

u_push

u_release

c_on
when Button.Pushed

do Q := ¬Q

c_off
when Button.Released

do Q := ¬Q

Figure 2.2: Graphical representation of EFAs.
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Q = F
(Released,Off) (Pushed,Off)

(Released,On) (Pushed,On)

u_push

u_release

u_push

u_release

c_on
do Q := ¬Q

c_off
do Q := ¬Q

Button ‖ Lamp:

Figure 2.3: Synchronous product of EFAs Button and Lamp.

2.2 Modeling of requirements
For supervisor synthesis, the desired behavior of a system is given by a requirements
model. A requirements model can be defined, just like the plant model, using a
collection of EFAs. EFAs are especially useful when the order of events is important.
Typically, other requirements, such as safety requirements, can be formulated more
concisely using state-based requirements, introduced in Ma and Wonham (2006) and
extended in Markovski et al. (2010). State-based requirements come in two types,
event conditions and state invariants.

Event-condition requirements provide conditions for an event to be enabled. For
event e and condition c, e needs c defines that e may only occur whenever c evaluates
to T. Opposite, c disables e defines that e may only occur whenever c evaluates to
F. Conditions are defined similar to guards used in the extended transition relation.
An event-condition requirement can also be represented as an EFA, such that the
synchronous product with another EFA can be computed. The EFA representation of
an event-needs-condition requirement is as shown in Figure 2.4. A condition-disables-
event requirement can be modeled similarly, by replacing c with ¬c.

e when c

Figure 2.4: EFA representation of an event-condition requirement e needs c.

State-invariant requirements restrict the behavior of the plant by prohibiting
combinations of states. For condition Y over the location variables of the plant, all
locations where Y evaluates to F are prohibited. The synchronous product of an
EFA and a state-invariant requirement can be computed by removing in the EFA all
transitions to locations where Y evaluates to F.

2.3 Supervisor synthesis
Supervisory control theory, initiated by Ramadge and Wonham (1987), provides a
method to derive a supervisor for a system. Given a model of the plant and a model
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of the requirements, a supervisor can be synthesized automatically. The supervisor
restricts the behavior of the system (together called the supervised system), such that
the following properties are always satisfied:

Safety The supervised system cannot reach states or enable events that are forbidden
by the requirements.

Controllability The supervisor is controllable with respect to the plant.

Nonblockingness The supervised system is nonblocking.

Maximal permissiveness The supervisor imposes the minimal restriction on the
system to satisfy safety, controllability, and nonblockingness.

It should be noted, that ‘safety’ as used here, differs from the definition used
by Rijkswaterstaat. Rijkswaterstaat uses the term ‘safety requirement’ when the
requirement is necessary to prevent human injuries or damage to the system.

By applying monolithic supervisor synthesis (e.g., with the algorithm of Ouedraogo
et al. (2011)), a single supervisor is synthesized to control the plant. In that case, a
single EFA is returned that represents this supervisor.

As an example, consider EFAs V and W from Figure 2.1 and requirement R:
‘c_process needs V.A’. The synchronous product of V, W, and R is shown on the
left-hand side of Figure 2.5. As can be seen, location (B, D) is blocking. Applying
supervisor synthesis on V ‖ W and R results in supervisor S, shown the right-hand
side EFA in Figure 2.5. To resolve the blocking issue, event c_produce is disabled in
location (A, D).

(A, C) (B, C)

(A, D) (B, D)

u_transfer

c_produce

c_produce

c_process

(A, C) (B, C)

(A, D)

u_transfer

c_produce

c_process

Figure 2.5: Synchronous product of V, W, and R (left) and supervisor S synthesized for V ‖ W
and R (right).

For large state spaces, returning a supervisor represented by a single EFA becomes
infeasible. The method of Miremadi et al. (2011) allows for a compact representation
of the synthesis result. It characterizes the restrictions of the supervisor as guards
extracted during the synthesis procedure. The result is an EFA with a single location
and for each controllable event in the plant a selfloop with the extracted guard. The
extracted guards can further help modelers to understand why some events become
disabled after synthesis. The supervisor is then represented by the original collection
of component models, the original collection of requirement models, and the extracted
guards.
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As an example, consider supervisor S from Figure 2.5. Instead of returning this
EFA, the method of Miremadi et al. (2011) returns EFA G, shown in Figure 2.6. The
supervisor is now represented by V ‖ W ‖ R ‖ G.

G:
c_process
when T

c_produce
when W.C

Figure 2.6: Synthesis result G for V ‖ W and R, using the method of Miremadi et al. (2011).

As already noted in Fabian et al. (2014), representing the synthesis result as
guards has further advantages when analyzing the supervisor. Often, for many events,
synthesis does not introduce additional guards (Goorden and Fabian, 2019). This
implies that the supervisor does not have to impose extra restrictions on these events
to satisfy nonblockingness and controllability. Similarly, sometimes events have guards
that always evaluate to F, which indicates that these events are never enabled. This
is useful information when the behavior of the supervisor has to be validated. This
information is not trivially obtained for a supervisor represented as an EFA.

2.4 Normalized models
For mathematical analysis of an EFA system, it can be useful to transform the EFA
system to a normalized EFA (NEFA). In an NEFA, all state information is captured
by the variables and for all events a single guard function and a single update function
are defined. The NEFA representation is used in Chapter 4.

The first step of the transformation is to make the location pointer of each EFA
explicit. For this, the algorithm defined in Swartjes et al. (2014) can be used. In short,
for each EFA Ei ∈ E a variable LPi is added to XE . This variable is local to EFA Ei.
The domain of LPi is Li, the initial value v0(LPi) = l0i , and the marked valuations
are defined such that they correspond to the marked location. Each transition in the
EFA is adjusted, (l, g, σ, u, l′) ∈→ is changed to (l, g ∧ LPi = l, σ, u⊕ LPi := l′, l′), to
explicitly relate the guard and update to the location pointer.

The second step of the transformation is to transform the EFA system with location
pointers to a locationless EFA (LEFA) system, as introduced in Alenljung et al. (2007).
An LEFA is defined as EL = (X,Σ, →̂), with →̂ ⊆ G× Σ× U .

Definition 1 (LEFA transformation). Let E = (L,X,Σ,→, l0, Lm) be an EFA, with
location pointer LP ∈ X. The corresponding LEFA is EL = (X,Σ, →̂), with →̂ =
{(g, σ, u) | (l, g, σ, u, l′) ∈→}.

The third step of the transformation is to synchronize the LEFAs in the LEFA
system. Two LEFAs can be synchronized, similar to EFA synchronization, as follows.

Definition 2 (LEFA synchronization). Let EL
i = (Xi,Σi, →̂i), with i = 1, 2 be LEFAs,

the synchronized LEFA is EL
1 ‖ EL

2 = (X,Σ, →̂), where X = X1 ∪X2, Σ = Σ1 ∪ Σ2,
and →̂ is defined as follows.
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• if σ ∈ Σ1 ∩ Σ2, then (g1 ∧ g2, σ, u1 ⊕ u2) ∈ →̂ for every (g1, σ, u1) ∈ →̂1 and
(g2, σ, u2) ∈ →̂2

• if σ ∈ Σ1 \ Σ2, then (g1, σ, u1) ∈ →̂ for every (g1, σ, u1) ∈ →̂1

• if σ ∈ Σ2 \ Σ1, then (g2, σ, u2) ∈ →̂ for every (g2, σ, u2) ∈ →̂2

The final step of the transformation is to combine all the transitions for the same
event. In this way, for each event exactly one transition is defined. The result is an
NLEFA.

Definition 3 (NLEFA transformation). Let EL = (X,Σ,→) be an LEFA. The
corresponding NLEFA is EN = (X,Σ, →̂), with →̂ = {(gσ, σ, uσ) | σ ∈ Σ}, with
gσ = ∨

(g,σ,u)∈→ g and uσ = ⊕
(g,σ,u)∈→ g ⇒ u.

In the above definition, ⊕ denotes the extension of the update function, where
g ⇒ u indicates that if g evaluates to T, the valuation is updated according to u (a
conditional update). This is well-defined, as for deterministic NLEFAs there is at
most one condition that holds.

In an NLEFA, for every event σ, a global guard expression gσ is defined, such that
σ is enabled if and only if gσ evaluates to T. Additionally, uσ denotes the global update
function for σ.

As an example, consider EFA system E = {V, W, G, R}, from the previous section.
The NLEFA representation of E is shown in Figure 2.7. The global guard and the
global update for each event are given below the events, in the figure. The marked
state (not shown in the figure) is the state where LP_V = A and LP_W = C.

LP_V = A, LP_W = C

c_process
when LP_V = A ∧ LP_W = D

do LP_W := C

c_produce
when LP_V = A ∧ LP_W = C

do LP_V := B

u_transfer
when LP_V = B ∧ LP_W = C

do LP_V := A, LP_W := D

Figure 2.7: NLEFA representation of E .

It can be shown that the behavior of a deterministic EFA system with location
pointers is equal to its corresponding NLEFA. This means that every event sequence
that is enabled in the EFA system is also enabled in the NLEFA, and vice versa, see,
e.g., Swartjes et al. (2014).

2.5 Synthesis algorithm
The synthesis algorithm used in this thesis is based on the algorithm presented in
Ouedraogo et al. (2011). The algorithm has been implemented in CIF (van Beek
et al., 2014) in a previous project. The implementation uses binary decision diagrams
(BDDs) for efficient calculations of the predicates used in the algorithm.
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The algorithm consists of three steps 1) for each location, calculate the good-state
predicate, 2) for each location, calculate the bad-state predicate, and 3) for each
transition labeled with a controllable event, adapt the guard. The good-state predicate
indicates for a location, for which valuations a marked state can be reached. The
bad-state predicate indicates for a location, for which valuations no marked state can
be reached, or (uncontrollably) a state can be reached, from where no marked state
can be reached. Since bad-states must be avoided, in step 3, the guards on edges
labeled with controllable events are updated such that bad-state predicates cannot
evaluate to T.

The good-state predicate is calculated as follows.

1. Initially, the good-state predicate for a location l consists of marked-location
predicate Ml = l ∈ Lm that is T for marked locations and F otherwise and
marked valuation predicate Mv = v ∈ Vm that is T for marked valuations and F
otherwise.

Nl := Ml ∧Mv

2. For each location, compute a new good-state predicate as follows. The new
good-state predicate of a location is the old good-state predicate Nl and, for
each outgoing transition (l, g, σ, u, l′) of the location, a disjunction of the form
g ∧ Nl′ [u]. Nl′ [u] denotes the old good-state predicate of the target location,
where all occurrences of the variables are replaced by the expression they are
assigned in the update of the transition.

Nl = Nl ∨
∨

(l,g,σ,u,l′)
σ∈Σ

(g ∧Nl′ [u])

3. Repeat step 2 until the good-state predicates do not change anymore.

The bad-state predicate is calculated as follows.

1. Initially, the bad-state predicated for a location l is the negation of the good-state
predicate of the location.

Bl := ¬Nl

2. For each location, compute a new bad-state predicate as follows. The new bad-
state predicate of a location is the old-bad state predicate and, for each outgoing
transition (l, g, σ, u, l′) of the location that is labeled with an uncontrollable event,
a disjunction of the form g ∧Bl′ [u]. Bl′ [u] denotes the old bad-state predicate of
the target location, where all occurrences of the variables are replaced by the
expression they are assigned in the update of the transition.

Bl := Bl ∨
∨

(l,g,σ,u,l′)
σ∈Σu

(g ∧Bl′ [u])

3. Repeat step 2 until the bad-state predicates do not change anymore.
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The guard on a transition (l, g, σ, u, l′) labeled with a controllable event is adapted
as follows.

g := g ∧ ¬Bl′ [u]

Whenever a guard has been adapted, all three steps are repeated. When no
guard has been adapted, the synthesis process terminates. In case that for the initial
valuation, the bad-state predicate of the initial location evaluates to T, no supervisor
can be synthesized and the algorithm also terminates.

In CIF, the EFA system is first transformed into an NLEFA, see Section 2.4. In
that case, there is exactly one good-state predicate, one bad-state predicate, and one
updated guard per controllable event. For a compact representation of the synthesis
result, an EFA with one location is constructed that contains for each controllable
event a self-loop transition with the guard created in step 3, as shown in Section 2.3.



Chapter 3

Modeling of infrastructural
systems

Even though supervisory control theory has been a subject of research since the mid
80s, reports on realistic industrial applications are few in numbers. As is stated
in Wonham et al. (2018), this is partly due to the lack of acquaintance of control
engineers with modeling and specifying in the framework of automata, the lack of
adequate tooling, and the computational complexity when synthesizing supervisors for
industrial systems. Moreover, in Grigorov et al. (2011) and Zaytoon and Riera (2017)
it is noted that obtaining the necessary models for supervisor synthesis is difficult, as
there exist no clear guidelines on how to develop them.

In the literature, there are a few reports on applications of supervisor synthesis.
The first application was the rapid thermal multiprocessor, described in Balemi et
al. (1993). By far, most cases described in the literature focus on the domain of
manufacturing systems; e.g., Leduc and Wonham (1995), Brandin (1996), Lauzon
et al. (1996), Kim et al. (2001), de Queiroz and Cury (2002), Chandra et al. (2003),
Nourelfath and Niel (2004), Ljungkrantz et al. (2007), Pétin et al. (2007), Hasdemir
et al. (2008), Moor et al. (2010), Silva et al. (2011), van der Sanden et al. (2015),
and Pena et al. (2016). Other applications are theme park vehicles (Forschelen et al.,
2012), chemical process control (Rawlings et al., 2014), patient support table for an
MRI scanner (Theunissen et al., 2013), smart homes dedicated to disabled people
(Guillet et al., 2014), mobile robots (Lopes et al., 2016), computer science (Liao
et al., 2013; Auer et al., 2014; Atampore et al., 2019), and driver assistance systems
(von Bochmann et al., 2017; Korssen et al., 2018). In Reijnen et al. (2017), we reported
on an application related to a lock control system in Tilburg. With a few exceptions,
many of these case studies were based on experimental set-ups to show the feasibility
of using supervisor synthesis.

A small industrial application is the control of a patient support table for an MRI
scanner (Theunissen et al., 2013). For this application, three actuators are controlled
based on observations of eight sensors, resulting in a plant state space of 5× 104 states.

This chapter is based on: Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., and
Rooda, J.E. (2020). “Modeling for supervisor synthesis – A lock-bridge combination case study”. In:
Discrete Event Dynamic Systems vol. 30, no. 3, pp 499-532.

21



22 Chapter 3. Modeling of infrastructural systems

Here, finite-state automata are used to model the plant and the requirements. A second
small industrial application is the control of the oxide growth process on a silicon
wafer (Balemi et al., 1993). The plant model, consisting of eight components, has a
state space of 106 states. The plant and requirements are modeled with finite-state
automata. The driver assistance system, considered in Korssen et al. (2018), consists
of 28 components, modeled by finite-state automata, leading to a plant state space of
3.4× 109 states. Differently from the previous examples, event conditions are used
to represent the requirements. Another application is the control of a theme park
vehicle, described in Forschelen et al. (2012). Here, six actuators are controlled by a
supervisor based on the observations of eleven sensors. The plant state space of the
theme park vehicle is 1.7× 1010 states. The requirements model is represented by a
combination of finite-state automata and event conditions. While for most of these
applications the necessary synthesis models are shown, they do not provide guidelines
on how these models should be obtained. Also, the number of components involved in
the cases is relatively low compared to systems encountered in industrial practice.

Modeling of the plant is discussed in Balemi et al. (1993), Chandra and Kumar
(2002), and Grigorov et al. (2011). In Balemi et al. (1993), an input-output perspective
is proposed. They show how the plant components can be modeled based on the
inputs and outputs of the control unit. In Chandra and Kumar (2002), a modeling
formalism for the plant is proposed. Here, the models also follow the input-output
perspective of Balemi et al. (1993). Furthermore, they provide a method that derives
conditions on the occurrence of events in the plant. These conditions represent the
interactions between components in the system. In Grigorov et al. (2011), the use of
templates is introduced. Templates allow to model a plant consisting of many similar
components in a relatively straightforward way, greatly decreasing the modeling time
and effort.

Modeling of the requirements is discussed in Markovski et al. (2010), Theunissen
(2015), and Göbe et al. (2016). Originally, for supervisor synthesis, requirements are
modeled with finite-state automata. In Ma and Wonham (2006) and Markovski et al.
(2010), this is expanded with the introduction of event-condition requirements, which
are stated to be more intuitive and compact. Event-condition requirements specify
conditions for an event to be enabled, based on propositional logic. The advantages
of using event-condition requirements is further shown in Göbe et al. (2016), where
the authors reported improvements in terms of modeling time and the clarity of the
resulting models. In Theunissen (2015), a supervisor has been synthesized for the
control of a patient support table for an MRI scanner based on automata models of
the requirements and based on event-condition models of the requirements. When
comparing the models, it was concluded that the event-condition requirements are
more concise and more intuitive to understand. These papers do not provide guidelines
on how a requirements model can be derived.

The contribution of this chapter is twofold. Firstly, it proposes guidelines to
obtain the plant model and the requirements model, necessary for supervisor synthesis.
Secondly, it reports on a real infrastructural system, the Algera complex, for which a
supervisor has been synthesized. This case study illustrates the proposed guidelines
and shows the feasibility of using supervisor synthesis for industrial system.
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For modeling the plant, we choose the abstraction level of inputs and outputs of
the control unit. This has two advantages. Firstly, the models can be used for the
generation of implementation code. Secondly, this leads to many small loosely-coupled
(component) models for the sensors, actuators, and operator commands in the system.
This way of modeling has a close resemblance to component-based modeling, frequently
applied in software engineering, see e.g., Gössler and Sifakis (2005). The similarity
between many of these component models can be exploited such that they can be
modeled using templates. Furthermore, we show that this abstraction level, along
with event-condition models, leads to a requirements model that relates closely to the
specifications control engineers are acquainted with in practice. Finally, we show how
the plant model can be augmented with continuous behavior such that it can be used
for simulation-based validation, further aiding the supervisor design process.

To demonstrate the way of modeling, we report on an industrial application for
which a supervisor has been synthesized: the Algera complex located in the Netherlands.
The system consists of a waterway lock together with a movable bascule bridge over
the lock. The supervisor has to control 80 actuators based on the observations from 96
sensors, and in response to 63 operator commands. Even though the plant state space
consists of 2.3× 1057 states and the supervisor has to adhere to 491 requirements, it
is shown that a monolithic synthesis algorithm is able to solve the synthesis problem.
The design description and the models for the Algera complex are available in a
repository1.

This chapter is structured as follows. Section 3.1 describes the Algera complex. In
Section 3.2, guidelines for obtaining the necessary models for synthesis are given. The
models developed for the Algera complex and the synthesized supervisor are discussed
in Section 3.3. Section 3.4 discusses how the synthesized supervisor is validated.
Finally, Section 3.5 concludes this chapter.

3.1 Case study: the Algera complex

The Algera complex, shown in Figure 3.1, is located in the Hollandse IJssel, a river in
the Netherlands. The system is part of the Delta Works: a series of locks, storm surge
barriers, levees, and dams that protect the Netherlands from the sea. The building of
these works was initiated after the North Sea flood of 1953.

The Algera complex consists of a lock, a bascule bridge, and two storm surge
barriers. In case of an extremely high sea-water level, the storm surge barriers (80 m
x 12 m) are closed to protect the inland. The complex is located close to Rotterdam,
between Krimpen aan den IJssel and Capelle aan den IJssel. Because of its location
close to Rotterdam, it is a part of an important shipping route. Whenever the storm
surge barriers are closed, the adjacent lock is used to raise or lower vessels (up to 24
m in width) between the different water heights. The lock gates are strong enough
to withstand the extremely high water level. Additionally, in case the storm surge
barriers are open, the lock in combination with the bascule bridge is used as a route

1www.github.com/ffhreijnen/AlgeraComplex
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N

Figure 3.1: The Algera complex consisting of a lock (encircled in black), a bascule bridge
(encircled in red), and two storm surge barriers (encircled in blue) [https://beeldbank.rws.nl,
Rijkswaterstaat / Joop van Houdt].

for vessels that are too high to pass under the storm surge barriers. When the bridge
is open, tall sailing ships can pass the Algera complex.

A human operator controls the Algera complex from a nearby control center,
where the complex can be viewed via camera images. The operator is responsible
for communicating with arriving vessels, giving commands via a control panel to the
system, and monitoring the system.

In the remainder of this section, the functions of the lock, of the bascule bridge,
and of the control panel are described in more detail. The storm surge barriers operate
independently of the lock and of the bridge, and are not considered further.

3.1.1 Description and functionality of the Algera lock
The Algera lock, schematically depicted in Figure 3.2, is used to facilitate raising and
lowering of vessels between different water heights. To this end, a chamber is used
that can be separated from the rest of the river by watertight mitre gates. The water
level inside the chamber can be varied by opening paddles in the gates.

Because of the tide, the water height outside the lock varies. As a result, the water
level at the sea side is sometimes higher and sometimes lower than the water level
at the river side. Because the gates are kept closed by the force generated from the
difference in water height, at least two types of gate sets are used at each side, flood
gates and ebb gates. When the sea-side water level is higher than the river-side water
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Figure 3.2: A schematic representation of the Algera lock when all gates are closed, all
paddles are open, and the sea side is the high-water side. View from above (top) and view
from the side (bottom).

level, the flood gates are used. Opposite, when the river-side water level is higher, the
ebb gates are used. At the sea side, additional gates are used for safety in case of a
storm flood.

The water level inside the chamber can be regulated. Each gate is equipped with
a paddle that covers a hole in the gate. By opening this paddle, water can flow into
or out of the lock chamber, filling or emptying the chamber, respectively.

To communicate with vessels outside the lock, two lock traffic lights (red-green-red)
are used per side (i.e., river side and sea side). A lock traffic light can display four
different aspects, shown in Figure 3.3 on the left-hand side. The double-red aspect
indicates that the lock is out-of-service. The red, red-green, and green aspects indicate
that entering the lock is not allowed, almost allowed, and allowed, respectively.

Figure 3.3: The aspects of the lock traffic light: double-red, red, red-green, and green (left),
and the aspects of the bridge traffic light: red and green (right).

Inside the lock, two bridge traffic lights (red-green) are used to communicate with
vessels. These traffic lights are positioned in front of the bridge at the sea side of the
lock. They have two functions: to communicate whether it is safe to pass under the
bridge and to communicate whether it is safe to exit the lock. At the river side, no
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bridge traffic light is present. A bridge traffic light can display a red or green aspect,
shown on the right-hand side of Figure 3.3, having a similar meaning as for the lock
traffic light.

To safely open the gates, the water height is measured at three different locations:
at the river side, inside the lock, and at the sea side. This information is combined to
determine if there is an (almost) equal water level over a set of gates. When water
heights are equal, it is safe to open a set of gates.

Desired controlled behavior

The desired behavior of the system is as follows. Consider a vessel intending to pass
from the sea side to the river side of the lock, while the flood gates at both sides are
closed. The current tide is flood, meaning the sea side is the high-water side (as shown
in Figure 3.2). First, the chamber is filled by opening the paddles in the flood gates
at the sea side of the lock. Subsequently, when there is equal water, the flood gates
are opened. During opening, the lock traffic lights are set to the red-green aspect.
When the gates reach the open position, the lock traffic lights are set to the green
aspect, allowing the vessel to enter. Once the vessel has entered the lock, the lock
traffic lights are set to the red aspect and the gates and paddles are closed. The water
level is then lowered by opening the paddles in the flood gate at the river side of the
lock. Finally, when there is equal water at the river sea, the flood gates are opened
and the vessel can leave. Whenever the vessel is too high to pass under the bridge,
the bridge has to be open before the vessel can enter the lock. For vessels traveling in
the opposite direction, the process is similar.

3.1.2 Description and functionality of the Algera bridge

The Algera bridge, schematically depicted in Figure 3.4, is used by land traffic, e.g.,
motorized traffic, cyclists, and pedestrians, to cross the Hollandse IJssel river. It
consists of four lanes: a slow-traffic lane (for cyclists and pedestrians), two lanes
for motorized traffic, and an additional rush-hour lane for motorized traffic. The
rush-hour lane reverses traffic directions during the evening rush-hours. Whenever
high vessels have to pass the bridge, the bridge deck is swung upwards to provide
clearance. To safely open the bridge, land traffic has to be warned and stopped first.

N Rush-hour lane

Motorized-traffic lane

Cyclists lane

Pedestrian lane

500 m 200 m 100 m

150 m 300 m

Figure 3.4: A schematic representation of the Algera bridge. Orange lights represent approach
signs and red lights represent stop signs. White triangles display the traffic direction.
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To warn motorized traffic in advance, approach signs are positioned before the
bridge, visualized by orange circles in Figure 3.4. At the west side, approach signs
are positioned at 100 m, 200 m, and 500 m before the bridge. At the east side,
two approach signs are located at 150 m and 300 m before the bridge. At both
sides, approach signs are shared between the standard lane and the rush-hour lane.
Additionally, at both sides, stop signs are located close to the bridge, visualized by
red circles in Figure 3.4. Each traffic lane has a set of two stop signs. The rush-hour
lane and slow-traffic lane both have a set of two stop signs at each side of the bridge.
Eight boom barriers are used to close the bridge for land traffic. The boom barriers
are opened and closed by electric motors. To warn the slow traffic, an extra buzzer
is installed near the boom barriers. Another, more powerful, motor is used to open
and close the bridge deck. An additional feature of the bridge is its connection to the
emergency service center. The center can request to keep the bridge closed if there is
an emergency.

Desired controlled behavior

The desired behavior of the system is as follows. Consider a sailing ship intending
to pass under the bridge. First, on the bridge, the approach signs are activated, and
after 15 seconds the stop signs are activated. The buzzer to warn slow traffic activates
20 seconds after the approach signs. When traffic is safely stopped, the operator gives
a command to close the boom barriers for the motorized traffic. This is done in two
steps, first the entering boom barriers (i.e., the boom barriers that block the motorized
traffic from entering the bridge) are closed. Subsequently, the leaving boom barriers
(i.e., the boom barriers that block the motorized traffic from leaving the bridge) are
closed. Once these boom barriers are closed, both slow-traffic boom barriers are closed
by the operator. At the same time, the boom barriers of the rush-hour lane are closed.
The order depends on the direction of traffic at that moment. When the land traffic
has safely been stopped, the bridge deck can be opened. The bridge is closed in the
reversed order.

3.1.3 Description and functionality of the control panel
The Algera complex is operated from a control center nearby, where human operators
monitor the complex using camera images. For communication with vessels and bridge
users, marine radios and loudspeakers are available, respectively. An operator controls
the lock and the bridge from a graphical user interface (GUI) implemented on a PC.
The PC is connected via an optical fiber connection to the controller at the Algera
complex. The important part of the GUI for the Algera complex is shown in Figure 3.5.
Clickable buttons (e.g., start leveling and open gate) are used to give commands to
the supervisor. In total, there are 63 commands available to the operator. Not all
of these commands are visualized in Figure 3.5, some windows will only show when
that specific component is clicked (e.g., clicking on a gate or barrier). The state of
the system is also visually displayed as feedback for the operators. For example, the
position of the gates, the position of the barriers, the aspect shown to the vessels, and
the water heights are visualized.
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Figure 3.5: Part of the graphical user interface of the Algera complex.

3.2 Modeling method
In this section, a method to obtain the necessary models for supervisor synthesis
is described. The focus is on obtaining models that can be used to synthesize a
supervisor. Based on this supervisor, controller code can be generated. The task
of the supervisor is to achieve the specified system’s behavior by turning on or off
actuators, based on the value of the sensors.

