

Model as a Service : Towards a Discovery Platform for
Internet of Food
Citation for published version (APA):
Muctadir, H. M. (2020). Model as a Service : Towards a Discovery Platform for Internet of Food. Technische
Universiteit Eindhoven.

Document status and date:
Published: 22/10/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/7ef2d883-50f6-46a0-aefd-3e89482bf2bc

PDEng SOFTWARE TECHNOLOGY

PDEng THESIS REPORT

Model as a Service: Towards a Discovery Platform
for Internet of Food

Hossain Muhammad Muctadir
10/2020
Department of Mathematics & Computer Science

Model as a Service: Towards a Discovery Platform for Internet of

Food

Hossain Muhammad Muctadir

October 2020

Eindhoven University of Technology

Stan Ackermans Institute – Software Technology

PDEng Report: 2020/064

Confidentiality Status: Public

Partners

Sustainable Food Initiative and Internet of

Food Consortium including:

• Wageningen University & Research

• Unilever Research & Development

• NIZO Food Research BV

• ISPT Foundation

• Symrise AG

Eindhoven University of Technology

Steering Group
(ordered alphabetically by

first name)

Prof.dr. Jakob de Vlieg

Dr. Michiel Gribnau

Dr. Rogier Brussee

Dr. Serguei Roubtsov

Dr. Yanja Dajsuren, PDEng

Date October 2020

Composition of the Thesis Evaluation Committee:

Chair Dr. Yanja Dajsuren, PDEng

Members
(ordered alphabetically

by first name)

Prof.dr. Jakob de Vlieg

Dr. Michiel Gribnau

Paul van Zoggel MA

Dr. Renata Medeiros de Carvalho

Dr. Serguei Roubtsov

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Date October, 2020

Contact address Eindhoven University of Technology
Department of Mathematics and Computer Science
Software Technology
MF 5.080 A
P.O. Box 513
NL-5600 MB
Eindhoven, The Netherlands
+31 402744334

Published by Eindhoven University of Technology

PDEng Report 2020/064

Abstract The Internet of Food (INoF) consortium, which is part of Sus-
tainable Food Initiative (SFI), aims to address the future food
safety challenges using engineering solutions to make the produc-
tion process more efficient and sustainable. Inter-organization col-
laboration can stimulate fast innovation and sustainable research
processes by significantly reducing data loss as well as miscom-
munication. Such collaboration requires an appropriate digital in-
frastructure that can maintain interoperability among diverse data
formats from different sources. This infrastructure should also be
able to facilitate sharing of data and services without companies
having to share IP (Intellectual Property) or replicate correspond-
ing execution environments. As part of the INoF, this project aims
to develop a prototype for such infrastructure and set up a baseline
for building an effective model discovery platform. In this context,
models are computational units that can provide insights into food
products. Having access to results from more models, companies
can make better decisions and speed up product development.
During this project, a microservice based architecture was de-
signed and a prototype was developed that exploited the idea of
Model as a Service (MaaS). It has the functionality to offer mod-
els in the form of web services allowing organizations other than
the owner of the models to use them. For achieving interoper-
ability among different data sources in the context of this project,
functionalities, such as dynamic model parameter mapping and
on-demand unit conversion, were implemented into this prototype.
After execution, results from several models belonging to differ-
ent organizations can also be viewed through this platform. One
of the major goals of this project was to demonstrate the benefits
and possibilities of sharing model results to attract further collab-
oration. Therefore, several INoF partners were closely involved in
this project. The MaaS prototype was also demonstrated to all the
INoF partners and earned quite a few appreciations.

Keywords Internet of Food, Sustainable Food Initiative, Model Sharing, Data
Fusion, Model as a Service, Integrative Data Science, Model
Driven Decision Making

Preferred reference Model as a Service: Towards A Discovery Platform for Internet
of Food. Eindhoven University of Technology, PDEng Report
2020/064, October 2020.

Partnership This project was supported by Eindhoven University of Technol-
ogy, Internet of Food Consortium, and TKI

Dit project ontvangt financiële steun van de Topsector Agri &
Food. Binnen de Topsector werken bedrijfsleven, kennisinstellin-
gen en de overheid samen aan innovaties voor veilig en gezond
voedsel voor 9 miljard mensen in een veerkrachtige wereld.

Disclaimer Endorsement Reference herein to any specific commercial products, process,
or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the Eindhoven University of Technol-
ogy and Company name. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the Eind-
hoven University of Technology, Internet of Food Consortium, and
TKI, and shall not be used for advertising or product endorsement
purposes.

Disclaimer Liability While every effort will be made to ensure that the information con-
tained within this report is accurate and up to date, Eindhoven Uni-
versity of Technology makes no warranty, representation or under-
taking whether expressed or implied, nor does it assume any legal
liability, whether direct or indirect, or responsibility for the accu-
racy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks
and/or service marks of their respective owners. We use these
names without any particular endorsement or with the intent to in-
fringe the copyright of the respective owners.

Copyright Copyright © 2020, Eindhoven University of Technology. All
rights reserved. No part of the material protected by this copyright
notice may be reproduced, modified, or redistributed in any form
or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system,
without the prior written permission of the Eindhoven University
of Technology, Internet of Food Consortium, and TKI.

Eindhoven University of Technology

Foreword

The Netherlands is the second-largest exporter of food in the world, and every year the sector gener-
ates ca. C50 billion of added value and accounts for more than C80 billion of exports. In comparison,
the global agriculture revenue is approximately $4.8 trillion and only gets larger. If current trends con-
tinue, caloric demand will increase by 70 percent in 2050 and crop demand for human consumption
and animal feed will increase by at least 100 percent. Finally, there is no way around it: food produc-
tion must reduce its ecological footprint and become sustainable in the very near future! Meeting this
demand won’t be easy! According to the World Economic Forum a systemic transformation is needed
to deal with the fast-growing demand for high quality food products, and the challenges imposed to
meet sustainability goals.

Science and technology are increasingly playing a role to implement the required changes to produce
enough healthy, tasty and affordable food. The food sector will have to work with more precision
and control and enough data on every part of the process is needed, As a result, the agri-food sector
has become extremely data intensive and has to benefit from new disruptive technology developments,
e.g. in the field of life sciences, medicine, food sciences, information technology, artificial intelligence
(A.I.), (multi-)sensing and computer vision to keep the sector future proof. This has resulted in a new
science and research area currently under development: the interdisciplinary field of AgriFoodTech,
i.e. crossovers between the agri & food domain and high-tech & digitization. In particular, there is a
lot of potential value in data integration between the various steps and activities within the food value
chain. Total integration of data and models throughout the entire chain, from seeds and fertilizers,
towards feedstock, livestock, agriculture, food processing and retail, is clearly a moon-shot project
and aimed to solve several long-term “Data Inside and Digitization” challenges in the food sector.
Nevertheless, chain integration and consumer-driven chain reversal have become achievable by fast
developments in A.I., digitization, (multi)sensing and computer vision and might even rewrite entire
innovation and business models in the food sector.

This PDEng research project by Hossain Muctadir and this report, are part of the sustainable food ini-
tiative (SFI). In this initiative, companies and knowledge institutes teamed up to produce healthy and
safe food products at the lowest possible environmental footprint. An important goal of the SFI pro-
gram is to develop a shared roadmap for digitally enhanced discovery. This means speeding up food
related R&D and the development of sustainable, flexible and precise food production processes by
using modern data fusing, data analytics, modeling, computer simulation and other digital techniques.
The goal of the digital roadmap to translate complex data into useful knowledge and to explore new
ways of data-driven experimentation, e.g. in silico explorations of food combinations and food pro-
cessing or multi-sensing-based decision making In this PDEng project, a first, but important step has
been taken towards the development of a discovery informatics platform to connect cross-type data
and models between ecosystem partners, each having their own models, their own data, their own
software and ICT solutions and their own IP. Note that partners may, but need not be in different orga-

Model as a Service: Towards a Discovery Platform for Internet of Food i

Eindhoven University of Technology

nizations. Such an informatics infrastructure speeds up product innovation by reducing the barrier for
collaboration and increasing reuse of data and knowledge. The strategic starting point is to provide
easy access to different models by gluing various big data layers together through high quality ontolo-
gies and meta-data ETL (Extract-Transform-Load).protocols A.I. and other data analytics algorithms
usually needs access to heterogenous data obtained by e.g. (multi)sensing and data stored in multiple
historical data bases. Reuse of existing analysis methods, and automated support for time consum-
ing data transformations allow to focus on new analyses and data fusion that requires more extensive
domain and data-science knowledge such as dealing with noisy and incomplete data. The developed
computer science design is a layered microservice architecture based on FAIR (Findable, Accessible,
Interoperable and Reusable) principles. The architectural design choices allow both, future use of
Artificial Intelligence (A.I.) techniques (e.g. machine or reinforcement learning) or statistical models,
and the use of visualizations or dashboards. This approach will be crucial to translate the complex
data sets from the food value chain into new scientific insights and to improve sustainability of food
production in the near future.

In a first prototype Hossain Muctadir showed that different types of data, ranging from ingredient data
via product development and processing data to consumer data can be combined, adapted, and ana-
lyzed to answer relevant food-product development questions and to encourage inter-organization col-
laborations between companies and/or academic institutes. Although his work focused on demonstrat-
ing the possibility to exchange existing proprietary foods models between the involved SFI ecosystem
partners based on a “share models without giving these away” basis, it is clear that the underlying
computer and data science concepts developed in this project are generic enough to support other
data-driven challenges in the food domain. Potential applications are e.g. in silico food product devel-
opment, lights-out factories with sensor-based automated monitoring, and data-driven quality control
using text mining and machine learning on vocabulary of sensory panels.

In short, in this PDEng project Hossain demonstrated successfully, that microservice architectures and
using FAIR (Findable, Accessible, Interoperable and Reusable) principles to translate cross-type data
allows to bring data & predictive models from different sources together in a single digital architec-
ture. This greatly extends the potential to use computer models as actionable knowledge in the food
industry.

Hossain, you have done a great job, especially considering the difficult circumstances you had to
work in due to the corona measures. All through the project you have proved to be an exceedingly
well organized, very hardworking, independent and problem-solving student. Supervising you is a
great pleasure! Thank you very much for all your excellent work and achievements making this first
phase of the SFI “Data Inside” moonshot project a success. I wish you the very best with the rest of
your career!

Prof.dr. Jakob de Vlieg

Chair of the Applied Data Science (ADS) research group

Lead AgriFoodTech@TU/e and the JADS AgriFood&Data program line

September 2020

ii Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

With ever faster and changing consumer demands, food industry needs to speed up its innovation and
production process to become more efficient and sustainable. A clear example of this is the recent
COVID-19 crises, which has led to big changes in consumer behavior and ingredient availability. On
the one hand, consumers moving from out of home eating to in home meal making, which requires a
change in the products offered. On the other hand, raw materials not being available due to transport
issues, which require rapid replacement of these ingredients in the products on shelf .

A key requisite for tackling these changing consumer demands is a better usage and sharing of the
available data and model results via a linked data infrastructure. Different types of data, ranging
from ingredient data via product development and processing data to consumer understanding, also in
combination with scientific data are stored in different places and databases with different structures
at different companies, universities and other institutes and cannot be shared easily. This also holds
for proprietary products and process property models, which cannot talk to each other.

As said above, the absence of common standards and tools to (conditionally) use each other’s data
and model results hampers the rate of innovation in the food industry.

It would be great, if one could create an infrastructure or platform which would allow the (condi-
tional) sharing of data and results of models from different organizations and model owners as this
will create a much more sustainable research process with a significant reduction in data loss and
miscommunication.

In this report, Hossain Muctadir describes how he has developed an infrastructure for sharing the
results of models of different companies and organizations via a Models as a Service (MaaS) approach.
Together with his team of students he realized a first implementation of the infrastructure, which now
can be demonstrated to users. For outsiders, it always remains impressive to see what a small, well
led team can do on such a small-time period.

The availability of such a demo is key in several ways. First, it helps the senior managers at different
organizations to understand what might be achieved, what the potential of such an approach might
be, increasing the buy-in of senior stakeholders. Additionally, it helps to understand the academic
community what challenges need to be solved to bring this to the next level. Examples of this are the
challenges around the alignment of ingredient naming and ingredient properties in the Foods area and
the challenge of exchanging the model information in a unique and well-defined way. Both aspects
are essential for defining the direction and support of follow-up projects. In this the impact of the
work of Hossain should not be underestimated as it is the first step of a long journey.

I would like to thank Hossain for all work he did. He operated in a very organized, transparent and
focused way, always delivering what he had promised. When issues arose he put them on the table
and openly discussed ways to handle them. This, next to his strong commitment, helped to make the
project a big success.

In summary: Hossain, many thanks for all your work and lots of success in the next steps of your
career.

Dr. Michiel Gribnau

Unilever R&D, Wageningen

August 2020

Model as a Service: Towards a Discovery Platform for Internet of Food iii

Eindhoven University of Technology

iv Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Preface

This report presents the activities and analysis performed during the execution of the project "Model
as a Service: Toward a Discovery Platform for Internet of Food." This project was realized by Hossain
Muhammad Muctadir, who is also the author of this report, as the partial fulfilment of the graduation
for the Professional Doctorate in Engineering (PDEng) in Software Technology program. It is a two-
year doctoral level technical designer program offered by the Stan Ackermans Institute at Eindhoven
University of Technology.

This project was executed in the context of the Internet of Food (INoF) project that is a consortium
of leading food production organizations and research institutions. During this project, the author
developed a prototype infrastructure where one organization can share their computational models,
which can calculate properties of food products, to other organizations as a service.

The intended reader of this report are both technical and non-technical. Chapters 1 and 2 explains
the project context and identifies the problems that this project aimed to solve. Moreover, the project
requirements and results are listed respectively in Chapters 4 and 7. The project management related
activities are explained in Chapters 3 and 8. Above mentioned chapters contain very little technical
details and are suitable for non-technical readers who want to understand what this project was about.

The design and architecture of the developed system is explained in Chapter 5, which should be un-
derstandable to people with basic knowledge of software engineering. Chapter 6 explains the imple-
mentation details, which are quite technical and require advanced knowledge of software development
to fully understand.

This report is ordered in such a way that it starts with the project context and problem definition.
These are followed by description of the implemented solution. The final chapters of this report are
about project results and future possibilities.

Hossain Muhammad Muctadir

September 2020

Model as a Service: Towards a Discovery Platform for Internet of Food v

Eindhoven University of Technology

vi Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Acknowledgments

I would like to express my gratitude to everyone who supported and guided me through this project.
Their contributions were essential for successfully completing this project.

I want to specially thank my supervisor Jakob de Vlieg who shared his ideas and guided me through
this project. Your feedbacks regarding the implementation and the report were essential for suc-
cessfully completing this PDEng graduation project. Moreover, I absolutely enjoyed our discussions
regarding various topics and it was a pleasure hearing your thoughts as well as being able to share
mine.

I am very thankful to my supervisor Michiel Gribnau. As an expert in food production domain,
you have tremendously helped me in understanding the domain concepts and guided me through this
unfamiliar terrain. I really appreciate your feedbacks and support not just in the technical but also with
the non-technical aspects of the project. Your collaboration was absolutely essential for successfully
completing this project.

I would like to express my heartfelt gratitude to my academic supervisor and the program director
of PDEng Software Technology Yanja Dajsuren. I learned many things from your guidance and
feedbacks not just during this project but also throughout my PDEng years. I believe that all your
advice will help me further in my career.

I am truly thankful to my second academic supervisor Serguei Roubtsov. I absolutely appreciate your
critical attitude. You always asked the right questions that were essential to steer the project to the
right direction. Specially, you feedbacks regarding the graduation report were crucial.

I am grateful to Rogier Brussee for all your contributions through this project. Your feedbacks and
curious questions shaped certain aspects of this project as well as the final results. I really enjoyed
and learned a lot from the discussions we had.

I want to thank Görkem Simsek-Senel from Wageningen University and Research for her contribution
in developing related ontologies that were essential for developing one of the core components. As
an ontology expert, you also provided valuable feedbacks and guidelines regarding various aspects of
ontology based software development.

I want to acknowledge the contribution of the group of bachelors students from Eindhoven University
of Technology who helped me with the development activities during this project. Your efforts were
crucial for the success of this project and the quality of your work is quite high. I also want to thank
all the partners of the Internet of Food (INoF) consortium who asked relevant questions and provided
feedback during INoF meetings as well as demonstrations. I am thankful to all my colleagues from
PDEng program for your feedbacks and shared experiences during the last two years. Together we
solved many challenges and learned a lot. I would like to specially thank PDEng ST secretary Desiree
van Oorschot for her logistical support throughout the PDEng program.

Model as a Service: Towards a Discovery Platform for Internet of Food vii

Eindhoven University of Technology

Last but not least, I want to express my deepest and most sincere gratitude to my wife Sanjida Hos-
sain. Throughout my PDEng, you remained by my side and provided unconditional support, encour-
agement, joy, as well as love. Moreover, I am eternally grateful to my parents and my brother in
Bangladesh for their continuous support.

Hossain Muhammad Muctadir

September 2020

viii Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Executive Summary

In recent years, the world has seen unprecedented growth of population that, according to United Na-
tions, can increase by three billion by the year 2050 threatening the future food safety. The Sustainable
Food Initiative (SFI) aims to address the future food safety challenges by combining fundamental re-
search and fast innovation to produce new generation of sustainable food products. The Internet of
Food (INoF) consortium, which is part of the SFI, intends to encourage inter-organization collabo-
ration by creating a digital highway where organizations related to food production can collaborate.
Being part of the INoF, this project aims to build a prototype for such collaboration platform.

In the context of the food production domain, models are computational units that can calculate var-
ious properties of food products based on the information regarding the conditions, processes, and
ingredients necessary to produce them. These models play a key role in the modern food production
chain by automating many of the manual processes, which reduces cost and makes the processes more
sustainable. Typically, these models are developed in-house and used almost exclusively by their own-
ers. Sharing these models or their results can instigate innovation and make a significant impact on
the global food safety goals.

Sharing models or results from them requires a standardized platform that can interact with the mod-
els. Developing such a system is a complex task and involves solving several technical as well as
non-technical challenges. One of the key technical challenges is dealing with the heterogeneous na-
ture of the models as they are typically developed for in-house usage and therefore, do not follow any
generally accepted standard. Another major challenge is about the distribution of the model artifacts
(e.g., codes, executables). Sharing these artifacts with other companies is not feasible as the models
are intellectual properties of their owners. Moreover, running these models often requires special-
ized setup that are typically expensive and therefore, defeats the sustainability goals. Consequently, a
standardized platform is needed that can address these challenges and facilitate the sharing of model
results among companies. Developing such a platform requires advanced usage of software engi-
neering techniques and joint effort of key players from the food production domain. The goal of this
project was to develop a prototype of a sharing platform for models and demonstrate its possibilities
as well as capabilities to potential partners to encourage further collaboration.

During this project, a prototype sharing platform was developed that had the functionality to con-
nect models from different sources and offer them as a service to external parties using modern web
technologies. This concept was named Model as a Service (MaaS). It offered the functionality to
define a food product that included the corresponding ingredients, processing steps, and packaging
information. A food product definition and one or more models could be paired together to define a
simulation that could be executed. While executing a simulation, corresponding models are run with
values from the food product definition. To do that, the prototype implemented a mapping mechanism
that mapped appropriate properties of food product definition to model input parameters. This feature
was implemented using a computational model ontology that was developed in collaboration with

Model as a Service: Towards a Discovery Platform for Internet of Food ix

Eindhoven University of Technology

the Wageningen University and Research. Moreover, this ontology of measurement (OM2) was used
to convert between units of measurements in case the food product definition and the corresponding
model input parameter had a mismatch.

The MaaS prototype was designed and developed based on microservice architecture where differ-
ent software components were independent microservices that communicated among themselves over
REST endpoints. The prototype implements gateways that can connect heterogeneous and remotely
located models to the MaaS infrastructure. A permission system was implemented that allowed com-
panies other than the model owner to consume services from remote models. A hybrid storage in-
frastructure was implemented to store structured data as well as ontology related information. A
web application was also developed that provided intuitive web-based user interface to consume the
services offered by the MaaS infrastructure. Finally, all the microservices were made deployable us-
ing Docker containers, which made it versatile enough to run on almost all general purpose cloud
infrastructure and local servers.

The final version of the MaaS prototype was demonstrated to the INoF partners and earned quite a
few compliments. During the development of MaaS, several research possibilities and improvement
opportunities were discovered. These points and the MaaS prototype itself will serve as a baseline for
developing a production grade MaaS system.

x Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Contents

Foreword i

Preface v

Acknowledgements vii

Executive Summary ix

List of figures xv

List of tables xvii

Glossary xix

1 Introduction 1

1.1 World Population and Food Safety . 1

1.1.1 Sustainable Food Initiative (SFI) . 1

1.1.2 Internet of Food (INoF) . 2

1.2 Project Context . 3

1.3 Report Outline . 3

2 Problem Analysis 5

2.1 Domain Analysis . 5

2.1.1 Food Product Definition . 5

2.1.2 Computational Model . 6

2.1.3 Simulation . 7

2.2 Problem Definition . 7

2.3 Project Goal . 8

2.4 Assumptions . 9

2.5 Constraints . 9

Model as a Service: Towards a Discovery Platform for Internet of Food xi

Eindhoven University of Technology

3 Stakeholder Analysis 11

3.1 Stakeholders by Organization . 11

3.1.1 Eindhoven University of Technology (TU/e) 11

3.1.2 Unilever Nederland Holdings B.V . 14

3.1.3 Wageningen University and Research (WUR) 14

3.1.4 Other Organizations . 15

4 Requirement Analysis 17

4.1 Introduction . 17

4.2 Usecases . 17

4.3 Requirements . 18

4.3.1 Functional Requirements . 19

4.3.2 Non-Functional Requirements . 23

5 System Architecture and Design 25

5.1 Expected Activities of MaaS . 25

5.2 Design Challenges . 26

5.2.1 Heterogeneous Data Formats and Interoperability 27

5.2.2 Localization and Accessibility . 27

5.2.3 Privacy and Ownership . 27

5.2.4 Model Discovery . 27

5.3 Design Decisions . 27

5.3.1 Microservice Architecture . 27

5.3.2 Ontology Based Data Normalization . 29

5.3.3 Heterogeneous Database System . 30

5.4 Software Component Decomposition . 30

5.4.1 Gateway and Computational Model . 30

5.4.2 MaaS Infrastructure Backend . 30

5.4.3 Frontend . 31

6 Implementation 33

6.1 Technology Choice . 33

6.1.1 Web Service Framework . 34

6.1.2 Data Storage and Related Libraries . 34

6.2 Implementation of the Major Design Decisions . 35

6.2.1 Microservice Architecture . 35

xii Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

6.2.2 Ontology in MaaS Infrastructure . 43

6.3 Deployment and Running the Project . 48

7 Verification and Validation 51

7.1 Verification . 51

7.1.1 Unit Testing . 51

7.1.2 Integration Testing . 53

7.1.3 Code Consistency Checking . 53

7.2 Validation . 54

7.2.1 Regular Stakeholder Feedback . 54

7.2.2 Stakeholder Demonstration . 54

7.2.3 Project Goal Evaluation . 54

8 Project Management 57

8.1 Way of Working . 57

8.2 Waterfall Software Development Model . 57

8.2.1 Project Timeline . 58

8.3 Agile Methodology . 59

8.3.1 Scrum . 59

8.3.2 Agile/Scrum in MaaS . 60

8.4 Software/Web Engineering Project (SEP) . 61

8.5 Risk Management . 61

8.6 Communication Plan . 63

8.6.1 Weekly Update Meetings . 63

8.6.2 Project Steering Group Meetings . 63

8.6.3 On-Demand Meetings . 63

8.6.4 Communication Medium . 63

9 Research Possibilities and Future Work 65

9.1 Limitations and Future Work . 65

9.1.1 Diverse Models . 65

9.1.2 Unit Conversion . 66

9.1.3 User Authentication . 66

9.1.4 Usage of Ontology . 67

9.1.5 Cost and Payment . 67

9.1.6 Processing Standard . 68

Model as a Service: Towards a Discovery Platform for Internet of Food xiii

Eindhoven University of Technology

9.1.7 Performance . 68

9.2 Research Possibilities . 68

9.2.1 Model Parameter Mapping . 68

9.2.2 Guidelines for Model Development . 69

9.2.3 Common Ontology for Model . 69

9.2.4 Standardization of Ingredient Description 69

10 Conclusion 71

10.1 Results . 71

10.2 Delivered Artifacts . 72

10.3 Author’s Note . 72

A Running and Deploying the Project 79

A.1 Running on IDE . 79

A.1.1 Prepare Development Environment . 79

A.1.2 Dependency Management and Virtual Environment 80

A.1.3 Opening and Running the Project . 80

A.2 Run Project Using docker-compose . 81

A.3 Running Unit Tests . 82

B Endpoints in the Backend 83

B.1 Authentication API . 83

B.2 Model API . 83

B.3 Food Product API . 84

B.4 Simulation API . 84

B.5 Company API . 85

C Findings for Ontology of Units of Measure 87

C.1 Initial Assumptions . 87

C.2 Dimensions without Alternative Units . 87

C.3 Dimension One . 89

C.4 Insufficient Dimension Information . 89

D MaaS Frontend Pages 97

xiv Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

List of Figures

2.1 Standardized infrastructure overview for sharing model results 8

3.1 Stakeholders and related organizations . 12

4.1 Use Cases . 18

4.2 Relation among the Functional and Non-Functional Requirements 19

4.3 Requirement breakdown structure . 20

5.1 Activity diagrams for running a simulation and viewing results 26

5.2 Differences between Monolithic and Microservice Architecture 28

5.3 MaaS microservice architecture . 29

5.4 Software system component diagram of the MaaS infrastructure 31

6.1 Configurations for backend web service . 36

6.2 IWebService Interface . 37

6.3 Routing modules of the web service component . 37

6.4 Class diagram of the query classes showing their inheritance relation 38

6.5 Class diagram showing the food product definition related classes 39

6.6 Class diagram showing the relation among model information, food product definition
and simulation related classes . 39

