

Unified messaging control platform

Citation for published version (APA):
Patel, P. (2020). Unified messaging control platform. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/10/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e9335cd9-99d7-4b7c-a332-dfad1b6aa596

PDEng SOFTWARE TECHNOLOGY

PDEng THESIS REPORT

Unified Messaging Control
Platform

Priyanka Patel
October 2020
Department of Mathematics & Computer Science

20184733
Cross-Out

Unified Messaging Control Platform

October 2020

Eindhoven University of Technology

Stan Ackermans Institute – Software Technology

PDEng Report: 2020/073

Confidentiality Status: Public

Partners

Philips Eindhoven University of Technology

Steering Group Priyanka Patel

Marcel Quist (Philips)

Tanir Ozcelebi (TU/e)

Zoran Stankovic (Philips)

Date October 2020

Composition of the Thesis Evaluation Committee:

Chair: Harold Weffers

Members: Dmitri Jarnikov

Ihor Kirenko

Marcel Quist

Tanir Ozcelebi

Zoran Stankovic

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.080B, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402472759

Partnership This project was supported by Eindhoven University of Technology and Philips.

Published by Eindhoven University of Technology

Stan Ackermans Institute

PDEng-report 2020/073

Preferred

reference

Unified Messaging Control Platform. Eindhoven University of Technology, PDEng Re-

port, 2020/073, October 2020

Abstract In order to improve the existing and traditional communication workflows between Philips

and its customers, demands a need for a consolidated platform enabling communication by

means of real-time and asynchronous channels. This report summarizes design of a multi-

media messaging platform which easily integrates real-time features with web and backend

applications and can be deployed on cloud or on-premise. A cloud-based system was de-

veloped and some of the high-level functionalities are real-time multimedia group messag-

ing, presence, optimized data synchronization, and offline messaging. Communication via

different channels such as SMS, Email, and Web Push are also supported. The platform is

extendable which makes it easy to integrate additional features and third-party services. A

selected few AI services are integrated as prototypes to demonstrate its potential for further

extension. This messaging platform was part of a pilot application and was tested at three

hospital sites with selected customers.

Keywords Messaging, WebSocket, Real-time, Publish-subscribe, GraphQL, AWS, Philips, TU/e,

Software Technology, PDEng

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the Eindhoven University of Technology or CLI-

ENT. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the Eindhoven University of Technology or CLIENT, and shall not be used for

advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within this report

is accurate and up to date, Eindhoven University of Technology makes no warranty, rep-

resentation or undertaking whether expressed or implied, nor does it assume any legal lia-

bility, whether direct or indirect, or responsibility for the accuracy, completeness, or use-

fulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with

the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2020. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocop-

ying, recording, or by any information storage or retrieval system, without the prior written

permission of the Eindhoven University of Technology and CLIENT.

Eindhoven University of Technology

i

Foreword
It is such a privilege that we have been able to witness the growth path of the PDEng education from multiple

angles. First of all, being a PDEng student myself in the past, I learned to appreciate the multi-disciplinary tech-

nology design approaches. Secondly, with the PDEng SW Technology international team we worked closely on

a fun AI demonstrator assignment with 18 fellow international PDEng students and our team, and that was where

we first met. And now, over the last 10 months, we witnessed your personal growth from closeby within our team.

A warm and positive experience!

Where the first team assignment was about exploration for a fun and inspiring demonstrator, showing what you

can do with already available AI (Artificial Intelligence) in the cloud, your final assignment has been a major step

in technical complexity, while adapting to the stakeholders’ expectation levels. You were able to do that in a

Philips research settings where we seek and design health solutions based on customer insights and needs. Where

the requirements are typically in flux and never carved in stone. You actually supported and drove the process to

get these requirements clear and focused by rapid prototyping, inspiring by tangible examples and – most of all

nowadays – empowering co-creation to unleash the talents of many others. This is in high level terms our envi-

sioned assignment.

Now more specifically on the topic, Priyanka turned a preliminary idea of a new interfacing concept into a com-

prehensive new set of multi-media platform services. Interfacing between human chat conversations and multiple

AI-to-knowledge-sources. Why multiple? Because we envisioned that solutions will quickly involve multiple par-

ties, each having their own set of AI-sources. And from a user perspective, another important aspect of such

messaging platform is that solutions will quickly need to become indifferent to the commonly available media

channels such as email, sms, WhatsApp, WeChat, etc. including application embedded proprietary chat channels.

Most of these channels exist and are provided by cloud vendors. Priyanka’s platform approach bundles all, such

that application designers and developers are free to select most appropriate channels suiting their use case (instead

of being locked in by the available choices of a selected vendor). Plus, for future sustainability, the platform

encompasses a vendor abstraction API, such that same application designers can easily switch to other vendor’s

services if these become more innovative or economically attractive. Another prevention of lock in.

In a report that is published in 2020, at least one reference to COVID-19 must appear somewhere, and where

better than in this foreword? The team circumstances changed considerably in your 3rd month of the assignment

(March 2020) when the offices basically closed down and working from home became the new norm. Thank you

for the quick and easy adaption to this new reality – in keeping up the team spirit alongside impressive contribu-

tions to the ‘Scalable Service Delivery’ team and Philips.

As said, I consider it a privilege knowing you personally and being in the position to ‘add your name’ to the annals

of our joint working history in Philips!

Thank you!

Zoran Stankovic and Marcel Quist

25th September 2020

Eindhoven University of Technology

ii

Eindhoven University of Technology

iii

Preface

This report summarizes the “Unified Messaging Control Platform” project carried out by the author as the gradu-

ation project of the Professional Doctorate in Engineering (PDEng) program in Software Technology. This pro-

gram is a two-year technological designer program offered by Eindhoven University of Technology, Stan Acker-

mans Institute. The project duration was ten months and was conducted at the Professional Healthcare Services

and Solutions (PHSS) department within Philips Research, Eindhoven.

The goal of the project is to design and implement a messaging platform that supports real-time integration capa-

bilities with web applications and backend applications and that can be implemented on-premise or on cloud. This

report describes the successful realization of the project and elaborates the software development and project

management processes. This document is constructed such that the reader is given an overview of the problem

and the high-level vision and is led to the solution through research, design, implementation, and validation at

pilot sites.

Audience for this report can be both technical as well as non-technical readers. Readers who are interested to

know the context and high-level goals of the project can refer Chapters 1, 2, and 3. Readers willing to learn about

the domain aspects of messaging and latest services can read Chapters 4 and 5. Chapters 6 and 7 are intended for

technical readers who wish to learn about the design of the system, the functionalities, and the implementation.

Readers mainly interested in the results of the project can read Chapters 9 and 10. For getting a general idea of

the project along with requirements, and the project management process, refer Chapters 1, 2, 3, 11, and 12.

Readers who are interested in knowing about all aspects of the project are welcome to read the entire report.

October 2020

Eindhoven University of Technology

iv

Eindhoven University of Technology

v

Acknowledgements

I would like to thank and express my gratitude to everybody who supported, collaborated, and assisted me over

the course of the project.

At Philips, I thank my project supervisor and project manager, Marcel Quist, for giving me the opportunity to be

a part of his team and this project. Your introduction towards how a leading technology company like Philips

functions and how contributions from individual departments and team add to the bigger picture helped me in

understanding the vision. Your inputs towards keeping helicopter view for this project and insights regarding other

interesting work happening around has always been helpful. Your support and patience provided me with an

encouraging environment where I enjoyed the freedom to explore and learn.

I am thankful to Zoran Stankovic, my project supervisor and mentor at Philips for providing me with the guidance,

knowledge, and expertise that I needed during the project without which I could not have achieved the final results

and deliverables. You were always there for any technical questions that enabled me to get acquainted to the

domain and it accelerated my learning process. You have always encouraged me to learn more and excel. I would

also thank you for believing in me that the work done during the project could be used for the pilot.

At TU/e, I thank my project supervisor, Tanir Ozcelebi, for his advice and constant encouragement during the

project meetings. Your guidance and confidence in me assured me to feel comfortable in the process and the way

in which I was working and progressing.

I also thank the PDEng, Software Technology management, Yanja Dajsuren and Desiree van Oorschot for their

constant encouragement and organizational support during the entire PDEng program.

Additionally, my gratitude goes to the entire team of Scalable Service Delivery, including Arjan Draisma, and

Robin Mennens. It was nice to learn from each other during the standups and demo sessions and was fun to know

more about each other during the team building activities.

I also extend my gratitude to Danny Schaefer and Thasneem Moorkan from the Service Connect team for the

pleasant collaboration.

I thank my fellow PDEng colleagues for the engagement and collaboration in the workshops and module projects

during the first year of the program. I would like to specially mention my PDEng colleague, Robin Mennens, for

being the companion during the graduation project at Philips.

Special thanks to all my friends for their never-ending support and encouragement. A special mention to my friend

Akarsh Sinha for always encouraging and guiding me through the process.

I thank my parents for their love and prayers and for always being there and I am grateful to them for everything

they have done for me. And most of all, I thank my husband, Sabyasachi Neogi, for his constant affection, en-

couragement, and understanding. You supported me every step of the way, that enabled me in being the best

version of myself, both personally and professionally.

Priyanka Patel

September 2020

Eindhoven University of Technology

vi

Eindhoven University of Technology

vii

Executive Summary

Philips is a leading health technology company with the vision of improving people’s lives and well-being through

meaningful innovations for healthy living, diagnosis, treatment and home care. Philips’ products and services

need to be serviced to ensure top quality and performance to customers and there is always a need to continuously

innovate in service delivery methods to ensure scalable delivery at all times and circumstances.

This project was conceptualized in the context of digitization of remote customer support Philips provides to its

medical equipment customers, which primarily are hospitals. The goal is to address the known issues of existing

phone-based system such as long waiting and resolution times, frequently transferred customer calls, and internal

fragmented tools and processes. The company’s vision is to revamp this experience by having a unified platform

which comprises of high-quality connected services to track and monitor cases and to deliver an effortless service

experience via an omni-channel digital platform.

One of the integral building blocks of the digital support experience is multimedia based messaging, through

various modes such as real-time channels and asynchronous channels. Though the idea started off for improving

the customer support workflow, there are other contexts experiencing similar issues and could potentially reap the

benefits of such a digital platform. Remote communication between patients and caregivers facilitating a tighter

bond with families, or other signaling based applications are such instances.

The objective of this project is to design and develop a multimedia-based messaging platform that supports mes-

saging across different channels so that it acts as a comprehensive platform for different systems to easily incor-

porate messaging functionalities.

This report describes the project, technical design and processes followed in order to realize the project goals. The

result of the project is a cloud implementation of the messaging platform which can be tweaked for an on-premise

implementation. With the platform, the following functionalities are delivered.

• Real-time and core messaging features which are multimedia group messaging, optimized data synchro-

nization, real-time presence updates, and offline messaging.

• Messaging via asynchronous channels which are SMS, Email, and Web Push.

• Low latency real-time behavior for both front end and backend applications.

• Prototypes demonstrating integrations with a selected set of AI algorithms and services on the multimedia

data.

The cloud messaging platform exposes different types of APIs to integrate any client web application. For backend

client applications, user defined callback APIs are also supported through which the messaging platform transmits

real-time events. The platform also provides APIs in order for client applications to run AI algorithms and services

to their multimedia data. The platform is highly configurable and extendable, which makes it easy to add additional

features and third-party services. The implemented platform also exhibits non-functional properties, such as mod-

ularity and interoperability.

The messaging platform developed as part of this project is tested and verified in a pilot execution with three

hospitals in North America. An application named Service Connect was launched by Philips Research in order to

demonstrate digitization of the remote customer support experience and the communication was facilitated by the

messaging platform.

Eindhoven University of Technology

viii

Eindhoven University of Technology

ix

Table of Contents

Foreword ... i

Preface ... iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures ... xiii

List of Tables ... xv

1. Introduction ... 1

1.1 Context .. 1

1.2 Philips Research ... 1

1.3 Remote Customer Support .. 2
1.3.1. Workflow ... 2
1.3.2. Customer Issues ... 2
1.3.3. Vision ... 3

1.4 Additional Use Cases ... 3

1.5 Project Objectives .. 4

1.6 Outline .. 4

2. Stakeholder Analysis ... 5

2.1 Stakeholders and Concerns .. 5

2.2 Stakeholder Prioritization .. 6

2.3 Stakeholder Communications Plan .. 7

3. System Requirements .. 9

3.1 Introduction .. 9

3.2 General System Requirements .. 9

3.3 Functional Requirements .. 10

3.4 Non-functional Requirements ... 12

4. Domain Analysis .. 13

4.1 Client Server Model .. 13
4.1.1. Client Pull .. 13
4.1.2. Server Push .. 13

4.2 Messaging Paradigms .. 13
4.2.1. Publish-Subscribe (Pub-Sub) ... 14
4.2.2. Point-to-Point (P2P)... 14

4.3 Real-time Messaging Methods ... 15
4.3.1. Short Polling .. 15

Eindhoven University of Technology

x

4.3.2. Long Polling .. 15
4.3.3. HTTP Connection Types ... 15
4.3.4. Server-Sent Events (SSE) .. 16
4.3.5. HTTP Streaming .. 17
4.3.6. WebSocket ... 17

4.4 Messaging Protocols .. 17
4.4.1. Extensible Messaging and Presence Protocol (XMPP) ... 17
4.4.2. WebSocket Protocol .. 18

4.5 Web API standards ... 18
4.5.1. REST ... 18
4.5.2. GraphQL .. 19

5. Vendor and Service Evaluation .. 21

5.1 Messaging Vendor Comparison ... 21

5.2 Vendor Evaluation .. 21

5.3 Service Evaluation .. 22

6. Architecture and Design .. 23

6.1 Messaging Platform.. 23
6.1.1. GraphQL Server... 23
6.1.2. REST Server .. 25
6.1.3. WebSocket Server ... 25

6.2 Data modeling and Data Storage ... 25
6.2.1. Messaging Data Model .. 25
6.2.2. Database Modeling .. 26
6.2.3. Multimedia Storage ... 27

6.3 System Feature Realization .. 27
6.3.1. Real-time behavior ... 27
6.3.2. Presence Indicators .. 27
6.3.3. Security and Authentication... 27
6.3.4. Multimedia Access .. 29
6.3.5. Message Sequencing and Retrieval ... 30
6.3.6. Data Synchronization ... 30
6.3.7. Offline Architecture ... 30

6.4 Third-party Service Integrations .. 31
6.4.1. Asynchronous Channel Services ... 31
6.4.2. Web Push Notifications ... 32

6.5 Webhooks .. 33

6.6 Cloud and on-premise .. 33

7. Cloud Implementation... 35

7.1 AWS Resources ... 35
7.1.1. Client-facing Resources ... 35
7.1.2. Backend Resources .. 38
7.1.3. Software Development Kit .. 39

7.2 Third-party Services ... 39

7.3 Demo UI Application .. 40

Eindhoven University of Technology

xi

8. Deployment and Pilot Execution .. 41

8.1 CloudFormation ... 41

8.2 CI/CD ... 41

8.3 Service Connect Pilot ... 42

9. Verification & Validation .. 43

9.1 Verification ... 43

9.2 Validation ... 43

9.3 API Metrics ... 44

10. Conclusion... 45

10.1 Results ... 45

10.2 Project Deliverables ... 45

10.3 Future work .. 46

11. Project Management .. 47

11.1 Work Breakdown Structure ... 47

11.2 Project Plan .. 47

11.3 Risk Analysis ... 48

12. Project Retrospective ... 51

12.1 Project Reflection ... 51

12.2 Learnings .. 51

Glossary ... 53

References .. 55

Appendix A. GraphQL Schema ... 57

Appendix B. Sample SAM Template ... 61

Appendix C. Service Connect Screenshots .. 67

About the Author .. 70

Eindhoven University of Technology

xii

Eindhoven University of Technology

xiii

List of Figures

Figure 1 – Envisioned customer support experience mockup [6] .. 3
Figure 2 – Stakeholder map .. 7
Figure 3 – Publish-subscribe messaging ... 14
Figure 4 – Point-to-point messaging .. 14
Figure 5 – HTTP connection types [10] ... 16
Figure 6 – Short polling, long polling, and server-sent events .. 16
Figure 7– Domain model representing GraphQL user-defined types ... 23
Figure 8 – Relationships between GraphQL base types and user-defined types.. 24
Figure 9 – GraphQL pipeline resolvers .. 24
Figure 10 – Database modeling ... 26
Figure 11 – GraphQL subscription sequence diagram ... 28
Figure 12 – Real-time presence updates ... 28
Figure 13 – Authentication sequence diagram .. 29
Figure 14 – Activity diagram for sending, uploading, and retrieving multimedia files 29
Figure 15 – Web push components and their interactions .. 32
Figure 16 – Webhook registration and callbacks using streams .. 33
Figure 17 – Messaging platform AWS resources .. 35
Figure 18 – Interaction between AppSync components ... 36
Figure 19 – Pilot components and interfaces with the messaging platform .. 42
Figure 20 – GraphQL API latency graph .. 44
Figure 21 – REST API integration latency graph .. 44
Figure 22 – REST API latency graph ... 44
Figure 23 – Tasks burndown chart ... 47
Figure 24 – Project Gantt chart ... 48

Eindhoven University of Technology

xiv

Eindhoven University of Technology

xv

List of Tables

Table 1 – Remote Support – Customer issues and potential causes ... 2
Table 2 – List of direct stakeholders, their interests and provided inputs ... 5
Table 3 – List of indirect stakeholders ... 6
Table 4 – Stakeholder communications plan ... 7
Table 5 – MoSCoW model ... 9
Table 6 – General system requirements .. 9
Table 7 – Functional requirements... 10
Table 8 – Non-functional requirements .. 12
Table 9 – Comparison between XMPP and WebSocket ... 18
Table 10 – Comparison between REST and GraphQL APIs... 19
Table 11 – Comparison between messaging providers – WebSync, Twilio, PubNub, Pusher 21
Table 12 – Messaging data model ... 25
Table 13 – List of subscription operations .. 27
Table 14 – Messaging data model variations .. 31
Table 15 – List of potential cloud and on-premise technologies ... 33
Table 16 – Client facing AWS resources .. 36
Table 17 – Messaging platform GraphQL and REST APIs .. 36
Table 18 – Backend AWS resources .. 38
Table 19 – Requirements status ... 43
Table 20 – Risk assessment .. 49

Eindhoven University of Technology

1

1.Introduction

This chapter introduces the company and explains the context in which the work was carried out during this

project. The chapter describes the context of remote customer support experience in detail as it helps in under-

standing the foundation of this project. The problems being faced by Philips customers and their root causes are

discussed. It also elaborates on the company’s vision in improving the current experience and underlying pro-

cesses. A brief description to other use cases and some limitations are discussed. Finally, the project objectives

are discussed and the outline for the rest of the report is explained in the closing section.

