EINDHOVEN
I U/e UNIVERSITY OF
TECHNOLOGY
The Philips Remote Al Streaming (PRAIS) platform

Citation for published version (APA):
Mennens, R. J. P. (2020). The Philips Remote Al Streaming (PRAIS) platform. Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/10/2020

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/a50b48c7-c35a-42ed-8abd-2193f5e705f5

PDEng THESIS REPORT
The Philips Remote Al Streaming (PRAIS)
platform

Robin Mennens
October 2020
Department of Mathematics & Computer Science

EINDHOVEN
I e UNIVERSITY OF
TECHNOLOGY

The Philips Remote Al Streaming (PRAIS) platform

Robin Mennens

October 2020

Eindhoven University of Technology
Stan Ackermans Institute — Software Technology

PDENg Report: 2020/060

Confidentiality Status: Public

Partners
EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY
-
Philips

Eindhoven University of Technology

Steering Group Marcel Quist
Zoran Stankovic
Alexander Serebrenik

Date October 2020

Composition of the Thesis Evaluation Committee:

Chair: Mark van den Brand
Members: Reinder Bril
Ihor Kirenko
Marcel Quist

Zoran Stankovic

Alexander Serebrenik

The design that is described in this report has been carried out in accordance
with the rules of the TU/e Code of Scientific Conduct.

Date

Contact address

Published by
PDEng Report

Abstract

October, 2020

Eindhoven University of Technology

Department of Mathematics and Computer Science
Software Technology

MF 5.086

P.O. Box 513

NL-5600 MB

Eindhoven, The Netherlands

+31 (0)40 247 9111

Eindhoven University of Technology
2020/060

An extremely relevant topic for Philips (and healthcare in general),
is Artificial Intelligence (AI), which has the potential to improve
many aspects of people’s lives. Relatively new Al data sources in-
clude audio/video/data streams that deliver data in real time and
enable many new Al use cases. While the combination of Al and
streaming has significant potential, there are several obstacles to
tackle: care providers do not always have the required (expen-
sive) hardware to use Al algorithms, care providers rarely have
the required knowledge and infrastructure to develop and main-
tain streaming technology, Al algorithms are not always easy to
integrate because they are developed using different technologies,
and Al algorithms are hard to replace once integrated. Aiming
to tackle these obstacles and to enable Al streaming use cases,
Philips Research is maturing remote Al streaming: the remote (in
the cloud or on premise) execution of Al algorithms that take an
audio/video/data stream as input and/or output. In this work, we
present the Philips Remote Al Streaming (PRAIS) platform, which
allows developers to easily build applications that require real-time
audio/video/data streaming functionality. With such functionality,
PRALIS enables Al streaming use cases and tackles the above-listed
obstacles. As a platform, PRAIS benefits both Philips and its open
innovation partners. We evaluated PRAIS during two collabora-
tions. Firstly, a group of bachelor computer science students used
PRALIS to develop demonstrators that show how PRAIS enables the
sharing of Al algorithms among hospitals and the real-time analy-
sis of Neonatal Intensive Care Unit (NICU) video and sensory data.
A usability study with the students shows that PRAIS is considered
easy to use. Secondly, in a collaboration with Maxima Medisch
Centrum we explored how PRAIS can be used to record NICU
baby footage. Such recordings are used for research purposes.

Keywords

Preferred reference

Partnership

Disclaimer Endorsement

Disclaimer Liability

Trademarks

Copyright

Al, streaming, real-time, cloud, healthcare, platform

The Philips Remote Al Streaming (PRAIS) platform. Eindhoven
University of Technology, PDEng Report 2020/060, October 2020.

This project was supported by Eindhoven University of Technol-
ogy and Philips

Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the Eindhoven University of Technology and
Philips. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the Eindhoven University
of Technology and Philips, and shall not be used for advertising or
product endorsement purposes.

While every effort will be made to ensure that the information con-
tained within this report is accurate and up to date, Eindhoven Uni-
versity of Technology makes no warranty, representation or under-
taking whether expressed or implied, nor does it assume any legal
liability, whether direct or indirect, or responsibility for the accu-
racy, completeness, or usefulness of any information.

Product and company names mentioned herein may be trademarks
and/or service marks of their respective owners. We use these
names without any particular endorsement or with the intent to in-
fringe the copyright of the respective owners.

