
 

Digital Twin

Citation for published version (APA):
Batlkhagva, E. (2020). Digital Twin: Virtual Hardware Simulator for a Transmission electron microscope.
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b8ab2b63-0cb0-43ec-bb1f-be7f643f71d2


PDEng SOFTWARE TECHNOLOGY 

PDEng  THESIS REPORT

Digital Twin - Virtual Hardware Simulator for a 
Transmission Electron Microscope

Enkhdavaa Batlkhagva
October 2020
Department of Mathematics & Computer Science



 

 

 

 



Digital Twin - Virtual Hardware Simulator for a Transmission 

Electron Microscope 

Enkhdavaa Batlkhagva 

October 2020 

Eindhoven University of Technology 

Stan Ackermans Institute – Software Technology 

PDEng Report: 2020/065 

Confidentiality Status: 

Confidential till January 2021. 

Partners 

Thermo Fisher Scientific Eindhoven University of Technology 

Steering 

Group 

Arjen Klomp  

Pepijn Kramer 

Edwin Verschueren 

Ion Barosan 

Date October 2020 



 

 

 



 

 

Composition of the Thesis Evaluation Committee: 

 

 

Chair:  Harold Weffers 

 

Members: Pepijn Kramer 

 

Ion Barosan 

 

Adriana Hazelua 

 

Huub van de Wetering 

 

 

 

 

 

 

 

 

 

 

 

 

The design that is described in this report has been carried out in accordance 

with the rules of the TU/e Code of Scientific Conduct. 
 

 

 

 

  



 

 

 

 

Contact  

Address 

Eindhoven University of Technology 

Department of Mathematics and Computer Science 

MF 5.080B, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands 

+31 402472759 

 

Partnership This project was supported by Eindhoven University of Technology and Thermo Fisher 

Scientific. 

  

Published by Eindhoven University of Technology 

Stan Ackermans Institute 

 

PDEng-report 2020/065 
 

  

Preferred  

reference 

Digital Twin - Virtual Hardware Simulator for a Transmission Electron Microscope. 

Eindhoven University of Technology, PDEng Report,  2020/065, October 2020 

  

Abstract Tests are carried out on the physical hardware to verify the product design. Due to a limited 

budget and time, the limited number of test systems of a product will be manufactured. As 

a result, the test systems limit the speed of the testing phase. Test systems are expensive 

due to manufacturing time and costs. Moreover, producing these systems (prototypes) 

takes a long time, which makes the testing and redesigning feedback loops slow. This 

report describes the design and implementation of the virtual hardware simulator that was 

introduced to eliminate the hardware dependency in the design verification tests. The 

virtual hardware simulator provides real-time motion visualization and sensor simulation. 

  

Keywords PDEng, TU Eindhoven, Virtual Hardware, Simulation, Virtual Prototype, Digital Twin 

 

Disclaimer 

Endorsement 

Reference herein to any specific commercial products, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the Eindhoven University of Technology or 

Thermo Fisher Scientific. The views and opinions of authors expressed herein do not 

necessarily state or reflect those of the Eindhoven University of Technology or Thermo 

Fisher Scientific, and shall not be used for advertising or product endorsement purposes.  

 

Disclaimer  

Liability 

While every effort will be made to ensure that the information contained within this report 

is accurate and up to date, Eindhoven University of Technology makes no warranty, 

representation or undertaking whether expressed or implied, nor does it assume any legal 

liability, whether direct or indirect, or responsibility for the accuracy, completeness, or 

usefulness of any information. 

 

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of 

their respective owners. We use these names without any particular endorsement or with 

the intent to infringe the copyright of the respective owners. 

 

Copyright Copyright © 2020. Eindhoven University of Technology. All rights reserved. 

 No part of the material protected by this copyright notice may be reproduced, modified, or 

redistributed in any form or by any means, electronic or mechanical, including 

photocopying, recording, or by any information storage or retrieval system, without the 

prior written permission of the Eindhoven University of Technology and Thermo Fisher 

Scientific. 

 

 

 

 

 

 

 

 



i 
 

Foreword 
At Thermo Fisher Scientific we are proud to develop leading edge electron microscopes consisting of many 

complex electro-mechanical and software components. The design process usually involves building hardware 

(+electronic) prototypes on which the microscope control software is further developed. Creating the first 

prototypes is usually a process with long lead times, and when some redesign is needed this lead time quickly 

grow. For development and testing of software, various strategies have been developed over the years: from 

hardware test benches, software simulators and simulation code in production code. 

We started hearing about a new trend in the industry to create digital twins as virtual copies of the real hardware 

in which actuators, sensors and kinematic relations are fully simulated in a 3D environment. Since digital twins 

are new for Thermo Fisher we didn’t know how to make them, where they would be most useful, what kind of 

process would be needed to create them and what the costs and benefits would be. For his PDEng project we asked 

Enkhdavaa to investigate these very open ended questions for us and to come up with a working prototype and 

recommendations on how to work with digital twins.  

 

Enkhdavaa has enthusiastically, open-minded and pro-actively (including contact with Unit040, the supplier of 

Prespective, that we used as the technology of choice for this project) been working on finding the answers to 

those questions and it has been a joy working with him throughout the project.  He created a software architecture, 

software design and working prototype that answered the questions of how to and where to integrate a digital twin 

in our software stack. What I personally really liked is that the digital twin connects at the same level as real 

hardware so that there is no need in the rest of the software stack to add specialized simulation control paths. 

Enkhdavaa convincingly showed that digital twins have a role in the design phase of the hardware and 

mechatronics of a new microscope component. By taking 3D CAD data and turning it into interactive models. 

Allowing us to test and develop software even before the first physical prototype became available. He also 

uncovered there will be a need for specialized roles in the organization to develop and maintain the digital twins.  

 

All in all it has been a pleasure working with Enkhdavaa and I wish him all the best in his career. 

 

PROJECT MENTOR : Pepijn Kramer Msc. 

Date: September 10th, 2020





iii 
 

 

Preface 
The project was carried out for Thermo Fisher Scientific, a company, which aims to enable its customers to make 

the world healthier, cleaner, and safer. The company designs and develops various types of microscopes, and one 

of them is Transmission Electron Microscopes (TEM). 

 

This project was conducted by Enkhdavaa Batlkhagva from the Stan Ackerman’s Institute, Professional Doctorate 

in Engineering (PDEng) Software Technology program of the Eindhoven University of Technology. This project 

is the ten-month final assignment for the two-year PDEng program, known by its Dutch name as Ontwerpers 

Opleiding Technische Informatica (OOTI).  

 

This report is intended for people who have a technical background in motion engineering, digital twinning, and 

three-dimensional (3D) modeling. However, no specialized knowledge of these disciplines is needed. 

 

Readers who are interested in non-technical parts of the report should read chapters 1-6. Those who are interested 

in technical details should read chapters 7-10. Finally, the result of the project is presented in Chapter 11. 

 

Enkhdavaa Batlkhagva 

October 2020 

 





v 
 

Acknowledgments 
 

This thesis would not have been a success without inspirational and motivational people who have provided 

continuous support and valuable feedback. Thanks to them for being a part of this journey and assisting me to 

grow professionally and personally. 

 

Firstly, I am deeply grateful to the people from Thermo Fisher Scientific. I am especially thankful to Pepijn 

Kramer, Edwin Verschueren, and Iryna Stepaniak, who have given me practical advice and guided me throughout 

this project. Without your tremendous support and guidance, I would never have reached this level of the project. 

You taught me a ton of things, and I have learned a lot from you. I also would like to thank all Thermo Fisher 

Scientific engineers who have supported and collaborated with me. I would like to acknowledge the help provided 

by Arjen Klomp, who has helped me to integrate with the company and to obtain the necessary software products 

for the project. Mike Musterd, Ferry Hoogedoorn, and the Manage Sample group have been the source of the 

domain knowledge. Bhupal Reddy Bommineni has helped me to obtain necessary files from the mechanical team. 

I also send my regards to the SETI and IT teams. 

 

I would especially like to express my gratitude to Ion Barosan, who has been my supervisor at the university. He 

has given me plenty of valuable advice enthusiastically. His advice and suggestions helped me to determine the 

next steps when I was blocked during the project. He also has given me support in writing the project report. 

 

My acknowledgment goes to everybody who has been involved in the PDEng program. I would like to thank 

Yanja Dajsuren and Desiree van de Oorschot for managing the PDEng program and giving me the opportunities 

to have valuable workshops and lectures. 

 

Finally, I would like to thank my parents and my sisters for always giving me inspirational advice. I also would 

like to appreciate Ganduulga Gankhuyag and Giovanni de Almeida Calheiros for their support during difficult 

times. 

  

 

Enkhdavaa Batlkhagva 

October 2020 

 





vii 
 

Executive Summary 
 

This document summarizes the “Virtual Hardware Simulator for a Transmission Electron Microscope” project. It 

addresses the challenges of creating a simulator that is able to simulate real-time hardware behavior, visualize it, 

and perform real-time sensor simulation using models from various disciplines. The primary purpose of the 

simulator is to perform tests without relying on hardware. 

 

Thermo Fisher Scientific continually improves the functionality of the TEM with new features. During the 

development of these new features, design verification tests must take place as soon as possible to detect design 

flaws. Early error detection can save additional costs, such as manufacturing time and effort, and can accelerate 

product delivery time. 

 

Designing and developing these features is not straightforward because of the complex management and 

involvement of a multidisciplinary team. Especially during the verification phase, the involvement of the 

multidisciplinary team is mandatory. Therefore, the project was conducted to explore how the concept of digital 

twinning can facilitate the design verification phase and speed up the product development lifecycle. 

 

The first conclusion is that the concept of digital twinning can be the most beneficial to bring the multidisciplinary 

team together to verify their design during product development. Currently, the verification is dependent on 

physical hardware (test systems) that takes around two months to be manufactured and assembled. Design 

incompatibilities and flaws are usually found while design verification tests take place on physical hardware. To 

speed up the verification process, we introduced a virtual hardware simulator that is a virtual prototype of the 

product. 

   
 

The simulation can be created from various design models before hardware is manufactured. Also, the simulation 

visualizes the real-time motion behavior of hardware using three-dimensional (3D) models in a 3D environment. 



 

viii 
 

In that environment, virtual sensors are placed to simulate 3D movements, which allows us to verify the design 

and possibly detect design flaws. 

 

The second conclusion is that the concept of the digital twin is beneficial for product maintenance by visualizing 

the sensor data of the real system. From the visualization, engineers are able to inspect the real-time motion 

behavior of physical hardware to diagnose problems. 

 

 
 

In this project, we designed and implemented a virtual hardware simulator. It brings a multidisciplinary team 

together in the early phase of TEM development. Failures in the design, such as collisions, can be detected. Also, 

the software execution on the hardware can be monitored in real time. Moreover, the simulator can draw sensor 

data from a real microscope to visualize the hardware behavior in a 3D environment. From the virtual 

environment, the service team can inspect problems when maintenance is required. As a result, problem diagnosis 

is faster when TEM misbehaves. 



ix 
 

Table of Contents 
 

Foreword ................................................................................................................................................. i 

Preface ................................................................................................................................................... iii 

Acknowledgments ................................................................................................................................. v 

Executive Summary ............................................................................................................................ vii 

Table of Contents ................................................................................................................................. ix 

List of Figures ..................................................................................................................................... xiii 

List of Tables ....................................................................................................................................... xv 

1. Introduction ................................................................................................................................... 1 

1.1 Context ...................................................................................................................................... 1 

1.2 Goal .......................................................................................................................................... 1 

1.3 Methodology ............................................................................................................................. 1 

1.4 Outline ...................................................................................................................................... 2 

2. Domain Analysis ............................................................................................................................ 3 

2.1 Transmission Electron Microscope .......................................................................................... 3 

2.2 Microscope Development ......................................................................................................... 4 
2.2.1. Design phase .......................................................................................................................... 5 
2.2.2. Implementation phase ............................................................................................................ 9 
2.2.3. Design verification phase ...................................................................................................... 9 

2.3 Conclusion ................................................................................................................................ 9 

3. Problem Analysis ......................................................................................................................... 11 

3.1 Problem statement .................................................................................................................. 11 
3.1.1. Challenges in firmware development .................................................................................. 11 
3.1.2. Software development dependencies ................................................................................... 11 
3.1.3. Limited hardware resources ................................................................................................. 11 

3.2 Solution ................................................................................................................................... 11 

3.3 Conclusion .............................................................................................................................. 12 

4. Technology Exploration .............................................................................................................. 13 

4.1 Commercial software products ............................................................................................... 13 

4.2 Criteria for selecting software products ................................................................................. 13 
4.2.1. PRESPECTIVE ................................................................................................................... 14 
4.2.2. Visual Components .............................................................................................................. 15 
4.2.3. Solidworks ........................................................................................................................... 15 
4.2.4. Siemens NX ......................................................................................................................... 16 

4.3 Selecting a simulation software product ................................................................................ 16 



 

x 
 

4.4 Conclusion .............................................................................................................................. 17 

5. Stakeholder Analysis ................................................................................................................... 19 

5.1 Thermo Fisher Scientific ........................................................................................................ 19 

5.2 TU/e ........................................................................................................................................ 20 

5.3 Conclusion .............................................................................................................................. 20 

6. Analysis – Requirements, System Context, and Use Cases ...................................................... 21 

6.1 Introduction ............................................................................................................................ 21 