For modeling the plant, we apply ideas from component-based modeling. More
specifically, we use (small) models for the components and glue the models by interac-
tion models, to obtain a model of the plant. For the requirements, we identify textual
formats that can straightforwardly be translated into models. This method produces
models that show similarities to the models of a theme park vehicle (Forschelen et al.,
2012), a patient support table for an MRI scanner (Theunissen et al., 2013), a FESTO
production line (Reijnen et al., 2018a), and a driver assistance system (Korssen et al.,
2018). While these papers all present their models in detail, none of them discusses a
method to obtain those models. In this section, firstly component-based modeling is
discussed. Secondly, a method for obtaining a plant model is given. Finally, different
types of textual formats are discussed that can straightforwardly be modeled.

3.2.1 Component-based modeling
Component-based modeling is a modeling paradigm that uses the fact that large
systems can be obtained by assembling smaller components, i.e., building blocks.
Each component can be modeled separately. These components can be reused in
different parts of the system. This way of modeling has proven to be successful for
software-engineering applications (Crnkovic, 2001). The advantages of component-
based modeling are observed to be useful for modeling for supervisor synthesis as well,
as discussed in Kovács and Piétrac (2009), Kovács et al. (2012), and Huang et al.
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(2015). However, they do not discuss how these component models can be obtained
for other applications.

In Gössler and Sifakis (2005), composition of component-based models is discussed.
There, behavioral models and interaction models are used. Behavioral models describe
the dynamics of components. Interaction models describe the constraints on the
behavior of components caused by other components. In this way, large systems can
be composed. In the rest of this thesis, we refer to physical relation models instead of
interaction models.

In supervisory control papers, e.g., Balemi et al. (1993) and Roussel and Giua
(2005), it is shown that it is advantageous to model the plant based on the inputs
and outputs (IOs) of the control unit of the system. As the interface is already
present in the model, the implementation of the supervisor is straightforward. The
inputs correspond to sensors and (digital) commands, and the outputs correspond
to actuators. These models also fit the component-based modeling framework: each
sensor, command, and actuator can be modeled as a separate (reusable) component,
and the physical relations between the components can be modeled as interaction
models. Subsequently, these models can be composed to obtain the plant model.

This way of modeling produces loosely-coupled component models for all sensors,
commands, and actuators in the plant. This is advantageous, as there is a lot of
similarity between these component models, allowing for the re-use of models via
templates. In Grigorov et al. (2011), it is shown that the use of templates greatly
reduces modeling time and effort for the plant. This reduced effort is even more
noticeable when component templates are reused in different projects.

3.2.2 The plant model
When modeling the plant, the first step is to make component models for all sensors,
commands, and actuators in the plant. The IO signals can be divided in four groups:
Boolean input and output signals, and integer input and output signals (originating
from analog signals).

Boolean input and output signals

For Boolean signals, a component model can be obtained by modeling the value of
the signal as a location and the change of the value as an event. Uncontrollable and
controllable events are used to represent changes in the values of inputs (i.e., sensors)
and outputs (i.e., actuators), respectively. Secondly, the initial location and marked
locations should be chosen. Typically, the marked locations are all ‘safe’ locations. In
Figure 3.6, examples of models for Boolean signals are shown.

F T F TA:S:

u_false

u_true c_true

c_false

Figure 3.6: Component models for a Boolean input (left) and a Boolean output (right).
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Sometimes, it is desired to have one event that changes two signals at once. For
example, for a traffic light, an event can be used to represent a switch between aspects,
instead of separate events for switching individual lamps. In that case, multiple signals
can be modeled as one component. An example of this is provided in Section 3.3.1.

Integer input and output signals

For integer sensor signals, the values of the signals are mapped to a set of discrete
states. Which states to choose depends on the requirements that are modeled later.
Events relate to changes between the states. For example, consider a water tank with
an integer signal from a water-height sensor. The signal value ranges between 0 and
100. Assume that two requirements are defined. The first requirement states that
a pump may only start when the value drops below a lower threshold (< 20). The
second states that a pump may only stop when the value exceeds an upper threshold
(> 80). Consequently, three states can be identified, below the lower threshold, above
the upper threshold, and nominal. The mapping between the signal value and the
state set is as shown on the left-hand side of Figure 3.7. The component model is as
shown on the right-hand side of Figure 3.7.

Value State Abbreviation
0 - 19 Below B
20 - 80 Nominal N
81 - 100 Above A

NB A

u_NB

u_BN u_NA

u_AN

Figure 3.7: Mapping between signal value and states (left) and component model for the
sensor (right).

For integer actuator signals, the states of the component model are mapped to
signal values. For example, consider an integer signal for a filling pump. The signal
value ranges between 0 and 100. For the requirements, it is necessary to distinguish
between no flow (0), low flow rate (30), and high flow rate (100). The mapping between
the states and the signal value is then as shown on the left-hand side of Figure 3.8.
The component model is as shown on the right-hand side of Figure 3.8.

State Value Abbreviation
No 0 N
Low 30 L
High 100 H

NL Hc_low

c_off

c_high

c_off

c_low

c_high

Figure 3.8: Mapping between states and signal value (left) and component model for the
actuator (right).
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Physical relation models

Aside from modeling the behavior of the individual components, the physical relations
(or interaction models in Gössler and Sifakis (2005)) between the different components
need to be modeled as well. In Zaytoon and Carré-Ménéatrier (2001), it has been
shown that not including these physical relations may lead to deadlocks in real systems
that have been proven to be deadlock-free in the model. That is because the modeled
behavior contains actions that cannot occur in the real system. These relations are
present if a sensor measures the behavior of a certain actuator, or between two sensors
that measure the same actuator.

As an example, consider the filling pump and the water-height sensor from Sec-
tion 3.2.2. For this example, it is only possible to measure an increase in water height
whenever the filling pump is on. This physical relation has to be modeled explicitly in
order to correctly capture the behavior of the plant. In this method, we choose to
model the physical relations as guards. In Figure 3.9, this physical relation model is
shown. Here, S and A refer to the previous sensor and actuator model, respectively.

S.u_NA
when A.L ∨ A.H

S.u_BN
when A.L ∨ A.H

Figure 3.9: The physical relation model.

In many cases, deriving the physical relations between components is straight-
forward, as they are often simple. Alternatively, the physical relations between
components can be derived via the method of Chandra and Kumar (2002). There,
they derive the relations from a hybrid model, similar to the hybrid model we use for
simulation, see Section 3.4.

3.2.3 The requirements model
To model the requirements, the notions used in the textual requirements should relate
to events and locations in the plant model. Because of the component-based modeling,
this means that the requirements should relate to sensors, commands, or actuators.
While this might seem restrictive, this is also how control engineers program PLCs in
practice. Furthermore, observers can be used to do state reconstruction, such that
information that is not directly available from the sensors can be used. For example,
in Sampath et al. (1995), observers are used to diagnose whether a fault has occurred.

To ease the requirement modeling process, we identify textual requirements formats
that can straightforwardly be modeled. The requirements model can then be obtained
by reformulating requirements in design documents to these formats. We consider
four forms: event-condition requirements, event-order requirements, timer-based
requirements, and state-invariant requirements. Experience with case studies, for
example, in Markovski et al. (2010), Forschelen et al. (2012), and Reijnen et al. (2018a),
has shown that many requirements can be reformulated in this way. In the following
subsections, for each requirement type it is discussed which textual requirement it
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represents and how it can be modeled. The textual requirement formats, directly
leading to formal models, are given in the Backus-Naur Form (BNF) notation.

Event-condition requirements

Event-condition requirements are expressions that specify when an event is allowed to
occur, based on a condition in the form of propositional logic. The textual form of
these requirements in BNF is:

<component> may only | may not <event> when <condition>

where <component> refers to a component model, <event> to an event in this
component model, and <condition> to a propositional logic formula over the variables
and locations in the plant. This textual requirement can be modeled with event-
condition requirements as defined in Section 2.2. A may only requirement is modeled
as in (3.1), whereas a may not requirement is modeled as in (3.2).

component.event needs condition (3.1)

component.event needs ¬condition (3.2)

An example of a textual requirement in this form is: The gate may only close
when the traffic light shows a red aspect. Here, the gate is the component, close is the
event, and the traffic light shows a red aspect is the condition. This condition can
be expressed by variables from the plant models: the current location of the red and
green sensor should be on and off, respectively.

Event-order requirements

Event-order requirements specify in which order events are allowed to occur. The
textual forms of these requirements in BNF is:

First, <component> may <event> [when <condition>]{, then, <component>
may <event> [when <condition>]}

Here, [ ] and { } denote an optional argument and a (zero or more) repeating argument,
respectively. This textual requirement can be modeled with an EFA requirement,
where each step is a transition with an (optional) condition. An example of a textual
requirement in this form is: First, the traffic light may show a red-green aspect when
the gate is open, then the traffic light may show a green sign aspect, then the traffic
light may show a red sign aspect. Modeling of this event-order requirement is as shown
in Figure 3.10.

Timer-based requirements

Timer-based requirements are expressions specifying that an event may only occur
after a certain condition holds for a minimum time interval. The textual form of this
requirement in BNF is:
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Traffic_light.redgreen
when Gate.open traffic_light.green

traffic_light.red

Figure 3.10: Example of an event-order requirement.

<component> may only <event> x time units after <condition>

Above, the definitions of <component>, <event>, and <condition> are similar to
the event-condition requirements.

To model a timer-based requirement, a timer component is introduced. A timer
measures how long a condition condition holds. The timer can start when the
condition is satisfied and can stop when the condition is no longer satisfied. If the
timer is running, a timeout event represents that the condition holds long enough. A
model of this timer is shown in Figure 3.11. The requirement is modeled as shown
in (3.3). Note that in this model, the time is not explicitly modeled. This is included
later, see Section 3.4.1.

Off Running FinishedT:
u_timeout

c_on
when condition

c_reset
when ¬condition

c_reset
when ¬condition

Figure 3.11: Model of a timer for condition condition.

component.event needs condition ∧ T.Finished (3.3)

An example of a textual requirement in this form is: The boom barrier may only
close 10 seconds after the warning signs are enabled. Here, The boom barrier is the
component, close is the event, and the warning signs are enabled is the condition.

State-invariant requirements

State-invariant requirements are expressions that specify conditions that must always
hold. The textual form of this requirement in BNF is:

<condition>

An example of a textual requirement in this form is Gate 1 and gate 2 may not be
open simultaneously. This condition can be expressed in terms of elements of a plant
model like: ‘not (gate1.sensor.open and gate2.sensor.open)’.
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3.3 Model development
To synthesize a supervisor for the Algera complex, a model of the plant and a model
of the control requirements are required. For the plant model, a set of component
templates is used, as recommended in Section 3.2. In Section 3.3.1, the templates for
the plant models are introduced. The plant and requirements models for the Algera
lock and the Algera bridge are described in Sections 3.3.2 through 3.3.6. In Section
3.3.7, the synthesis result is discussed.

3.3.1 Plant component templates
The modeling of the plant is based on the inputs and the outputs of the Algera (PLC)
control unit. The full list of control inputs and outputs, on which the templates
are based, can be found in the repository. Based on this list, a set of templates has
been defined. These templates are re-usable for different components in the system.
For the Algera complex, in total 16 templates are used to represent the behavior
of 176 actuators and sensors and 63 commands. The templates are provided in the
subsequent subsections.

Single input - single output template

An often encountered combination is a single actuator (output) with a single sensor
(input) for feedback, for example, an approach sign. Both the actuator and the sensor
are modeled by an automaton consisting of two locations, On and Off, shown in the
upper left and upper right of Figure 3.12, respectively. As is usual, the actuator events
are controllable (denoted by c_) and the sensor events are uncontrollable (denoted by
u_). The physical relation between those components is that the sensor can only switch
on (or off) after the actuator has been activated (or deactivated). These physical
relations are shown as the bottom EFA in Figure 3.12.

Off On Off OnA: S:

u_off

u_onc_on

c_off

S.u_off
when
A.Off

S.u_on
when
A.On

Figure 3.12: Template of single output actuator A (left), single input sensor S (right), and
the actuator-sensor physical relations (bottom).

Double input - double output template

Another often encountered combination is an actuator that can move in two directions
(two outputs) together with two end-position sensors (two inputs), for example, an
electric cylinder actuating a lock gate. Since it is never desired to actuate in both
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directions, this behavior is blocked by a low-level controller. Instead, only the Closing,
Idle, and Opening behavior is included in the actuator template, shown in the upper
left of Figure 3.13. There are two stop events: c_emrgStop and c_endStop, to
distinguish between an emergency stop and a regular end-position stop. The two end-
position sensors (S_Closed and S_Open) are modeled as the sensor from Figure 3.12.
There is a physical restriction that both sensors cannot be on simultaneously; this
is modeled as the upper-right automaton in Figure 3.13. The relation between the
actuator and the sensors is that the sensors can only switch on or switch off when the
actuator is moving in a certain direction, represented by the bottom automaton in
Figure 3.13.

Idle OpeningClosing
A:

S_Open.u_on
when

S_Closed.Off

S_Closed.u_on
when

S_Open.Off

c_open

c_emrgStop,
c_endStop

c_close

c_emrgStop,
c_endStop

S_Closed.u_off, S_Open.u_on
when

A.Opening

S_Open.u_off, S_Closed.u_on
when

A.Closing

Figure 3.13: Template of double output actuator A (left), the sensor-sensor physical relations
(right), and the actuator-sensor physical relations (bottom).

Traffic light template

The traffic light templates are used to represent the behavior of the lock traffic light
and the behavior of the bridge traffic light. The lock traffic light consists of three
outputs (an output for each individual lamp), whereas the bridge traffic light consists
of two outputs. Each lamp is equipped with a sensor for feedback. Only a few output
combinations are allowed, such that only legal aspects can be displayed. For the lock
traffic light these are: RedRed, Red, RedGreen, and Green. For the bridge traffic light
these are: Red and Green. Furthermore, some transitions are not allowed, such as
switching from the Red aspect directly to the Green aspect for the lock traffic light.

A low-level controller makes sure that only legal aspects can be displayed. For
the events, it is chosen to model an aspect switch as an event (instead of switching a
lamp on or off). This is advantageous when specifying requirements as they also refer
to aspect switches. Still, aspect switches can directly be related to control outputs.
An additional event is used to represent the switch to the red aspect, in case of an
emergency. The templates for the lock traffic light actuator and the bridge traffic light
are shown in Figure 3.14 and Figure 3.15, respectively. The template for the sensors is
similar to the sensor template in Figure 3.12 (one for each lamp); the differences are in
the initial and marked location for the red lamp sensor (which is the On location). The
interaction between the sensor and the actuator is that the sensor can only switch on
or off when the lamp is activated or deactivated in the current aspect, respectively. For
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the lock traffic light sensors (S_Red, S_Green, and S_Red2) and the bridge traffic light
sensors (S_Red and S_Green), the physical relation models are shown in Figure 3.14
and Figure 3.15, respectively.

RedRedRed RedGreen GreenA:

c_rr

c_r, c_emrg c_rg
c_g

c_r, c_emrg

c_r, c_emrg

S_Red.u_off
when

A.Green

S_Red.u_on
when

A.RedRed ∨ A.Red ∨
A.RedGreen

S_Green.u_off
when

A.RedRed ∨ A.Red

S_Green.u_on
when

A.RedGreen ∨
A.Green

S_Red2.u_off
when

¬A.RedRed

S_Red2.u_on
when

A.RedRed

Figure 3.14: Template of the lock traffic light actuator A (top), the top red lamp sensor-
actuator physical relations (middle left), the green lamp sensor-actuator physical relations
(middle right), and the bottom red lamp sensor-actuator physical relations (bottom).

Red GreenA: c_g

c_r, c_emrg

S_Red.u_off
when

A.Green

S_Red.u_on
when
A.Red

S_Green.u_off
when
A.Red

S_Green.u_on
when

A.Green

Figure 3.15: Template of the bridge traffic light actuator A (top), the red lamp sensor-
actuator physical relations (bottom left), and the green lamp sensor-actuator physical
relations (bottom right).

User-interface template

Commands from an operator are given via buttons, and are implemented in the
graphical user interface. A variety of commands is available, for example, opening a
boom barrier, changing traffic light aspects, or activating the emergency stop. There
are different types of commands per component. Moving components (e.g., gates,
paddles, and boom barriers) can be opened, closed, and stopped, whereas others are
more specific, e.g., the lock and bridge traffic lights. The commands available for the
moving components are modeled as the automaton on the upper left-hand side of
Figure 3.16. Here, the behavior is such that different commands can never be active
simultaneously. Instead, a new command overrules the old command, which is how the
GUI is implemented. The emergency stop is modeled as the automaton on the upper
right-hand side of Figure 3.16. The commands for the lock and bridge traffic light
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are modeled on the bottom left-hand side and bottom right-hand side of Figure 3.16,
respectively.

Close Stop Open Deactivated Activated

u_stop
u_open

u_open

u_stop
u_close

u_close

u_activate

u_deactivate

RedRedRed RedGreen Green Red Green

u_rr

u_r u_rg
u_g

u_r

u_r
u_r

u_g

Figure 3.16: Template for the movable components commands (top left), for the emergency
stop (top right), for the lock traffic light commands (bottom left), and for the bridge traffic
light commands (bottom right).

3.3.2 Plant model of the Algera lock
The plant model for the Algera lock is based on the IO of the control unit that controls
the lock, the commands available from the GUI, and the functional description of
the components. The components of the lock can be divided into five distinct types:
gates, paddles, lock traffic lights, bridge traffic lights, and equal water sensors. The
behavior of the gates and paddles is modeled as the double input - double output
template. In total, there are ten gates and ten paddles, all controlled individually.
At both sides, there are two lock traffic lights. There are two bridge traffic lights
inside the lock. The three analog water-height sensors are modeled as two discrete
equal-water sensors. If the analog value of two water-height sensors differs by at most
a specified margin, the equal-water sensor is on, otherwise it is off. The commands
available to the operator relate to opening and closing a set of gates or paddles, or
switching aspects. In Table 3.1, for each component, the model template, the number
of instantiations, and the number of states are given.

3.3.3 Requirements model of the Algera lock
For the lock to function in a safe and desired manner, a set of textual requirements has
been specified by Rijkswaterstaat. These requirements, as given in the design docu-
ments (available in the repository), are listed below. In the requirements, downstream
and upstream refer to the sea side and the river side of the lock, respectively.

1. The lock traffic lights may only display a green aspect when:
(a) the gates at that side are open, and
(b) the bridge traffic lights at that side display a red aspect (downstream only).
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Table 3.1: Component models for the Algera lock.

Component type Component template Number States
Gate Double input - double output 10 9
Paddle Double input - double output 10 9
Lock traffic light Lock traffic light 4 32
Bridge traffic light Bridge traffic light 2 8
Equal water sensor Single input sensor 2 2
Gate command Movable component command 5 3
Paddle command Movable component command 5 3
Lock traffic light command Lock traffic light command 2 4
Bridge traffic light command Bridge traffic light command 1 2
Emergency stop Emergency stop 1 2

2. The bridge traffic lights may only display a green aspect when:
(a) the gates at the downstream side are open, and
(b) the lock traffic lights at that side display a red or a double-red aspect.

3. The gates may only close when:
(a) the lock traffic lights at that side display a red or double-red aspect, and
(b) the bridge traffic lights at that side display a red aspect (downstream only).

4. The gates may only open when:
(a) at least one set of gates and its paddles at the other side is closed, and
(b) there is equal water at that side.

5. The paddles may only open when at least one set of gates and its paddles at the
other side is closed.

6. Whenever a gate is not closed, its paddles are open.
7. When the emergency stop is active:

(a) the red aspect has to be displayed, and
(b) no other aspect can be displayed.

8. When the emergency stop is active:
(a) the moving components have to stop via the emergency stop, and
(b) the moving components cannot start opening or closing.

9. Actuators have to stop when they reach their end position.
10. Actuators may only start when the operator gives the corresponding command.
11. Aspects may only be displayed when the operator gives the corresponding

command.

Requirements 1-5, and 7-11 are modeled as event-condition requirements, which are
given in Table 3.2. The events listed in the left column are only enabled when the
condition in the right column is satisfied. Some requirements are listed twice, as
they are imposed on both sides of the lock (e.g., Requirement 1a.). For brevity,
abbreviations are used, these are listed in the table’s caption. Note that Requirements
7 and 11 are imposed on every traffic light and Requirements 8, 9, and 10 are imposed
on every gate and paddle. Requirement 6 is modeled as a state-invariant requirement,
where Gate.Closed ∨ Paddle.Open should always be satisfied, for all ten sets of
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gates and paddles. As can be seen, almost all requirements are of one of the forms
defined in Section 3.2.3. Exceptions are Requirements 7a, 8a, and 9 that state that
something should happen. For this, each component model contains an emergency
event, which is only enabled when the emergency stop is activated.

Table 3.2: Event-condition requirements for the Algera lock. Abbreviations: A: Actuator, S:
Sensor, LTL: Lock traffic light, BTL: Bridge traffic light, .U/.D: every gate, paddle, or traffic
light at the upstream or downstream side, respectively, E/F/SF: every gate/paddle from the
ebb, flood, or storm flood gate type, respectively. State abbreviations: Open: S_Open.On ∧
A.Rest, Closed: S_Closed.On ∧ A.Rest, Red: S_Red.On ∧ S_Green.Off ∧ S_Red2.Off ∧
A.Red, RedRed: S_Red.On ∧ S_Green.Off ∧ S_Red2.On ∧ A.RedRed.

Req. Event(s) Condition
1a LTL.U.A.c_g Gates.U.Open
1a LTL.D.A.c_g Gates.D.Open
1b LTL.D.A.c_g BTL.D.Red
2a BTL.D.A.c_g Gates.D.Open
2b BTL.D.A.c_g LTL.D.Red ∨ LTL.D.RedRed
3a Gates.D.A.c_close LTL.D.Red ∨ LTL.D.RedRed
3b Gates.D.A.c_close BTL.D.Red
3a Gates.U.A.c_close LTL.U.Red ∨ LTL.U.RedRed
4a Gates.D.A.c_open (Gates.UE.Closed ∧ Paddles.UE.Closed) ∨

(Gates.UF.Closed ∧ Paddles.UF.Closed)
4b Gates.D.A.c_open EqualWater.D.On
4a Gates.U.A.c_open (Gates.DE.Closed ∧ Paddles.DE.Closed) ∨

(Gates.DF.Closed ∧ Paddles.DF.Closed) ∨
(Gates.DSF.Closed ∧ Paddles.DSF.Closed)

4b Gates.U.A.c_open EqualWater.U.On
5 Paddles.D.A.c_open (Gates.UE.Closed ∧ Paddles.UE.Closed) ∨

(Gates.UF.Closed ∧ Paddles.UF.Closed)
5 Paddles.U.A.c_open (Gates.DE.Closed ∧ Paddles.DE.Closed) ∨

(Gates.DF.Closed ∧ Paddles.DF.Closed) ∨
(Gates.DSF.Closed ∧ Paddles.DSF.Closed)

7a A.c_emrg EmrgStop.Activated
7b {A.c_rr, A.c_rg, A.c_g} EmrgStop.Deactivated
8a A.c_emrgStop EmrgStop.Activated ∨ Command.Stop
8b {A.c_close, A.c_open} EmrgStop.Deactivated
9 A.c_endStop (A.Opening ∧ S_Open.On) ∨

(A.Closing ∧ S_Closed.On)
10 A.c_open Command.Open
10 A.c_close Command.Close
11 A.c_rr Command.RedRed
11 A.c_r Command.Red
11 A.c_rg Command.RedGreen
11 A.c_g Command.Green
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There are two advantages of using event-condition requirements instead of automata-
based requirement models. The first advantage is size. All the event-condition
requirements can also be modeled using FAs. This is done by taking the synchronous
product of all the FAs related to a condition, and adding a selfloop of the event in the
locations where the condition evaluates to T. For Requirement 5 this would result in
an FA with 2.8× 1011 locations. The second advantage is the similarity to concepts
used by PLC control engineers, such as ladder diagrams and function block diagrams.

3.3.4 Plant model of the Algera bridge

The components of the Algera bridge can be divided into approach signs, stop signs,
boom barriers, bridge deck, sound signals, and light signals. There are two control
outputs to switch on the five approach signs: one control output for the two outer
most, and one control output for the remaining three. Each approach sign is equipped
with a sensor for feedback. The stop signs are controlled by two outputs: one control
output for the rush-hour lane stop signs, and a second one for the other stop signs.
Each stop sign is again equipped with a sensor for feedback. All the boom barriers are
actuated with an electric motor that is controlled by two outputs, for moving upwards
and for moving downwards. Each boom barrier has two end-position sensors. The
bridge deck is actuated in a similar way, and also contains two end-position sensors.
Furthermore, there is a buzzer close to the cyclists lane that can be activated and
there are light signals on the boom barriers. Finally, sometimes emergency services
request the bridge to be kept closed, which is an additional control input. For each
component, Table 3.3 lists the model template, the number of instantiations, and the
number of states.

Table 3.3: Plant models for the Algera bridge.

Component type Component template Number States
Approach sign actuator Single output 2 2
Approach sign sensor Single input 5 2
Stop sign actuator Single output 2 2
Stop sign sensor Single input 12 2
Boom barrier Double input - double output 8 9
Bridge deck Double input - double output 1 9
Sound signal Single output 1 2
Light signal Single output 1 2
Close request Single input 1 2
Land traffic stop command Movable component command 1 3
Barrier command Movable component command 5 3
Bridge deck command Movable component command 1 3
Emergency stop Emergency stop 1 2
Timer Timer 8 3
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3.3.5 Requirements model of the Algera bridge
Similar to the Algera lock, a set of textual requirements for the bridge has been
specified by Rijkswaterstaat. These requirements, as given in the design documents
(available in the repository), are listed below. Furthermore, Requirements 8-10 from
Section 3.3.3 are also imposed on the bridge, but are not repeated here, for brevity.

1. The stop signs may only turn on 15 s after the approach signs are on.
2. The sound signal may only turn on 20 s after the approach signs are on.
3. The entering barriers may only close 15 s after the stop signs are on.
4. The leaving barriers may only close 1 s after the entering barriers are closed.
5. The rush-hour and slow-traffic barriers may only close when the leaving barriers

are closed.
6. The slow-traffic barriers may only close 6 s after the sound signal is on.
7. The bridge may only open when all barriers are closed.
8. The barriers may only open when the bridge is closed.
9. The entering barriers may only open 1 s after the leaving barriers are open.
10. The stop signs may only turn off when the barriers are open.
11. The near approach signs may only turn off 60 s after the stop signs are off.
12. The far approach signs may only turn off 60 s after the near approach signs are

off.
13. The barriers may not close and the bridge may not open when the close request

has been given.

Requirements 1-13 are modeled as event-condition requirements, shown in Table 3.4.
The events listed in the left column are only enabled when the condition in the right
column is satisfied. The index i is used to distinguish between the different boom
barriers. Entering boom barriers, leaving boom barriers, slow-traffic boom barriers,
and rush-hour boom barriers are denoted by 3 and 6, 2 and 7, 4 and 8, and 1 and
5, respectively. As can be seen, all requirements can be expressed as defined in
Section 3.2.3.

3.3.6 Requirements model of the Algera lock-bridge combi-
nation

For the Algera lock and Algera bridge combination to function properly, there are four
requirements that express interaction between the two subsystems. These requirements
are as follows:

1. The bridge may only move when:
(a) the gates are not moving, and
(b) the bridge traffic lights display a red aspect, and
(c) the lock traffic lights display a red or double-red aspect.

2. The gates may only open or close when the bridge is not moving.
3. The bridge traffic lights may only display a green aspect when the bridge is fully

open or fully closed.
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Table 3.4: Event-condition requirements for the Algera bridge. Abbreviations: A: Actuator,
S: Sensor, LTAS: land traffic approach signs, LTSS: land traffic stop signs. State abbreviations:
LTAS.On: every approach sign sensor and actuator in state On, LTSS.Off/On: every stop
sign sensor and actuator in state Off/On, Barriers.Closed/ Open: every barrier sensor in
state S_Closed.On/S_Open.On and every actuator in state Idle.