6.7 Class diagram showing hierarchy of the permission classes 40

6.8 Class diagram for user related classes . 41

6.9 ISimulate Interface . 41

6.10 Web service configurations for the gateway . 42

6.11 Data classes for storing model run results . 42

6.12 Transition among run statuses of a model . 43

6.13 Pages in the frontend and how they are connected (adapted from [1]) 44

6.14 Computational model ontology structure . 45

6.15 The class structure of the OM2.0 ontology [2] . 45

Model as a Service: Towards a Discovery Platform for Internet of Food xv

Eindhoven University of Technology

6.16 Ontology of tomato soup taste model input and output parameters 46

6.17 Example of mapping properties of food product definition to the model input parameters 47

6.18 Sequence diagram showing the usage of normalization component (adapted from [1]) 47

6.19 SparQlRunner class that communicates with GraphDB 48

6.20 Query result classes returned by SparQlRunner . 48

6.21 Class representation of a computational model ontology 49

6.22 Docker deployment diagram of MaaS infrastructure 50

8.1 Waterfall progress flows from the top to the bottom, like a cascading waterfall [3] . . 58

8.2 MaaS project timeline . 58

8.3 The Scrum Process . 60

9.1 Proposed overview for MaaS identity provider . 66

D.1 Available food product definitions for logged-in user 97

D.2 Ingredient list of food product definition . 97

D.3 List of available model for logged-in user . 98

D.4 Edit page for model properties and related permissions 98

D.5 Edit page of model parameters . 99

D.6 Inspect page for simulation . 99

D.7 Page showing list of all executed simulations . 100

D.8 Simulation result page showing results from multiple models 100

xvi Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

List of Tables

2.1 Example ingredient list for producing 100 grams of tomato soup 6

2.2 Example of a processing step represented in a tabular format 6

3.1 List of TU/e Stakeholders . 12

3.2 List of Unilever Stakeholders . 14

3.3 List of WUR Stakeholders . 15

3.4 Nizo Stakeholder . 15

6.1 Criteria matrix for choosing web service framework 34

6.2 Criteria matrix for choosing databases . 35

7.1 Unit tests for testing MaaS backend endpoints . 52

7.2 End-to-end tests for testing minimum functionalities needed for running a simulation 53

7.3 Statuses of functional requirements after implementation 55

C.1 Dimensions without alternative units . 87

C.2 Units without sufficient dimension information . 89

Model as a Service: Towards a Discovery Platform for Internet of Food xvii

Eindhoven University of Technology

xviii Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Glossary

API Application Programming Interface
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
INoF Internet of Food
JSON JavaScript Object Notation
KPI Key Performance Indicator
MaaS Model as a Service
OEM Original Equipment Manufacturer
OM2.0 Ontology of Units of Measure
PDEng Professional Doctorate in Engineering
PID Project Initiation Document
PSG Project Steering Group
REST Representational State Transfer
SFI Sustainable Food Initiative
ST Software Technology
TU/e Eindhoven University of Technology
URI Unified Resource Identifier
WP Work Package
WUR Wageningen University and Research

Model as a Service: Towards a Discovery Platform for Internet of Food xix

Eindhoven University of Technology

xx Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

1 Introduction

In recent years, the world has faced several major global challenges due to the unprecedented popu-
lation growth. Even after making significant advancements in the fields of agriculture and food pro-
duction, future food safety remains one of the major issues. Moreover, with the population growth,
the consumption of various global resources has also increased rendering the traditional way of food
production insufficient to meet the predicted demand in the coming years.

This chapter briefly explains the future food safety and how it is connected to this Professional Doc-
torate in Engineering (PDEng) graduation project. Section 1.1 provides information about Sustainable
Food Initiative (SFI) as well as Internet of Food (INoF) consortium and explains how they are con-
nected to each other. Section 1.2 explains the context of this PDEng graduation project in connection
to the INoF and briefly explains the major project deliverable. Finally, Section 1.3 presents an outline
of this report.

1.1 World Population and Food Safety

The world population has grown at a much higher rate during the last few decades than ever before.
Between the year 1960 and 2002, the number of humans has more than doubled [4]. Studies suggest
that the world population can reach ten billions by the year 2050 [5], which is three billion more
people compared to 2010. This also means there will be three billion more mouths to feed creating a
56% food gap considering the current rate of agricultural growth [5].

Studies also suggest that the world can see a significant economic growth in the coming years. As
a result, the relative income gap between the developed and developing countries will be much less
pronounced than it is today [6]. As incomes rise, people will start to consume more resources resulting
in a 593 million hectare agricultural land gap and 11 gigaton greenhouse gas mitigation gap [5].

To ensure the sustainable food safety for the world population in the near future, preparations need
to be taken as early as possible. Researchers have suggested various solutions for ensuring a sustain-
able food future. The majority of these solutions suggest increasing the production of food without
expanding agricultural land as one of the key steps for ensuring food security in the coming decades
[4][5][6][7].

1.1.1 Sustainable Food Initiative (SFI)

The Sustainable Food Initiative (SFI) is a mission driven community of leading food production ex-
perts and academics. The goal is to combine fundamental research and fast innovation to produce new
generation of food products that are safe, healthy, sustainable, as well as climate resilient [8]. SFI also

Model as a Service: Towards a Discovery Platform for Internet of Food 1

Eindhoven University of Technology

aims to create a community of digital food experts by organizing workshops on modern approaches
of food production. The whole initiative is widely supported by companies, knowledge/academic
institutions, and the Dutch Government [8].

SFI facilitates different activities to encourage research and innovation in order to be able to meet
future demand for sustainable, healthy, and safe food. One of these activities is called Field Labs.
These are practical hands-on trials in which companies and knowledge institutions purposefully de-
velop, test, as well as implement smart solutions for the future. They also form an environment in
which people learn to apply these solutions [8]. SFI also conducts various projects where the goal is
to bring technical and engineering solutions into the food production domain.

1.1.2 Internet of Food (INoF)

Internet of Food (INoF) is a consortium of leading food production and research organizations. It is
part of the SFI. The goal of INoF is to speed up innovation to create a more efficient and sustainable
food production process. Increasing the collaboration among related organizations is one of the key
steps to achieve this goal. Therefore, INoF aims to create a digital highway where organizations
related to food production can collaborate based on the FAIR (Findable, Accessible, Interoperable and
Reusable) principles to be able to create a sustainable research process, reduce loss of data, and avoid
miscommunications among organizations as well as individuals. The INoF consortium also envisions
the development of better sensing technologies and connecting smart sensors with the previously
mentioned digital highway to increase the operational efficiency and process optimization.

Nowadays, companies use various data intensive software systems for process automation. These
software components and related data are stored using proprietary databases and other storage tech-
niques. Moreover, these artifacts themselves are heterogeneous and typically owned by their produc-
ers. Therefore, sharing these private, sophisticated, and diversified information based on the FAIR
principle is very complex and currently available systems are far from optimal or nonexistent. The
INoF consortium aims to address these issues by dividing its activities into four work packages.

This PDEng project was part of Work Package 1 (WP1) of the INoF consortium. Developing an
infrastructure to facilitate collaboration for data-driven research projects was the main focus of this
work package. As part of this infrastructure, INoF aimed to develop a reliable and flexible database
system that would allow the automatic discovery and integration of various data and software artifacts.
To develop such infrastructure, WP1 identified the necessity of developing related ontology and aimed
to develop it interactively. In the context of this work package, all the developments were performed
in steps where each step had a development and evaluation phase.

The other work packages of the INoF consortium aimed to address the other aspects that are related to
efficient and optimal food production. The goal of Work Package 2 was discovering and controlling
high impact variables to make food production more efficient. To do that, it combined various product
properties with related sensors to find out most important attributes. The Work Package 3 aimed at
competence development in the area of digital food technology through organizing workshops on se-
lected specialized topics. The overall project management of the INoF was the main concern of Work
Package 4 that included ensuring optimal alignment among ongoing activities, maintaining an inven-
tory of similar projects, identifying opportunities of collaboration, preventing unwanted duplication,
and organizing stakeholder alignment meeting on a regular interval.

2 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

1.2 Project Context

This report represents and was written as part of the graduation project for the PDEng in Software
Technology program. It was executed under the WP1 of the INoF (explained in Section 1.1.2) con-
sortium in close collaboration with Unilever, Wageningen University and Research (WUR), Nizo, and
Eindhoven University of Technology (TU/e).

Unilever and Nizo are two of the most prominent names in the field of food production and research.
As global leaders, they think there are myriad opportunities for innovation and optimization in the
food production process. They understand the potential of digital technology and collaboration. As
a result, Unilever and Nizo have become key partners of the INoF consortium along with TU/e as
well as WUR. This PDEng graduation project took place in the context of this collaboration where
the author of this report, as a representative of the TU/e, contributed technical expertise, Unilever and
Nizo provided the majority of the domain knowledge, and WUR contributed in developing related
ontologies.

In the food production domain, a majority of the work that was previously done manually (e.g., sen-
sory taste testing) has been replaced by computer simulation and computation. This has made a
significant impact by decreasing the cost, increasing accuracy, and reducing food waste. The compu-
tational units that perform these computations are known as models. Each of these units can perform a
certain operation or set of operations. One example of such model is the taste model that can calculate
various sensory taste perceptions based on the ingredients of certain food products.

Typically, the production of one food product involves several models, e.g., bacteriological model,
cost model, and viscosity model. Companies create these models for their own use in the context of
the food products that they produce. However, models created by one company have the potential
to be reused in different companies or other departments within the same company for similar food
products. If achieved, this kind of collaboration can allow companies to access more data and there-
fore, help them take better informed decisions. This can make a global impact by ensuring optimal
usage of available resources and bringing the world one step closer to the sustainable food future.

Developing an infrastructure that allows sharing of models is a very complex task that requires time
and resources. Moreover, the heterogeneity of the models adds even more complexities to the existing
ones. However, the INoF consortium brings together several leading organizations from both the food
production and technical domain, which provides a very nice opportunity for building an experimental
system that can demonstrate the usefulness of a platform for sharing model results. This project aims
to build a prototype that can act as a baseline for developing such platform.

1.3 Report Outline

The following chapters of this report describe all the steps performed to achieve the project goals.
There are ten chapters in this report including the current one. The second chapter explains the prob-
lems that this project intended to solve. Chapter 3 talks about the stakeholders that were associated
with the project. The results of the requirement analysis are explained in Chapter 4.

After the requirement and problem analysis phase, the major design challenges became explicit. To
overcome these challenges a system architecture was designed, which was updated on several occa-
sions as implicit challenges become visible. The final architecture is presented in Chapter 5. The
implementation of the model sharing platform is described in Chapter 6. It is worth noting that Chap-

Model as a Service: Towards a Discovery Platform for Internet of Food 3

Eindhoven University of Technology

ters 5 and 6 are complimentary to each other as they both describe the same system from different
viewpoints and level of abstractions. Moreover, the implemented system was verified based on the
elicited requirements. The findings of this step are presented in Chapter 7.

This project solves very complex cross domain problems. Therefore, for successful completion, it is
essential to have proper project and process management in place, which are explained in Chapter 8.

As explained in Section 1.2, one of the main goals of this project is to develop a prototype platform
for sharing model results and while doing so, identify major technical challenges for developing a
similar production level system. Chapter 9 presents these findings and proposes possible future im-
provements.

The concluding part of this report is Chapter 10. It summarizes this report and discusses the project
in retrospect.

4 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

2 Problem Analysis

The idea of a sharing infrastructure is introduced in Chapter 1. This idea is explored in more details
throughout the following sections of the current chapter. First, Section 2.1 takes a closer look at the
domain and explains what a model is and how are they being used. The later sections discuss the
problems this PDEng project aimed to solve.

2.1 Domain Analysis

During the initial phases of this project, the main focus was on understanding the context and iden-
tifying related artifacts. Formally, these activities are known as domain analysis. It is a process by
which information used in developing software systems is identified, captured, and organized with the
purpose of making it reusable when creating new systems [9].

As explained in Section 1.2, this project was executed in the context of the Internet of Food (INoF)
consortium. Unilever and Nizo were two of the major partners of the INoF and the key stakeholders
(details in Section 3.1.2) of this PDEng project. Therefore, the majority of the domain knowledge
came from them. Moreover, other INoF partners also provided information that were found to be
crucial in the later stages of this project. This section only presents the domain concepts that are
relevant and useful for the rest of the report.

2.1.1 Food Product Definition

A food product definition defines how the corresponding item is produced. This definition includes
information regarding the required ingredients, processing steps, and packaging methods. The defini-
tion can also include certain properties of the corresponding product (e.g., expected pH of a tomato
soup). The ingredients and processing steps are together called a recipe.

A recipe contains a list of necessary ingredients and their quantities for producing a certain food
product. The Table 2.1 shows an example list of ingredients for producing 100 grams of tomato soup.
One important thing to note in this table is the Ingredient Code column. Typically, there are hundreds
of variants of one ingredient. These codes uniquely identify each of the ingredients and their variant.
This means a code (e.g., tomato012) not only identifies an ingredient (e.g., Tomato) but also the variant
of the corresponding ingredient (e.g., red tomato acquired from a certain farmer at a certain time). As
the same ingredient acquired from diverse sources can have different properties (e.g., color, taste), the
ingredient code makes them uniquely identifiable and provides the possibility to adjust the recipe to
ensure a consistent end result.

Another aspect of using the unique code is that it enables unambiguous communication among differ-

Model as a Service: Towards a Discovery Platform for Internet of Food 5

Eindhoven University of Technology

Table 2.1: Example ingredient list for producing 100 grams of tomato soup

Ingredient Name Ingredient Code Amount Unit
Salt salt001 4 gram
Sugar sugar002 2 gram
Vinegar vin005 2 gram
Water water 74 gram
Tomato tomato012 16 gram

ent software systems. As a result, Unilever uses a similar identifier system not just in the ingredient
list but also in other places while defining a food product. Moreover, the company sometimes uses
one additional identifier to facilitate external communication.

As mentioned earlier, processing steps are also part of a recipe. Each of these steps are sets of me-
chanical and/or chemical operations performed to the ingredients of the corresponding food product.
For specifying processing, Unilever follows the ISA-88 [10] standard, which is a set of guidelines and
terminologies for batch processing. It also defines a consistent set of standards for physical model,
procedures, and recipes.

Table 2.2: Example of a processing step represented in a tabular format

Processing Step Equipment Property Value Unit
Speed 500 rpm

Mixing Mixer
Duration 90 second

After careful analysis and discussion with the stakeholders, it was found that a simpler representation
of the ISA-88 was sufficient for this project. Afterwards, this representation was restructured into a
tabular format. An example of such a processing step is shown in Table 2.2. The important attributes
of a processing step are name, one or more associated equipment, and one or more properties with
their corresponding values and units.

2.1.2 Computational Model

A model is a computational unit that takes a food product definition as input and outputs certain
properties of it. For example, a model can calculate the sensory taste perception of tomato soup
based on its recipe. While running, a model can use all or a subset of attributes from a food product
definition.

Computational models play an important role in optimizing the food production process as they reduce
the experimental efforts for developing food products, which would take more time and resources
otherwise. Typically, food production companies develop models for in-house usage. Each company
develops, deploys, and manages their models based on their needs and available technical expertise.
Therefore, models are diverse not just in nature but also in the kind of software technologies they are
developed with.

In the context of Unilever, the development and deployment of models is a multistep process. Initially,
models are developed by Unilever researchers and food science experts using experimental/scientific
tools like Matlab. Once the models are finalized, the corresponding calculations/algorithms are docu-

6 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

mented in a model specification document. Afterwards, these specifications are used to re-implement
the models that can run in a production environment. Typically, general purpose programming lan-
guages (e.g., Java, Python) are used here. Finally, these re-implemented models are made available
via a service endpoint or as a library that can be used by other Unilever employees.

2.1.3 Simulation

Typically, models are run as part of a simulation. A simulation is defined by specifying one food
product and one or more models. When a simulation is executed, all models in that simulation are run
using the corresponding food product definition as the parameter.

2.2 Problem Definition

With consumer demand growing faster than ever, food producing companies need to speed up inno-
vation and optimize the production processes for better yield. Models can provide important insights
into the production process that can help companies make informed decisions. Access to more and
better models can ensure access to more information that can translate to more optimized and sustain-
able food production. This is beneficial not just to the companies but also in dealing with increasing
global demand.

As mentioned in Section 2.1.2, companies develop models for in-house use. This means, whenever a
company needs a new model, they would typically develop it from scratch. As a result, different com-
panies end up developing similar models that were developed separately. Since model development
is a time and resource intensive task, doing it repeatedly is not a sustainable solution. As part of the
Sustainable Food Initiative (SFI), this project aims to find a suitable solution for this problem.

One proposed way to avoid this repeated task and optimize the resource usage is by sharing the
complete model and related artifacts (e.g., executables, codes) with other companies. The sharing
can happen based on a financial agreement benefiting both model developer and buyer. However, this
approach has several major disadvantages:

• Models are considered trade secrets that require resources and intensive R&D efforts to de-
velop. If companies start selling these models, they might end up in the hands of competing
organizations, which can result in serious financial consequences. Therefore, it is very unlikely
that any company would want to sell its models and related artifacts.

• As mentioned in Section 2.1.2, models are typically developed for in-house use that often re-
quires specific infrastructure to run. Most of the time, these infrastructures are proprietary and
the setup is very expensive. If a company wants to buy a model, they will have to pay for the
model as well as the required infrastructure. For an average size company, the total cost would
be too high compared to the added value.

• Each company has its own conventions for storing and formatting data. Since models are pri-
marily developed for in-house use, they also follow the same conventions specially for the input
and output. Therefore, models from one company are very unlikely to work out of the box in
the context of another company.

Model as a Service: Towards a Discovery Platform for Internet of Food 7

Eindhoven University of Technology

• Models are complex software components. Therefore, like any other pieces of software, they
may have bugs. Typically, bug fixes and improvements are delivered to the customers using a
continuous delivery pipeline. However, in the context of food production companies, this adds
another level of complexity and even more cost.

• Sharing a model and its artifacts with another company gives them the opportunity to reverse
engineer the original model and create another similar one. Afterwards, the company can claim
this duplicate model as their own and sell it to even other companies. Preventing such incidents
requires lots of legal complexities.

Due to these disadvantages, sharing the complete model with related artifacts is not a feasible solution.
While searching for a better solution, the following three questions were identified. This project aims
to prove that a software system that can answer these questions can also address above mentioned
issues.

1. How can models and/or results from them be shared with other organizations without replicating
the original execution environment and sharing related artifacts?

2. How can results from several computational models belonging to different organizations be
made available under a unified infrastructure?

3. How can one company use a model from other companies without reformatting data to match
the model inputs (e.g., different units of measurements)?

2.3 Project Goal

This project aimed to develop a prototype software platform that can address the questions mentioned
in Section 2.2 and brings models from various sources under a standardized infrastructure. The idea
was, this would allow one company to use models from several other companies without facing the
problems listed in Section 2.2.

The concept of such an infrastructure is illustrated in Figure 2.1. This diagram demonstrates how
Company A can use a model that belongs to Company B using the proposed standardized platform. To
do that, Company A upload their data that they want to run through the model. The platform converts
this data to match what the model requires and forwards the reformatted data to Company B. At this
point, Company B run this data through their model and send back the results to the standardized
platform. Finally, Company A can retrieve the results from the platform.

Standardized
PlatformCompany A

Model Inputs

Model Results

Reformatted
Model Inputs

Reformatted
Model Results

Company B

Model

Figure 2.1: Standardized infrastructure overview for sharing model results

8 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

One of the most important aspects of the infrastructure (shown in Figure 2.1) is that Company B can
let other companies use their model without giving up their ownership. This means Company B is
essentially offering their model as a service (MaaS) that also has the potential to become an additional
source of income. On the other hand, Company A can have access to one additional model without
having to set up and maintain any extra infrastructure. Moreover, since the platform is acting as an
intermediary, Company A does not have to think about formatting their data to match the model inputs.

The activities performed during this PDEng project aimed to design and develop a prototype for the
platform depicted in Figure 2.1. This prototype should serve as a guideline for the future development
of an enterprise level MaaS infrastructure. An example model provided by Unilever was used to
avoid any legal and privacy issues. This model can calculate the sensory taste perception (saltiness,
sourness, sweetness, and tomato flavor) of tomato soup based on its ingredients.

One of the primary objectives of this prototype was to demonstrate its possibilities and capabilities to
the INoF partners as well as other leading food production companies to attract further collaboration.
If done successfully, this can provide necessary resources and funding to develop an enterprise grade
MaaS infrastructure. Moreover, technical challenges and roadblocks identified during the develop-
ment of this prototype will serve as a starting point for any further extensions.

2.4 Assumptions

During the development of the MaaS prototype, several assumptions were made that were discussed
and verified with the major stakeholders. These assumptions are as follows:

• In the context of this project, it was sufficient to develop a prototype of MaaS and not an
enterprise grade system.

• As mentioned in Section 2.2, models are very heterogeneous in nature. However, it was suf-
ficient for the intended prototype to only support the (example) models that were provided by
Unilever.

• It was sufficient for the prototype to be deployed on a local server or general purpose cloud
infrastructure to be used for demonstration purposes.

• The recipe in the food product definition contained ingredients that were chosen from a prede-
fined list. It was sufficient to include only the ingredients provided by Unilever.

• For this prototype, it was sufficient to implements basic authentication and authorization. More-
over, administrative features (e.g., user management) were not in the scope this project.

• Detailed security measures (i.e., against hackers or malicious users) were out of the scope of
this project.

2.5 Constraints

This project was executed under certain constraints. Those are:

Model as a Service: Towards a Discovery Platform for Internet of Food 9

Eindhoven University of Technology

• The duration of this project was ten months that included not only the time required for design
and development of the prototype but also other PDEng related activities such as PDEng defense
presentation, writing graduation report, comeback days.