6.2 System requirements ............................................................................................................... 21 
6.2.1. REQ1.1-Provide real-time sensor simulation ...................................................................... 21 
6.2.2. REQ1.2-Provide a visual representation for real-time hardware motion............................. 22 

6.3 User requirements .................................................................................................................. 22 

6.4 Non- functional requirements ................................................................................................. 23 
6.4.1. Compatibility ....................................................................................................................... 23 
6.4.2. Extensibility ......................................................................................................................... 23 
6.4.3. Availability .......................................................................................................................... 23 

6.5 System Context ....................................................................................................................... 23 
6.5.1. System context ..................................................................................................................... 23 
6.5.2. Information Flow ................................................................................................................. 24 

6.6 Use cases ................................................................................................................................ 27 

6.7 Conclusion .............................................................................................................................. 28 

7. System Design .............................................................................................................................. 29 

7.1 Introduction ............................................................................................................................ 29 

7.2 Step 1 ...................................................................................................................................... 29 
7.2.1. Creating virtual hardware .................................................................................................... 29 

7.3 Step 2 ...................................................................................................................................... 29 
7.3.1. Design Choice 1 ................................................................................................................... 29 
7.3.2. Design Choice 2 ................................................................................................................... 30 
7.3.3. Design Decision ................................................................................................................... 32 

7.4 Conclusion .............................................................................................................................. 32 

8. System Architecture .................................................................................................................... 33 

8.1 Architecture design ................................................................................................................. 33 

8.2 Unity game engine .................................................................................................................. 33 
8.2.1. Visualizing motion behavior ................................................................................................ 34 
8.2.2. Sensor simulation................................................................................................................. 34 

8.3 StagePlugin ............................................................................................................................ 34 

8.4 StageAdapter .......................................................................................................................... 34 
8.4.1. Configuration File ................................................................................................................ 34 
8.4.2. Communication Technology................................................................................................ 34 

8.5 Conclusion .............................................................................................................................. 35 

9. Implementation ............................................................................................................................ 37 



xi 
 

9.1 Development environment ...................................................................................................... 37 

9.2 Simulation on Unity game engine ........................................................................................... 37 

9.3 StagePlugin ............................................................................................................................ 39 

9.4 StageAdapter .......................................................................................................................... 39 
9.4.1. Configuration file................................................................................................................. 40 

9.5 System behavior ...................................................................................................................... 40 

9.6 Conclusion .............................................................................................................................. 41 

10. Verification ............................................................................................................................... 43 

10.1 Preparing a test environment ............................................................................................. 43 

10.2 Verification ......................................................................................................................... 43 
10.2.1. Use case: Visualize the hardware motion .......................................................................... 43 
10.2.2. Use case: Testing desired behavior .................................................................................... 44 
10.2.3. Use case: Testing desired behavior (fault scenario) .......................................................... 45 
10.2.4. Visualizing the physical hardware behavior ...................................................................... 46 

10.3 Conclusion .......................................................................................................................... 46 

11. Conclusions & Recommendations .......................................................................................... 47 

11.1 Summary ............................................................................................................................. 47 

11.2 Recommendations ............................................................................................................... 48 
11.2.1. Short-term .......................................................................................................................... 48 
11.2.2. Long-term .......................................................................................................................... 48 

12. Project Management ................................................................................................................ 49 

12.1 Introduction ........................................................................................................................ 49 

12.2 Project Planning and Scheduling ....................................................................................... 49 

12.3 Project execution ................................................................................................................ 49 

12.4 Risk analysis ....................................................................................................................... 49 

12.5 Challenges .......................................................................................................................... 50 

13. Project Retrospective ............................................................................................................... 51 

13.1 Reflection ............................................................................................................................ 51 

Glossary ............................................................................................................................................... 53 

Bibliography ........................................................................................................................................ 55 

About the Authors ............................................................................................................................... 57 





xiii 
 

List of Figures 
 

Figure 1: Transmission Electron Microscope ......................................................................................................... 3 
Figure 2: The internal software structure of the TEM server.................................................................................. 4 
Figure 3: V-Model .................................................................................................................................................. 5 
Figure 4: TEM design levels................................................................................................................................... 5 
Figure 5: TEM software and its interfaces .............................................................................................................. 6 
Figure 6: Motion controller .................................................................................................................................... 6 
Figure 7: A mathematical model that was created for an actuator .......................................................................... 7 
Figure 8: Motion graph of an actuator .................................................................................................................... 7 
Figure 9: Diagram showing that the same firmware runs on both model and hardware......................................... 8 
Figure 10. Modeled mechanical design that is imported in Unity game engine ..................................................... 9 
Figure 11: System requirements ........................................................................................................................... 21 
Figure 12: System context diagram ...................................................................................................................... 24 
Figure 13: CAD models ........................................................................................................................................ 25 
Figure 14: Actuator signal data ............................................................................................................................. 25 
Figure 15. Sensor signal data ................................................................................................................................ 25 
Figure 16: User input ............................................................................................................................................ 26 
Figure 17: Sensor command ................................................................................................................................. 26 
Figure 18: A use case diagram for a mechatronics engineer ................................................................................ 27 
Figure 19. A use case diagram for a test engineer ................................................................................................ 28 
Figure 20: Process of importing 3D models into PRESPECTIVE environment .................................................. 29 
Figure 21: Simulation diagram when using IMdlMotion ...................................................................................... 30 
Figure 22: Simulation diagram when using IHalMotion ...................................................................................... 30 
Figure 23. Motion controller modes ..................................................................................................................... 31 
Figure 24: An example diagram for ball-valve component .................................................................................. 31 
Figure 25: Visualizing physical hardware in a virtual environment ..................................................................... 32 
Figure 26: Virtual Hardware Simulator (VHS) .................................................................................................... 33 
Figure 27: StartScene ............................................................................................................................................ 37 
Figure 28: Simulation scene for the ball valve component ................................................................................... 38 
Figure 29: Class diagram for visualizing motion behavior and simulating sensors .............................................. 38 
Figure 30: Class diagram of StagePlugin ............................................................................................................. 39 
Figure 31: Class diagram of StageAdapter ........................................................................................................... 40 
Figure 32: The short version of the configuration file .......................................................................................... 40 
Figure 33. Sequence diagram for the VHS and external systems ......................................................................... 41 
Figure 34. Sequence diagram for simulating the ball-valve component ............................................................... 44 
Figure 35: Real-time sensor simulation for the ball-valve component ................................................................. 45 
Figure 36: The result after collision ...................................................................................................................... 45 
Figure 37. Sequence diagram for visualizing the physical hardware on the VHS ................................................ 46 
Figure 38. Development dependency for the creation of the virtual hardware simulator ..................................... 47 
Figure 39: Project plan ......................................................................................................................................... 49 
 

 

 





xv 
 

List of Tables 
 

Table 1: Commercial software products ............................................................................................................... 13 
Table 2: Criteria for selecting a commercial software product ............................................................................. 13 
Table 3: PRESPECTIVE investigation ................................................................................................................. 14 
Table 4: Visual Components investigation ........................................................................................................... 15 
Table 5: Solidworks investigation ........................................................................................................................ 15 
Table 6: Siemens NX investigation ...................................................................................................................... 16 
Table 7: Company stakeholder 1 .......................................................................................................................... 19 
Table 8: Company stakeholder 2 .......................................................................................................................... 19 
Table 9: Company stakeholder 3 .......................................................................................................................... 19 
Table 10: Company stakeholder 4 ........................................................................................................................ 20 
Table 11: Company  stakeholder 5 ....................................................................................................................... 20 
Table 12: TU/e stakeholder 1 ............................................................................................................................... 20 
Table 13: TU/e stakeholder 2 ............................................................................................................................... 20 
Table 14: Functional requirements to perform real-time sensor simulation ......................................................... 21 
Table 15: Functional requirements to visualize real-time motion behavior .......................................................... 22 
Table 16: User requirements ................................................................................................................................. 22 
Table 17: Risk analysis ......................................................................................................................................... 50 
 

 

 





Eindhoven University of Technology 
 

1 
 

1. Introduction 
 

This chapter firstly introduces the project context and project goals. The following are the methodologies that are 

used during the project lifetime and the outline section that gives an overview structure of this report. 

1.1    Context 
Thermo Fisher Scientific (formerly known as FEI) is a world-leading company that aims to enable its customers 

to make the world healthier, cleaner, and safer. The company designs and develops different types of TEM that 

take ultra-high-resolution images at the nanometer level. 

 

Various customers use TEM for their daily work. Based on their feedback, new features are added to the TEM. 

To deliver these new features, engineers at the research and development department of Thermo Fisher Scientific 

continuously develop, test, and release new features to improve the functionality of the microscopes. 

 

Introducing a new feature to TEM is not straightforward because the hardware consists of mechanical, optical, 

and electronic parts, which are controlled by real-time and operational software algorithms. Moreover, the needing 

for a multidisciplinary team contribution is essential for the design, development, and test of the new features. 

The new features must be implemented within a time-constrained project planning with proven reliability. At the 

same time, engineers must find bugs and flaws as fast as possible to speed up the product development lifecycle. 

 

To detect the faults from the design of the new feature, tests must be conducted intensively. These tests ensure 

that the functionality of the microscope performs correctly. After successful tests, the new feature is integrated 

with the existing microscope system. Notably, the integration process is also challenging because most of the bugs 

and flaws are usually found during this process. 

 

Nowadays, the involvement of physical hardware is crucial for design verification because software and firmware 

need to be integrated with it. Unfortunately, preparing the hardware is not an easy task. Hardware needs to be 

manufactured, assembled, and prepared for the testing. This lengthy process takes a couple of months and human 

and machine effort. 

 

Since hardware is the central part of the design verification, several pieces of hardware are prepared. As a result, 

the number of tests is limited by the number of available hardware. Sometimes, the hardware is not functioning 

at optimal performance. It also can be a case that the hardware is occupied, not allowing other engineers to perform 

tests because multiple disciplines need to validate their design and put a claim on available machine time. The 

time for the tests is limited. Therefore, the availability of the hardware is essential to finish carrying out the tests 

within a dedicated timeframe. 

 

This project aims to eliminate the hardware dependency in testing by creating virtual hardware. More specifically, 

we focused on the part of TEM hardware that manipulates a specimen. This part is called the stage, and we 

intended to create a virtual version of it. 

1.2    Goal 
The concept of digital twinning is thriving these days [5][6][7][9][16]. The goal of this project was to explore the 

concept of digital twinning and use the concept to accelerate product development. By definition, a digital twin is 

a dynamic model that represents a physical twin throughout its entire lifecycle. Any data that can be obtained from 

a physical twin can be obtained from the digital twin. 

 

However, we used the concept partially. We only implemented the digital twin without the involvement of the 

physical twin because all of the identified problems in this project context occur before the physical system exists. 

In that case, the digital twin act as a digital prototype to mitigate technical risks and uncover issues in upfront 

engineering. And we aimed to create a digital prototype that is a virtual hardware simulator (VHS). 

1.3    Methodology 
The Unified Modelling Language (UML) from the Object Management Group (OMG) is used to analyze domain 

knowledge, use cases, and software architecture. Additionally, a Model-Based System Engineering (MBSE) 



 

2 
 

methodology was considerably helpful in analyzing interactions and defining information flows between external 

systems and the VHS. 

1.4    Outline 
The next chapter, Chapter 2, describes the domain analysis. It is followed by Chapter 3 that explains the problems 

that we wanted to solve and the goals that we wanted to achieve during this project. The commercial tool 

exploration is presented in Chapter 4, while Chapter 5 presents stakeholder analysis. In Chapter 6, system 

requirements, functional and non-functional requirements, and use cases are presented. The following is Chapter 

7 that describes the system design. Chapter 8 presents the system architecture. Chapter 9 focuses on the 

implementation, while Chapter 10 explains the system verification. The following is the conclusion of the project 

with recommendations. The project management process is explained in Chapter 12. The last chapter of this report 

(Chapter 13) describes the retrospective and reflection on the project from the author’s perspective. 

 



Eindhoven University of Technology 
 

3 
 

2. Domain Analysis 
 

In this chapter, first, descriptions of TEM is explained. The description covers a brief internal structure and the 

composition of the microscope. Then it is followed by the TEM development phases, namely design, 

implementation, and verification. 

2.1    Transmission Electron Microscope 
The Transmission Electron Microscope (TEM) fires electrons into a specimen, and then the electrons are projected 

on the Charged Coupled Device (CCD) camera to create an image. The image is a grayscale image that shows the 

result of the specimen magnification. TEM is able to magnify a specimen up to ten million times. Even a single 

atom of the specimen can be inspected. Figure 1 shows the appearance of the TEM on the left side and the internal 

magnification process on the right side. 

 

 

Figure 1: Transmission Electron Microscope 

In a complex system like TEM, with the advancement of hardware and software features, testing is intricate. 

Therefore, TEM is decomposed into microscope components, and each component is designed and developed 

independently. This independent development gives an advantage in testing components individually. 

 

Figure 2 shows the internal structure of the microscope software system. Several components form a single 

module. Several modules structure a subsystem. There are four subsystems inside the TEM, namely, motion, 

(electron) source, acquisition, and vacuum.  

 



Eindhoven University of Technology 
 

4 
 

 

Figure 2: The internal software structure of the TEM server 

The motion subsystem covers all the modules and components that use actuators and motion sensors. As it is 

mentioned in the project context, the microscope stage is a module, and it is a part of the motion subsystem. The 

module, stage, manipulates a specimen to specify the target for magnification. The source subsystem is 

responsible for accelerating the electron beam. As for the vacuum system, it keeps the internal microscope 

environment in a vacuum state. In this state, electron beams travel without any interference. Otherwise, the 

electron beams collide with air atoms, resulting in poor performance. Finally, the acquisition subsystem is 

responsible for capturing and transmitting the magnified image. These four subsystems are integrated to form a 

TEM. 