1.1 Context
The “Unified Messaging Control Platform” project is conducted by the author, as part of her Professional Doctor-

ate in Engineering (PDEng) program. The PDEng program in Software Technology is provided by the Department

of Mathematics and Computer Science at Eindhoven University of Technology in the context of the 4TU.School

for Technological Design, Stan Ackermans Institute [1].

A Professional Doctorate in Engineering is a full-time, two-year technological designer program and falls within

the 3rd cycle of higher education and is an advanced training consisting of two parts. The first 14 months of the

program includes courses to gain extensive knowledge and experience of the latest design methods and their

applications and also includes three industry driven training projects. The last 10 months is working on an indi-

vidual design project at a company.

This project is the individual design project of the author and was initiated by Philips Research, Eindhoven. Philips

is a global health technology company which focuses on improving people’s lives and enables better outcomes

across different aspects such as healthy living, diagnosis, treatment, and home care. Philips delivers integrated

products and solutions by state-of-the-art technologies and deeply value customer insights. The company is head-

quartered in the Netherlands, and is a leader in diagnostic imaging, image-guided therapy, patient monitoring,

health informatics, consumer health, and home care. Philips believes in the power of innovation and strives to-

wards making the world healthier and more sustainable. The company goal is to improve the lives of three billion

people a year by 2030 and deliver superior value for customers and shareholders [2]. The next section gives a

brief introduction to Philips Research and the department in which the project was carried out.

1.2 Philips Research
Philips Research introduces meaningful innovations for customers in order to improve people’s lives and keep

customers at the center of the process. It has a global presence including both developed and emerging markets.

They work from spotting ideas and trends, to developing advanced proof-of-concepts and developing novel tech-

nologies and products. [3].

This project was conducted at Professional Health Services and Solutions (PHSS) department in Philips which is

a digital proposition research department that works towards creating data-driven innovative services and solu-

tions that enable healthcare providers to deliver improved outcomes at lower cost with improved patient and em-

ployee satisfaction. Using patient and care provider data, as well as data from both medical devices and public

information sources, this group does big data analytics, process improvement, and patient preference techniques

to improve care delivery systems via innovations delivered through information systems and consulting across the

health continuum.

This project was completed with the Scalable Service Delivery (SSD) team, which is part of the PHSS department,

and the project contributes towards the team’s vision. The team focuses on the development of innovative services

and solutions to digitize the communication experience by exploring remote communication capabilities. They

also enable healthcare providers to deliver better results with improved patient and employee satisfaction. Philips

wants to grow in services but currently relies on conventional delivery methods. The team adds scalable and

enriching service delivery capabilities based on adaptive intelligence, which enhance efficiency for routine ser-

vices and facilitate growth in new, added value services whilst improving customer response times and satisfac-

tion.

Eindhoven University of Technology

2

1.3 Remote Customer Support
The existing customer support workflow that Philips provides to its medical equipment customers, which primar-

ily are hospitals, is an extensive and complex process to ensure coverage of many cross-functional aspects like

customer experience, resolution efficiency, risk management, and regulations [4]. The support is a remote phone-

based communication between hospital staff members and Philips customer service personnel and if required, a

service engineer is sent on site for support. The personnel involved in direct interactions are called front stage

personnel and there are backstage personnel who work in the background towards resolution. The frontstage peo-

ple are the BioMed Technician (BMT), a Customer Care Centre (CCC) agent, a Remote Service Engineer (RSE),

and a Field Service Engineer (FSE).

1.3.1. Workflow

The end-to-end support workflow [5] can be broken down into stages and is explained below.

1) Issue Detection – Hospital staff detects an issue and gets a ticket created in the hospital system. The BioMed

technician at the hospital is informed about the new case and the affected system.

2) Issue Assessment – The BMT checks if the issue can be resolved locally by first calling the personnel at the

hospital ticketing system to understand the problem and then investigates similar old cases and system man-

uals.

3) Issue Reporting – If the BMT decides that the problem cannot be resolved locally, the Philips CCC agent is

contacted. The CCC agent is the first level of contact for the BMT and gives the system details and answers

safety questions. This information is logged in the Philips support system and a case is created. Then the

Service Level Agreements are verified and an RSE is notified.

4) Remote Assessment – Once the RSE receives the ticket, a first level of analysis is done by the RSE and after

that either an FSE is assigned to visit the customer on site or the spare parts delivery process is started. The

hospital BMT is called to discuss the assessment and next steps. If spare parts need to be ordered, the case is

transferred from the RSE to the CCC and the quotation process is started, and the hospital is intimated.

5) Quotation Process – The CCC receives the quotation from the dedicated team and forwards it to the cus-

tomer. The customer forwards the quotation to their finance team and waits on approval of the quotation.

6) Ordering of spare parts – Once the customer approves the purchase order, the CCC orders the parts and

waits for delivery information. The details about the spare parts are shared with the customers.

7) Assigning FSE – An FSE can be assigned directly after remote assessment or after the ordering of spare parts

to assist the customer on-site with installation. The availability of FSEs is checked and an FSE is assigned to

visit the customer site. The customer is informed about the FSE visit.

8) On Site Visit – The FSE visits the site, assesses the issue, and installs the spare parts. If another visit or more

assistance is required, the FSE contacts the RSE and CCC and work towards a plan.

9) Reporting – After the customer confirms that the problem is fixed, the ticket is updated, closed, and a follow

up with customers is done for feedback.

The above description provides a simplified version of the workflow and has its associated shares of problems

faced by both customers and support personnel. The next section briefly discusses some of the recurring issues.

1.3.2. Customer Issues

The front stage personnel at the hospital side are the BioMed, nurse and other staff members who directly interact

with Philips support and the front stage personnel at the Philips support side are the CCC, FSE, and RSE agents.

Table 1 lists the problems faced by hospital staff members and potential causes from the perspective of support

agents [5].

Table 1 – Remote Support – Customer issues and potential causes

Issues: Hospital Staff (Bio-

med, Nurse)

Causes: Support Agents (CCC, RSE, FSE)

Long waiting times Large volume of cases and analyzing one case at a time could lead to agent’s

unavailability.

Calls getting transferred to

multiple agents and having to

repeat information

Not having the right skillset to support a case could lead to rerouting to other

agents

Eindhoven University of Technology

3

No way to share screen or

share media

Only a phone-based support, which currently does not support sharing media

(The ability to share media could help understand the problem better and could

lead to faster resolutions and possible reductions in FSE visits)

Not a transparent process Many agents and background tasks are involved without having a control cen-

ter to unify all the individual processes

No clear update or visibility

on the case status

Some information could be lost between different process and different tools

for logging

Experience varies with differ-

ent agents

Agents have loosely defined protocols to follow and hence approaches could

be based on their experience

Long resolution times Challenges in finding agents availability with the required expertise, depend-

ency on third party tools, no prioritization in the ticketing system.

1.3.3. Vision

The Scalable Service Delivery team envisions to address the customer issues faced in the present phone-based

support and take this experience to the next level by delivering high quality connected services, to provide an

effortless service experience via an omni-channel digital support journey, and to have one platform to track and

monitor cases. Figure 1 illustrates a high-level view on the enhanced digital support experience, which simplifies

the process of creating cases, answering safety questions, routing to concerned individuals, sending and receiving

messages on preferred channels, attaching media files, and always having a visibility on the case status [6]. This

experience could be further enhanced by adding video conferencing and self-help capabilities.

Figure 1 – Envisioned customer support experience mockup [6]

1.4 Additional Use Cases
Section 1.3 explains the remote customer support use case and the vision for the enhanced digital experience.

Though this project was initiated in the customer support context, it is not only directed towards this use case.

Eindhoven University of Technology

4

This project also explores additional use cases and contexts experiencing similar problems and their specific vision

towards a potential resolution. Two such use cases are described below.

Telehealth – One of the stakeholders, which is a software department within Philips introduced this use case.

Telehealth is access and management of health care services remotely and are an alternate to the in-person hospital

visits. While this is very efficient and works well for most of the cases, there are patients involved in long-term

care with hospitals, such as pregnancy or chronic diseases. For simple and trivial queries, the patients may not

want to go through the general procedure. The vision is to have a simple text and multimedia-based communica-

tion system which groups selected individuals where both patients and care givers can enquire or respond to

questions as per their convenience. Sharing of multimedia files and gaining insights from defined algorithms could

augment the experience.

WebRTC Signaling – WebRTC is a technology for peer-to-peer real-time audio and video communication, which

establishes media exchange between devices without an intermediate server to facilitate this communication.

There is a need to establish a connection between devices before they can communicate with each other. This

process of device discovery and the negotiation process is known as signaling. Signaling involves connecting over

an agreed server through which the devices can identify each other and then communicate. The SSD team owns

a WebRTC platform and uses signaling service of a third-party provider. The vision here is to have an in-house

signaling mechanism which would eliminate the dependency on third party providers and is a potential use case

for the project.

1.5 Project Objectives
The goal of the project is to develop a unified messaging platform that support the vision of digitization of remote

communication capabilities derived from different use cases. The objective of the project is to design a messaging

platform supporting communication via low latency real-time channels and asynchronous channels. The platform

should be developed at an appropriate abstraction so that different applications can use this platform for their

specific needs. The platform should be easily integrable with both browser applications and backend applications

in order for any system to add messaging functionalities.

The platform should facilitate messaging via asynchronous channels such as SMS, Email, and social media chan-

nels. Since third-party services would be used to integrate these channels, the platform should not expose any

direct dependency in its interfaces to these services, so that they can be changed without impacting end users and

client applications. The final objective is to enrich the platform and develop a few prototypes to demonstrate

integration with AI services and have extension points in order for additional services to be integrated.

1.6 Outline
The subsequent chapters in this report are divided as follows.

Chapter 2 introduces the stakeholders of the project, their interests, and how stakeholders are managed.

Chapter 3 describes the low-level functional requirements and the non-functional requirements.

Chapter 4 discusses few protocols and methodologies which were assessed and reasonings behind the selected

choice and gives direction towards the solution.

Chapter 5 briefly describes messaging vendors and services and are compared.

Chapter 6 contains the architecture and design of the project and explains all the system components and the way

in which individual functionalities are realized.

Chapter 7 explains the resources are used in order to implement the cloud platform,

Chapter 8 explains the deployment process and the pilot context in which the platform was tested.

Chapter 9 explains the process of validation and verification.

Chapter 10 discusses the conclusions and future work.

Chapter 11 explains the project management process.

Finally, Chapter 12 reflects upon the project from the author's perspective. ■

Eindhoven University of Technology

5

2.Stakeholder Analysis

The first chapter gives an overview of the context and objectives of the project. This chapter discusses stakeholder

analysis that was conducted during the initial phases of the project, and the engagement process that was followed

during the project lifespan. The analysis and engagement steps included: 1) Identification of all direct and indirect

stakeholders and listing their interests and inputs, 2) Assessment of each stakeholder for their interest and influ-

ence in the project 3) Stakeholder prioritization for high interest and influencing parties, and 4) Development of

stakeholder communications plans and engaging with stakeholders.

2.1 Stakeholders and Concerns
The stakeholders are categorized as direct and indirect stakeholders. Direct stakeholders are active people or en-

tities involved in the project having a visible role. Indirect stakeholders are entities who are interested in the

ultimate results and are not involved frequently and with whom the interactions are limited.

The Scalable Service Delivery team of Philips Research owns this project. The team guides the design, technology

choices, and implementation. TU/e has a stake through the PDEng trainee who is managing and conducting the

project. The project is dependent on service providers and their products, which are used for design, implementa-

tion, and deployment purposes. This project was tested in a customer support pilot and the teams associated with

the pilot are directly involved and are also the direct stakeholders. Table 2 lists the project direct stakeholders,

their role, the concerns they are trying to address with the project, and the inputs they provide for project execution.

Table 2 – List of direct stakeholders, their interests and provided inputs

Marcel Quist, Role: Company Supervisor – Project Manager

Interest • Ensure that the project adds value to the company

• Innovate solutions for scalable service delivery

Inputs • Providing project context, business values, and introducing use cases

• Monitoring and providing feedback on the progress

• Reviewing PDEng thesis and documentation

Zoran Stankovic, Role: Company Supervisor – Lead Architect

Interest • Assess different methods and technologies and choosing appropriate stacks

• A solution that fits different use cases and contexts

• An extendable design for the messaging platform

Inputs • Providing domain knowledge, technical inputs, and feedback

• Monitoring the progress, design and development process

• Reviewing PDEng thesis and documentation

Tanir Ozcelebi, Role: TU/e Supervisor

Interest • Proper and successful completion of graduation project

• Trainee working towards interesting solutions

Inputs • Monitoring quality, process, and progress of the project and report

• Supporting by providing relevant information

Yanja Dajsuren, Role: PDEng ST Program Director

Interest • Proper and successful completion of graduation project

• Have future engagements between TU/e and company

Inputs • Providing TU/e related guidelines

• Helping in removing roadblocks

Eindhoven University of Technology

6

Priyanka Patel, Role: PDEng Trainee

Interest • Gain research experience in software design

• Complete the project successfully on time

Responsibility • Managing and executing the project

• Prioritizing requirements and delivering results

• Completing PDEng graduation report and other relevant documentation

Service Providers, e.g. Twilio, AWS. Role: Customer support of service providers

Interest Client engagement with their services

Inputs Supports by helping in integrations and working on feature requests

Service Connect Team, Role: The teams developing other pilot components which interface with the messag-

ing system, and together deliver a unified experience to customers

Interest Pluggable and simple to use interfaces

Inputs Feedback on integration

Table 3 lists some of the indirect stakeholders which are end users or potential users of the system. Interactions

with them were either very limited or their concerns were represented and addressed by a direct stakeholder. These

stakeholders have relatively low interest and influence.

Table 3 – List of indirect stakeholders

Stakeholder Role Interests / Inputs

Vital Health Software department within Philips Introduces healthcare use-cases to

the project

Chief Architect Office Architects group which develops and

scales innovation research POCs at com-

pany level

Use the outcomes of the project for

additional use cases. Enhance and

release to a wider audience

Pilot hospitals Service Connect application end users at

hospitals sites

Provide iterative feedback on the

digital remote service experience

with every release.

2.2 Stakeholder Prioritization
A stakeholder map representing the interest and influence levels of the stakeholders is prepared in order to prior-

itize stakeholders. Figure 2 shows the stakeholder map, the Influence axis depicts the of power the stakeholder

has on the project and the Interest axis depicts their level of interest in the project. The stakeholders placed in

different segments of the matrix were handled in slightly different ways which are explained below.

• High influence – High Interest

They are the key project stakeholders and needs to be managed closely with regular interactions.

• High influence – Low Interest

Due to high influence, their impact needs to be assessed and managed over time.

• Low influence – High Interest

Keep these stakeholders informed about the progress as they have interesting insights.

• Low influence – Low Interest

Informing these stakeholders from time to time about the project status is sufficient.

Eindhoven University of Technology

7

Figure 2 – Stakeholder map

2.3 Stakeholder Communications Plan

After stakeholder prioritization, a communication plan was created in order to manage communication with stake-

holders that focused on the ones with either high interest or high influence, or both. The communication plan

outlines the stakeholders, the frequency of interactions, and the way in which the interactions would be carried

out. Table 4 lists the stakeholder communications plan. The plan was agreed with the stakeholders and was exe-

cuted during the project.

Table 4 – Stakeholder communications plan

Stakeholder Mode of Communication Frequency

Philips Supervisors In-person, emails, remote meet-

ings, sprint demos

Informal – Twice a week

Formal – Every two weeks

PSG – Every month

TU/e supervisor In-person, remote meetings,

emails

Status updates – Every two

weeks

PSG – Every month

ST Program Director Email, meetings On demand

Service Providers

Email, phone support On demand

Service Connect

Team

Remote meetings, sprint stand-

ups, sprint demos

Twice a week

■

Eindhoven University of Technology

9

3.System Requirements

The previous two chapters introduces the context and stakeholders of the project. After the analysis of the problem

and discussion with the concerned stakeholders, the high-level requirements or features were extracted. After in-

depth discussions, the low-level functional requirements were formulated. This chapter describes the priority

model that was used to weigh the requirements. Generic system requirements, system functional requirements,

and system non-functional requirements are listed. Requirements associated with a specific feature are grouped

into categories.

3.1 Introduction
The application of the messaging platform in various contexts were discussed and are described in Chapter 1.

From the high-level use cases, the features were extracted and then features were broken down into requirements.