• The implementation of the MaaS prototype should not use any proprietary tool, product, service,
or software component. It must make use of technologies that are relatively popular, freely
available, and preferably open source.

• The MaaS prototype should not implement any tools or software components that are available
otherwise and can be reused.

• The prototype must be in a stable state and demonstrable to the INoF partners before the INoF
team meeting scheduled in June 2020.

10 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

3 Stakeholder Analysis

The purpose of stakeholder analysis is to identify involved people, organizations, and their roles as
well as concerns. This process also groups all related stakeholders according to their participation,
influence, and interest in the project. This grouping is important for determining how to involve and
communicate with each of these stakeholder groups throughout the project.

As explained in Section 1.2, this PDEng graduation project was part of Work Package 1 of the larger
Internet of Food (INoF) consortium. Therefore, all the partner organizations of the INoF were direct
or indirect stakeholders of this graduation project. This chapter focuses on the organizations and
individuals that were direct stakeholders of this project.

3.1 Stakeholders by Organization

Although there were several organizations involved in the INoF, not all of them were directly con-
nected to this project. Four organizations were the primary stakeholders of this project. Those were
Eindhoven University of Technology (TU/e), Unilever, Nizo, and Wageningen University and Re-
search (WUR).

The following sections discuss more about these organizations and the nature of their involvements.
These sections also talk about the individuals from these organizations and their roles throughout this
PDEng graduation project. Figure 3.1 shows an overview of these individuals and the organizations
they belong to.

3.1.1 Eindhoven University of Technology (TU/e)

TU/e played two different roles in this project. The first one was connected to the academic and
educational aspects. Before this project started, TU/e approved that it was complex enough to be a
doctoral level project and provided supervisor to offer necessary expert knowledge as well as to make
sure that the quality of work done was high enough.

The second role TU/e played was as a technical partner of the INoF project. As mentioned in Sec-
tion 1.1.2, INoF aimed to make sustainable improvements to food production by increasing inter-
organization collaboration using technology. TU/e aimed to promote agri-food tech, a transitional
science, by linking data and minds. In this context, TU/e provided expert technical and engineering
support focused on developing the underlying FAIR-based digital architectures to manage, connect,
and analyze heterogeneous data. TU/e also led the Work Package 1 of the INoF.

Additionally, the Jheronimus Academy of Data Science (JADS), which is a collaboration between
TU/e and the Tilburg University, provided supervision throughout the project and significantly con-

Model as a Service: Towards a Discovery Platform for Internet of Food 11

Eindhoven University of Technology

Figure 3.1: Stakeholders and related organizations

tributed with feedbacks at various stages. The Table 3.1 lists the individual stakeholders from TU/e
and JADS.

Table 3.1: List of TU/e Stakeholders

Yanja Dajsuren
Project Role Academic Supervisor and Software Technology PDEng Program Director
Interest

• Ensure the quality of the work is high enough and is aligned with PDEng
program

• Provide feedback and guidelines on technical (e.g., design and architec-
ture) as well as non-technical (e.g., communication) aspects of the project

• Ensure high quality of the graduation report

Jakob de Vlieg
Project Role Company Supervisor and Chair of Applied Data Science Group

12 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Interest
• Create a prototype of a data fusion infrastructure that can combine data

from various sources
• Ensure that the data fusion can be demonstrated using the implemented

system
• Demonstrate this project to attract more industry-academia collaboration
• Provide necessary feedback about the design, implementation, and gradu-

ation report
• Ensure that the project activities are aligned with the INoF agenda

Serguei Roubtsov
Project Role Academic Supervisor
Interest

• Review the graduation report and ensure that it maintains a high enough
quality

• Replace Yanja Dajsuren when she is not available as an academic super-
visor

Rogier Brussee
Project Role Additional Supervisor
Interest

• Provide feedback throughout the graduation project to make sure that the
INoF goals are fulfilled

• Maintain high quality of the project work by contributing ideas and chal-
lenging decisions

• Review and ensure high quality of the graduation report

Software Engineering Project (SEP) Students (details in Section 8.4)
Project Role Developer
Interest

• Obtain good grades from the SEP project by developing a good product
• Understand the SEP assignment, identify requirements and their priorities
• Keep the PDEng trainee (SEP customer) satisfied to ensure good feedback

at the end of the project

Hossain Muhammad Muctadir
Project Role PDEng Software Technology Trainee
Interest

• Successful and timely completion of the PDEng graduation project
• Design and develop a system that fulfills customer requirement
• Gather experience in software design, architecture, communication, and

project management

Model as a Service: Towards a Discovery Platform for Internet of Food 13

Eindhoven University of Technology

3.1.2 Unilever Nederland Holdings B.V

As a global leader in the food production domain, Unilever is one of the major partners of the INoF.
In the context of this PDEng graduation project, Unilever is the major external stakeholder. It actively
participated in all stages of this project and played the role of a client. The initial set of requirements
were elicited based on the feedback of the Unilever representatives. During both the implementa-
tion and validation phase, they provided regular feedback that helped steer the project into the right
direction.

Moreover, during the execution of this project, Unilever contributed the majority of the necessary
domain expertise by organizing regular meetings with related personnel. It also provided the example
models (explained in Section 1.2), which was essential for the project to move forward. Table 3.2 lists
the individual stakeholders from Unilever.

Table 3.2: List of Unilever Stakeholders

Michiel Gribnau
Project Role Company Supervisor
Interest • Ensure that the elicited requirements are aligned with expectation

• Ensure that the implementation is aligned with the expectation/re-
quirements

• Develop an infrastructure that can facilitate data driven decision-
making

• Demonstrate the potential and usefulness of the model sharing plat-
form to the higher management

• Attract more organizations to collaborate in the INoF consortium

Johan Schilt
Project Role Observer
Interest • Stay up-to-date and informed about the INoF activities

• Occasionally provide expert advice

3.1.3 Wageningen University and Research (WUR)

The Wageningen University and Research (WUR) is one of the leading institutions carrying out edu-
cation and research in the fields related to food production, environment, lifestyle, as well as health.
The Wageningen Food and Biobased Research (WFBR) is one of the research institutes of WUR and
a partner of the INoF. In the context of this PDEng project, WFBR developed the model ontology
(discussed in Section 6.2.2) that was essential for the implementation of the model sharing. They also
provided domain knowledge in the field of food informatics. Table 3.3 lists the stakeholders from
WUR.

14 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Table 3.3: List of WUR Stakeholders

Gorkem Simsek-Senel
Project Role Ontology Expert and Developer
Interest • Provide ontology related domain knowledge (i.e., usage of ontology)

• Develop model ontology and make it useful in the context of the
PDEng graduation project

Don Willems
Project Role Ontology and IT Expert
Interest • Provide expert advice regarding ontology based software develop-

ment

Jan Top
Project Role Ontology Expert
Interest • Represent WUR in the INoF consortium and provide feedbacks re-

lated to ontology

3.1.4 Other Organizations

There were several INoF partners who were directly connected to this PDEng project but did not
actively participate. They mostly acted as observers and occasionally provided feedback. One of the
organizations in this category is NIZO Food Research B.V. Table 3.4 lists the stakeholder from NIZO.

Table 3.4: Nizo Stakeholder

Kevin van Koerten
Project Role Domain Expert
Interest • Introduce and explain gPROMS that is a simulation software widely

used in food production domain
• Stay up-to-date and informed about the INoF activities
• Provide expert advice

Model as a Service: Towards a Discovery Platform for Internet of Food 15

Eindhoven University of Technology

16 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

4 Requirement Analysis

This chapter describes the identified use cases and the results of the requirement analysis. These
results include the descriptions of functional as well as non-functional requirements.

4.1 Introduction

In [11], a requirement is defined as: "A statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous, testable or measurable, and
necessary for product or process acceptability (by consumers or internal quality assurance guide-
lines)." In software engineering projects, understanding customer requirements and their priorities at
an early stage is one of the biggest challenges. An unambiguous list of requirements are essential to
steer a project into the right direction. However, as the customer needs are subject to change, new
requirements can emerge and the old ones may need updating during the project lifetime. In this
project, a set of initial requirements were elicited using the usecase analysis and interview techniques.
These requirements were revisited and updated throughout the whole duration of the project.

During the early stages of this project, understanding the context and identifying the key deliverable
in relation to the Work Package 1 (WP1) of the Internet of Food (INoF) consortium were emphasized.
Several meetings were arranged with the major stakeholders (Chapter 3) to discuss the short-term and
long-term goals of the project as well as the corresponding deliverables. Based on these discussions,
a storyboard was created that, to some extent, mimicked the major features of the proposed system in
the form of a slideshow. This storyboard was used to identify potential usecases that were validated by
the stakeholders. Further analysis of these usecases in the context of WP1 resulted in the set of initial
requirements that were updated during several iterations based on stakeholder feedback as well as
newly discovered concerns. To ensure the soundness of the requirements, each iteration went through
stakeholder validation.

The following sections of this chapter explain the identified usecases, corresponding functional and
non-functional requirements, as well as the relationships among them.

4.2 Usecases

An usecase is a description of potential interactions between a system and its users. In the context of
this project, a representative of the food production company is a typical user of the model-sharing
system. Figure 4.1 shows the potential actions that can be performed by a user.

Model as a Service: Towards a Discovery Platform for Internet of Food 17

Eindhoven University of Technology

User

Connect computational
model

Set access permission
for model

Define food product

Define simulation

Export simulation results

Authenticate

View simulation results

Execute simulation

<<extend>>

Figure 4.1: Use Cases

4.3 Requirements

In this project, the initial requirements were elicited based on the identified usecases. These require-
ments were analyzed further and presented to the major stakeholders for validation. The requirements
established through this process were the initial set of business or functional requirements (FR) and
established a baseline for the system. The non-functional requirements (NFR) were connected to the
quality characteristics and constraints of the system. The FRs are explained in Section 4.3.1 and the
NFRs in Section 4.3.2. Figure 4.2 depicts the connection among identified FRs and NFRs. Each
requirement was given a unique identification (ID). However, these IDs do not imply any priority or
order.

18 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Figure 4.2: Relation among the Functional and Non-Functional Requirements

4.3.1 Functional Requirements

This section lists the set of functional requirements. To make them more specific, each of the require-
ments follows a Requirement Breakdown Structure (RBS) [12], which is highly influenced by the
Work Breakdown Structure (WBS) [13]. With RBS, each product is broken down to several require-

Model as a Service: Towards a Discovery Platform for Internet of Food 19

Eindhoven University of Technology

ments that are further decomposed to functions. To satisfy a requirement, the system should be able to
perform all the corresponding functions. The functions can be further described with sub-functions.
Figure 4.3 shows an example tree structure of the RBS. In the context of this project, it was sufficient
to breakdown the requirements to functions.

Product

Requirement 1

Function 1.1

Function 1.2

Requirement 2

Function 2.1

Requirement 3

Function 2.2

Function 1.3 Function 2.3

Function 3.1

Sub-Function 3.1.2

Sub-Function 3.1.1

Figure 4.3: Requirement breakdown structure

The MoSCoW method [14] was used to prioritize the elicited set of requirements. The word MoSCoW
is an abbreviation of four words each of which defines different priority levels. They are:

• Must have: Critical and non-negotiable product features that are essential for the current deliv-
ery timeline.

• Should have: These features are important and provide significant value.
• Could have: Desirable but not necessary needs that can improve the usability.
• Won’t have: These are initiatives that are least critical and lowest priority.

Following are the list of functional requirements and their corresponding functions:

• FR01: The system shall provide a gateway with a URI that will allow interaction with the
computational model.
Priority: Must
Functions:

– Each gateway can be uniquely identifiable and accessible from the model sharing back-
end.

– Each gateway will accept data that is necessary to run the corresponding model.
– Each gateway will run the underlying model with the provided data and reply with gener-

ated results.

• FR02: The system shall allow the user to connect a model to the MaaS infrastructure by
specifying the corresponding gateway URI and the input as well as output parameters of
the model.
Priority: Must
Depends on: FR01
Functions:

20 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

– The user can add and update the model gateway URI.
– The user can define the input and output parameters of the model.
– The user can define the cost in euros for running a model.
– The user can define additional attributes of the model (e.g., description).

• FR03: The system shall allow the user to share or un-share a connected model with other
users who are from different organizations.
Priority: Must
Depends on: FR01, FR02, FR13
Functions:

– When a model is shared with an organization, personnel belonging to that organization
shall be able to view and/or execute the corresponding model.

– When a model is un-shared, it should only be usable to the owner organization.

• FR04: The system shall show a list of models that was connected by the current user.
Priority: Must
Depends on: FR03
Functions:

– The system shall show which models are shared with which organization.
– The system shall show the number of times the model was run.

• FR05: The system shall show a list of models that are available or have been shared with
the current user.
Priority: Must
Depends on: FR03
Functions:

– Models can be shared with one or more organizations.
– A model shared with an organization is visible to all representatives of that organization.
– The list of models shows the cost for running the models and their input-output parameter

information.

• FR06: The system shall allow the user to define a food product by specifying the recipe,
processing, packaging.
Priority: Must
Functions:

– When creating a food product, the system shall allow the user to define processing steps
necessary for producing the corresponding product.

– When creating a food product, the system shall allow the user to define ingredients and
their quantities necessary for producing the corresponding food product.

– When creating a food product, the system shall allow the user to define the expected
chemical properties of the product.

– When creating a food product, the system shall allow the user to define how the product
is packaged.

• FR07: The system shall allow the user to define a simulation by specifying one or more
models and a food product from the list of available products.
Priority: Must

Model as a Service: Towards a Discovery Platform for Internet of Food 21

Eindhoven University of Technology

Depends on: FR02, FR06
Functions:

– When creating a simulation, the system shall allow the user to choose only models that
are available to the current user.

– When creating a simulation, the system shall allow the user to choose one or more food
products to run the corresponding simulation on.

• FR08: The system shall show the results of successfully executed models and error mes-
sages if the model execution fails.
Priority: Must
Depends on: FR07, FR09
Functions:

– In case of successful execution of a simulation, the system must return the results of the
simulation.

– In case of failed execution of a simulation, the system must return the appropriate error
messages.

• FR09: The system shall allow the user to execute a simulation.
Priority: Must
Depends on: FR07
Functions:

– The system shall allow the user to execute a simulation that has previously been defined
by the current user.

– The simulation can only execute if the product definition is a valid input to run the models
in the corresponding simulation.

• FR10: The system shall allow the user to view the simulation results.
Priority: Must
Depends on: FR07, FR09
Functions:

– The system shall provide a URI through which the simulation results can be accessed.
– When the simulation is not successful, the system shall show related error messages. In

this case, the simulation result might be incomplete.

• FR11: The system shall annotate the information regarding the input and output param-
eters of a model using ontology.
Priority: Must
Depends on: FR09
Functions:

– The input and output parameters stored using ontology must specify parameter name,
physical units including the conversion coefficient to/from other similar commonly used
units.

• FR12: The system shall allow the user to log in to their account using username and
password.
Priority: Must

22 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Depends on: FR13
Functions:

– When login is not successful, the system will show an error message with the reason.
– The system shall allow the user to logout from their account.

• FR13: The system shall allow the user to create an account.
Priority: Must
Functions:

– When a user registers, the system shall verify the user’s identity by sending a verification
email.

– The system shall allow the user to change his/her account information (name, address,
password, company.)

4.3.2 Non-Functional Requirements

• NF01: The implementation of the backend and the gateways shall be decoupled from each
other. They shall only communicate over a defined set of API.

• NF02: In case of bug fixes and performance improvements in the backend or the gateway, their
provided interface will not change.

• NF03: The system shall use regular and appropriate user interface elements (e.g., text boxes,
tables, lists) so that the audience can understand them during demonstrations.

• NF04: The backend shall be decoupled from the frontend and any change in the frontend im-
plementation shall not affect the backend unless the change is connected to improvements or
new features that requires adding new or updating existing API.

• NF05: The system shall be able to handle a model execution request when data for running the
model is invalid.

• NF06: The system shall allow user interaction at all times even when simulations are running.

• NF07: The system shall not allow direct access to any model or related artifacts but only have
the ability to run it with valid data through a gateway.

Model as a Service: Towards a Discovery Platform for Internet of Food 23

Eindhoven University of Technology

24 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

5 System Architecture and Design

To be able to implement a software system that satisfies the customer requirements, proper planning
is absolutely essential. An architecture is one of the most important parts of that plan. As defined
in [15], "Architecture is the set of structures needed to reason about the system, which consists of
software elements, relations among them, and properties of both." In other words, an architecture of
a system is a detailed definition of the individual components that communicate and work together
to make up the corresponding system. Architecture provides the possibility to look at the intended
system from different viewpoints and discover potential problems even before the implementation.
An architecture can also be used to show and explain the system design to the related stakeholders
from different levels of abstractions.

This chapter describes the architecture that guided the development of the Model as a Service (MaaS)
infrastructure in the context of the Internet of Food (INoF) consortium. At first, activities that the
MaaS system is expected to perform are discussed in Section 5.1. This is followed by a discussion
on the key design challenges and decisions made to solve them (Section 5.2). In the next sections,
the software system overview and the descriptions of the components that make up the MaaS are
explained (Section 5.4).

5.1 Expected Activities of MaaS

The requirement analysis in Chapter 4 explains the usecases and the requirements that the MaaS sys-
tem is expected to fulfill. The current section discusses how each of those requirements are connected
to each other. For explaining the execution of simulation and view corresponding results, activity
diagrams [16] are used, which are graphical representations of workflows of step-wise activities and
actions.

As discussed in Section 2.3, the primary focus of the MaaS infrastructure is to be able to execute
models belonging to other organizations to increase productivity and collaboration. Models are run
as part of a simulation. As introduced in Chapter 2, a simulation is a pairing of one food product
definition and one or more models, each of which can be owned by different organizations.

To be able to run a model, the first step is to connect it. This means specifying where and how the
MaaS system can locate a model. This step is very important because each model typically runs in
its organization’s own environment and MaaS infrastructure won’t be able to communicate with it
without appropriate connection information. The next step is to define a food product that includes
required ingredients, processing steps, and packaging methods (details in 2.1.1). These properties are
later used as input parameters for models.

After connecting models and defining food product, it is now possible to define a simulation. After

Model as a Service: Towards a Discovery Platform for Internet of Food 25

Eindhoven University of Technology

Map food product
properties to model

parameters

Normalize model
parameter values

Execute model

Mapping
successful?

no

yes

Normalization
Successful?

no

yes

Generate error

Receive simulation
execution request

Retrieve corresponding
models and food product

definition

<<iterative>>

models: List[Model]

Show simulation
status

status: Status

statuses: List[Status]

(a) Activities for running all models in a simulation

Get model result

models: List[Model]

Receive request for
viewing simulation

Show results from all
models

results: List[Result]

Retrieve corresponding
models

<<iterative>>

(b) Activities for showing results of all mod-
els in a simulation

Figure 5.1: Activity diagrams for running a simulation and viewing results

this step, the user can make a request to run the simulation. Running a simulation means, run all the
models specified in the simulation and use the properties of the corresponding food product definition
as input for each of those models. Following this step, the user can check whether the models in
the simulation have finished running. As soon as the model runs are completed, the user can see the
results from each of the models.

Figure 5.1a shows the activities involved in running a simulation. Since several models can be part
of a simulation, the expansion region (black box annotated with iterative) in this figure shows the set
activities that are executed separately for each model. Similar strategy is used to collect and visualize
the results from each model execution (Figure 5.1b) as soon as the executions are complete.

5.2 Design Challenges

The following key design challenges were derived from the functional and non-functional require-
ments described in Chapter 4:

26 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

5.2.1 Heterogeneous Data Formats and Interoperability

From the problem analysis in Chapter 2, it is clear that different organizations follow different stan-
dards to structure and format their data and models. Often times, the input and output parameters of
the models developed by different organizations differ in several ways. These variations can include
the way the data is stored or transferred (e.g., binary file stream, XML, JSON), naming of different
parameters or units of measurements. One of the major design challenges is to be able to achieve
interoperability amongst these differences.

5.2.2 Localization and Accessibility

Typically, organizations develop their models for in-house use. This means, the models are developed,
deployed, and used in the corresponding organization’s own environment. Therefore, models from
different organizations are physically deployed in different locations and are often available only
from the corresponding company environment. As a result, being able to access and communicate
with these models from an external environment is one of the major design challenges.

5.2.3 Privacy and Ownership

Developing models is a resource intensive task. Once developed, these models are owned by the
corresponding organizations and are often regarded as trade secrets. Therefore, it is very unlikely
that the corresponding organization would allow any kind of external physical access to the source
code, executable, or any artifacts related to their models. On the other hand, the goal of the MaaS
infrastructure is to facilitate collaboration among different organizations so that they can use each
other’s models. The key challenge here is to allow sharing the models without giving away their
ownership.

5.2.4 Model Discovery

In the context of the INoF, the purpose of MaaS infrastructure is to allow organizations to use models
from other organizations. Before a model can be used, it is essential to find the model and understand
what kind of computation it performs on which data. Therefore, the MaaS architecture should not
only allow sharing of the models but also provide the possibility to search them.

5.3 Design Decisions

Considering the design challenges mentioned in Section 5.2, several alternative design choices were
evaluated. The major design decisions are explained below.

5.3.1 Microservice Architecture

As defined by Martin Fowler in [17], "The microservice architectural style is an approach for devel-
oping a single application as a suite of small services, each running in its own process and commu-
nicating with lightweight mechanisms, often an HTTP resource API. These services are built around

Model as a Service: Towards a Discovery Platform for Internet of Food 27

Eindhoven University of Technology

business capabilities and independently deploy-able by fully automated deployment machinery." This
is different from the traditional way of building applications where the whole system is built as a
single unit.

Client

Business Logic

Data Access

Data

(a) Monolithic Architecture

Client

Micro-Service 1 Micro-Service 2 Micro-Service 3

Data Data Data

(b) Microservice Architecture

Figure 5.2: Differences between Monolithic and Microservice Architecture

Business applications typically have three basic building blocks: a client that is responsible for ex-
changing information with the user, a backend that implements business logic and a data storage. The
backend typically provides all its services through an HTTP interface. As shown in Figure 5.2a, the
backend receives requests from the client, executes necessary business logic, performs necessary data
updates, and replies to the client with appropriate response. This kind of backend is called a monolith
and this architecture is known as monolithic architecture. Here all business logic are built together in
a single executable and runs as a single process.

From a development point of view, monolithic applications are difficult to maintain as small changes
in the system require the whole application to be rebuilt. As discussed in [18], this is especially
problematic when multiple developers are working on the same code base. They need to make sure
that the whole system keeps working when changes are made to the code. These complexities slow
down the development process. Scaling is also an issue with monolithic architecture as critical parts
of the application cannot be scaled separately as the entire application is closely tied together.

Microservice architecture solves the majority of the problems in the monolithic architecture by divid-
ing the whole application into suites of services. These services define a strict boundary and can be
developed, built, as well as deployed independently. This architecture also allows independent scaling
of the different services.

In the context of the MaaS infrastructure, localization and accessibility are major design challenges
as explained in Section 5.2.2. Certain aspects of the microservice architecture can help to overcome
this challenge.

Organizations have their models running in their own environment. To be able to interact with these
models from outside their environment, gateways were set up for each of the models (Figure 5.3). To
the outside world, models are represented by their corresponding gateways that are microservices and

28 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

expose the functionalities provided by the respective models as an HTTP API.

RDBMS

Company 1

Model 1.2

...

User

MaaS Frontend

Data
Normalization
Component

Web Service
Component

Data Storage
Component

MaaS Backend

Gateway 1.2

Company 2

Model 2

Gateway 2

Company N

Model N

Gateway N

Ontology
Store

Gateway 1.1

Model 1.1

Figure 5.3: MaaS microservice architecture

In this microservice-based architecture, the gateways are independent of each other. Therefore, they
can have their own data storage or specialized implementation for running a model. However, the
gateways must implement a set of standardized HTTP API so that they can be interacted with.