Copyright © 2020, Eindhoven University of Technology. All
rights reserved. No part of the material protected by this copyright
notice may be reproduced, modified, or redistributed in any form
or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system,
without the prior written permission of the Eindhoven University
of Technology and Philips.

Eindhoven University of Technology

Abstract

An extremely relevant topic for Philips (and healthcare in general), is Artificial Intelligence (Al),
which has the potential to improve many aspects of people’s lives. Relatively new Al data sources
include audio/video/data streams that deliver data in real time and enable many new Al use cases.
While the combination of Al and streaming has significant potential, there are several obstacles to
tackle: care providers do not always have the required (expensive) hardware to use Al algorithms,
care providers rarely have the required knowledge and infrastructure to develop and maintain stream-
ing technology, Al algorithms are not always easy to integrate because they are developed using
different technologies, and Al algorithms are hard to replace once integrated. Aiming to tackle these
obstacles and to enable Al streaming use cases, Philips Research is maturing remote Al streaming: the
remote (in the cloud or on premise) execution of Al algorithms that take an audio/video/data stream
as input and/or output. In this work, we present the Philips Remote Al Streaming (PRAIS) platform,
which allows developers to easily build applications that require real-time audio/video/data streaming
functionality. With such functionality, PRAIS enables Al streaming use cases and tackles the above-
listed obstacles. As a platform, PRAIS benefits both Philips and its open innovation partners. We
evaluated PRAIS during two collaborations. Firstly, a group of bachelor computer science students
used PRAIS to develop demonstrators that show how PRAIS enables the sharing of Al algorithms
among hospitals and the real-time analysis of Neonatal Intensive Care Unit (NICU) video and sensory
data. A usability study with the students shows that PRAIS is considered easy to use. Secondly, in a
collaboration with Maxima Medisch Centrum we explored how PRAIS can be used to record NICU
baby footage. Such recordings are used for research purposes.

The Philips Remote Al Streaming platform i / Version 1.0

Eindhoven University of Technology

ii The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Foreword

It is such a privilege that we have been able to witness the growth path of the PDEng education from
multiple angles. First of all, being a PDEng student myself in the past, I learned to appreciate the
multi-disciplinary technology design approaches. Secondly, with the PDEng Software Technology
international team we worked closely on a fun Artificial Intelligence (AI) demonstrator assignment
with 18 fellow international PDEng students and our team, and that was where we first met. And now,
over the last 10 months, we witnessed your personal growth from closeby within our team. A warm
and positive experience!

Where the first team assignment was about exploration for a fun and inspiring demonstrator, showing
what you can do with already available Al in the cloud, your final assignment has been a major step in
technical complexity, while adapting to the stakeholders’ expectation levels. You were able to do that
in a Philips research settings where we seek and design health solutions based on customer insights
and needs. Where the requirements are typically in flux and never carved in stone. You actually
supported and drove the process to get these requirements clear and focused by rapid prototyping,
inspiring by tangible examples and — most of all nowadays — empowering co-creation to unleash the
talents of many others. This is in high level terms our envisioned assignment.

Now more specifically on the topic, Robin turned a preliminary proof of concept into a real ‘Access
to A’ platform - to stream audio and video data sources (e.g. from camera, screen share, or commu-
nication apps) from wherever in the world, to an Al algorithm wherever in the world (e.g. Microsoft,
Google, and Amazon clouds, as well as dedicated Philips Healthcare Al solution components).

» This impacts people. Experts, e.g. physicians who own the video data sources can work to-
gether with global experts owning or developing Al algorithms.

» This impacts resources. The ubiquitous streaming enables free design of resource distributions
on-premise or in the cloud instead of inevitable embedded approaches.

» This impacts speed of innovation. The streaming connection to Al is simplified, so researchers
and innovators can rely on provided initial set-up and can dedicate more time to their targeted
use cases. (e.g. PhD students with an assignment of 3 years may otherwise spend significant
amount of time e.g. approximately 10 months with the setup alone).

I observed with pleasure how you merged naturally in our Philips Research ‘Scalable Service De-
livery’ team, with other interns coming and going. And step-by-step grew your contributions and
position in the team. How you drove and supported the assignment of the TU/e SEP students team of

The Philips Remote Al Streaming platform iii / Version 1.0

Eindhoven University of Technology

12, as a first validation of ‘unleashing talent of many others’, resulting in inspiring demonstrators. Up
to the moment we pulled you in a customer facing position to co-create with PhD’s, researching new
video use cases.