 

The stage has several components. As shown in Figure 2, the ball-valve, insert-retract, and holder are parts of the 

stage. The ball-valve is responsible for opening or closing the valve through which the holder can be inserted. 

The holder component is responsible for holding a specimen (sample). The insert-retract component is 

responsible for inserting and retracting the holder. 

 

The multidisciplinary team regularly adds new features to TEM because clients require new features. The team 

analyzes requirements from the clients and introduces a new design for additional features to TEM. Each feature 

might consist of one or more microscope components, and the integration between these components needs to be 

seamless. Therefore, the design of each microscope component needs to be tested and verified to ensure seamless 

integration. 

2.2    Microscope Development 
Figure 3 shows the V-model that is used for microscope development at Thermo Fisher Scientific. On the left side 

of Figure 3, the system design is decomposed into module designs. Furthermore, each module design is also 

divided into different component designs. The main output of this phase is to have a complete specification of the 

microscope design. 

 

Once the design phase is complete, the implementation phase starts. In this phase, the operational software, called 

TEM software, and the hardware controller, called motion controller, are being developed. The TEM software is 

responsible for managing hardware behavior by sending requests to the Motion controller. Then, the motion 

controller handles hardware motion using actuators and sensors in real time.  

 

The right side of Figure 3 shows integration tests for components, modules, and systems. During the tests, the 

multidisciplinary team comes together to verify the design. The manufactured hardware from the implementation 

phase plays a significant role in testing activities. The embedded control firmware and TEM software start to run 

on the manufactured hardware to check whether the design conforms to the requirements. 

  



Eindhoven University of Technology 
 

5 
 

   

Figure 3: V-Model 

Design, implementation, and design verification phases, as shown in Figure 3, are sequential phases. One needs 

to finish before another phase starts. These phases repeat to improve the design in each iteration. In other words, 

after the verification phase points out the design defects from the implementation, the design phase starts again to 

make necessary changes for design improvement. 

2.2.1.  Design phase 

As depicted in Figure 4, the TEM design has three hierarchical levels, namely hardware level, control level, and 

operational level. In the hardware level, actuator and sensor, which are responsible for detecting and moving 

microscope components, belong to this level. The next level is the control level. In this level, the motion controller 

plays a major role in carrying out certain tasks, such as opening a valve and inserting a holder. As for the 

operational level, it contains the TEM software and its user application. These two are responsible for integrating 

the system and managing the TEM behavior. 

  

Figure 4: TEM design levels 

The user application provides a user-friendly Graphical User Interface (GUI) to users. From the GUI, TEM 

software receives commands to control the behavior of TEM. The commands are transmitted from the user 

application over Instrument Object Model (IOM) interface, as shown in Figure 4. The motion controller receives 

commands from TEM software using device-specific libraries. One of the libraries is Prodrive, and it provides a 

Prodrive Application Programming Interface (API), which is used to receive stage motion commands from TEM 

software. 

2.2.1.1.  TEM software 

In Figure 5, the structure of the TEM software is depicted. The TEM software is developed in programming 

language C++, and it has three layers, namely BeHaVior (BHV), MoDuLe (MDL), and Hardware Abstraction 

Layer (HAL). The BHV layer exposes the Instrument Object Model Interface (IOM)  that can be used for user 

application development. Moreover, the Component Object Model (COM) technology is used to provide 

compatible interfaces between these layers. For example, the MDL and HAL layers provide two COM interfaces, 

namely IMdlMotion and IHalMotion. 



Eindhoven University of Technology 
 

6 
 

 
  

Figure 5: TEM software and its interfaces 

2.2.1.2.  Motion controller 

The motion controller is a closed-loop system, and it manages the motion behavior of hardware. Through the 

Prodrive API provided by the device-specific library, the motion controller receives a command from TEM 

software to manage the hardware behavior using peripheral devices such as actuators and sensors. To manage 

these devices reliably and accurately, the firmware plays a major role. 

 

     

Figure 6: Motion controller 

2.2.1.2.1.  Device-specific library 

As mentioned in the previous section, the library provides API that gives a client application control over 

hardware. For instance, a client application that uses Prodrive API is able to know the hardware sensor status. 

Moreover, clients can send commands to the firmware to change the hardware behavior. Currently, Prodrive API 

is used by TEM software. 

2.2.1.2.2.  Firmware 

Firmware is a machine-specific and real-time software. The firmware uses the Proportional Integral Derivative 

(PID) control to perform hardware motion accurately with peripheral devices. This PID control has its parameters 

that are strongly dependent on inertia and torques generated by actuators. Therefore, correct tuning of PID 

parameters plays a significant role in performing accurate motion tracking. Incorrect parameters may cause abrupt 

and unexpected motion, resulting in poor performance in sample (specimen) positioning. 

 

To tune the PID parameters, a mathematical modeling approach is used. Mathematical models represent the 

different parts of the system behavior. For example, the stage has three components, namely ball-valve, insert-



Eindhoven University of Technology 
 

7 
 

retract, and holder. Mathematical models represent each of their behavior. To control their behavior, actuators 

play a significant role. 

 

At first, a mathematical model that represents the behaviors of the actuator is created. Secondly, the PID 

parameters are tuned using the model. As an example, Figure 7 shows a mathematical model for Direct Current 

(DC) motor. In the model, Vmotor is an input for voltage supply, and dAngle/dt is an angular velocity. The angular 

velocity implies the speed of the motor rotation. The angle refers to the actual position of the motor. 

 

 

Figure 7: A mathematical model that was created for an actuator 

When the PID parameters are set, firmware supplies the value of the voltage to the input of the mathematical 

model. Then, the output of the model is measured from the model, and this measurement is depicted as a motion 

graph. Figure 8 shows the measured output of the actuator model. The vertical axis represents the output, Angle, 

in degree, and the horizontal axis represents time in seconds. 

 

 

Figure 8: Motion graph of an actuator 

Figure 8 shows that the firmware instructed the actuator smoothly, without any abrupt actions. This graph also 

indicates the PID parameters are configured correctly. Moreover, it is important to note that the firmware that 

instructs the mathematical model is also used in controlling actual hardware, as shown in Figure 9. 

 



Eindhoven University of Technology 
 

8 
 

  

Figure 9: Diagram showing that the same firmware runs on both model and hardware 

 

To summarize, the motion controller is mainly responsible for managing the motion behavior of hardware 

components. The device-specific library provides an API that establishes a connection to the TEM software. The 

library is also can be used by other applications, allowing them to monitors signals of the peripheral devices and 

send data to the firmware. The firmware is the main logic for managing hardware devices such as actuators and 

sensors. In firmware, PID parameters need to be set correctly to control hardware motion reliably and accurately 

using actuators and sensors. 

2.2.1.3.  Mechanical design 

Mechanical design means the design of components and systems of a mechanical nature. For example, designs of 

various machine elements such as shafts, gears, and bearings are a part of the scope of mechanical design.  

 

Computer-Aided Design (CAD) software is used to analyze the design requirements. The mechanical design can 

be changed multiple times, and each design version represented by a three-dimensional (3D) model. 

 

In the 3D model, geometrics, materials, and names of the mechanical parts are defined. Moreover, the hierarchies 

of the mechanical parts are also part of the model. To share this model, the software encapsulates them in an 

assembly file, which is also called a CAD file. There are a few types of the assembly file, and the most used 

assembly file at the company is the Jupiter Tessellation (JT) file. 

 

Figure 10 shows a modeled mechanical design that was imported into a Unity game engine. On the left side of 

Figure 10, part hierarchies represent hierarchies structure of modeled parts. Each modeled part has its name and 

its geometrics. The geometrics and materials are illustrated as 3D models on the right side of Figure 10. 

 



Eindhoven University of Technology 
 

9 
 

 

Figure 10. Modeled mechanical design that is imported in Unity game engine 

2.2.2.  Implementation phase 

The implementation phase begins after the design phase. The implementation phase takes place to bring product 

design into reality. In this phase, complete specifications of hardware are sent to the factory for manufacturing. 

Moreover, firmware and TEM software expand with new implementations. 

 

Currently, the firmware and TEM software developments are dependent on hardware. When the hardware is 

manufactured, the firmware and TEM software developments start. Due to the hardware dependency, the firmware 

and TEM software developments delay until the hardware is manufactured. 

2.2.3.  Design verification phase 

The design verification phase begins after the implementation phase. In this phase, the multidisciplinary team 

comes together to verify the design. The hardware components are being assembled and integrated. On the motion 

controller, the firmware is installed, becoming ready to receive commands from TEM software. 

 

During the verification phase, various tests are carried out to check whether the design conforms to the 

requirements. These tests help detect incompatibilities between hardware and software. Due to the hardware 

dependency in testing, design flaws and incompatibilities are found lately. As a result, product design needs 

modification. From the design phase until the verification phase, much time and effort are needed primarily 

because of hardware manufacturing. 

2.3    Conclusion 
This chapter provides the necessary domain knowledge about TEM development phases. TEM software structure 

and the role of the motion controller are explained in the description of the design phase. The second phase is 

about the implementation. The explanation of this phase gives a brief overview of the manufacturing activities 

and the dependency on the firmware and TEM software development. The firmware development is depending 

on the hardware. The implementation of the TEM software begins when both the firmware and hardware 

development finishes. As a result, the throughput time of the new feature development increases. The last phase 

is the design verification phase. In this phase, hardware and software are integrated to perform design verification 

tests. The next chapter explains the problems in detail. It further presents solutions and project goals. 





Eindhoven University of Technology 
 

11 
 

3. Problem Analysis 
 

This chapter firstly presents a problem statement. Secondly, the chapter describes solutions to these problems. 

The following is the conclusion of this chapter. 

3.1    Problem statement 
Manufacturing hardware is a time-consuming process. The whole manufacturing process takes around two 

months. Once the hardware is manufactured, mechanical engineers firstly take the hardware to verify the 

mechanical design. This verification process takes a couple of iterations. In each iteration, the mechanical design 

needs changes and retakes some time for manufacturing/adaptation. The verification process lasts until the 

mechanical design fulfills its requirements. After these lengthy processes, the hardware finally becomes ready, 

and firmware and software development teams can use the hardware for their development. 

3.1.1.  Challenges in firmware development 

The firmware has its motion control algorithms that accurately manage hardware position and speed. However, 

implementing these algorithms is an error-prone task because multiple parameters need to be tuned manually. 

During this process, some error conditions may be triggered, like collisions between mechanical parts. Without 

hardware, it is hard to know whether collisions take place or not because the detailed interaction between the 

mechanical parts is mentally hard to imagine. As a consequence, these aspects of the motion control algorithms 

are not detected until the tests are conducted on the manufactured hardware. 

3.1.2.  Software development dependencies 

Sending requests to the firmware is one of the responsibilities of the TEM software. For instance, the TEM 

software sends a request to move the stage to a specific coordinate. And the firmware takes the request and starts 

controlling the hardware components. Therefore, testing and development of the TEM software also require 

hardware. In other words, TEM software development and testing cannot start until the hardware is manufactured. 

This hardware dependency increases overall software development time. 

3.1.3.  Limited hardware resources 

Due to the limited number of test systems (hardware), firmware and software tests are also delayed. The budget 

for hardware manufacturing is limited. Thus, a limited number of test systems are produced, resulting in a lack of 

hardware resources. Test systems are shared within multiple disciplines. Sometimes, test systems are fully 

occupied by other teams, not allowing firmware and TEM software development teams to proceed. 

3.2    Solution 
To solve these problems, we introduced a virtual hardware simulator (VHS) that replaces the test systems 

(hardware). The VHS utilizes the initial 3D CAD models, and it can be created earlier before hardware is 

manufactured. Using the VHS, the teams can test and develop firmware algorithms and TEM software without 

the hardware systems. 

 

The VHS uses 3D models of hardware components and simulates them in a 3D environment. In the VHS, the 

behaviors of 3D models are similar to the behaviors of physical hardware. Physical hardware also has sensors 

such as proximity and touch sensors. These sensors are simulated and configured on the 3D models. From the 3D 

environment of the simulator, the interaction between 3D models is visible and testable. Collisions caused by 

firmware flaws and software flaws are detectable using virtual sensors and collision detection algorithms. 

 

To summarize, the VHS has the following features. The first one is that the VHS provides a visual representation 

of the physical hardware. With this feature, the teams can have deep insight into how firmware and software 

instruct the hardware components. Moreover, the interaction between hardware components is visible and testable. 

The second feature is to simulate sensors. Sensors were placed on the simulator's 3D models to detect collisions 

caused by software and firmware bugs. 



Eindhoven University of Technology 
 

12 
 

3.3    Conclusion 
The problems and their solutions are presented in this chapter. These problems increase the throughput time for 

feature development. After analyzing these problems, the solution is to make a VHS that can speed up the 

development phase by simulating microscope components in a 3D environment. To bring the solutions into reality, 

we explored into commercial software products in the next chapter. 



Eindhoven University of Technology 
 

13 
 

4. Technology Exploration 
 

This chapter introduces different commercial software products and selection criteria. The following is the 

assessment for each one of them. Finally, the conclusion is present at the end of this chapter. 

4.1    Commercial software products 
The first step was to investigate commercial software products for creating a virtual/digital version of the 

hardware. There are several software products on the market, as mentioned in Table 1. 