Req. Event(s) Condition
1 {LTSS.MainLane.A.c_on, LTAS.On ∧

LTSS.SwitchLane.A.c_on, LTAS.On15Timer.Finished
Barriers.Light.A.c_on}

2 Barriers.Sound.c_on LTAS.On ∧
LTAS.On20Timer.Finished

3 Barriers.Bi.A.c_close LTSS.On ∧
i ∈ {3, 6} LTSS.On15Timer.Finished

4 Barriers.Bi.A.c_close Barriers.B3.Closed ∧
i ∈ {2, 7} Barriers.B6.Closed ∧

Barriers.B3B6Closed1Timer.Finished
5 Barriers.Bi.A.c_close Barriers.B2.Closed ∧

i ∈ {1, 4, 5, 8} Barriers.B7.Closed

6 Barriers.Bi.A.c_close Barriers.Sound.On ∧
i ∈ {4, 8} Barriers.SoundOn6Timer.Finished

7 Deck.A.c_open Barriers.Closed
8 Barriers.Bi.A.c_open Deck.Closed

i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
9 Barriers.Bi.A.c_open Barriers.B2.open ∧ Barriers.B7.open ∧

i ∈ {3, 6} Barriers.B2B7Open1Timer.Finished
10 {LTSS.MainLane.A.c_off Barriers.Open

LTSS.SwitchLane.A.c_off,
Barriers.Light.c_off}

11 LTAS.Near.A.c_off LTSS.Off ∧ LTSS.Off60Timer.Finished
12 LTAS.Far.A.c_off LTAS.Near.Off ∧

LTAS.NearOff60Timer.Finished
13 Barriers.Bi.A.c_close ¬CloseRequest.On

i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
13 Deck.A.c_open ¬CloseRequest.On

4. The lock traffic lights may only display a green aspect when the bridge is fully
open or fully closed.

In Table 3.5, these requirements are defined formally.

3.3.7 Supervisor synthesis
A supervisor has been synthesized from the plant and requirements models. For
synthesis, the CIF toolset (van Beek et al., 2014) has been used. The synthesis
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Table 3.5: Event-condition requirements for the lock-bridge combination. Requirement 2 for
the gates is imposed on every gate (ten in total).

Req. Event(s) Condition
1a {Deck.A.c_open, Deck.A.c_close} Gates.D.Rest ∧ Gates.U.Rest
1b {Deck.A.c_open, Deck.A.c_close} BTL.D.Red
1c {Deck.A.c_open, Deck.A.c_close} LTL.U.Red ∨ LTL.RedRed
2 {Gate.A.c_open, Gate.A.c_close} Deck.A.Rest
3 BTL.D.A.c_g Deck.Closed ∨ Deck.Open
4 LTL.U.A.c_g Deck.Closed ∨ Deck.Open

algorithm implemented in CIF is based on the algorithm proposed in Ouedraogo et al.
(2011), see Section 2.5. The implementation of the synthesis algorithm in CIF uses
binary decision diagrams to represent the models symbolically during synthesis. BDDs
can be used to compactly and effectively represent a large state space (Vahidi et al.,
2006). Even if the number of states is large, the number of nodes in its corresponding
BDD can still be manageable. The results of the synthesis procedure for the lock, the
bridge, and the lock-bridge combination are shown in Table 3.6. ‘Plant state space’
denotes the number of states in the synchronous product of all component models.
‘Supervisor state space’ denotes the number of states in the synthesized supervisor.
These numbers are extracted from the size of the BDD. For this case study, the
supervisor state space is smaller than the plant state space, as the supervisor restricts
the plant from reaching undesired or unsafe states.

Table 3.6: State-space sizes, numbers of requirements, and computation times.

System Plant state space Number of requirements Supervisor state space Computation time [s]
Lock 1.2× 1034 306 1.1× 1022 2
Bridge 1.9× 1023 155 4.2× 1012 114
Lock-bridge 2.3× 1057 491 4.5× 1034 2,080

When analyzing the synthesized supervisor (available in the repository), i.e., the
guards returned by the synthesis algorithm, it is observed that extra guards are
imposed on opening the gates and closing the paddles. These guards are imposed to
satisfy the state-invariant requirement (Requirement 6 of Section 3.3.3). There are no
extra guards on the other events to satisfy nonblockingness or controllability. In this
case, the computation time for the three supervisors is reasonable, considering the
state-space sizes.

3.4 Simulation-based validation of the synthesized
supervisor

Although the system is guaranteed to behave according to the requirements, the
resulting controlled behavior might not be as expected. This can be caused by the fact
that beforehand it is not known whether the textual requirements are complete and
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correct. For example, requirements could be too strict and as a result, the supervisor
could prevent reaching parts of the desired behavior. Hence, the behavior of the
controlled system has to be validated. Simulation with visualization is used to validate
whether the behavior of the controlled system is consistent with the intended behavior.
The separate modeling of the Algera lock and the Algera bridge is advantageous for
validation. For this, both controlled systems have first been simulated independently,
before being combined.

While it is possible to simulate the discrete-event model, it is more intuitive to
validate the behavior using a more advanced simulation model in which hybrid behavior
is included. For this, the discrete-event plant model is enriched with continuous
behavior, using hybrid automata as defined in Henzinger (2000). The model of the
hybrid plant is discussed in the next subsection and the validation in the subsection
thereafter.

3.4.1 Hybrid plant model
A hybrid plant model is obtained by extending the discrete-event model used for
synthesis with continuous behavior. Continuous behavior is modeled by introducing
continuous variables that change their values due to the passing of time. How the
value of a continuous variable evolves is defined by a differential equation that can
depend, for example, on the current location of a component model (i.e., a location
variable). Additionally, continuous variables may change their values during a state
transition, which is modeled by an update.

For the components that move in two directions, such as boom barriers, which are
represented by the double input - double output template of Section 3.3.1, the hybrid
model is shown in Figure 3.17. Only the model of the physical relation between sensor
and actuator is different from the discrete model. The left-hand side depicts this
relation. The continuous variable α represents the angle of movement. Here, the sensor
events occur depending on the value of α compared to a constant value, representing
the fully closed or fully open movement angle, αclosed and αopen, respectively. The
right-hand side lists the differential equations of continuous variable α. It states that
α increases if the actuator is in the state Opening and the value of α is smaller than
αopen. When the actuator is in the Closing location and larger than αclosed, the value
of α decreases. In all other situations, the value of α remains constant.

dα

dt
=


+1 if A.Opening ∧ α < αopen

−1 if A.Closing ∧ α > αclosed

0 otherwise

S_Open.u_on
when

α ≥ αopen
S_Closed.u_off

when
α > αclosed

S_closed.u_on
when

α ≤ αclosed
S_open.u_off

when
α < αopen

Figure 3.17: Hybrid model of the two input - two output physical relation. A. denotes a
reference to actuator A.
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The discrete-event model of the timer, see Section 3.2.3, is extended with continuous
behavior as well. The hybrid model is shown in Figure 3.18. On the left-hand side,
the automaton model is shown. A continuous variable y is introduced to represent
the remaining time of the timer. On the right-hand side, the differential equation of
continuous variable y is shown. The value of y decreases when the timer is in the
Running location. The event c_start updates the value of y to the desired timer
value T . When y ≤ 0, a transition to the Finished state occurs.

Off Running Finished dy

dt
=

−1 if Running
0 otherwise

u_timeout
when y ≤ 0

c_on
do y := T

c_reset

c_reset

Figure 3.18: Hybrid model of a timer with duration T .

3.4.2 Visualization
The hybrid plant model is connected to a visualization of the system, shown in
Figures. 3.2, 3.4, and 3.5. The properties of the objects in this image, e.g., color,
visibility, rotation, and dimensions, are connected to the locations of automata and
the values of continuous variables in the model. Here, we animate the behavior of
the gates, the traffic lights, the boom barriers, and the bridge deck. The use of a
simulation-based validation allows to visualize the behavior of the system, and in turn,
makes validation more straightforward (Theunissen et al., 2013; Korssen et al., 2018).

3.4.3 Validation steps
The behavior of the (hybrid) plant model with respect to the real system has been
validated as follows. Firstly, we derived all functionalities of the sensors and actuators
from the design documentations. In these documents, the function of each actuator and
sensor is described. Secondly, we consulted both the control engineers who maintain
the current control system of the complex and the mechanical engineers that built the
civil part.

The validation of the controlled system is accomplished by performing Factory
Acceptance Tests (FAT) on the simulation model. The FAT protocols were obtained
from Rijkswaterstaat. The protocols describe operator scenarios (e.g., which commands
to give) and the required system’s response. Typically, responses are starting a process
when a command is given, or not executing a command when it is unsafe to do so.
By subjecting the simulation to these tests, it can be checked whether the supervisor
adheres to the requirements that Rijkswaterstaat specified for the control system.
Furthermore, for Rijkswaterstaat, supervisor synthesis provides an analysis of the
completeness of their requirements. In other words, it answers the question whether
the set of specified requirements leads to desired controlled behavior described in the
protocols. This can be checked as the supervisor is synthesized from these requirements.
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The FAT focuses on three categories: 1) the behavior under normal conditions, 2)
the behavior when the emergency stop is pushed, and 3) the behavior under component
malfunctions. In this project, we focused on the first two categories. All tests showed
the behavior as described in the FAT protocols, except one test. This was due to a
missing requirement in the original specification. This requirement is related to the
safe functioning of the gates in combination with the bridge traffic lights. We proposed
a new requirement to obtain the correct behavior (Requirement 3b, of Section 3.3.3).
In the meantime, Rijkswaterstaat has added this requirement to their set of safety
requirements.

3.4.4 Discussion
While simulating the test scenarios increases the confidence in the correct behavior of
the controlled system, it is not exhaustive, because only parts of the state space are
explored. Although synthesis guarantees the absence of unsafe behavior in the other
parts, it cannot guarantee the presence of desired behavior. For example, in general,
it cannot be guaranteed that something should always happen. The validation could
further be improved by verifying the desired behavior with properties from modal logic.
For example, it would be useful to determine if the actuators always stop when the
emergency button is pushed. Another approach would be to synthesize the supervisor
such that it guarantees these properties by construction. For example, in Rawlings
et al. (2014), synthesis is extended to work with CTL specifications, which makes
specifying that something should happen possible.

Furthermore, it is known that the resulting controlled behavior is conform the
requirements; yet, it is not always known if the requirements are correct and complete.
For instance, in this case study we found a missing requirement and, therefore, the
behavior of the controlled system was unsafe. In this case, we found this requirement
because the test protocols described this behavior. However, that is not always the
case. It would be beneficial to have a more systematic approach to validate the
requirements beforehand.

3.5 Concluding remarks
The complexity and size of infrastructural systems in combination with the required
functionality and demands on verified safety makes designing supervisors for these
systems a challenging task. Supervisor synthesis is a useful method to obtain a
supervisor that adheres to the specified requirements. However, control engineers lack
acquaintance with modeling and specifying in the framework of automata. Besides
this, in the related literature, no clear guidelines for obtaining the necessary models
for synthesis are found.

In this chapter, guidelines for obtaining the plant and the requirements models are
proposed. A case study on the Algera complex illustrates this way of modeling. The
plant model has been obtained by representing all the sensors, actuators, commands,
and physical relations as small component models. On the abstraction level of control
inputs and outputs, many of these component models are similar. These similarities
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allow for the use of templates, which greatly increases the quality of the models, while
decreasing the modeling time. For this case study, 16 templates are used to model
239 components.

For the requirements model, the textual requirements are represented by event-
condition models. This type of models allows for a straightforward translation of
the textual requirements to logic-based expressions. Furthermore, the logic-based
expressions relate closely to the way control engineers are acquainted with in practice.
Aside from their similarity to the textual requirements, the size of the models is also
considerably smaller than when FA models are used.

Simulation-based visualization is used to validate the resulting supervisors. Simu-
lation allows to compare the behavior of the supervisor with the expected behavior
that is, for example, described in FAT protocols. In this specific case study, we were
able to identify a missing requirement by comparing the behavior of the controlled
system with the expected behavior described in the FAT protocols. In the meantime,
Rijkswaterstaat has added this requirement to the set of safety requirements.

The results described in the case study show that supervisor synthesis is appli-
cable to large infrastructural system. Even though the plant model consists of 239
components, and is subjected to 491 requirements, a monolithic BDD-based synthesis
procedure was able to derive the supervisor in about 35 minutes.





Chapter 4

Implementation of supervisory
controllers for PLCs

In the design process of supervisory controllers (referred to as “controllers” in this
chapter), implementation is the last step. For implementation, PLCs are commonly
used in industry. When synthesis is used to obtain a supervisor, a controller and
subsequently PLC code can be derived from that supervisor. In that way, the PLC
code also satisfies the requirements by construction. However, using the synthesized
supervisor for this purpose is no trivial task.

A supervisor as described in Ramadge and Wonham (1987) is meant to be imple-
mented together with a separate controller. The supervisor monitors the behavior of
the plant, and based on its observations, decides which actions to enable and which
not. The task of the controller is to execute some of the enabled events, such as
switching a motor on. The structure where the supervisor and the controller are two
separate entities is referred to as supervised control (Charbonnier et al., 1995; Basile
and Chiacchio, 2007; Pichard et al., 2018). This means that for supervised control, a
separate controller has to be designed.

A different approach that is often taken (see Balemi et al. (1993), Reijnen et al.
(2017), Vieira et al. (2017), and Prenzel and Provost (2018)), is to use supervisor
synthesis to obtain a supervisor, and then ‘interpret’ this supervisor as a controller.
In this way, the additional effort of designing a controller is avoided. This means that
the controller monitors the behavior of the plant, enables some of the events, and
then chooses which enabled event to execute. A downside of this approach is that
even if the supervisor is nonblocking, this does not guarantee that the controller is
also nonblocking, as shown in Dietrich et al. (2002). A blocking controller may have
serious impact on the process it controls, such as it being impossible to achieve the
desired behavior.

An additional aspect is the real-time implementation of the controller on a PLC
(Fabian and Hellgren, 1998; Zaytoon and Riera, 2017). For supervisor synthesis,
it is assumed that there is no communication delay between the plant and the

This chapter is based on: Reijnen, F.F.H., Hofkamp, A.T., van de Mortel-Fronczak, J.M.,
Reniers, M.A., and Rooda, J.E. (2020). “Implementation of state-based supervisory controllers”, In
preparation.
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supervisor. In reality, there is a small delay. As a result, the guarantees provided by
supervisor synthesis might not hold for the realization, see e.g., Balemi et al. (1993)
and Rashidinejad et al. (2019).

In the literature, a few interesting case studies have been published that utilize
supervisor synthesis and then interpret the supervisor as a controller, see e.g., Forsche-
len et al. (2012), Theunissen et al. (2013), Reijnen et al. (2017), Vieira et al. (2017),
Korssen et al. (2018), and Prenzel and Provost (2018). All of these papers mention
the aforementioned difficulties. Properties exist that can be used to verify that the
controller is not affected by these difficulties (Fabian and Hellgren, 1998; Malik, 2003).
For these cases, the properties were not verified. One of the reasons for this is that
current synthesis and code generation tools cannot check them automatically, as
mentioned in Vieira et al. (2017). Moreover, we believe that the solution to the delay
problem as proposed in the literature (Fabian and Hellgren, 1998; Zaytoon and Riera,
2017) is often not applicable to real systems.

The main contributions of this chapter are as follows. First, an overview of the
steps to go from a supervisor model to controller code is given, including potential
problems that can be encountered during these steps. For each problem, it is shown
how to verify that the controller is not affected by it. Second, it is shown how PLC
code can be derived from the controller model. Finally, it is shown how optimization
techniques can be applied to structure the generated code in such a way that the
execution time and its variability can be reduced.

The chapter is structured as follows. The way of working of PLCs is explained in
Section 4.1. The difference between a supervisor and a controller, and the steps to go
from a supervisor model to controller code are provided in Section 4.2. Section 4.3
discusses the potential problems that may occur when a controller is derived from
a supervisor and the solutions proposed in the literature. Moreover, it presents
procedures to verify whether a given supervisor satisfies these properties. In Section 4.4,
the problems related to the real-time implementation of the controller are shown.
How to generate PLC code from the controller model is explained in Section 4.5.
Section 4.6, proposes a way to minimizing the required computation time of the PLC.
Finally, Section 4.7 concludes this chapter.

4.1 Programmable logic controllers
Programmable logic controllers are computers commonly used in industry to implement
controllers. A PLC consists of a CPU that runs the controller code, input modules to
which sensors are connected, and output modules to which actuators are connected.
An input image and an output image are used to represent the sensor and actuator
signals from the modules as variables in the PLC, such that the signals are usable in
the program. A PLC operates in so-called scan cycles, as shown in Figure 4.1. In one
PLC cycle, first, the get action copies the values of the input signals to the input image
of the PLC program. Then, the controller code is executed. The controller reads from
the input image and writes to the output image. Finally, the put action copies the
values of the output image of the PLC program to the output signals. During the
program execution, changes in the input signals are not registered. One full scan cycle
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typically takes a few milliseconds. Fabian and Hellgren (1998), Hasdemir et al. (2008),

get execute code put get execute code put

t

Figure 4.1: Two PLC scan cycles.

Leal et al. (2012), Vieira et al. (2017), and Prenzel and Provost (2018) demonstrate
methods of executing an FA model on a PLC. In this chapter, a similar execution
method is used. The code execution consists of the following steps.

1. Determine if the value of an input-image variable has changed and translate this
change to an uncontrollable event.

2. Update the state of the controller by executing this event.

3. Determine if a controllable event is enabled in the new state, if so, execute this
event, and update the state. Repeat this until no controllable event is enabled
anymore.

4. Update the value of the output-image variables, depending on the state of the
controller.

In step 3, a choice is made to execute all controllable events that are enabled.
Compared to executing only one controllable event per cycle, the reaction time of
the controller increases substantially when multiple events are possible (Prenzel and
Provost, 2018).

In step 4, the output-image variables are updated according to the state of the
controller, independent of which events have been executed to reach this state. When
using the component-based modeling method described in Chapter 3, this means
that the values of the output image variables are coupled to the locations of actuator
components. For example, when a component model is in location On, the variable’s
value is true.

The IEC 61131-3 PLC standard (International Electrotechnical Commission, 2013)
defines five standard programming languages for PLCs. From a discrete-event system
model, code can be generated for most of these languages, as shown in the literature
(Fabian and Hellgren, 1998; Hellgren et al., 2001; Hasdemir et al., 2008; Swartjes et al.,
2017; Vieira et al., 2017; Prenzel and Provost, 2018; Reijnen et al., 2020d). In this
chapter, structured text is used, being a textual language. Ladder diagrams, function
block diagrams, and sequential function charts are graphical languages, and automatic
code generation for these representations is more complicated.

The methods described in this chapter are also applicable to other real-time
platforms. Matlab/Simulink implementations (Sharma and Reniers, 2016; Korssen
et al., 2018) and micro-controller implementations (Torrico et al., 2016) work similar
to the PLC implementations and are also prone to the issues described in the next
section.
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4.2 From supervisor model to controller code
A controller is a special kind of supervisor. The task of a controller is to execute events
in the plant (events related to actuators) based on events received from the plant
(events related to sensors). It is assumed that the controller executes controllable
events as soon as they are enabled, to decrease its reaction time. A supervisor might
allow multiple controllable events in a state. The task of the controller is then to
choose one of these events.

Depending on how the controller chooses the controllable events, the derived
controller may be blocking, even though the supervisor is not. For example, consider
the supervisor shown on the left-hand side of Figure 4.2. In state 3 there is a choice
between controllable events b and c. The controller that always chooses event b over
event c is shown on the right-hand side of Figure 4.2. This controller is blocking as it
is unable to return to the marked state 1.

1 2 3

b

c

u
a

1 2 3

b
u

a

Figure 4.2: A supervisor that is nonblocking (left) and a derived controller that is blocking
(right).

In general, a controller can be derived from a supervisor by choosing a controllable
event each time more than one controllable event is enabled. To guarantee progress, a
controller may not disable all of these controllable events. In Malik (2003), a derived
controller is defined as follows.

Definition 4 (Derived controller). Let E1 and E2 be EFAs with state sets Q1 and
Q2, marked state sets Qm

1 ⊆ Q1 and Qm
2 ⊆ Q2, initial states q0

1 ∈ Q1 and q0
2 ∈ Q2,

and transition functions δ1 and δ2, respectively, both with the same event set Σ,
that can be partitioned into controllable events Σc and uncontrollable events Σu.
E2 is said to be a controller derived from E1 if ∀(q1, q2) ∈ Q1 × Q2, such that
∃s ∈ Σ∗ : q1 = δ1(q0

1, s) ∧ q2 = δ2(q0
2, s), it holds that:

• Elig1(q1) ⊇ Elig2(q2)

• Elig1(q1) ∩ Σu = Elig2(q2) ∩ Σu

• |Elig1(q1) ∩ Σc| ≥ 1 =⇒ |Elig2(q2) ∩ Σc| = 1

• q1 ∈ Qm
1 ⇔ q2 ∈ Qm

2

where | | denotes the set size.

Note, that the choice between events does not necessarily have to be made based
on the states of the supervisor. For example, for the supervisor shown in Figure 4.2, a
different way to choose between events is to alternate between controllable events b
and c. This results in the derived controller shown in Figure 4.3, which is nonblocking.
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Figure 4.3: A derived controller that alternates between controllable events b and c.

In Malik (2003), three properties are provided for a supervisor, ensuring that any
derived controller is nonblocking. These properties are: confluence, finite response,
and nonblocking under control. In the next section, these properties are explained in
detail. If a supervisor satisfies these properties, the choice between controllable events
can be made arbitrarily, without having to worry about obtaining a blocking controller.
Moreover, independently of the choices made, the same final state (the state where
no controllable events are enabled) is reached. This ensures that all controllers that
can possibly be derived exhibit the same behavior. Such a supervisor is called an
implementable supervisor. The implementable supervisor can be used to derive a
controller and, subsequently, the controller code.

Figure 4.4 shows the proposed method to obtain controller code from a supervisor
model. First, it is verified whether supervisor S satisfies the three aforementioned
properties. If it does, the supervisor is an implementable supervisor S ′. If it does
not satisfies all these properties, the supervisor has to be adapted (for example, by
changing the requirements model and synthesizing a new supervisor, not depicted in
the figure). If the supervisor is implementable, the supervisor can be used to derive
a controller C. From this controller, controller code C ′ can be generated. In this
controller code, the EFA in the controller model and the events in the EFAs are
represented by blocks of code. To decrease the cycle time of the controller code on
the PLC, the order of these EFAs and the events in the EFAs can be optimized. After
optimizing, optimized controller code C ′′ is obtained. These steps are explained in the
next sections.

S S ′ C C ′ C ′′
verify derive generate optimize

Figure 4.4: Method to obtain controller code from a supervisor model.

4.3 Implementable supervisor
When a supervisor is used to derive a controller, several issues have to be solved. In
the following sections, these issues are addressed and solutions found in the literature
are reported on. Most of these solutions require the supervisor to satisfy some property.
However, the current synthesis tools (Feng and Wonham, 2006; Moor et al., 2008;
van Beek et al., 2014; Malik et al., 2017) cannot verify these properties, as noted in
Vieira et al. (2017). One of the reasons is that the properties are defined for a single
automaton. Checking the properties for an EFA system requires computation of the
synchronous product. For many realistic applications, computing the synchronous
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product explicitly is infeasible. In this section, methods are given that can be used to
determine if an EFA system satisfies the properties, without computing the synchronous
product. This makes the verification feasible, even for large systems.

While in the literature the properties are defined on languages, here they are defined
on EFAs. The reason is that for a PLC implementation, the actuators are controlled
according to the state of an EFA. A different state can mean that a different actuator
is enabled. The differences in the properties are mostly that when the language-based
properties require the same continuations in the languages, the EFA-based properties
require that the same state is reached.

4.3.1 Confluence
The supervisor might include states where multiple controllable events are allowed.
When a controller is derived from a supervisor, one of these events has to be chosen,
each time this state is reached. As shown in Figure 4.2, a ‘wrong’ choice can result in
a blocking controller. This is referred to as the choice problem.

In Malik (2003), the confluence property is proposed. It states that whenever
a choice between two controllable events exists, each event can be extended by a
sequence of controllable events such that both paths end in the same state. This
means that at the end of step 3 of the execution, described in Section 4.1, always the
same state is reached. As the output signals depend on which state is reached, this
means that the output is independent of the choices. Here, confluence is defined for
EFAs.

Definition 5 (Confluence). Let E be an EFA with state set Q, transition function
δ, and controllable events Σc. E is said to be confluent if for every reachable state
q ∈ Q and all σ1, σ2 ∈ Σc such that δ(q, σ1)! and δ(q, σ2)! there exist s1, s2 ∈ Σ∗c such
that δ(q, σ1s1) = δ(q, σ2s2).

As an example, consider the supervisor shown on the left-hand side of Figure 4.5.
In state 3, a choice can be made between controllable events b and c, resulting in
different states from which a common state cannot be reached via controllable events.
The supervisor shown on the right-hand side of Figure 4.5 is confluent. In state 3,
there is a choice between controllable events b and c. When c is chosen, state 1 is
reached, and when b is chosen, state 1 is reachable via controllable event d.

1 2 3

b

c

u
a

1 2 3

4

c

bd

u a

Figure 4.5: A supervisor that is not confluent (left) and a supervisor that is confluent (right).

In the literature, other methods exist to deal with the choice problem. In Leal et al.
(2012), the choice problem has been solved by randomly selecting a controllable event
each time there is a choice. In this way, all the behavior of the supervisor is kept in
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the controller. A downside is that the reaction of the controller may be different every
time. When the system is controlled by human operators this might be undesirable.
In Morgenstern and Schneider (2007), the forcible nonblocking property is proposed.
It requires that the supervisor always reaches a marked state, irrespective of the plant
behavior. This also ensures that the derived controller will always reach a marked
state, independent of the choices made. However, it might be difficult to enforce such
a property. In many human-operated systems, the operator can postpone reaching a
marked state indefinitely (e.g., by not giving the right command). Therefore, such
a supervisor might not exist. In Huang and Kumar (2008), the notion of directed
control is used: when presented with a choice, the event that brings the system closer
(in terms of events) to a marked state is preferred. This property is very useful when
the meaning of the marked state is that it is the ‘end goal’, and it is desired to stay in
that state. However, for systems such as in Forschelen et al. (2012) and Reijnen et al.
(2017), the interpretation of the marked state is that it is a safe resting state. There,
it should also be possible to leave the marked state once it has been reached.

Verifying confluence

To check confluence for an EFA system, the global guard expression and the global
update function derived from the NLEFA (see Section 2.4, at page 17) representation
are used. The states where an event is enabled are derived from the global guard
expressions. The global update functions denote how the state changes when an event
occurs. The global guard expressions and the global update functions can be used to
identify five cases where we can prove to have a confluent supervisor. These cases are
shown below together with examples. In the examples, the locations are also variables,
represented by the location pointer LP. For illustrative purposes, the locations are also
explicitly visualized.

First of all, if two events are not enabled simultaneously, then there cannot be a
choice, referred to as mutual exclusiveness.

Definition 6 (Mutual exclusiveness). Two different events σ1, σ2 ∈ Σ with global
guards g1 and g2, respectively, are said to be mutually exclusive with respect to a
valuation v if v 6|= g1 or v 6|= g2.

In Figure 4.6, σ1 and σ2 are mutually exclusive for all valuations.

1

2

3

σ1 when x < 0

σ2 when x ≥ 0

Figure 4.6: Example of mutually exclusive events.

Second, if two events are enabled simultaneously and the effect of the updates is
the same, then it does not matter which event is chosen, as this implies that the same
state is reached. This is referred to as update equivalence.



56 Chapter 4. Implementation of supervisory controllers for PLCs

Definition 7 (Update equivalence). Two events σ1, σ2 ∈ Σ with global updates u1
and u2, respectively, are said to be update equivalent with respect to a valuation v if
u1(v) = u2(v).