In a report that is published in 2020, at least one reference to COVID-19 must appear somewhere, and
where better than in this foreword? The team circumstances changed considerably in your 3rd month
of the assignment (March 2020) when the offices closed down and working from home became the
new norm. Thank you for the quick and easy adaption to this new reality — in keeping up the team
spirit alongside impressive contributions to the ‘Scalable Service Delivery’ team and Philips.

As said, I consider it a privilege knowing you personally and being in the position to ‘add your name’
to the annals of our joint working history in Philips!

Thank you!

Eindhoven, September 25, 2020
Marcel Quist and Zoran Stankovic

iv The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Preface

This document is the main deliverable of the Philips Remote Al Streaming (PRAIS) platform project
and describes the process of designing and implementing PRAIS. PRAIS is a platform that allows
developers to easily build applications that require real-time audio/video/data streaming functionality.
With such functionality, PRAIS enables Al streaming use cases and tackles many technical challenges.
Example use cases include:

* Real-time analysis of Intensive Care Unit (ICU) video and vital sign data can provide faster and
more accurate detection of anomalies, such as apnea in neonates.

* Real-time pose detection of patients can be used to quickly detect seizures.

» Speech to text transcription enables features such as real-time (translated) subtitles, automatic
transcription of a doctors consult, and real-time sentiment analysis.

As a platform, PRAIS benefits both Philips and its open innovation partners.

This project was carried out by Robin Mennens as part of his ten-month Software Technology (ST)
Professional Doctorate in Engineering (PDEng) graduation project. The project was carried out within
Philips Research.

The target audience of this document mainly includes people with a technical (computer science)
background with an interest in PRAIS. Chapters 1, 2, and 6 are recommended reading material for
people with a non-technical background.

Eindhoven, September 25, 2020
Robin Mennens

The Philips Remote Al Streaming platform v / Version 1.0

Eindhoven University of Technology

vi The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Acknowledgements

This project would not have been possible without numerous people I was happy to work with.

Firstly, I would like to thank my company supervisors Marcel Quist and Zoran Stankovic. From day
one | felt welcome and part of the team. I learned a lot and was really inspired by your enthusi-
asm, creativity, and teamwork. This project would not have been possible without your support and
supervision. Marcel, thank you for showing me around and inspiring me with the amazing things
happening within Philips Research. Zoran, thank you for taking the time to explain and introduce me
to the complex domain of real-time streaming. I definitely learned a lot on a technical level. Also a
big thank you to Arjan, who was always able to help me out with technical issues. It was a pleasure
working with you.

I would like to thank my TU/e supervisor Alexander Serebrenik for his supervision, guidance, and
extensive feedback throughout. This work would not have been possible without your supervision.
A special thank you for the valuable teachings regarding usability studies. I definitely learned a lot
there.

A special thanks to the other team members. Melis and Livia, while our time together was short,
thank you for the warm welcome and nice dinner we had together. I want to thank Roel and Ralitsa
for their amazing work on the apnea and pose detection algorithms. Without your help, the SEP
project definitely would have been much more of a struggle. Thank you Priyanka for your support
and the valuable discussions that we had. Last but not least, I want to thank Hubrecht for his inspiring
work and humor.

I want to thank my fellow PDEng trainees for the interesting, valuable, and especially fun times we
had. A special thanks to Yanja Dajsuren and Désirée van Oorschot for their guidance and support
throughout the last two PDEng years.

A word of appreciation goes to the external Thesis Evaluation Committee members Reinder Bril, Thor
Kirenko, and Mark van den Brand. Thank you for taking the time to read my thesis and to grade my
work.

Finally, I would like to thank my family and friends for supporting and encouraging me throughout.

Eindhoven, September 25, 2020
Robin Mennens

The Philips Remote Al Streaming platform vii / Version 1.0

Eindhoven University of Technology

viii The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Executive Summary

Artificial Intelligence (AI) has the potential to improve many aspects of people’s lives, and thereby
coincides perfectly with the Philips ambition to improve the lives of three billion people per year by
2030. Relatively new Al data sources include audio/video/data streams that deliver data in real time
and enable many new Al use cases. For example:

* Real-time analysis of Intensive Care Unit (ICU) video and vital sign data can provide faster and
more accurate detection of anomalies, such as apnea in neonates.