Table 1: Commercial software products 

 Software products Investigation 

1 PRESPECTIVE [55] Evaluated and selected 

2 Visual Components [55] Evaluated 

3 Solidworks [55] Evaluated 

4 Siemens NX [55] Evaluated 

 

We defined a set of criteria to choose the one that fits the most in the project in the next section. 

4.2    Criteria for selecting software products 
This section explains a set of criteria for selecting the software for the project.  The criteria are defined in the table 

below. All of the software products that are mentioned above mainly use CAD models and simulate them in their 

3D environment. 

 

Table 2: Criteria for selecting a commercial software product 

 Criteria Description 

1 Programming language support The software product should support the following 

languages C# or  C++ 

2 Performance The software product should be able to simulate the 

motion sub-system of the microscope. 

3 Computer-Aided Design (CAD) support 

 

The software product should be able to import 

geometrical models with its color from CAD files  

The software product should import not only geometrical 

models but also constraints from CAD files. 

The software product should import not only geometrical 

models but also hierarchies from CAD files. 

4 Defining motion behavior The software product should be able to define motion 

behavior on CAD models. 

5 Defining sensor behavior The software product should be able to define custom 

sensor behavior on CAD models 

6 Third-party support The software product should support third-party 

applications. 

7 Building an executable The software product should build an executable artifact 

that can be easily deployable. 

8 Training The software product should have available training and 

documentation. 

9 Software support The company, which develops the software product, 

should provide support during the project. 

10 Cost The software product price should be reasonable. 

 

The first criterion is that a chosen software should support C# or C++. These two programming languages are 

mainly used in the company. 

 

Although we created virtual hardware for the stage module of the microscope, the current implementation needs 

to expand with other parts of TEM. Finally, the whole microscope needs to be simulated. TEM is big and complex. 



Eindhoven University of Technology 
 

14 
 

Simulating TEM might require a heavy calculation and reliable performance. Therefore, performance is the next 

criterion. 

 

The visualization is one of the main requirements. Therefore, a chosen software must be able to use CAD models 

in its 3D environment. The models are static, and CAD files do not include any information about motion 

constraints. Thus the software must be able to define motion behavior in its environment. 

 

Apart from the previous criterion, the behavior of sensors needs to be defined by a chosen software. The stage has 

proximity sensors and touch sensors, and they have their unique behaviors. Therefore, the behavior of sensors 

must be defined to fulfill the requirement. 

 

Integration with the TEM software is crucial to perform real-time simulation. Therefore, the chosen software 

needs to connect to TEM software. Over the connection, simulated motion and sensor data must be transmitted in 

real time. Therefore, another criterion is third-party support. 

 

The seventh criterion is about building an executable artifact. Availability is one of the non-functional 

requirements. After creating a VHS using the chosen software product, the simulator should be easily deployable 

to the team. Therefore, the simulator should be delivered as an executable artifact. 

 

Learning a new specialized software requires effort. Therefore, training materials and courses can accelerate the 

learning and implementation process. Moreover, close support and feedback from the company, which develops 

the software product, can speed up the project development process. 

 

The criteria that are explained above are discussed for each software individually. The result of the discussion is 

present in the section below. 

4.2.1.  PRESPECTIVE 

PRESPECTIVE is a software platform for creating a digital twin. It is developed on top of the Unity game engine 

that uses the Mono development platform. Table 3 shows the evaluation result according to the criteria. 

 

Table 3: PRESPECTIVE investigation 

 Criteria Description Satisfaction 

1 Programming language support The software supports C# language.  Yes 

2 Performance - - 

3 Computer-Aided Design 

(CAD) support 

PRESPECTIVE import CAD files using 

additional software called PIXYZ plugin. 

Yes  

4 Defining motion behavior PRESPECTIVE has features that are used to 

define motion behavior using kinematics 

relation. 

Yes 

5 Defining sensor behavior Proximity and touch sensor behaviors are 

created using Unity C# scripting. 

Yes 

6 Third-party support The software is able to be integrated with .Net 

applications. 

Yes 

7 Building an artifact The unity game engine builds an executable 

artifact. Therefore, no licenses are needed to 

deploy the artifacts. 

Yes 

8 Training The company conducts regular training. 

Documentation and video tutorials are also 

provided online. 

Yes 

9 Software support The company provides close support and fast 

feedback. Moreover, face-to-face meetings can 

be organized to get support from the company. 

Yes 

10 Cost Reasonable (1000-5000 euros per year for a 

single user) 

- 

 

Based on the defined criteria, PRESPECTIVE scores well on all requirements. 



Eindhoven University of Technology 
 

15 
 

4.2.2.  Visual Components 

The software is specially designed for simulating factory. The software provides .Net and Python API to third-

party applications. Table 4 shows the investigation results in respect of the criteria. 

 

Table 4: Visual Components investigation 

 Criteria Description Satisfaction 

1 Programming language support The software supports C# and Python 

languages.  

Yes 

2 Performance - - 

3 Computer-Aided Design (CAD) 

support 

The software has a built-in feature to import 

CAD files with its hierarchies. 

Yes  

4 Defining motion behavior Motion behavior can be defined in the CAD 

model using Python scripting. 

Yes 

5 Defining sensor behavior Sensor behavior can be defined using Python 

scripting. 

Yes 

6 Third-party support The software provides .Net and Python API. Yes 

7 Building an artifact The software does not generate an artifact. 

Therefore, licenses are needed to run the 

VHS on developer machines. 

No 

8 Training The company has an online forum and 

online courses. 

Yes 

9 Software support - - 

10 Cost - - 

 

4.2.3.  Solidworks 

Solidworks is one of the popular simulation software products. Therefore, Solidworks is also investigated. Figure 

5 shows the result of the investigation. 

Table 5: Solidworks investigation 

 Criteria Description Satisfaction 

1 Programming language support The software supports C#, C++, and Visual 

Basic languages.  

Yes 

2 Performance  - - 

3 Computer-Aided Design (CAD) 

support 

The software has built-in features to import 

CAD files with its hierarchies.  

Yes  

4 Defining motion behavior The software defines motion behavior in its 

environment.  

Yes 

5 Defining sensor behavior The software defines sensor behavior in its 

environment. 

Yes 

6 Third-party support It provides a Solidworks API. Yes 

7 Generating artifact The software does not generate a standalone 

executable file. Therefore, licenses are 

needed to run the VHS on developer 

machines. 

No 

8 Training The company does not provide enough 

available information about the product API 

for real-time simulation. 

No 

9 Software support Support is provided through online courses 

and forums. 

- 

10 Cost Moderate (5000-10000 euros per year for a 

single user), according to the cati.com. 

- 

 

 



Eindhoven University of Technology 
 

16 
 

4.2.4.  Siemens NX 

Siemens NX is used as the main mechanical drafting tool within Thermo Fisher. The software also can be used 

for motion simulation. 

 

Table 6: Siemens NX investigation 

 Criteria Description Satisfaction 

1 Programming language support The software supports Java, C#, C++, 

Python, and Visual Basic languages.  

Yes 

2 Performance - - 

3 Matlab/Simulink support The software has direct support for 

Matlab/Simulink. 

Yes 

4 Computer-Aided Design (CAD) 

support 

The software has built-in features to import 

CAD files with its hierarchies.  

Yes  

5 Defining motion behavior The software defines motion behavior in its 

environment. 

Yes 

6 Defining sensor behavior The software defines sensor behavior in its 

environment. 

Yes 

7 Generating artifact The software does not generate a standalone 

executable file. Therefore, licenses are 

needed to run the VHS on developer 

machines. 

No 

8 Training The company does not provide enough 

available information about the product API 

for real-time simulation. 

No 

9 Software support The company provides close support because 

engineers from Siemens works at Thermo 

Fisher once a week. 

Yes 

10 Cost Expensive (more than 10000 euros for a one-

time purchase for a single user). 

- 

 

It provides API that is used to communicate with custom applications. Defining motion and sensor behaviors on 

the 3D models were successful. However, getting the sensor value into third-party applications has not been tested 

and investigated due to time limitations. 

4.3    Selecting a simulation software product 
Based on the criteria, PRESPECTIVE was chosen as the software for the simulation. The primary reasons to 

choose PRESPECTIVE are the following: 

 

- The software product builds a standalone executable artifact while other software products do not. This 

building activity can be integrated with the company version control system. In other words, any engineer 

can obtain the executable artifact and use it locally for testing purposes. 

 

- The software product can be easily integrated with the TEM software because the Unity game engine 

can use native COM components. 

 

- The software product allows customizing its GUI that can be modified for multiple uses. For instance, 

categorized strip menus or buttons can be created for automating the testing activities. And a pop-up 

notification can be shown as a simulation result. 

 

- The price of the software product is reasonable because of two reasons. The first one is that Unity builds 

an executable artifact that can be deployed for multiple users. The second reason is that a single user 

license costs less than other software products listed in Table 1 (excluding Visual components). 

 

- The company that develops PRESPECTIVE provides close support and provide documentation and 

tutorials. 

 



Eindhoven University of Technology 
 

17 
 

The Unity game engine is not able to import CAD files into its environment. Therefore, the following options 

were investigated. There are two plugins for the Unity game engine that can fill the gap. 

 

- PIXYZ plugin: The plugin can import most of the CAD files into the game engine environment. The 

most used CAD files in the company are JT, STP, and X_T. 

 
- CADlink: This plugin supports the 3MF file format, which is not commonly used in the company. 

 

We chose PIXYZ as the CAD files importer tool because it supports the necessary CAD files, while CADlink 

only supports 3MF format. 

4.4    Conclusion 
This chapter explained the various commercial software packages. After evaluating and comparing the software 

products based on the defined criteria, PRESPECTIVE software was chosen to create a VHS. The chosen software 

uses 3D models from CAD files. The next chapter presents the stakeholder and their concerns. 





Eindhoven University of Technology 
 

19 
 

5. Stakeholder Analysis 
 

This chapter presents the concerns and the involvement of the main stakeholders. In this project, two significant 

organizations are involved, namely Thermo Fisher Scientific and Eindhoven University of Technology (TU/e). 

5.1    Thermo Fisher Scientific 
During this project, the collaboration with the motion division of Thermo Fisher Scientific was crucial to gather 

the necessary knowledge and project requirements. The main stakeholders of Thermo Fisher Scientific are listed 

below. 

 

Table 7: Company stakeholder 1 

Name Pepijn Kramer 

Role Software Architect/ Project supervisor 

Goals - Convey the gathered knowledge during this project to follow up 

project(s) and engineers 

- Evaluate the implementation and the design of the project 

- Identify the benefits of the digital twinning concept in software 

development 

Tasks - Provide relevant information about the software stack and the 

organization 

- Provide technical advice on the project 

- Provide advice on the system design 

- Help evaluate the project progress 

- Discuss implementation ideas with the trainee 

- Provide advice on software design/architecture in general 

- Review the project’s final report 

Involvement - Weekly meeting 

- Monthly project steering group meeting  

- Ad-hoc meeting 

 

Table 8: Company stakeholder 2 

Name Iryna Stepaniak/ Project supervisor 

Role Test and quality assurance 

Goals - Convey the gathered knowledge during this project to another project 

Tasks - Provide relevant information about the testing and the organization 

- Provide organizational support to the trainee 

- Evaluate the project progress 

Involvement - Weekly meeting 

- Monthly project steering group meeting  

- Ad-hoc meeting 

 

Table 9: Company stakeholder 3 

Name Edwin Verschueren 

Role Mechatronics specialist 

Goals - Define virtual hardware simulator (VHS) capabilities for future uses 

- Create a VHS that can replace physical hardware 

- Find an appropriate development process to create a VHS 

Tasks - Provide relevant information about TEM development 

- Evaluate the project progress 

- Review the project’s final report 

Involvement - Weekly meeting 

- Monthly project steering group meeting  

- Ad-hoc meeting 



Eindhoven University of Technology 
 

20 
 

 

Table 10: Company stakeholder 4 

Name Paul de Brabander  

Role Test engineer 

Goals - Test the microscope system without relying on hardware 

Tasks - Provide relevant information about the current testing methods 

Involvement - Ad-hoc meeting 

 

 

Table 11: Company  stakeholder 5 

Name Arjen Klomp 

Role Senior R&D manager 

Goals - Find the business benefits out of this project 

- Provide trainee organizational support 

Tasks - Support on ordering the necessary commercial tools 

- Provide information about the company organization 

Involvement - Monthly project steering group meeting  

- Ad-hoc meeting 

 

5.2    TU/e 
The key stakeholders from TU/e are listed below. 

 

Table 12: TU/e stakeholder 1 

Name Ion Barosan 

Role Assistant professor at the Faculty of Mathematics and Computing Science of TU/e 

/ project supervisor  
Goals - Evaluate the project based on PDEng’s project standard 

- Evaluate the project progress 

- Guide the trainee through the project 

Tasks - Provide relevant knowledge 

- Monitor project’s process 

- Evaluate the progress regularly and provide advice and feedback to the 

trainee 

- Review the project’s final report 

Involvement - Monthly project steering group meeting 

- Ad-hoc meeting 

- Weekly meeting 

 

Table 13: TU/e stakeholder 2 

Name Yanja Dajsuren 

Role Software technology PDEng program director  
Goals - Project success 
Tasks - Provide advice to the trainee 

Involvement - Ad-hoc meeting 

 

5.3    Conclusion 
This chapter presents the stakeholders and their roles, goals, tasks, and involvement in this project. Concerning 

their goals, we identified system requirements, functional requirements, non-functional requirements, and use 

cases in the next chapter. 