In Figure 4.7, σ1 and σ2 are update equivalent for all valuations where v(x) = 2.

1 2

σ2 do x := x× 2

σ1 do x := x+ 2

Figure 4.7: Example of update equivalent events.

Third, two events are called independent when they are enabled simultaneously
and after the execution of either event, the other event is still enabled and both orders
reach the same state.

Definition 8 (Independence). Two different events σ1, σ2 ∈ Σ, with global guards
g1 and g2 and global updates u1 and u2, respectively, are said to be independent with
respect to a valuation v if u1(v) |= g2, u2(v) |= g1, and u1(u2(v)) = u2(u1(v)).

In Figure 4.8, σ1 and σ2 are independent events for all valuations.

1

2

3

4

σ1 do x := 1 σ2 do y := 5

σ2 do y := 5 σ1 do x := 1

Figure 4.8: Example of independent events.

Fourth, if two events are enabled simultaneously and executing event 1 reaches the
same state as executing event 2 followed by event 1, event 2 can be skipped.

Definition 9 (Skippable). For two different events σ1, σ2 ∈ Σ, with global guards g1
and g2 and global updates u1 and u2, respectively, σ2 is said to be skippable by σ1 with
respect to a valuation v if u2(v) |= g1 and u1(u2(v)) = u1(v).

In Figure 4.9, σ2 is skippable by σ1, for all valuations.

1 2 3
σ2 do y := 5

σ1 do y := 1

σ1 do y := 1

Figure 4.9: Example of skippable events.

Finally, if two events are enabled simultaneously, it can be the case that after the
execution of both events, the update of the first event is reversed by a third event.
In that case, it suffices to only execute the second event. The first event is reversible
after the second event.



4.3. Implementable supervisor 57

Definition 10 (Reversible). For two different events σ1, σ2 ∈ Σ, with global guards g1
and g2 and global updates u1 and u2, respectively, σ2 is said to be reversible after σ1
with respect to a valuation v if there exists a σ3 ∈ Σ, with global guard g3 and global
update u3, such that u2(v) |= g1, u1(u2(v)) |= g3, and u3(u1(u2(v))) = u1(v).

In the EFA system of Figure 4.10, σ2 is reversible after σ1. Here, σ3 is the reverse
event of σ2. In this example, the sequences σ2σ1σ3 and σ1 end in the same location
(1, 4), with the same value for x, for all valuations.

1 2 3 4

σ2 when LP = 3
do x := x+ 3

σ3 when LP = 4
do x := x− 3

σ1

Figure 4.10: Example of reversible events.

Proposition 1. Let E be a deterministic EFA system, with set XE of variables that
includes the location variables, and set V of all valuations, and let Σc be the set of
controllable events. If each combination (σ1, σ2, v) ∈ Σc × Σc × V satisfies one of
the following conditions: mutually exclusive, update equivalent, independent, σ2 is
skippable by σ1 or vice versa, or σ2 is reversible after σ1 with an event σ3 ∈ Σc, or
vice versa, then E‖ is confluent.

Proof. Let Q be the state set of E‖. To prove that E‖ is confluent, we need to argue
that for every reachable state q ∈ Q whenever two controllable events σ1, σ2 ∈ Σc
exist such that δ(q, σ1)! and δ(q, σ2)!, then there exist sequences s1, s2 ∈ Σ∗c such that
δ(q, σ1s1) = δ(q, σ2s2).

For (σ1, σ2, v) that is mutually exclusive, this is true, as either δ(q, σ1)! or δ(q, σ2)!
is not true. For (σ1, σ2, v) that is update equivalent this is true for s1 = s2 = ε. For
(σ1, σ2, v) that is independent this is true for s1 = σ2 and s2 = σ1. For (σ1, σ2, v) that is
skippable this is true for s1 = ε and s2 = σ1. For (σ1, σ2, v) that is reversible this is true
for s1 = ε and s2 = σ1σ3. Hence, if each combination (σ1, σ2, v) ∈ Σc×Σc×V satisfies
one of the following conditions: mutually exclusive, update equivalent, independent,
σ2 is skippable by σ1 or vice versa, or σ2 is reversible after σ1 with an event σ3 ∈ Σc,
or vice versa, then E‖ is confluent.

To check if an EFA system is confluent, each pair of controllable events is checked
for each valuation for the aforementioned properties, as defined in Algorithm 1. Of
course, in the implementation, only those valuations are considered for which at least
one variable that occurs in g1, g2, u1, or u2 has a different value (or g3 or u3 for the
reversible property), as typically only a small subset of the variables is used. An event
is also not checked with itself, because this combination is always update equivalent
for a deterministic EFA. First, it is determined for which valuations two events are
enabled simultaneously, i.e. for which they are not mutually exclusive (line 4). Second,
if two events are enabled simultaneously, it is determined if they satisfy any of the
aforementioned properties. When two events do not satisfy any of the properties,
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the algorithm returns F (note that since these are sufficient conditions, this does not
necessarily indicate that the EFA system is not confluent). Because skippable and
reversible properties are not symmetrical, they are checked in both directions. The
checks that are most often satisfied are checked first (based on experience from case
studies).

Algorithm 1 Confluence check
Input: EFA system E , variable set XE , valuation set V , and controllable event set Σc.
Output: True indicates that E‖ is confluent.
1: Transform E into its NLEFA representation, to obtain for each σ ∈ Σc its global

guard gσ and global update uσ
2: for all σ1, σ2 ∈ Σc : σ1 6= σ2 do
3: for all v ∈ V : v |= g1 and v |= g2 do
4: if ¬ update equivalent(σ1, σ2, v) ∧
5: ¬ independent(σ1, σ2, v) ∧
6: ¬ (skippable(σ1, σ2, v)∨ skippable(σ2, σ1, v))∧
7: ¬ (reversible(σ1, σ2, v)∨ reversible(σ2, σ1, v))
8: then return F
9: end if

10: end for
11: end for
12: return T

4.3.2 Finite response
As described in Section 4.1, a controller executes controllable events until no control-
lable event is enabled anymore (step 3). If an infinite sequence of controllable events
exists in the controller, then it never stops executing events. In general, for a controller
it is desired to generate a finite number of events and then reach a state where it waits
for new inputs from the plant (e.g., an operator command, a sensor switch, or an
elapsed timer). To accomplish this, the finite response property is proposed in Malik
and Malik (2006). Here, finite response is defined for EFAs.
Definition 11 (Finite response). Let E be an EFA with state set Q, transition function
δ, event set Σ, and controllable events Σc ⊆ Σ. E is said to have finite response if
for every reachable state q ∈ Q there exists an n ∈ N such that for every s ∈ Σ∗ and
δ(q, s)! with |s| > n it holds that s /∈ Σ∗c.

In Malik and Malik (2006), it is shown that whenever no loops of controllable
events exist in the supervisor, the controller always generates a finite response. A
loop of controllable events is a sequence s ∈ Σ+

c such that for a q ∈ Q, it holds that
δ(q, s) = q.

As an example, consider the supervisor shown on the left-hand side of Figure 4.11.
This supervisor does not have finite response as there exists a loop of controllable
events ab in state 2. The supervisor shown on the right-hand side of Figure 4.11 does
have finite response as there does not exist such a loop.
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Figure 4.11: A supervisor that does not have finite response (left) and a supervisor that has
finite response (right).

Verifying finite response

To check an EFA system for finite response, the following procedure is proposed.
First, the possible controllable loops in the component models are overestimated by
disregarding guards over variables that are not local. The overestimation of E is
denoted by Ẽ. Then, these overestimated models are checked for controllable loops.
The overestimation can be obtained by converting the guards on transitions to their
disjunctive normal form and replacing the literals containing non-local variables with
T. Second, if controllable loops are found, the global guard expressions of the events
(derived from the NLEFA representation of the EFA system) are used to determine if
these loops can exist in the EFA system. Third, it is checked if there is a controllable
event σ in the event set of an EFA, but not in any of its controllable loops that can
exist in the EFA system. If such an event is found, finite response is checked for
Σc \ {σ}, similar to the incremental method from Malik and Malik (2006).

In the first step, controllable loops are identified using Tarjan’s algorithm (Tarjan,
1972), following the method from Malik and Malik (2006).

In the second step, a set of variables is defined that are not modified by controllable
events in the EFA system. Typically, these are variables that belong to a sensor
component. They are defined as follows.

Definition 12 (Σc-independent variables). Let E be an EFA system, with set XE
of variables, and set V of all valuations. Set Xc ⊆ XE of variables that are never
modified by controllable events, called Σc-independent variables, is defined as follows.

Xc = {x ∈ XE | ∃(L,X,Σ,→, l0, Lm) ∈ E : x ∈ X∧
[∀(l, g, σ, u, l′) ∈→ ∧v ∈ V : σ ∈ Σc] =⇒ [v |= g =⇒ v(x) = u(v)(x)]}

If for two events it can be proven that a variable in set Xc needs to have different
values to satisfy their global guard expressions, then these events cannot be in the
same controllable-event sequence. Such events are called Σc-unconnectable.

Definition 13 (Σc-unconnectable). Let E be an EFA system, let σ1, σ2 ∈ Σc be
controllable events and let Xc be the set of Σc-independent variables. Events σ1 and
σ2 are said to be Σc-unconnectable if there do not exist v1, v2 ∈ V such that v1 |= gσ1,
v2 |= gσ2, and for every x ∈ Xc it holds that v1(x) = v2(x).

If two controllable events are Σc-unconnectable then there does not exist a loop of
controllable events that includes both events and is enabled in the EFA system. If a
controllable loop consists of only events that are not Σc-unconnectable, then it can
potentially be a loop in the EFA system.
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Definition 14 (Potential controllable loop). Let E be an EFA system with controllable
events Σc and with Σc-independent variables Xc. For an E ∈ E and an s ∈ Σ+

c such
that s is a controllable loop in Ẽ, s is said to be a potential controllable loop in E‖ if
there do not exist σ1, σ2 ∈ s that are Σc-unconnectable.

In this definition, σ ∈ s denotes that event σ occurs at least once in sequence s.
In the third step, it is checked which events are in the event set of an EFA but

not in any of its potential controllable loops. Then, finite response is checked for the
remaining controllable events.

Proposition 2. Let E be an EFA system with controllable events Σc and let Xc be
the Σc-independent variables. If there exist an E ∈ E and a σ ∈ Σc such that σ does
not occur in any potential controllable loop of Ẽ, then E‖ has finite response for Σc if
E‖ has finite response for Σc \ {σ}.

Proof. Let Q be the state set of E‖. Assume that E‖ does not have finite response for
Σc and that σ does not occur in any potential loop. Then there exist a q ∈ Q and an
s ∈ Σ+

c such that δ(q, s) = q, and consequently there cannot exist σ1, σ2 ∈ s that are
Σc-unconnectable in E‖. Moreover, there does also exist a q′ in the state set of Ẽ such
that δ(q′, s) = q′. Hence, s must be a potential controllable loop of Ẽ, and thus σ /∈ s.
As a result, E‖ must also not have finite response for Σc \ {σ}.

To check if an EFA system has finite response, the results from Proposition 2 and
the incremental approach from Malik and Malik (2006) are used in Algorithm 2. This
algorithm consists of two parts:

1. [lines 5-9] For each EFA Ẽ, find all controllable loops. For each loop, determine
if it is a potential loop, i.e., there are no Σc-unconnectable events in it. For
each potential loop, add the events to the set Σloops that contains all events that
occur in at least one potential loop.

2. [line 12] For each EFA, remove from Σc all controllable events in its alphabet
that never occur in a potential loop.

In the algorithm, alph(..) returns the alphabet of an EFA or the events in a sequence,
independent(Σc) returns set Xc as defined in Definition 12, cLoop(Ẽ) returns the
controllable loops in Ẽ, and unconnectable(σ1, σ2, Xc) refers to the property from
Definition 13. Note that since these are sufficient conditions, the F result does not
necessarily indicate that the EFA system does not have finite response. The T result
indicates that the EFA system does have finite response.

4.3.3 Nonblocking under control
When a controller executes two controllable events in succession (in step 3 of the
execution method discussed in Section 4.1), it is impossible that an uncontrollable
event occurs in between. When reaching a marked state depends on the occurrence of
this uncontrollable event, the marked state is unreachable in this execution method.
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Algorithm 2 Finite-response check
Input: EFA system E , variable set XE , and controllable event set Σc
Output: True indicates that E‖ has finite response
1: Σnew

c := Σc
2: repeat
3: Σold

c := Σnew
c

4: Xc := independent(Σnew
c )

5: for all E ∈ E do
6: Σloops := ∅
7: for all s ∈ cLoop(Ẽ) do
8: if ∀σ1, σ2 ∈ alph(s) : ¬unconnectable(σ1, σ2, Xc) then
9: Σloops := Σloops ∪ alph(s)
10: end if
11: end for
12: Σnew

c := Σnew
c \ (alph(E) \ Σloops)

13: end for
14: until Σnew

c = Σold
c

15: return Σnew
c = ∅

As an example, consider the controller shown on the left-hand side of Figure 4.12.
From state 1, the controller executes controllable event b, and directly thereafter c.
Hence, the behavior of the controller is actually as shown on the right-hand side of
Figure 4.12. This controller is blocking, as it is unable to reach a marked state.
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u

u

1 3
b · c

u

Figure 4.12: A nonblocking controller (left) and its blocking behavior when executed (right).

Another case is shown in Figure 4.13. There, the marked state is an in-between
state that is left as soon as it is entered. Therefore, the system never actually is in
the marked state.
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Figure 4.13: A nonblocking controller (left) and its behavior for which the marked state is
passed over.

In Malik (2003), the nonblocking under control property is proposed. It requires
in every reachable state the existence of an event sequence to a marked state that
prioritizes controllable events over uncontrollable events. Furthermore, in that marked
state, no controllable event may be enabled. Such a sequence is called Σc-complete.
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Definition 15 (Σc-complete). Let E be an EFA with state set Q, transition function
δ, event set Σ, and controllable events Σc ⊆ Σ. A sequence σ1 . . . σn ∈ Σ∗ from state
q0 to qn:

q0
σ1−→ q1

σ2−→ . . .
σn−→ qn

is said to be Σc-complete if it holds that

1. for every i = 1, . . . , n it holds that σi ∈ Σc or Elig(qi−1) ∩ Σc = ∅.
2. Elig(qn) ∩ Σc = ∅.

The nonblocking under control property is then defined as follows.

Definition 16 (Nonblocking under control). Let E be an EFA with state set Q,
transition function δ, event set Σ, and controllable events Σc ⊆ Σ. E is said to be
nonblocking under control if for every reachable state q ∈ Q there exists a Σc-complete
sequence s ∈ Σ∗ such that δ(q, s) ∈ Qm.

Verifying nonblocking under control

To check if a system is nonblocking under control, the algorithm from Ouedraogo
et al. (2011), see Section 2.5, can be used. For checking nonblocking under control,
the algorithm is slightly changed.

The synthesis algorithm can be used for checking nonblockigness by changing step
2. Instead of considering only the transition labeled with uncontrollable events in step
2, all transitions are considered. Then, in step 3 the bad-state predicate of the initial
location is evaluated for the initial valuation. If the bad-state predicate evaluates to
F, the EFA is nonblocking, otherwise it is blocking.

Verifying nonblocking under control can be done with a similar procedure. Only
the calculation of the good-state predicates is different, as for nonblocking under
control a Σc-complete sequence to a marked state must exist instead of any sequence.
The procedure to verify nonblocking under control is given below.

1. Initially, the good-state predicate for a location l consists of marked-location
predicate Ml = l ∈ Lm that is T for marked locations and F otherwise, marked-
valuation predicate Mv = v ∈ Vm that is T for marked valuations and F
otherwise, and a conjunction over the negations of the guards for transitions
(l, g, σ, u, l′) labeled with controllable events. This last conjunction is added, as
nonblocking under control considers only marked states in which no controllable
events are enabled.

Nl := Ml ∧Mv ∧
∧

(l,g,σ,u,l′)
σ∈Σc

(¬g)

2. For each location, compute a new good-state predicate as follows. The new good-
state predicate of a location is the disjunction of the old good-state predicate
Nl, the good-state predicate for transitions labeled with controllable events Nl,c,
and the good-state predicate for transitions labeled with uncontrollable events
Nl,u.

Nl := Nl ∨Nl,c ∨Nl,u
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The predicate for transitions (l, g, σ, u, l′) labeled with controllable events is a
disjunction of the form g∧Nl′ [u], where g is the guard of the transition and Nl′ [u]
is the old good-state predicate of the target location l′ where all occurrences of
the variables are replaced by the expression they are assigned in the update u of
the transition.

Nl,c =
∨

(l,g,σ,u,l′)
σ∈Σc

(g ∧Nl′ [u])

The predicate for transitions (l, g, σ, u, l′) labeled with uncontrollable events
is similar to the predicate for transitions labeled with controllable events. It
includes an additional conjunction of the form ¬gc, where gc are the guards for
transitions labeled with controllable events. In this way, transitions labeled with
uncontrollable events are only taken into account when no transitions labeled
with controllable events are enabled (i.e., it is Σc-complete).

Nl,u =
∧

(l,gc,σ,u,l′)
σ∈Σc

(¬gc) ∧

 ∨
(l,g,σ,u,l′)
σ∈Σu

(g ∧Nl′ [u])


3. Repeat step 2 until the good-state predicates do not change anymore.

The differences between this procedure and the original procedure are: 1) in step 1,
the negation of the guards for transitions labeled with controllable events is included
and 2) in step 2, the predicates for transitions labeled with uncontrollable events
are only take into account when no transitions labeled with controllable events are
enabled. The good-state predicate indicates whether a Σc-complete sequence to a
marked state exists.

Computing the bad-state predicate is the same as for the original verification
algorithm, for completeness it is given below.

1. Define the initial bad-state predicate as the negation of the good-state predicate

Bl := ¬Nl

2. For each location of the EFA compute a new bad-state predicate as follows.
The new bad-state predicate of a location l is the disjunction of the old bad-
state predicate and, for each outgoing transition (l, g, σ, u, l′) of the location, a
disjunction of the form g ∧ Bl′ [u], where g is the guard of the transition and
Bl′ [u] is the old bad-state predicate of location l′ where all occurrences of the
variables are replaced by the expression they are assigned in the update u of the
transition.

Bl := Bl ∨
∨

(l,g,σ,u,l′)
σ∈Σ

(g ∧Bl′ [u])

3. Repeat step 2 until the bad-state predicates do not change anymore.
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The EFA is nonblocking under control if in the initial location and for the initial
valuation, the bad-state predicate evaluates to F.

Since both the good-state and bad-state predicates are calculated iteratively, we
proof that these calculations always terminate.
Proposition 3. The provided procedure for verifying nonblocking under control ter-
minates.
Proof. To prove that the given procedure terminates we proof that calculation of the
good-state predicates terminates and calculation of the bad-state predicates terminates.
The good-state predicate is a mapping N : V → {T,F}. Two predicates N1 and N2 are
equal if ∀v ∈ V : N1(v) = N2(v). Since the new good-state predicateN2 is a disjunction
of the old good-state predicate N1, it holds that N1(v) =⇒ N2(v). Hence, at the
end of step 2 of the good-state predicate calculation: either ∀v ∈ V : N1(v) = N2(v)
(termination), or ∃v′ ∈ V : ¬N1(v′) ∧N2(v′). Since V is finite, this can only happen
a finite number of times before the first situation is reached (termination). The
same proof can be used for the bad-state predicate calculation. Hence, the procedure
terminates.

4.4 Controller
The following sections describe three issues that can occur when any derived controller
is implemented in a real-time platform, such as a PLC. It also mentions the solutions
proposed in the literature.

4.4.1 Avalanche effect
An effect that is often regarded as problematic, is the avalanche effect, see, e.g., Fabian
and Hellgren (1998) and Zaytoon and Riera (2017). It may occur if a specific event is
used to trigger successive transitions labeled with the same uncontrollable event, thus
producing an ‘avalanche’. For example, as depicted in Figure 4.14, if uncontrollable
event a is triggered in state 1, the EFA should transit to state 2. In an erroneous
implementation, it might transit to state 3 directly thereafter, since event a is still
enabled. However, it should only transit to state 3 when a second a event occurs.

1 2 3

b

a a

Figure 4.14: Avalanche effect illustration.

As already noticed in Leal et al. (2012) and Prenzel and Provost (2018), contrary to
the other discussed problems, the avalanche effect is due to incorrect implementation
of the controller: it is not a property of the controller itself. Each event should only
trigger at most one transition per EFA. The controller code should make sure that
this is handled correctly. In Section 4.5, a code generation method is shown that does
not suffer from the avalanche effect. If this method is used, the EFA shown in Fig 4.14
can be used as a controller.
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4.4.2 Inexact synchronization
During program execution, an uncontrollable event in the plant may occur. This
event will only be recognized at the beginning of next scan cycle. Therefore, the
communication between the PLC and the plant is subject to delays due to periodic
reading of the inputs. Whenever such an event invalidates the choice made by the
controller in the previous cycle, this may lead to problems.

In Balemi et al. (1993), the notion of delay insensitivity is defined. It requires
that in every state where a controllable event is enabled, this event is also enabled in
all states that can be reached by sequences consisting of uncontrollable events. Here,
delay insensitivity is defined for EFAs.

Definition 17 (Delay insensitivity). Let E be an EFA with state set Q, transition
function δ, controllable events Σc, and uncontrollable events Σu. E is said to be delay
insensitive if for every reachable state q ∈ Q, σ ∈ Σc, and s ∈ Σ∗u, such that δ(q, σ)!
and δ(q, s)!, holds δ(q, sσ) = δ(q, σs).

As an example, consider the controller shown on the left-hand side of Figure 4.15.
When uncontrollable event a occurs in state 1, the controller responds by executing
controllable event c. If during the execution of the controller code, uncontrollable
event b occurs, the controller will observe it in the next cycle after event c, i.e., it will
observe acb. In the plant, the order is abc, which is not allowed by the controller.
The controller shown on the right-hand side of Figure 4.15 does not have this problem,
as whenever a controllable event is allowed, it is also enabled in states that can be
reached by sequences consisting of uncontrollable events.

1 2

3 4

c
a

b

a

b

1 2

3 4

c c
a

b

a

b

Figure 4.15: A controller that is delay sensitive (left) and a controller that is delay insensitive
(right).

In the literature, other properties can be found, such as Σc-Σu-commuting in
Malik (2002), delay nonconflictingness in Park and Cho (2006), and bounded-delay
implementability in Xu and Kumar (2008). They are very similar to delay insensitivity,
except that some define a delay bound (in terms of events) on the sequence of
uncontrollable events. What they all have in common is that they require that the
occurrence of uncontrollable events does not disable an enabled controllable event.
As in general the enablement of controllable events depends on the state of sensors
(and thus on uncontrollable events), it might be unrealistic to pursue a controller that
satisfies such a property. In Leal et al. (2012), a different solution is suggested. There,
the interrupt feature that some PLCs have, is utilized. In this way, every time an
uncontrollable event occurs, the program is interrupted and the event is registered.
However, they also note that many PLCs do not support this feature.
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In Malik (2003), Forschelen et al. (2012), Reijnen et al. (2017), Prenzel and Provost
(2018), and Swartjes (2018), it is argued that whenever the time scale of the system
is much larger than that of the cycle time of the controller (seconds compared to
milliseconds), inexact synchronization is not a problem. When the system operates
faster than the controller, i.e., sensor changes happen faster than the cycle time of
the controller, it is not suited for PLC implementation. In that case, either a faster
processor is needed or the code must be optimized when the PLC program is too slow.

4.4.3 Simultaneity
Due to the periodic input reading, if between successive scan cycles two or more
uncontrollable events occur, their order is lost. If the order of those events influences
the allowed behavior, this can lead to problems.

In Fabian and Hellgren (1998), the interleave insensitivity property is proposed.
Interleave insensitivity requires that after every interleaving of an uncontrollable event
sequence, the same state has to be reached. Here, interleave insensitivity is defined
for EFAs.

Definition 18 (Interleave insensitive). Let E be an EFA with state set Q, transition
function δ, and uncontrollable events Σu. E is said to be interleave insensitive if for
every reachable state q ∈ Q, s1, s2 ∈ Σ∗u, such that δ(q, s1s2)!, there exists a q′ ∈ Q,
such that for every s ∈ s1 9 s2 it holds that δ(q, s) = q′, where 9 is the interleave
operator.

Interleave insensitivity also requires sequences that might not exist in the plant
to be included in the controller, which might not be realistic. Therefore, we use a
slightly different definition, called simultaneity insensitive.

Definition 19 (Simultaneity insensitive). Let E be an EFA with state set Q, transition
function δ, and uncontrollable events Σu. E is said to be simultaneity insensitive if for
every reachable state q ∈ Q and sequences s1, s2 ∈ Σ∗u, such that s1 is a permutation
of s2, δ(q, s1)!, and δ(q, s2)!, holds δ(q, s1) = δ(q, s2).

Consider the controller shown on the left-hand side of Figure 4.16, if uncontrollable
events a and b are observed simultaneously, it is unclear if the order was ab or ba.
Hence, it is unclear whether the controller should transit to state 4 and execute
controllable event c or transit to state 5 and do nothing. The controller shown on the
right-hand side of Figure 4.16 does not have this problem, in both cases, controllable
event c is executed and state 1 is reached.

In Leal et al. (2012), a solution similar to their solution for inexact synchronization
is suggested. There, the interrupt feature that some PLCs have, is utilized. In this
way, every time an uncontrollable event occurs, the program is interrupted and the
event is registered, such that the order is not lost.

For simultaneity insensitivity, a similar remark can be made as for delay insensitivity.
It might be unrealistic to pursue a controller that satisfies simultaneity insensitivity,
as it requires that the order of uncontrollable events may not influence the behavior of
the controller. As is the case for delay insensitivity, if the controller reacts sufficiently
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Figure 4.16: A controller that is simultaneity sensitive (left) and a controller that is
simultaneity insensitive (right).

fast compared to the time scale of the system, simultaneity is not a problem. When
the system operates faster than the controller, i.e., sensor changes happen faster than
the cycle time of the controller, it is not suited for PLC implementation. In that
case, either a faster processor is needed or the code must be optimized when the PLC
program is too slow.

4.5 Controller code
For the implementation of a controller on a PLC, controller code has to be derived
from the controller model. In Fabian and Hellgren (1998), controller code is generated
by first computing the synchronous product of the models, such that one automaton
is obtained that can be translated into code. For large models, this is infeasible as the
state space is too large to compute. In Swartjes et al. (2014), a different method is
proposed. There, the normalized representation is used, see Section 2.4. An advantage
of normalization is that it does not require computing the whole state space. For
each event in the system, a block of code is generated. A disadvantage is that the
model structure is lost, and the code becomes difficult to interpret. Code readability
is relevant for maintenance personnel in case the system fails because of, e.g., an
unanticipated sensor failure.

To increase the readability of the code, the structure of the original model should
be preserved. To this end, for each EFA a block of code and a set of variables is
generated. Within the block of code, for each transition a block of code is generated.
Subsequently, the event-condition requirements are placed in the block of code for the
EFA that contains that event. In this way, each part of the code can be traced back
to the original controller model.

The following sections describe how the concepts in the model are coupled to the
hardware. Then it is shown how code for an EFA system can be generated.

4.5.1 Inputs and outputs

To couple the controller model to inputs and outputs of the PLC, the following
procedure is used.
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The inputs of the PLC are represented by set I of Boolean and integer variables.
The uncontrollable events are coupled to these inputs by using the variables from I in
the guards of these events. Typically, when a sensor model for a Boolean variable i
contains events u_on and u_off, u_on indicates that the value of i changed from F to
T, and vice verse for u_off. The guards ‘when i’ and ‘when ¬i’ are added to u_on
and u_off, respectively, to make this coupling. Different event-variable combinations
can exist (such as for integer variables, see Section 3.2.2), still such a mapping between
events and variable values can be constructed.