In addition to the gateways, there is a backend that acts as a broker for the client requests and forwards
them to the appropriate gateway. Additionally, the backend has the responsibility to store and manage
information about the models, perform authentication, as well as data normalization if necessary.

5.3.2 Ontology Based Data Normalization

As explained in Section 5.2.1, heterogeneous data is one of key challenges when it comes to inter-
operability. Achieving a complete data interoperability is a very broad research topic and, therefore,
is not in the scope of this project. However, the MaaS infrastructure uses ontology (explained in
Section 6.2.2) to overcome part of that challenge with the Data Normalization Component shown in
Figure 5.3. The responsibility of this component is to map the user provided data to the input of the
models. While doing so, the normalization component also converts the data to an appropriate unit of
measurement if necessary.

Model as a Service: Towards a Discovery Platform for Internet of Food 29

Eindhoven University of Technology

5.3.3 Heterogeneous Database System

Shared models need to be discoverable before they can be used by different organizations. Therefore,
model discovery is one of the key challenges for the MaaS infrastructure as discussed in Section 5.2.4.
Another challenge discussed in Section 5.2.1 is the heterogeneous nature of the model input/output
parameters. These challenges imply the necessity of some sort of storage mechanism. However,
keeping the nature of the data in mind, the traditional structured data storage is not sufficient.

To solve this problem, a heterogeneous database system has been introduced, which is shown in Figure
5.3. Depending on the data to be stored, this system uses different database technologies for data
storage. One of the databases is the traditional relational database that is used for storing structured
information such as user credentials, model access permissions, and food product details. To store
the model input/output data that do not follow any specific structure or schema, a graph-based data
storage was used, which is labeled as the Ontology Store in Figure 5.3. It stores data as triples and is a
perfect match for storing the model input/output information that is represented in terms of ontology,
as mentioned in Section 5.3.2.

5.4 Software Component Decomposition

Based on the requirements described in Chapter 4, design challenges mentioned in Section 5.2 and
the system overview depicted in Figure 5.3, the whole MaaS infrastructure has been decomposed into
several components. This section describes what these components are and how they are connected.
The components are also shown in Figure 5.4.

5.4.1 Gateway and Computational Model

The gateway is introduced in Section 5.3.1 where the microservice architecture is discussed. The
same section explains that the computation models, which typically run in an internal company en-
vironment, are represented by the gateway to the external users. The communication between the
computational models and the respective gateway takes place over the IExecute interface. This in-
terface has no defined structure and depends entirely upon the implementation of the corresponding
model. This lack of structure does not affect the rest of the system since it stays hidden behind the
gateway.

According to the microservice architecture explained in Section 5.3.1, the gateways can have inde-
pendent implementation as long as they have a set of APIs defined as ISimulate that are accessible
over HTTP. The definition of this interface can be found in the implementation chapter under Section
6.2.1.

5.4.2 MaaS Infrastructure Backend

As explained in Section 5.3.1, the backend component has the role of broker in the MaaS infras-
tructure. It facilitates seamless communication between the frontend and computational models via
the gateway. This communication is facilitated by the WebService sub-component via the IWebSer-
vice interface that provides a set of HTTP APIs. Section 6.2.1 explains the implementation of this
interface.

30 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

MaaS Backend

DataStorage
WebService

Normalization

FrontendGatewayComputationalModel
IExecute

IWebServiceISimulate

WebServicePort
SimulationPort

INormalization

IDataStore

IWebService

<<delegate>>

ISimulate

Figure 5.4: Software system component diagram of the MaaS infrastructure

One of the major roles of the backend is to make sure that the models are executed with appropriate
input parameters. This means, the backend maps food product properties to appropriate input param-
eters of the corresponding model before sending the request to the gateway. During this mapping,
backend also converts the mapped food product properties to appropriate units of measurements if
they are different from the inputs of the corresponding model. This whole process has been named
Normalize and the sub-component responsible for this task is called Normalization. According to
American Heritage Dictionary [19], the word "normalize", is defined as "to make regular and consis-
tent," which is exactly what the Normalization sub-component is responsible for.

The backend stores all related data including the food product properties, models, and simulations
using the DataStorage sub-component. It is responsible for providing a persistence service by com-
municating with the heterogeneous database system, which is explained in Section 5.3.3.

5.4.3 Frontend

This component is the web-based user interface for the MaaS system that can be viewed by any
modern browser (e.g., Firefox, Google Chrome). The purpose of this component is to provide the
user with an easy-to-understand and intuitive interface to consume the services provided by the MaaS
backend. The frontend is also responsible for client-side data validation.

Model as a Service: Towards a Discovery Platform for Internet of Food 31

Eindhoven University of Technology

32 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

6 Implementation

This chapter describes the implementation of the prototype of the Model as a Service (MaaS) infras-
tructure that is introduced in Section 2.3. The Chapter 5 discusses the major design challenges for this
prototype and defines an architecture to overcome them. The prototype was implemented following
this architecture.

The discussion in this chapter begins with the choice of technologies for implementing the components
introduced in Section 5.4. The later sections explain how the major design decisions listed in Section
5.3 are implemented.

6.1 Technology Choice

The component decomposition for the MaaS infrastructure is depicted in Figure 5.4. The technologies
necessary to implement these components were chosen based on the following criteria:

• Open source: The chosen technologies should be freely available and preferably open source.
It was also required by the stakeholders to avoid proprietary technologies as much as possible.

• License: The chosen technologies should not imply any restrictions for the usage and distribu-
tion of the developed prototype.

• Fast development: Since the goal of this project is to develop a prototype for the MaaS infras-
tructure, the chosen technology should allow high throughput.

• Strong ecosystem and support: For maintainability purposes, it was important to choose tech-
nologies that had a strong ecosystem of reusable libraries and a good community support.

• Platform independent: Although Linux was the primary platform for development, the devel-
oped prototype should run on most of the popular platforms that include operating systems (e.g.
Windows, macOS) and containers (e.g. Docker).

• Lightweight: As defined in Section 5.3.1, the prototype should follow the microservice archi-
tecture. Therefore, it was important to choose technologies that are lightweight and requires
limited resources.

• Familiarity: As the duration of this project and all related activities is limited to ten months, the
chosen technology should be familiar to the trainee to minimize the required learning time.

• Learning goal: Although familiarity is an important criterion, the chosen technologies should
also fulfill the learning goals of the trainee.

Model as a Service: Towards a Discovery Platform for Internet of Food 33

Eindhoven University of Technology

Besides these general criteria, each technology may have specific additional reasons for getting ac-
cepted or rejected.

6.1.1 Web Service Framework

According to the architecture defined in Section 5.3.1, both the backend and the gateways involved
web services. Nowadays, a variety of web service frameworks are available in almost all popular
programming languages. Based on previous experience of the PDEng trainee, Python and C# was
considered for the language of choice. Several web service frameworks of both languages were com-
pared and the results are shown in Table 6.1.

After considering several aspects, Python was chosen for the programming language as it is lightweight,
has a strong community and is very well known in the food production domain. For the web ser-
vice framework, Flask was chosen for its versatility, simplicity, strong community support, and
lightweightness. This combination also provided a good balance between familiarity and learning
goals of the trainee.

Table 6.1: Criteria matrix for choosing web service framework

Python C#
Flask Django ASP.NET Core ASP.NET 4.x

Open Source Yes Yes Yes No
Re-distribution restriction None None None None
Fast development Yes No Yes No
Ecosystem and support Yes Yes Relatively new but growing Yes
Platform support All major All major All major Windows
Lightweight Very No Yes No
Familiarity No No Yes Yes
Learning Yes Yes Yes No

6.1.2 Data Storage and Related Libraries

The heterogeneous database system is introduced in Section 5.3.3. This includes traditional relational
databases for storing structured data as well as graph based databases for storing ontology and semi-
structured data. The usage of ontology is explained in Section 6.2.2.

Table 6.2 shows the criteria matrix for choosing the database technologies. Although, MySQL and
PostgreSQL are similar in many ways, the latter was chosen because it is open source and has better
community support. Moreover, GraphDB1 was selected as the graph database of choice because of its
direct support for Resource Description Framework (RDF) files.

Additional drivers or libraries are needed for reading and writing data to the chosen databases. Object
Relational Mapping (ORM) libraries are very popular for communicating with relational databases
like PostgreSQL. They provide an object-oriented interface for reading, writing and updating data
without having to write raw SQL queries. This project uses SQLAlchemy2 because it is a well known

1http://graphdb.ontotext.com/
2https://www.sqlalchemy.org/

34 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Table 6.2: Criteria matrix for choosing databases

Relational Databases Graph Databases
PostgreSQL MySQL Neo4j GraphDB

Open source Yes Community
edition available

Yes Community
edition available

Community
support

Yes Yes Limited Limited

RDF support No No Not explicitly Yes
Platform sup-
port

All major All major All major All major

Docker sup-
ported

Yes Yes Yes Yes but requires
additional steps

Familiarity Limited Yes No No
Learning Yes Yes Yes Yes

and one of the most feature rich open source Python ORM.

On the other hand, GraphDB supports SPARQL, which is an RDF query language. To execute these
queries, GraphDB provides a set of REST like APIs that accepts SPARQL query as string and returns
the results in JSON format. SPARQLWrapper3 was used for preparing and executing queries on
GraphDB server. It is an open source Python library that provides a wrapper around SPARQL service
for remotely executing queries.

6.2 Implementation of the Major Design Decisions

The architecture chapter of this report (Chapter 5) analyzes and lists the major design challenges (Sec-
tion 5.2). To solve them, several design decisions were made (Section 5.3) after considering different
alternatives. This chapter revisits these design decisions and explains how they were implemented.

6.2.1 Microservice Architecture

The microservice architecture is introduced in Section 5.3.1. This architectural style is the blueprint
for building all other components or services. It also defines which components are communicating
with each other and how. As depicted in Figure 5.3, the MaaS infrastructure has four major types of
services. Each of them are explained in the following sections.

MaaS Infrastructure Backend

As defined in Section 5.4, the backend facilitates the communication between the frontend and the
gateways through a set of web service endpoints. The services provided by these endpoints makes use
of a complex set of data processors, routing modules and configurations. The Flask framework was
chosen (Section 6.1.1) to implement the web service.

3https://github.com/RDFLib/sparqlwrapper

Model as a Service: Towards a Discovery Platform for Internet of Food 35

Eindhoven University of Technology

BaseConfiguration

+ APPLICATION_VERSION : str
+ DEBUG : bool
+ ENV : str
+ GRAPH_DB_REPOSITORY_ID : str
+ GRAPH_DB_SERVER_URL : str
+ INGREDIENT_SERVICE_URL : str
+ JWT_ACCESS_TOKEN_EXPIRES : timedelta
+ JWT_SECRET_KEY : str
+ PACKAGE_PATH : str, bytes
+ SECRET_KEY : str
+ SQLALCHEMY_DATABASE_URI : str
+ SQLALCHEMY_ECHO : bool
+ SQLALCHEMY_TRACK_MODIFICATIONS : bool
+ SWAGGER : dict
+ SWAGGER_TITLE : str
+ SWAGGER_VERSION : str
+ TESTING : bool

DockerDeployConfiguration

+ DEBUG : bool
+ ENV : str
+ GRAPH_DB_REPOSITORY_ID : str
+ GRAPH_DB_SERVER_URL : str
+ INGREDIENT_SERVICE_URL : str
+ SQLALCHEMY_DATABASE_URI : str
+ SQLALCHEMY_ECHO : bool
+ TESTING : bool

TestConfiguration

+ SQLALCHEMY_DATABASE_URI : str
+ TESTING : bool

Figure 6.1: Configurations for backend web service

Backend Configuration: As Flask is a lightweight web service framework, it does not provide any
additional functionality or smart configuration out of the box. Therefore, the first task was to configure
the web service to be able to host necessary endpoints. A class structure with three classes was created
that held the configuration values. As depicted in Figure 6.1, the BaseConfiguration class holds all the
configuration properties and provides default values for them. These default values are ideal for run-
ning the web service on local machine (e.g. localhost). There are two additional configuration classes
that extends from BaseConfiguration. The DockerDeployConfiguration class overrides several prop-
erties from its parent that are necessary to deploy the web service on a Docker container. Moreover,
the TestConfiguration is used for unit testing the endpoints. The configuration classes hold properties
for not only the web service but also application specific configuration values such as, database con-
nection strings, URL for other microservices, secret keys used in user authentication. Storing these
properties as Flask configuration makes it possible to access them from different parts of the backend
code.

Endpoint Routing: In the context of web services, routing is the act of mapping URLs or endpoints
to actions. As shown in the component diagram (Figure 5.4), the backend provides an IWebService
interface that is consumed by the frontend and gateway for exchanging data.

The endpoints provided by the IWebService interface is shown in Figure 6.2. Each of the endpoints
defines two essential parts: HTTP verb [20] (e.g. GET, POST) and an URL (e.g. /api/auth_
token). Endpoints can optionally have a parameter and/or response data that are always formatted
as JSON. However, regardless of the presence of a response data, all endpoints returns a response

36 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

<<Interface>>
IWebService

+ POST: /api/auth_token (user_credentials): token
+ GET: /api/register (user_details): boolean
+ GET: /api/check_auth
+ POST: /api/user/register
+ POST: /api/model (model): model
+ PUT: /api/model (model_id, model): model
+ DELETE: /api/model (model_id): boolean
+ GET: /api/model (model_id): model
+ GET: /api/models (): array<model>
+ GET /api/model/permissions (model_id, permission): permission
+ PUT /api/model/permissions (model_id, permission): permission
+ POST: /api/product (product): product
+ DELETE: /api/product (product_id): boolean
+ GET: /api/product (product_id): product
+ GET: /api/products (): array<product>
+ PUT: /api/product (product_id, product): product
+ GET /api/product/permissions (product_id, permission): permission
+ PUT /api/product/permissions (product_id, permission): permission
+ POST: /api/simulation (simulation): simulation
+ DELETE: /api/simulation (simulation_id): boolean
+ GET: /api/simulation (simulation_id): simulation
+ GET: /api/simulations (): array<simulation>
+ POST: /api/run_simulation (simulation_id): run_id
+ GET: /api/simulation_result (run_id): result

Figure 6.2: IWebService Interface

«module»
model_routes

+ create_model(model)
+ delete_model(id)
+ get_model(id)
+ get_model_permissions(id)
+ get_models()
+ get_own_models()
+ set_model_permissions(id, permissions)
+ update_model(id, model)

«module»
product_routes

+ create_product(product)
+ delete_product(id)
+ get_all_product_ingredients()

+ get_all_products()
+ get_own_products()
+ get_product(id)

+ get_product_permissions(id)

+ set_product_permissions(id, permissions)
+ update_product(id, product)

«module»
simulation_routes

+ create_simulation(simulation)
+ delete_simulation(id)
+ get_all_simulations()
+ get_simulation(id)
+ get_simulation_results(run_id)
+ get_simulation_status(run_id)
+ run_simulation(id)
+ update_simulation(id, simulation)

«module»
user_routes

+ change_password()
+ get_own_profile()
+ register_user()
+ request_password_reset_code()
+ reset_password()
+ update_own_profile()

«module»
company_routes

+ get_all_companies()

«module»
authorization

+ auth_token()
+ check_authentication()

Figure 6.3: Routing modules of the web service component

Model as a Service: Towards a Discovery Platform for Internet of Food 37

Eindhoven University of Technology

status code (e.g. 200 for success) that are aligned with the HTTP standard [20]. These endpoints are
explained further in Appendix B.

The endpoints shown in Figure 6.2 are mapped to python functions using the Flask library. Based on
functionality, these functions are grouped into Python modules, which are shown in Figure 6.3. The
endpoints and the map functions has an one-to-one mapping. This means, each endpoint is mapped
to exactly one route function and vice versa. For example, the POST : /api/auth_token route
is mapped to authorization.auth_token() function. The main business logic is implemented in the
routing functions.

Data Structures and Heterogeneous Database System: As mentioned in Section 6.1.2, this project
makes use of a heterogeneous database system: PostgreSQL and GraphDB. The SQLAlchemy ORM
library is used to read, write and update data into the PostgresSQL database. This ORM library
provides orm.Query class that contains methods for executing various queries in the database. For
convenience, the orm.Query class has been extended in several stages that is depicted in Figure 6.4.
The most important extension is the PermissionFilteredQuery class containing methods for querying
entities that is filtered by accessibility of the logged-in user.

PermissionFilteredQuery

+ get_accessible_or_404(company_id, entity_id)
+ get_all_accessible_by(company_id)
+ get_all_created_by(user_id)
+ get_all_owned_by(company_id)
+ get_created_by_or_404(user_id, entity_id)
+ get_one_created_by_where_or_404(user_id)
+ get_one_owned_where_or_404(company_id)
+ get_owned_or_404(company_id, entity_id)

ModelInfoQuery

+ get_all_executable_by(company_id)
+ get_executable_or_404(company_id, model_

Query

+ get_all()
+ get_column_like(value, col
+ get_one_where()
+ get_one_where_or_404()
+ get_where()

orm.Query

Figure 6.4: Class diagram of the query classes showing their inheritance relation

In SQLAlchemy, each table in the database is represented as a model class in the code. Each of these
classes must extend from a base model class known as declarative base class. The Figures 6.5 and 6.6
show the most important model classes of this project. As seen in the figures, all model classes extent
from the abstract class BaseModel. This class extends from the SQLAlchemy declarative base and
provides some standard functionalities that can be reused by its children classes.

Figure 6.5 shows the model classes related to the food product definition, which is explained in Section
2.1.1. As usual, all classes shown here extends from the BaseModel. The FoodProduct class is
composed of other model classes and contains all necessary properties for a food product definition.

Information about the computational models, which is explained in Section 2.1.2, are stored both in
PostgreSQL and GraphDB. Simple data such as the model’s name, description, URL of the corre-
sponding gateway are stored in the PostgreSQL. The model input and output information is stored in
the GraphDB along with their corresponding units of measurements. The ontology used for the model
input and output is explained in Section 6.2.2.

The ModelInfo class shown in Figure 6.6, is the part of the computation model information that is
stored in PostgreSQL. The same figure also shows ModelInfo and FoodProduct is connected with the
Simulation class. Simulation is explained in Section 2.1.3 as a paring between a food product and

38 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

BaseModel

+ id

+ add()
+ delete()
+ exists()
+ save()
+ update()

BaseModelWithOwnerAndCreator

+ created_by
+ created_on
+ owner

ModelWithIdAndName

+ name

FoodProduct

+ company_code
+ dosage
+ dosage_unit
+ food_product_properties
+ ingredients
+ packagings
+ permissions
+ processing_steps
+ standard_code
+ used_in_simulations

FoodProductProcessingStep

+ equipment
+ food_product_id
+ properties

ProcessingStepProperty

+ processing_step_id
+ unit
+ value

FoodProductProperty

+ food_product_id
+ method
+ unit
+ value

Ingredient

+ amount
+ amount_unit
+ company_code
+ food_product_id
+ standard_code

FoodProductPackaging

+ company_code
+ food_product_id
+ shape
+ standard_code
+ thickness
+ thickness_unit

FoodProductPermission

+ food_product
+ food_product_id

BasePermission

+ company
+ company_id

*

* * *
* *

Figure 6.5: Class diagram showing the food product definition related classes

ExecutedSimulation

+ executed_models
+ simulation
+ simulation_id

Simulation

+ description
+ food_product
+ food_product_id
+ model_ids
+ models
+ name

BaseModel

+ id

+ add()
+ delete()
+ exists()
+ save()
+ update()

ModelInfo

+ description
+ gateway_url
+ is_connected
+ name
+ ontology_uri
+ permissions
+ price
+ query_class
+ used_in_simulations

ExecutedModel

+ client_run_id
+ client_run_id
+ created_on
+ error_message
+ error_message
+ executed_simulation_id
+ model
+ model_id

FoodProduct

+ company_code
+ dosage
+ dosage_unit
+ food_product_properties
+ ingredients
+ packagings
+ permissions
+ processing_steps
+ standard_code
+ used_in_simulations

ModelPermission

+ model_info
+ model_info_id
+ permission_type

BasePermission

+ company
+ company_id

*

*

*

*
*

Figure 6.6: Class diagram showing the relation among model information, food product definition
and simulation related classes

Model as a Service: Towards a Discovery Platform for Internet of Food 39

Eindhoven University of Technology

one or more computational model. Similar relation is also shown in the diagram. It also depicts the
ExecutedSimulation and ExecutedModel classes that store the execution information for each run of
the corresponding simulation. Here a point to note is the ExecutedModel stores error messages in
case of a failed model run but it does not store the results from the execution. They are stored by
the gateway that provides endpoints for retrieving model run results. This is a design choice to keep
the backend relatively simple without loosing any functionality and avoid large amount of data on the
backend side.

A close inspection of the ModelInfo class reveals that it does not contain any information about the
input and output parameters of a computational model. This is because they are annotated using
different ontology and stored separately in GraphDB. The ontology_uri of the ModelInfo class holds
the reference to the corresponding model ontology. While retrieving models, queries are run on both
PostgreSQL and GraphDB. The results of those queries are combined before they are populated. The
model input-output parameters are further discussed in Section 6.2.2.

Permissions: One of the key aspects of the MaaS infrastructure is to allow organizations to use
models from other partners and permission plays a large role in this use case. Figure 6.7 shows the
class diagram for the implementation of permissions in this project. As seen in the figure, permissions
are granted to companies. There are two permission implementation classes: ModelPermission and
FoodProductPermission. Both of them are associated with a company and store permissions for Mod-
elInfo (Figure 6.6) as well as FoodProduct (Figure 6.5) respectively. The ModelPermission class has
the permission_type property that maintains two level of permissions: view and execute. The view
permission allows the corresponding company view only access. Companies with execute permission
can view and run a model.

BaseModel

+ id

+ add()
+ delete()
+ exists()
+ save()
+ update()

ModelPermission

+ model_info
+ model_info_id
+ permission_type

FoodProductPermission

+ food_product
+ food_product_id

BasePermission

+ company
+ company_id

Company

+ address
+ name

Figure 6.7: Class diagram showing hierarchy of the permission classes

User Authentication and Authorization: This project implements a token based authentication.
The backend generates a unique token for a correct pair of username and password that can be pro-
vided from the frontend. This token is used in subsequent requests to verify whether the corresponding
user is authenticated or not.

Along with other information, the username and password are stored with the User class as shown in
Figure 6.8. Each user is associated with one Company. Each user is granted the same permissions as
the company he/she belongs to.

40 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

User

+ company
+ company_id
+ email
+ full_name
+ password_hash
+ username

BaseModel

+ id

+ add()
+ delete()
+ exists()
+ save()
+ update() Company

+ address
+ name

Figure 6.8: Class diagram for user related classes

Gateway and Computational Models

The heterogeneity of models is identified as one of the key challenges in Section 5.2.1. Models can be
very different in the way they are developed, deployed and run. The purpose of the gateway is to hide
this heterogeneity and provide a standard interface. According to the architecture defined in Section
5.3.1, a gateway exposes the services of a computational model to the backend through a standardized
web interface called ISimulate. The implementation of this interface differs based on the model it
represents. As shown in Figure 6.9, this interface is relatively simple and provides three endpoints:

• POST /api/run_model: accepts food product properties and initiates a run of the correspond-
ing model. It returns an unique id for each run.

• GET /api/get_result: returns the results based on the provided id of the run if the correspond-
ing model has finished executing.

• GET /api/get_model_run_state: returns the status of the model run. There are four possible
statuses: submitted, running, completed, failed.

<<Interface>>
ISimulate

+ POST: /api/run_model (food_product_properties): job_id
+ GET: /api/get_result (job_id): run_result
+ GET: /api/get_model_run_state (job_id): status

Figure 6.9: ISimulate Interface

In this project, the example model provided by Unilever, which is explained in Section 2.3, was used to
implement the gateway and its corresponding computational model. It calculates the taste perception
(i.e. sweetness, sourness, saltiness, tomato flavor) of tomato soup based on the ingredients.