The MoSCoW model [6] is used to prioritize the requirements. Table 5 summarizes the MoSCoW model.

Table 5 – MoSCoW model

M Must Have Mandatory system requirements

S Should Have Important requirements that are not mandatory but adds significant value

C Could Have Nice to have requirements that will have less impact if they are not fulfilled

W Will not Have Not essential in the project time frame

The system requirements are divided into the three categories, general requirements, functional requirements and

non-functional requirements and are described in the following section.

3.2 General System Requirements
These requirements capture certain generic attributes and behaviors of the system and are listed in Table 6.

Table 6 – General system requirements

Req Id Description Priority

GR-001 The system shall be integrable with at least the following web browsers and operating

systems:

• Google Chrome and Safari for iOS

• Google Chrome and Mozilla Firefox for Android

• IE9, Microsoft Edge, Google Chrome, Mozilla Firefox, and Safari for

Windows, macOS, and Linux

M

GR-002 The system shall be integrable with any front-end or back-end application irrespec-

tive of the application technology stack.

S

GR-003 The client shall not require downloading of additional apps to use the system. M

GR-004 The interface between the system and the client applications shall be generic enough

to fit multiple use cases and be easy to use.

S

GR-005 The system shall be deployable on a cloud platform. M

GR-006 The system shall be deployable on premise or a hybrid platform. S

GR-007 The system shall support sending messages in all languages with different character

sets.

M

GR-008 The system shall support interactive messaging where users exchange messages in

real-time to engage in conversations.

M

Eindhoven University of Technology

10

3.3 Functional Requirements
The functional requirements define and describe the behavior of the system. They are further broken down into

categories, where each category groups requirements associated with a certain feature. Table 7 lists these catego-

ries and their associated functional requirements.

Table 7 – Functional requirements

Registration – Enables independent applications to be registered to the system

Req Id Description Priority

FR-001 The system shall allow registration of new applications so that attributes are identi-

fied per application, and specific customizations can be performed.

M

FR-002 The system shall uniquely identify each registered application and its associated con-

figurations.

M

FR-003 The system shall allow adding identities, groups, and messages only after successful

registration with the system.

M

Identity Management – Enables new users to be added to the system

Req Id Description Priority

FR-004 The system shall allow adding new identities to a specific application. M

FR-005 The system shall uniquely identify identities across an application. M

FR-006 The system shall allow building an identity profile (e.g., name, contact details, and

any other application specific data) for each identity.

M

FR-007 The system shall allow deletion of identities. M

FR-008 The system shall be able to distinguish identities by roles (e.g., admin role, user role). S

FR-009 The client application shall be able to retrieve the list of currently registered identi-

ties.

M

Group Management – Enables new groups to be added to the system and each group is a set of identities.

Req Id Description Priority

FR-010 The system shall allow adding new groups to a specific application. M

FR-011 The system shall uniquely identify groups across an application. M

FR-012 The system shall have the ability to add and remove identities to a group. M

FR-013 The system shall have the ability to close and re-open a group. M

FR-014 The system shall allow deletion of groups. M

FR-015 The system shall allow building and updating of a group profile (e.g., name, descrip-

tion, state, and other application specific data).

M

FR-016 The system shall allow adding administrative permissions for certain group opera-

tions.

S

FR-017 The system shall inform other users in a group when group details are modified (e.g.,

identity being added or removed from a group).

S

FR-018 An identity can be part of more than one group at a time. M

FR-019 A group can be configured to be short-lived. C

FR-020 A group can be configured to live indefinitely. C

Sending messages – Enables sending text messages to peers and groups

Req Id Description Priority

FR-021 The system shall allow sending peer-to-peer messages between identities associated

with the same application.

M

FR-022 The system shall allow sending messages from an identity to a group. M

FR-023 When messages are sent, the system shall deliver messages to connected recipients. M

FR-024 The system shall allow users to send messages to offline members who are currently

not connected to the system.

S

FR-025 The system shall allow sending messages to an open group. S

FR-026 The system shall not allow sending messages to a closed group. S

FR-027 The system shall allow at least 256KB of text data to be sent in one operation. M

Eindhoven University of Technology

11

Multimedia Support – Allows sending multimedia messages

Req Id Description Priority

FR-028 The system shall allow sending images, videos, audio recordings, and documents. M

FR-029 The system shall support at least these image formats: jpg, png, gif, bmp. M

FR-030 The system shall support at least these video formats: avi, mp4, flv, mov. M

FR-031 The system shall support at least these document formats: doc, xls, ppt, txt, pdf. M

FR-032 The system shall retain all the multimedia files. M

FR-033 The system shall allow deletion of multimedia files by the original sender. S

FR-034 The system shall identify each multimedia file uniquely. M

FR-035 The system shall support at least 500MB upload of a single multimedia file. M

FR-036 Multimedia files shall be available at the original size and resolution. S

Receiving messages – Allows receiving of messages by identities

Req Id Description Priority

FR-037 The system shall allow receiving peer-to-peer messages between identities associ-

ated to the same application.

M

FR-038 The system shall allow an identity to receive group messages. M

FR-039 An identity shall be able to retrieve entire conversation history from the system. M

FR-040 A connected user shall receive messages in real-time with minimal latency. M

FR-041 The stored offline messages shall be delivered to identities when they re-connect to

the system.

M

FR-042 The system shall allow filtering of messages based on groups and time intervals. S

Conversation History – Allows storing conversations

Req Id Description Priority

FR-043 The system shall store conversation history. M

FR-044 The system shall allow restoring both peer-to-peer and group conversations. M

FR-045 The system shall allow a configurable maximum storage time for conversations after

which they shall be removed from the system.

C

FR-046 The system shall allow storing conversations indefinitely. M

FR-047 The system shall allow deletion of messages by sender and admins. S

FR-048 The system shall allow message filtering by admins. C

Delivery and Synchronization – Enables successful message delivery and data synchronization

Req Id Description Priority

FR-049 The system shall deliver messages in real-time to connected recipients. M

FR-050 The system shall maintain message sequencing to preserve the order of a conversa-

tion.

M

FR-051 When connected, the system shall not deliver a specific message multiple times to a

recipient.

M

FR-052 The user shall be notified when a message is successfully acknowledged by the sys-

tem.

S

FR-053 The system shall never fail to deliver messages to connected users. M

FR-054 The system shall allow a way to optimize data synchronization.

Offline Messaging – Enables messaging in an offline mode

Req Id Description Priority

FR-055 The system shall provide a seamless experience while sending and receiving mes-

sages in offline mode.

S

FR-056 The system shall allow sending of text messages in offline mode. S

FR-057 The system shall allow sending of multimedia messages in offline mode. C

FR-058 For offline users, the system shall deliver messages at a later point in time when the

user is online.

S

Presence – Allows knowing the connected status of group members

Req Id Description Priority

FR-059 The system shall allow to know the online and offline status of group members. M

Eindhoven University of Technology

12

FR-060 The system shall allow defining custom statuses, for example, Busy, Away, DND. S

FR-061 The system shall capture the last connected time of individual identities. M

FR-062 The system shall inform group members about the real-time presence changes of

other group members.

M

FR-063 The system shall capture the read status of messages. M

FR-064 The system shall capture the typing status of group members. M

FR-065 The system shall inform group members about the typing status of other group mem-

bers in real time.

M

Asynchronous channel integrations – Allows sending messaging via other channels

Req Id Description Priority

FR-066 The system shall allow sending SMS messages. S

FR-067 The system shall allow sending Email messages. S

FR-068 The system shall allow sending WhatsApp messages. S

FR-069 The system shall allow sending Web Push notifications. S

Third-party integrations – Allows integrating external services

Req Id Description Priority

FR-070 The system shall be extensible in order to add external bots. C

FR-071 The system shall be extensible in order to add virtual assistant systems. C

FR-072 The system shall be extensible to add text-based AI services C

FR-073 The system shall be extensible to add multimedia-based AI services. C

3.4 Non-functional Requirements
Non-Functional Requirements elaborate system characteristics and impose quality constraints that the system shall

satisfy. ISO standard 25010 [7], which is a quality model, is used to evaluate the non-functional requirements.

This quality model is used to determine which characteristics shall be considered when evaluating the quality

attributes of the system. Table 8 lists the non-functional system requirements.

Table 8 – Non-functional requirements

Req Id Aspect Description

NFR-001 Performance efficiency –

Time Behavior

The system shall send and receive messages with minimal la-

tency.

NFR-002 Performance efficiency –

Resource utilization

System shall be lightweight in handling multimedia messages.

NFR-003 Compatibility – Interopera-

bility

System shall be usable across all user devices and platforms.

NFR-004 Compatibility – Interopera-

bility

The system shall allow messaging across different types of net-

work connection and shall handle network changes in a seam-

less manner.

NFR-005 Usability The system interfaces shall be simple and easy to use by client

applications.

NFR-006 Security The system shall encrypt the data during network transmission.

NFR-007 Security The system shall authenticate and authorize user operations.

NFR-008 Maintainability – Modular-

ity

The system shall be implemented in a modular way so that

parts of the system can be developed and maintained inde-

pendently.

NFR-009 Maintainability – Modifia-

bility

The system shall be designed in such a way that it is easy to

add new components or services to the system.

■

Eindhoven University of Technology

13

4.Domain Analysis

The previous chapter lists the low-level functional requirements and the non-functional requirements of the sys-

tem. This chapter explores and assesses various architectural models, methodologies, networking protocols, and

standards which are relevant in order to realize the system. The objective of this chapter is to broaden the under-

standing of the domain by analyzing the above-mentioned elements, their advantages and limitations, and identi-

fying the appropriate options that resonates closely with the project requirements. The client-server architectural

model, messaging paradigms, messaging protocols, and web API standards are discussed. It also describes ways

in which low latency real-time behavior can be achieved.

4.1 Client Server Model
The client-server model is an architecture style where the resource providers are the servers and resource consum-

ers are the clients. The clients and servers communicate over a network connection using a network protocol. The

World Wide Web and HTTP have become the universal communication platform and communication protocol

for web-based applications.

The peer-to-peer model is in contrast with the client-server model where a central server is not required, and each

peer can act both as a client and as a server depending on whether it responds to requests or initiates requests.

Described below are two models which are based on the client-server architecture.

4.1.1. Client Pull

In this model, the client first establishes connection to a server to send requests and the server accepts these

connections in order to serve these requests and sends back responses, also commonly known as the request-

response model. The server cannot initiate connections nor can send asynchronous events to clients. The two

entities can keep the request-response exchanges until one of them drops out. This model has a lot of heavy lifting

done by the infrastructure to avoid burdening the client and server with delivery issues. A request-response pro-

tocol operating on top of TCP/IP can be guaranteed that requests or responses will be delivered in order, at most

once, and without corruption. If data needs to be protected in transit, the TLS protocol operating on top of TCP

provides the necessary protection. The most known protocol based on the request-response pattern is Hypertext

Transfer Protocol (HTTP) [8].

4.1.2. Server Push

This model enables a server to push events directly to clients without an explicit request from the client. The client

subscribes to some sort of information from the server beforehand. As and when data is available on the server

and if it matches the client’s subscription, the server can directly push data to the client.

Selected Approach - Server Push

Real-time applications are more optimized where the server has the ability to push data to the clients without the

clients requesting for data. Server push model is more efficient than client pull model as it reduces the server load

for incoming network bandwidth, CPU power, and memory usage since it does not need to handle large number

of incoming requests. This leads to timely delivery of data to clients as the latency of frequent opening and closing

of connections is eliminated.

4.2 Messaging Paradigms
This section explains two paradigms which are widely used for messaging applications. The three main compo-

nents are message sender, receiver, and a message broker, which facilitates communication between the sender

and receiver.

Eindhoven University of Technology

14

4.2.1. Publish-Subscribe (Pub-Sub)

This is a form of asynchronous communication which allows messages to be broadcasted. The senders and re-

ceivers are decoupled and have no information of each other. The receivers subscribe to a particular topic and the

senders publish messages to that topic which are then distributed to subscribers. An example of a simple publish-

subscribe system is represented in Figure 3. The components are as follows.

1) Publisher and Input Channel – In this model, the message sender is also known as the publisher. The sender

packs the messages and sends them via the input channel.

2) Subscriber and Output Channel – The message consumers are called subscribers that subscribe to a particular

subject and can then receive messages published on that subject. Each consumer requires a separate output

channel.

3) Message Broker – This component acts as an intermediary that is responsible for copying every message

published on the input channel and distributing them to the output channels for all appropriate subscribers.

Figure 3 – Publish-subscribe messaging

Advantages:

• Decouples publishers and subscribers and therefore can be independently managed

• Improves scalability, reliability, and responsiveness of the system

• Easy integration between systems running on different protocols or environments

Considerations:

• Security of the channels, message ordering, and prioritization must be managed.

• As the channels are unidirectional, if an acknowledgement service is needed, it needs to be built separately.

4.2.2. Point-to-Point (P2P)

This is also a form of asynchronous messaging which uses queues to deliver messages. Queues must be defined

before a transaction and the sender must know information about the receiver before it can send messages. A P2P

model can have any number of senders and receivers, but each message can be consumed by only one receiver.

An example of a simple P2P system is represented in Figure 4. P2P messaging components are as follows.

1) Sender – Creates and sends message to a queue and attaches receiver details

2) Message broker – Takes the message from the queue and delivers it to the appropriate receiver. It also deletes

the message after it is acknowledged by the receiver

3) Receiver – Binds to a queue, consumes messages, and acknowledges message receipt to the broker.

Figure 4 – Point-to-point messaging

Eindhoven University of Technology

15

Advantages:

• Message delivery is ensured, and message acknowledgement is known

• Messages are retained in the queue until they are delivered to the recipient

Considerations:

• Each message is sent to a specific queue and each message can be received and processed by a single receiver.

• High coupling between senders and receivers

Selected Approach - Pub/Sub

As per the system requirements, both peer-to-peer and group messaging shall be supported by the system. The

ability of publish-subscribe systems to broadcast messages to multiple users in contrast to P2P messaging with

only one recipient is an obvious choice. Also, the sender and receiver subsystems being decoupled and the ability

to manage and scale them independently makes this approach more suitable for the project.

4.3 Real-time Messaging Methods
This section describes some of the widely used techniques to implement real-time behavior with minimal latency

between clients and servers. Web based applications were traditionally designed as a request-response architec-

ture. To realize near real-time behavior, the HTTP protocol [8] [9] and its request-response model have been

continuously adapted and modified over the years.

4.3.1. Short Polling

In this traditional method, the client sends requests to the server repeatedly at a certain frequency and the server

sends a response for every request, shown in Figure 6. A low polling frequency can result in less updates from the

server, hence the information is not real-time for frequently changing data. Data in most applications is sporadic,

hence not every request may contain new events or data from the server, though the polling cycle continues at the

set frequency. This unnecessarily consumes high server and network resources and can over burden them.

Each polling cycle consists of three steps: a) setup and establishment of the TCP connection, b) the request-

response cycle, and c) closure and cleanup of the TCP connection. Though this method is simple to implement, it

has many disadvantages and remains one of the very traditional methods to achieve real-time behavior.

Drawbacks:

• Connection overhead is a resource consuming process

• Network latency, bandwidth, and polling frequency impacts real-time performance

• High incoming traffic leads to server and network overloading and wastage

4.3.2. Long Polling

Long polling is an optimization to polling where the server elects to keep the client’s connection open for as long

as possible thereby minimizing the latency in delivering data, shown in Figure 6. The server delivers response

only after new information becomes available or a timeout threshold has been reached to prevent the client from

being stuck indefinitely. After a response is returned, the open connection is closed, a new request connection is

immediately sent, and the process continues. Challenges of this method are a) Connection overhead (though it is

low compared to short polling) b) It is intensive for the server and network to maintain long lived connections as

they consume resources. c) It is difficult to scale effectively d) Timeout issues and intermediate caching mecha-

nisms can affect long polling.

4.3.3. HTTP Connection Types

The HTTP connections vary in terms of how they are opened, maintained, and closed. This can impact the per-

formance of real-time applications. Described below are types of connections which are applicable for both short

polling and long polling modes. Figure 5 represents these HTTP connection variations.

Short-lived connections

The original model, HTTP/1.0 is based on short-lived connections in which every request-response cycle is com-

pleted on its own connection. A TCP handshake is established before every request and connection is closed after

each response and the requests are serialized. In HTTP/1.1, this connection type is used when Connection: close

header is sent.

Eindhoven University of Technology

16

Persistent Connections

A persistent connection remains open for a certain time period and multiple requests can use the same connection,

which saves the overhead of opening new TCP connections. With HTTP/1.1, an additional header Keep-Alive is

used to specify a minimum time a connection should be kept open to ensure that the TCP connection is not dropped

after each request-response cycle [9]. The drawback is that server resources are used even when connection is

open.

Pipelining

An optimization of persistent connections where the client can make multiple requests without waiting for a re-

sponse over the same kept-alive TCP connection reducing network latency. The disadvantage is that the HTTP

protocol requires that the server return responses in the order in which they were received; therefore, a long run-

ning operation can block other requests from completing.

Figure 5 – HTTP connection types [10]

4.3.4. Server-Sent Events (SSE)

This is a mechanism that allows the server to asynchronously push data or events to the client once the client-

server connection is established without having the clients to initiate requests. This is a one-way communication

channel. The client initially subscribes to a stream from the server and the server sends event streams to the client

as and when data becomes available. The connection remains open until one of the parties closes the stream.

Disadvantages are a) SSE are not supported by all browsers b) One-way channel c) Binary data needs encoding.

Figure 6 shows the working of polling, long polling, and SSE.