Eindhoven University of Technology 
 

21 
 

6. Analysis – Requirements, System 

Context, and Use Cases 
 

This chapter firstly presents requirements. The followings are system context and use cases. Finally, the 

conclusion is present at the end of this chapter. 

6.1    Introduction 
The first endeavor of this project was to gather detailed requirements from the users: a mechatronics engineer and 

a software test engineer. During the requirements gathering process, a bottom-up approach was helpful. A small 

prototype was periodically made to show simulator capability. This approach helped to communicate with the 

stakeholders and triggered ideas for further requirements. 

6.2    System requirements 
We defined two high-level features for the virtual hardware simulator (VHS). These two are presented in Figure 

11. 

 

Figure 11: System requirements 

As stated in the project context, we aimed to create a VHS for a microscope module, stage, that manipulates a 

specimen. And the module consists of several microscope components, and we used three of them, namely ball-

valve, insert-retract, and holder. Therefore, detailed requirements and use cases were identified based on the 

functionality of these components. 

6.2.1.  REQ1.1-Provide real-time sensor simulation 

One of the requirements that the system must have is that the system must simulate sensors in real time when a 

customer performs tests. Firstly, different types of sensors of the stage needed to be specified to fulfill this 

requirement. The stage has two kinds of sensors: proximity sensors and touch sensors, which are the essential 

parts of the stage. These two sensors must be virtually placed in the system and simulated in real time. Table 14 

shows the defined requirements for the stage. 

 

Table 14: Functional requirements to perform real-time sensor simulation 

ID Topic Priority 



Eindhoven University of Technology 
 

22 
 

1 The system must provide real-time simulation for the proximity sensors 

of the ball-valve component 

Must have 

2 The system must provide real-time simulation for the touch sensors of the 

ball-valve component 

Must have 

3 The system must provide real-time simulation for the touch sensors of the 

insert-retract component 

Must have 

4 The system must provide real-time simulation for the touch sensor of the 

holder component 

Must have 

 

The responsibility of the proximity sensors is to know the status of the hardware. For example, the proximity 

sensors of the ball-valve component are designed to detect whether the valve is open or not while the touch sensors 

are to detect collisions between hardware parts. 

6.2.2.  REQ1.2-Provide a visual representation for real-time hardware motion 

Each microscope component (hardware) has a distinct motion behavior. Behaviors of these microscope 

components must be visible to the users in real-time when they run tests on the VHS. Therefore, the following 

requirements are needed. Table 15 shows the defined requirements.  

Table 15: Functional requirements to visualize real-time motion behavior 

ID Topic Priority 

1 The system must visualize the motion behavior of the ball-valve 

component in real time when a customer performs tests 

Must have 

2 The system must visualize the motion behavior of the insert-retract 

component in real time when a customer performs tests 

Must have 

3 The system must visualize the motion behavior of the holder component 

in real time when a customer performs tests 

Must have 

 

6.3    User requirements 
During the project, the users were a mechatronics engineer and a test engineer. The requirements from the users 

are presented in Table 16.  

 

Table 16: User requirements 

ID Topic Priority 

1 The system must provide a flexible viewpoint in order to see the virtual 

hardware from a different side 

Must have 

2 The system must have a configuration file in order to configure the 

simulation 

Must have 

3 The system should disable/enable the proximity sensors in order to test 

fault scenarios scenarios 

Should have 

4 The system should trigger the proximity sensors in order to test the 

software behavior 

Should have 

5 The system should show the part name of the hardware in order to inform 

the part name 

Should have 

The first requirement came from a mechatronics engineer. The mechatronics engineer wants to inspect the stage 

components from different sides while the virtual hardware (3D models) are moving in the simulator. To fulfill 

this requirement, the system must provide users an interactive GUI that allows the users to change the viewpoint. 

For example, zooming in/out, rotating, and panning the viewpoint are the basic functionalities that the system 

must provide. 

The mechatronics engineer wants to use a configuration file to set up the simulation. With the file, the engineer is 

able to choose microscope components they would like to simulate. For example, the file configures the system 

to simulate only a ball-valve component and its sensors and actuators. Moreover, the file is also used for other 

purposes, such as setting up the simulation speed. For these reasons, the second requirement was needed. 

 

The third requirement came from the software test engineer to test fault scenarios. Disabling and enabling sensors 

means that the user virtually breaks or fixes them. Once the sensors are disabled, they no longer give feedback. In 



Eindhoven University of Technology 
 

23 
 

that case, the system performance with the broken sensors can be inspected. When they are enabled, the sensors 

perform as expected. 

  

Triggering sensors from GUI is another requirement that came from the software test engineer. This requirement 

is to test whether the software handles the sensor data correctly or not. 

 

The fifth requirement is about the visibility of the stage’s names, which have to be visible when the mouse hovers 

over the 3D design. This feature is useful when flaws from the mechanical design are inspected. The name of a 

part that causes incompatibility should be visible. 

6.4    Non- functional requirements 
This section describes the non-functional requirements that are defined during project development time. 

6.4.1.  Compatibility 

The non-functional requirement of compatibility is that the system must be compatible with the existing software 

system to perform tests. Secondly, the system must be delivered as a software component. To deliver the VHS as 

a software component, the VHS must follow the build server rules. 

6.4.2.  Extensibility 

In this context, extensibility means the extension of the functionality and improvement in the services. Modifying 

the VHS and understanding its source code must be comfortable. In order to meet this requirement, the simulation 

should have a modular software architecture. The implementation of the simulator should use SOLID principles. 

6.4.3.  Availability 

Availability means the extent to which a software product is easily distributable and deployable. In other words, 

the VHS needs to be delivered as an executable artifact. The installation process of the simulator should not be 

dependent on additional software products. 

6.5    System Context 
After defining the requirements, we analyzed the external systems that need to interact with the virtual hardware 

simulator (VHS) to fulfill the requirements defined above. This section explains information flows between 

external systems and the VHS. 

6.5.1.  System context 

The external systems that interact with the VHS are shown in the system context diagram, Figure 12. The diagram 

illustrates two actors and three external systems that directly and indirectly communicate with the VHS. 

 



Eindhoven University of Technology 
 

24 
 

 

Figure 12: System context diagram 

6.5.2.  Information Flow 

6.5.2.1.  Command 

A command is an indirect information flow for the VHS. TEM software sends commands to the motion controller 

to control the behavior of the 3D model in the VHS. 

6.5.2.2.  Computer-Aided-Design (CAD) file 

The VHS uses 3D models to create virtual hardware. These 3D models are encapsulated in CAD files that come 

from the 3D CAD system, as shown in Figure 12. The simulator imports these files into its environment to obtain 

the 3D models. 

 

We aimed to create a virtual hardware simulator for three hardware components, namely ball-valve, insert-retract, 

and holder. Therefore, we need three models as inputs from the 3D CAD system, as illustrated in Figure 13. 



Eindhoven University of Technology 
 

25 
 

 

Figure 13: CAD models 

6.5.2.3.  Actuator and sensor signal data 

In Figure 14, the motion controller holds all the signal data of the hardware. Using Prodrive API, the VHS can 

read and write these signal data to the motion controller. As shown in Figure 14, actuator signal data represents 

data of ball-valve and insert-retract components. These data are obtained from the motion controller and applied 

onto 3D models in the VHS.  

 

 

  

Figure 14: Actuator signal data 

Virtual sensors are placed on the 3D models. When these sensors are triggered, sensor signal data are also 

transmitted back to the motion controller as feedback. Currently, the VHS has two types of sensors: touch sensor 

and proximity sensor. 

 

 

Figure 15. Sensor signal data 



Eindhoven University of Technology 
 

26 
 

6.5.2.4.  User input 

User input is used for two purposes. The first one is to establish a connection to the motion controller from the 

VHS. To establish the connection, the name and Internet Protocol (IP) address of the motion controller need to be 

provided to the simulator. Over the connection, sensor and actuator signal data can be exchanged with the VHS. 

The second purpose is to choose sensors and actuators that need to be involved in the simulation. Therefore, their 

specification needs to be provided to the simulator.  

 

The sensor specification contains the list of virtual sensors that need to be involved in the simulation. As for 

actuator specification, it contains a list of actuators list that also need to be involved in the simulation. Figure 16 

shows the user input diagram. 

 

Figure 16: User input 

 

6.5.2.5.  Sensor command 

A software test engineer sends sensor commands to the VHS to test fault scenarios. For instance, breaking a sensor 

virtually in the simulator is one of the tests. Therefore, the system needs to receive sensor commands to disable 

or enable virtual sensors. Figure 17 shows two types of commands for sensor manipulation. 

  

 

Figure 17: Sensor command 

 

This section introduced the information flow between the external systems and the VHS. As described above, a 

mechatronics engineer provides the motion controller address to the VHS. With this input, the VHS can establish 

a connection to the motion controller. Through the connection, sensor and actuator signal data are exchanged. The 

mechatronics engineer also provides sensor and actuator specifications to the VHS to set up the simulation. 

Moreover, a software test engineer provides the VHS sensor commands to manipulate virtual sensors. The 3D 

CAD system provides 3D models to the VHS. Using the 3D models, the VHS can visualize and simulate them in 

its 3D environment. 



Eindhoven University of Technology 
 

27 
 

6.6    Use cases 
 

 

Figure 18: A use case diagram for a mechatronics engineer 

The primary user of the VHS is a mechatronics engineer. The primary use case of the VHS is simulate stage 

components. This use case includes three other use cases, namely test desired behavior, test undesired behavior, 

and configure simulation, as shown in Figure 18. 

 

The use case, configure simulation is about setting up the VHS to establish a connection to the motion controller 

before the simulation starts. In this use case, the VHS utilizes user inputs, as defined in Section 6.5.2.4.   

 

The use case, test desired behavior is about testing the defined behaviors of the stage components. Each 

component has its distinct behavior, and the firmware must control it correctly. The purpose of this use case is to 

test how the firmware controls the desired behavior of the hardware. 

 

Another use case is called test undesired behavior. It is about testing undesired scenarios virtually instead of 

carrying out these scenarios physically. The undesired scenario usually causes a collision between hardware 

components. The purpose of this use case is to test how the firmware reacts when undesired scenarios take place. 

 

The use case, simulate sensors, is to test the firmware. While hardware parts are moving, sensors on the hardware 

are triggered, and the firmware must handle the triggered sensor data correctly. 

 

The use case, visualize the hardware motion, is about visualizing the hardware motion using 3D models. These 

models are provided by the 3D CAD system. When the mechatronics engineer executes the firmware algorithms 

to control the hardware components, the system must visualize how the firmware instructs the motion behavior of 

the hardware. With this visualization, the mechatronics engineer can inspect the interaction between hardware 

components. 

 

Another use case is called detect collision is presented in Figure 18. For this use case, the touch sensors of the 

component play a major role. 

 

 



Eindhoven University of Technology 
 

28 
 

 

 

Figure 19. A use case diagram for a test engineer 

Another user of the VHS is a software test engineer, as depicted in Figure 19. There is only a different use case 

compared to the use cases from mechatronics engineer. This use case is manipulate sensors. It is about disabling, 

enabling, and triggering the stage's sensors from the VHS using sensor commands, as defined in Section 6.5.2.5.  

The purpose of this use case is to utilize virtual sensors to test system behavior. 

6.7    Conclusion 
In this chapter, system requirements, user requirements, non-functional requirements, and system context are 

explained. In addition to that, the use cases that came from the users are also described in this chapter. The next 

chapter is about system design. 



Eindhoven University of Technology 
 

29 
 

7. System Design 
 

In the previous chapters, we chose the technology to develop a virtual hardware simulator (VHS) and defined the 

use cases and requirements. In this chapter, the design of the VHS is explained. Firstly, the design choices are 

introduced. The followings are the design decision and conclusion. 

7.1    Introduction 
Two steps were defined in designing a VHS. The first step was to identify what are the mandatory inputs in 

creating virtual hardware in the Unity environment. From the environment, the motion behavior of the hardware 

must be visible according to the requirements that are mentioned in Section 6.2.2.  The second step was to integrate 

the virtual hardware with the existing software stack. By integrating them, TEM software is able to control the 

motion behavior of the virtual hardware. At the same time, virtual sensors must be simulated according to the 

requirements that are mentioned in Section 6.2.1.    

7.2    Step 1 

7.2.1.  Creating virtual hardware 

The simulator must visualize the motion behavior of hardware. Therefore, we needed 3D models of hardware 

components. These models are imported into a simulation environment of the Unity game engine. On the imported 

3D models, motion behaviors are defined, and virtual sensors are also placed. 

 

To obtain 3D models, CAD files are used. Figure 20 shows the process of importing 3D models from CAD files 

into the Unity game engine using the PIXYZ plugin. On the imported models, PRESPECTIVE defines kinematics 

relation and its constraints. 

 

Figure 20: Process of importing 3D models into PRESPECTIVE environment 

The main output of this step is to have virtual hardware that has the same behavior as a physical one. 

7.3    Step 2 

7.3.1.  Design Choice 1 

As described in Section 2.2.1.1.  , two COM interfaces, namely IHalMotion and IMdlMotion, are provided by 

MDL and HAL layers, respectively. These interfaces can be utilized to instruct the 3D models of the VHS. Both 

interfaces support the C# programming language. 