Since same libraries are used, the web service implementation of the gateway is very similar to the
backend, which is described earlier in this section. The gateways use the Flask library to implement

Model as a Service: Towards a Discovery Platform for Internet of Food 41

Eindhoven University of Technology

the endpoints specified in the interface ISimulate. The configurations used in the web services of the
gateway are shown in Figure 6.10.

BaseConfiguration

+ DEBUG : bool
+ ENV : str
+ INGREDIENT_SERVICE_URL : str
+ PACKAGE_PATH : bytes, str
+ SECRET_KEY : str
+ SQLALCHEMY_DATABASE_URI : str
+ SQLALCHEMY_ECHO : bool
+ SQLALCHEMY_TRACK_MODIFICATIONS : bool
+ TASTES_TO_CALCULATE
+ TESTING : bool

DockerDeployConfiguration

+ DEBUG : bool
+ ENV : str
+ INGREDIENT_SERVICE_URL : str
+ SQLALCHEMY_DATABASE_URI : str
+ TESTING : bool

TestConfiguration

+ SECRET_KEY : str
+ SQLALCHEMY_DATABASE_URI : str
+ TESTING : bool

Figure 6.10: Web service configurations for the gateway

As mentioned earlier in this section, the model run results are stored in the gateway. Similar to the
backend, for storage the PostgreSQL relational database is used in association with SQLAlchemy
ORM library. For this purpose, the SimulationRun ORM class is used that is shown in Figure 6.11.
Upon receiving a model run request, the gateway generates a unique identifier that is stored in the
database along with received parameters, date and sender of the request. At this stage, the status of
the run request is submitted. As soon as the model execution starts, the status is changed to running.
Finally, the model run can finish with either success or failed status. The transitions among the
execution states are shown in Figure 6.12.

BaseModel

+ id

+ add()
+ delete()
+ exists()
+ save()
+ update()

SimulationRun

+ completed_on
+ parameters
+ result
+ status
+ submitted_by
+ submitted_on

Figure 6.11: Data classes for storing model run results

42 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

startsubmitted

error

no error

running

success

failed

Figure 6.12: Transition among run statuses of a model

MaaS Frontend

The frontend of the MaaS infrastructure is a web application that consumes the services provided by
the endpoints of the MaaS Backend. The web application is implemented using Angular4, which is a
Typescript based open source frontend framework. The UI design of the frontend follows the material
design guidelines [21].

The frontend consists of several pages each of which are linked to one or more other pages. The
graph in Figure 6.13 shows all the major pages and how they are connected to each other. Appendix
D presents screenshots of the major pages of the frontend.

The frontend was implemented by a group of bachelor students under the supervision of the author
as part of the Software/Web Engineering Project (SEP), which is introduced in Section 8.4. Further
implementation details about the unit translation functionality is available in [1].

6.2.2 Ontology in MaaS Infrastructure

In the context of this project, interoperability has been identified as one of the key challenges, which is
discussed in Section 5.2.1. The Section 5.3.2 explains the decision to use ontology to be able address
the challenge. Therefore, an ontology for representing the input and output parameters of a computa-
tional model has been developed. The development activities was performed by representatives from
WUR (see Section 3.1.3) in collaboration with the author of this report.

Figure 6.14 shows the structure of essential parts of the developed computational model ontology.
Each has several inputs and outputs that are annotated with the Quantity class. This class can have
several types such as Density, Volume, MassFraction. The Quantity is also associated with a Unit. The
Ontology of Units of Measure (OM2.0) [2] has been used to annotate the Unit and Quantity related
classes. As shown in Figure 6.15, the OM2.0 ontology provides classes, instances, and properties
representing different concepts used for defining and using units. It includes, for instance, common
units such as the SI units meter (om:metre) and kilogram (om:kilogram), but also units from other
systems of units such as the mile (om:mile) or nautical mile (om:nauticalMile-International) [2].

As mentioned in Section 2.3, this project uses an example computational model provided by Unilever
that can calculate the sensory taste perception of tomato soup based on the amount of its ingredi-
ents. Figure 6.16, shows the ontology of the tomato soup model that follows the structure shown in

4https://angular.io/

Model as a Service: Towards a Discovery Platform for Internet of Food 43

Eindhoven University of Technology

User login view

Forgot password
view

Authenticated UI

User registration
view

Available model
view

Available food
products view

My model
viewMy food products

view

User profile
view

My simulations
view

Add simulation
 view

Inspect model
view

Add model
view

Edit model
view

Inspect
simulation

 view

Edit simulation
 view

Add food products
view

Edit food products
view

Inspect food
products view

Simulation
results view

Figure 6.13: Pages in the frontend and how they are connected (adapted from [1])

44 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

isAbouthasId

hasInput

hasOutput

hasUnit hasPhenomemon

Model

Quantity
Volume

string Thing

Density

VolumeFraction

Unit

MassFraction

Thing

isAbout

SensoryAttribute

SensoryCharacteristic

Figure 6.14: Computational model ontology structure

Figure 6.15: The class structure of the OM2.0 ontology [2]

Figure 6.14. The right-hand side of the figure shows the input parameters and their corresponding
properties including type of the quantities and their units. The left-hand side depicts the outputs of the
computational model that are of type sensoryAttribute.

Ontology and the Normalization Component

The component diagram of the MaaS infrastructure shown in Figure 5.4 introduces the Normalization
sub-component as part of the MaaS Backend. The primary goals of the Normalization sub-component
are as follows:

• Map properties defined in food product definition to model input parameters.

• Convert between comparable units of measurements (e.g. gram to kilogram).

Because of this sub-component a user can define the food product with the unit of measurements that
are suitable for him/her and use it in a simulation without worrying about manually mapping the food
product properties or converting to the units expected by the corresponding models.

The mapping between the food product properties and the model input parameters are done based
on their name. An example mapping is shown in the Figure 6.17. The tomato soup model ontology

Model as a Service: Towards a Discovery Platform for Internet of Food 45

Eindhoven University of Technology

hasOutput

hasId

isAbout

TomatoSoupModel
hasUnit

hasPhenomemon

type

massOfSugar

percent

sugar

hasUnit

hasPhenomemon

type

massOfSalt
percent

salt

hasUnit

hasPhenomemon

typedosageDensity

gramPerLitre

productDosage

hasUnit

hasPhenomemon

type

massOfTomatoStandard

percent

tomatoStandard

hasUnit

hasPhenomemon

type

massOfVinegar

massFraction

vinegar

hasInput

density

massFraction

massFraction

massFraction

massFraction

hasUnit

soupSaltiness

sensoryAttribute

soup

saltiness isAbout

hasPhenomenon

type

0-100

hasUnit

soupSourness

sensoryAttribute

soup

sourness isAbout

hasPhenomenon

type

0-100

hasUnit

soupSweetness

sensoryAttribute

soup

sweetness isAbout

hasPhenomenon

type

0-100

hasUnit

soupTomatoFlavour

sensoryAttribute

soup

tomatoFlavour isAbout

hasPhenomenon

type

0-100

hasUnit

hasPhenomemon

typemassOfWater

percent

water

massFraction

tomato soup

soup

Figure 6.16: Ontology of tomato soup taste model input and output parameters

defines the name of the parameters in several languages (i.e. English, Dutch) that is considered during
the mapping process. As a result, the suiker ingredient of the food product can be mapped with the
sugar input parameter of the computational model.

Figure 6.18 shows how the Normalization component is used by the MaaS Backend for converting a
value from a certain unit to another. The Normalization component uses the OM2.0 for implementing
the unit conversions. Almost all the units defined in OM2.0 are connected to a factor value with
a hasFactor edge (Figure 6.15). This factor can be used to convert a unit to its corresponding SI
(International Unit System [22]) equivalent. For example, foot (om:foot-International) has a factor of
0.3048 that means multiplying a foot value with this factor will convert it to meter which is the SI
unit for length. During a conversion, the Normalization component converts the source value to its SI
equivalent and then to the target unit using the factors defined in the OM2.0 ontology.

The unit conversion functionality of the Normalization component was developed by a group of bach-
elor students under the supervision of the author as part of the Software/Web Engineering Project
(SEP), which is introduced in Section 8.4. Further implementation details about the unit translation
functionality is available in [1].

46 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

tomatoSoup: FoodProduct

tomatoSoupModel: Model

mapped with

mapped with

mapped with

mapped with

dosage: Dosage

+ amount: float = 250
+ unit: Unit = gram/litre

:Ingredient

+ name: string = Water
+ amount: float = 74
+unit: Unit = %

:Ingredient

+ name: string = Vinegar
+ amount: float = 2
+unit: Unit = %

:Ingredient

+ name: string = Salt
+ amount: float = 4
+unit: Unit = %

:Ingredient

+ name: string = suiker
+ amount: float = 2
+unit: Unit = %

:Ingredient

+ name: string = Tomato Standard
+ amount: float = 20
+unit: Unit = %

:InputParameter

+ name: string = Dosage (en)
+ name: string = Dosering (nl)
+ unit: Unit = gram/litre

:InputParameter

+ name: string = salt (en)
+ name: string = sout (nl)
+ unit: Unit = %

:InputParameter

+ name: string = sugar (en)
+ name: string = suiker (nl)
+ unit: Unit = gram/litre

:InputParameter

+ name: string = tomato standard (en)
+ name: string = tomaten standaard (nl)
+ unit: Unit = gram/litre

Figure 6.17: Example of mapping properties of food product definition to the model input parameters

Values(quantity, Unit(initial_symbol))

initial_value: Values

initial_value.to_unit(Unit(target_symbol))

target_value:Values

Normalization

MaaS Backend

Figure 6.18: Sequence diagram showing the usage of normalization component (adapted from [1])

Querying Ontology and Related Data Structures

The ontology depicted in Figure 6.16 is stored in the GraphDB that uses SPARQL for querying data.
The GraphDb provides the following REST endpoints to read and write data:

• GET /repositories/{repositoryID}/{query}: Execute specified query on the repository
specified with repositoryID. This endpoint can execute a read-only query and return the results
as JSON.

Model as a Service: Towards a Discovery Platform for Internet of Food 47

Eindhoven University of Technology

• POST /repositories/{repositoryID}/statements/{update}: Performs operations speci-
fied with update parameter on the data in the repository specified with repositoryID. This end-
point is used for updating the ontology stored in GraphDB. In this case, update means modifying
the existing triples as well as adding new ones.

The SparQlRunner class shown in Figure 6.19 is a wrapper around the GraphDB endpoints. It pro-
vides read and write methods that are responsible for querying the ontology and modifying it. The
read method returns a list of QueryResult that is an object representation of the JSON returned by the
GraphDB query endpoint. Figure 6.20 shows the structure of the QueryResult class.

SparQlRunner

+ __init__(db_url, repo_id)
+ read(query): List[QueryResult]
+ write(query): bool

Figure 6.19: SparQlRunner class that communicates with GraphDB

TypeValuePair

+ type: TypeEnum
+ value: str
+ langulage: str

QueryResult

+ item: TypeValuePair
+ property: TypeValuePair
+ value: TypeValuePair

TypeEnum

+ LITERAL = 'literal'
+ URI = 'uri'

*

Figure 6.20: Query result classes returned by SparQlRunner

The QueryResult is a set of TypeValuePair. The type in the TypeValuePair can be a literal or an uri. A
literal type means the corresponding value contains actual data. On the other hand, an uri typed value
holds a reference to another graph node.

The QueryResult return by SparQlRunner is processed further and converted to GraphDbModel,
which is shown in Figure 6.21. The GraphDbModel is a class representation of the computational
model ontology shown in Figure 6.14. Each GraphDbModel has an unique uri and a set of input as
well as output parameters. Each GraphDbModelParameter can have several Labels and a Unit. The
Unit class holds references to OM2.0 ontology that is essential for unit conversion and maintaining
interoperability.

6.3 Deployment and Running the Project

Docker5 has been intensively used to deploy the MaaS infrastructure. Docker is a set of tools that
use OS level virtualization to package software into containers. Each container is isolated from one
another and contains all necessary files, libraries, as well as configurations to run the corresponding
software.

As depicted in the deployment diagram in Figure 6.22, each of the microservices and database in-
stances are deployed in separate Docker containers. The directed associations show the dependencies

5https://www.docker.com/

48 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

GraphDbModel

+ name: str
+ inputs: List[GraphDbModelParameter]
+ outputs: List[GraphDbModelParameter]
+ uri: str

GraphDbModelParameter

+ labels: List[Label]
+ description: str
+ unit: Unit

Label

+ name: str
+ language: str

Unit

+ uri: str
+ label: Label

Figure 6.21: Class representation of a computational model ontology

among them. The containers communicate with each other using a private virtual network. As the
diagram shows, all containers, including the gateway, are deployed on one docker host machine. Ac-
cording to the architecture explained in Section 5.3.1, gateways represent computational model from
another entity (e.g. company) and should ideally run on different infrastructure. However, since the
example tomato soup taste model (see Section 2.3) does not require any special environment (soft-
ware/hardware), the docker container of the corresponding gateway is sufficient to deploy the model.

To define and run all the Docker containers shown in Figure 6.22, this project uses Docker Compose6.
It is a multi-container management tool that provides one point of interaction to create, modify and
remove all containers. Appendix A provides further details about deploying the containers and running
the project for debugging.

6https://docs.docker.com/compose/

Model as a Service: Towards a Discovery Platform for Internet of Food 49

Eindhoven University of Technology

<<host>>
Docker Host

<<service>>
graphdb_container:1.0

<<image>>
ontotext/graphdb:9.1.1-free

<<image>>
graphdb_container

<<service>>
rdbms_container:1.0

<<image>>
postgres

<<image>>
modeldb_container

<<service>>
pdadmin_container:1.0

<<image>>
dpage/pgadmin4

<<image>>
pgadmin_container

<<service>>
frontend:1.0

<<image>>
node:12.7-alpine

<<image>>
frontend

<<service>>
model_access_gateway:1.0

<<image>>
continuumio/miniconda3

<<image>>
model_access_gateway

<<service>>
model-sharing-backend:1.0

<<image>>
continuumio/miniconda3

<<image>>
model_sharing_backend

<<service>>
ingredient_data_service:1.0

<<image>>
continuumio/miniconda3

<<image>>
ingredient_data_service

<<volume>>
rdbms_data

<<volume>>
graphdb_data

<<client>>
web_browser

Figure 6.22: Docker deployment diagram of MaaS infrastructure

50 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

7 Verification and Validation

Verification and validation refers to separate processes that checks whether a software product fulfills
its requirements and specification. The later sections of this chapter describe the verification and
validation processes that were used during the development of the MaaS infrastructure.

7.1 Verification

The IEEE-STD-610 standard [23] defines verification as, "The process of evaluating a system or
component to determine whether the products of a given development phase satisfy the conditions
imposed at the start of that phase." In simpler terms, verification is a continuous process for checking
the application that is being build to ensure it adheres to certain specifications (e.g., well-designed,
error free).

During the development, the MaaS infrastructure was verified in three ways: unit testing, integra-
tion testing, and code consistency checking. Each of these processes are elaborated in the following
sections.

7.1.1 Unit Testing

Unit test is a software testing method that checks if the individual units of the corresponding software
have expected behavior. These tests are typically performed by the developer by writing additional
code that automatically tests the software. In the context of this project, unit tests were used not only
to test the newly implemented features, but also to ensure that the existing functionalities were not
broken.

For unit testing, units are defined differently for each of the components of the MaaS infrastructure.
In case of the MaaS backend, each of the endpoints, which are explained in Section 6.2.1, is defined
as a unit. For the frontend, the Angular1 components and services are considered as units.

For each of the endpoints in the backend, there is at least one unit test that checks the inputs, outputs,
and response codes of the corresponding endpoint. These unit tests are listed in Table 7.1. The testing
API provided by Flask (Python web service framework introduced in Section 6.1.1) and pytest2 was
used to write the unit tests. Pytest is one of the most popular and feature rich unit test framework for
testing Python code. To make sure that the endpoints were reliable and stable, they were tested with
invalid/dummy and correct data. The dummy data was generated using a fake data generation tool

1https://angular.io/
2https://docs.pytest.org/en/stable/

Model as a Service: Towards a Discovery Platform for Internet of Food 51

Eindhoven University of Technology

called faker3.

Table 7.1: Unit tests for testing MaaS backend endpoints

Unit Test Name Endpoint Type Status
test_user_registration_and_login Authentication Passed
test_check_authorization Authentication Passed
test_login_wrong_credential Authentication Passed
test_update_permissions Food Product Definition Passed
test_set_permission_to_food_product Food Product Definition Passed
test_create_and_get_accessible_product Food Product Definition Passed
test_create_and_get_owned_product Food Product Definition Passed
test_create_and_get_one_food_product Food Product Definition Passed
test_create_and_update_one_food_product Food Product Definition Passed
test_create_and_get_all_food_products Food Product Definition Passed
test_create_and_delete_food_products Food Product Definition Passed
test_delete_food_product_used_in_simulation Food Product Definition Passed
test_get_all_ingredients Food Product Definition Passed
test_model_not_accessible_by_other_company Model Passed
test_model_create_and_delete Model Passed
test_model_not_deletable_by_other_people Model Passed
test_model_create_and_update Model Passed
test_model_not_update_by_other_user Model Passed
test_model_access_to_other_company Model Passed
test_update_permissions Model Passed
test_delete_model_used_in_simulation Model Passed
test_create_and_get_simulations Simulation Passed
test_get_accessible_simulations_test Simulation Passed
test_simulation_not_accessible_from_other_organization Simulation Passed
test_update_simulation Simulation Passed
test_delete_simulation Simulation Passed
test_no_delete_by_different_user Simulation Passed
test_use_unauthorized_model_or_product Simulation Passed
test_use_model_with_execute_permission Simulation Passed
test_use_model_with_view_permission_throw_error Simulation Passed
test_use_not_connected_model_throw_error Simulation Passed
test_get_model_by_uri GraphDB Qeury Passed
test_get_all_models_from_graph_db GraphDB Qeury Passed

The frontend was part of the SEP assignment and was developed by a group of bachelors’ students,
which is explained in Section 8.4. They developed a unit test plan [24] that describes the tested items,
test procedure, and results of the testing.

3https://faker.readthedocs.io/en/master/

52 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

7.1.2 Integration Testing

Integration tests are performed to test if the individual units are working as expected after integrating
them together. This is the next testing step after the unit test. The main goal here is to test the interfaces
between the components.

In the context of this project, the frontend application developed by the SEP students acted as the base
of the integration test. During the development of the frontend, the students received the specification
of the available backend endpoints in the form of a Swagger4 API specification that included a short
description of each endpoint, their input and output parameters, as well as HTTP return codes. The
students developed the frontend and integrated it with the backend based on this specification without
knowing any details of the backend implementation. The automated unit tests that were implemented
in the frontend indirectly calls the backend endpoints. These tests indicated whether the integration
between the frontend and the backend was working properly.

Additionally, end-to-end tests were also implemented in the backend. These tests automatically de-
fined a food product, connected a computational model, created a simulation with previously created
items, and finally, ran the simulation. Table 7.2 shows the implemented end-to-end tests. The inte-
gration between the backend and the database servers as well as the gateways were tested using these
tests.

Table 7.2: End-to-end tests for testing minimum functionalities needed for running a simulation

Test Name Description Status
test_end_to_end_with_invalid_model_gateway_url Trying to run a model

with unreachable gate-
way should return error

Passed

test_end_to_end_with_invalid_model_and_food_product Trying to run a model
with invalid data (i.e.,
food product properties
that can not be mapped)
should return error

Passed

test_end_to_end_with_valid_tomato_soup Running a model with
proper data should be
successful and return re-
sults from model

Passed

7.1.3 Code Consistency Checking

As mentioned in Section 6.1.1, the backend was developed with Python. To ensure that the coding
style was consistent throughout the whole code repository, the PEP8 style guide [25] for Python was
used. This style guide was developed by the creators of the Python language and has been widely
accepted. For automatically checking the coding style, PEP8 compliance options were enabled in
the PyCharm5, which was the integrated development environment (IDE) used in this project. This

4https://swagger.io/
5https://www.jetbrains.com/pycharm/

Model as a Service: Towards a Discovery Platform for Internet of Food 53

Eindhoven University of Technology

provided basic guidelines (i.e., tabs vs. spaces for indenting, indent width, line length) for the code
and made it easier to read.

7.2 Validation

The IEEE-STD-610 standard [23] defines validation as, "The process of evaluating a system or compo-
nent at the end of the development process to determine whether it satisfies specified requirements."
The purpose of this process is to ensure that the right product has been developed and it meets the
expectations of the stakeholder. In the context of this project, the system under development was vali-
dated by the key stakeholders (stakeholder analysis in Sec. 3.1) at various stages, which are discussed
in details in the following sections.

7.2.1 Regular Stakeholder Feedback

During the execution of this project, weekly meetings were scheduled with the key stakeholders. The
purpose of these meetings were to keep the key stakeholders involved in the development process,
perform short-term validations and identify inconsistent requirements as early as possible. During
these meetings, several architectural diagrams were used to explain to the stakeholders how the MaaS
infrastructure would be implemented. Based on these discussions, the stakeholders could identify
whether the development activities were progressing towards the right direction or not. The mentioned
diagrams are presented and explained in Chapter 5.

7.2.2 Stakeholder Demonstration

According to the project timeline explained in Section 8.2.1, the design and implementation phase
of this project contained two milestones. Each of the milestone resulted into a prototype. The final
prototype, which was the result for the second milestone, was demonstrated to the broader Internet
of Food (INoF) partners. The purpose was to demonstrate the newly developed MaaS infrastructure
and showcase its possibilities as well as capabilities, which is one of the key goals of this project as
explained in Section 2.3.

The final prototype of the MaaS infrastructure implemented all the requirements described in Chap-
ter 4. An overview of these satisfied requirements is shown in Table 7.3. The prototype was also
demonstrated to the INoF partners during the final prototype demonstration. The partners including
the key stakeholders (explained in Section 3.1) accepted that the prototype met their expectation and
satisfied all the elicited requirements. Moreover, several feedbacks were received during the demon-
stration that indicated the direction in which the INoF partners would like to further improve the MaaS
infrastructure. These feedbacks are listed in Section 9.1.

7.2.3 Project Goal Evaluation

Section 2.2 defines the problem in the form of three questions that this project aimed to solve. A
hypothetical standardized infrastructure is introduced in Section 2.3 to answer these questions. This
section evaluates if the developed MaaS infrastructure can answer the questions from Section 2.2 and
has similar characteristics compared to the hypothetical infrastructure introduced in Section 2.3.

54 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Table 7.3: Statuses of functional requirements after implementation

Req. No. Priority Requirement Description Status
FR01 Must The system shall provide a gateway with a URI that will allow

interaction with the computational model
Satisfied

FR02 Must The system shall allow the user to connect a model to the MaaS
infrastructure by specifying the corresponding gateway URI, in-
put and output parameters of the model

Satisfied

FR03 Must The system shall allow the user to share or unshare a connected
model with other users who are from different organizations

Satisfied

FR04 Must The system shall show a list of models that was connected by
current user

Satisfied

FR05 Must The system shall show a list of models that are available or has
been shared with the current user. This list also shows the cost of
running the models and their input-output format information

Satisfied

FR06 Must The system shall allow the user to define a food product by spec-
ifying the recipe, processing, packaging

Satisfied

FR07 Must The system shall allow the user to define a simulation by spec-
ifying one or more models and a food product from the list of
available products

Satisfied

FR08 Must The system shall show the results of successfully executed mod-
els and error messages if the model execution fails

Satisfied

FR09 Must The system shall allow the user to execute a simulation Satisfied
FR10 Must The system shall allow the user to view the simulation results Satisfied
FR11 Must The system shall annotate the information regarding the input and

output parameters of a model using ontology
Satisfied

FR12 Should The System shall allow the user to login to their account using
username and password

Satisfied

FR13 Should The system shall allow the user to create an account Satisfied

1. How can models and/or results from them be shared with other organizations without
replicating the original execution environment and sharing related artifacts? One of the
key microservices of the MaaS infrastructure are the gateways. As explained in Section 5.3.1,
each gateway represents a computational model and exposes the services of the corresponding
model to external parties (the backend in this case) through a set of standardized endpoints.
These can be used to upload data to run a model on and get corresponding results. The URL
of the gateway is used to connect the computational models to the backend. Finally, these con-
nected models can be shared with other organizations. With this architecture, models can keep
running in their original execution environment and it is not required to replicate the environ-
ment or share related artifacts (e.g., executables, source codes) to be able to share the models.