Figure 6 – Short polling, long polling, and server-sent events

Eindhoven University of Technology

17

4.3.5. HTTP Streaming

In this method, the server keeps the HTTP connection open indefinitely. It never closes the connection even after

the data is pushed to the client. For streaming data, Transfer-encoding: chunked is sent along with the response

which enables the server to send data in chunks over the same connection. The response is considered complete

only when the server sends an EOF or either side explicitly closes the connection. This method reduces network

latency as both the client and server eliminate the overhead of opening and closing connections. The drawback is

that it is difficult to work with proxies and gateways, and also faces buffering issues for chunked data.

4.3.6. WebSocket

WebSocket creates bi-directional communication channel between the client and server where data can be passed

back and forth without having to create new connections and requests. This data channel is set up by using two

new HTTP headers, Connection: Upgrade and Upgrade: websocket, which updates the protocol from HTTP to

WebSocket protocol [11]. The server accepts the setup request with an HTTP Response code 101 Switching Pro-

tocols and reflects back the Connection and Upgrade headers. After a successful setup, application data can flow

from either side over this channel. The interactions have minimal overhead and provides real-time data transfer

from and to the server. The connection remains open until one of the sides closes the connection. The advantage

is that it is compatible with the HTTP protocol and works over ports 80 and 443 (for SSL encryption) and supports

HTTP proxies.

Selected Approach – WebSocket

For real-time applications with minimal latency, methods based on server push are more efficient than client-pull

methods. Among the server-push methods explained in the Section 4.3 (HTTP Streaming, SSEs, and WebSocket),

WebSocket remove the limitations of SSEs of one-way communication and encoding binary data. WebSocket

also reduces the latency and processing inefficiencies of HTTP Streaming and the polling-based techniques [12].

WebSocket is also standardized across all major browsers and are supported by advanced open source client facing

libraries. WebSocket protocol is explained in detail in Section 4.4.2.

4.4 Messaging Protocols
There are variety of communication protocols that can be used as the backbone for messaging. Below is a com-

parison of two such protocols, which are the top choices based on the project requirements. As one of the primary

requirements is to have the messaging system run in a browser environment and also the ability to be used by any

backend applications, many of the machine-to-machine protocols are not a good fit for the project.

4.4.1. Extensible Messaging and Presence Protocol (XMPP)

XMPP is an open source and extensible protocol [13] and can be applied effectively by using transport methods

such as TCP/IP or HTTP. Based on a decentralized architecture, XMPP based communications assign a unique

XMPP address that consists of an IP address, domain name, and username to all the users processing the commu-

nication channel.

The data is further bound with a secure transport layer such as TCP/IP or HTTP before it is exchanged between

the users. In an XMPP based communication, there are three types of stanzas: a) Message stanza to exchange

messages. b) Presence stanza to exchange online and subscription status and c) IQ (Info/Query) stanza to control

dynamic settings of the communication that is controlled over the server.

Advantages:

• Decentralized architecture can help clients take control of their specific communication experience

• Robust security standards are built into the core specifications

• Quite extensible and flexible and hence many additional functionalities can be easily added

Disadvantages:

• Does not provide the ability to know the message-delivered status. They have to be configured manually.

• Uses XML for data transmission; hence does not support binary data transfers. Extensions must be used for

binary data.

• The decentralized architecture allows anyone to run their own server, which can impact the system perfor-

mance.

Eindhoven University of Technology

18

4.4.2. WebSocket Protocol

WebSocket is a communications protocol that provides full-duplex communication channels over a single TCP

connection. This means both the client and server can simultaneously send data to each other without having to

wait for a response or only send one way at a time. RFC 6455 [11] states that WebSocket “is designed to work

over HTTP ports 80 and 443 as well as to support HTTP proxies and intermediaries” thus making it compatible

with the HTTP protocol. To achieve compatibility, the WebSocket handshake uses the HTTP Upgrade header to

change from the HTTP protocol to the WebSocket protocol [10]. Both HTTP and WebSockets are located at the

application layer of the OSI model and depend on TCP at the transport layer.

WebSocket is standardized and is supported by all major browsers and there are libraries available for most of the

high-level programing languages. Being able to support a full duplex connection, they are also termed as persistent

connections.

WebSocket communication workflow:

• To establish a connection, a WebSocket handshake is performed through an HTTP request by the client

• If the server supports WebSocket, the server acknowledges the request by sending an identifier in the header.

• Updated URL replaces original HTTP connection with a WebSocket connection.

• With an active WebSocket connection in place, both the client and server can exchange data in real time.

• The data or messages are exchanged as frames, which can be one or many depending upon the content.

Advantages:

• With a centralized and persistent connection, it is one of the fastest online communication methods.

• There can be an unlimited number of user sessions on a single application.

• As a connection is active for long durations, server network traffic is reduced.

• Faster message delivery with negligible delay due of low network latency and the ability to send data from

the server without an explicit client request.

Disadvantages:

• Although WSS is available, the technology still lacks security and is prone to certain attacks like.

• WebSocket connection masks and frames transmitted data, hence making it incompatible with a telnet client.

• Active WebSocket connections always keeps the ports open; hence there is no way to delay message delivery.

Table 9 – Comparison between XMPP and WebSocket

XMPP WebSocket

De-centralized architecture Centralized architecture with persistent connection

between client and server

Slow compared to WebSockets High speed data transfer capacity compared to XMPP

XMPP Core server + additional gateways for cross-

origin users

Cross-origin built in architecture

Difficult to send binary data Easy to send binary data

Inbuilt security with two layers of encryption Though WSS adds a secure layer, it is not rich in se-

curity

4.5 Web API standards
In the last decade, REST (Representational State Transfer) has been the standard for designing web APIs. It offers

features such as being stateless and provides structured access to resources. REST APIs are inflexible to keep up

with rapidly changing client requirements. GraphQL was developed by Facebook in order to reduce the shortcom-

ings of REST. It enhances flexibility and efficiency and provides a better experience for developers. Differences

between REST and GraphQL are summarized in Table 10.

4.5.1. REST

REST (Representational State Transfer) is an API design architecture used to implement web services. REST-

compliant web services allow the requesting systems to access and manipulate textual representations of web

Eindhoven University of Technology

19

resources by using a uniform and predefined set of stateless operations. The resource methods for performing

operations are GET, POST, PUT, and DELETE. All operations in REST are stateless and should allow caching at

client side unless explicitly indicated otherwise.

4.5.2. GraphQL

GraphQL is a data query language and specification for APIs and also serves as a server-side runtime for executing

queries by using a type system that encapsulates data [12]. GraphQL gives clients the flexibility to retrieve exactly

the information they need instead of the server sending pre-defined fields and hence makes it easy to extend the

APIs. The operations in GraphQL are Query, Mutation, and Subscription. GraphQL backend consists of a schema

which is shared with client applications and contains API definitions. GraphQL resolvers extract data from un-

derlying data sources and translate requests into data source specific operations.

Table 10 – Comparison between REST and GraphQL APIs

Criteria REST GraphQL

Network Re-

quests

Requires multiple requests to fetch re-

lated resources

allows nesting of resources, hence reduces

network requests.

Data fetching Resources are available at different end-

points

there is only one endpoint at which data is ac-

cessed.

Operations GET, POST, PATCH, PUT, DELETE Query, Mutation, Subscription

Over or Under

fetching

As the response in REST is decided by

the server, it is probable that client pulls

more data / less data than what is required

As GraphQL is a query language, the client

decides what data it needs and only that data

is fetched from the request.

Caching Puts caching into effect as HTTP imple-

ments caching

has no caching mechanism and needs to be

managed by client applications.

Error Handling HTTP status codes make it easy to distin-

guish error responses and handle errors

GraphQL responses are always with a status

code 200 with the error message; hence just

the HTTP error codes are not enough to distin-

guish between responses

Versioning They are usually versioned resources No versioning is required as new types and

fields can be easily added to the schema with-

out impacting the existing schema.

■

Eindhoven University of Technology

20

Eindhoven University of Technology

21

5.Vendor and Service Evaluation

The previous chapter introduced the messaging domain and explains some of the protocols, methodologies, and

standards. Messaging vendors offer end-to-end messaging capabilities which can be integrated with any system.

This chapter compares different messaging vendors and the features they provide. The reasons for not using direct

messaging vendors to realize the project are explained. Next, services at a lower abstraction are compared which

are WebSocket, Publish-Subscribe, and GraphQL services. These services function as frameworks and only man-

ages the connections and data sent across the connection.

5.1 Messaging Vendor Comparison
Messaging vendors are service provider companies that sell their end-to-end messaging solutions. After the re-

quirements analysis, a number of messaging vendors were compared based on criteria extracted from the require-

ments. Four well known providers that offer end-to-end messaging services were compared. In addition to the

core messaging functionalities, the vendors were also evaluated based on system extendibility, data ownership

and security aspects. Table 11 compares features of WebSync [14], Twilio [15], PubNub [16], and Pusher [17].

The feature check was performed in the time frame of February and March 2020 and may be subject to changes

as per their latest releases.

Table 11 – Comparison between messaging providers – WebSync, Twilio, PubNub, Pusher

 WebSync Twilio PubNub Pusher

Service type Pub/Sub service Messaging ser-

vice

Messaging ser-

vice

Messaging ser-

vice

Text messaging support Yes Yes Yes Yes

Identity management Yes Yes Yes Yes

Channel management Yes Yes Yes Yes

Multimedia support Yes Yes, 150MB

limit

Yes, 5MB limit Yes, 20MB limit

Data encryption SSL SSL and JWT

Tokens

SSL SSL

Storage of conversation his-

tory

No Yes Yes Yes

Who has data ownership? NA Twilio PubNub, but can

be routed to own

storage

Pusher

Presence support Yes Yes Yes Yes

Ensure message delivery Yes Yes Yes Yes

How can the service be

hosted?

Any cloud or

on-premise

platform or

WebSync cloud

Hosted on ven-

dor servers, can-

not be hosted by

clients

Hosted on ven-

dor servers, can-

not be hosted by

clients

Hosted on vendor

servers, cannot

be hosted by cli-

ents

Underlying technology WebSocket WebSocket Not disclosed WebSocket

Fallback technology Long Polling Not disclosed Not disclosed HTTP Streaming

and Polling

Is the system extendable? Yes No No No

Scalability Has to be man-

aged

Managed Managed Managed

5.2 Vendor Evaluation
All the compared messaging vendors support the core messaging functionalities such as text messaging, presence,

and message delivery guarantees and use the latest technology in their architecture to realize their system. The

blocking factors were the following.

• Limitations on file size during multimedia transfers

Eindhoven University of Technology

22

• Services are not extendable to support additional custom features

• Not having control on the data as they are managed by vendors without end-to-end encryption guaranteed

• Not being able to host the service on our own cloud or servers

The conclusion of the vendor evaluation process was to not use messaging solutions from vendors as many of the

non-functional requirements were being violated. The next step was to evaluate services that provides only the

platform and infrastructure by using inbuilt real-time methodologies and protocols.

5.3 Service Evaluation
After the vendor evaluation, the focus of evaluation shifted towards exploring services at a lower abstraction level,

that is, services which offers only the platform to facilitate real-time communication. The features of messaging

system based on the functional requirements will be developed on top of the platform. Leveraging platform ser-

vices enables to host and manage the system backend, have control on the data layer and security, and can easily

extend the system to accommodate new features. The following describes three kinds of such services.

WebSocket services – These are the services that enables and manages real-time bi-directional communication

between clients and servers. The services are generally offered at a low level of abstraction where the connection

level interfaces are exposed and can directly be used by client applications. For examples, Socket.IO, AWS Web-

Socket API Gateway.

Publish-Subscribe services – These services facilitate subscribing to data, publishing data, and receiving real-

time data. They are at a higher-level of abstraction compared to WebSocket as publish-subscribe utilizes an un-

derlying connection level protocol for communication, which can be the WebSocket protocol. For example,

Pusher Channel, Google PubSub.

GraphQL services – These services enable to develop GraphQL APIs. They are at the highest abstraction level

compared to the previous two as GraphQL subscriptions are based on the publish-subscribe paradigm. GraphQL

queries and mutations use HTTPS protocol while subscriptions use the WebSocket protocol for real-time com-

munication. For example, Apollo GraphQL, AWS AppSync.

The conclusion after evaluation of these services was to use GraphQL services in order to develop APIs. GraphQL

services also abstracts away the complexity of publish-subscribe messaging broker. WebSocket services also have

the potential to be used in order to directly access and manage client connections.

 ■

Eindhoven University of Technology

23

6.Architecture and Design

This chapter presents the architecture and design of the messaging platform conforming to the project require-

ments. It explains the structural components, feature design, and the design decisions that were made. It starts

with explaining the three types of servers that are part of the platform, which are the GraphQL, REST, and Web-

Socket server and the design of their respective APIs. The data models used for the platform and the process of

data storage is described. Next, individual functionalities of the platform and the way they function are discussed.

The third-party integrations with asynchronous channels and cognitive services are explained. Finally, Webhook

is explained which is a way for non-WebSocket clients to receive events from the messaging platform. Enterprise

Architect version 14 is used to model the architecture diagrams.

6.1 Messaging Platform
The messaging platform exposes APIs for client applications to incorporate real-time messaging features in their

application. Front-end browser applications can use GraphQL and WebSocket based APIs as WebSocket is stand-

ardized across all browsers. REST APIs and Webhook REST APIs and callback events can be used by backend

systems to add real-time functionality. This section elaborates on the different types of servers hosted by the

messaging platform, their APIs, and other relevant information.

6.1.1. GraphQL Server

The GraphQL server consists of two types of endpoints which handles two types of connection requests.

• HTTPS endpoint handles the Query and Mutation operations over HTTPS connections.

• WebSocket endpoint handles Subscription operations that creates real-time bidirectional channel between

clients and the server and facilitate distribution of events to connected clients.

Complete design of a GraphQL API consists of three steps which includes defining the GraphQL schema, con-

necting data sources, and defining resolvers. Resolvers connect API definitions in the schema to data sources.

Step 1: Defining GraphQL Schema

The GraphQL schema of the messaging system consists of:

• User defined types – They serve as the building blocks for the schema. The user defined types are Applica-

tion, Identity, Group, Message, Presence, and TypingIndicator. A domain model representing relationships

between these user defined types is shown in Figure 7.

Figure 7– Domain model representing GraphQL user-defined types

Eindhoven University of Technology

24

• Base types – The base types in any GraphQL schema are Query, Mutation, and Subscription. They consist

of operations which are used by clients as APIs. The base types use the pre-defined and user-defined data

types. Figure 8 visually represents the base types and their dependency on user defined types. The detailed

GraphQL schema can be found in Appendix A.

Figure 8 – Relationships between GraphQL base types and user-defined types

Step 2: Attaching Data sources

Three types of data sources are added to GraphQL server, which are a) Database sources mapped to underlying

system databases, b) HTTP sources maps to external HTTP APIs which are used to integrate third-party services

or other hosted services, and c) Computation function sources that maps to the source code. Every Query and

Mutation operation is attached to a data source while a Subscription operation is tied to a Mutation. Query opera-

tions retrieve data and Mutation operations manipulate data from the data sources.

Step 3: Defining Resolvers

Resolvers contain the logic to query or manipulate the data sources. Each API operation defined in the schema is

linked to a resolver, e.g., mutation AddMemberToGroup is attached to a database source Groups and a computa-

tion function data source. This resolver adds members to a group and returns the modified group object as the

response. Figure 9 represents how every GraphQL request is processed using pipeline resolvers. Resolver pipe-

lining is when two or more resolvers work together to respond to a request.

Figure 9 – GraphQL pipeline resolvers

Eindhoven University of Technology

25

6.1.2. REST Server

The REST server is primarily added for backend applications to communicate with the messaging platform which

may not support WebSocket. It works on the request/response paradigm. REST interfaces are easy to integrate as

they have been standardized for quite some time and has libraries across programming languages and platforms.

All the operations which are supported by the GraphQL APIs are also supported by REST APIs. The underlying

components for REST APIs are the data later and compute functions. REST interfaces expose the following func-

tionalities.

• The set of messaging operations that are exposed by GraphQL APIs are also available as part of REST in-

terfaces which includes grouping, sending and receiving messages, and presence information.

• Webhook registrations – To send real-time events to backend systems, Webhooks are supported by the mes-

saging platform, and clients can register their URL via REST interfaces. More details are in Section 6.5.

• Multimedia integration – Interfaces to upload and retrieve binary files.

• Third-party service integrations – Interfaces for integrating additional services, e.g. AI services.

6.1.3. WebSocket Server

Most of the GraphQL services do not provide a callback mechanism to track the connected clients or to retrieve

information when a client connects or disconnects. In order to know the online or offline status of each user, a

separate WebSocket server is included in the messaging system to track client connections. The WebSocket server

is responsible for the following functions and an API is exposed to track active channels.

• Track new users and their connection details.

• Maintain records for all the connected clients.

• Track the active channel of the client and track changes to the active channel.

• Track every connection drop and its associated user.

6.2 Data modeling and Data Storage
This section elaborates on the data layer of the messaging platform and how text-based messages and multimedia

messages are stored. It also explains the database schemas and the data model used by GraphQL and REST APIs.

6.2.1. Messaging Data Model

The message data model describes how individual messages are represented and identified by the system. These

data objects are response objects for GraphQL and REST APIs. Table 12 describes this data model.