The outputs of the PLC are represented by set Q of Boolean and integer variables.
The actuator component models are coupled to these outputs by linking the variables
from Q to the state of these models. Typically, when an actuator model for a Boolean
variable q contains states On and Off. At the end of the program, a statement is added
q := LP = On. This means that the value of q is T whenever the model is in state On
and F otherwise. Different state-variable combinations can exist (such as for integer
variables), still such a mapping between states and variable values can be constructed.

4.5.2 Code generation
To generate code from a controller model consisting of multiple components and
event-condition requirements, the following procedure is applied.

1. Transform the EFA system to an LEFA system (see Definition 1, on page 17).
2. If LEFAs share events, synchronize these LEFAs in one LEFA (see Definition 2,

on page 17).
3. Create a variable ready to indicate whether the code is finished executing events.
4. Construct a function for each LEFA (see procedure below).
5. Construct a get input function that copies the value of the input-image variables

to the controller variables.
6. Construct a put output function that copies the value of controller variables to

the output-image variables.
7. Construct the initialization function.
8. Construct the program that consists of the get input function, a repeat statement

that iterates over the LEFA functions, until ready equals T, and the put output
function. The iteration loop stops when no more events are enabled that can be
executed.

In step 2, different LEFAs are combined. Thanks to the modeling method presented
in Chapter 3, the component models already have disjunctive event sets. In that case,
step 2 only combines the LEFA with its requirements.

In step 8, the LEFAs are put in a repeat statement. A variable ready indicates
whether the model finished executing events. At the start of the repeat statement,
the value of ready is set to T. If an event is executed, this value is set to F. The code
is repeated until ready is T at the end op the loop, This means that in that loop no
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event was executed. The order of the LEFAs in the loop influences the number of
repetitions. In Section 4.6.2, it is shown how this order can be optimized.

Step 4 is defined as follows for (X,Σ,→) an LEFA and v0 the initial valuation.

4.1 For each x ∈ X create a global variable, which is initialized as x := v0(x).

4.2 Create a variable done to indicate whether the LEFA is finished executing events.

4.3 For each transition (g, σ, u) ∈→, construct an if-then statement:
if g then u; done := false; end_if;.

4.4 Construct the LEFA function that consists of a repeat statement that iterates
over the transition code blocks, until done.

4.5 Update the global ready variable, ready := ready and done.

In step 4.4, the transitions are put in a repeat statement. A variable done indicates
whether the LEFA finished executing events. At the start of the repeat statement,
the value of done is set to T. If an event is executed, this value is set to F. The code
is repeated until done equals T at the end of the loop. The order of the transitions
influences the number of repetitions. In Section 4.6.1, it is shown how this order can
be optimized.

In the literature (Fabian and Hellgren, 1998; Vieira et al., 2017), the event on a
transition is encoded as a Boolean variable to check if a transition is enabled. This can
lead to the avalanche effect problem when one event can trigger successive transitions,
see Section 4.4.1. In our method, we use the guards from the transitions. A transition
is enabled only when its guard evaluates to T. Then, the avalanche effect does not
exist anymore.

As an example for steps 4.1-4.5, consider EFA E shown on the left-hand side of
Figure 4.17. Its LEFA representation, denoted by L, is shown on the right-hand side
of this figure.

x = 0 1 2

3E:

a
when x < 3

c
when x ≥ 3

do x := 0

b
do x := x+ 1 LP = 0, x = 0

L:

a
when LP = 1 ∧ x < 3

do LP := 2

c
when LP = 1 ∧ x ≥ 3

do LP := 3, x := 0
b

when LP = 2
do LP := 1, x := x+ 1

Figure 4.17: EFA E (left) and LEFA L (right).

The PLC code generated from L is shown in Listing 4.1. For each of the three
transitions, a separate if-then statement is constructed. The variables with a dot
(e.g., L.LP) are global variables, the other variables are local (e.g., done). The double
slashes denote a comment.
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Listing 4.1: Code for LEFA L.
repeat

done := true;
// Event a
if L.LP = 1 and L.x < 3 then

L.LP := 2;
done := false ;

end_if ;

// Event b
if L.LP = 2 then

L.LP := 1;
L.x := L.x + 1;
done := false ;

end_if ;

// Event c
if L.LP = 1 and L.x >= 3 then

L.LP := 3;
L.x := 0;
done := false ;

end_if ;

until done end_repeat ;

As can be seen, the transformation from the model in Figure 4.17 to the code in
Listing 4.1 is intuitive. In this example, the locations are numbered. In general,
locations have names. In that case, named constants can be used to improve the
readability.

As another example for code generation, consider the EFA system shown in
Figure 4.18, consisting of two component models and two requirements. EFA S, shown
on the left-hand side, represents a sensor and EFA A, shown on the right-hand side,
represents an actuator. Variable i is a PLC input variable. Two requirements express
that the actuator may only switch on when S is in location 2 and may only switch off
when S is in location 1.

1 2

S:
u_on

when i

u_off
when ¬i

1 2

A: c_on

c_off

requirement A.c_on needs S.2 requirement A.c_off needs S.1

Figure 4.18: EFA system for which PLC code is generated.

The PLC code generated for this EFA system consists of four code parts, for EFA
S (Listing 4.2), for EFA A (Listing 4.3), for the initialization (Listing 4.4), and for the
program (Listing 4.5). Note that the requirements for c_on and c_off are moved to
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the code for EFA A (step 2). In Listings 4.2 and 4.3, ready is the variable used in the
repeat statement of Listing 4.5.

Listing 4.2: Code for EFA S.
repeat

done := true;
// Event u_on
if S.LP = 1 and S.i then

S.LP := 2;
done := false ;

end_if ;

// Event u_off
if S.LP = 2 and not S.i then

S.LP := 1;
done := false ;

end_if ;

ready := ready and done;
until done end_repeat ;

Listing 4.3: Code for EFA A.
repeat

done := true;
// Event c_on
if A.LP = 1 and S.LP = 2 then

A.LP := 2;
done := false ;

end_if ;

// Event c_off
if A.LP = 2 and S.LP = 1 then

A.LP := 1;
done := false ;

end_if ;

ready := ready and done;
until done end_repeat ;

The program consists of three parts. In the first part the PLC inputs are copied to
the variables. In this case, the hardware address of i (in the program, denoted by S.i)
is %I0.0. The second part is the iteration loop. Here, the code for S and the code
for A is called (denoted by S() and A()) until ready equals T. The last part copies
writes the outputs. In this case, the output at hardware address %Q0.0 is switched on
when EFA A is in location 2.

Listing 4.4: Code for the initialization.
S.LP := 1;
A.LP := 1;

Listing 4.5: Code for the program.
// Part 1, get inputs
S.i := %I0 .0;

// Part 2, iteration loop
repeat

ready := true;
S();
A();

until ready end_repeat ;

// Part 3, put outputs
%Q0 .0 := A.LP = 2;
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4.6 Code optimization
In Section 4.4, it is shown that due to the real-time implementation, simultaneity and
inexact synchronization might occur. To avoid these problems, the cycle time of the
PLC and the variability of the cycle time of the PLC should be as short and as small
as possible. In this section, we propose an optimization method to lower the cycle
time.

The cycle time mostly depends on the time it takes to execute the generated code
(see the previous section). The execution time of the code depends on the number of
times the repeat statements in the LEFAs are executed and the number of times the
repeat statement in the program is executed. Hence, to reduce the cycle time, the
number of iterations should be reduced. The number of iterations depends on the
order of the transitions in the LEFAs (the local orders) and the order of the LEFAs in
the program (the global order), as shown in the following subsection.

If a supervisor satisfies the properties defined in Section 4.3, every derived controller
is nonblocking and exhibits the same behavior. This allows to arbitrarily choose the
local and global orders.

4.6.1 Local optimization
As an example of the ordering of events within an EFA, consider the controller model
shown in Figure 4.19, and two event orderings O1 = [a, b, c, d] and O2 = [b, d, a, c].
In case the controller is in state 1, ordering O1 updates the state of the supervisor
to state 5 in two iterations. In the first iteration, controllable events a, b, c, and d
are executed. In the second iteration, no event is executed. For ordering O2, four
iterations are required. In the first iteration, controllable event a is executed. In
the second iteration, controllable events b and c are executed. In the third iteration,
controllable event d is executed. In the fourth iteration, no event is executed. Since
the number of iterations determines the execution time of the code, ordering O1 is
preferred.

1 2 3 4 5
a b c d

u

Figure 4.19: A controller model.

To analyze the event-execution order, so-called activity-based dependency structure
matrices (DSMs) (Steward, 1981; Eppinger and Browning, 2012) are used. A DSM
provides a concise representation of the relations between the events in the system in
the form of a square matrix. The events are labeled along both axes of the matrix in
the same order. Filled off-diagonal entries are used to indicate relationships between
events. A filled element on row i, column j, indicates that event i depends on event
j. Lower-diagonal elements (i > j) indicate feedforward information, whereas upper-
diagonal elements (i < j) indicate feedback information. We define event dependency
as follows.
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Definition 20 (Event dependency). Event i depends on event j if there exist states
q, q′ ∈ Q such that j ∈ Elig(q), i /∈ Elig(q), δ(q, j) = q′ and i ∈ Elig(q′). In other
words, if in state q, event i is not enabled, but event j is, and after the execution of
event j, event i becomes enabled, then event i depends on event j.

The order can be optimized by applying sequencing techniques, such as described
in Kehat and Shacham (1973) and Kusiak and Wang (1993). This is a form of DSM
analysis that involves reordering the rows and columns of the DSM to minimize the
number of feedback elements and to minimize the distance between the feedback
elements and the main diagonal. Visually, this means that the elements are arranged
such that as few filled entries as possible are above the main diagonal, and that those
above the main diagonal are ‘pushed’ towards the main diagonal. Upper-diagonal
marks are typically undesired as upon evaluating the enablement of event i, event i
might not be enabled, whereas after executing event j it might be enabled, and the
enablement of event i has to be re-evaluated.

As an example, consider the EFA shown in Figure 4.19. The DSM shown on the
left-hand side of Figure 4.20, displays the event order O2. Here, the filled square in row
1, column 3, indicates that event b depends on event a, i.e., after event a, event b may
become enabled, as can be seen in the EFA. Uncontrollable events are not displayed,
as these should always be checked first (Prenzel and Provost, 2018). The DSM shown
on the right-hand side of Figure 4.19 is the result of sequencing the other DSM. The
result is event ordering O1. The DSM on the left-hand side has two feedback marks,
whereas the DSM on the right-hand side has no feedback mark. For this example, the
order is intuitive for the EFA. However, for more complex EFAs it is not always easy
to derive the order by hand.

b
d
a
c

b d a c
a
b
c
d

a b c d

Figure 4.20: Unscheduled event-order DSM (left) and scheduled event-order DSM (right).

By sequencing the event-execution order, the number of iterations required to
calculate the ‘end’ state of an LEFA is minimized.

4.6.2 Global optimization
Similar to the dependencies between events, dependencies between LEFAs in the code
can be analyzed such that the LEFA-execution order can be minimized. We define an
LEFA dependency as follows.

Definition 21 (LEFA dependency). LEFA L1 depends on LEFA L2 if there exists a
transition in L1 with a variable in a guard whose value is updated by an update in L2.

In Figure 4.21, the dependencies for the 37 LEFAs in the Oisterwijksebaan bridge
model (Chapter 7) are shown, alphabetically. In total, there are 70 feedback marks.
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Barrier1Actuator: 1
Barrier1ClosedTimer: 2
Barrier1OpenTimer: 3

Barrier2Actuator: 4
Barrier2ClosedTimer: 5
Barrier2OpenTimer: 6

BarrierLightsActuator: 7
BarrierLightsAlternate : 8

BarrierLightsSignal: 9
BarriersTimer: 10
BrakeActuator: 11

BridgeClosed: 12
BridgeDirection: 13

BridgeMotor: 14
BridgeSpeed: 15

EmergencyStop: 16
LMLockedTimer: 17

LMPump: 18
LMUnlocked100msTimer: 19

LMUnlocked3sTimer: 20
LMValve: 21
SCADA: 22

StopSignsActuator: 23
TimerStopSigns: 24

VTL1: 25
VTL2: 26
VTL3: 27
VTL4: 28
VTL5: 29
VTL6: 30
VTL7: 31
VTL8: 32

VTLBlockCommand: 33
VTLCommands12: 34
VTLCommands34: 35
VTLCommands56: 36
VTLCommands78: 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Figure 4.21: LEFA dependencies for the Oisterwijksebaan bridge, ordered alphabetically.

In Figure 4.22, the sequenced LEFA dependencies are shown. Here, there are only
34 feedback marks. Additionally, three feedback blocks are identified, depicted in red.
When an event occurs in a feedback block, only the LEFAs in this block have to be
re-evaluated. Hence, instead of having one global iteration loop, three smaller loops
can be constructed. The LEFAs have to be iterated only for these smaller loops. The
iteration loop for the LEFAs is shown in Listing 4.6. Here, LEFA([1..3]) means that
LEFA 1, LEFA 2, and LEFA 3 are called.

4.7 Concluding remarks
This chapter presents a method that allows to verify whether a supervisor, obtained
via supervisor synthesis, is suitable to be used as a PLC controller. Compared to the
supervised control setting (Charbonnier et al., 1995; Basile and Chiacchio, 2007), the
additional step of designing a controller by hand is omitted. Instead, the controller
is automatically derived from the supervisor. By using this method, the advantages
of supervisor synthesis, such as correctness-by-construction and nonblockingness,
automatically apply to the obtained controller. While other research also focuses
on deriving controllers from supervisors, a problem that is often encountered there
is that the derived controller can be blocking. Only after proving confluence, finite
response, and nonblocking under control, it is guaranteed that any derived controller
is nonblocking.

For the presented method, it has been shown which issues can be encountered.
For these issues, it is shown how to verify that the obtained controller does not suffer
from them. Furthermore, an event-execution ordering method and an LEFA-execution
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EmergencyStop: 1
TimerStopSigns: 2

BarriersTimer: 3
SCADA: 4

StopSignsActuator: 5
VTLCommands12: 6
VTLCommands34: 7

VTLBlockCommand: 8
VTLCommands56: 9
VTLCommands78: 10

BarrierLightsActuator: 11
BarrierLightsSignal: 12

BarrierLightsAlternate : 13
Barrier1OpenTimer: 14

Barrier1ClosedTimer: 15
Barrier1Actuator: 16

Barrier2OpenTimer: 17
Barrier2ClosedTimer: 18

Barrier2Actuator: 19
BrakeActuator: 20

VTL1: 21
VTL2: 22
VTL3: 23
VTL4: 24
VTL5: 25
VTL6: 26
VTL7: 27
VTL8: 28

LMUnlocked100msTimer: 29
LMLockedTimer: 30

LMValve: 31
LMPump: 32

BridgeMotor: 33
LMUnlocked3sTimer: 34

BridgeClosed: 35
BridgeDirection: 36

BridgeSpeed: 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Figure 4.22: Sequenced LEFA dependencies for the Oisterwijksebaan bridge.

Listing 4.6: Pseudo code for the LEFA iteration.
LEFAs ([1..3]);
repeat

ready := true;
LEFAs ([4..5]);

until ready end_repeat ;
repeat

ready := true;
LEFAs ([6..10]);

until ready end_repeat ;
LEFAs ([11..20]);
repeat

ready := true;
LEFAs ([21..28]);

until ready end_repeat ;
LEFAs ([29..37]);

ordering method are proposed that minimize the cycle time of the PLC and the
variability in the cycle time. A low cycle time automatically reduces the possibility of
inexact synchronization and simultaneity. Finally, a code generation method for PLC
code is proposed that preserves the model structure as much as possible.





Chapter 5

Supervisor synthesis for safety
PLCs

Industrial systems that operate in close proximity to humans are required to adhere
to safety standards. For example, supervisory controllers for infrastructural systems
such as waterway locks and movable bridges are required to adhere to the machinery
directive (European Commission, 2006), by means of complying with the IEC 61508
standard regarding machine safety. Safety functions of the control systems used
to be hard-wired, but are now generally implemented in (control) software. PLC
manufacturers support this by offering so-called safety PLCs (SPLCs), for which the
hardware adheres to the IEC standards.

SPLCs differ from regular PLCs (RPLCs), as they have additional dedicated inputs
and outputs for safety certified sensors and actuators, and they have a separate safety
program. In other words, the controller code and the inputs and outputs are split
into a regular part and a safety part. The safety part contains the safety-critical
control functions. The developed safety program has to be certified to comply with
the required safety standards.

Synthesis tools such as CIF (van Beek et al., 2014) and Supremica (Malik et al.,
2017) do not support distributed implementation of a single supervisory controller on
the regular program and the safety program of the SPLC. A solution is to separately
develop a regular supervisory controller and a safety supervisory controller. This
can be difficult, as the behavior of the system depends on the joint control of both
supervisory controllers. Due to this, it is difficult to analyze the behavior of the
supervisory controllers separately. Another solution is to synthesize a single supervisor
and then split it in the two parts, from where the supervisory controllers can be
derived. The latter option is investigated in this chapter.

In the literature, SPLCs have been the focus of some studies, mostly in the context
of formal verification. In Darvas et al. (2016), verification of safety functions has been
studied. This method uses a requirements model to prove correctness of the controller
code. In Ždánsky and Valigursky (2018), the diagnostic and performance functionality

This chapter is based on: Reijnen, F.F.H., Erens, T.R., van de Mortel-Fronczak, J.M., and
Rooda, J.E. (2020). “Supervisory control synthesis for safety PLCs”. In: Proceedings of the 15th
Workshop on Discrete Event Systems. IFAC, In press.
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of SPLCs has been studied. Splitting a supervisor in multiple supervisors has also
been studied before, for example, in the context of distributed control in Cai and
Wonham (2010). However, the goal there is to control multiple systems that have to
work together, whereas for SPLCs, a single system is controlled with two supervisors.
To the best of our knowledge, no work has previously been performed specifically on
synthesizing, splitting, and implementing a supervisor on SPLCs.

The contribution of this chapter is a method to automatically split a supervisor
into a supervisor for the regular part and a supervisor for the safety part, where both
parts can be used to derive controller code for their respective programs on an SPLC.
The applicability of this method is demonstrated by designing and implementing a
supervisory controller for a real bridge.

This chapter is structured as follows. In Section 5.1, the way of working of an
SPLCs is discussed. The modeling method used in this chapter is introduced in
Section 5.2. The method to split and implement a synthesized supervisor on an
SPLC is provided in Section 5.3. In Section 5.4, an illustrative example is provided.
Validation of the method is discussed in Section 5.5. Finally, Section 5.6 concludes
this chapter.

5.1 Safety PLCs
In this section, the way of working of an SPLC is discussed. In Figure 5.1, the
component architecture of an SPLC is shown.

XS IS

IRXR CR

CS QS YS

QR YR
getIR putQR

getIS putQS

RPLC Program

SPLC Program

MR

MS

DR

DS

Figure 5.1: SPLC component architecture.
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Compared to the architecture of an RPLC, an SPLC has an additional layer of
safety components with interaction between the regular and safety component layers.
Here, each component that is also present in an RPLC is subscripted with an R. In
this figure, the components are as follows: X and Y are the input signals (sensors)
and the output signals (actuators), respectively, I and Q are the images of the input
and output, respectively, C contains the controller code, and M is the data memory of
C. For each of these, there exist a regular variant and a safety variant. DR and DS are
data buffers for the communication from the regular program to the safety program
and vice versa, respectively. The arrows indicate the direction of data flows, e.g., CS
reads data from IR, IS, MS, and DR, and writes data to MS, DS, QR, and QS. It is
important to note that CR cannot write to QS, which ensures that all safety outputs
are controlled by CS.

An SPLC scan cycle consists of an execution of CS followed by an execution of
CR. Each execution is preceded by its associated getI and succeeded by its associated
putQ actions. The getI action copies the values of the input signals to the input image
and the putQ action copies the values of the output image to the output signals. The
images ensure that data available to the program is consistent during the program
execution. Here, it is assumed that the safety part and the regular part are executed
alternately, as shown in Figure 5.2. The assumption is based on a common mode of
operation for SPLCs.

getIS CS putQS getIR CR putQR

t

Figure 5.2: An SPLC scan cycle.

Within CS, three parts can be distinguished: preprocessing, safety logic, and
postprocessing. Preprocessing verifies the validity of the sensor signals, for example
by one-out-of-two diagnostics. Postprocessing acts as a feedback loop that checks
whether the actuator signals have been received by the actuator. When a discrepancy
is detected in either the preprocessing or the postprocessing, the actuator signals are
set to a predefined safe state. The safety logic is the controller code. In general, the
controller code of CS can be either a ladder diagram or a function block diagram. In
this chapter, the focus is on the safety logic. The reason for this is that preprocessing
and postprocessing are often embedded in SPLCs by the manufacturers, and otherwise
standardized function blocks can be used, as defined in PLCopen (2018).

5.2 Modeling framework
This section provides the preliminaries on the modeling framework and implementation
method used in this chapter. In this chapter, it is assumed that the plant is modeled
using finite automata and Boolean input variables (BIVs), and that the requirements
are modeled using event conditions.

A plant model consists of a set P of component models, P = {P1, . . . , Pm}, and a
set I of BIVs. A component is modeled as an FA. For all FAs P , the functions loc(P )
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and evt(P ) are defined that return the set of locations and the set of events of P ,
respectively. The elements in I model the variables in the input image of the PLC.

For supervisor synthesis, BIVs are converted to their FA representation. The
FA representation of a BIV is as follows: PBIV = ({F,T}, {on, off}, {(F, u_on,T),
(T, u_off,F)},F, {F,T}). This FA is shown in Figure 5.3.

F T

u_off

u_on

Figure 5.3: FA representation of PBIV.

A requirements model consists of a set R of event conditions, R = {R1, . . . , Rn}.
An event condition is defined as a 2-tuple R = (σ, c), where σ is an event defined in
the plant model and c is a Boolean condition. Event σ is enabled only if c evaluates
to T. A condition is defined by the following grammar in Backus-Naur Form:

〈c〉 ::= F | T | vl | i |〈c〉 ∧ 〈c〉|〈c〉 ∨ 〈c〉|¬〈c〉 (5.1)

where vl a is reference to a location in an FA which evaluates to T if and only if the
current location of that FA is l, and i ∈ I is a BIV. For all conditions c, the functions
loc(c) and biv(c) are defined that return the set of all location references and the set
of all BIVs in c, respectively.

Without loss of generality, in the remainder of this chapter it is assumed that P , I
and R together satisfy the safety, controllability, and nonblocking property. This can
be justified, because whenever synthesis does generate additional guards, they can be
included in R. Furthermore, in Goorden and Fabian (2019), it has been shown that
for realistic models this assumption often already holds, in other words, synthesis is
not necessary.

5.2.1 Implementation
It should be noted that the supervisor is implemented as a controller. Subtle differences
exist between a supervisor (that can only forbid events) and a controller (that can
choose to execute some events), see, e.g., Fabian and Hellgren (1998), Zaytoon and
Riera (2017), and Reijnen et al. (2019a). How to handle these differences is described
in Chapter 4.

For connecting the variables in the input image of the PLC to the supervisor,
the BIVs already defined in the plant model are used. The variables in the output
image of the PLC are modeled by set Q of Boolean output variables. For connecting
these variables to the supervisor, a hardware mapping is supplied. Here, a hardware
mapping TQ denotes the relation between an event and a value assignment to a variable
in Q. Formally:

TQ ⊆ Σc ×Q×B (5.2)
where B denotes the Boolean values, B = {T,F}. For example, (σ, q,T) ∈ TQ defines
that when σ occurs, the value T is assigned to q. Note that in the previous chapter,
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the state is used to set the outputs. When using the modeling method proposed in
Chapter 3, both can be used interchangeable.

5.3 Splitting method
In this section, the method is described that can be used to split a supervisor for the
implementation on an SPLC. The general idea is as follows. First, a plant model and a
requirements model are developed that represent a supervisor. Then, the requirements
are (manually) partitioned into disjoint sets of regular requirements R′R and safety
requirements R′S. Based on this, the plant model, the requirements model, the input
image, and the output image are split and the necessary data communication between
the parts is derived, as shown in Figure 5.4. Here, DR and DS model the variables in
DR and DS, respectively.

P , R′R, R′S, I, Q

PR, RR, IR, QR, DR PS, RS, IS, QS, DS

Figure 5.4: Desired result after splitting.

Notice that R′R and R′S may differ from RR and RS, where the latter denote the
requirements in the regular part and the requirements in the safety part, respectively

The objectives of the splitting are given in Sections 5.3.1. The proposed splitting
procedure is given in Section 5.3.2. In Section 5.3.3, it is proven that splitting does
not influence the behavior of the supervisor. Section 5.3.4 discusses code generation
for the safety part.

5.3.1 Objectives of the splitting
For splitting, it is assumed that each condition for a requirement in R′S is derived
entirely from (safety) BIVs. This is necessary, as in PLCopen (2018) it is defined
that safety requirements have to be derived from sensors directly (instead of internal
variables). Formally,

∀(σ, c) ∈ R′S : loc(c) = ∅ (5.3)

The result of the splitting has to adhere to the following six requirements. First of all:

(r1) Each safety requirement has to be included in the safety part, i.e., R′S ⊆ RS.

In PLCopen (2018), it is specified that if an output-image variable is associated with a
safety requirement, that variable has to be included in the safety output image. This
results in the following:

(r2) Each variable in the output image that is associated with an event subjected to
a safety requirement has to be included in QS.



82 Chapter 5. Supervisor synthesis for safety PLCs

Due to the SPLC architecture, see Figure 5.1, events that result in the assignment of
a value to a variable in the safety output image have to be included in the safety part.
This gives rise to the third restriction.

(r3) Each event that results in that assignment of a value to a variable in QS has to
be included in the safety part.

Finally, because the safety program should be as small as possible (e.g., for fast
execution), the following should hold:

(r4) PS and RS should be as small as possible.
(r5) DR and DS should be as small as possible.
(r6) IS and QS should be as small as possible.

These restrictions state that only the strictly necessary elements should be included
in the safety part. When only looking at r4-r6, a solution with the empty set would
seem an acceptable answer, but it is not due to r1-r3.

5.3.2 Splitting
It is assumed that the plant model is a product system, which means that the event
sets of component models are pairwise disjoint. If the plant is not a product system,
it can be obtained by performing the procedure described in de Queiroz and Cury
(2000). In that procedure, if two component models share events, they are replaced
by their synchronous product. When the modeling method described in Chapter 3 is
used, only the components that share physical relations have to be combined.

From the assumption that requirements in R′S are derived from safety BIVs and
(r6), definitions for the safety input image and the regular input images are derived:

IS = {i ∈ I | ∃(σ, c) ∈ R′S, i ∈ biv(c)} (5.4)

IR = I \ IS (5.5)

From (r2) and (r6), definitions for the safety output image and regular output image
are derived:

QS = {q ∈ Q | ∃(σ, c) ∈ R′S, b ∈ B, (σ, q, b) ∈ TQ} (5.6)

QR = Q \QS (5.7)

From (r2) and (r3), it follows that the component models that belong to PS are those
that contain either an event subjected to a safety requirement or an event that results
in the assignment of a value to a variable in the safety output image.

PS = {P ∈ P | ∃(σ, c) ∈ R′S, σ ∈ evt(P )}∪
{P ∈ P | ∃(σ, q, b) ∈ TQ, σ ∈ evt(P ), q ∈ QS, b ∈ B} (5.8)

PR = P \ PS (5.9)
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Due to the product system assumption, two disjoint event sets for the safety and
regular parts can be derived.

ΣS = {σ | ∃P ∈ PS, σ ∈ evt(P )} (5.10)

ΣR = {σ | ∃P ∈ PR, σ ∈ evt(P )} (5.11)
From (5.8) and (5.10), it follows that all events that are subjected to safety requirements
belong to ΣS. The regular requirements can be formulated for events in ΣS and ΣR.
Hence, R′R can be split into regular requirements for ΣS and regular requirements for
ΣR.