2. How can results from several computational models belonging to different organizations
be made available under a unified infrastructure? According to the microservice archi-
tecture explained in Section 5.3.1, gateways connect the computational models to the MaaS
infrastructure backend. The backend implements a permission system (explained in Section
6.2.1) that can be used to share a connected model with external parties. Moreover, the MaaS

Model as a Service: Towards a Discovery Platform for Internet of Food 55

Eindhoven University of Technology

infrastructure provides the functionality to define simulations that are pairing of a food product
definition and one or more computational models (more in Section 2.1.3). Therefore, with the
MaaS infrastructure, it is possible to define, run, and get results from a simulation that contains
models from different sources.

3. How can one company use a model from other companies without reformatting data to
match the model inputs (e.g., different units of measurement)? This question refers to
the interoperability that was identified as one of the major challenges of this project (more in
Section 5.2.1). As explained in Section 5.3.2, achieving complete interoperability is a broad
topic and is out of the scope of this project. However, this project aims to prove that it is
possible to achieve interoperability to some extent by using appropriate technology. To do that,
MaaS used two different ontologies: Ontology of Units of Measure (OM2.0) [2] and model
ontology.

The Ontology of Units of Measure (OM 2.0) was used to convert between units of measure-
ments while executing models (details in Sec. 6.2.2). The model ontology was developed
in collaboration with Wageningen University and Research (WUR) based on the tomato soup
model, which was provided by Unilever. Using this ontology, the input and output parameters
of a model was annotated that was essential for mapping properties of food product definition
to the model input parameters. The model ontology was highly influenced by the tomato soup
model as it was the only model available during the development. Therefore, the model on-
tology can only annotate models similar to the tomato soup model. To be specific, the model
must follow the structure depicted in Figure 6.14 and explained in Section 6.2.2. Despite this
limitation (also explained in Sec. 9.1.1), the MaaS prototype was able to prove that contextual
interoperability is indeed achievable.

56 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

8 Project Management

The project management activities started from the very beginning of this PDEng project. This chapter
describes how it was organized and managed.

8.1 Way of Working

As described in Chapter 1, the Internet of Food (INoF) project was one of several ongoing projects
of the Sustainable Food Initiative (SFI). Being part of the INoF, MaaS project had stakeholders from
different organizations and with diverse backgrounds. This contributed greatly to the complexity of
this project. Therefore, a proper project management became one of the key activities to steer this
project in the right direction.

The time duration for the project was ten months. This constraint limited the number of features or
user stories that could be implemented. The requirement analysis process explained in Chapter 4,
made sure that these features or user stories were elicited as early as possible. However, in case of
real life multi-disciplinary projects, like this one, requirements can be rather dynamic in nature and the
used project management process should be able to deal with these uncertainties. To be able to do that,
a hybrid approach was used. This approach bought some ideas from the Waterfall [26] methodology
to be able to deal with the time constraint and, to some extent, a fixed set of deliverable. To deal with
the dynamic nature of the project, several concepts from the Agile [26] methodology were also used.

8.2 Waterfall Software Development Model

The fundamental idea of the waterfall software development model was introduced by Dr. Winston
W. Royce [27] in the 70’s. [3] defines the waterfall model as, "a sequential design process, often used
in software development processes, in which progress is seen as flowing steadily downwards (like
a waterfall) through the phases of Conception, Initiation, Analysis, Design, Construction, Testing,
Production/Implementation, and Maintenance."

Figure 8.1 shows how each step in the waterfall model depends on the previous step and the next step
is not started until the current step is complete. This kind of workflow creates a timeline where the
progress of each step is linearly comparable to the total time spent. A similar timeline was created in
the context of the MaaS project, which is explained in Section 8.2.1.

Model as a Service: Towards a Discovery Platform for Internet of Food 57

Eindhoven University of Technology

Requirements

Design

Implementation

Verification

Maintenance

Figure 8.1: Waterfall progress flows from the top to the bottom, like a cascading waterfall [3]

8.2.1 Project Timeline

To keep a high level overview during this project, a project timeline was set up in the beginning and
was updated several times to make sure that the activities were in sync with it. This timeline helped
not only to evaluate project progress, but also to visualize the impact of one activity on others.

As mentioned earlier, the MaaS project belonged to the food production domain and had multiple
stakeholders. Therefore, understanding the context and the domain was absolutely essential to be
able to produce an effective product. The project timeline made sure that the domain analysis and
requirement elicitation phases were scheduled before any implementation related activity.

ID Task Name Duration Start Finish

1 1 Project Initiation 21 days Thu 1/2/20 Thu 1/30/20
2 1.1 Setup PSG and regular meeting schedule 3 days Thu 1/2/20 Mon 1/6/20
3 1.2 Project Kickoff 2 days Wed 1/29/20 Thu 1/30/20
4 2 Analysis 127 days Tue 1/7/20 Wed 7/1/20
5 2.1 Study previous work (DASSICO) 4 days Tue 1/7/20 Fri 1/10/20
6 2.2 Initial Domain Analysis 5 days Mon 1/13/20 Fri 1/17/20
7 2.3 List Use Cases 4 days Mon 1/20/20 Thu 1/23/20
8 2.4 Stakeholder Analysis 3 days Fri 1/24/20 Tue 1/28/20
9 2.5 Initial Requirement Analysis for Prototype v1 10 days Wed 1/29/20 Tue 2/11/20
10 2.6 Requirement analysis for the SEP project 5 days Fri 2/7/20 Thu 2/13/20
11 2.7 Re-evaluate requirements for Prototype v2 5 days Thu 6/25/20 Wed 7/1/20
12 3 Design and Implementation 139 days Fri 2/14/20 Wed 8/26/20
13 3.1 4+1 Architecture 15 days Fri 2/14/20 Thu 3/5/20
14 3.2 Decide on technologies and environment setup 5 days Fri 3/6/20 Thu 3/12/20
15 3.3 Prototype v1 74 days Fri 3/13/20 Wed 6/24/20
16 3.4 SEP project 55 days Mon 4/20/20 Fri 7/3/20
17 3.5 Prototype v2 (D 1.4) 40 days Thu 7/2/20 Wed 8/26/20
18 4 Documentation and Presentation 196 days Tue 1/21/20 Tue 10/20/20
19 4.1 PDEng thesis report 182 days Tue 1/21/20 Wed 9/30/20
20 4.1.1 First Draft Report 119 days Tue 1/21/20 Fri 7/3/20
21 4.1.1.1 Create Report Outline 19 days Tue 1/21/20 Fri 2/14/20
22 4.1.1.2 Regularly update relevent section 115 days Mon 1/27/20 Fri 7/3/20
23 4.1.2 Review PDEng Report by Supervisors 2 days Mon 7/6/20 Tue 7/7/20
24 4.1.3 Final Report 61 days Wed 7/8/20 Wed 9/30/20
25 4.2 Final Presentation 9 days Fri 9/25/20 Wed 10/7/20
26 4.3 Project booklet 2 days Sun 10/18/20 Mon 10/19/20
27 4.3.1 Project Ending 1 day Tue 10/20/20 Tue 10/20/20

Prototype 1
Prototype 2

Final Report

Milestone 1 Milestone 2 Milestone 3

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Qtr 1, 2020 Qtr 2, 2020 Qtr 3, 2020 Qtr 4, 2020

Figure 8.2: MaaS project timeline

The final timeline is shown in the Figure 8.2. It is divided into four primary activities that are Project
Initiation, Analysis, Design and Implementation, Documentation and Presentation. The purpose of
the project initiation phase was to define how the project would be organized in the upcoming ten

58 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

months. This included setting up an initial project timeline, scheduling essential meetings with the
supervisors and the stakeholders, as well as defining a communication protocol.

The analysis phase was used to understand the domain and to define the problem that the MaaS project
was trying to solve. The domain and problem analysis led to the set of initial use cases. Further
analysis of these use cases helped in defining the initial set of requirements.

The design and implementation started after the analysis phase was finished and enough knowledge
was gathered about the project as well as the domain. The implementation part was divided into two
sub-phases that are labeled Milestone 1 and Milestone 2 in Figure 8.2. Each of these sub-phases
resulted into a prototype and the second prototype was the final product of this project. The SEP
(Software End Project) was part of this phase where a team of Computer Science Bachelor students
from the TU/e participated in developing certain components of the first prototype (details in Sec.
8.4).

The final phase was the documentation and the presentation phase. Unlike the previously mentioned
phases, this one ran in parallel with the other phases. The purpose of this phase was to periodically
document all the findings and prepare the graduation report as well as the PDEng defense presentation.

8.3 Agile Methodology

To deal with the dynamic nature of the project, the MaaS development process was highly influenced
by the agile manifesto [28]. It is a brief document published in 2001 and is built on four values as
well as 12 principles for agile software development. The values form the base of the agile mentality
and differentiates itself from other methods. These values are:

1. Individuals and interactions over processes and tools.
2. Working software over comprehensive documentation.
3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

One of the principles in the agile manifesto [28] states, "Welcome changing requirements, even late
in development." This implies that in reality, requirements have the possibility to change and the
development methodology must be able to take those changes into account. The agile manifesto
also mentions, "Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference for the shorter timescale." This principle refers to the iterative development practice
where the full development time duration is divided into smaller chunks and a small subset of the
requirements are addressed during each of those chunks. This is a contrast to the traditional bulk
delivery method and provides an early opportunity for feedback.

8.3.1 Scrum

Scrum is a lightweight process framework that is a subset of the agile methodology. Scrum defines a
set of roles, meetings, artifacts, and fixed length iterations known as sprints. Each sprint can have a
duration of one to four weeks. Figure 8.3 depicts the key activities and roles of a Scrum process.

The Scrum process starts with a product backlog. It is a set of desired features that are sorted by
priority. A product owner is responsible for maintaining the product backlog and explaining it to the
team. He is also responsible for keeping the team motivated with a goal and vision.

Model as a Service: Towards a Discovery Platform for Internet of Food 59

Eindhoven University of Technology

Product
Backlog

Sprint Plan
Meeting

Sprint
Backlog

Finished
Work

Sprint
(1 - 4 Weeks)

24 H

Daily Scrum

Sprint ReviewProduct Owner Development Team

Scrum Master

Figure 8.3: The Scrum Process

At the start of each sprint, the product owner explains the top priority backlog items to the team in
a sprint planning meeting. The team chooses the tasks that they can complete during the sprint and
moves them from the product backlog to the sprint backlog (which is a list of tasks to complete in the
sprint).

During the sprint, there is a daily Scrum meeting. It is a 10 to 15 minutes stand-up meeting where
each team member talks about their work progress, short term goals, and any issues that have come
up. The daily stand-up meetings takes place every day in the morning and helps the team keep an eye
on the overall progress as well as maintain transparency.

At the end of each sprint, the team presents their work to the stakeholders in terms of a live demonstra-
tion. This meeting is known as the sprint review. Moreover, after each sprint, a retrospective meeting
occurs where the team reflects on how well Scrum is working for them and talks about any changes
that need to be made in the next sprint.

8.3.2 Agile/Scrum in MaaS

In the context of the MaaS project, the PDEng trainee worked alone. There were, of course, other
stakeholders involved. However, they were not directly involved in the core development activities.
Although this setup is less than ideal to have a full Scrum, several ideas were adopted from Scrum
into the process management of this project.

During the project initiation, a project backlog was set up to be able to record and keep track of all
expected features. During the project, this backlog was updated very frequently as new and/or more
specific information became available. The backlog included not only the features to be implemented
but also the PDEng related activities (e.g., come back day presentation, TSP submission) that had to
be completed before specific deadlines.

During this project, the activities were split into one-week sprints. Each sprint started with a review of
the backlog. Based on priority and/or urgency, some backlog items were moved to the sprint backlog.
The size of the sprint backlog depended on the available time during the sprint.

During the sprint, at least two meetings were scheduled to demonstrate the project progress to the
company and academic supervisors. Section 8.6 explains more about these meetings and the commu-
nication plans in general.

At the end of each sprint, the sprint backlog was reviewed one more time to find out which items
remained incomplete. These items were moved to the next sprint. This provided a nice opportunity
to reflect on the previous sprint to find out the things that went well and things that didn’t. Finally, if

60 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

needed, decisions were made to make necessary adjustments to the next sprints to have better results.

8.4 Software/Web Engineering Project (SEP)

At TU/e, bachelor students from the software science major are required to complete a large and
complex software development project as part of their degree requirement. These projects are called
the Software/Web Engineering Project (SEP). These projects are conducted as a group. The goal is to
demonstrate the student’s ability to develop large non-trivial software in a group context. A project
group consists of 9-11 students. They work almost full-time on the project during a full quarter
(including exam weeks) [29].

In the context of the MaaS project, certain parts of the intended system were outsourced as an assign-
ment to a SEP group who called themselves Foo Development. A detailed technical discussion about
this assignment can be found in Section 6.2.1. This project was conducted in the fourth quarter of the
academic year 2019-2020.

The SEP assignment started on 20 April 2020 with a project kickoff and ended on 3 July 2020 through
a demonstration of the results. During this period, the PDEng trainee acted as a client for the Foo
Development team. He was responsible for explaining the assignment to the students and making sure
that they were producing expected results. To do that, the trainee accepted or rejected requirements
that were elicited by the students and provided regular feedback. This was done during the weekly
planning meetings where the students demonstrated their progress and the PDEng trainee could assign
priorities to the upcoming tasks.

8.5 Risk Management

The risk management process started by identifying an initial set of risks at the beginning of the MaaS
project. Each identified risk was assigned a severity and probability score. During the execution of the
project, the initial set of risks were updated by adding newly identified risks and adjusting previously
identified ones when they became obsolete or mitigated or less relevant.

RISK 01 — Computational models (or example) are not made available in time.
Mitigation strategy:

• Remind related personnel about the models and explain the risks if they are not available in
time.

• Prepare and ask questions to understand what the model means in the context of the food product
domain.

RISK 02 — The MaaS infrastructure prototype works with the example models but needs sig-
nificant change to work with real models.
Mitigation strategy:

• Find out how a real model is different from the example model.
• Carefully study the provided model and design the architecture as modular as possible.
• Explicitly mention the risk to the major stakeholders and how this can affect the project given

the limited time duration.

RISK 03 — SEP assignment not completed before the first prototype demonstration.

Model as a Service: Towards a Discovery Platform for Internet of Food 61

Eindhoven University of Technology

Mitigation strategy:
• Plan a Minimum Viable Product (MVP) that has most of the required functionality.
• During the weekly SEP planning, set task priorities keeping the MVP in mind.
• In case the project lags behind, communicate it to the SEP academic supervisor.
• For the worst case scenario, prepare some buffer time that can be used to take over the SEP

project and finish the MVP.

RISK 04 — Due to COVID-19 [30] outbreak, communication with the SEP students was not
effective leading to misunderstandings.
Mitigation strategy:

• Set up an effective communication channel where the students can communicate directly with
the trainee.

• Get readonly access to the SEP project repository.
• Occasionally, run the project and try to find issues.
• Closely monitor the progress of the SEP project.
• In case the project lags behind, communicate it to the SEP academic supervisor.

RISK 05 — Change in priorities or deliverable mid-project.
Mitigation strategy:

• Schedule regular meetings to demonstrate the project progress to the major stakeholders.
• Encourage feedback during the demonstrations.
• Discuss with the major stakeholders if any contradicting priorities or deliverable emerge.
• Make a list of assumptions and verify them with the major stakeholders.
• Make a list of elicited requirements and verify them with the major stakeholders.

RISK 06 — A major stakeholder not available for long time due to reasons such as resignation,
medical issues, change in position.
Mitigation strategy:

• Make the change explicit to other major stakeholders.
• Find out who is assuming the responsibilities in the absence of the stakeholder.
• Schedule a meeting with the new person as soon as possible and explain the project, way of

working, progress, and any important points that may have appeared by the time.

RISK 07 — Due to the COVID-19 [30] outbreak, all supervisor meetings are online and these
meetings may not be as effective as in person meetings. As a result, issues might pass on unde-
tected.
Mitigation strategy:

• Organize a meeting (online) at least once a week with the supervisors to discuss and demonstrate
project progress.

• Use online drawing tools as a replacement of the physical whiteboard to make rough sketches
during the online meetings.

• Take extra care about verifying assumptions and communicate immediately in case of confu-
sions.

62 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

8.6 Communication Plan

As mentioned in Chapter 3, the MaaS is a multidisciplinary project where the stakeholders have very
diverse backgrounds. Therefore, it was important to set up a clear and regular communication channel
to avoid any misunderstanding and encourage early feedback. Most of the meetings that took place
during the execution of this project can be divided into three different categories: weekly update
meetings, monthly update meetings, and other meetings that were organized on demand.

8.6.1 Weekly Update Meetings

These meetings were scheduled at the very beginning of the MaaS project to occur every week on
Thursdays until the end of the project. The usual participants were the company supervisors, the TU/e
supervisor, and the PDEng trainee. The purpose of these meetings was to demonstrate incremental and
small updates to the major stakeholders. These updates included the tasks that had been completed
in the previous week, any blocking issues, and plan for the upcoming week. The weekly meetings
made sure that the project was running in the right direction and provided the option to spot any
misunderstanding as early as possible. These meetings played the role of the sprint review, which is
explained in Section 8.3.1.

8.6.2 Project Steering Group Meetings

The Project Steering Group (PSG) is introduced in Chapter 3. This group consisted of major stake-
holders of the MaaS project including the PDEng trainee. During the project, the PSG had monthly
meetings typically on the last Thursdays of the respective month. The main purpose of these meetings
was to encourage feedback from the stakeholders.

Typically, these meetings started with a demonstration where the trainee explained the major features
that were implemented since the previous PSG meeting. This was followed by a high level discussion
about the design and the architecture of the system, requirements as well as risks identified by the
PDEng trainee. A high level plan for the coming month was also discussed towards the end of these
meetings.

8.6.3 On-Demand Meetings

Besides the regular weekly and monthly meetings, several other meetings took place during the ex-
ecution of the MaaS project. Although these meetings were not regular and mostly scheduled on
demand, they played key role in communicating with the key stakeholders and understanding the
project context.

8.6.4 Communication Medium

During the project kickoff, an agreement was made among the trainee and the major stakeholders
regarding the way of communication. According to the agreement, a face-to-face in person communi-
cation was set as the preferred way for discussions. However, as the trainee and the stakeholders were

Model as a Service: Towards a Discovery Platform for Internet of Food 63

Eindhoven University of Technology

not located in the same location, an in person meeting was not always possible. In such cases, Mi-
crosoft Teams was chosen as the remote video conferencing tool via which anyone could participate
in meetings remotely.

Email was set as the preferred way for exchanging digital media (e.g., documents, images) and send-
ing meeting invitations. Moreover, direct phone calls as well as various social media (e.g., Skype,
WhatsApp) remained as backup tools for any urgent communications.

Due to the COVID-19 pandemic [30] that broke out three months after the MaaS project kickoff,
offices were shutdown, everyone was advised to work from home if possible, and all academic activ-
ities were moved online. As a result, the initial communication agreement was revisited and a new
agreement was made to hold all meetings as well as discussions remotely using Microsoft Teams.

64 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

9 Research Possibilities and Future Work

One of the goal of the development of the MaaS prototype was to set up a baseline for further devel-
opment. This chapter discusses the identified future works and research possibilities.

9.1 Limitations and Future Work

During the evaluation of the MaaS prototype, several limitations were identified. Some of them (listed
in Section 2.4) were known and accepted by the stakeholders considering the prototype nature of
the project. Others were identified by the PDEng trainee throughout the project timeline. These
limitations were explicitly discussed with the stakeholders and decisions were made to give them a
lower priority or put them out of the scope of this project due to various restrictions.

In addition to identifying the limitations, they were analyzed to spot possibilities for future enhance-
ments. The identified limitations and improvement possibilities regarding the MaaS prototype are
discussed in the following sections.

9.1.1 Diverse Models

During the development of the MaaS prototype, Unilever provided an example model that outputs
four sensory taste perceptions based on the ingredients of a tomato soup recipe. This was the only
model available during the development. Therefore, the prototype was designed, developed, and
tested based on this available model. As a result, the prototype was tested to work with models that
are similar to the Unilever provided tomato soup taste model. To be specific, the model must follow
the structure depicted in Figure 6.14 and explained in Section 6.2.2. The lack of diverse models
limited the versatility of the MaaS infrastructure and was identified as a risk (see Section 8.5). The
key stakeholders were made aware of this risk and the corresponding effects. However, based on
the discussions with the key stakeholders and considering the prototype nature of this project, it was
decided to give a lower priority to this risk.

Models are very heterogeneous in nature as they are typically developed in-house by different or-
ganizations. Although the microservice based gateways (more in Sec. 5.3.1) and ontology based
normalization processes (details in Sec. 6.2.2) implemented in the MaaS infrastructure provided a
level of abstraction as well as achieved interoperability in the context of this project, they need further
development and testing to accommodate diverse models. To do that, it is important to get access to
more models and set up an active feedback loop with the corresponding domain experts to understand
as well as support more models in the MaaS infrastructure.

Model as a Service: Towards a Discovery Platform for Internet of Food 65

Eindhoven University of Technology

9.1.2 Unit Conversion

The MaaS prototype implements a normalization component (see Section 5.3.2) that includes a unit
conversion sub-component. The development of this sub-component was part of the SEP assignment
(see Section 8.4) for the bachelors’ students. They used the Ontology of Units of Measure (OM2.0)
[2] to implement the unit conversions. During the development they found a few issues with some
units of measurements from OM2. Their findings regarding the OM2.0 are given in Appendix C.

To summarize, the convertibility between two units of measurements are checked based on their di-
mensions (more in Section C.1) through the hasDimension property of a unit. For example, a con-
version between inch and meter is possible because they are both units with the dimension of length.
However, due to the absence or ambiguity regarding the dimension information, certain units of mea-
surements are not supported (see Appendix C).

Although the OM2.0 played a key role in the implementation of the unit translation component and
the supported units were sufficient for this project, further collaboration with the developers of the
OM2.0 is necessary to better understand the ontology and be able to use it more effectively. The
findings listed in Appendix C can be used as a good starting point for such a collaboration.

9.1.3 User Authentication

The MaaS infrastructure implements a JSON Web Token (JWT) based authentication that provides
basic security for the endpoints available in MaaS backend. Although this authentication validates
whether a user is registered or not, it does not validate the identity of the user (i.e., no security pro-
tocol to check whether a user actually belongs to a certain organization). Considering the prototype
nature of the MaaS infrastructure, this implementation of authentication was a design choice that was
discussed with the key stakeholders.

MaaS Backend

Client

MaaS
Identity Provider

Company 1
Identity Provider

Company 2
Identity Provider

Company 3
Identity Provider

Figure 9.1: Proposed overview for MaaS identity provider

A distributed identity provider can be used for a more robust authentication system. An example
architecture of such a system is shown in Figure 9.1. The idea here is to set up a microservice
based micro-infrastructure where each partner organization can validate the identity of a user based

66 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

on provided credentials.

9.1.4 Usage of Ontology

In addition to the OM2, a separate ontology was developed in collaboration with the Wageningen
University and Research (WUR) to annotate the tomato soup taste model provided by Unilever. As
mentioned earlier in this chapter, the tomato soup model was the only one that was available during
the development of this project. Therefore, the ontology was developed only based on the domain
knowledge that could be extracted from this available model. As a result, this ontology is highly
coupled with the tomato soup model and can only be used to annotate similar models. To develop
a more effective ontology that can annotate larger variety of models, it is essential to have access to
more models and corresponding domain experts.