Table 12 – Messaging data model

Field Field type Mandatory Description

id GUID No Unique identifier for every message. Auto-generated if not

provided.

sender-

TimeStamp

Timestamp Yes Time (in milliseconds) at which the message was sent by the

client.

server-

TimeStamp

Timestamp No Time (in milliseconds) at which the message was received by

the messaging platform.

from String Yes Represents sender information. Refer Section 6.4 for details.

to String Yes Represents recipient(s) information. Refer Section 6.4.

bodyType String No Data type of the message body. Defaults to String. Any other

data type e.g., JSON can also be used

body String Yes The actual information to be transferred and the format varies

based on bodyType parameter.

numMedia Integer No Number of media files attached with the message.

medi-

aTypes

List [String] No Multimedia files types, e.g., image or video formats.

mediaUrls List [String] No Unique media URLs associated with individual files.

replyTo GUID No Reply to an existing message by referencing id.

version Integer No Version information of a message, to enabling message edit-

ing and retaining each update.

Eindhoven University of Technology

26

_deleted Boolean No Flag to denote if message was deleted. The message body and

media fields are cleared if the value is true.

6.2.2. Database Modeling

A NoSQL database is used for data storage of the messaging platform as data is scattered and they are better at

handling sporadic data, e.g., MongoDB, DynamoDB. Figure 10 represents all the physical tables, the fields, data

types, and the primary keys and indexes associated to the tables. It is modelled in Enterprise Architect and it

currently does not support modeling of NoSQL databases. Therefore, SQL database modeling is used, and the

SQL column names and mapped to NoSQL fields based on the Note shown in the figure, e.g., CLOB in SQL

mapped to JSON in NoSQL.

Figure 10 – Database modeling

Applications, Identities, and Groups tables stores registered applications, their associated identities and groups

respectively.

The Messages (Base) table stores all the messages and the secondary index is added for faster execution of channel

specific queries. The Messages (Delta) contains messages for 24 hours in order to support data synchronization

and faster data retrieval. This table acts as a journal of the changes since the user was last seen online. The primary

key is a combination of ds_pk and ds_sk. ds_pk is formed by concatenating the base table name and the date when

the message was received (e.g., Messages:2020-07-28). ds_sk is formed by concatenating server timestamp, id,

and the message version. The combination of these fields guarantees uniqueness for every entry in the Delta table

(e.g., for time 03:44:18, id of bf45513c-4b72 and version of 2, ds_sk would be 03:44:18:bf45513c-4b72:2)

Notifications table stores all the SMS, Email, and Web Push messages.

Presence table stores the real-time status of all the users specific to groups and WSConnections table tracks all

active user connections with the messaging system.

WebHooks table stores all the registered webhooks registrations.

Eindhoven University of Technology

27

6.2.3. Multimedia Storage

The multimedia files shared through the messaging platform are stored in an object storage system which can

store and retrieve any amount of binary data. The distribution of files can be very resource intensive for the mes-

sage broker, especially for large sized binary files as each file needs to be copied and sent to the clients. Hence,

to optimize multimedia sharing, a unique URL is assigned to every multimedia file and the URL is distributed to

the clients instead of the binary file. Sending multimedia is a two-step process.

1) Retrieve the signed URL and the media URL from the messaging system. (Signed URL is used to directly

upload multimedia to the object storage system and is valid up to one hour. Media URL is the link at which

multimedia file is available). The media URL is available only after the file has been uploaded successfully.

2) Use the signed URL to upload multimedia file.

6.3 System Feature Realization
This section elaborates on how different features and functionalities are realized by the messaging platform. Var-

ious UML activity diagrams are used to demonstrate their behavior.

6.3.1. Real-time behavior

Query and Mutation operations use the HTTPS request-response cycle which establishes a TCP connection and

the connection is closed after every request. Subscription operations keep the connection between the client device

and the messaging platform open which is facilitated by the GraphQL real-time server. The Subscription opera-

tions supported by the messaging system sends real-time events via the WebSocket connection to the clients when

a corresponding Mutation is triggered. The subscriptions supported by the platform are listed in Table 13. For

example, the subscription OnMessageReceived is tied to the Mutation SendMessage and accepts groupId and

appId as filters, which means every time a message is sent and it matches any of the clients’ subscription filters,

the data associated with that Mutation is sent to all the message subscribers. Figure 11 shows how a real-time

connection is established with the messaging platform and how mutations trigger subscriptions.

Table 13 – List of subscription operations

Subscription Mutation Description

OnMessageReceived SendMessage Sends events when new messages are added to the system

OnMessageDeleted DeleteMessage Sends events when existing messages are deleted from the

system

OnPresenceUpdate UpdatePresence Sends events when a group member presence status

changes

OnTypingIndicator UpdateTypingIndicator Sends events when a group member typing status changes

6.3.2. Presence Indicators

Presence is a means for knowing, retrieving, and receiving real-time changes in the online and offline status in-

formation of other users. GraphQL resolvers and WebSocket routes are used to realize this functionality. User-

defined presence statuses, e.g. Busy, DND can also be set apart from online and offline statuses. Figure 12 shows

how presence functionality is realized with the help of an example group Gr1 consisting of three users.

Typing indicator is a means to know the real-time typing status of other group members and is realized in a similar

manner by only using GraphQL resolvers. It sets a flag to denote start of typing and resets the flag at the end of

typing. The recommendation is to use the typing indicator mutation with a timeout period of 6-8 seconds in the

client applications side before triggering the next mutation.

6.3.3. Security and Authentication

The requests to the messaging system are only served over HTTPS and WSS on port 443 in which the data is

encrypted using Secure Sockets Layer (SSL). Requests via port 80 for HTTP and WS requests are simply rejected

by the messaging platform. SSL protects the communications against man-in-the-middle attacks and data tamper-

ing.

Eindhoven University of Technology

28

Authentication to the messaging system is realized using a third-party HTTPS authentication service which gen-

erates and validates tokens. The service backend generates tokens valid for a certain interval specified by the

application. The tokens used by front-end applications should be generated frequently as they are user facing

while the frequency of generating tokens by backend service can be less frequent. Figure 13 shows the sequence

diagram of the authentication process.

Figure 11 – GraphQL subscription sequence diagram

Figure 12 – Real-time presence updates

Eindhoven University of Technology

29

Figure 13 – Authentication sequence diagram

6.3.4. Multimedia Access

A Content Delivery Network (CDN) service is used to serve multimedia files. The files are retrieved by directly

invoking the unique multimedia URL over the CDN service. A CDN is a geographically distributed network of

data centers, which provide high availability and performance by serving static content from data centers located

closest to the end users. The CDN service caches resources locally to serve the content faster for subsequent

requests in order to facilitate low latency transfers. The activity flow for sending, uploading, and retrieving mul-

timedia files is shown in Figure 14.

Figure 14 – Activity diagram for sending, uploading, and retrieving multimedia files

Eindhoven University of Technology

30

6.3.5. Message Sequencing and Retrieval

Message Sequencing ensures that the messages are delivered to client applications in a particular order. The two

timestamps captured by the messaging model are:

• senderTimeStamp – timestamp in milliseconds added by the client at the time when a message is sent. In

cases when the client application is offline or when there are network inconsistencies, the senderTimeStamp

can be different from the time when it was actually sent and the time when the messaging platform receives

the messages and distributes to recipients.

• serverTimeStamp – timestamp in milliseconds added by the messaging platform when the message gets

acknowledged by the backend.

The serverTimeStamp value acts as source of truth and is used to synchronize and sequence messages.

Retrieving messages from history or messages received on the real-time channel are always returned in the order

sorted by serverTimeStamp. Some additional filters are added to filter messages based on certain criteria.

1) Timestamps – Retrieves messages between the specified start timestamp and the end timestamp. If only start

timestamp is present in the request, messages between the specified time until the latest messages are returned.

If only end timestamp is present, messages prior to the specified time are returned.

2) Limit – Limits the maximum number of messages which can be retrieved in one request. The maximum and

the default value is set to 100 and can be reduced by client applications. If the number of messages corre-

sponding to a request exceeds the limit, a key is sent along with the response for subsequent requests.

3) Last Evaluated Key – This property in returned by the messaging platform to indicate that additional records

are present for the request. The subsequent request shall use this key to retrieve the additional paginated

messages.

6.3.6. Data Synchronization

Every time the client application reconnects and requests for message history, it can be resource intensive to fetch

the entire history data, especially for queries containing large number of records. This process is optimized by

caching GraphQL responses locally in the browser cache of the web application. This allows clients to hydrate

their local storage with results from one base query that might have a lot of records, and then receive only the data

altered since their last connection, which are the delta updates. This is also efficient for client applications that

frequently switch between online and offline states.

A Synchronization (Sync) Engine running at the client browser is responsible for managing the process by caching

data in the browser local storage and performs two types of data fetching from the server, base hydration and delta

hydration. This engine manages the invocations to the appropriate hydration.

• Base hydration refers to fetching the entire dataset of the in one batch and rehydrating the cache. The base

hydration is triggered when client revisits the application any time after the base hydration time is lapsed (set

to 24 hours). The lastBaseSync property is cached by the Sync engine to track the last base hydration time.

• Delta hydration refers to fetching only the incremental data (data altered since their last query) and updating

the cache. The delta hydration is triggered when the client reconnects within 24 hours, irrespective of the

number of reconnections. The lastSync property is cached and used by the Sync engine in order to track the

client’s last connected time.

The Message (Base) and Message (Delta) explained in Section 6.2.2 are used to handle the two types of hydra-

tions. The delta table only keeps records for 24 hours after which the records are removed. When a GraphQL

mutation is triggered, a record of that change is stored in the Delta table that is optimized for incremental updates.

The delta query is more efficient than base query because the delta table is designed for timestamp-based queries

which utilizes the database indexes while the base queries does a complete scan on the table. Items on the delta

table are removed periodically to prevent from accumulating stale data and is in sync with the base table.

6.3.7. Offline Architecture

In scenarios when the network is not stable or when there is frequent switching between different networks, for

example, hospital rooms protected against EM radiation, a synchronization (sync) engine running at the client’s

web browser provides a seamless experience to the clients. The sync engine interacts with the persistent storage

system of the browser, which serves as a repository to store data locally. The Synchronization engine manages:

Eindhoven University of Technology

31

• Scanning the network connection status and synchronizing data with the servers when the network connec-

tion is established.

• Managing writes to the persistent storage of the browser when network is unstable or disconnected

• Maintaining a queue for pending requests and dequeuing when network connection is re-established.

Below section explains how different GraphQL operations are managed by the sync engine.

Query – The query results of the previous successful server operation are always in sync with the persistent

storage data. So, when a query is requested in an offline state, the data from the cache is made available instead

of fetching it from the network. The sync engine queues the query and waits for a change in network status. The

query is automatically fired when the connection is restored, then the cache is updated, and additional data is

synched with the cache.

Mutation – When a mutation is performed in an offline state, the mutation is cached and queued in the browser.

The sync engine continuously checks the network connection status, and once the connection is restored, the

mutation is fired by the sync engine without the client having to resend the message, which gives a seamless

experience for users who frequently switch between different network error scenarios. The queue is emptied once

the mutation is successful.

Subscription – The Synchronization engine also manages the subscription data by coordinating subscription re-

connects and writes between offline to online transitions. The sync engine performs this by automatically resum-

ing subscriptions and retrying through different network error scenarios and storing events in a queue. The appro-

priate delta or base query is then executed before merging any events from the queue and before finally processing

subscriptions as normal.

The types of persistent storage systems [18] in browsers which are used.

• Browser local storage – It uses key value pairs to store data in the UTF-16 format and is suitable for stor-

ing simple data such as strings. Multimedia file references can be cached using the browser local storage by

referencing system file paths, though it is not the recommended approach for multimedia files. The limits of

local storage vary per browser but is usually in the range of 5-10MB.

• IndexedDB – It is available in browsers and provides a complete database system for storing complex data

[19]. It can be used for caching raw binary files such as videos and images. The limit is upto 2GB, though it

varies and is dynamically allocated based on the available disk space.

6.4 Third-party Service Integrations
Third-party services are used by the messaging platform in order to include additional features. Some of these

services are authentication service, SMS, Email, and Web Push services. The platform also integrates AI services

to add more insights to the data and add algorithms to the data. The idea is not exposing any third-party service

dependencies on the client interfaces and have an abstraction layer for these services. This gives the flexibility to

change the providers in the future without impacting end users.

6.4.1. Asynchronous Channel Services

The messaging system supports two inbuilt modes for sending messages which are peer-to-peer messaging and

group messaging. Messages can be sent via three other asynchronous channels a) SMS message, b) Email mes-

sage, and c) Web Push notification. The from and to field in the messaging data model denotes the sender, recip-

ient, and channel information and varies per mode and channel type.

The from field contains the user, group, and application information in the format chat:userId@groupId.appId.

The variations of the to field are mentioned in Table 14. The service providers for SMS, Email, and Web Push

messages are abstracted as the model does not contain any provider specific information.

Table 14 – Messaging data model variations

Communi-

cation mode

Recipient variation Description Selected Provider

Peer-to-peer

Message

chat:userId@

groupId.appId

Sends message to the specified user -

Eindhoven University of Technology

32

Group Mes-

sage

chat:*@

groupId.appId

Sends message to all group members -

SMS Mes-

sage

sms:phoneNumber Sends an SMS to the specified number. (body

defines the SMS content)

SendGrid

Email Mes-

sage

email:emailId Sends Email to the specified address.

(bodyType is email and body is JSON, contain-

ing Email subject and body.)

SendGrid

Web Push

Notification

webpush:registra-

tionId

Sends a web push notification. (bodyType is

webpush and body is JSON, which defines web

push registration.)

Google Firebase

6.4.2. Web Push Notifications

Web Push notifications are browser notifications which are pushed by a website to the client browser in response

to a certain event. These notifications are clickable and can provide rich content messages. The web push protocol

[20] enables communication between a user agent and a push service. The push service ensures reliable delivery

of push messages while a user agent is actively using a web application or is in background window. There are

two components of a push message, Push API and Notification API. The Push API is invoked when a server

supplies information to a service worker. A Notification API is the action of a service worker or web page script

showing information to a user. Web push notifications are supported by Chrome, Firefox, Safari, Opera, and Edge

on Desktop and by Chrome, Firefox, Opera on Android Mobile. However, iOS does not support web push notifi-

cations yet.

In order for a Web Push notification to successfully sent, received, and displayed as browser notifications, the

following components are involved and interactions between them are shown in Figure 15.

• Service worker – Tied to a specific website and processes the web push message based on the defined con-

figuration. It can be configured to either display the notification or just persist in the browser storage.

• User agent – Identifies and activates the intended service worker and delivers the push message to it.

• Push service – Service that delivers the message to a specific user agent, identified by its push endpoint.

• Application server – Has the web push registration details of clients and invokes the messaging platform

API in order to send a message to a specific user.

• Messaging system – Requests the push service to deliver a push message. This request uses the push end-

point included in the push subscription.

Figure 15 – Web push components and their interactions

https://developer.mozilla.org/en-US/docs/Web/API/Push_API

Eindhoven University of Technology

33

6.5 Webhooks
The real-time behavior of the messaging system is facilitated via WebSocket using the GraphQL real-time end-

point. GraphQL libraries are currently only available for front-end development frameworks, e.g., JavaScript,

Angular. One of the system requirements is to facilitate sending and receiving real-time data with backend sys-

tems. In order to support real-time messaging with backend systems, Webhooks are part of the messaging system.

Webhook is a way for the messaging platform to send real-time events to backend applications to their registered

webhook URL. Backend applications can register their URL with the messaging platform and can add specific

filters to restrict receiving only a subset of data. As soon as a webhook URL is registered, the backend application

will start receiving events containing message data objects.

Database Streams are utilized to support real-time event generation. Database streams capture a time ordered

sequence of every modification to the database table and is used to detect data changes. It tracks information about

every modification to data items in the table, which can be addition of new data, modification of existing data, or

deletion of data. The messaging platform listens for database streams objects, checks for all the registered

webhooks, their filter conditions, and invokes the webhook URL by sending a HTTPS POST request. Figure 16

shows how Webhooks can be used to received real-time events.

Figure 16 – Webhook registration and callbacks using streams

6.6 Cloud and on-premise
The components and design explained in the previous sections of this chapter can be implemented and deployed

on cloud or on premise or in a hybrid manner. The high-level concepts and design remain the same, but depending

on the chosen technology stack, some aspects and configurations vary and may need tweaking. The on-premise

implementation is kept out of scope for this project. Though the technology stack to realize this design can be

quite diverse, an on-premise prototype using the stack listed in Table 15 was developed. The cloud implementation

on AWS is explained in the next chapter.

Table 15 – List of potential cloud and on-premise technologies

 AWS Cloud On-Premise

Database DynamoDB MongoDB (or any NoSQL DB)

Webhooks DDB Streams MongoDB streams

GraphQL API AWS AppSync Apollo GraphQL

REST API REST API Gateway Any REST library (e.g., Express.js in Node, Django

in Python)

WebSocket API WebSocket API Gateway WebSocket libraries (e.g., Socket.IO in JavaScript)

Object Storage AWS Simple Storage Service Any on-premise object storage solution

■

Eindhoven University of Technology

34

Eindhoven University of Technology

35

7.Cloud Implementation

The previous chapter described the detailed design of the system and the final section listed the potential technol-

ogy stacks that can be used for on-premise and cloud implementation. The scope of this project is limited to a

cloud-based implementation. The messaging platform is implemented using Amazon Web Services (AWS) which

is a platform by Amazon which operates globally providing technologies to develop applications on cloud. All

the AWS resources and the third-party integration services that are used in realizing the platform are described.

This chapter also explains some of the implementation choices such as the technologies and programming lan-

guages.