RS
R = {(σ, c) ∈ R′R | σ ∈ ΣS} (5.12)
RR

R = {(σ, c) ∈ R′R | σ ∈ ΣR} (5.13)
Because of (r4), requirements in RS

R should be included in the regular program,
whenever possible. This is only possible if the evaluation result of the requirement’s
condition does not change during the safety cycle (otherwise the splitting can influence
the behavior of the supervisor). This can be violated when, e.g., the value of a variable
in IS is used to evaluate a condition and this value changes when the getIS is performed.
Therefore, the regular requirements which evaluations can change during the safety
program cycle have to be included in the safety part. Formally, these requirements are

RSS
R = {(σ, c) ∈ RS

R |biv(c) ∩ IS 6= ∅ ∨
loc(c) ∩

⋃
P∈PS

loc(P ) 6= ∅} (5.14)

The other requirements in RS
R can be included in the regular part.

RSR
R = RS

R \ RSS
R (5.15)

The event conditions in RSR
R can be evaluated in the regular part and then the

evaluation result can be communicated to the safety part via the data buffer DR. To
this end, conditions for the same events are combined by putting them into conjunction,
as in (5.16). This ensures that each event has exactly one condition evaluation that
has to be communicated (r4, r5).

∀σ ∈ ΣS : cσ =
∧

(σ,c)∈RSR
R

c (5.16)

Given a valuation v for the variables, we define vσ = v |= cσ. The reason to introduce
vσ is that sometimes cσ has to be evaluated before it is used, e.g., it is evaluated in
the regular part and used later in the safety part. The following requirements are
added to replace the requirements in RSR

R . These requirements state that for event σ
the evaluation result of cσ has to be T.

RD = {(σ, vσ) | σ ∈ ΣS} (5.17)

The requirements in the safety program and the regular program are

RS = R′S ∪RSS
R ∪RD (5.18)
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RR = RR
R (5.19)

It should be noted that RSR
R is effectively replaced by cσ, vσ, and RD.

Finally, the programs cannot access variables from the other program part, as
these are saved in MR or MS (see Figure 5.1). Therefore, some evaluation results and
location references have to be communicated, which are given in (5.20) and (5.21) for
DR and DS, respectively. From (5.3), it follows that conditions of requirements in R′S
cannot contain location references. Similarly, because of (5.14), (5.15), and (5.16),
conditions cσ cannot contain location references to components in PS.

DR = {vσ | ∃(σ, vσ) ∈ RD} ∪ {vl | ∃(σ, c) ∈ RSS
R , l ∈ loc(c) ∩

⋃
P∈PR

loc(P )} (5.20)

DS = {vl | ∃(σ, c) ∈ RR
R, l ∈ loc(c) ∩

⋃
P∈PS

loc(P )} (5.21)

Now, all sets shown in Figure 5.4 are defined.

5.3.3 Proof of equal behavior
The result is that the supervisors before and after the splitting have equal behavior.
To prove this, first notions of equal restrictiveness are defined.

Definition 22. Two requirements R1 = (σ, c1) and R2 = (σ, c2) are said to be equally
restrictive iff c1 and c2 are logical equivalent.

Definition 23. Two sets of requirements R1 and R2 are said to be equally restrictive
iff for each event σ, (σ,∧(σ,c)∈R1 c) is equally restrictive as (σ,∧(σ,c)∈R2 c).

Definition 24. Let P and I model a plant and R1 and R2 be sets of requirements.
The behavior of (P , I,R1) is equal to the behavior of (P , I,R2) if R1 and R2 are
equally restrictive.

Using these definitions, it can be proven that the behavior of the supervisor before
the split is equal to the behavior of the supervisors after the split.

Proposition 4. Let S1 be (P , I,R) and S2 be (PR ∪PS, IR ∪ IS,RR ∪RS), as defined
in Section 5.3.2. Assuming that each cσ is evaluated when its value is needed, such
that vσ in (5.17) can be substituted by cσ, then, S1 and S2 have equal behavior.

Proof. To prove this proposition, it is shown that the plant models of S1 and S2 are
equal and that the requirements of S1 and S2 are equally restrictive. It follows from
(5.8) and (5.9) that P = PR ∪ PS. It follows from (5.4) and (5.5) that I = IR ∪ IS.
Hence, the plant models are equal. As defined in Section 5.3, R = R′R ∪ R′S. From
this and (5.12), (5.13), (5.14), and (5.15), it follows that the requirements of S1 are
R1 = RR

R ∪RSS
R ∪RSR

R ∪R′S. From (5.18) and (5.19), it follows that the requirements
for S2 are R2 = RR

R ∪R′S ∪RSS
R ∪RD. From Definition 2, it follows that R1 is equally

restrictive as R2 if RD is equally restrictive as RSR
R . So now it remains to be proven

that RD is equally restrictive as RSR
R . (5.12) and (5.15) assure that all requirements

in RSR
R apply to events in ΣS. In combination with (5.16) and (5.17), Definition 23,
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and the assumption that vσ can be substituted by cσ, this shows that RD is equally
restrictive as RSR

R . Therefore, R1 is equally restrictive as R2. It is concluded that S1
and S2 have equal behavior.

To investigate how the SPLC scan cycle (show in Figure 5.2) influences the behavior
of the supervisor on the SPLC, the execution of the SPLC is modeled. This is similar
to the method suggested in Roussel and Giua (2005), where the scan cycle of the
RPLC has been modeled. The model of the SPLC is shown in Figure 5.5. The location
S denotes the execution of the safety part, whereas R denotes the execution of the
regular part. Events in ΣS and ΣR can only be executed in their respective part, as
denoted by the self loops. The event regular denotes a switch to the regular part.
When this event occurs, the values of the variables in DS and IR are updated (similar
to the getIR action in Figure 5.2). Similarly, the event safe denotes a switch to the
safety part. When this event occurs, the values of the in DR and IS are updated.

S R

safe
update DR and IS

regular
update DS and IR

ΣS ΣR

Figure 5.5: Model of the execution of an SPLC.

The variables in DS and DR are only updated when events regular and safe
occur, respectively. Therefore, for variables in DS and DR, it has to be shown that
their value cannot change in locations R and S, respectively.

It follows from (5.21) that DS contains location references to components in PS
only. Figure 5.5 shows that the values of these variables cannot change in location R,
as ΣS is not enabled here. Hence, the value of the variables in DS cannot change in
location R.

It follows from (5.20) that DR contains location references and vσ variables. DR
contains location references to components in PR only. Figure 5.5 shows that the
values of these variables cannot change in location S, as ΣR is not enabled here. For
the vσ variables in DR, it follows from (5.14), (5.15), and (5.16) that their values
are calculated from IR and location references to components in PR. These values
remain unchanged in location S. As a result, the values of vσ variables cannot change
in location S. Hence, the value of the variables in DR cannot change in location S.

Because of the results from Propositions 4 and the above reasoning, it is concluded
that the splitting and data communication do not influence the behavior of the
supervisor.

5.3.4 Safety implementation
Currently, tools such as CIF and Supremica are capable of generating code for a
regular program, but not for a safety program. Below, a procedure to generate
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function block diagrams (FBDs) is defined. This procedure is similar to the ladder
diagram implementation described in Fabian and Hellgren (1998). Here, FBDs are
generated as they are used more frequently nowadays. The following procedure is
applied:

1. Introduce Boolean location variables for each location of each plant component,
the initial value of the initial location variable is T and for all other locations F.

2. For each event, an FBD is created that encodes whether an event is enabled. An
event is enabled when 1) the component model is in a location where the event
is enabled, and 2) all event conditions for this event evaluate to T. Conditions as
defined in (5.1) are translated into FBDs as follows: F and T are PLC literals,
vl is a location variable, i is a reference to a variable in the input image, c ∧ c is
an AND function block, c∨ c is an OR function block, and ¬c is an INVERSION
function.

3. When an event is enabled, the transition and output update are encoded with
SET and RESET function blocks. The origin location of the transition is reset
(set to F) and the terminal location of the transition is set (set to T). Additionally,
the variables in Q are reset and set according to TQ.

5.4 Method illustration
To illustrate the method presented in the previous section, the splitting of a part of a
supervisor for a bridge is shown1. Consider the following components: a boom barrier,
a bridge deck, a vessel traffic light, an emergency stop, and three commands (open
bridge, stop bridge, and close bridge). For controlling the position of the bridge deck,
an actuator is present. The model of this actuator is shown in Figure 5.6.

Closing Idle Opening

c_emrgStop,
c_stop

c_close c_open

c_emrgStop,
c_stop

Figure 5.6: Component model of the bridge actuator Pbridge.

The following sensor signals are available: boom barrier is closed, vessel traffic
light shows a red aspect, emergency stop, open command, close command, and stop
command, denoted by the following BIVs I = {ibbc, ivtlr, ies, ioc, icc, isc}. Two actuator
signals are controlled: opening the bridge and closing the bridge, so Q = {qopen, qclose}.
The hardware mapping is as follows: TQ = {(c_open, qopen, T), (c_close, qclose, T),
(c_emrgStop, qopen, F), (c_emrgStop, qclose, F), (c_stop, qopen, F), (c_stop, qclose,
F)}.

1A more elaborate example is provided at www.github.com/ffhreijnen/WODES2020
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The desired behavior is modeled using 12 requirements, provided below. Require-
ments in R′S are indicated by (S), other requirements belong to R′R. It can be shown
that the plant in combination with these requirements is safe, controllable, nonblocking,
and maximally permissive.

r1: c_open needs ibbc (S)
r2: c_open needs ¬ies (S)
r3: c_open needs ioc
r4: c_open needs ¬icc
r5: c_open needs ¬isc
r6: c_stop needs isc

r7: c_close needs ivtlr (S)
r8: c_close needs ¬ies (S)
r9: c_close needs icc
r10: c_close needs ¬ioc
r11: c_close needs ¬isc
r12: c_emrgStop needs ies (S)

To split the supervisor, the method described in the previous section is used.
First, it is verified that (5.3) is satisfied. Then, the input image is partitioned as
defined in (5.4) and (5.5): IS = {ibbc, ivtlr, ies} and IR = {ioc, icc, isc}. Next, the output
image is partitioned as defined in (5.6) and (5.7): QS = {qopen, qclose} and QR = ∅.
From (5.8) and (5.9), it can be derived that PS = {Pbridge} and PR = ∅. As a result,
ΣS = {c_open, c_close, c_stop, c_emrgStop} and ΣR = ∅.

The following requirement partitioning can be obtained. Since ΣR = ∅, it follows
from (5.13) that no requirements are part of RR

R, and from (5.12) it follows that
RS

R = {r3, r4, r5, r6, r9, r10, r11}. From (5.14) and (5.15), it follows that RSR
R = RS

R
and RSS

R = ∅.
The requirements in RSR

R are merged as in (5.16), such that the following conditions
are obtained:

- cc_open = ioc ∧ ¬icc ∧ ¬isc
- cc_close = icc ∧ ¬ioc ∧ ¬isc
- cc_stop = isc

The additional RD requirements, as defined in (5.17) are

r13: c_open needs vc_open

r14: c_close needs vc_close

r15: c_stop needs vc_stop

As a result, the requirements in the safety part and in the regular part are:
RS = {r1, r2, r7, r8, r12, r13, r14, r15} and RR = ∅.

In this example, there is no location reference communication necessary, as defined
in (5.20) and (5.21). The variables vc_open, vc_close, and vc_stop are communicated via
DR, as defined in (5.20).

To illustrate the proposed safety implementation, the FBD for the open event is
shown in Figure 5.7. Here, the outputs on the right-hand side are enabled whenever
the inputs on the left-hand side are all true. The circle indicates the INVERSION
function. vIdle and vOpening are location variables.
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Figure 5.7: Function block diagram for the open event.

5.5 Validation of the method
The proposed method of splitting the supervisor is validated in three ways. To this
end, the plant and requirements models for the Oisterwijksebaan bridge (shown in
Figure 5.8), a swing bridge located in the Wilhelmina Canal in Tilburg, are used. The
plant model of this bridge consists of 39 components and 51 BIVs. The requirements
model consists of 118 regular requirements and 48 safety requirements. There are 39
outputs to be controlled. This supervisor has been split with the method proposed in
Section 5.3. The currently implemented controller code of the bridge is available such
that it can be compared to the controller code obtained from the model.

Figure 5.8: The Oisterwijksebaan bridge.

First, the split supervisor is used to generate controller code (for a SIMATIC
S7-300 CPU315F-2 PN/DP SPLC from Siemens) that has been implemented on the
real bridge. The size of the generated code is around 100 kB. The available size
is 2 MB. To validate the behavior, existing site acceptance tests (SATs) have been
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performed. A SAT protocol describes how the supervisory controller should react
under a specific circumstance. The performed tests are categorized into two groups:
1) does the supervisory controller restrict unsafe behavior and 2) does the supervisory
controller perform required behavior. During the tests no anomalies were observed,
and it was concluded that the behavior of the supervisory controller was in accordance
with the desired behavior.

Second, the input and output image partitioning is compared to the manually
defined input and output image partitioning. The manually defined partitioning is the
one currently used to control the bridge. The results for the splitting of I and Q are as
shown in Table 5.1. The off-diagonal elements in this table denote differences between
the automatic and manual splitting. As can be seen in the table, almost all variables
are partitioned the same as was chosen manually (the main-diagonal elements). For
the outputs, the partitioning was identical. For the inputs, only four variables differ.
Here, four safety inputs in the manual split were chosen to be regular according to the
presented method. Upon closer inspection of the code, none of these inputs were used
in the safety part. Therefore, they could have been implemented as regular inputs.

Table 5.1: I and Q partitioning comparison.

Automatic
IS IR QS QR

M
an

ua
l IS 22 4

IR 0 25
QS 24 0
QR 0 15

Third, the generated FBDs are compared with the manually programmed FBDs.
Both FBDs adhere to a similar structure and implement the same safety constraints.
A difference noticeable in the generated FBDs compared to the manually programmed
FDBs are the extra variables required for keeping track of the automata locations,
e.g., the variables vIdle and vOpening in Figure 5.7. It should be investigated whether
the output-image variables can be used to keep track of the current location. For
example, for the supervisory controller in the previous section, the value of vOpening is
always equal to the value of qopen.

5.6 Concluding remarks
This chapter presents a method that can be used to split a given supervisor into a
supervisor for the regular part and a supervisor for the safety part. This splitting
method is based on the partitioning of the requirements models into regular require-
ments and safety requirements. The splitting as proposed allows for a supervisor to be
implemented on an SPLC. Furthermore, it is shown that the behavior of the supervisor
before the split is equal to the behavior of the supervisors after the split. This ensures
that the properties guaranteed by supervisor synthesis still hold. Comparing a super-
visor obtained via this method to a manually designed supervisor shows that a similar
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partitioning can be obtained. Finally, implementing the supervisor (as a supervisory
controller) on a real bridge shows a proof of concept for practical applicability of this
method.

This method assumes that the regular program and safety program are alternately
executed. In some cases, the safety program interrupts the regular program at certain
time intervals. More research is required to determine whether this method is still
applicable in this case.



Chapter 6

Hardware-in-the-loop set-up for
supervisory controllers

Although synthesis guarantees that the supervisory controller adheres to the require-
ments, it is not always clear if the requirements are complete and correct. Therefore,
the behavior of the supervisory controller has to be validated. Model simulation
is often used for this purpose. It is a quick and intuitive method for validation of
the supervisory controller’s behavior. For simulation, the model of the supervisory
controller is combined with a model of the plant. Model simulation allows an engineer
to analyze the controlled behavior of a system under different scenarios. When unde-
sired behavior is observed, the plant or the control requirements can be adapted, a
new supervisor can be synthesized, and a new supervisory controller can be derived.
While simulation is a valuable tool for early validation, it provides only a partial
analysis. One of the main shortcomings is that a model of the supervisory controller
is simulated, and not the actual implementation code. Another shortcoming is that
the simulation platform and the implementation platform, often a programmable logic
controller, have different operating semantics. Also, performance metrics such as
cycle times cannot be derived from the simulation. Finally, communication to other
subsystems such as an interface for operators cannot be tested. To overcome all these
shortcomings, hardware-in-the-loop (HIL) simulation can be performed after model
simulation and before implementation in the real system.

HIL simulation is a method in which the supervisory controller is implemented
on the hardware, but instead of the hardware being connected to the real plant, it is
connected to a model of the plant. HIL simulation offers the same advantages as model
simulation, such as early validation and the possibility to simulate scenarios that
would be unsafe to test on the real system. In addition, as the implementation code is
run on the hardware, the performance metrics can be measured and the interaction
with other subsystems can be evaluated. The increase in test coverage contributes
towards improving the supervisory controller in the early design phase. Because of
this, HIL simulation has been proven to be useful for a range of applications, such as

Reijnen, F.F.H., Verbakel, J.J., van de Mortel-Fronczak, J.M., and Rooda, J.E. (2019). “Hardware-
in-the-loop set-up for supervisory controllers with an application: The Prinses Marijke complex”. In:
Proceedings of the 3rd Conference on Control Technology and Applications. IEEE, pp. 843-850.
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wind turbines (Li et al., 2010), mineral grinding (Dai et al., 2016), and traffic control
(Bullock et al., 2004).

HIL simulation in combination with synthesis has been explored before in Theunis-
sen et al. (2009) and Diogo et al. (2012). In Theunissen et al. (2009), a supervisory
controller for a patient support system for an MRI has been developed. The supervi-
sory controller was first validated using model simulation. Subsequently, the model of
the supervisory controller was connected to the real hardware. Different from the HIL
simulation described above, a model of the supervisory controller was connected to
the plant realization, instead of connecting the realization of the supervisory controller
to a model of the plant. This is a different type of HIL simulation. While this
method can be beneficial for rapid prototyping, it requires the plant to be available.
In Diogo et al. (2012), an implementation environment for automated manufacturing
systems, which uses HIL concepts, is presented. Here, parts of the plant are simulated,
while the supervisory controller is implemented on the real PLC. In that study, a
separate simulation environment has been coded in a SCADA system to represent all
the components. The simulated components can gradually be replaced by the real
components. In Diogo et al. (2012), manual coding of both the supervisory controller
and the simulation environment has been applied, which is time consuming and error
prone.

Supervisor synthesis, model simulation, and HIL simulation all require a model
of the plant. Specifically for synthesis, a discrete-event model without time is used.
For model simulation and HIL simulation the model is enriched with continuous-time
behavior. Remodeling the plant for each step is very time consuming and error prone.
Remodeling also is unnecessary as these models are very similar. Moreover, when
the design of the plant changes, the changes have to be implemented in all models
separately. Hence, to streamline the development process, reuse of the already available
models is desired.

The main contribution of this chapter is twofold. Firstly, it presents a method that
combines synthesis-based engineering and HIL simulation. For this method, the models
already available for supervisor synthesis are refined and re-used to automatically
generate the plant model for HIL simulation. Compared to Diogo et al. (2012), this
approach decreases the development time and reduces coding errors. The second
contribution of this chapter is the description of an application of the proposed method
to an industrial case, the Prinses Marijke complex. For this case, the necessary models
have been developed and implemented in an experimental HIL set-up. The models
and additional information are available in the repository1.

This chapter is structured as follows. The Prinses Marijke complex used as the case
study is introduced in Section 6.1. The set-up used for HIL simulation is presented
in Section 6.2. In Section 6.3, the proposed method is used to develop a supervisory
controller and a HIL simulation for the Prinses Marijke complex. Finally, Section 6.4
concludes this chapter.

1www.github.com/ffhreijnen/PrinsesMarijkeComplex
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6.1 The Prinses Marijke complex
As a case study, the Prinses Marijke complex is considered. The complex, depicted in
Figure 6.1, consists of two waterway locks (left-hand side) and a floodgate (right-hand
side). Under normal conditions, the floodgate is open and vessels can pass under it.
In case of high water levels, the floodgate is closed to regulate the water flow in the
Amsterdam-Rhine Canal. In this case, vessels have to travel via the locks.

Figure 6.1: Overview of the Prinses Marijke complex [https://hofstraheersche.nl].

A waterway lock is used in canals and rivers to raise or lower vessels between
different water heights. Moreover, similar to the floodgate, it is used to block and
regulate the water flow. To do this, a lock consists of a large chamber (here: 300 m ×
18 m), that is separated from the rest of the canal by watertight gates at both sides.
The water level inside the chamber can be varied by opening or closing paddles in
the gates. Vessels entering and leaving the lock are signaled by lock traffic lights. An
operator is responsible for controlling the lock, i.e., opening and closing the gates and
paddles, and switching the traffic light aspects.

Building of the Prinses Marijke locks was completed in 1939, while the floodgate
was completed in 1981. Many of the technical installations are approaching the end of
their life, and a complete renovation of the complex is planned. Part of this renovation
includes the supervisory control system. Currently, the supervisory controller is
implemented using a relay control box. Operators interact with the supervisory
controller via a control panel consisting of push buttons and feedback lamps. To
increase safety and functionality, the relay circuits will be replaced by a PLC and the
control panel by a graphical user interface.
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6.2 Hardware-in-the-loop simulation
As discussed before, model simulation is a valuable tool for early validation, yet it is
only a partial analysis. HIL simulation offers a method to validate the behavior of the
supervisory controller implemented on a PLC (in contrast to a model of the supervisory
controller) with its subsystems, e.g., a GUI or a logging system, together with a model
of the plant. To implement this method, a (Java) program, that is used as the plant
model in HIL simulation, is automatically generated from the simulation model, such
that no additional modeling or coding effort is required. For generating this program,
the method from Swartjes et al. (2014) is used. The PLC can be connected to the
program, to perform HIL simulation. Additional, external subsystems, such as a GUI
can be connected to the PLC, to validate its functionality. An operator can now
control the HIL simulation via the GUI, as if he were operating the real system.

6.2.1 Hardware-in-the-loop set-up
Here, the set-up that has been developed for HIL simulation of supervisory controllers
is described. A schematic representation of the set-up is depicted in Figure 6.2. The
set-up consists of three parts: the GUI for the operator implemented on a PC, the
supervisory controller implemented on a PLC, and a model of the system implemented
on another PC. The GUI communicates with the PLC by sending commands given
by the operator. The PLC communicates status information to the GUI to inform
the operator about the system’s state. The PLC can influence the behavior of the
plant by switching actuators on or off. The plant reacts by switching sensors on or off.
Physically, the communication between parts is realized using the OPC UA protocol
over Ethernet.

GUI (PC 1)

Controller (PLC)

System model (PC 2)

Commands Status

Actuations Measurements

Figure 6.2: Schematic representation of the HIL set-up.

The GUI is implemented on a supervisory control and data acquisition (SCADA)
system, which is the industrial standard for GUIs. Be aware, the term is misleading, as
the supervisory controller is not implemented here. Designing the GUI and connecting
the GUI to the supervisory controller is still a manual task. All the connections to
the PLC should already be included in the discrete-event plant model for synthesis,
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such that all required information is available and the supervisory controller knows
which commands are possible.

The supervisory controller is implemented on a Siemens PLC, and its code in the
structured control language (SCL), is automatically generated from the model of the
supervisory controller, as described in Chapter 4. For the PLC, it does not matter
whether it is communicating with the system model or with the real system.

Communicating with the real system is realized via physical inputs X and physical
outputs Y of the PLC that are connected via wires to, respectively, sensors and
actuators in the plant P . Additionally, a PLC has a set of internal variables M, that
is not connected to the physical inputs or outputs. These variables are primarily used
as memory, but also for communication to and from the GUI. The PLC cycle works
as follows. At the start, the get action copies the values of the input signals X to the
input image I. The PLC program is run, which can update the values of M and output
image Q. At the end of the cycle, the put action copies the values of the output image
Q to the output signals Y and the cycle restarts. This is schematically depicted in
Figure 6.3. If the inputs and output hardware is not physically connected, the images
I and Q can still be accessed. However, the get and put operations from X and to Y,
respectively, are not performed.

X I C Q Y

P

M
PLC program

Figure 6.3: A schematic overview of the PLC in combination with the real plant.

Communicating with the HIL simulation is realized via virtual inputs and outputs.
The system model PHIL is also implemented on a SCADA system. Here, we used the
Ignition SCADA software to execute code. The SCADA application is able to access
and manipulate values of variables in I and Q. The code operates similarly to the PLC
code. It cyclically reads all actuator signals from Q, calculates all state transitions,
and then writes all the sensor signals to I, as schematically depicted in Figure 6.4.
Hence, instead of the inputs being provided by X and outputs being supplied to Y,
they are provided by and supplied to the HIL model.

A hardware mapping is needed for generating code of the system model. As the
system model is a refinement of the plant model used for the synthesis, it uses the
same events as the supervisory controller. Hence, the hardware mapping is exactly
inverse (denoted by H−1

map), and can therefore be automatically generated from the
hardware mapping of the supervisory controller. To do so, the guards for sensors
are substituted by assignments, and the assignments for actuators are substituted by
guards. For example, when in the hardware mapping of the supervisory controller is
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X I C Q Y

PHIL

M
PLC program

Figure 6.4: A schematic overview of the PLC in combination with the HIL set-up.

defined that a signal switches on when a actuator component is in the location On, in
the inverse hardware mapping it is defined that when the signal is switched on, the
controllable event that transits to location On has occurred. A similar inversion exists
for uncontrollable events.

The process of generating code for the HIL set-up is depicted in Figure 6.5. As
can be seen, during the SCL code generation, addresses of the variables in I, Q, and
M are created (from Hmap) that are used by PHIL and the GUI. Because of this, there
is no manual coding required to implement PHIL. A step-by-step guide describing how
to set-up the simulation is available in the repository.

C

Hmap

H−1
map

P

SCL code
generation

Java code
generation

GUI

C

PHIL

M addresses

PLC program

I and Q addresses

Java program

Inverse

Figure 6.5: A schematic overview of code generation for the HIL set-up.
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6.3 Case study: the Prinses Marijke complex
This section describes how a supervisor for the Prinses Marijke complex is synthesized
and how a derived supervisory controller is implemented in the HIL set-up.

6.3.1 Modeling the plant and the requirements
To synthesize a supervisor, first the plant and the requirements are modeled. For
the plant, many components can be represented by automata of the same type, i.e.,
automata that have the same location and transition structure. This shows the
usefulness of using templates, i.e., standard models that can be instantiated per
component, as first introduced in Grigorov et al. (2011). The use of templates is
beneficial as it accelerates the modeling process, and also reduces the risk of modeling
errors. In addition, many locks are similar, and consist of the same components, such
that standard templates can be created for all locks. For this project, the templates
that were developed for a different lock in Tilburg (Reijnen et al., 2017), have been
re-used. Similarly, for the floodgate, the components have been modeled by the
templates already defined for locks. The modeled components are: gates, paddles,
entering lock traffic lights, leaving lock traffic lights, water-height sensors, and the
GUI. These components are further decomposed into standardized sensor and actuator
models. All templates and component models are implemented in CIF (van Beek
et al., 2014) and are available in the repository.

To illustrate the process of developing a requirements model, consider a lock traffic
light. A traffic light is positioned before a set of lock gates (at each side of the lock
there are two mitre gates, also visualized in Figure 6.6). Because of safety, it should
only be possible to switch to a green sign aspect (modeled as event TL.c_g), when
a gate is fully open (modeled as location Open, in the component model of the gate
sensor Gate.S). This requirement is modeled as the top requirement, given below.
Furthermore, the traffic light should not spontaneously switch its aspect, but only when
the respective command is activated from the GUI (modeled as location GreenAspect,
in the component model of the GUI Command). This requirement is modeled as the
bottom requirement, given below. All requirement models are implemented in CIF
and are available in the repository.

TL.c_g needs EGate.S.Open ∧ WGate.S.Open
TL.c_g needs Command.GreenAspect

6.3.2 Supervisor synthesis
To synthesize a supervisor from the plant model and the requirements model, CIF is
used. The synthesis algorithm in CIF uses a BDD implementation (Miremadi et al.,
2012) of the algorithm given in Ouedraogo et al. (2011). BDDs allow to efficiently
represent and perform calculations on automaton models with large state spaces.