» Real-time pose detection of patients can be used to quickly detect seizures.

» Speech to text transcription enables features such as real-time (translated) subtitles, automatic
transcription of a doctors consult, and real-time sentiment analysis.

While the combination of Al and streaming has significant potential, the harmonized platform services
at Philips do not yet provide out-of-the-box streaming functionality. Aiming to fill this technologi-
cal gap, we developed the Philips Remote Al Streaming (PRAIS) platform, which enables remote
Al streaming: the remote (in the cloud or on premise) execution of Al algorithms that take an au-
dio/video/data stream as input and/or output. As an Al co-creation platform, PRAIS benefits both
Philips and its open innovation partners. In particular:

» PRAIS allows Al algorithms to run in the cloud or on premise, providing easy access to Al

* By using PRAIS, care providers do not need complex technical knowledge and expensive in-
frastructure to use Al

* PRAIS enables many valuable use cases that involve Al streaming algorithms.

* As an Al co-creation platform, PRAIS allows Al developers to easily expose their algorithms.

We designed and implemented PRAIS based on four envisioned future use cases and have been able
to validate twice during two collaborations. Firstly, a group of ten bachelor computer science students
used PRAIS to develop demonstrators. By abstracting away the complexities of real-time streaming,
PRALIS enabled the students to build complex streaming applications in just six weeks. A usability
study with the students shows that PRAIS is considered easy to use. Secondly, in an open innovation
collaboration with Maxima Medisch Centrum we explored how PRAIS can be used to record NICU
baby footage. Such recordings are used for Al research purposes.

We recommend to further develop and mature PRAIS such that more use cases can be implemented.
In particular, we recommend integrating PRAIS with the Philips Realtime Communications Plat-
form [50], which would make AI even more accessible.

The Philips Remote Al Streaming platform ix / Version 1.0

Eindhoven University of Technology

X The Philips Remote Al Streaming platform / Version 1.0

Glossary

Al
PDEng
ST
TU/e
PSG
PMP
SDK
API
PR
S2S8
pP2pP
Ul
RTC

WebRTC

Peer
Conference
Participant

Algorithm

PRAIS

IRM

Eindhoven University of Technology

Artificial Intelligence

Professional Doctorate in Engineering
Software Technology

Eindhoven University of Technology
Project Steering Group

Project Management Plan

Software Development Kit
Application Programming Interface
Philips Research

Screen to Screen

Peer to Peer

User Interface

Real Time Communication is the real-time exchange of infor-
mation, e.g., video, audio, and/or data streams, from a sender to
a receiver over any low-latency telecommunications connection.
Web Real-Time Communications is a collection of standards,
protocols, and Javascript APIs. It enables P2P audio, video, and
data RTC. With webRTC, latency is minimal because it uses real-
time protocols and P2P connections.

An entity that implements WebRTC and is thereby able to join a
conference.

A remote communication session between one or more peers us-
ing WebRTC.

A peer in a conference that is typically controlled/used by a hu-
man.

A peer in a conference that is not a participant. It is typically a
computer program that performs some calculations or executes
other problem-solving operations. It can be an Al, for example.
The Philips Remote AI Streaming platform is the system that
was designed and developed during this project.

The Innovation Rack Manager is a peer that adds/removes al-
gorithms to/from conferences.

The Philips Remote Al Streaming platform xi / Version 1.0

Eindhoven University of Technology

HSRA

HSDP

CAO
Javascript RTC API

Prototype C# RTC API

PRAIS C# API

NAT

STUN

TURN

Research RTC Backend

ICE

SDP
Secondary Storage

SSO
P
PaaS
CI/CD
TAM
mTAM
NPS
PU
PEU

The HealthSuite Reference Architecture is the Philips architec-
ture that guides and governs the individual solution architectures,
platform architectures, and product architectures in all Philips
healthcare domains.

The HealthSuite Digital Platform is the practical manifestation
of the HSRA. It is essentially a repository containing all tech-
nologies described in the HSRA.

The Chief Architect Office governs the HSRA.

The (mature) API developed by the PR team that got transferred
to the CAO.

The API developed within the PR team for demo purposes. As
a proof of concept, however, it was much less mature than the
Javascript RTC APIL. In particular, it was not designed as a plat-
form and does not contain a vendor abstraction layer.