 

Firstly, we assessed the design when using the IMdlMotion interface. A plugin is needed to transfer commands 

from TEM software to virtual hardware, as shown in Figure 21. It implements the interface and creates a new 

COM object. Then the object is called by the TEM software to control the behavior of 3D models of the VHS. 

 



Eindhoven University of Technology 
 

30 
 

   

Figure 21: Simulation diagram when using IMdlMotion 

 

However, this design has disadvantages. The existing implementations of the MDL and HAL layers in the TEM 

software are not involved in the simulation. Moreover, real-time hardware motion and sensor simulation are not 

possible because the interface is abstract and does not involve data about sensors and actuators signals. 

 

Secondly, we assessed the design when using the IHalMotion interface. A plugin is also needed to transfer 

commands from TEM software to virtual hardware. It implements the interface and creates a new COM object. 

The object is called by the MDL layer of TEM software, as shown in Figure 22. 

 

   

Figure 22: Simulation diagram when using IHalMotion 

 

In that case, the existing implementation of the HAL layer in TEM software is not involved in the simulation. The 

virtual hardware can be used only for testing MDL and BHV layers. Moreover, the interface provided by the HAL 

layer does not allow the VHS to control the behaviors of 3D models in real time because the IHalMotion does not 

involve real-time data. Moreover, the HAL layer in TEM software was in the process of development during this 

project. Therefore, IHalMotion was not ready to be used. 

7.3.2.  Design Choice 2 

The next design choice was to utilize the motion controller. The motion controller has two modes: non-simulated 

and simulated. In the non-simulated mode, the motion controller interacts with the physical hardware through 

signal interfaces. Through these signal interfaces, actuator and sensor signal data is exchanged. In the simulated 

mode, the motion controller interacts with the mathematical model that represents the actuator and sensor 

behaviors. These two modes are shown in Figure 23. 

 



Eindhoven University of Technology 
 

31 
 

  

Figure 23. Motion controller modes 

At first, we assessed using the simulated motion controller. By combining mathematical models with 3D models 

of the VHS, the simulator can have real-time motion visualization because the mathematical models are instructed 

in real time by the motion controller. In Figure 24, the ball-valve actuator is represented by a mathematical model. 

While the motion controller instructs the mathematical model, the VHS takes the real-time signal data of the 

actuator model and applies it onto the 3D model of ball-valve. While 3D models move using the signal data, 

virtual sensors are triggered. The sensor signal data is also sent to the motion controller as feedback in real time.  

 

Mathematical models are created during the design phase. These models for the stage components were ready to 

be used in this project. 

 

   

Figure 24: An example diagram for ball-valve component 

 

The design also gives other possibilities. Physical hardware can be visualized using 3D models. By utilizing real-

time actuator signal data of physical hardware and applying the data onto 3D models, the VHS can visualize the 

hardware status, as shown in Figure 25. 

 



Eindhoven University of Technology 
 

32 
 

  

Figure 25: Visualizing physical hardware in a virtual environment  

7.3.3.  Design Decision 

Using the interfaces provided by MDL and HAL layers, the VHS could be developed. However, there are the 

following disadvantages:  

 

- As VHS is developed using the interfaces from MDL and HAL, new COM objects are created. These 

objects are only used for simulation purposes, and they replace existing objects. 

 

- As VHS is developed using the interface from the MDL layer, only software implementation in the upper 

layer (BHV) can be involved in the hardware simulation. In other words, implementations in the MDL, 

HAL, and firmware layers cannot be involved in the hardware simulation. 

 

- As VHS is developed using the interface from the HAL layer, only upper layers can be tested. In other 

words, HAL and firmware cannot be involved in the hardware simulation. Moreover, HAL was in the 

process of development. Therefore, some interfaces were not usable at that time.  

 

- As VHS is developed using the interfaces from the MDL and HAL layers, the simulation cannot be 

conducted in real-time because of the layer abstraction. 

 

To have maximum advantages, we developed the VHS that interrelates with the motion controller and uses signal 

data from mathematical models and hardware. The design gives the following advantages: 

 

- As VHS is developed at the motion controller level, the VHS manipulates the 3D models and simulates 

virtual sensors in real-time. It means that the VHS can provide real-time motion visualization, and the 

interaction between the hardware components is visible. Moreover, virtual sensors can transfer its signal 

data to the motion controller in real time. 

 

- As VHS is developed at the motion controller level, both the firmware and TEM software can be tested 

using the VHS. In other words, there is no need to create different simulations for the firmware and the 

TEM software because VHS is developed at the lowest level. 

 

- As VHS is developed on the motion controller level, VHS can visualize the real hardware by applying 

actuator signals onto 3D models. 

7.4    Conclusion 
This chapter firstly explained how virtual hardware is created using the chosen technology and 3D models. 

Secondly, the chapter presented design choices and their pros and cons. By evaluating these design choices, we 

decided to use the motion controller and mathematical models. This design gives the VHS to obtain real-time 

motion visualization and sensor simulation. Most importantly, the VHS can be used to test not only the firmware 

but also TEM software. Moreover, the VHS can visualize the physical hardware in its 3D environment using 3D 

models. 



Eindhoven University of Technology 
 

33 
 

8.System Architecture 
 

This chapter focuses on the system architecture of the virtual hardware simulator (VHS). The architecture consists 

of three main components, namely the Unity game engine, StagePlugin, and StageAdapter. 

8.1    Architecture design 
Figure 26 shows the overall architecture of the VHS. In order to fulfill the non-functional requirement of 

extensibility, components: StagePlugin and StageAdapter were introduced to the system architecture. And each 

component and its responsibility are explained in the sections below. 

 

  

 

Figure 26: Virtual Hardware Simulator (VHS) 

8.2    Unity game engine 
As shown in Figure 26, The unity game engine uses two software components: the PIXYZ plugin and 

PRESPECTIVE. Using the PIXYZ plugin, 3D geometrical models are imported into the environment of the Unity 

game engine. In this environment, PRESPECTIVE defines motion behavior for the 3D models using kinematics. 

Virtual sensors are placed on the 3D models, and the sensor behaviors are created using C# scripting. These three 

software products are utilized to fulfill the system requirements by visualizing motion behavior as well as 

simulating the virtual sensors. 



Eindhoven University of Technology 
 

34 
 

8.2.1.  Visualizing motion behavior 

The motion behaviors need to be defined using the 3D models that are the primary entities for the visualization. 

To visualize motion behavior in real time, Unity asks for actuator signal data periodically from the physical 

hardware or mathematical model using StagePlugin. 

 

The frame rate of the Unity game engine defines the frequency of asking actuator data. In each frame, Unity 

updates the position of 3D models with the new data from the motion controller. 

8.2.2.  Sensor simulation 

Virtual sensors are created using the 3D models of the stage components. When the 3D models are moving in real 

time, the sensors are triggered. The triggered sensor data is transmitted to the motion controller using StagePlugin. 

 

There are two types of sensors that are created in the Unity environment: 

- Touch sensor: A sensor is triggered when the sensor contacts another 3D model. 

 

- Proximity sensor: A sensor is triggered when the distance between the sensor and another part exceeds 

the threshold distance. 

 

In each frame, Unity checks whether sensors are triggered or not. It means the timing accuracy of the check 

depends on the framerate of the simulator. 

8.3    StagePlugin 
StagePlugin is a plugin that is used by the Unity Game Engine. It establishes a connection to the StageAdapter. 

The plugin is a client for the StageAdapter and is used to retrieve the actuator data as well as send the simulated 

sensor data to the motion controller. Currently, the Windows Communication Foundation (WCF) is the chief 

technology for exchanging data between the StagePlugin and the StageAdapter. 

 

The primary responsibility of the StagePlguin is to establish a connection to StageAdapter for data exchange. The 

plugin is in the form of a Dynamic-link library (DLL) file. 

8.4    StageAdapter 
StageApdater is an executable running on windows using .Net platform, and it is responsible for the following: 

 

- The adapter gathers the actuator signal data of actuators from the motion controller and sends the data to 

the StagePlugin when requests come.  

- The adapter firstly registers the actuators that are specified in the configuration file. The adapter updates 

the signal data of the registered actuators at a frequency that is defined in the configuration file. These 

actuator signal data are taken from the actuator mathematical models. 

- The adapter sends the simulated sensor data to the motion controller when it receives the sensor data 

request from the StagePlugin. 

 

8.4.1.  Configuration File 

The configuration file is used to configure the VHS for the following reasons: 

 

- The address of the motion controller should be specified in this file. 

- Hardware components that need to be involved in the simulation should be specified in this file. 

- The StageAdapter should update registered actuator data at a defined frequency. The frequency should 

be defined in this file. 

 

The configuration file is in the form of an Extensible Markup Language (XML) file. 

8.4.2.  Communication Technology 

Windows Communication Foundation (WCF) is used to exchange data between StagePlugin and StageAdapter. 

StagePlugin is a WCF client, while StageAdapter is a WCF server. 



Eindhoven University of Technology 
 

35 
 

8.5    Conclusion 
This section presents the system architecture. In order to have a modular architecture for the future extensibility, 

StagePlugin and StageAdapter were introduced. StagePlugin is responsible for transmitting the signal data 

between the Unity Game Engine and StageAdapter, while StageAdapter is responsible for communicating with 

the motion controller to read the actuator signal data and write simulated sensor data. The next chapter explains 

the implementation of the architecture. 





Eindhoven University of Technology 
 

37 
 

9.Implementation 
 

This chapter describes the development environment and implementation of the virtual hardware simulator (VHS) 

for the following system design explained in the previous chapter.  

9.1    Development environment 
PRESPECTIVE software is the digital twining software platform that was used to define hardware behavior on 

3D models. The software is run on the top of the Unity Game Engine. 

 

Version: PRESPECTIVE deployment version 1.2.86.1706 

 

PIXYZ is a plugin for Unity. The plugin is used to import 3D models into PRESPECTIVE environment. On the 

imported 3D models, PRESPECTIVE software defines hardware behavior. 

 

Version: 2019.2.0.59 

 

Unity is a real-time development 3D platform for a software application. PRESPECTIVE software and PIXYZ 

plugin are installed on Unity. Unity supports C# scripting language. 

 

Version: 2019.2.19f1 

 

Visual Studio 2019 and .Net framework 4.7.2 were used for the implementation of the StagePlugin and 

StageAdapter that is shown in Figure 14. 

 

Git was a version control system for this project. 

9.2    Simulation on Unity game engine 
Two unity scenes are created in the Unity game engine. The first scene, called StartScene, is loaded when the 

simulator starts to establish a connection to the motion controller. Figure 27 shows the StartScene. 

 

 

Figure 27: StartScene 

 

When the connection is established successfully, the second scene, called SimulationScene, is loaded to start the 

simulation and show the virtual hardware (dynamic 3D models). Figure 28 shows the SimulationScene. 

 



Eindhoven University of Technology 
 

38 
 

 

Figure 28: Simulation scene for the ball valve component 

 

There are two types of sensors on the stage. Each sensor has a distinct behavior. The behaviors of the sensors are 

defined using the scripting language.  

 

 

 

Figure 29: Class diagram for visualizing motion behavior and simulating sensors 

 

In Figure 29, the class diagram is shown. It has two namespaces, and each of them has its own responsibility. 

  

Core: Core namespace is responsible for the following: 

- Providing base class, UnitySensor, for sensors 

- Providing base class, UnityActuator, for actuators 

class PRESPECTIVE

BallValve

Core

BallValv eTouchSensor

HighLightResponse

UnityActuator

StageStartup

BallValv eProximitySensor BallValv eActuator

StageClientManager

UnitySensor

«interface»

IClientManager

«interface»

ISelection

«interface»

IUnityActuator«interface»

IUnitySensor

«use»

«use»

«use»

«use»



Eindhoven University of Technology 
 

39 
 

- Highlighting the triggered sensor using HighLightResponse class 

- Establishing a connection to the motion controller using StageClientManager class 

- Initializing the system for simulation using StageStartup class 

 

BallValve: Ball valve is a microscope component, and it has its sensors and actuators. Each actuator and sensor 

implements the base classes that are in the Core namespaces. 

9.3    StagePlugin 
The plugin is a C# (Mono) assembly in the form of a DLL file. It provides the WCF client and its data contracts. 

It is utilized by the Unity to exchange actuator data and simulated sensor data. In Figure 30, ActuatorData and 

SensorData are the contacts with the WCF server. Once the client of the WCF is created, data is exchanged using 

IStageService.  

 

 

Figure 30: Class diagram of StagePlugin 

9.4    StageAdapter 
The StageAdapter is a C# (.Net) executable, and it has three namespaces, namely CompProdirive, Config, and 

Core, as shown in Figure 31.  

 

Config: This namespace contains classes that represent the structure of the configuration file. StageConfig class 

represents a root element of the configuration file, which is in the form of an XML file. 

 

CompProdrive: This namespace contains classes that access the motion controller to send sensor signals and 

read actuator signals. ProdriveSensor and ProdriveActuator represent a physical or mathematically modeled 

sensor and actuator, respectively. To access the motion controller, the ProdriveManager class is used. 

 

Core: The core namespace holds the main logic of the adapter. Firstly, StageSerializer class de-serializes the 

configuration file. All the actuators and sensors are registered in the ComponentRegistration class. This class is 

updates signal data of the registered actuators regularly using the StageTimer class. StageServiceManager starts 

the WCF service using StageService class. Lastly, StageManager is a bridge to convey data between 

ComponenetRegistration and the WCF client, which is StagePlugin. 

class StagePlugin

StagePlugin

ActuatorData

SensorData

«interface»

IStageServ ice

«interface»

IActuatorData

+ Name: string

+ Position: double

«interface»

ISensorData

+ Name: string

+ Output: uint

StageClient

«use»

«use»



Eindhoven University of Technology 
 

40 
 

 

Figure 31: Class diagram of StageAdapter 

9.4.1.  Configuration file 

The file contains the following configurations: 

- The controller element in the file contains three configurations. The first one is the motion controller 

name. The second is the Internet Protocol (IP) address of the motion controller. The third is the frequency 

that StageAdapter uses. 