7.1 AWS Resources
The messaging platform is developed and hosted using a stack of AWS resources. AWS resources are entities

which serve as building blocks to realize the end-to-end messaging system. Each resource is used for a certain

functionality and the resources communicate with one another. For example, DynamoDB resource is used in the

data layer to store text-based data and it communicates with lambda functions. Figure 17 shows the entire AWS

stack used for the system implementation and their interactions. The resources are grouped as follows.

• Client-facing – The resources that are used to create and publish the platform APIs. These resources provide

API endpoints, and client applications interact with the messaging platform via the APIs.

• Backend – The resources that are used to store and manage the data layer, platform logic, access management,

and monitoring of the messaging platform.

• Software Development Kit – The AWS SDK that is used in order to support features like offline messaging

and synchronization, which require interaction with the client browser side cache.

Figure 17 – Messaging platform AWS resources

7.1.1. Client-facing Resources

The messaging platform provides interfaces in the form of API endpoints which are of three types, GraphQL

APIs, REST APIs, and WebSocket APIs. The details on the behavior and functionality of APIs explained in

Chapter 6. Another client facing component is the Content Delivery Network service through which multimedia

Eindhoven University of Technology

36

files are made available to the clients based on their geographical locations. Table 16 shows the list of client-

facing AWS resources and their functionalities are explained in the subsequent section.

Table 16 – Client facing AWS resources

Type AWS Resource

GraphQL API AppSync

Messaging REST API REST API Gateway

Webhook REST API REST API Gateway

WebSocket API WebSocket API Gateway

CDN CloudFront

GraphQL API

AWS AppSync [21] is used as the GraphQL service which enables to create a flexible API to securely access,

manipulate, and receive real-time updates from different data sources. It consists of two types of endpoints a)

HTTPS endpoint manages Query and Mutation requests, b) WebSocket Endpoint manages Subscription requests

and opens bi-directional communication channel with clients. Figure 18 shows the interaction between client ap-

plications and AppSync components.

1) GraphQL Schema: Describes the data objects and API input and output parameters. Refer Appendix A.

2) Data Sources: AppSync supports configuration of different data sources that are listed below.

• DynamoDB Data Source – Connects DynamoDB tables to AppSync

• HTTPS Data Source – Connects external HTTPS endpoints, e.g., Authentication API

• Lambda Function Data Source – Connects AWS Lambda functions.

3) Resolvers: Resolvers serve as the link between APIs defined in the schema and the data sources. Each re-

solver is configured to one or more data sources and uses a request mapping and a response mapping template

written in a DSL called Velocity Template Language (VTL). Resolvers transform the request into the lan-

guage of the data source and transforms the response before sending it back to the client.

Figure 18 – Interaction between AppSync components

The GraphQL APIs of the messaging platform is described in Table 17.

Table 17 – Messaging platform GraphQL and REST APIs

Category GraphQL

Operation

REST Op-

eration

API Description Data

Source*

Applica-

tion
Mutation

POST RegisterApplica-

tion

Registers a new application

with the messaging platform

Lambda

Identity

Mutation

POST CreateIdentity Creates a new identity specific

to an application

Lambda

PATCH UpdateIdentity Updates identity related data

and metadata

Lambda

DELETE DeleteIdentity Removes an application iden-

tity from the platform

Lambda

Query
GET GetIdentities Retrieve all the identities regis-

tered with an application

Lambda

Eindhoven University of Technology

37

GET GetIdentity Retrieve details of a specific

identity

Lambda

Grouping

Mutation

POST CreateGroup Creates a new group specific to

an application

Lambda

PATCH CloseGroup Closes a group in order to stop

sending and receiving mes-

sages from the group

Lambda

PATCH ReopenGroup Reopens a closed group. Send-

ing and receiving group mes-

sages are resumed

Lambda

PATCH AddIdentity Adds a new identity to a group Lambda

PATCH RemoveIdentity Removes an existing identity

from a group

Lambda

DELETE DeleteGroup Removes an application group

from the platform

Lambda

PATCH UpdateGroup Updates group related data and

metadata

Lambda

Query

GET GetGroups Retrieve all the groups regis-

tered with an application

Lambda

GET GetGroup Retrieve details of a specific

group

Lambda

Messag-

ing

Mutation

POST SendMessage Sends a message specifying the

recipient, channel information,

and other details.

HTTPS +

DynamoDB

DELETE DeleteMessage Soft deletes an existing mes-

sage

Lambda

Query

GET GetMessages Retrieves all messages from the

groups based on filter condi-

tions

HTTPS +

DynamoDB

GET GetMessage Retrieve details of a specific

message

Lambda

Subscrip-

tion

NA OnMessageRe-

ceived

Receive notifications when

new messages are added to the

subscribed groups

Lambda

NA OnMessageDe-

leted

Receive notifications when

messages are deleted from the

subscribed groups

Lambda

Presence

and typ-

ing

Mutation

POST UpdatePresence Updates the online and offline

status of a group member

Lambda

POST UpdateTypingIn-

dicator

Updates the typing status of a

group member

Lambda

Query
GET GetPresence Retrieves presence information

of group members

Lambda

Subscrip-

tion

NA OnPresen-

ceUpdate

Receive notifications when a

group member changes pres-

ence state

Lambda

NA OnTypingIndica-

tor

Receive notifications when a

group member changes typing

state

Lambda

* All the Lambda based data sources internally reference the HTTPS Authentication API

Messaging REST APIs

AWS API Gateway [22] REST is used to develop and publish the messaging REST APIs which use a request-

response model to send data to clients synchronously and can manage a very high number of concurrent requests.

Cross-Origin Resource Sharing (CORS) is enabled. All the Query and Mutation APIs of GraphQL are also ex-

posed as REST APIs to support backend applications. Refer Table 17 for the list of REST APIs. The common

APIs part of both GraphQL and REST share the same Lambda functions that contain the operation logic and data

layer interactions.

The additional REST APIs for multimedia exchange and logging are explained below.

Eindhoven University of Technology

38

• GetMultimediaURL – Returns unique media URL from which the file can be accessed and a signed URL

which is used to upload files. Validity of signed URL is one hour after which it needs to be regenerated.

• UploadMultimedia – Uploads the multimedia file to the object storage system using the signed URL.

• DeleteMultimedia – Deletes the multimedia files from the object storage system

• Logging – Generates a dump of DynamoDB tables into a read-only storage, which can be used by clients for

use cases such as analytics.

WebSocket APIs

AWS API Gateway WebSocket is used to develop and publish the WebSocket APIs that enables real-time bidi-

rectional communication in order to know users’ connection status. Lambda functions are used to support the

route operations. The three WebSocket routes are as follows.

• connect – Gets automatically invoked when a persistent connection between client and the messaging plat-

form is initiated. Connections are tracked in the Connections table.

• disconnect – Gets automatically invoked when clients disconnect from the system. Disconnected client con-

figurations are removed from the platform.

• updateConnection – A custom route that is used to track the currently active group of the client so that other

group members are aware of the connection status.

Webhook REST APIs

AWS API Gateway REST is used to develop and publish the Webhook REST APIs. These APIs enable backend

systems to receive real-time events from the messaging platform which lacks persistent connections. The

Webhook APIs are as follows.

• RegisterWebHook – Enables clients to register their webhook URL with the messaging platform. The URL

shall accept POST requests. The messaging platform pushes events to this URL when new information is

available. An additional request is attempted if the first operation fails. DynamoDB Streams explained in

Section 7.1.2 are used to generate the real-time events.

• UpdateWebHook – Updates webhook configurations details.

• GetWebHooks – Retrieve all webhook configurations tied to an application.

• DeleteWebHooks – Removes webhook configurations. Once removed, messaging system stops sending

events.

Content Delivery Network

CloudFront is AWS CDN service that securely delivers multimedia files to clients globally with low latency and

high transfer speeds. This is achieved by caching multimedia files to the nearest data centers and rendering files

from these caches. The multimedia S3 URLs are accessible only via CloudFront as it enables faster file rendering

based on the client geographical location. Lambda edge functions are added to authenticate client requests.

7.1.2. Backend Resources

The services explained in the previous section use different backend AWS resources which are the underlying

resources in order to respond to API requests. These are database tables, database streams, object storage, roles

and permissions managements and compute functions. Table 18 lists the AWS resource which are used as under-

lying components.

Table 18 – Backend AWS resources

Type AWS Resource

Database DynamoDB

Database Streams DynamoDB Streams

Object Storage Simple Storage Services (S3)

Compute Functions Lambda functions

Access Management Identity and Access Management (IAM)

Monitoring CloudWatch

Eindhoven University of Technology

39

Database

AWS DynamoDB is a fast and flexible NoSQL database service that provides high performance and can serve

high request traffic. The data layer of the messaging system is a set of DynamoDB tables which can store and

retrieve large sets of data. There are two sets of tables instances, one for development and the other for the pro-

duction environment. The tables are configured based on the database modelling explained in Section 6.2.2. The

tables are configured to be on-demand which accommodates different levels of traffic workloads and makes it

easy to balance cost and performance. The DynamoDB tables are: Applications, Identities, Groups, Messages

(Base), Messages (Delta), Notifications, Presence, WSConnections, and WebHooks.

Database Streams

DynamoDB Streams captures time-ordered sequence of modifications in any DynamoDB table. Streams are ena-

bled on the Messages (Base) table, which means any modifications to the table are tracked. A lambda function is

initially configured and is triggered every time data is inserted, updated, or deleted from the table. The lambda

function reads the stream, checks for registered webhook configurations, invokes the appropriate webhooks, and

sends data to the webhook URL as events.

Object Storage

AWS Simple Storage Service (S3) is an object storage service that stores and protects large amount of data and

offers high performance, scalability, and availability. The messaging platform uses S3 buckets to store and track

the multimedia files. Each object in a S3 bucket is assigned a unique key-value pair where key is the unique file

name and the value is the binary multimedia file. Individual objects are available as URLs in S3 identified by the

key. The uniqueness of each file is guaranteed by concatenating a GUID, a milliseconds timestamp, and file name

provided by the client. CORS is also enabled.

Compute Functions

AWS Lambda [23] are compute services that provides run time environments to source code written in a variety

of programming languages and runs the code in a high-availability compute infrastructure and it also scales auto-

matically. Lambda functions of the messaging platform are written in Node.js and Python 3 and are used as com-

pute functions. These functions serve as the backbone of the platform as they contain the business logic and

functionality. AWS Lambda communicates with other AWS Resources which are API Gateway, AppSync, Cloud-

Front, DynamoDB Streams and S3.

Access Management

AWS Identity and Access Management (IAM) provides fine-grained access control to different AWS resources

securely. It is achieved by using roles and policies. Communication between all AWS resources are managed

using IAM. For example, in order for API Gateway to communicate with a lambda function, a policy is defined

that specifies the access type, the allowed actions, and the resources for which those actions are applicable.

Monitoring

AWS CloudWatch provides data and insights in the form of logs, metrics, and events in order to monitor AWS

resources in terms of performance and resource utilizations. All the AWS resources explained in the previous

sections are enabled to provide logging via CloudWatch.

7.1.3. Software Development Kit

AWS AppSync provides a JavaScript Software Development Kit (SDK) [24] which is the GraphQL client library

and has integrations with front-end frameworks such as React and Angular. It allows to easily develop UI com-

ponents that send and retrieve data via GraphQL. The SDK supports queries, mutations, subscriptions and runs

the caching and synchronization engine at the client browser. The SDK is therefore capable of providing offline

features that uses the browser local cache as the storage engine and manages subscription handshaking. The SDK

must be used in order to utilize the synchronization and offline features of the messaging platform.

7.2 Third-party Services
The messaging platform is integrated with several third-party services in order to facilitate some of the features

and are available as part of the cloud implementation. These services are integrated in the Lambda functions and

GraphQL resolvers. The different third-party services integrated with the messaging platform are as follows.

• SMS, Email, and Web Push channels – These services support messaging via different asynchronous chan-

nels. SendGrid provider is used for sending SMS and Email messages, and Google Firebase is used to send

Web Push notifications.

Eindhoven University of Technology

40

• Authentication API – A token-based authentication service developed by Philips is integrated in order to

authenticate each of the API requests.

• Analytics services – Few AI services are integrated as prototypes to demonstrate the potential value it can

add to the multimedia data available as part of the messaging platform. Microsoft Azure Cognitive cloud

services [25] are used for text analytics and multimedia analytics. Some of the integrated text analysis services

are translation services (up to 80 languages), key phrases extraction, sentiment analysis, and named entity

recognition.

7.3 Demo UI Application
A simple demo application is developed in Angular to demonstrate the features of the messaging platform. It uses

the AppSync SDK to communicate with the GraphQL APIs. It also integrates with REST and WebSocket APIs.

The features demonstrated by the application are grouping, sending and receiving messages, receiving presence

and typing status, sequencing, synchronization and offline messaging. Web Push and text analytics services are

also demonstrated. The Angular application is deployed on AWS S3 and is available via CloudFront.

 ■

Eindhoven University of Technology

41

8.Deployment and Pilot Execution

This chapter explains the deployment process and the Serverless Application Model which is used to configure,

package source code, and deploy the messaging platform resources to AWS. An application named Service Con-

nect was launched by Philips Research in line with the vision explained in Section 1.3.3. The messaging platform

is one of the components being used in the pilot and this chapter explains how the platform fits into the big picture

and how other components interface with the platform.

8.1 CloudFormation
AWS CloudFormation provides a way to create and manage a collection of AWS resources. The resources ex-

plained in Chapter 7 that constitutes the messaging platform are bundled together in a CloudFormation stack. It

also enables to model and provision resources in an automated and secure way using templates. AWS Serverless

Application Model (SAM) [26] is an open-source framework for building serverless applications. It provides re-

source specific syntax to express functions, APIs, databases, and event source mappings and is defined and mod-

elled using YAML. During the deployment, SAM transforms this syntax into AWS CloudFormation syntax that

creates and deploys the platform on AWS.

The YAML based SAM template consists of resource configurations and dynamic links to the source code. They

are then packaged and uploaded to an S3 bucket. CloudFormation uses the YAML configurations and the source

code located in S3 to create the stack of specified AWS resources. The stack of resources is then deployed, and

they interface with one another based on the defined policies. Subsequent deployments to the same stack do not

redeploy the resources and only updates the modified resources. Finally, the API endpoints are generated. The

endpoints are created only when a new stack is deployed and subsequent deployments to the same stack references

the existing endpoints. A snippet of the SAM template used to deploy the messaging system resources is available

in Appendix B.

8.2 CI/CD
GitLab is used as the source code repository for the messaging platform. Gitlab CI/CD tool is used for Continuous

Integration (CI), Continuous Delivery (CD), and Continuous Deployment (CD). The CI/CD configuration is man-

aged by the gitlab-ci.yml file. This file creates a pipeline for changes in the code repository. Pipelines consists of

stages and are executed in order and each stage consist of jobs that run simultaneously. These jobs are executed

by Gitlab runners and executes inside a Docker container.

The messaging platform is deployed in three environments, testing, development, and production environments

which maps to test, dev, and master branches in repository. The CI/CD pipeline consists of three stages.

• Validation – Runs unit tests and integration tests locally. Only if this validation stage succeeds, the next

stage is triggered.

• Packaging – Packages the source code and uploads to an S3 bucket based on SAM template.

• Deployment – Pulls the source code from S3, creates AWS resources, and deploys the stack of messaging

platform resources on AWS.

The CI/CD configuration is such that any changes committed to the test or dev branch creates a separate test or

dev CloudFormation stack, and then packages and deploys the application in the respective environment. Any

changes made to the master branch validates and packages the application and waits for a manual trigger to deploy

the production version of the application. Redeployment of a stack only updates the resources that were changed

compared to the previous deployment. If there are no modifications since the last commit, the stack is not updated.

The GraphQL, REST, and WebSocket API endpoints are exposed as outputs after the deployment stage. There

are three sets of messaging API endpoints that points to the three environments.

Eindhoven University of Technology

42

8.3 Service Connect Pilot
In line with the vision explained in Section 1.3.3, an application named Service Connect was launched for cus-

tomer use at pilot sites in July 2020. The Service Connect application delivers a seamless end-to-end service

experience by digital communication channels featuring tools improving remove communication workflow. Refer

Appendix C for sample application screenshots. The pilot is scheduled to run for a couple of months by training

pilot hospitals sites which results in receiving feedback on the digital support experience. The Service Connect

application is a web application launched when a device QR code is scanned or when an invitation is sent to the

user. The messaging platform developed as part of this project is one of the components being used in the pilot.

The messaging platform developed as part of this project is one of the components being used in the pilot.

The following hospitals in North America are the participating pilot sites.

• Duke University Hospital in North Carolina

• Southwest Regional Medical Center in Mississippi

• Wellstar Atlanta Medical Center in Georgia

The Service Connect application consists of the following components where each component is responsible for

managing a set of functionalities and together shape the enhanced digital support experience. Figure 19 depicts

the interactions between the pilot components.

1) Service Connect (SC) Application – The core application consists of a client-facing web application and a

backend component. The backend is responsible for static and dynamic grouping, sending notifications, rout-

ing to Philips support, interfacing with WebRTC, and communication with other components.

2) Messaging – This component is the system developed during the project. This component acts as a central

component to facilitate communication and provides interfaces to different components.

3) Chatbot Orchestrator – Manages different chatbot backends and merges the data into the messaging plat-

form.

4) Monitoring System – Analytics and monitoring services using the messaging data.

5) IPSA – Contextual search engine and question answering system.

Figure 19 – Pilot components and interfaces with the messaging platform

Eindhoven University of Technology

43

9.Verification & Validation

The previous two chapters described the implementation and deployment of the platform. This chapter explains

the process of verification and validation. This chapter revisits the requirements in Chapter 3 and lists the status

of the requirements. They are categorized as: fully implemented, only the design is provided, and not imple-

mented. As the platform was tested on pilot sites, metrics measuring performance over a span of three months

were measured and are illustrated.