In the implementation of the MaaS infrastructure, the model ontology has been used not only for an-
notating models but also to store information about input and output parameters of models. Although
an ontology is suitable for representing knowledge, it was found to be suboptimal for data storage that
requires frequent read, write, and update operations. Following are the identified issues with ontology
based storage:

• In the MaaS infrastructure, GraphDB was used to store ontologies. For querying data from this
database, SPARQL is used that is not optimized for performance compared to more matured
data storage solutions (i.e., relational databases).

• While updating or deleting an entry, not all related triples/relations can be updated or deleted as
they may be connected to other concepts. Checking for these additional connections are very
costly and greatly affects the quality of service. On the other hand, leaving these unused entities
in the storage needs regular maintenance to avoid data piling that might require additional costs.

• In a nutshell, ontology is a set of triples for representing information and connections among
them. Therefore, it is extremely flexible and almost no restriction or constraint can be imposed
on the database level. As a result, any minor bug or malicious user has the potential to easily
corrupt the stored data.

Due to the issues mentioned above, it is recommended to use ontology only for knowledge represen-
tation and not for data storage. In [31], several definitions of ontology is given and almost all of them
agrees with the idea of knowledge store and/or description of domain concepts. The Ontology of Units
of Measure (OM2), which was used in MaaS for implementing unit conversion, is a perfect example
of such usage. OM2.0 contains the knowledge of units and relations among them (i.e., conversion
factors, dimensions) that are globally accepted. This knowledge base can be used in different ways
(in this case is unit conversion) without making frequent changes to the ontology itself.

9.1.5 Cost and Payment

One of the key motivation for an organization to share the services of their models is to create addi-
tional source of revenue. In the MaaS infrastructure, it was possible to specify a cost for running a
model. However, the payment was not enforced when executing a model and there was no connection
with any payment gateway.

Model as a Service: Towards a Discovery Platform for Internet of Food 67

Eindhoven University of Technology

Moreover, during the demonstration of the MaaS infrastructure, one of the INoF partners suggested
that the cost of running a model should not be a fixed amount. Rather, the user should be able to
define costs separately per organization or department within that organization, as it is possible for a
company to have different contracts with other entities.

9.1.6 Processing Standard

The definition of food product and related concepts are explained in Section 2.1.1. One of these
concepts is processing that is defined as sets of mechanical and/or chemical operations performed to
the ingredients of a certain food product during production. In the same section, it is also explained
that ISA-88 [10] is a global standard for defining processing steps and MaaS implements a subset of
it that was discussed and agreed with the key stakeholders. However, to develop an enterprise grade
MaaS infrastructure it is recommended to thoroughly implement the ISA-88 standard.

9.1.7 Performance

The MaaS prototype is not optimized for performance. This is specially noticeable when querying
ontologies from GraphDB. As explained in Section 2.3, the primary goal of this prototype was to
demonstrate its possibilities to the Internet of Food (INoF) stakeholders. Therefore, after discussing
with the client, it was decided to spend limited resources on performance optimizations.

9.2 Research Possibilities

During the execution of this project several research possibilities were identified. Some of these
possibilities are more related to enhancement and further development of MaaS that are listed as
future work in Section 9.1. The rest are discussed in the following sections.

9.2.1 Model Parameter Mapping

Before running a model, a mapping step is performed between the model input parameters and the
properties of food product definition. This step is explained in details in Section 6.2.2. Currently, the
mapping is done based on the names, which can be in different languages (i.e., English, Dutch), of the
model parameters and food product properties.

This name based mapping puts lots of responsibility to the users of the MaaS as they have to take
extra care to conform to the standard set my the model owner (i.e., spelling of the names of ingredi-
ents). Therefore, the current mapping technique can be greatly enhanced using context aware artificial
intelligence algorithms to compensate for human errors.

Derived mapping is another possible research topic, which was suggested by one of the stakeholders.
In this context, derived mapping refers to calculating the value of a model parameter based on the
available data in the food product definition. For example, given a food product definition that contains
volume and mass information, it is possible to calculate the density using the equation density =
maas

volume
and use the result as an input to a model if it required so. Implementing it can greatly

68 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

increase the interoperability of the MaaS infrastructure. However, this requires more research and
possibly, development of related ontology.

9.2.2 Guidelines for Model Development

The heterogeneity of models and related challenges or problems are mentioned several times in this
report. The models are heterogeneous in nature mainly because they are developed by different com-
panies in isolation and without following any guideline or commonly accepted standard. As a result,
they are not ideal for sharing as a service and additional steps are necessary to do so, which might be
very complicated considering the legacy models that are still in use. In this context, there are quite
some possibilities of research for establishing a set of model development guidelines that are easy to
follow, work with most of the popular model development platforms, and take the sharing aspects into
account. The outcomes of such research requires a large-scale industry-academia collaboration and
can have global impact.

9.2.3 Common Ontology for Model

In Section 9.1.4, the lack of a common model ontology is discussed. Developing such an ontology
requires extensive research, access to variety of models, and expertise from domain experts.

9.2.4 Standardization of Ingredient Description

As discussed in Section 2.1.1, food product definition includes a list of ingredients that are necessary
for producing the corresponding product. Typically, different companies use different suppliers to
acquire these ingredients. As a result, similar ingredients obtained from separate sources can have
distinct or divergent characteristics. For example, tomatoes obtained from Supplier A can be sweeter
than tomatoes from Supplier B. These kinds of dissimilarities can affect the consistency of the food
product. To solve this problem, companies measure the relevant properties of each ingredient and
assign an identification to it, which is used later to adjust the recipe. Each company has its own
conventions for defining these properties and generating corresponding identifications. As a result,
interoperability can not be guaranteed for models that depend upon ingredient properties. This pro-
vides possibilities for further research to find a standard ingredient vocabulary that can be used to
translate between different ingredient definition systems.

Model as a Service: Towards a Discovery Platform for Internet of Food 69

Eindhoven University of Technology

70 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

10 Conclusion

This chapter concludes this report by summarizing the project results and describing the artifacts that
were delivered to the key stakeholders. Moreover, this chapter also contains a personal note from the
author of this report that includes self-reflection and major learning points with regard to this PDEng
graduation project.

10.1 Results

During this project, a prototype infrastructure was developed where companies could share the ser-
vices of their computational models and use the ones shared by other companies. The infrastructure
was named MaaS, which is an abbreviation of Model as a Service. The goal was to demonstrate the
benefits and possibilities of the prototype to the Internet of Food (INoF) consortium partners to attract
further collaboration.

MaaS provides a web-based infrastructure for executing models from various sources and viewing
their results under a unified infrastructure. Heterogeneous models, which are typically developed by
companies for in-house usage, are connected to the unified MaaS infrastructure using gateways. These
are microservices that abstracted computational models and exposed their functionalities as a service
via a set of well-defined endpoints. Each gateway is connected to exactly one computational model
and takes care of all the complexities of running it. The MaaS infrastructure implements a permission
system that can be used with connected models allowing companies other than the owner of the model
to execute them.

The MaaS infrastructure also offers the functionality to define a food product that includes corre-
sponding ingredients, processing steps, and packaging information. A food product definition and
one or more models from various sources are coupled together to define a simulation, which can be
executed. Executing a simulation runs the food product definition through all the corresponding mod-
els. Once a simulation is complete, the results from all the models are available through MaaS. This
capability of viewing model results that are acquired from diverse sources is an important initial step
towards data fusion, which is one of the key goals of the INoF consortium.

To deal with the heterogeneity of the computational models, a data normalization component was
implemented into the MaaS infrastructure. This component is responsible for mapping properties
of the food product definition to the input parameters of the computational model. The conversion
of model parameters from the given to the expected units of measurements is also the responsibility
of the normalization component. These normalization steps use ontologies that were developed in
collaboration with Wageningen University and Research (WUR).

During this project, a web-based frontend was developed that provided a user-friendly UI for defining

Model as a Service: Towards a Discovery Platform for Internet of Food 71

Eindhoven University of Technology

a food product, connecting models, specifying permissions for connected models, and executing as
well as viewing simulation results. The frontend was developed in collaboration with a group of
bachelors’ students from Eindhoven University of Technology (TU/e).

MaaS was implemented using a microservice based architecture where each of the services (i.e.,
gateways, frontend, backend, data storage) are separate microservices that communicate with each
other using a REST like API. Each of these microservices runs on separate Docker container that
makes the MaaS infrastructure highly modular and deployable on various cloud as well as in-house
servers.

The major goal of this project was to develop a standardized platform that would allow inter-organization
sharing of model results and demonstrate its capabilities as well as possibilities to the INoF partners
in order to attract further collaboration. With its microservice based architecture and several normal-
ization processes, the MaaS prototype has achieved that goal. The prototype was also demonstrated
to the INoF partners and earned quite a few compliments.

10.2 Delivered Artifacts

After successfully completing this ten month long PDEng graduation project, the following artifacts
were delivered to the stakeholders. The artifacts were delivered to the clients digitally via email as a
single zip file.

• MaaS infrastructure source code: This refers to all the source code and ontologies that was
produced by the PDEng trainee, the bachelors’ students from TU/e and the representatives from
WUR.

• Cloud deployment: During this project, TU/e provided temporary access to a cloud infras-
tructure that was accessible under the domain name http://internet-of-food.win.
tue.nl. The MaaS prototype was deployed under this URL.

• Deployment instructions: Different components of the MaaS infrastructure could be deployed
on their own Docker container. The step-by-step instructions for the deployment were included
in the source code repository. The same instructions are also available in Appendix A.

• Video demonstration and presentation slides: For demonstration purposes, a video was pro-
duced and delivered to the customer. This video is a screen recording that shows how a typical
user would use the MaaS infrastructure to define food products, connect models, and define,
execute as well as view results of a simulation. Throughout this project, several PowerPoint
presentations were produced that included animations and illustrations explaining the MaaS
prototype. These slides were also included in the deliverable.

• Project report: It refers to this PDEng graduation report. This report not only explains the
activities and designs involved in the development of the MaaS infrastructure, but also recom-
mendations for improving and extending it.

10.3 Author’s Note

The following text is a retrospective note from the author of this document:

72 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

This graduation project assignment was very challenging and fulfilling experience for me. During the
past ten months, I have gathered various technical and non-technical skills as well as improved the
ones that I already had. This project also provided me the perfect opportunity to practice the skills that
I gained through various workshops, courses, and training projects during the first year of my PDEng.

Working in the food production domain was a completely new experience for me. Therefore, under-
standing the domain was the first major challenge I faced. Tips and feedbacks from my academic as
well as company supervisors were crucial for me to be able to navigate through this unfamiliar ter-
rain. Besides my supervisors, I had regular meetings with other stakeholders who contributed greatly
to my understanding of the domain concepts. To identify misconceptions and knowledge gaps, I used
various diagrams and interview techniques to communicate my ideas. This way I was able to gather
enough information to move forward with the technical design and implementation.

During this project, I was working with a multinational and multidisciplinary group of people who
are leaders of their own domains and working at world-class institutions. Being part of such team was
an honor and challenging at the same time. During various team meetings and presentations, I had to
find a common way of communicating that should work for everyone. I believe, this experience will
help me become a better engineer and team player.

Finally, I would like to say that this project and the PDEng ST program as a whole helped me become
a better professional. I believe, the experiences I gathered and skills I learned will greatly help my
future career.

Model as a Service: Towards a Discovery Platform for Internet of Food 73

Eindhoven University of Technology

74 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Bibliography

[1] A. M. Altawekji, C. I. Bahrin, T. C. Chirvasuta, P. S. Friptu , A. R. Garban , S. S. van Grieken
, D. Hegger, J. Martens, P. Petrov, P. Remkes, and A. E. Voicu. Software/Web Engineering
Project, Software Design Document, Internet of Food, July 2020.

[2] Hajo Rijgersberg, MLI Wigham, Dieudonné Johan Martin Willems, and Jan Lubertus Top. OM
2.0. Number 1596. Wageningen UR-Food & Biobased Research, 2015.

[3] Waterfall Model. Waterfall model. Luettavissa: http://www. waterfall-model. com/. Luettu, 3,
2015.

[4] Bernard Gilland. World population and food supply: can food production keep pace with popu-
lation growth in the next half-century? Food policy, 27(1):47–63, "2002".

[5] J Ranganathan, R Waite, T Searchinger, and C Hanson. How to sustainably feed 10 billion
people by 2050, in 21 charts. World Research Institute, Washington DC, USA. Retrieved on
August, 8:2019, 2018.

[6] Nikos Alexandratos and Jelle Bruinsma. World agriculture towards 2030/2050: the 2012 revi-
sion. 2012.

[7] Tim Searchinger, Craig Hanson, Janet Ranganathan, Brian Lipinski, Richard Waite, Robert Win-
terbottom, Ayesha Dinshaw, Ralph Heimlich, Maryline Boval, Philippe Chemineau, et al. Creat-
ing a sustainable food future. a menu of solutions to sustainably feed more than 9 billion people
by 2050. world resources report 2013-14: interim findings. 2014.

[8] SFI Representative. Home - sustainable food initiative. https://www.sfifood.nl/,
2020. [Online; accessed 01-July-2020].

[9] Rubén Prieto-Díaz. Domain analysis: An introduction. ACM SIGSOFT Software Engineering
Notes, 15(2):47–54, 1990.

[10] American National Standards Institute. ANSI-ISA-88.00. 01-2010: Batch Control Part 1: Models
and Terminology. ISA, 2010.

[11] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements engineering. Springer, 2017.

[12] Lean stage planning in the face of an incomplete solution: Part 2 - the requirements break-
down structure. https://www.projecttimes.com/articles/lean-stage-planning-in-the-face-of-an-
incomplete-solution-part-2-the-requirements-breakdown-structure.html, 2020. [Online; ac-
cessed 01-August-2020].

Model as a Service: Towards a Discovery Platform for Internet of Food 75

Eindhoven University of Technology

[13] Robert C Tausworthe. The work breakdown structure in software project management. Journal
of Systems and Software, 1:181–186, 1979.

[14] Dai Clegg and Richard Barker. Case method fast-track: a RAD approach. Addison-Wesley
Longman Publishing Co., Inc., 1994.

[15] Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith Stafford. Documenting
software architectures: views and beyond. In 25th International Conference on Software Engi-
neering, 2003. Proceedings., pages 740–741. IEEE, 2003.

[16] Marlon Dumas and Arthur HM Ter Hofstede. Uml activity diagrams as a workflow specification
language. In International conference on the unified modeling language, pages 76–90. Springer,
2001.

[17] Martin Fowler and James Lewis. Microservices. https://martinfowler.com/
articles/microservices.html, March 2014. [Online; accessed 26 April, 2020].

[18] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Salamanca, Rubby
Casallas, and Santiago Gil. Evaluating the monolithic and the microservice architecture pat-
tern to deploy web applications in the cloud. In 2015 10th Computing Colombian Conference
(10CCC), pages 583–590. IEEE, 2015.

[19] normalize. https://www.thefreedictionary.com/normalize, 2020-04-30. [On-
line; accessed 30 April, 2020].

[20] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach, and Tim
Berners-Lee. Hypertext transfer protocol–http/1.1, 1999.

[21] Material Design. https://material.io/, 2020. [Online; accessed 05-August-2020].

[22] International Bureau of Weights, Measures, Barry N Taylor, and Ambler Thompson. The in-
ternational system of units (SI). US Department of Commerce, Technology Administration,
National Institute of . . . , 2001.

[23] Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul Wilson, Jane
Radatz, Mary Yee, Hugh Porteous, and Fredrick Springsteel. IEEE standard computer dictio-
nary: Compilation of IEEE standard computer glossaries. IEEE Press, 1991.

[24] A. M. Altawekji, C. I. Bahrin, T. C. Chirvasuta, P. S. Friptu , A. R. Garban , S. S. van Grieken
, D. Hegger, J. Martens, P. Petrov, P. Remkes, and A. E. Voicu. Software/Web Engineering
Project, Unit Test Plan, Internet of Food, July 2020.

[25] G van Rossum, B Warsaw, and N Coghlan. Pep8-style guide for python, 2013.

[26] S. Balaji and M. Sundararajan Murugaiyan. Wateerfallvs v-model vs agile: A comparative study
on sdlc. 2012.

[27] Winston W Royce. Managing the development of large software systems: concepts and tech-
niques. In Proceedings of the 9th international conference on Software Engineering, pages
328–338, 1987.

[28] Martin Fowler, Jim Highsmith, et al. The agile manifesto. Software Development, 9(8):28–35,
2001.

76 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

[29] Technical University Eindhoven. Final bachelor project. https://educationguide.
tue.nl/programs/bachelor-college/majors/software-science/
final-bachelor-project/, 2020. [Online; accessed 17-June-2020].

[30] Wikipedia contributors. Coronavirus disease 2019 - wikipedia. https://en.wikipedia.
org/wiki/Coronavirus_disease_2019, 2020. [Online; accessed 16-June-2020].

[31] Reinout Van Rees. Clarity in the usage of the terms ontology, taxonomy and classification. CIB
REPORT, 284(432):1–8, 2003.

Model as a Service: Towards a Discovery Platform for Internet of Food 77

Eindhoven University of Technology

78 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

A Running and Deploying the Project

A.1 Running on IDE

A.1.1 Prepare Development Environment

This section describes the tools necessary to prepare the development environment. This setup is
tested on Linux Mint 19.3 64 bit version. However, any popular and recent Linux based OS should
have the capability to install the necessary tools and run this project. Following are the list of necessary
tools,

Miniconda (Python version 3.7 or above)

This project uses conda to create and maintain virtual python environments. Miniconda is the min-
imum installer for conda. Download the 64 bit version of miniconda from the official website1.
Installation instructions for different platforms can be found on the same page. During the installation
there will be possibility to choose the location for the installation. Make sure to install miniconda on
$HOME/Programs/miniconda3. This will make the running of the project much easier.

Docker (version 19.03.8 or above)

This project uses Docker containers for deploying all the microservices. Although it is not necessary
to run all the microservices during a debug run, PostgreSQL and GraphDB containers are necessary as
they are used data storage. On most Linux distributions, Docker can be installed using their package
manager (e.g. apt in Ubuntu). The installation instructions can be found at the official website2.

Docker Compose (version 1.17.1 or above)

Docker-compose is a very convenient way to run and maintain multiple Docker containers at the same
time. The official Docker website3 has the installation instructions for Docker-compose.

1https://docs.conda.io/en/latest/miniconda.html
2https://docs.docker.com/engine/install/
3https://docs.docker.com/compose/install/

Model as a Service: Towards a Discovery Platform for Internet of Food 79

Eindhoven University of Technology

npm (version 6.14.8 or above)

npm is needed for running the frontend application. Necessary installation instructions are given in
the official website4.

Jetbrains Pycharm Community Edition (version 2020.1 or above)

Download and install it from official Jetbrains website5. The instructions to install are also available
on the same page.

A.1.2 Dependency Management and Virtual Environment

As mentioned earlier, this project uses Conda for creating separate virtual environment for each mi-
croservice and their dependency management. Each microservice has a requirements.yml file that
contains necessary information for creating corresponding virtual environment and installing depen-
dencies in it that are needed to run the microservice.

A.1.3 Opening and Running the Project

• Clone the project from git@gitlab.tue.nl:20184737/inof-implementation.
git into inof-implementation. Make sure to use –recurse-submodules option while cloning to
initialize and pull all submodules. See corresponding commands in Section A.2.

• Navigate to cloned directory and run the database containers.

$ cd inof-implementation
$ docker load --input ./model-sharing-platform/db_files/graphdb_9

.1.1-free.tar
$ docker-compose up --build --remove-orphans graphdb-container

pgadmin-container db-container

• Create all necessary Python virtual environments and install needed dependencies by running:

$ cd model-sharing-platform $./create_conda_environments.sh

• Open the inof-implementation/model-sharing-platform directory with PyCharm.

• Execute the run configuration Run Backend. This will start the backend as well as other neces-
sary microservices.

• For running the frontend, executing the following commands. Make sure the frontend is point-
ing to the correct backend in file src/environments/environment.ts.

$ cd inof-frontend
$ npm install
$ npm install -g @angular/cli
$ ng serve

4https://www.npmjs.com/get-npm
5https://www.jetbrains.com/pycharm/download/

80 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Now, open a web browser (e.g., Firefox, Google Chrome) and navigate to http://localhost:
4200/login.

• Optional: The unit-translation-component in the backend uses redis6 for caching Ontology of
Units of Measure (OM2.0) related data (details in [1]). If there is a redis server running on
localhost:6379, the backend will use it.

A.2 Run Project Using docker-compose

• Clone the code repository from GitLab

$ git clone --recurse-submodules <REPO_URL>

Replace <REPO_URL> with git@gitlab.tue.nl:20184737/inof-implementation.
git

• Navigate to the cloned repository

$ cd inof-implementation

• Build and bring the containers up

$./containers.sh up

This script automates the docker deployment. Running it will load a custom image of the
GraphDB and pull as well as build all other necessary images. Finally, all the built images are
bought up. If the containers.sh file does not have execute permission, the following command
will add that permission,

$ chmod +x containers.sh

• Wait for all the containers to finish booting up. The final output should look similar to the
following,

Creating network "inof-implementation_inof_vnetwork" with driver "
bridge"

Creating graphdb-container ... done
Creating db-container ... done
Creating sweet-sourness-model-access-gateway ... done
Creating ingredient-service ... done
Creating tomato-saltiness-model-access-gateway ... done
Creating inof-implementation_pgadmin-container_1 ... done
Creating model-sharing-backend ... done
Creating inof-frontend ... done

• Finally, run the seed script to insert initial setup data into the databases,

$./model-sharing-platform/seed.sh

This can take around 15 minutes. To avoid long waiting time, it is also possible to comment the
last line of the seed.sh file. This will disable redis caching of the OM2.0 related data.

6https://redis.io/

Model as a Service: Towards a Discovery Platform for Internet of Food 81

Eindhoven University of Technology

A.3 Running Unit Tests

The unit tests can be run using PyCharm. Follow the instructions for opening and running the project
in Section A.1.3 except for the final two steps. At this point, run the gateway and ingredient service by
executing run configurations Gateway Only and Ingredient Service Only. Now, execute the Backend
Test run configuration to execute all unit tests.

82 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

B Endpoints in the Backend

B.1 Authentication API

The Authentication API is responsible for authenticating users and managing authentication related
functionality, like retrieving an authentication token, checking authentication, registration

• POST /api/auth_token: upon successful authentication stores a new authentication token in the
database

• GET /api/check_auth: returns whether a given token is valid

• POST /api/user/register: registers a new user in the database

• GET /api/own_profile: retrieves the information about a user’s profile

• PUT /api/own_profile: edits the information about a user’s profile

• POST /api/user/request_password_reset: sends a forgot-password email to the user

• POST /api/user/reset_password: used to reset a forgotten password

• POST /api/user/change_password: used to change password

B.2 Model API

The Model API is responsible for retrieving, editing and adding models to and from the database. The
Models retrieved can be specific (i.e. with a certain id) or all Models.

• POST /api/model: stores a new Model in the database

• PUT /api/model/model_id: edits the information about a Model with a given model-id

• DELETE /api/model/id: removes a Model with a given id

• GET /api/model/id: retrieves a model with a given id

• GET /api/models: retrieves all Available Models

• GET /api/own_models: retrieves all Models the user’s Company Owns

• GET /api/model/permissions/model_id: Get permissions of the model with the given model id

• PUT /api/model/permissions/model_id: Update permissions for model the given model id

Model as a Service: Towards a Discovery Platform for Internet of Food 83

Eindhoven University of Technology

B.3 Food Product API

The Food Product API is responsible for retrieving, editing and adding Food Products to and from the
database. The Food Products retrieved can be specific (i.e. with a certain id) or all Food Product.