 

- The component list contains the microscope components that are involved in the simulation. Each 

component has an actuator list and a sensor list. Each actuator and sensor has its signal and name and 

address in the motion controller. The signal address is used by the StageAdapter to exchange signal data 

with the motion controller, while the Unity game engine uses the name to exchange data with 

StageAdapter.  

 

 

Figure 32: The short version of the configuration file 

9.5    System behavior 
The system behavior diagram is shown below. In the diagram, five components are presented, namely motion 

controller, mathematical model, StageAdapter, StagePlugin, and Unity. Three of them: StageAdapter, 

class StageAdapter

Core

CompProdrive Config

StageManagerStageTimer

StageServ ice

StageServ iceManager

StageSerializer

ComponentRegistration

«interface»

IRegistration

«interface»

IStage

Prodriv eManager

Prodriv eActuatorProdriv eSensor

«interface»

IProdriv eActuator

«interface»

IProdriv eSensor StageConfig

ControllerConfig StageComponent

HardwareComponent

Program

«interface»

IElectronicComponent

Creates the list of 

actuators and sensors

Update actuator position
uses WCF

«interface»

IProdriv e

«use»

«use»

«use»

«use»

«use» «use»

«use»

«use»



Eindhoven University of Technology 
 

41 
 

StagePlugin, and Unity, form the VHS. The other two are external systems that interact with the VHS. The main 

actor in this diagram is the mechatronics engineer, as shown in Figure 33. 

 

 

Figure 33. Sequence diagram for the VHS and external systems 

The actor starts the initial action to move the stage. The motion controller receives a command from the actor and 

starts controlling the hardware behavior in real time. While the hardware is moving its components, actuator and 

sensor signal data are also received in real time by the motion controller.  

 

During this real-time control, the VHS role comes into play. The StageAdapter polls the motion controller at the 

configured frequency to get actuator positioning data. The StageAdapter holds these data and sends them to the 

StagePlugin when requested. This data request is initiated by Unity, which manipulates StagePlugin to get the 

actuator data. Unity applies the data onto 3D models and simulates them. When any virtual sensor is triggered on 

the 3D models, Unity utilizes the StagePlugin to send the sensor signal data to StageAdapter. Then the 

StageAdapter conveys the data to the motion controller for further processing. 

9.6    Conclusion 
In order to meet the non-functional requirement (extensibility), the system responsibilities are delegated into 

different components, namely PRESPECTIVE, StagePlugin, and StageAdapter. Moreover, each component is 

implemented using the SOLID principle. 





Eindhoven University of Technology 
 

43 
 

10. Verification 
 

This chapter explains the process of verification of the virtual hardware simulator (VHS). The process is used to 

check whether the developed software meets the requirements of the project and satisfies the customer need. The 

testing process is conducted manually. 

10.1    Preparing a test environment 
To verify and validate the implementation, the testing environment was set up at the beginning of the project. This 

testing environment consists of three pieces of software that are described below: 

 

- The motion controller needs to be set, and it has two modes. The first is simulation mode that can run a 

mathematical model instead of the real hardware, whereas another mode directly interacts with the real 

hardware. Since the real hardware is not usually available, the motion controller simulation is set.  

 

- The test software needs to be set. This software represents the TEM software that invokes firmware 

algorithms by sending commands to the motion controller.  

 

- The VHS is the software that we developed. Before the test starts, the simulator must be configured using 

the configuration file. In the file, microscope components that are intended to be simulated and the motion 

controller network address must be defined. 

10.2    Verification 
The virtual hardware must conform to the high-level requirements that are defined in Section 6.2   The processes 

of verification are explained using the use cases in the below sections. 

10.2.1.  Use case: Visualize the hardware motion 

The firmware controls the behavior of the hardware system. By visualizing them on the 3D models, the interaction 

between the hardware components can be inspected. The firmware is a real-time software. Therefore, the 

visualization also must be in real time. 

 

Test scenario: 

1. The user starts an open ball-valve command from the test software. 

2. The test software sends the command to initiate a firmware algorithm in the motion controller. 

3. The motion controller instructs the behavior of the mathematical model that represents the ball-valve 

actuator. 

4. The system polls the actuator data of the mathematical model. 

5. The system applies the actuator data on the 3D models in real time. 

 

The VHS successfully visualized the hardware motion in real time. Figure 34 shows the sequence diagram for 

simulating the ball-valve components. In the diagram, the steps for the test scenario are illustrated. 



Eindhoven University of Technology 
 

44 
 

 

Figure 34. Sequence diagram for simulating the ball-valve component 

10.2.2.  Use case: Testing desired behavior 

The ball-valve has two proximity sensors. These sensors are designed to detect whether the ball-valve is open or 

not. As part of the verification process, a proximity sensor is placed to detect whether the ball-valve component 

is open or not. 

 

Test scenario: 

1. The user initiates an open ball-valve command from the test software. 

2. The test software sends the command to initiate a firmware algorithm in the motion controller. 

3. The firmware controls the behavior of the mathematical model that represents the ball-valve actuator. 

4. The system polls the actuator data of the mathematical model. 

5. The system applies the actuator data on the 3D models in real time. 

6. The system sends the triggered sensor data to the motion controller. 

 

The test scenario can be inspected in Figure 34. 

 



Eindhoven University of Technology 
 

45 
 

 
 

Figure 35: Real-time sensor simulation for the ball-valve component 

Figure 35 shows the VHS on the left side and the motion controller tool on the right side. One of the proximity 

sensors is triggered, and the system highlights the sensor by changing its color to red. From the motion platform 

tool, the sensor status is shown in real time. 

10.2.3.  Use case: Testing desired behavior (fault scenario) 

A fault scenario was carried out on the VHS. In this test, the firmware has a bug, which does not take sensor 

feedback. In this scenario, a collision takes place. When a collision happens on the virtual hardware, it highlights 

the collided part by changing its color to red and sends the collision information to the motion controller. Figure 

36 shows a screenshot that shows the result of the collision. 

 

 

Figure 36: The result after collision 

On the right side of Figure 36, the state machine diagram of the ball-valve component is shown. After receiving 

a signal from the VHS, the hardware state turns to a fault state. 



Eindhoven University of Technology 
 

46 
 

10.2.4.  Visualizing the physical hardware behavior 

The VHS is able to visualize the behavior of the physical hardware. This feature is also verified by conducting a 

test in the motion lab. 

 

Test scenario: 

1. The user initiates an open ball-valve command from the TEM software. 

2. The TEM software sends the command to initiate a firmware algorithm in the motion controller. 

3. The firmware controls the behavior of the hardware. 

4. The system polls the actuator data of the mathematical model. 

5. The system applies the actuator data on the 3D models in real time. 

 

 

Figure 37. Sequence diagram for visualizing the physical hardware on the VHS 

10.3    Conclusion 
This chapter explains the verification process to check whether the implementation satisfies the requirements. In 

order to carry out the verification process, the testing environment was set. The next chapter is a conclusion of the 

project. 



Eindhoven University of Technology 
 

47 
 

11. Conclusions & Recommendations 
 

This chapter focuses on the conclusions of the project and elaborates on the achieved results. It also presents future 

work. 

11.1    Summary 
The project was conducted to investigate and explore how the concept of digital twinning can benefit the product 

development lifecycle in Thermo Fisher Scientific. Investigating the possibilities and implementing a proof of 

concept is the focus of this project. 

 

Currently, the design verification process is highly dependent on the hardware that takes a long time to be 

manufactured, assembled, and prepared. Due to the dependency, the product development lifecycle takes a long 

time. By investigating possibilities to speed up the development time, we have developed a software tool that is 

called virtual hardware simulator (VHS). It is created during the design phase, allowing engineers to test the 

firmware and TEM software designs before hardware is manufactured. 

 

We chose PRESPECTIVE as the main technology to create a VHS. PRESPECTIVE uses 3D CAD models for 

motion visualization and simulation. The motion behavior of the hardware is defined using PRESPECTIVE 

feature called kinematics relation. In these models, virtual sensors are placed. And the behaviors of virtual sensors 

are defined using C# scripting. 

 

Compared to other technologies, PRESPECTIVE is a software development platform, while others are application 

software. Therefore, PRESPECTIVE that is developed on top of the Unity game engine is more customizable in 

creating a custom GUI and open for client applications. It also capability to build artifacts that can be locally used 

by any engineer. 

 

The VHS simulator communicates with the motion controller to simulate hardware components. By 

communicating with the motion controller, the VHS fulfills the requirements of real-time simulation. With this 

design, the VHS allows mechatronics engineers to test firmware and software test engineers to test the TEM 

software. Moreover, the VHS allows TEM software developers to start developing software before actual 

hardware is available. 

 

The creation of the VHS is dependent on the two disciplines, as shown in Figure 38. Firstly, the VHS uses  3D 

models from mechanical engineers. Secondly, the mechatronics engineer supplies the motion controller library 

that allows the VHS to connect to the mathematical models. Once the VHS is created, firmware and software tests 

can be carried out. 

 

 

Figure 38. Development dependency for the creation of the virtual hardware simulator 



Eindhoven University of Technology 
 

48 
 

 

During the firmware and software test, design flaws that cause collisions can be detected. As a result, necessary 

implementation changes can be carried out earlier before the hardware manufacturing process takes place. 

Additionally, the VHS enables software engineers to develop their software without relying on physical hardware. 

 

With the defined system design, the VHS can be used for remote problem diagnosis. The simulator receives the 

real-time sensor data from physical hardware and visualizes the data onto 3D models, enabling service engineers 

to get a better insight into the hardware motion. 

11.2    Recommendations 

11.2.1.  Short-term 

Currently, the VHS simulates the non-deformable materials of the stage. The stage also has flexible materials 

such as springs and belt. In order to simulate these materials, a Unity asset called MegaFierce can be used. I 

recommend investigating the use of the asset for future use. 

 

PRESPECTIVE is used to define kinematics relations on the 3D models. The defined kinematics is lost if the 3D 

model is updated. We recommend investigating a way to keep constraints and kinematics when the model is 

updated. The company, called Unit040, develops PRESPECTIVE, and they are working on this feature. 

Contacting them is the first step for the future development of VHS. 

 

The unity project is built manually to generate an executable artifact because the building process of the Unity 

game engine requires its editor. To automate the build process, two approaches were investigated. The first one is 

to use the Unity Cloud Build. The second one is to set up the docker container in which the Unity editor is installed. 

Therefore, choosing one of the approaches and integrating the build process with the company build server are 

the next short-term goals. 

 

During the project, use cases from a software test engineer have not been implemented due to the project time 

limitation. Implementing the use case and delivering the VHS to the test engineer is another next step for further 

development. 

11.2.2.  Long-term 

The current implementation can now draw real-time actuator data from the physical hardware onto virtual 

hardware in the simulator. By extending the current VHS, the whole microscope can be visualized in the 3D 

environment. This feature can be used for remote problem diagnosis when physical hardware misbehaves in a 

remote location. 

 

Moreover, actuator and sensor data can be collected in the VHS. On the collected data, advanced machine learning 

algorithms can run to predict possible failures. Furthermore, the VHS can be used for service engineering training 

and support. By visualizing the hardware components in the VHS, the service engineers can learn about hardware 

structures and their interactions in detail. 

 

The development process of the VHS needs to be integrated seamlessly into the product development process of 

the company. To achieve it, I recommend having a separate role in developing and maintaining the VHS within 

the company because this role would be closely interacting with multiple disciplines: software, mechatronics, and 

mechanics. The VHS can then be delivered to the mechatronics and software engineers to start developing and 

testing the firmware and TEM software. 

 

 



Eindhoven University of Technology 
 

49 
 

12. Project Management 
   

This chapter presents the project management process that was conducted during the project. 

12.1    Introduction 
We followed an agile methodology. We held one meeting per week to discuss the outcome of the investigation. 

Based on the discussion, we planned the activities for the following weeks. We aimed to have a prototype that 

shows the outcome of the investigation and implementation. The prototype gave a good insight into where we 

were heading and helped gather more specific feedback.  

12.2    Project Planning and Scheduling  
The project was executed in ten months, starting in January 2020 until October 2020. For these ten months, high-

level planning has been depicted in Figure 39, which shows the roadmap of the project plan. The roadmap shows 

different activities that took place during the project lifetime. 

 

 

Figure 39: Project plan 

12.3    Project execution 
The project description used the term “digital twin”. Therefore, the first activity at the beginning of the project 

was to understand the digital twin concept. After the exploration of the concept, the second step was to identify 

problems that we can solve with the concept. To identify problems, domain analysis had been executed. At the 

same time, commercial software products related to digital twinning had been investigated. 

 

With the technology investigation, small prototypes were made. These prototypes showed the capability of 

commercial software products as well as the compatibility with the software stack of Thermo Fisher Scientific. 

The primary purpose of these prototypes was to make design decisions as well as to gather stakeholders’ user 

requirements. 

 

Requirement gathering and implementation had been conducted simultaneously during the project. We refined 

the prototype and added more functionalities over time. This prototype was also used in a regular meeting to get 

feedback during the project progress. Until the end of the project, the prototype was evolved. 