The API that was designed and developed during this project.
Network Address Translation

Session Traversal Utilities for NAT

Traversal Using Relays around NAT

The set of entities that enable webRTC for the Javascript RTC
API, Prototype C# RTC API, and PRAIS C# API. In particular:
the STUN/TURN servers, the signaling and messaging servers,
and the orchestration service.

Interactive Connectivity Establishment is a technique used in
computer networking to find ways for two computers to talk to
each other as directly as possible in peer-to-peer networking.

Session Description Protocol is a format for describing stream-
ing media communications parameters.

A collection of storage components not consisting of random ac-
cess memory or the part designated as swapping pool.

Single Sign On

Internet Protocol

Platform as a Service

Continuous Integration/Continuous Development
Technology Acceptance Model

modified TAM

Net Promotor Score

Perceived Usefulness

Perceived Ease-of-Use

xii The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

List of Tables

2.1

3.1

4.1

4.2
43

5.1

7.1

D.1

J.1

J.2

L.1

The identified stakeholders for this project.

An overview of the non-functional requirements. Each non-functional requirement is
placed into a context, i.e., anility.

A comparison of the different solutions we considered regarding the generation of
timestamps for recorded video frames. L.

Comparison of .NET Framework and NET Core

Comparison of the ICELink in LiveSwitch tokencontents

An overview of all functional requirement categories (except the requirements with
won’t priority) and their implementation status at the end of the project. M, S, and
C stand for Must, Should, and Could respectively. IL and LS refer to ICELink and
LiveSwitch. Categories without IL or LS are the categories generic to the system. . .

A risk that we identified during the project. The ID, L, I, and P columns represent
Identifier, Likelihood, Impact, and Priority, respectively. The P column is color coded
with a gradient from red to yellow that represent high to low priority respectively. . .

A list of all the functional requirements. The requirements are categorized and priori-
ties follow the MoSCoW model: Must, Should, Could, Would.

The results of the questionnaire. Participant E mentioned he could not fill in questions
2, 3, 4, and 5, which is why he left them empty. In the analysis, we replaced these
empty values with the middle value 4, which is recommended by the mTam [LL.S20]

The risks that we identified during the project. The ID, L, I, and P columns represent
Identifier, Likelihood, Impact, and Priority, respectively. The P column is color coded
with a gradient from red to yellow that represent high to low priority respectively. . .

46

59

87

186

The Philips Remote Al Streaming platform xiii / Version 1.0

Eindhoven University of Technology

xiv The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

List of Figures

1.1

1.2

2.1

2.2

23

24

3.1

32

A conceptual overview of the Philips Remote Al Streaming (PRAIS) platform. Via
audio (blue), video (red), and data (green) streams, users (called participants) can
easily connect to Als or any other algorithm.

An overview of the existing system at the start of the project. The Prototype C#
RTC API was only a prototype, meaning that it served as a proof of concept. In
contrast, the more mature Javascript RTC API had already been transferred to the
CAO to be incorporated into the HSRA. The Research RTC back-end mostly consists
of infrastructure required to set up audio/video/data streams.

Peers use a STUN server to discover their public IP. If a peer is behind a symmetric
NAT, then the peer uses a TURN server as a relay (in red). Otherwise, a direct P2P
connectionis setup (inblue). Lo oL L

A high-level overview of the system the PR team had in place at the start of this
project. The blue, yellow, and orange colors map to the similarly colored components
in Figure 2.3. Algorithms and participants use the Research RTC back-end to set up
webRTC audio/video/data connections among each other.

An overview of how the system the PR team had in place at the start of this project
was deployed. The blue, yellow, and orange colors map to the similarly colored com-
ponents in Figure 2.2.

By using Al, we can detect the skeletal structure of a baby in an image. Colors are
used to more easily distinguish body parts.

A conceptual view of visualization streaming. In a typical setup (top), algorithms
stream their output over a data channel to a web application (which is used by a par-
ticipant) that then visualizes the output. In contrast, when using visualization stream-
ing (bottom), the algorithm first streams the visualization code to the web application,
which has placeholders for such visualizations. After that, the algorithm streams its
output to the web application, which can then visualize the output.