9.1 Verification
Verification is the process of checking whether the software meets the requirements. The developed platform is

modular, hence components were developed and tested separately, and then collectively. Unit tests and integration

tests are added to the deployment pipeline. Table 19 lists the status of the requirements.

Table 19 – Requirements status

Requirement Category Completed Design only Not imple-

mented

General System require-

ments

GR-001, GR-002, GR-003, GR-004, GR-005,

GR-007, GR-008

GR-006

FR - Registration FR-001, FR-002, FR-003

FR - Identity Manage-

ment

FR-004, FR-005, FR-006, FR-007, FR-008,

FR-009

FR - Group Management FR-010, FR-011, FR-012, FR-013, FR-014,

FR-015, FR-018, FR-020

FR-017 FR-016, FR-

019

FR - Sending messages FR-021, FR-022, FR-023, FR-024, FR-025,

FR-026, FR-027

FR - Multimedia Support FR-028, FR-029, FR-030, FR-031, FR-032,

FR-033, FR-034, FR-035, FR-036

FR - Receiving messages FR-037, FR-038, FR-039, FR-040, FR-041,

FR-042

FR - Conversation His-

tory

FR-043, FR-044, FR-046, FR-047 FR-045 FR-048

FR - Delivery and Syn-

chronization

FR-049, FR-050, FR-051, FR-052, FR-053,

FR-054

FR - Offline Messaging FR-055, FR-056, FR-058 FR-057

FR - Presence FR-059, FR-060, FR-061, FR-062, FR-064,

FR-065

 FR-063

FR - Asynchronous chan-

nel integrations

FR-066, FR-067, FR-069 FR-068

FR - Third-party integra-

tions:

FR-070, FR-072, FR-073 FR-071

9.2 Validation
Validation of a software system is the process of checking whether the developed system satisfies the stakeholder

needs. Validation was done in an iterative manner. In the progress and PSG meetings, the results were continu-

ously validated by the stakeholders. The frequency of these meeting were every 2-3 weeks, and these meetings

included demo of the current platform, and the future steps. Feedback was provided on the progress and the feed-

back was incorporated in the next design steps. The pilot customers also validated and provided inputs on the end-

to-end system.

Eindhoven University of Technology

44

9.3 API Metrics
One of the important non-functional requirements of the system is time behavior. Latency of GraphQL APIs and

REST APIs is measured and is explained below.

GraphQL APIs Latency – For a real-time system, the response time is one of the most important metrics to

evaluate the performance. The GraphQL server is responsible for the real-time behavior. The time between the

GraphQL server receiving a client request and returning a response to the client is the latency. This latency does

not include the network latency to reach the end users. Figure 20 shows the latency in milliseconds between mid-

June and end of August and is generated using AWS CloudWatch.

Figure 20 – GraphQL API latency graph

REST APIs Integration Latency – The time between the API Gateway relaying the request to the backend and

receiving a response from the backend is Integration Latency. Figure 21 shows the average integration latency in

milliseconds of the messaging REST APIs between June-July generated from AWS CloudWatch. Note that the

response time is inclusive of a third-party HTTPS authentication API for which the average response time is one

second.

Figure 21 – REST API integration latency graph

REST APIs Latency – The time between the API Gateway receiving a request from the client and returning a

response to the client is the overall latency. The latency is inclusive of the integration latency and other API

gateway overheads. Figure 22 shows the overall latency in milliseconds of Messaging REST APIs between June-

July generated from AWS CloudWatch.

Figure 22 – REST API latency graph

■

Eindhoven University of Technology

45

10. Conclusion

This chapter discusses the results achieved with the project and the functionalities supported by the cloud mes-

saging platform. It also summarizes the project deliverables, and recommendations for future work.

10.1 Results
The high-level objectives of the project are explained in Section 1.3.3. The design and implementation conform

to the objectives and requirements. This section describes the results achieved from this project and assesses the

results at different abstractions.

A unified messaging platform is implemented, offering core messaging functionalities and messaging via external

channels. The core messaging functionalities are multimedia group messaging, optimized data synchronization,

real-time presence updates, and offline messaging. The platform was tested in a pilot, launched by Philips Re-

search in order to digitize the existing remote customer support experience. Refer Appendix C for details. The

messaging platform offers a set of APIs which can be used by client applications in order to add features to their

system, which are GraphQL APIs, REST APIs, and WebSocket APIs.

The proposed architecture and design of the platform is explained in Chapter 6. The cloud implementation is based

on the proposed design. The interfaces are at a generic abstraction level so that various client applications can

integrate the platform features for their use cases.

WebSocket is used as the underlying protocol. It inherently eliminates request-response connection overheads;

hence the least amount of latency is observed when compared to other methods. It also facilitates full-duplex

communication. It is standardized across all major browsers and is compatible with HTTP ports 80 and 443.

Network firewalls are usually configured to not block HTTP(S) traffic; therefore, browser-based client applica-

tions can integrate with the messaging platform and add real-time capabilities to their systems.

Client applications not supporting WebSocket (e.g., backend applications or non-browser client applications) can

also achieve near real-time capabilities by registering their webhook URL with the messaging platform. As and

when new information is available, corresponding webhook URLs are triggered. The platform uses HTTPS to

post data to the webhook and the latency is slightly higher compared to WebSocket.

Communication via SMS and Email channels are supported. Web Push notifications can also be sent via the

platform. Communication via these channels are facilitated by third-party services and serve as integration points

to the platform. The platform also demonstrates prototypes by application of third-party AI services to the text

and multimedia data.

10.2 Project Deliverables
The tangible results delivered to the company in alignment with the project goals and requirements are as follows.

• AWS Serverless Application Model template, the configurations, and the source code of the messaging

platform is available on Philips GitLab.

• Messaging platform APIs are hosted on AWS in two separate environments, development and produc-

tion.

• Architecture diagrams modeled in Enterprise Architect.

• Analysis, comparison, and design documentation.

• API documentation and the source code of a demo front-end application.

• The PDEng graduation final project report is delivered both to the company and TU/e.

Eindhoven University of Technology

46

10.3 Future work
This section elaborates on potential additions and improvement points which can be made to the platform in the

future. Some of the requirements that were not realized during the project or were kept at a design-only state due

to time constraints, requirements prioritization, and other factors are also included in the recommendations for

future work.

• Currently, only text-based offline messaging is supported. Multimedia offline messaging as explained in

Chapter 6 using IndexedDB can be added to the platform.

• Currently, only three external channels are supported by the platform. Channels such as WhatsApp or

other social media channels, e.g., Facebook Messenger can be integrated.

• Implementation of an on-premise solution based on the design and recommended technologies in Chapter

6.

• The platform APIs can be implemented as language specific SDKs and provided to clients for easier

integrations.

• The platform was tested in the remote customer support environment. Exploring more use cases and

using the system in different use cases and contexts.

• Integrations with external AI services were developed as prototypes. This extension can be evolved, and

more insightful services can be added.

 ■

Eindhoven University of Technology

47

11. Project Management

This chapter elaborates on the project management process which was carried out during the lifetime of the pro-

ject.

11.1 Work Breakdown Structure
A Work Breakdown Structure (WBS) was created during the first few weeks of the project that consisted of high-

level work packages. The work packages and sub-tasks are as follows.

• Initiation – Project planning, risk assessment, and scheduling activities.

• Analysis – Problem analysis, stakeholder analysis, capturing requirements and domain exploration.

• Implementation – Developing system architecture and detailed design, implementation, verification,

and deployment.

• Conclusion – Testing at pilot sites, validation, and documentation of the graduation report

11.2 Project Plan
The project plan is in line with the WBS. A project plan was drafted during the initial phase of the project based

on the initial overview of project goals. Modifications to the initial project plan were done in an iterative manner

when actions started becoming more concrete which accounted for sub-tasks in the plan. Minor modifications

were also done to accommodate change in priorities. In the bi-weekly progress update meetings and monthly

Project Steering Group (PSG) meetings with the supervisors, the ongoing progress and the next steps were dis-

cussed. These meetings also acted as alignment meetings to discuss prioritization in requirements and subsequent

activities.

The project plan was tracked using Microsoft Project and was modified iteratively. The final project plan contains

the activities that were actually carried out during the project. Figure 24 represents the Gantt chart which contains

the high-level tasks, sub-tasks, and milestones. The figure also contains a visual representation of tasks scheduled

over time. The high-level activities in the final plan are in sync with the initial plan. Figure 23 shows a burndown

chart which visualizes how the tasks were completed over time.

Figure 23 – Tasks burndown chart

Eindhoven University of Technology

48

Figure 24 – Project Gantt chart

11.3 Risk Analysis
This section describes the risks that were identified during the initial phase of the project. A risk table was formu-

lated containing descriptions of the risk items. For each risk item, the probability of occurrence and impact levels

were analyzed and were assigned either High, Medium, or Low values. Mitigation strategies were also proposed

and were accordingly prioritized and implemented to reduce adverse effects on the project goals. Table 20 shows

the risk analysis table.

Eindhoven University of Technology

49

Table 20 – Risk assessment

Risk

Type

Risk Item Impact Proba-

bility

Mitigation

Process Unscheduled holidays

of supervisors

Medium Low Try to have planned work items for the next

two to three weeks. If something is blocking

due of absence of one supervisor, focus on

other project related tasks in the time being.

Process Trainee ill for a long du-

ration

High Low Negotiate and prioritize requirements and

have some planned buffer periods during the

project.

Technical Lack of domain

knowledge and technol-

ogies causing potential

delays

High Medium Start exploration of the domain and technol-

ogies early in project. Contact supervisors for

assistance or ask for domain knowledge ex-

perts.

Technical Lack of experience with

developing cloud solu-

tions

Medium Medium Be pro-active in learning. Consult supervisor

for assistance, refine skills by tutorials, and

learn from open source projects.

Technical Issues with integration

of third-party services

Medium Low Choose services which have customer sup-

port available or an active support commu-

nity. Contact them and request for early ETA

fix. Consult alternative solutions and prepare

backups for the worst case.

Technical Feasibility of the pro-

posed solution

Medium Medium Try to develop prototypes (one on-premise

and one cloud solution) to detect possible

problems so that corrective actions can be

taken.

Technical Unable to fulfil all the

low-level requirements.

Medium Low Prioritize the requirements. Start with high

priority items, complete them, and only then

move to lower priority items. Signal to super-

visor if a high priority item is blocked and

what actions can be taken.

Technical Not having the platform

ready before the sched-

uled pilot launch

High Medium Plan the implementation in steps so that at

least an MVP is ready. Next, plan early inte-

grations with other sub-systems in the pilot to

make sure that there is enough time to inte-

grate and resolve issues.

■

Eindhoven University of Technology

50

Eindhoven University of Technology

51

12. Project Retrospective

This chapter finalizes the report by providing a reflection on the project and the lessons learnt during the project,

from the author’s perspective.

12.1 Project Reflection
Working at Philips for a duration of 10 months as part of my PDEng graduation project was a valuable and en-

riching experience. I got introduced to a research environment which was a rather new type of setting that stimu-

lates thinking ahead of the curve by spotting ideas and developing proof of concepts. Working in such an envi-

ronment was challenging and equally exciting because ideas are initially vague, and they need to be realized in a

streamlined way and also gave flexibility to discuss and innovate new ideas.

During the initial phases of the project, I was trying to gain more and more insights to the problems faced in the

present customer support experience and the potential ways in which this experience could be digitized and im-

proved. The project goal was to also consider different scenarios and think in the right direction to come up with

a solution to incorporate all of these use case scenarios. I had experience working with some networking protocols

in the past, but the messaging related protocols were new, and it was an interesting experience to learn about these

protocols and methods that enables real-time communication.

During the design phase, I was continuously sharing ideas and prototypes in order to realize the end-to-end system.

I divided the system into building blocks and worked on detailed design of individual blocks. The design decisions

were discussed, analyzed, and were finalized together with the company supervisors. Somewhere towards the end

of the first quarter, I was told that the system I was developing would be part of the pilot execution with hospitals

in North America. This was an opportunity for me to collaborate with more people and to see the features of the

developed system being used by actual end users.

It was also my first-time hands-on experience developing a cloud-based application and was a steep learning curve

in terms of understanding the nitty-gritty details of cloud resources and how they function and interact. The project

had activities in all the stages of the software development life cycle process starting from planning till deploy-

ment. To conclude, it was a great experience and I am quite satisfied with the way the project was carried out and

the end results. The challenges and learnings will be valuable lessons for the upcoming projects.

12.2 Learnings
This section lists some new skills and experiences I gained and refinement of familiar skills in improving my

technical, organizational, and personal skills.

Technical skills – From a technical viewpoint, the project had both familiar and unknown domains. I got intro-

duced to the latest messaging protocols, real-time systems, GraphQL query language and APIs, and also got in-

troduced to developing cloud-based applications. I have new stacks added to my technical software development

experience.

Organizational and personal skills – I have improved on project planning and management skills as this was an

individual project spanning across the entire software development life cycle. I have improved communicating at

different abstraction levels based on stakeholders and audience. I have also improved time management and pri-

orities management skills.

Eindhoven University of Technology

53

Glossary

API Application Programming Interface is a set of definitions and protocols for developing and

integrating software applications

AWS Amazon Web Services

CDN Content Delivery Network

CORS Cross-origin Resource Sharing is a mechanism that allows applications running at one origin

to access resources from a different origin

GraphQL A data query language for APIs and a runtime for executing queries

HTTP Hypertext Transfer Protocol is stateless application-layer protocol working on the client-

server model and is the foundation of World Wide Web

JSON JavaScript Object Notation

On-premise Having full control of the infrastructure which is hosted and maintained at company premises

Pilot An experimental release and testing with a limited set of customers before being introduced

more widely

PSG Project Steering Group

Pub-Sub Publish-Subscribe

Real-time Communication type in which users interact almost instantly with negligible latency

REST Representational State Transfer is an architectural style used for development of web services

SAM Serverless Application Model

SDK Software Development Kit is a collection of software tools and services developed for specific

platforms

SSL Secure Sockets Layer adds encryption algorithms and provides communication security dur-

ing transit

TCP/IP Transmission Control Protocol and Internet Protocol is a protocol suite that facilitate network

communications

Webhook User defined HTTP callbacks triggered on specific events

WebSocket Communication protocol that facilitate persistent bi-directional communication

XMPP Extensible Messaging and Presence Protocol

Eindhoven University of Technology

54

Eindhoven University of Technology

55

References

[1] "PDENG PROGRAM, PDEng Software Technology," 2020. [Online]. Available:
https://www.tue.nl/en/education/graduate-school/pdeng-software-technology/. [Accessed March
2020].

[2] Philips, "Company," 2020. [Online]. Available: https://www.philips.com/a-w/about/company.html.
[Accessed August 2020].

[3] Philips, "About Philips Research," 2020. [Online]. Available: https://www.philips.com/a-
w/research/about-philips-research.html. [Accessed August 2020].

[4] Philips, Scalable Services Delivery, Service Blueprint for Issue Resolution. [Confidential], 2020.

[5] Philips, Service Experience Map, Call Handling (Benelux) [Confidential], 2020.

[6] Scalable Service Delivery, 5-02-2020 lores [Internal], 2020.

[7] International Organization for Standardization, "Systems and Software Engineering: Systems and
Software Quality Requirements and Evaluation (SQuaRE): Guide to SQuaRE. ISO/IEC," 2014.

[8] T. Berners-Lee, R. Fielding and H. Frystyk, "Hypertext Transfer Protocol -- HTTP/1.0," RFC1945,
1996.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1," RFC2616, 1999.

[10] MDN Contributors, "Connection management in HTTP/1.x," 2019. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x.
[Accessed August 2020].

[11] I. Fette and A. Melnikov, "The WebSocket Protocol," RFC6455, 2011.

[12] S. Loreto, P. Saint-Andre, S. Salsano and G. Wilkins, "Known Issues and Best Practices for the
Use of Long Polling and Streaming in Bidirectional HTTP," RFC6202, 2011.

[13] P. Saint-Andre, "Extensible Messaging and Presence Protocol (XMPP): Core," RFC3920, 2004.

[14] Frozen Mountain, "Do more than just signalling," 2020. [Online]. Available:
https://www.frozenmountain.com/products-services/websync/. [Accessed March 2020].

[15] Twilio, "Programmable Chat REST API," 2020. [Online]. Available:
https://www.twilio.com/docs/chat/rest. [Accessed March 2020].

[16] PubNub, "PubNub Chat Overview," 2020. [Online]. Available:
https://www.pubnub.com/docs/chat/overview. [Accessed March 2020].

[17] Pusher, "Channels overview," 2020. [Online]. Available: https://pusher.com/docs/channels.
[Accessed March 2020].

[18] MDN Contributors, "Client-side storage," 2020. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Client-
side_storage. [Accessed August 2020].

[19] MDN Contributors, "IndexedDB API," 2020. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API. [Accessed August 2020].

[20] M. Thomson, E. Damaggio and B. Raymor, "Generic Event Delivery Using HTTP Push,"
RFC8030, 2016.

[21] AWS, "AWS AppSync," [Online]. Available: https://aws.amazon.com/appsync/.

[22] AWS, "Amazon API Gateway," 2020. [Online]. Available: https://aws.amazon.com/api-gateway/.
[Accessed May 2020].

[23] Amazon, "AWS Lambda," 2020. [Online]. Available: https://aws.amazon.com/lambda/. [Accessed
July 2020].