12.4    Risk analysis 
The section explains the risks that are identified during the project. The identified risks are related to project scope, 

procurement, and communication. Table 17 shows the risks and their description, consequences, and mitigation.  

 



Eindhoven University of Technology 
 

50 
 

Table 17: Risk analysis 

 

12.5    Challenges 
The project was exploratory at the beginning. Learning the domain knowledge and finding an appropriate use of 

this project in product development was quite challenging. To find beneficial uses of this project, we needed to 

prepare prototypes, present the capabilities of the prototypes, and discuss the progress with various people.  

 

The project period was ten-month. Within this dedicated timeframe, stakeholder concerns needed to be prioritized 

and divided into small tasks. To identify concrete tasks, the domain knowledge needed to be perceived at a detailed 

level. With the domain knowledge, the project implementation needed to be finished and delivered within the 

dedicated timeframe. 

 

Planning ahead was challenging at the beginning of the project because the usefulness of the virtual hardware 

simulator for the company was not apparent. In this generic situation, planning for the future was not possible. By 

discussing the progress with the main stakeholders frequently, the project goal became apparent, and the short-

term and long-term plans were identified. 



Eindhoven University of Technology 
 

51 
 

13. Project Retrospective 
 

This chapter finalizes the technical report by reflecting on the project based on the author’s point of view.  

13.1    Reflection 
The project that was conducted at Thermo Fisher Scientific brought me many challenges and yet an exciting 

experience. These challenges gave me many opportunities to improve myself on both personal and professional 

skills.  

 

The goal of the project was to find beneficial uses of the digital twinning in the product development process of 

the company and implement a proof of concept for these uses. At the beginning of the project, I had to gather 

domain knowledge of the TEM structure and its development processes. 

 

After understanding the capabilities of digital twinning, I gathered domain knowledge and identified the main 

problems. The problem identification took a very long time and was challenging. To identify them, meeting with 

various people was helpful. Step by step, I demonstrated presentations and prototypes to these people in the 

company, and their feedback was valuable. These meetings were also beneficial to make correct design decisions 

for the VHS. 

 

The implementation is a proof of concept. Therefore, a modular design for the VHS was essential for future 

development. During the implementation, I was continually aiming to use the SOLID principle to make the 

simulator extensible, easy-to-understand, and maintainable. 

 

To summarize, I have had a challenging but eye-opening experience with this project. It was an excellent 

opportunity not only to improve my technical skills related to software development but also to enhance my 

organizational skills. Managing stakeholders and cooperating with people from a multidisciplinary team have 

improved both my professional and personal skills. The knowledge and experience that I gained during this project 

have opened a promising future for me. 





Eindhoven University of Technology 
 

53 
 

Glossary 
 

TFS Thermo Fisher Scientific 

VHS Virtual Hardware Simulator 

CCD Charged Coupled Device 

BHV Behavior Layer 

MDL Module Layer 

HAL Hardware Abstraction Layer 

MBE Model-Based Engineering 

DC Direct Current 

API Application Programming Interface 

CI Continuous Integration 

COM Component Object Model 

TEM Transmission Electron Microscope 

PDEng Professional Doctorate in Engineering 

MBPD Model-Based Product Development 

OMG Object Management Group 

GUI Graphical User Interface 

UML Unified Modelling Language 

SYSMOD System Modelling 

3D Three Dimensional 

CAD Computer-Aided Design 

MC Motion Controller 

FPS Frame Per Second 

IP Internet Protocol 

DLL Dynamic-Link Library 

SDK Software Development Kit 

XML Extensible Markup Language 





Eindhoven University of Technology 
 

55 
 

Bibliography 
 

1. Len Bass, (3rd edition). Software Architecture in Practice. 

 

2. Tim Weilkiens, System Engineering with SysML/UML, 2008. 

 

3. A Deloitte series on Industry 4.0, digital manufacturing enterprises, and digital supply networks 

https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/cip/deloitte-cn-cip-industry-4-0-

digital-twin-technology-en-171215.pdf 

 

4. Tretmans, J. (Editor). / Tangram : model-based integration and testing of complex high-tech systems. 

Eindhoven : Technische Universiteit Eindhoven, Embedded Systems Institute, 2007. 231 p. 

https://research.tue.nl/en/publications/tangram-model-based-integration-and-testing-of-complex-high-

tech- 

 

5. Fei Tao, Meng Zhang, A.Y.C. Nee. Digital Twin Driven Smart Manufacturing. 2019 

https://books.google.nl/books?hl=en&lr=&id=PvKGDwAAQBAJ&oi=fnd&pg=PP1&dq=digital+twin

+driven+smart+manufacturing&ots=hk0mJOMjkj&sig=LsPnGTOLXRvU02aXEHv-

jBkv7pQ#v=onepage&q&f=false 

 

6. Michael Grieves, John Vickers. Origins of the Digital Twin Concept. 2016 

 

7. Franz-Josef Kahlen, Shannon Flumerfelt, Anabela Alves. Transdisciplinary Perspectives on Complex 

Systems. 2017 

 

8. Zhuming Bi. Finite Element Analysis Applications. 2018 

 

9. Azad M. Madni, Carla C.Madni, Scott D.Lucero. Leveraging Digital Twin Technology in Model-

Based Systems Engineering. 2019 

 

10. [Online]. PRESPECTIVE software user documentation, 2020. 

https://unit040.atlassian.net/wiki/spaces/PUD/overview?homepageId=6979754 

 

11. [Online]. Unity user documentation, 2020: https://docs.unity3d.com/ 

 

12. [Online]. Windows Communication Foundation for Unity, 2016 

http://gyanendushekhar.com/2016/04/21/how-to-call-wcf-service-in-unity/ 

 

13. [Online]. Windows Communication Foundation, 2020 https://docs.microsoft.com/en-

us/dotnet/framework/wcf/whats-wcf 

 

14. [Online]. C# Design Patterns. 2020 https://refactoring.guru/design-patterns/ 

 

15. [Online]. Sample Use Case Example http://tynerblain.com/blog/2007/04/09/sample-use-case-example/ 

 

16. [Online]. Industry 4.0 and the digital twin https://www2.deloitte.com/us/en/insights/focus/industry-4-

0/digital-twin-technology-smart-factory.html 

 

17. [Online] PRESPECTIVE software: https://prespective-software.com/ 

 

18. [Online] Unity Game Engine: https://unity.com/  

 

19. [Online] Visual Components: https://www.visualcomponents.com/ 

 

20. [Online] SolidWorks: https://www.solidworks.com/ 

 

21. [Online] Siemens NX: https://www.plm.automation.siemens.com/global/en/products/nx/ 

 

https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/cip/deloitte-cn-cip-industry-4-0-digital-twin-technology-en-171215.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/cip/deloitte-cn-cip-industry-4-0-digital-twin-technology-en-171215.pdf
https://research.tue.nl/en/publications/tangram-model-based-integration-and-testing-of-complex-high-tech-
https://research.tue.nl/en/publications/tangram-model-based-integration-and-testing-of-complex-high-tech-
https://books.google.nl/books?hl=en&lr=&id=PvKGDwAAQBAJ&oi=fnd&pg=PP1&dq=digital+twin+driven+smart+manufacturing&ots=hk0mJOMjkj&sig=LsPnGTOLXRvU02aXEHv-jBkv7pQ#v=onepage&q&f=false
https://books.google.nl/books?hl=en&lr=&id=PvKGDwAAQBAJ&oi=fnd&pg=PP1&dq=digital+twin+driven+smart+manufacturing&ots=hk0mJOMjkj&sig=LsPnGTOLXRvU02aXEHv-jBkv7pQ#v=onepage&q&f=false
https://books.google.nl/books?hl=en&lr=&id=PvKGDwAAQBAJ&oi=fnd&pg=PP1&dq=digital+twin+driven+smart+manufacturing&ots=hk0mJOMjkj&sig=LsPnGTOLXRvU02aXEHv-jBkv7pQ#v=onepage&q&f=false
https://unit040.atlassian.net/wiki/spaces/PUD/overview?homepageId=6979754
https://docs.unity3d.com/
http://gyanendushekhar.com/2016/04/21/how-to-call-wcf-service-in-unity/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://refactoring.guru/design-patterns/
http://tynerblain.com/blog/2007/04/09/sample-use-case-example/
https://www2.deloitte.com/us/en/insights/focus/industry-4-0/digital-twin-technology-smart-factory.html
https://www2.deloitte.com/us/en/insights/focus/industry-4-0/digital-twin-technology-smart-factory.html
https://prespective-software.com/
https://unity.com/
https://www.visualcomponents.com/
https://www.solidworks.com/
https://www.plm.automation.siemens.com/global/en/products/nx/


Eindhoven University of Technology 
 

56 
 

22. [Online] PIXYZ plugin for Unity: https://www.pixyz-software.com/plugin/ 

 

 

 

https://www.pixyz-software.com/plugin/


Eindhoven University of Technology 
 

57 
 

About the Authors 
 

 

 

  

 

 

 

Enkhdavaa Batlkhagva received his Bachelor’s degree in Electronics 

Engineering Technology from the Mongolian University of Science and 

Technology in 2015. After his graduation, he worked as a developer in 

a start-up company, which develops home automation systems. During 

his work, he specialized in the schema design of sensors and the 

implementation of wireless networks. In 2017, he was an intern at 

Innovations for High-Performance Microelectronics Institute in 

Frankfurt, Germany. The internship focused on the topic of a wireless 

sensor network, as well as field power measurement. Subsequently, he 

worked on a payment system of a bank as an embedded software 

engineer for almost one year. He is interested in Embedded Systems, 

Machine Learning, Internet of Things, and Software Architecture. 

  

 

 

 

 



PDEng SOFTWARE TECHNOLOGY 

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl


	Digital Twin - Virtual Hardware Simulator for a Transmission Electron Microscope
	Foreword
	Preface
	Acknowledgments
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1.  Introduction
	1.1    Context
	1.2    Goal
	1.3    Methodology
	1.4    Outline

	2.  Domain Analysis
	2.1    Transmission Electron Microscope
	2.2    Microscope Development
	2.2.1.   Design phase
	2.2.1.1.   TEM software
	2.2.1.2.   Motion controller
	2.2.1.2.1.   Device-specific library
	2.2.1.2.2.   Firmware

	2.2.1.3.   Mechanical design

	2.2.2.   Implementation phase
	2.2.3.   Design verification phase

	2.3    Conclusion

	3.  Problem Analysis
	3.1    Problem statement
	3.1.1.   Challenges in firmware development
	3.1.2.   Software development dependencies
	3.1.3.   Limited hardware resources

	3.2    Solution
	3.3    Conclusion

	4.  Technology Exploration
	4.1    Commercial software products
	4.2    Criteria for selecting software products
	4.2.1.   PRESPECTIVE
	4.2.2.   Visual Components
	4.2.3.   Solidworks
	4.2.4.   Siemens NX

	4.3    Selecting a simulation software product
	4.4    Conclusion

	5.  Stakeholder Analysis
	5.1    Thermo Fisher Scientific
	5.2    TU/e
	5.3    Conclusion

	6.  Analysis – Requirements, System Context, and Use Cases
	6.1    Introduction
	6.2    System requirements
	6.2.1.   REQ1.1-Provide real-time sensor simulation
	6.2.2.   REQ1.2-Provide a visual representation for real-time hardware motion

	6.3    User requirements
	6.4    Non- functional requirements
	6.4.1.   Compatibility
	6.4.2.   Extensibility
	6.4.3.   Availability

	6.5    System Context
	6.5.1.   System context
	6.5.2.   Information Flow
	6.5.2.1.   Command
	6.5.2.2.   Computer-Aided-Design (CAD) file
	6.5.2.3.   Actuator and sensor signal data
	6.5.2.4.   User input
	6.5.2.5.   Sensor command


	6.6    Use cases
	6.7    Conclusion

	7.  System Design
	7.1    Introduction
	7.2    Step 1
	7.2.1.   Creating virtual hardware

	7.3    Step 2
	7.3.1.   Design Choice 1
	7.3.2.   Design Choice 2
	7.3.3.   Design Decision

	7.4    Conclusion

	8. System Architecture
	8.1    Architecture design
	8.2    Unity game engine
	8.2.1.   Visualizing motion behavior
	8.2.2.   Sensor simulation

	8.3    StagePlugin
	8.4    StageAdapter
	8.4.1.   Configuration File
	8.4.2.   Communication Technology

	8.5    Conclusion

	9. Implementation
	9.1    Development environment
	9.2    Simulation on Unity game engine
	9.3    StagePlugin
	9.4    StageAdapter
	9.4.1.   Configuration file

	9.5    System behavior
	9.6    Conclusion

	10. Verification
	10.1    Preparing a test environment
	10.2    Verification
	10.2.1.   Use case: Visualize the hardware motion
	10.2.2.   Use case: Testing desired behavior
	10.2.3.   Use case: Testing desired behavior (fault scenario)
	10.2.4.   Visualizing the physical hardware behavior

	10.3    Conclusion

	11. Conclusions & Recommendations
	11.1    Summary
	11.2    Recommendations
	11.2.1.   Short-term
	11.2.2.   Long-term


	12. Project Management
	12.1    Introduction
	12.2    Project Planning and Scheduling
	12.3    Project execution
	12.4    Risk analysis
	12.5    Challenges

	13. Project Retrospective
	13.1    Reflection

	Glossary
	Bibliography
	About the Authors