• POST /api/product: stores a new Food Product in the database

• PUT /api/product/id: edits the information about a Food Product with a given id

• GET /api/product/ingredients: retrieves all the ingredients

• DELETE /api/product/id: removes a Food Product with a given id

• GET /api/product/id: retrieves a Food Product with a given id

• GET /api/products: retrieves all Available Food Products

• GET /api/own_products: retrieves all Food Products the user’s Company owns

• GET /api/product/permissions/product_id: Get permissions for the food product with the given
product id

• PUT /api/product/permissions/product_id: Update permissions for the food product with the
given product id

B.4 Simulation API

The Simulation API is responsible for retrieving, editing and adding Simulations to and from the
database. It also is responsible for requesting runs for Simulation, retrieving Simulation results and
Simulation status. The Simulations retrieved, deleted and edited can be specific (i.e. with a certain id)
or all Simulations in the case of retrieving. Simulation run, result and status are for a Simulation with
a given id.

• POST /api/simulation: stores a new Simulation in the database

• PUT /api/simulation/id: edits the information of a Simulation with a given id

• DELETE /api/simulation/id: removes a Simulation with a given id

• GET /api/simulation/id: retrieves a Simulation with a given id

• GET /api/simulations: retrieves all Simulations the user’s Company owns

• POST /api/run_simulation/id: request a Simulation run for a Simulation with a given id

• GET /api/simulation_result/id: retrieves a Simulation result for a Simulation with a given id

• GET /api/simulation_status/id: retrieves a Simulation status for a Simulation with a given id

84 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

B.5 Company API

The Company API is responsible for retrieving all companies from the database.

• GET /api/companies: retrieves all companies

Model as a Service: Towards a Discovery Platform for Internet of Food 85

Eindhoven University of Technology

86 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

C Findings for Ontology of Units of Measure

This chapter describes the issues with the OM2.0 ontology [2] that was discovered by the bachelors’
students during the development of the unit translation component as part of the SEP assignment (see
Section 8.4).

C.1 Initial Assumptions

When the Ontology Based Conversion Library has been developed an assumption has been made upon
extensively researching all units of measure. The assumption is that 2 units of measure are comparable
(i.e. one can convert a quantity expressed by the initial unit of measure to a quantity expressed by the
target unit of measure) if they measure the same dimension or if their base units of measure have the
same sum of dimensions for each of the 7 SI dimensions. (More information about these units can be
found under the Domain section of the website http://www.foodvoc.org/resource/om-2/Dimension).

C.2 Dimensions without Alternative Units

A number of dimensions can not give alternative units because they relate to only one instance of units
of measure. As a result, conversion from or to these units could not be tested. Table C.1 lists these
dimensions and corresponding units.

Table C.1: Dimensions without alternative units

Dimension Name Dimension URI Unit
Volumetric heat ca-
pacity

http://www.ontology-of-units-of-measure.org/resource/om-
2/volumetricHeatCapacity-Dimension

joule per cubic
metre kelvin

Thermal resistance http://www.ontology-of-units-of-measure.org/resource/om-
2/thermalResistance-Dimension

kelvin per
watt.

Thermal insulance http://www.ontology-of-units-of-measure.org/resource/om-
2/thermalInsulance-Dimension

square metre
kelvin per watt

Thermal conductiv-
ity

http://www.ontology-of-units-of-measure.org/resource/om-
2/thermalConductivity-Dimension

watt per metre
kelvin

Surface tension http://www.ontology-of-units-of-measure.org/resource/om-
2/surfaceTension-Dimension

newton per
metre

Specific volume http://www.ontology-of-units-of-measure.org/resource/om-
2/specificVolume-Dimension

cubic metre
per kilogram

Model as a Service: Towards a Discovery Platform for Internet of Food 87

Eindhoven University of Technology

Specific entropy or
specific heat capac-
ity

http://www.ontology-of-units-of-measure.org/resource/om-
2/specificEntropyOrSpecificHeatCapacity-Dimension

joule per
kelvin kilo-
gram

Reluctance http://www.ontology-of-units-of-measure.org/resource/om-
2/reluctance-Dimension

reciprocal
henry

Radiance http://www.ontology-of-units-of-measure.org/resource/om-
2/radiance-Dimension

watt per
square metre
steradian

Power density http://www.ontology-of-units-of-measure.org/resource/om-
2/powerDensity-Dimension

watt per square
metre

Permittivity http://www.ontology-of-units-of-measure.org/resource/om-
2/permittivity-Dimension

farad per metre

Permeability of free
space

http://www.ontology-of-units-of-measure.org/resource/om-
2/permeabilityOfFreeSpace-Dimension

henry per me-
tre

Molar entropy, mo-
lar heat capacity, or
gas constant

http://www.ontology-of-units-of-measure.org/resource/om-
2/molarEntropyOrMolarHeatCapacityOrGasConstant-
Dimension

joule per
kelvin mole

Molar energy http://www.ontology-of-units-of-measure.org/resource/om-
2/molarEnergy-Dimension

joule per mole

Mass flow http://www.ontology-of-units-of-measure.org/resource/om-
2/massFlow-Dimension

kilogram per
second

Heat transfer coeffi-
cient

http://www.ontology-of-units-of-measure.org/resource/om-
2/heatTransferCoefficient-Dimension

watt per square
metre kelvin

Exposure http://www.ontology-of-units-of-measure.org/resource/om-
2/exposure-Dimension

lux second

Entropy or heat ca-
pacity

http://www.ontology-of-units-of-measure.org/resource/om-
2/entropyOrHeatCapacity-Dimension

joule per
kelvin

Energy density http://www.ontology-of-units-of-measure.org/resource/om-
2/energyDensity-Dimension

joule per cubic
metre

Electrical resistivity http://www.ontology-of-units-of-measure.org/resource/om-
2/electricalResistivity-Dimension

ohm metre

Electrical conduc-
tivity

http://www.ontology-of-units-of-measure.org/resource/om-
2/electricalConductivity-Dimension

siemens per
metre

Electric flux density http://www.ontology-of-units-of-measure.org/resource/om-
2/electricFluxDensity-Dimension

coulomb per
square metre

Electric charge den-
sity

http://www.ontology-of-units-of-measure.org/resource/om-
2/electricChargeDensity-Dimension

coulomb per
cubic metre

Current density http://www.ontology-of-units-of-measure.org/resource/om-
2/currentDensity-Dimension

ampere per
square metre

Catalytic activity
concentration

http://www.ontology-of-units-of-measure.org/resource/om-
2/catalyticActivityConcentration-Dimension

katal per cubic
metre

Angular accelera-
tion

http://www.ontology-of-units-of-measure.org/resource/om-
2/angularAcceleration-Dmension

radian per sec-
ond squared

Absorbed dose rate http://www.ontology-of-units-of-measure.org/resource/om-
2/absorbedDoseRate-Dimension

gray per sec-
ond

88 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Angular speed dimension can not be fully tested as there are only 2 units of measure: radian
per second and millisecond (angle) per year, while there are many other units of measure mea-
suring this dimension that can be found upon searching on Google. Please refer to the website
http://www.ontology-of-units-of-measure.org/resource/om-2/angularSpeed-Dimension for more infor-
mation.

C.3 Dimension One

In OM2.0 there exists a dimension called DimensionOne (more info at http://www.ontology-of-units-
of-measure.org/resource/om-2/dimensionOne). This dimension is defined in order to express units
of measure that do not present a dimension factor in their description. As a result, units with this
dimension are deemed convertible since the dimension information is used by the unit conversion
component to determine convertibility. For example:

• square metre per square metre: this unit of measure is used to describe a 2D quantity of length
fraction.

• kilogram per kilogram: this unit of measure is used to describe a 1D quantity of mass fraction.
• metre per metre: this unit of measure is used to describe a 1D quantity of length fraction.
• magnitude: this unit of measure is used to describe the brightness of stars.
• acoustic firmness: this unit of measure is used to describe an acoustic phenomenon.

C.4 Insufficient Dimension Information

The web resource presents an easy way of understanding which dimension is measured by each unit
of measure, through a predicate hasDimension. The library exploits this structure, by defining that if
two units of measure have the same dimension, then they are comparable. However, there are 2192
out of 14656 units of measure that do not present this predicate. This fact has made the conversion
protocol of this library more complex, resulting in computational performance penalties. The units of
measure that do not present this predicate are listed in Table C.2.

Table C.2: Units without sufficient dimension information

Unit URI
http://www.ontology-of-units-of-measure.org/resource/om-2/magnitudePerSecond-AngleSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/JapaneseYen
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerTerametre
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalPartsPerMillionPerYear
http://www.ontology-of-units-of-measure.org/resource/om-2/megajoulePerSquareMetreDay
http://www.ontology-of-units-of-measure.org/resource/om-2/byte
http://www.ontology-of-units-of-measure.org/resource/om-2/SwissFranc
http://www.ontology-of-units-of-measure.org/resource/om-2/yobibit
http://www.ontology-of-units-of-measure.org/resource/om-2/zebibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/millimolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/zeptomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/NewZealandDollar

Model as a Service: Towards a Discovery Platform for Internet of Food 89

Eindhoven University of Technology

http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetreHertz
http://www.ontology-of-units-of-measure.org/resource/om-2/colonyFormingUnit
http://www.ontology-of-units-of-measure.org/resource/om-2/MexicanPeso
http://www.ontology-of-units-of-measure.org/resource/om-2/exbibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/partsPerMillionPerYear
http://www.ontology-of-units-of-measure.org/resource/om-2/CanadianDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetreKelvin
http://www.ontology-of-units-of-measure.org/resource/om-2/gibibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetrePerDay
http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramPerHectare
http://www.ontology-of-units-of-measure.org/resource/om-2/metreKilogramPerSecond-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerFemtometre
http://www.ontology-of-units-of-measure.org/resource/om-2/colonyFormingUnitPer25Millilitre
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetre-Gram-
SecondElectromagneticSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerCubicmetre
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerNanometre
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerGigametre
http://www.ontology-of-units-of-measure.org/resource/om-2/UnitedStatesDollar
http://www.ontology-of-units-of-measure.org/resource/om-
2/moleMicrometreReciprocalSquareCentimetre
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerHertz
http://www.ontology-of-units-of-measure.org/resource/om-2/MexicanPeso
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerSecond-AngleSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerAttometre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilojoulePerSquareMetreDay
http://www.ontology-of-units-of-measure.org/resource/om-2/moleMicrometre
http://www.ontology-of-units-of-measure.org/resource/om-2/nanosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/gibibit
http://www.ontology-of-units-of-measure.org/resource/om-2/petabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/tebibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/degreeCelsiusPerSecond-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetreSteradian
http://www.ontology-of-units-of-measure.org/resource/om-2/kelvinMole
http://www.ontology-of-units-of-measure.org/resource/om-2/second-TimeToThePower-2
http://www.ontology-of-units-of-measure.org/resource/om-2/micromolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalDegreeCelsius
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerSquareMetreMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/deltaA450
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerKilogram
http://www.ontology-of-units-of-measure.org/resource/om-2/degreeCelsiusDay
http://www.ontology-of-units-of-measure.org/resource/om-2/terabit
http://www.ontology-of-units-of-measure.org/resource/om-2/exbibit
http://www.ontology-of-units-of-measure.org/resource/om-2/zettamolePerMetre

90 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetreNanometre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramPerGigajoule
http://www.ontology-of-units-of-measure.org/resource/om-2/metre-Kilogram-Second-
AmpereSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/yobibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/gigabit
http://www.ontology-of-units-of-measure.org/resource/om-2/ChineseYuan
http://www.ontology-of-units-of-measure.org/resource/om-2/exabit
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalSquareMetreReciprocalGram
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetre-Gram-
SecondElectrostaticSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetre-Gram-Second-
FranklinSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetrePerCubicCentimetre
http://www.ontology-of-units-of-measure.org/resource/om-2/second-TimePerSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/hartley
http://www.ontology-of-units-of-measure.org/resource/om-2/deltaA450
http://www.ontology-of-units-of-measure.org/resource/om-2/SouthKoreanWon
http://www.ontology-of-units-of-measure.org/resource/om-2/hectareDay
http://www.ontology-of-units-of-measure.org/resource/om-2/NorwegianKrone
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerCentimetre
http://www.ontology-of-units-of-measure.org/resource/om-2/micromolePerSecond-TimeGram
http://www.ontology-of-units-of-measure.org/resource/om-2/1000ColonyFormingUnit
http://www.ontology-of-units-of-measure.org/resource/om-2/molePermegametre
http://www.ontology-of-units-of-measure.org/resource/om-2/1000ColonyFormingUnitPerMillilitre
http://www.ontology-of-units-of-measure.org/resource/om-2/petabit
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerPetametre
http://www.ontology-of-units-of-measure.org/resource/om-2/SwedishKrona
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalGram
http://www.ontology-of-units-of-measure.org/resource/om-2/yottasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/litrePerMole
http://www.ontology-of-units-of-measure.org/resource/om-2/steradianSquareMetreHertz
http://www.ontology-of-units-of-measure.org/resource/om-2/IndianRupee
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerYottametre
http://www.ontology-of-units-of-measure.org/resource/om-2/exabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerMillimetre
http://www.ontology-of-units-of-measure.org/resource/om-2/metrePerDay
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalWatt
http://www.ontology-of-units-of-measure.org/resource/om-2/hartley
http://www.ontology-of-units-of-measure.org/resource/om-2/megaeuro
http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetreSecond-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerJoule
http://www.ontology-of-units-of-measure.org/resource/om-2/gigasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/baud

Model as a Service: Towards a Discovery Platform for Internet of Food 91

Eindhoven University of Technology

http://www.ontology-of-units-of-measure.org/resource/om-2/kilobit
http://www.ontology-of-units-of-measure.org/resource/om-2/zeptosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/microsecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerExametre
http://www.ontology-of-units-of-measure.org/resource/om-2/wattSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/terabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/TurkishLira
http://www.ontology-of-units-of-measure.org/resource/om-2/solarMassPerGigayearCubicKiloparsec
http://www.ontology-of-units-of-measure.org/resource/om-2/euro
http://www.ontology-of-units-of-measure.org/resource/om-2/bit
http://www.ontology-of-units-of-measure.org/resource/om-2/jansky
http://www.ontology-of-units-of-measure.org/resource/om-2/decimolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/BrazilianReal
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerNanometre
http://www.ontology-of-units-of-measure.org/resource/om-2/poundSterling
http://www.ontology-of-units-of-measure.org/resource/om-2/metrePerCubicMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/mebibit
http://www.ontology-of-units-of-measure.org/resource/om-2/colonyFormingUnitPerMillilitre
http://www.ontology-of-units-of-measure.org/resource/om-2/JapaneseYen
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerHectometre
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalDegreeCelsiusDay
http://www.ontology-of-units-of-measure.org/resource/om-2/cubicMetrePerMole
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerPicometre
http://www.ontology-of-units-of-measure.org/resource/om-2/shannon
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerYoctometre
http://www.ontology-of-units-of-measure.org/resource/om-2/metreKilogram
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerSteradian
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/SingaporeDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/decasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/tonnePerHectare
http://www.ontology-of-units-of-measure.org/resource/om-2/microgramPerSquareMetreSecond-
Time
http://www.ontology-of-units-of-measure.org/resource/om-2/petamolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/zettabit
http://www.ontology-of-units-of-measure.org/resource/om-2/centisecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/HongKongDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/femtomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/BrazilianReal
http://www.ontology-of-units-of-measure.org/resource/om-2/megaeuroPerMegawatt
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerSteradianSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/voltPerWatt
http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilosecond-TimeSquared

92 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

http://www.ontology-of-units-of-measure.org/resource/om-2/yottamolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/UnitedStatesDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/megametrePerKilojoule
http://www.ontology-of-units-of-measure.org/resource/om-2/exasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetrePerGram
http://www.ontology-of-units-of-measure.org/resource/om-2/GaussianSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/megajoulePerSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/megaeuroPerMegatonne
http://www.ontology-of-units-of-measure.org/resource/om-2/RussianRuble
http://www.ontology-of-units-of-measure.org/resource/om-2/pebibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/tebibit
http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramPerMole
http://www.ontology-of-units-of-measure.org/resource/om-2/petasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/kibibit
http://www.ontology-of-units-of-measure.org/resource/om-2/byte
http://www.ontology-of-units-of-measure.org/resource/om-2/SwissFranc
http://www.ontology-of-units-of-measure.org/resource/om-2/gigayearCubicParsec
http://www.ontology-of-units-of-measure.org/resource/om-2/femtosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/joulePerSquareMetreSecond-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/megaeuroPerPetajoule
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetre-Gram-
SecondSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/AustralianDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/gigayearCubicKiloparsec
http://www.ontology-of-units-of-measure.org/resource/om-2/cubicMetreKelvin
http://www.ontology-of-units-of-measure.org/resource/om-2/centimetre-Gram-Second-
BiotSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/attomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/mebibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/amperePerWatt
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/metrePerSecond-TimePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/yottabit
http://www.ontology-of-units-of-measure.org/resource/om-2/decamolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerSquareMetreDay
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalAtmosphere-Standard
http://www.ontology-of-units-of-measure.org/resource/om-2/bitPerSecond-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerMicrometre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilometrePerSecond-
TimePerMegaparsec
http://www.ontology-of-units-of-measure.org/resource/om-2/yoctomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/examolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/pebibit
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerSquareMetreSecond-Time

Model as a Service: Towards a Discovery Platform for Internet of Food 93

Eindhoven University of Technology

http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramPerSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/gigabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/SouthKoreanWon
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerSteradianSquareMetreHertz
http://www.ontology-of-units-of-measure.org/resource/om-2/NorwegianKrone
http://www.ontology-of-units-of-measure.org/resource/om-2/second-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/megamolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/terasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/microgramPerJoule
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerSquareMetreNanometre
http://www.ontology-of-units-of-measure.org/resource/om-2/AustralianDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/hectosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/zettasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerSquareMetreCentimetre
http://www.ontology-of-units-of-measure.org/resource/om-2/degreeCelsiusPerMinute-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/joulePerSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/InternationalSystemOfUnits
http://www.ontology-of-units-of-measure.org/resource/om-2/IndianRupee
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerDecimetre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilobyte
http://www.ontology-of-units-of-measure.org/resource/om-2/teramolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/megabit
http://www.ontology-of-units-of-measure.org/resource/om-2/joulePerSquareMetreDay
http://www.ontology-of-units-of-measure.org/resource/om-2/tonnePerCubicmetre
http://www.ontology-of-units-of-measure.org/resource/om-2/SouthAfricanRand
http://www.ontology-of-units-of-measure.org/resource/om-2/litrePer100Kilometre
http://www.ontology-of-units-of-measure.org/resource/om-2/colonyFormingUnitPerGram
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/baud
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalKelvin
http://www.ontology-of-units-of-measure.org/resource/om-2/decisecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/zettabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/litrePerHour
http://www.ontology-of-units-of-measure.org/resource/om-2/ChineseYuan
http://www.ontology-of-units-of-measure.org/resource/om-2/picomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/hectomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/bit
http://www.ontology-of-units-of-measure.org/resource/om-2/zebibit
http://www.ontology-of-units-of-measure.org/resource/om-2/gigamolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/poundSterling
http://www.ontology-of-units-of-measure.org/resource/om-2/yoctosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/SouthAfricanRand
http://www.ontology-of-units-of-measure.org/resource/om-2/kibibyte
http://www.ontology-of-units-of-measure.org/resource/om-2/metreKelvin

94 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

http://www.ontology-of-units-of-measure.org/resource/om-2/shannon
http://www.ontology-of-units-of-measure.org/resource/om-2/SingaporeDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/centimolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetrePerSquareMetreDay
http://www.ontology-of-units-of-measure.org/resource/om-2/kelvinKilogram
http://www.ontology-of-units-of-measure.org/resource/om-2/SwedishKrona
http://www.ontology-of-units-of-measure.org/resource/om-2/wattPerSquareMetreHertz
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerDecametre
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerZettametre
http://www.ontology-of-units-of-measure.org/resource/om-2/degreeCelsiusPerHour
http://www.ontology-of-units-of-measure.org/resource/om-2/steradianSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramSecond-TimeToThePower-2
http://www.ontology-of-units-of-measure.org/resource/om-2/HongKongDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/megabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/millisecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerZeptometre
http://www.ontology-of-units-of-measure.org/resource/om-2/kilomolePerMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/second-TimePerDay
http://www.ontology-of-units-of-measure.org/resource/om-2/picosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/pascalSecond-TimeSquareMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/megasecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetreDay
http://www.ontology-of-units-of-measure.org/resource/om-2/NewZealandDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/colonyFormingUnit
http://www.ontology-of-units-of-measure.org/resource/om-2/kilogramPerHectareDay
http://www.ontology-of-units-of-measure.org/resource/om-
2/moleMicrometreReciprocalSquareCentimetreReciprocalSecond-Time
http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerMegajoule
http://www.ontology-of-units-of-measure.org/resource/om-2/attosecond-TimeSquared
http://www.ontology-of-units-of-measure.org/resource/om-2/reciprocalSquareMetreReciprocalMetre
http://www.ontology-of-units-of-measure.org/resource/om-2/milligramPerKilometre
http://www.ontology-of-units-of-measure.org/resource/om-2/molePerKilometre
http://www.ontology-of-units-of-measure.org/resource/om-2/CanadianDollar
http://www.ontology-of-units-of-measure.org/resource/om-2/TurkishLira
http://www.ontology-of-units-of-measure.org/resource/om-2/solarMassPerGigayearCubicParsec
http://www.ontology-of-units-of-measure.org/resource/om-2/RussianRuble
http://www.ontology-of-units-of-measure.org/resource/om-2/euro
http://www.ontology-of-units-of-measure.org/resource/om-2/yottabyte
http://www.ontology-of-units-of-measure.org/resource/om-2/jansky
http://www.ontology-of-units-of-measure.org/resource/om-2/nanomolePerMetr

Model as a Service: Towards a Discovery Platform for Internet of Food 95

Eindhoven University of Technology

96 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

D MaaS Frontend Pages

Figure D.1: Available food product definitions for logged-in user

Figure D.2: Ingredient list of food product definition

Model as a Service: Towards a Discovery Platform for Internet of Food 97

Eindhoven University of Technology

Figure D.3: List of available model for logged-in user

Figure D.4: Edit page for model properties and related permissions

98 Model as a Service: Towards a Discovery Platform for Internet of Food

Eindhoven University of Technology

Figure D.5: Edit page of model parameters

Figure D.6: Inspect page for simulation

Model as a Service: Towards a Discovery Platform for Internet of Food 99

Eindhoven University of Technology

Figure D.7: Page showing list of all executed simulations

Figure D.8: Simulation result page showing results from multiple models

100 Model as a Service: Towards a Discovery Platform for Internet of Food

About Author

Hossain Muhammad Muctadir received his bachelor’s degree

in Information Technology with a Software Engineering major

from the University of Dhaka, Bangladesh (2013) and master’s

degree in Software Systems Engineering from RWTH Aachen

University, Germany (2017). He worked with FEV GmbH for

his master's thesis where he studied Software Product Line

(SPL) in the context of the automotive industry and implement-

ed a similarity analysis framework that helps to identify SPLs

from existing software components. Hossain has been working

as a software developer for more than five years in different

organizations, both in Bangladesh and Germany. During his
professional career, he developed desktop and web applications

as well as augmented reality applications for HoloLens. He also

worked in research projects since his bachelor’s studies and

made several publications.

Mr. Muctadir joined Technical University of Eindhoven from

October 2018 as a Professional Doctorate in Engineering

(PDEng) trainee in the Software Technology program offered

by the Stan Ackermans Institute. During his traineeship, Mr.

Muctadir participated in the development of several software

intensive products in collaboration with global players like
ASML and Philips Healthcare. In January 2020, he started

working on his ten-month long PDEng graduation project in the

context of the Internet of Food project, which is a consortium

of leading food production companies and research organiza-

tions.

PDEng SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