[24] "AWS AppSync JavaScript SDK," 2018. [Online]. Available: https://github.com/awslabs/aws-
mobile-appsync-sdk-js. [Accessed May 2020].

[25] "Azure Cognitive Services," 2020. [Online]. Available: https://azure.microsoft.com/en-
us/services/cognitive-services/. [Accessed August 2020].

[26] GitHub, "AWS Serverless Application Model (AWS SAM)," 2020. [Online]. Available:
https://github.com/aws/serverless-application-model. [Accessed July 2020].

Eindhoven University of Technology

56

Eindhoven University of Technology

57

Appendix A. GraphQL Schema

type Application {

 appId: String!

 appDescription: String!

}

type Group {

 groupId: String!

 appId: String!

 createdAt: AWSTimestamp!

 groupName: String!

 groupDescription: String

 members: [String]!

 state: String!

 members_data: AWSJSON

}

type Identity {

 userId: String!

 appId: String!

 createdAt: AWSTimestamp!

 displayName: String

 userType: String!

}

type Message {

 id: ID

 senderTimeStamp: AWSTimestamp

 serverTimeStamp: AWSTimestamp

 from: String

 to: String

 bodyType: String

 body: String

 numMedia: Int

 mediaTypes: [String]

 mediaUrls: [String]

 numChoices: Int

 choices: [String]

 replyTo: ID

 version: String

 fromChannel: String

 toChannel: String

 _deleted: Boolean

}

type Presence {

 userId: String

 userName: String

 groupId: String

 appId: String

 lastSeenOnline: AWSTimestamp

 userStatus: String

}

type PresenceSet {

 appId: String

 groupId: String

 groupPresence: [Presence]

}

type TypingIndicator {

 groupId: String

 appId: String

 userId: String

Eindhoven University of Technology

58

 userName: String

 isTyping: Boolean

}

type Mutation {

 RegisterApplication(appId: String!, appDescription: String!): Application

 CreateIdentity(userId: String!, appId: String!, displayName: String, userType:

String): Identity

 UpdateIdentity(userId: String!, appId: String!, displayName: String, userType:

String): Identity

 DeleteIdentity(userId: String!, appId: String!): Identity

 CreateGroup(groupId: String!, appId: String!, groupName: String!): Group

 CloseGroup(groupId: String!, appId: String!): Group

 ReopenGroup(groupId: String!, appId: String!): Group

 AddIdentityToGroup(groupId: String!, appId: String!, identity: String!): Group

 RemoveIdentityFromGroup(groupId: String!, appId: String!, identity: String!):

Group

 DeleteGroup(groupId: String!, appId: String!): Group

 UpdateGroup(groupId: String!, appId: String!, groupName: String, groupDescrip-

tion: String): Group

 SendMessage(

 id: ID, senderTimeStamp: AWSTimestamp, from: String, to: String, body:

String, bodyType: String,

 numMedia: Int, mediaTypes: [String], mediaUrls: [String], numChoices:

Int, choices: [String], replyTo: ID

): Message

 DeleteMessage(id: ID, serverTimeStamp: AWSTimestamp, from: String, to: String,

deletedBy: String): Message

 UpdatePresence(userId: String, appId: String, groupId: String, userName:

String, userStatus: String): Presence

 UpdateTypingIndicator(userId: String, groupId: String, appId: String,

userName: String, isTyping: Boolean): TypingIndicator

}

type Query {

 GetIdentities(appId: String!): [Identity]

 GetIdentity(appId: String!, userId: String!): Identity

 GetGroup(groupId: String!, appId: String!): Group

 GetGroups(userId: String!, appId: String!, state: String): [Group]

 GetMessage(id: ID!): Message

 GetMessages(groupId: String, appId: String, startTimeStamp: AWSTimestamp, end-

TimeStamp: AWSTimestamp, lastSync: AWSTimestamp): [Message]

 GetPresence(groupId: String, appId: String): PresenceSet

}

Eindhoven University of Technology

59

type Subscription {

 OnMessageReceived(toChannel: String): Message

 @aws_subscribe(mutations: ["SendMessage"])

 OnMessageDeleted(toChannel: String): Message

 @aws_subscribe(mutations: ["DeleteMessage"])

 OnPresenceUpdate(appId: String, groupId: String): Presence

 @aws_subscribe(mutations: ["UpdatePresence"])

 OnTypingIndicator(appId: String, groupId: String): TypingIndicator

 @aws_subscribe(mutations: ["UpdateTypingIndicator"])

}

Eindhoven University of Technology

60

Eindhoven University of Technology

61

Appendix B. Sample SAM Template
The Serverless Application Model (SAM) is used to create and deploy the messaging platform on AWS. The

SAM template is written in YAML and is ~2500 lines containing resource configurations and external references

to the source code. The template contains input configurations, 8 DynamoDB references, 3 IAM roles, 32 Lambda

permissions, Messaging REST API with 23 endpoints, Webhook REST API with 4 endpoints, WebSocket API

with 3 routes, 35 Lambda functions, GraphQL API with GraphQL schema, 19 data sources and 21 resolvers, and

stages and deployment configurations. This section contains a snippet of the SAM template depicting one config-

uration per resource.

AWSTemplateFormatVersion: '2010-09-09'

Transform: AWS::Serverless-2016-10-31

Description: Messaging Stack - API GW, Lambda, AppSync Resources

Globals:

 Function:

 Runtime: nodejs12.x

 Timeout: 5

 Handler: index.handler

 Layers:

 - !Ref MessagingLambdaLayerDep

 Environment:

 Variables:

 REGION : !Ref Region

Parameters:

 Env:

 Type: String

 Default: dev

 AllowedValues:

 - dev

 - test

 - prod

 Description: Environment for deployment, test, dev or prod. Default is dev.

 Region:

 Type: String

 Default: us-east-2

 AllowedValues:

 - us-east-2

 Description: Region for AWS Resources deployment

 MessagesTable:

 Type: String

 Default: MSG_BE_Messages-Dev

 AllowedValues:

 - MSG_BE_Messages-Dev

 - MSG_BE_Messages

 Description: Messages DynamoDB tables based on env.

 WSConnectionsTable:

 Type: String

 Default: MSG_BE_WSConnections-Dev

 AllowedValues:

 - MSG_BE_WSConnections-Dev

 - MSG_BE_WSConnections

 Description: Web Socket Connections DynamoDB tables based on env.

 GraphQLKey:

 Type: String

 Description: GraphQL Api Key based on env.

Resources:

 MessagingAppSyncRole:

 Type: "AWS::IAM::Role"

Eindhoven University of Technology

62

 Properties:

 Description: Role to provide AppSync access to DynamoDB

 Path: "/"

 RoleName: !Sub 'Messaging-AppSync-Role-${Env}'

 ManagedPolicyArns:

 - "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess"

 - "arn:aws:iam::aws:policy/AWSLambdaInvocation-DynamoDB"

 AssumeRolePolicyDocument:

 Version: "2012-10-17"

 Statement:

 -

 Effect: "Allow"

 Action:

 - "sts:AssumeRole"

 Principal:

 Service:

 - "appsync.amazonaws.com"

 GetMessagesLambdaPermission:

 Type: "AWS::Lambda::Permission"

 Properties:

 Action: "lambda:InvokeFunction"

 Principal: "apigateway.amazonaws.com"

 FunctionName: !Ref GetMessagesLambda

 SendMessageLambdaPermission:

 Type: "AWS::Lambda::Permission"

 Properties:

 Action: "lambda:InvokeFunction"

 Principal: "apigateway.amazonaws.com"

 FunctionName: !Ref SendMessageLambda

 MessagingRestApi:

 Type: AWS::Serverless::Api

 Properties:

 EndpointConfiguration: REGIONAL

 StageName: !Ref Env

 Name: !Sub 'Messaging-${Env}'

 OpenApiVersion: 3.0.1

 Cors:

 AllowMethods: "'POST, GET, PATCH, DELETE'"

 AllowHeaders: "'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Secu-

rity-Token'"

 AllowOrigin: "'*'"

 DefinitionBody:

 swagger: 2.0

 basePath: /prod

 info:

 title: Messaging-Swagger

 schemes:

 - https

 paths:

 /GetMessages:

 get:

 produces:

 - application/json

 responses:

 '200':

 description: 200 response

 schema:

 $ref: "#/definitions/Empty"

 headers:

 Access-Control-Allow-Origin:

 type: string

 x-amazon-apigateway-integration:

 responses:

 default:

Eindhoven University of Technology

63

 statusCode: "200"

 responseParameters:

 method.response.header.Access-Control-Allow-Origin: "'*'"

 responseTemplates:

 application/json: ""

 uri:

 Fn::Sub: "arn:aws:apigateway:${Region}:lambda:path/2015-03-

31/functions/${GetMessagesLambda.Arn}/invocations"

 passthroughBehavior: when_no_templates

 httpMethod: POST

 type: aws

 requestTemplates:

 application/json: "{\n\

 \ \"body\" : $input.json('$'),\n\n\

 \ \"headers\": {\n\

 \ \"Messaging-Token\": \"$util.escapeJavaScript($in-

put.params().header.get('Messaging-Token'))\"\n\

 \ }\n\

 \ }"

 definitions:

 Empty:

 type: object

 title: Empty Schema

 MessagingWebHookApi:

 Type: AWS::Serverless::Api

 Properties:

 EndpointConfiguration: REGIONAL

 StageName: !Ref Env

 Name: !Sub 'MessagingWebHook-${Env}'

 OpenApiVersion: 3.0.1

 Cors:

 AllowMethods: "'POST, GET, PATCH, DELETE'"

 AllowHeaders: "'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Secu-

rity-Token'"

 AllowOrigin: "'*'"

 DefinitionBody:

 swagger: 2.0

 basePath: /prod

 info:

 title: WebHook-Swagger

 schemes:

 - https

 paths:

 /RegisterWebHook:

 post:

 produces:

 - application/json

 responses:

 '200':

 description: 200 response

 schema:

 $ref: "#/definitions/Empty"

 headers:

 Access-Control-Allow-Origin:

 type: string

 x-amazon-apigateway-integration:

 responses:

 default:

 statusCode: "200"

 responseParameters:

 method.response.header.Access-Control-Allow-Origin: "'*'"

 responseTemplates:

 application/json: ""

 uri:

Eindhoven University of Technology

64

 Fn::Sub: "arn:aws:apigateway:${Region}:lambda:path/2015-03-

31/functions/${RegisterWebHookLambda.Arn}/invocations"

 passthroughBehavior: when_no_templates

 httpMethod: POST

 type: aws

 requestTemplates:

 application/json: "{\n\

 \ \"body\" : $input.json('$'),\n\n\

 \ \"headers\": {\n\

 \ \"Messaging-Token\": \"$util.escapeJavaScript($in-

put.params().header.get('Messaging-Token'))\"\n\

 \ }\n\

 \ }"

 GetMessagesLambda:

 Type: AWS::Serverless::Function

 Properties:

 Description: Messaging - Function to retrive all group messages

 FunctionName: !Sub 'GetMessages-${Env}'

 CodeUri: lambdas/GetMessages/

 Role: !GetAtt [MessagingLambdaRole, Arn]

 Environment:

 Variables:

 MESSAGE_DB : !Ref MessagesTable

 SendMessageLambda:

 Type: AWS::Serverless::Function

 Properties:

 Description: Messaging - Function to send a group message

 FunctionName: !Sub 'SendMessage-${Env}'

 CodeUri: lambdas/SendMessage/

 Role: !GetAtt [MessagingLambdaRole, Arn]

 Environment:

 Variables:

 NOTIFICATION_DB: !Ref NotificationsTable

 GRAPHQL_URL: !GetAtt [MessagingGraphqlApi, GraphQLUrl]

 GRAPHQL_KEY: !Ref GraphQLKey

 RegisterWebHookLambda:

 Type: AWS::Serverless::Function

 Properties:

 Description: Messaging - Function to register a new web hook

 FunctionName: !Sub 'RegisterWebHook-${Env}'

 CodeUri: lambdas/RegisterWebHook/

 Role: !GetAtt [MessagingLambdaRole, Arn]

 Environment:

 Variables:

 WEBHOOK_DB : !Ref WebHooksTable

 MessagingLambdaLayerDep:

 Type: AWS::Serverless::LayerVersion

 Properties:

 LayerName: messaging-dependencies

 Description: Auth dependencies and helper functions for messaging

 ContentUri: dependencies/

 RetentionPolicy: Retain

 # RetentionPolicy: Delete

 MessagingGraphqlApi:

 Type: AWS::AppSync::GraphQLApi

 Properties:

 AuthenticationType: API_KEY

 Name: !Sub 'Messaging-${Env}'

 MessagingGraphqlSchema:

 Type: AWS::AppSync::GraphQLSchema

 Properties:

Eindhoven University of Technology

65

 ApiId: !GetAtt [MessagingGraphqlApi, ApiId]

 DefinitionS3Location: graphql/schema.graphql

 MessagingDSAddIdentityToGroup:

 Type: AWS::AppSync::DataSource

 Properties:

 ApiId: !GetAtt [MessagingGraphqlApi, ApiId]

 LambdaConfig:

 LambdaFunctionArn: !GetAtt [AddIdentityToGroupLambda, Arn]

 Name: AddIdentityToGroupSource

 ServiceRoleArn: !GetAtt [MessagingAppSyncRole, Arn]

 Type: AWS_LAMBDA

 MessagingDSMessagesTable:

 Type: AWS::AppSync::DataSource

 Properties:

 ApiId: !GetAtt [MessagingGraphqlApi, ApiId]

 DynamoDBConfig:

 AwsRegion: !Ref Region

 DeltaSyncConfig:

 BaseTableTTL: 43200

 DeltaSyncTableName: !Ref DeltaMessagesTable

 DeltaSyncTableTTL: 1440

 TableName: !Ref MessagesTable

 # UseCallerCredentials: Boolean

 Versioned: TRUE

 Name: MessagesTableSource

 ServiceRoleArn: !GetAtt [MessagingAppSyncRole, Arn]

 Type: AMAZON_DYNAMODB

 MessagingRslAddIdentityToGroup:

 Type: AWS::AppSync::Resolver

 Properties:

 ApiId: !GetAtt [MessagingGraphqlApi, ApiId]

 DataSourceName: !GetAtt [MessagingDSAddIdentityToGroup, Name]

 FieldName: AddIdentityToGroup

 RequestMappingTemplate: '{"version": "2017-02-28", "operation": "Invoke",

"payload": {"Source": $utils.toJson("AWSAppSync"), "body": {"appId":

$utils.toJson($ctx.args.appId), "groupId": $utils.toJson($ctx.args.groupId), "iden-

tity": $utils.toJson($ctx.args.identity)}, "headers": {"Messaging-Token": ""} }}'

 ResponseMappingTemplate: $util.toJson($ctx.result)

 TypeName: Mutation

 MessagingRslGetMessages:

 Type: AWS::AppSync::Resolver

 Properties:

 ApiId: !GetAtt [MessagingGraphqlApi, ApiId]

 DataSourceName: !GetAtt [MessagingDSMessagesTable, Name]

 FieldName: GetMessages

 RequestMappingTemplateS3Location: graphql/GetMessagesReqResolver

 ResponseMappingTemplate: $util.toJson($ctx.result.items)

 TypeName: Query

 MessagingRslSendMessage:

 Type: AWS::AppSync::Resolver

 Properties:

 ApiId: !GetAtt [MessagingGraphqlApi, ApiId]

 DataSourceName: !GetAtt [MessagingDSMessagesTable, Name]

 FieldName: SendMessage

 RequestMappingTemplateS3Location: graphql/SendMessageReqResolver

 ResponseMappingTemplate: $util.toJson($ctx.result)

 TypeName: Mutation

 SyncConfig:

 ConflictDetection: VERSION

 ConflictHandler: OPTIMISTIC_CONCURRENCY

Outputs:

 RESTApi:

Eindhoven University of Technology

66

 Description: REST URL for Messaging APIs

 Value: !Sub "https://${MessagingRestApi}.execute-api.${Region}.amazo-

naws.com/${Env}"

 WebHooksApi:

 Description: REST URL for Web Hooks APIs

 Value: !Sub "https://${MessagingWebHookApi}.execute-api.${Region}.amazo-

naws.com/${Env}"

 GraphQLApi:

 Description: GraphQL URL for Messaging APIs

 Value: !GetAtt [MessagingGraphqlApi, GraphQLUrl]

Eindhoven University of Technology

67

Appendix C. Service Connect Screenshots

Service Connect is a web application developed for pilot sites in order to demonstrate digitization of remote com-

munication capabilities. The application is launched by scanning a device QR code or when an invitation link is

opened. This application uses the messaging platform for text and multimedia communication. A few screenshots

of the application running in a mobile browser are shown below.

Scan device QR code

(launches the application)
Retrieve previous cases and

conversation history

Create a new service case. SMS or Email

notification is sent to associated members

Conversation with chabot Text and Multimedia Messaging Access to relevant documents

Request for

direct call
Request for video

conferencing

Eindhoven University of Technology

69

Eindhoven University of Technology

70

About the Author

Priyanka Patel received her bachelor’s degree in Electrical and Electronics

Engineering in 2014 from R.V. College of Engineering, India. Her thesis was

in the networking research domain in collaboration with Cisco Systems. After

graduation, she worked at Cisco Systems as a full-stack software engineer and

a backend engineer between 2014 and 2018. She was part of the Software

Technology PDEng program, 2018-2020, at Eindhoven University of Tech-

nology. During her graduation project she worked at Philips Research.

PDEng SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	TUe_PDEng_ST_Transformation_Front_Cover.pdf
	Report_PP_Draft2.pdf
	TUe_PDEng_ST_Back_Cover.pdf