In Table 6.1, the number of component models in each subsystem are given, as
well as the number of requirements. It should be noted that the models for the north
lock and the south lock are identical. The state-space sizes of the uncontrolled plant,
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as well as of the plant under control of the supervisor are given. Depending on the
number of PLCs that will be used, either three supervisors, or one supervisor can
be synthesized, both results are provided in the table. For the one supervisor, the
synthesis step took around 13 seconds on an i7, 2.60GHz, 8GB laptop.

Table 6.1: Model sizes for the Prinses Marijke complex.

System Number of components Plant state space Number of requirements Supervisor state space
Lock north 76 3.7× 1019 144 1.9× 1011

Lock south 76 3.7× 1019 144 1.9× 1011

Floodgate 24 5.9× 105 24 6.6× 104

Complex 176 8.1× 1044 312 2.4× 1027

6.3.3 Model simulation
For model simulation, the discrete-event plant model is refined by adding continuous-
time behavior. In this case, the position and velocity of the gates, of the leveling
blades, and of the floodgate are modeled. Additionally, a model of the water level
inside the lock is included, that increases or decreases depending on the position of
the leveling blades.

From the supervisor for the complex, a supervisory controller has been derived.
This supervisory controller is simulated together with the refined plant model. The
states of the automata during simulation are visualized via the schematic image given
in Figure 6.6. Elements, such as color and position, change depending on the current
location of each automaton and the values of variables. Commands given via the
GUI can be simulated by clicking on interactive buttons in the image. Some control
windows are hidden and can be opened by clicking on a component, e.g., clicking on a
traffic light opens the traffic light control window.

To validate the behavior of the supervisory controller, several use cases have
been analyzed. Whenever undesired behavior was found, the plant model or the
requirements model was updated and a new supervisor was synthesized. Because
the models developed for another lock were re-used, no missing or contradicting
requirements were identified.

6.3.4 Controller code generation
To generate controlled code, a hardware mapping has been defined. In total, 82 inputs,
87 outputs, and 55 GUI commands are described in the hardware mapping. From
the models, a PLC program has been generated that consists of 5500 lines of SCL
(available in the repository). For the generation, we used CIF. The controller code
has been implemented on an industrial Simatic S7-315F-2 PN/DP fail-safe PLC of
Siemens.

It is known that several difficulties exist when generating controller code from a
supervisor model and implementing it on a PLC, as discussed in Chapter 4. Some
problems can arise due to the difference between a supervisor and a supervisory
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Figure 6.6: Model simulation of the Prinses Marijke complex.

controller, these are choice, infinite response, and causality. Some other problems can
arise due to the behavior of a PLC, these are simultaneity and inexact synchronization.
It has been verified that the supervisor is confluent, has finite response, and is
nonblocking under control. During model simulation and HIL simulation no anomalies
were observed due to delay.

6.3.5 Hardware-in-the-loop simulation
For HIL simulation, the set-up described in Section 6.2 is used. The generated
controller code is implemented in the PLC. The GUI, shown in Figure 6.7, is designed
according to the standardized format described by RWS, and connected to the PLC.
The states of the traffic lights, gates, water level and the floodgate are obtained from
the PLC memory M.

The Java program that was generated from the simulation model contains 10,300
lines of code (available in the repository). For the generation, we used CIF. To run
the Java program and to connect the program to the PLC, we used the Ignition
SCADA software. Connecting the program to the PLC interfaces was straightforward
as the PLC input and output addresses were also generated. No additional coding
was required to implement the program.

To validate the behavior of the supervisory controller, several use cases were tested.
Some minor errors were found that relate to the communication between the GUI and
the supervisory controller. These errors had to do with commands that could be given
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Figure 6.7: GUI for the Prinses Marijke complex.

to the supervisory controller when they should have been forbidden by the SCADA
application. No errors were found that originated from the supervisory controller, as
the supervisory controller was already extensively validated with model simulation
before.

The HIL set-up is an effective tool for validation of the PLC controller code.
Moreover, the HIL set-up can also function as a tool to demonstrate the whole
development process of modeling, synthesis, and implementation. Especially the
possibility to connect the supervisory controller to the GUI designed by RWS was
valuable. In this way, the supervisory controller could be validated by RWS in the
same manner (e.g., with factory acceptance tests) as they would validate supervisory
controllers that were coded by hand. Also here, it was concluded by RWS that the
behavior of the supervisory controller is as intended.

6.4 Concluding remarks
In this chapter, a method that integrates HIL simulation into the synthesis-based
engineering framework is presented. HIL simulation offers the possibility to validate
the behavior of the supervisory controller implemented on the hardware, e.g., a PLC,
before the system is built. Compared to model simulation, it executes the controller
code, instead of a model of the supervisory controller. Moreover, it is also possible
to connect the supervisory controller to external subsystems such as a GUI or a
logging system. For supervisor synthesis, a plant model is already available. Hence,
the additional modeling effort required to obtain a simulation model and perform
model simulation is small. A model suitable for HIL simulation can automatically be
generated from this simulation model.

A case study on the Prinses Marijke complex was described that successfully uses
this method to obtain the necessary models for supervisor synthesis, controller code
generation, and HIL simulation. For this project, the HIL set-up was also successfully
used as a demonstration set-up.



Chapter 7

A synthesized fault-tolerant
supervisory controller for a swing
bridge

When designing supervisory controllers, a relevant aspect is the robustness against
faults (e.g., a broken actuator) in the plant. It is important that the supervisory
controller is able to compensate faults to some degree, to maintain (degraded) func-
tionality while still guaranteeing safety properties. Such a supervisory controller is
called a fault-tolerant supervisory controller.

In Baeten et al. (2016), it has been shown how supervisor synthesis techniques and
tools can be integrated into the engineering process for supervisory controllers. There,
the focus is mostly on the specification and the design of the supervisory controller. A
difficulty that is not addressed in Baeten et al. (2016) is how to obtain a fault-tolerant
supervisory controller. Moreover, the implementation step, which has proven to be
complicated (see, e.g., Fabian and Hellgren (1998), Zaytoon and Riera (2017), and
Chapter 4) is also not addressed there. Even though supervisor synthesis techniques
have been under development for over 30 years, the use in industry has not been
widespread (Wonham et al., 2018; Laing et al., 2020). One of the main reasons for
this is that until recently synthesis techniques were unable to scale to industrial-size
problems. However, research such as Vahidi et al. (2006), Miremadi et al. (2011),
Ouedraogo et al. (2011), and Goorden (2019) and advances in computation power
and memory availability facilitated the use of supervisor synthesis for industrial-size
problems, as demonstrated in, e.g., Moormann et al. (2020a) and Reijnen et al. (2020a).

The contribution of this chapter is as follows. It demonstrates the use of supervisor
synthesis for an industrial case study, namely a swing bridge, for which a fault-tolerant
supervisory controller has been synthesized, validated, implemented, and tested. With
this case study, it is shown that synthesis techniques in combination with fault-tolerant
control (FTC) have matured to a point where they are powerful enough to be applied
for industrial-size problems.

This chapter is based on: Reijnen, F.F.H., Leliveld, E.-B.M.L., van de Mortel-Fronczak, J.M., van
Dinther, M.J.T., Rooda, J.E., and Fokkink W.J. (2020). “A synthesized fault-tolerant supervisory
controller for a swing bridge”. Submitted.

101



102 Chapter 7. A synthesized fault-tolerant supervisory controller

The chapter is structured as follows. FTC is discussed in Section 7.1. The swing
bridge, for which a fault-tolerant supervisory controller has been synthesized and
implemented is introduced in Section 7.2. In Section 7.3, the modeling and synthesis
of the supervisory controller is described. Implementation and validation of the
supervisory controller are described in Sections 7.4 and 7.5, respectively. The results
are evaluated in Section 7.6.

7.1 Fault-tolerant control
In systems, it is possible that components fail. For safety and availability of the system,
it is important to take failures into account when developing a supervisory controller.
Examples of faults are a broken wire, a blocking actuator, or a vessel hitting a bridge.
These faults belong to the of class of permanent faults (Blanke et al., 2016). For a
permanent fault, there is a specific point in time from whereon it is present in the
system. Drift-like faults such as wear are not considered. A reason for this is that
such faults are generally resolved by resource controllers, and not by the supervisory
controller.

A fault-tolerant supervisory controller is able to satisfy the requirements both in
nominal operation and after the occurrence of a fault. In Moor (2016), an overview
on FTC in combination with supervisor synthesis is provided. Two types of FTC can
be distinguished, active and passive. In active FTC, the identification of the fault is
used in the control logic. Whereas in passive FTC, the control logic does not change
after identification. In this chapter, active FTC is used, as in general this leads to the
most permissive supervisory controller (Jiang and Yu, 2012).

Active FTC consists of two steps, detecting a fault and reacting upon the detection.
For the first step, inputs and outputs of the system can be monitored by diagnosers,
as demonstrated in Sampath et al. (1996). Depending on the diagnoser observations,
faults can be identified and reported to the supervisory controller. Different methods
and techniques to automatically derive diagnosers are discussed in Zaytoon and
Lafortune (2013). Another way of identifying faults is by sensors embedded in the
control unit, for example, PLCs can detect a broken wire, or sensors in the plant, such
as an overheat sensor.

While fault diagnosis is concerned with how to identify faults, FTC is concerned
with what the supervisory controller should do after such an identification. A schematic
representation of the diagnosers in combination with the system and the supervisory
controller is given in Figure 7.1.

In this set-up, diagnosers are modeled as observers that provide additional inputs,
i.e., fault identifications, to the supervisory controller. Since identification events
cannot be effected by the supervisory controller, they are regarded as uncontrollable.
The identification event is triggered by a diagnoser or by embedded sensors in the
control unit.

In the requirements model, the identification of a fault can be used in the guard
expression. In this way, the behavior of the supervisory controller changes when a
fault has been identified. Here, the modeling method of Reijnen et al. (2018b) is used.
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Figure 7.1: Fault-tolerant control set-up.

7.2 The Oisterwijksebaan bridge
As a case study, a fault-tolerant supervisory controller for the Oisterwijksebaan bridge
(OBB), located in Tilburg, the Netherlands, has been modeled, synthesized, validated,
and implemented. The OBB, shown in Figure 7.2, is a swing bridge that provides a
way for vehicles to cross the Wilhelmina Canal. It consists of a two-way vehicle lane
and two pedestrian lanes. The bridge is operated and maintained by RWS.

Figure 7.2: The Oisterwijksebaan bridge.

A schematic overview of the bridge is shown in Figure 7.3. On both sides of the
bridge, stop signs are located (SS1 - SS5), which warn the land traffic to stop before
the boom barriers are lowered. These boom barriers (BB1 - BB2) are placed on both
sides of the bridge, to guarantee a safe situation before the bridge is opened. The
vessels on the Wilhelmina Canal are informed by red-green-red vessel traffic lights
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(VTL1 - VTL8). The bridge deck (BD) consists of a locking mechanism, a brake, and
a rotating mechanism. To unlock the bridge, a hydraulic pump is used to lower the
bridge into its bearings. The bridge is raised out of its bearings to lock it. Whenever
the brake is applied, rotation is not possible. For rotation, an electric motor is used.
The direction and speed of this motor can be controlled.

An operator controls the bridge via a GUI. The GUI has two purposes: providing
information to the operator about the system’s state, such as the displayed sign aspects
and identified faults, and acting as a control panel. The commands that can be given
are, e.g., stopping land traffic, rotating the bridge, and switching sign aspects. In
total, the bridge is controlled by 39 actuators, based on the inputs of 53 sensors and
26 control commands.

VTL1

VTL2

VTL6

VTL5 VTL8

VTL7

VTL3

VTL4

SS1
SS2

SS3

SS4

SS5

BB2

BB1

BD

Figure 7.3: A schematic overview of the Oisterwijksebaan bridge.
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7.2.1 Desired controlled behavior
The desired controlled behavior when no faults are present is as follows. When a vessel
wants to pass the bridge, the operator initiates the open bridge procedure. Then, all
five stop signs switch on. After 14 seconds, the two boom barriers close. Then, the
bridge is lowered into its bearings, the brake is released, and the electric motor is
started. The bridge rotates at a constant speed until it is almost open, then the bridge
decelerates. When the bridge is fully open, the brake is applied. During the bridge
rotation, the operator switches the VTLs to a red-green aspect, indicating a vessel
can approach the bridge. Once the bridge is fully open, a green aspect is shown. The
close bridge procedure is similar to the procedure described above.

Due to the human-machine interaction, the bridge has to adhere to strict standards
to guarantee human safety. Some of these are: ‘A boom barrier may not be raised
when the bridge is not fully closed’ and ‘The bridge may only rotate when the VTLs
display a red aspect’.

For safety and availability, the bridge should be robust against faults. A component
failure may not lead to dangerous situations. Moreover, when a fault occurs, the
bridge should be able to continue its operation, with possibly degraded functionality.
Two examples of such situations are: ‘When a red lamp of a VTL fails, this should
be detected and signaled to the operator, and the VTL should be deactivated’ and
‘When one out of two VTLs in a passage fails, the bridge may still be closed’.

7.3 Supervisor synthesis for the OBB
In this section, modeling of the components, diagnosers, and requirements is discussed.
Subsequently, the results of the supervisor synthesis are presented. A description,
visualization, and the CIF code of all models are available in the repository1.

7.3.1 Component models
For the plant model, the component-based modeling method as proposed in Chapter 3
is used. In this method, every component (actuator, sensor, or operator command) is
modeled as a separate EFA. These automata typically consist of a small number (2-5)
of locations and do not share events with other EFAs. An overview of the component
models is shown in Figure 7.4. In this figure, the number of component EFAs is
denoted. The model can be partitioned into two parts: the physical part and the GUI
part.

For the Oisterwijksebaan bridge, 27 actuator component models, 48 sensor com-
ponent models, and 7 command models are needed. A model can represent multiple
inputs, outputs, or control commands. For example, one VTL actuator EFA represents
the outputs for all three lamps. As an illustration, the model of the VTL actuator is
shown in Figure 7.5. The model consists of four locations, representing the four legal
aspects that can be shown.

1www.github.com/ffhreijnen/OBB
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Figure 7.4: Plant model decomposition of the OBB.
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Figure 7.5: Component model of the vessel traffic light actuator.

7.3.2 Diagnoser models
For safety and availability, it is necessary to compensate for faults in the system. To
detect faults, diagnosers are used. Here, the diagnosers are used to detect three types
of faults:

• Discrepancy faults - the sensor measurement of an action performed by an
actuator is different from what is expected (e.g., a lamp is broken).

• Duration-monitoring faults - performing an action takes longer (shorter) than
expected (e.g., the bridge is not accelerating (decelerating)).

• Unexpected-movements faults - a component starts moving without being actu-
ated (e.g., a car hits a boom barrier).

When a fault is diagnosed, this is signaled to the supervisory controller and thereafter
to the operator. Based on the formalized requirements, the supervisory controller can
influence the behavior of the system after the fault identification.

As an example for a diagnoser model for a discrepancy fault, consider a land-traffic
sign that is actuated via Boolean signal Q. The status of the lamp is measured via
Boolean signal I. It is expected that within tf seconds after actuation the sensor should
switch on, otherwise a fault has occurred. The EFA in Figure 7.6 models the behavior
of this diagnoser. When I and Q have different values, the EFA will transition to
location Diagnosing and a timer value t will be set to tf. In this location, the timer
value decreases (denoted by t′ = −1). If t ≤ 0 and I and Q have different values, the
EFA transitions to location Broken. The diagnoser can be reset via the reset event.

As an example for a diagnoser model for a duration-monitoring fault, consider a
boom barrier that is actuated via Boolean signals Qo and Qc for opening and closing,
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NoDefect
Diagnosing
t′ = −1

Broken

when I 6= Q
do t := tf

when I = Q

reset when t ≤ 0 ∧ I 6= Q

Figure 7.6: Model of the diagnoser for a broken traffic sign.

respectively. The position of the barrier is measured via Boolean signals Io and Ic for
the fully open position and the fully closed position, respectively. It is expected that
the barrier opens in at most to seconds and closes in at most tc seconds, otherwise a
fault the barrier is stuck. The EFA in Figure 7.7 models the behavior of this diagnoser.

NoDefect Stuck

DiagnosingClosing
t′ = −1

DiagnosingOpening
t′ = −1

reset

when Qo ∧ ¬Io
do t := to

when ¬Qo ∨ Io

when Qc ∧ ¬Ic
do t := tc

when ¬Qc ∨ Ic

when t ≤ 0 ∧Qo ∧ ¬Io

when t ≤ 0 ∧Qc ∧ ¬Ic

Figure 7.7: Model of the diagnoser for a stuck barrier fault.

7.3.3 Requirement models
The desired behavior of the system is formalized using event-condition requirements.
Such a requirement enforces that a certain event is only allowed to occur when the
condition is satisfied. For example, consider VTL1, modeled as the EFA in Figure 7.5.
The event green is only allowed to occur when the bridge is fully open, represented
by location On in EFA Bridge.Open (this EFA is not shown). This is modeled by the
following event condition.

VTL1.c_g needs Bridge.Open.On

To achieve fault tolerance, it is specified what has to happen when faults have
been diagnosed. For example, a VTL may only show the red-green aspect when its
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red lamp has not failed. This is modeled by the following event condition.

VTL1.c_rg needs ¬VTL1.RedLampDignoser.Broken

The complete desired behavior of the OBB can be formalized by defining many
small event conditions. In total, the OBB model consists of 167 event-condition
requirements, provided in the repository.

7.3.4 Supervisor synthesis
From the described models, a supervisor has been synthesized using CIF. For this case
study, the plant model consists of 82 components and 40 diagnosers. The requirements
model consists of 167 event conditions. A supervisor has been synthesized in a few
minutes (on a standard laptop). The supervisor represents a state space of 2.1 · 1046

states. Even though the number of component, requirement, and diagnoser models is
large, the synthesis procedure is fast enough.

7.4 From supervisor to supervisory controller
There exist subtle differences between a supervisory controller and a supervisor as
obtained via synthesis, also discussed in Chapter 4. A supervisor can only forbid events,
whereas a supervisory controller can can choose when to execute the controllable events.
Methods exist to derive a supervisory controller from a supervisor automatically, see,
e.g., Balemi et al. (1993), Fabian and Hellgren (1998), Malik (2003), and Zaytoon and
Riera (2017), and Chapter 4. In essence, what is done is to keep executing controllable
events among the enabled events of the supervisor, until no more controllable events
are enabled. Then, the supervisory controller waits for a new plant input (e.g., a
sensor that switches on).

For this method to be applicable, the supervisor needs to satisfy additional proper-
ties not guaranteed by synthesis. These properties are finite response, confluence, and
nonblocking under control, as described in Section 4.3. Finite response ensures that
always a state is reached where no controllable events are enabled. Confluence ensures
that each time the supervisory controller can choose between multiple controllable
events, the choice can be made arbitrarily. Nonblocking under control requires that a
marked state can be reached without being dependent on events that happen only in
rare situations. When the supervisor does not satisfy these properties, the require-
ments should be altered. In Reijnen et al. (2019a), guidelines are provided for this. To
verify that the synthesized supervisor for the OBB adheres to these properties, CIF
has been used.

7.4.1 Supervisory controller code generation
The supervisory-controller model has been used to generate controller code. For this,
the procedure in Section 4.5 is used. A major advantage of this algorithm compared to
others, such as Fabian and Hellgren (1998), is that it does not require explicit coding
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of each state in the supervisory controller, which would be infeasible for 2.1 · 1046

states. Instead, for every event in the model, an if-then statement is generated. The
size of all these statements on the PLC is about 200 kB.

CIF has been used to generate the implementation code. The generated code can
be automatically imported by the PLC vendor software, in this case, TIA portal from
Siemens.

7.4.2 Supervisory controller code implementation

The generated code has been implemented on a Siemens S7-300 PLC. Because for
each component a model exists (shown in Figure 7.4), the generated code can easily
be connected to the input and output signals of the PLC. As, each state in the model
corresponds to specific values of the PLC signals. For example, in state RedRed in
Figure 7.5, the signals belonging to the activation of the top red lamp, middle green
lamp, and bottom red lamp of the VTL, are on, off, and on, respectively.

In the literature (e.g., Fabian and Hellgren (1998) and Zaytoon and Riera (2017)),
differences are described between the execution of a supervisory-controller model and
a PLC implementation (see also Section 4.4). These differences originate from the
real-time execution of the code. The PLC executes a repeating cycle, consisting out
of three parts: reading the inputs, executing the code, and setting the outputs. As a
result, when a sensor signal changes, this is only noticed during the next input reading.

This delay can lead to a situation where an undetected change in a sensor invalidates
the choice of the action made by the supervisory controller, referred to as inexact
synchronization. A delay can also lead to a situation where between successive PLC
scan cycles two or more events occur. If this happens, the supervisory controller is
unable to recognize the exact order of the events, referred to as simultaneity.

In general, when the process time of the system is much higher than the cycle time
(the time it takes the PLC to finish the three phases), the above situations are never
encountered, as demonstrated by Malik (2003), Forschelen et al. (2012), and Reijnen
et al. (2017). In case of the OBB, the process time is in the order of seconds, whereas
the cycle time of the PLC is in the order of milliseconds.

7.5 Validation of the supervisory controller

Although the supervisory controller is guaranteed to behave according to the require-
ments, the resulting controlled behavior might not be as expected, due to incomplete
or incorrect requirements. For example, requirements could be too strict, resulting in
the supervisory controller not exhibiting the desired behavior. Also the model of the
plant can differ from the real system. Hence, the behavior of the supervisory controller
and the plant have to be validated.

There are three stages in the validation process: model simulation, HIL simulation,
and system testing.
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7.5.1 Model simulation

For model simulation, the supervisory-controller model, the plant model (containing
the physical part and the GUI part), and a visualization are used. The visualization is
connected to the component EFAs and represents their states. Using a visualization
is more intuitive for validation than only showing the state of each EFA. Figure 7.8
shows the visualization of the plant. Figure 7.9 shows the visualization of the GUI.
Two visualizations have been used to differentiate between what happens with the
real system and what an operator sees on the GUI. Simulation has been performed
using CIF.
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VTL5 VTL8
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VTL4
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SS2
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SS4
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BB2

BB1
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Hoevense Kanaaldijk

BD

Figure 7.8: Visualization of the plant used for model simulation.

Simulation has been used extensively to validate the behavior of the controlled
system. For this, test cases, also called factory acceptance test (FAT) protocols,
with predefined sequences have been used. The protocols consist of actions for the
operator to perform and expected reactions from the supervisory controller. These
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Figure 7.9: Visualization of the GUI used for model simulation.

test cases have been formulated by RWS. Whenever the behavior was not as desired,
the requirements model was altered. This led to an iterative process of 1) adapting
the requirements, 2) synthesizing a supervisor, and 3) simulating the result.

During the simulation less than five small errors where observed. Two of these are:
‘when the operator clicks on the bottom red lamp of any VTL in the GUI, all VTLs
should display a double red aspect’ and ‘when a VTL displays a red-green aspect
when the bridge deck reaches its open position, the VTL should automatically show
the green aspect’. Additionally requirements have been added to the requirements
model to obtain this behavior.

7.5.2 Hardware-in-the-loop simulation
For HIL simulation, the supervisory controller is implemented in the real PLC. The
PLC is connected to two computers. On one computer, the physical part of the bridge
is simulated. On the other computer, the GUI is implemented, manually. The model
used for HIL simulation is implemented in Java code, and is automatically generated
from the physical part of the plant model. This set-up allows the supervisory controller
and the GUI to be validated as if they were implemented in the real system. A detailed
description of the process is given in Chapter 6 and Reijnen et al. (2019b).
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To validate the behavior, the same FAT protocols were used. As the behavior had
already been validated with model simulation, no anomalies were observed. These
tests show the supervisory controller has been implemented correctly on the PLC and
that the interaction between the GUI and the supervisory controller is as expected. It
has also been verified that the cycle time is sufficiently short. Additionally, bridge
operators provided feedback on the design of the GUI. Based on their feedback, a
feature was added that gives priorities to different kinds of faults, such that faults
with a high priority are displayed in a different color than faults with a low priority.

7.5.3 System testing
For system testing, the supervisory controller is implemented on the PLC connected to
the real bridge. To realize this test, the OBB was closed for traffic for one night. During
this period, the original supervisory controller has been replaced by the generated
code. Since the controller code had already been validated in the HIL set-up, the
installation required little effort. The GUI that had been developed for the HIL set-up
was used here as well. During the system test, the bridge was operated by professional
RWS operators. The operators did not experience differences between the synthesized
supervisory controller and the original supervisory controller.

To validate the behavior of the real bridge, controlled by the supervisory controller,
site acceptance test protocols have been used. The protocols are similar to the FAT
protocols, except that for generating faults, the physical system has been modified.
For example, wires are disconnected to simulate failing sensors. The only error that
has been observed during the test was a value of the program not being converted
correctly to an analog signal for the speed actuator. This was fixed in the output
module settings. The error was not observed before because in the HIL set-up the
value of the program is used, not the analog signal (i.e., the put action from Q to Y is
not performed, see Figure 6.4, on page 96).

This test illustrates that the supervisory controller is able to control the real bridge.
The difference in behavior between the simulation model and the real bridge was
minimal, e.g., hysteresis in position sensors of the bridge deck was observed. This
means that when the bridge reaches an angle where a position sensor should switch
on or off, it would switch on and off rapidly, for a few PLC cycles. However, this did
not lead to any problems.

7.6 Evaluation of the engineering method
Model-driven software engineering combined with formal methods provides a powerful
way of working for the design of supervisory controllers. It provides a structured
and systematic technique for the design and specification of the system’s behavior.
Moreover, it provides more consistency and allows for less ambiguity than documents
written in a natural language. The use of formal models in an early stage of the
product development process, forces the engineers to clarify all aspects of the system.
Clarity contributes to a good design of the control software.
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The use of synthesis guarantees that the requirements are always satisfied by
construction. As a result, the supervisory controller does not have to be verified
against these requirements. Instead, the focus lies on assuring that the requirements
are complete and correct. For this, simulation-based validation using predefined test
protocols is a powerful and intuitive tool. In this case study, all errors related to the
behavior of the supervisory controller were found during model simulation. During
HIL simulation and system testing, only errors related to the GUI and the hardware
were found. These errors could be repaired without altering the supervisory controller.

In the literature, there are concerns about the technical implementation of the
supervisory controller obtained via synthesis, e.g., Fabian and Hellgren (1998) and
Zaytoon and Riera (2017). In this project, these topics have been addressed systemat-
ically.

• In Zaytoon and Riera (2017), it was argued that finding the right abstraction
level for the plant is difficult. They note that a higher-level description leads
to a synthesis problem that is easy to solve but the result may be difficult to
implement on a PLC. On the other hand, a more detailed model may lead
to unrealistic-size controllers, due to a possible explosion of the state space.
For our case, the component-based modeling method from Chapter 3 has been
used. This is an intuitive abstraction level for developing models and makes
implementation on the PLC straightforward. Moreover, by generating code for
each EFA model separately, as explained in Section 4.5, the resulting code size
is only 200 kB.

• Robustness against faults has been achieved by including fault diagnosis and
fault-tolerant control in the models, making it possible to guarantee that the
behavior of the supervisory controller is safe, even when faults occur.

• Problems related to the differences between a supervisor and a supervisory
controller have been solved by using the way of working described in Chapter 4.

• The delay between the supervisory controller and the plant is negligible in this
case study, where the control hardware is much faster than the process to be
controlled.

While the use of synthesis techniques has not yet been widespread in industry,
this case study shows that these techniques have matured to a point where they are
applicable in practice.





Chapter 8

Design of a supervisor platform for
movable bridges

In this chapter, the design of supervisors for a product platform is considered. Following
the definition of Meyer and Lehnerd (1997), a product platform is a set of common
components, modules, or parts from which a stream of derivative products (i.e., a
family) can be efficiently created. In this way, several similar systems can be composed
out of standardized components.

Inspired by the work of Ekberg and Krogh (2006), Grigorov and Rudie (2010),
Grigorov et al. (2011), and Malik et al. (2011), the use of (domain-specific) modules
for the design of the necessary models for synthesis and simulation is investigated.
Modules can be compared to classes in object-oriented programming languages such as
C++ and Java. A module acts as a blueprint that can be instantiated to create a part
of the model. A library of commonly used modules can be established, such that a
model can be composed from these modules. In Ekberg and Krogh (2006), templates
are introduced as a means to instantiate copies of similar FAs. Templates have also
been used in Chapter 3 for this purpose. This work has been extended in Grigorov et al.
(2011), where a template-based design method has been proposed. In that method,
templates for components and requirements are used to design the plant model and
the requirements model. These models are in the form of FAs. Interaction between
templates is modeled using event-name maps that link events in the component models
to events in the requirement models. In Grigorov et al. (2011), it was concluded that
template-based design significantly increases the accessibility of supervisor synthesis,
and is useful for less error-prone and rapid model development. In Grigorov and Rudie
(2010), the work of Grigorov et al. (2011) has been extended by including templates
with parameters. Then, a template is instantiated for some value of the parameters.
In Malik et al. (2011), modules with defined interfaces were introduced. Modules
group several automata and requirements. Within these modules some events are local,
whereas other events are global, which provides the infrastructure needed for modular
modeling. Modules provide a more general way of instantiating than templates.

This chapter is based on: Reijnen, F.F.H., van de Mortel-Fronczak, J.M., Reniers, M.A., and
Rooda, J.E. (2020). “Design of a supervisor platform for movable bridges”. In: Proceedings of the
16th Conference on Automation Science and Engineering. IEEE, pp. 1298-1304.
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This chapter describes a method to develop supervisors for a product platform. In
this method, a graphical model of the plant is built from a predefined set of modules.
A tool has been developed that implements this method for the design of supervisors
for movable bridges. The tool has been used for the design of supervisors for seventeen
movable bridges. Different from Grigorov et al. (2011), the requirements are modeled
as state-based (logic) expressions. From these graphical model and the expression,
the necessary models for synthesis and simulation are generated. Compared to the
method of Grigorov et al. (2011), EFAs are used, such that also variables can be
used. In ter Beek et al. (2016), a method is presented that is able to synthesize a
supervisor that is able to control all products of a family. In our method, a supervisor
is synthesized for each individual product, as this leads to smaller supervisors.

Compared to manually designing the models, the method as described in this
chapter increases the following aspects.

• Model quality: In Frakes and Kang (2005), Selby (2005), and Åkesson et al.
(2020), it is argued that the reuse of components increases the quality because of
more careful design and testing and more extensive usage than that of single-use
equivalents. While this effect was not observed in the study performed by
Grigorov et al. (2011), they argue that this may be due to the investigated
problem being too easy.
• Development productivity: Reuse of models increases productivity by avoid-
ing redevelopment, as stated in Selby (2005) and Åkesson et al. (2020). For
supervisor synthesis, it was experimentally shown in Grigorov et al. (2011) that
the modeling time is significantly reduced when modules are reused.
• Accessibility: By having a module library, the user does not have to be an
expert in automata-based modeling, as modules can be instantiated from the
library. In Grigorov et al. (2011), it was reported that participants found it
much easier to use this way of modeling.

The use of domain-specific modules requires an initial investment in terms of effort,
as discussed in Mellegård et al. (2015), Liebel et al. (2018), and Åkesson et al. (2020).
However, if sufficient instances are created, the saved effort outweighs the initial effort.
If supervisors for a large number of similar systems have to be created, it makes the
proposed method worthwhile.

This chapter is structured as follows. A description of the modeling method is
provided in Section 8.1. A tool that implements this method for the design of models
for a family of bridges is described in Section 8.2. The results from the case study are
presented in Section 8.3. Finally, concluding remarks are provided in Section 8.4.

8.1 Modeling
In case studies where supervisor synthesis has been applied, it can be observed that
models often consist of similar modules. For example, the waterway lock of Reijnen
et al. (2017) consists of six modules that are reused multiple times. Similarly, the
lock-bridge system described in Chapter 3 uses only a few different EFAs to model
239 components. Because of this, the use of standardized modules is investigated.
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8.1.1 Method
The proposed modeling method is as follows. When a supervisor for a system has
to be synthesized, firstly, the subsystems in the plant are modeled via instantiating
modules from a library. The modules can be customized via parameters. For these
modules, the plant model, the hybrid plant model (using hybrid automata (HA)), and
the visualization of the plant are all standardized. Secondly, the requirements model is
partitioned into internal requirements, i.e., requirements inside a module, and external
requirements, i.e., requirements between modules. The internal requirements are also
standardized. The external requirements are formalized manually. For each module, a
set of external events and external states is defined that can be used in the model of
the external requirements. A supervisor for the system can now be synthesized from
the plant (composed out of the modules), the internal requirements, and the external
requirements. The supervisor can be used to derive a supervisory controller, which
can be validated via simulation-based validation, for which the hybrid plant model
and visualization are used. The objects of the method are visualized in Figure 8.1.
An arrow indicates that an element is contained in another element and [0..∗] means
zero or more times.

Figure 8.1: Overview of the object of the modeling method.

8.1.2 Modules
In the proposed method, a library of commonly encountered modules is created. For
each module, the plant model, the internal requirements, the hybrid plant model, and
the visualization are standardized. Within a module, EFAs synchronize using shared
events. Modules do not share events with other modules. Similarly, variables are not
shared between modules. A module consists of a set of parameters used to customize
the module.

As an example for a parameter, consider a boom barrier for a movable bridge. Its
customization parameter is a checkbox indicating whether barrier lights are available.
In case barrier lights are present, an additional EFA is created that represents the
barrier-lights actuator. A model can be created by instantiating the module for some
values. The other parts of the boom-barrier module are as follows.

The plant model consists of the EFAs depicted in Figure 8.2. There is a component
model for the closed sensor (EFA S_Closed), the open sensor (EFA S_Open), the
actuator (EFA A), two models for the physical relations between S_Closed, S_Open,
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and A (EFAs P1 and P2), and, optionally as indicated above, a model for the barrier
lights (EFA L).

Off OnS_Closed: u_on

u_off

Off On
S_Open: u_on

u_off

Idle OpeningClosing
A: P1:

S_Open.u_on
when

S_Closed.Off

S_Closed.u_on
when

S_Open.Off

c_open

c_emrgStop,
c_endStopOpening

c_close

c_emrgStop,
c_endStopClosing

P2:
S_Closed.u_off, S_Open.u_on

when
A.Opening

S_Open.u_off, S_Closed.u_on
when

A.Closing

Off OnL: c_on

c_off

Figure 8.2: Plant model for a boom barrier.

For the correct functioning of a boom barrier, two internal requirements are defined.
These requirements model that the actuator can switch off when the barrier has reached
its end position, as show below.

A.c_endStopClosing needs S_Closed.On
A.c_endStopOpening needs S_Open.On

For simulation, a hybrid plant model is necessary. For the boom-barrier models
S_Open, S_Closed, A, and L, the HA models and the EFA models are identical.
Continuous-time behavior is used to model the rotation of the boom barrier. For this,
P1 and P2 are replaced by model Phyb, as shown in Figure 8.3. Here, α represents the
angle and αclosed and αopen represent the fully closed and fully open angle, respectively.
A differential equation describes the angular velocity (positive if the actuator is opening
and the barrier is not fully open, negative if the actuator is closing and the barrier is
not fully closed, and zero otherwise).

The visualization of the boom barrier is shown in Figure 8.4. For simulation, the
variables in the hybrid plant model are connected to properties in the visualization.
For the boom barrier, parts of the boom barrier get hidden whenever α increases,
simulating the barrier rotating upwards. The colors of the lights, depicted by the red
boxes, depend on the location of EFA L. In the model, this connection is denoted as
below. It means that the fill attribute of the SVG-element ‘Lamp’ is red when EFA L
is in location on and white otherwise.

‘Lamp’ attribute fill: if L.On: red else white;
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dα

dt
=


+1 if A.Opening ∧ α < αopen

−1 if A.Closing ∧ α > αclosed

0 otherwise

S_Open.u_on
when

α ≥ αopen
S_Closed.u_off

when
α > αclosed

S_Closed.u_on
when

α ≤ αclosed
S_Open.u_off

when
α < αopen

Figure 8.3: Hybrid plant model Phyb for a boom barrier.

Figure 8.4: Visualization of a boom barrier.

8.1.3 External requirements
External requirements are used to model the interaction between modules. For each
module, the event set is partitioned into internal and external events. The internal
events are only available inside the module, whereas the external events can also be
used in the event part of an external requirement. Similarly, variables are partitioned
into internal and external variables. Internal variables are only available inside the
module, whereas external variables can also be used in the condition part of an external
requirement. In this way, modules are ‘connected’ via external requirements that use
external events and external variables.

Consider the boom-barrier module from the previous subsection. The internal
events are A.c_endStopOpening and A.c_endStopClosing, and all the sensor events.
The external events are A.c_open, A.c_close, A.c_emrgStop, L.c_on, and L.c_off.
For the requirements model, it is necessary to know whether a boom barrier is
fully open, fully closed, or moving, which are represented by external variables xfo

(= S_Open.On ∧ A.Idle), xfc (= S_Closed.On ∧ A.Idle), and xm (= ¬A.Idle),
respectively.

8.2 Tool
A tool has been developed that is used as a front-end for the CIF toolset (van Beek
et al., 2014). CIF can be used for supervisor synthesis and simulation. With the tool,
CIF model code and SVG images can be generated automatically.

The tool consists of a graphical interface where a user can instantiate modules on
a canvas, using the mouse cursor, and an area where the external requirements can
be modeled. A screenshot of the interface, displaying the Oisterwijksebaan bridge, is
shown in Figure 8.5. In the figure, label A is the plant canvas, label B is the module
library, label C is where the external requirements are formalized, and label D shows
the parameter for the selected component.



120 Chapter 8. Design of a supervisor platform for movable bridges

A

C

B

D

Figure 8.5: The interface of the tool, displaying a model of the Oisterwijksebaan bridge.

8.2.1 Plant canvas

On the canvas, the modules are instantiated. There are two canvases: the canvas
for the modules of the GUI and the canvas for the modules of the physical part of
the system. The model of the GUI and the model of the physical part are presented
graphically. The modules of these two canvases constitute the plant model. A user
can change between the two canvases via the top-left tabs, see Figure 8.5. Instantiated
modules on the canvas can be moved, rotated, and scaled.

When an instantiated module is selected on a canvas, a menu displaying the
parameters of the module is opened, denoted by label D in Figure 8.5. In this case,
the bottom barrier is selected, this can be seen by the eight white squares that are
displayed around this component. These squares can be used to scale the component.
For the boom barrier component, the parameters are its name, its type, and whether
barrier lights are present.

8.2.2 Module library

The module library contains the available modules. Each module has a unique icon
to represent it. By hovering over a module, a short description appears. A module
can be dragged from the library to the canvas to create a model from it. Then, a
pop-up appears where its name can be defined. To enhance the visualization, a library
of additional tools, such as background colors and labels, is available. The user can
change between these libraries via tabs. For example, in the figure, these tools are
used to draw the water and the roads.
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8.2.3 External requirements

A table is used to display the external requirements. Each row represents a requirement.
A row consists of cells for the event name and the condition. Right-clicking an
instantiated module opens a window from where a new requirement for an external
event can be added. By right-clicking an instantiated module when a requirement is
selected, external states can be selected to use in the condition part. For example,
the right-click window for a boom-barrier component is shown in Figure 8.6. It is
automatically checked if the created condition is a valid Boolean expression, otherwise
a warning is displayed.

See al requirements
Add requirement for c_open
Add requirement for c_close
Add requirement for c_emrgStop
Use state: Open
Use state: Closed
Use state: Moving

Figure 8.6: Right-click window of an instantiated boom barrier module.

8.3 Case study on a family of bridges

To evaluate the applicability of the method, the tool has been used to model a family of
seventeen bridges located in the Wilhelmina Canal in North Brabant, the Netherlands.
Three types of bridges are encountered, single leaf bascule bridges, vertical lifting
bridges, and swing bridges. All of these bridges have a width between 25 m and 42 m.
For defining the module library and the external requirements, the lists of inputs and
outputs of the control unit, the electric drawings, and the maintenance manuals have
been used. The following subsections describe the module library for these bridges
and the case study.

8.3.1 Library for movable bridges

A library for commonly encountered modules in a movable bridge has been developed,
with the main modules shown in Figure 8.7. The library consists of modules for
physical components such as traffic lights, boom barriers, and bridge decks, and
modules for GUI elements such as an operator window and a vessel traffic light. Some
modules are not shown here, such as the timer, and the generic on/off actuator and
on/off sensor, that can be used to represent components for which no dedicated module
exists.
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Approach sign Stop sign Double
stop sign

Vessel
traffic sign

Boom barrier

Swing
bridge deck

Bascule
bridge deck

Lifting
bridge deck

VTS
GUI

Traffic sign
GUI

Bridge
Stop LT

Stop

Release LT

Bridge
Release LT

Close barriers

Stop

Open barriers

Bridge
Release LT

Stop

Close bridge

Open barriers

Open bridge

Bridge
Close bridge

Stop

Open bridge

Bridge
Release LT

Stop

Close barriers

Open barriers

Operator
window GUI

Figure 8.7: Part of the module library for movable bridges.

8.3.2 Case study

In Table 8.1, the bridge name, the bridge type, and the number of module instances
are denoted. As can be seen, the majority of the modules are used in every bridge
model. The difference is in the number of times each module is instantiated. As only
one swing bridge has been included in the study, the swing bridge modules are used
only once. Note that the modules used for bridges 4-7, 9, 15, and 16 are equal as they
are very similar bridges.

For all bridges, the majority of the components can be represented by the modules
in the library. However, in some cases there are components for which no module
exists. In these cases, the on/off sensor and the on/off actuator are sufficient to model
the additional components. Examples of such components are alarm sensors (e.g.,
motor overheating sensor) and auxiliary components (e.g., outdoor lighting).

The pneumatic and electric control of the bridge decks are unique for each system.
For example, most of the bascule bridges use pneumatic actuators with multiple
pumps, valves, and pressure controllers. Which actuator can be controlled based on
which sensor is different each time. In the model, the detailed working principle is
abstracted from. Instead, the events used for all bridge deck modules are: c_open,
c_close, c_stop, c_lock, and c_unlock. These events are translated by the resource
controller to the specific actuation of pumps and valves.

In all cases, it was possible to model the external requirements using the external
events and variables. Typically, for each bridge around 100 external requirements
are modeled. The CIF toolset was able to synthesize a supervisor for all bridges.
Monolithic synthesis has been used, which takes a few seconds.



8.3. Case study on a family of bridges 123

Ta
bl
e
8.
1:

O
ve
rv
ie
w

of
th
e
m
od

ul
es

us
ed

fo
r
th
e
se
ve
nt
ee
n
br
id
ge
s.

P
hy

si
ca
l
br
id
ge

m
od

ul
es

G
U
I
br
id
ge

m
od

ul
es

Approachsign

Stopsign

Doublestopsign

Boombarrier

Vesseltrafficsign

Basculebridge

Liftbridge

Swingbridge

Trafficsign

Boombarrier

Vesseltrafficsign

Basculebridge

Liftbridge

Swingbridge

Operatorwindow

B
ri
dg

e
#

N
am

e
T
yp

e
1

Bi
es
t-
H
ou

ta
kk

er
Ba

sc
ul
e

4
2

4
1

2
2

2
1

1
2

Bo
ss
ch
ew

eg
Li
ft

4
4

4
4

1
2

4
2

1
1

3
En

sc
ho

ts
es
tr
aa
t

Ba
sc
ul
e

6
2

4
1

2
2

2
1

1
4

G
ro
en
ew

ou
d

Ba
sc
ul
e

5
2

4
1

2
2

2
1

1
5

H
ei
ka

nt
se
ba

an
Ba

sc
ul
e

5
2

4
1

2
2

2
1

1
6

H
eu
ve
l

Ba
sc
ul
e

5
2

4
1

2
2

2
1

1
7

H
ol
en
ak

ke
r

Ba
sc
ul
e

5
2

4
1

2
2

2
1

1
8

H
oo

ijd
on

k
Ba

sc
ul
e

2
5

4
2

4
1

2
2

2
1

1
9

H
ou

te
ns

Ba
sc
ul
e

5
2

4
1

2
2

2
1

1
10

Li
jn
sh
ei
ke

Ba
sc
ul
e

5
4

4
1

2
4

2
1

1
11

O
ist

er
w
ijk

se
ba

an
Sw

in
g

5
2

8
1

2
2

4
1

1
12

O
ra
nj
el
aa
n

Ba
sc
ul
e

2
1

7
4

4
1

2
4

2
1

1
13

Sl
ui
s
V

Ba
sc
ul
e

3
2

6
1

2
2

3
1

1
14

So
n

Li
ft

8
4

8
4

1
2

8
2

1
1

15
St
ad

va
n
G
er
we

n
Ba

sc
ul
e

4
2

4
1

2
2

2
1

1
16

W
aa
lst

ra
at

Ba
sc
ul
e

4
2

4
1

2
2

2
1

1
17

W
ee
rt

Li
ft

4
8

4
1

4
8

2
1

1



124 Chapter 8. Design of a supervisor platform for movable bridges

8.4 Concluding remarks
This chapter describes a method for supervisor design for a product platform. A tool has
been developed for the design of supervisors for a family of movable bridges. In a case
study with seventeen bridges, it has been shown that with only a small set of modules,
the necessary models for synthesis and simulation can be generated automatically.
After defining requirements between the instantiated modules, a supervisor has been
synthesized. The proof-of-concept delivered for a family of movable bridges shows
that this method is suitable for designing supervisors for a family of similar systems.

In further research, it should be investigated how external requirement models can
be reused. In this case study, the external requirements have been modeled separately
each time. It is expected that also a library for external requirements can be composed,
as for the case study many requirements for the bridges are similar. Furthermore,
we are interested in using the tool to develop supervisors for other infrastructural
systems, such as waterway locks.



Chapter 9

Concluding remarks

This thesis aimed to investigate the applicability of supervisor synthesis to the design
of supervisory controllers for infrastructural systems, to increase quality and evolv-
ability. Based on the results presented in this thesis, it can be concluded that the
synthesis-based engineering method is particularly suitable for the design, validation,
and implementation of supervisory controllers for infrastructural systems. This was
especially demonstrated by Chapter 7, where the method is illustrated starting from
textual specifications all the way to the implementation on a real system. Specifically,
an improvement in the following three aspects has been observed:

1. The quality of the requirements.

2. The quality of the supervisory controller.

3. The reusability and evolvability of the models.

First, the synthesis-based engineering method provides a structured and systematic
way for the specification and design of the system’s behavior. The required models
provide more consistency and allow for less ambiguity than documents written in
natural language, which increases their quality. Moreover, supervisor synthesis helps
in identifying missing and incorrect requirements, as shown in Chapter 3 where a
missing requirement for a waterway lock was found. Even in case synthesis is not used,
the models still contribute to a more consistent design, as demonstrated in Goorden
(2020) and Moormann (2020), where component and requirement models are used as
a design specification for waterway locks and road tunnels, respectively.

Second, the use of synthesis guarantees that the requirements are always met by
the supervisor and the supervisory controller derived from that. As a result, the
supervisory controller does not have to be verified against these requirements. Instead,
the focus lies on assuring that the formalized requirements are complete and correct.
Simulation-based validation and HIL simulation are powerful tools for this purpose.
The use of synthesis and simulation increases the quality and the confidence in the
correctness of the supervisory controller before implementation in the real system. For
the supervisory controller discussed in Chapter 7, all errors related to its behavior
were found during simulation and no errors were found during testing on the real
system.

125
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Third, the component-based modeling method in combination with standardized
modules allows for easy reuse and evolvability of models. The development time
of the supervisory controllers decreased significantly during the project, from a few
months for the waterway lock described in Reijnen et al. (2017), to a few hours for
the bridges described in Reijnen et al. (2020b). Furthermore, the developed modules
have also been reused to model other systems, like road tunnels, roadside systems,
and manufacturing lines.

The research questions defined in Section 1.5 are answered below.

Research question 1
What is a suitable way to model infrastructural systems and their require-
ments for the purpose of supervisor synthesis?

Chapter 3 presents a component-based modeling method for supervisor synthesis.
Here, all actuators, sensors, and commands are modeled as small, loosely-coupled
component models. The interactions between the components are formalized as
physical relation models. Various case studies show that this method is very suitable
for modeling waterway locks and movable bridges. Additionally, it is shown how the
control requirements for locks and bridges can be formalized with event conditions.
For this, we identified textual requirements that can straightforwardly be transformed
into a model. When component-based modeling is used, the formalized requirements
relate closely to the specifications control engineers are acquainted with in practice,
which increases the accessibility of the method. Chapter 7 addresses the modeling and
design of fault-tolerant supervisory controllers and fault diagnosers. Fault diagnosers
are used as additional inputs to the supervisory controller, and their identifications
are used in the requirements model.

Various case studies illustrate this modeling method. In Chapter 3, a lock-bridge
combination model is shown, consisting of 80 actuators and 96 sensors, and that has
to respond to 63 operator commands. The waterway lock and the movable bridge
described in Chapters 6 and 7, respectively, are also modeled using this method.
The supervisory controller for the bridge was also implemented on the hardware.
The method is also suitable for modeling other infrastructural systems, such as road
tunnels (Moormann et al., 2020a) and roadside systems (de Vos, 2018). In Reijnen
et al. (2018a), it is described how a supervisory controller for a manufacturing line is
modeled, synthesized and implemented on hardware, using the same method.

Research question 2
Which steps are necessary to derive a supervisory controller, and subse-
quently, implementation code, from a synthesized supervisor model?

In Chapter 4, an overview of the steps to go from a (synthesized) supervisor to a
controller implementation is given. It is based on the method from Malik (2003) to
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verify that any supervisory controller derived from the supervisor is nonblocking. For
this, a supervisor needs to have finite response, be confluent, and be nonblocking
under control. This thesis proposes sufficient conditions that can be used to check
these properties for systems modeled as EFAs.

From a supervisory-controller model, PLC code can be generated, as discussed
in Chapter 4. The required cycle time of the PLC can be minimized by optimizing
the event order and the EFA order. In that way, situations related to inexact
synchronization and delay insensitivity are mitigated. Furthermore, the original model
structure is preserved.

In Chapter 7, it is described how a supervisory controller for a swing bridge
has been derived from a synthesized supervisor, based on the method described in
Chapter 4. Subsequently, the derived supervisory controller has been used to generate
implementation code for a PLC. The supervisory controller has successfully been used
to control the real bridge.

Research question 3
Which additional steps have to be performed to use a synthesized supervisor
as a safety PLC controller?

For safety PLCs, two supervisors are necessary, one for the regular part and one for
the safety part. In Chapter 5, a method is described that allows a supervisor to
be split for this purpose. This splitting method is based on the partitioning of the
requirements. From this partitioning, it is derived which sensors and actuators belong
to the safety part and how the supervisor has to be split. It is shown that the behavior
of the supervisor before the split is equal to the behavior of the supervisors after the
split. This assures that the properties guaranteed by synthesis still hold afterwards.

The Oisterwijksebaan bridge, described in Chapter 7, has been used to demonstrate
the applicability of this method. First, it is shown that the partitioning of the sensors
and actuators is similar to the partitioning made by experts. Second, it is shown that
for both parts PLC code can be generated and that the generated code can be used
to control the real bridge.

Research question 4
How can a supervisory controller for a real infrastructural system be syn-
thesized, implemented, and tested?

In Chapter 7, it is described how a fault-tolerant supervisory controller for a real
swing bridge has been synthesized, implemented, and tested. For this, the modeling
method of Chapter 3 and the supervisory-controller derivation method of Chapter 4
are used. Simulation-based validation with factory acceptance tests, defined by RWS,
show that the behavior is as intended. To bridge the gap between simulation and
implementation, a hardware-in-the-loop set-up has been developed. With that set-up,
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the behavior of the supervisory controller implemented on the PLC was validated
before it was connected to the real system. This set-up and how it has been integrated
in the engineering method are described in Chapter 6. After HIL simulation, the
supervisory controller has been implemented on the real system. To validate the
behavior of the supervisory controller on the real system, site acceptance tests with
predefined scenarios have been performed by RWS bridge operators. These tests show
that the supervisory controller behaves as specified in the scenarios, both in nominal
behavior and after the occurrence of faults.

Research question 5
In what way can the similarities between similar systems be exploited to
efficiently develop the plant and the requirements models?

Chapter 8 describes a graphical method for the development of supervisory controllers
for a product platform. A product platform is a set of common components, modules,
or parts from which a stream of derivative products can be efficiently created. In this
method, a library of standardized modules for commonly encountered components
is created (according to the modeling method described in Chapter 3). Modules in
this library are used to quickly compose a plant model. For the requirements model,
an interface consisting of events and states is defined for each module. The desired
interaction between modules is defined using these events and states.

As a proof of concept, a prototype tool has been developed that implements
this method for a family of movable bridges. Using this tool, the plant and the
requirements models can be developed graphically. A case study with a family of
seventeen bridges shows that with a small set of modules, the necessary models for
synthesis and simulation can be generated automatically.

9.1 Future work
This thesis shows how modeling, synthesis, validation, implementation, and testing
can be combined into a design process of supervisory controllers for infrastructural
systems. There are various ways to further build on the results of this research project.
Below, two possible extensions are described.

Improving synthesis performance

For the case studies described in this thesis, it was always possible to synthesize a
supervisor. The time the synthesis procedure takes depends on the application. For
example, it takes around 3 minutes to synthesize the supervisor for the Oisterwijksebaan
bridge described in Chapter 7 and around 35 minutes to synthesize the supervisor for
the Algera complex described in Chapter 3. Similarly, the computer memory required
for the synthesis procedure differs between applications. It is expected that for larger
systems, monolithic synthesis becomes infeasible due to the computation time being
too long and the required memory being too high. In Goorden et al. (2020b), it
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has been shown that in some cases only a part of the plant model and a part of
the requirements model are needed for synthesis. In addition, in Moormann et al.
(2020b), it has been shown that if parts of the system are symmetrical (such as the
upstream side and downstream side of a waterway lock), only one part is needed for
synthesis. It should be investigated whether these techniques can be used to reduce the
computation time and the required memory for waterway locks and movable bridges.
Another factor that influences the computation time and the required memory is the
ordering of variables in the binary decision diagram. Thuijsman et al. (2019) shows
that for different orderings for the BDD-variables of the waterway lock described in
Reijnen et al. (2017), the synthesis time ranges from a few seconds to a few hours.
Research is needed to consistently choose a favorable ordering.

Data logging and reconstruction of behavior

In case of malfunctions or accidents related to infrastructural systems, it is useful to
reconstruct and analyze the behavior that led to such an undesired situation. Current
practice consists of monitoring and storing the actuator signals, the sensor signals, and
the GUI signals, and plotting them in a time series chart. Reconstruction and analysis
using a time series chart is laborious and difficult to perform for engineers not familiar
with the system. When a model of the plant is available, it can be used for several
purposes. Firstly, it can be used to visualize the logged data via simulation, making
the reconstruction and analysis more intuitive and accessible. Secondly, as shown in
Roth et al. (2011), the logged behavior can be compared with the expected nominal
behavior defined in the plant model. In that way, faulty behavior can be identified
automatically. Thirdly, if a model of the supervisory controller is also available, it
can be used to determine whether the implemented supervisory controller behaves as
intended. Preliminary results for the applicability of these techniques to infrastructural
systems are presented in Reijnen et al. (2020c). More research is needed to integrate
these techniques into the incident analysis process.
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