Illustrated are the streaming infrastructures of the four use cases described in Sec-
tion 2.4 (top left: Section 2.4.4, top right: Section 2.4.1, bottom left: Section 2.4.2,
and bottom right: Section 2.4.3). Circles represent participants while squares rep-
resent algorithms. Audio, video, and data streams are represented by blue, red, and
green arrows respectively. L L Lo L

16

The Philips Remote Al Streaming platform xv / Version 1.0

Eindhoven University of Technology

Xvi

33

34

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8

A visual overview of the PRAIS use cases. The Developer actor is shown to be only
associated with the Join Conference PRAIS use case, which is done to make the dia-
gram readable. In fact, a Developer can be involved in any of the PRAIS use cases.

A visual overview of the requirement categories (except for requirements with won’t
priority) and their relations. Colors indicate MoSCoW priorities where must, should,
and could, are dark green, green, and yellow respectively.

A conceptual overview of the system developed by the SEP students.

A visual overview of the recording flow at MMC. The top part of the figure illustrates
which entities are involved in the recording pipeline while the bottom part details
which steps are executed by each entity (note the color mapping). In the bottom part,
dashed rectangles represent steps that we do not control, i.e., they are part of software
tools/components that weuse. L oL Lo

An overview of all the packages and components of PRAIS. All arrows represent
a uses relationship. Overall, we have a Javascript package and a C# package that
each contain different components. Furthermore, the NuGet frame represents which
components are part of the PRAIS C# NuGet package.

The class diagram that represents the design of AlgorithmCore. Rectangles in green
represent interfaces that are implemented by the /CELink WebRTC Implementor and
LiveSwitch WebRTC Implementor. Note that, to make the diagram readable, not all
methods/properties are included. In particular, several asynchronous versions of meth-
ods are left out. The complete API specification can be found in Appendix G and
online [29]. L e e e

The class diagram that represents the design of ICELink WebRTC Implementor. Rect-
angles in green represent the interfaces of AlgorithmCore. Rectangles in orange repre-
sent ICELink classes. Note that, to make the diagram readable, not all methods/prop-
erties are included. In particular, several asynchronous versions of methods are left
OUL. . . . L e e e e

A sequence diagram representing the authentication flow implemented by the SEP
students for algorithms and participants. Algorithms use the client credentials grant
type [45] while participants use the implicit flow grant type [44]. The two bottom-
most event calls indicate how the LiveSwitch server notifies peers of certain events. .

A sequence diagram that illustrates the typical ManualSignaling flow of an algorithm
and participant. Furthermore, the diagram shows how the PRAIS Recorder Applica-
tion obtains a token (see Section 4.3.1). Blue lifelines represent the algorithm and the
channels that the algorithm subscribes to while orange lifelines represent the partici-
pant and the channels that the participant subscribes to. The yellow lifeline represents
the conference channel that both the algorithm and participant subscribe and publish
to. The messages/events in the red rectangle can essentially happen in any order. They

19

36

are shown here to illustrate what types of messages/events are sent over which channels. 38

A sequence diagram that represents the envisioned visualization streaming design . .

The Philips Remote Al Streaming platform / Version 1.0

40

4.9

4.10

5.1

7.1

B.1

C.1

F.1

H.1

K.1
K.2

L.1

L2

Eindhoven University of Technology

A visual overview of how different entities are deployed. This figure is an extended
version of Figure 2.3, which shows the deployment of the system at the start of this
project. Recall that yellow, orange, and blue colors refer to back-end, participant side,
and algorithm side entities, respectively. Lines/rectangles with a bold border are new
entities/connections. Dashed lines/rectangles represent connections/entities that were
modified. L

A visual overview of how the software development is organized.

A visual overview of the hierarchical structure and categories that were identified after
card sorting. The numbers in parentheses represent: number of participants/number
of statements. For example, all five participants provided tops about PRAIS using 69
statements. L L L L e e e

A milestone trend analysis chart that shows how milestones were planned and achieved
over time. R. stands for Report.,

A visual representation of P2P/SFU/MCU. Circles represent peers while squares rep-
resent a server. When using P2P, all peers connect to each other, resulting in a mesh
network. By using an SFU/MCU, a star network is created in which all traffic goes
via the server. An MCU differs from an SFU in the sense that it merges all incoming
streams into a single outgoing stream, which is done perpeer.

During use case brainstorming, we would draw how participants and algorithms con-
nect among each other. This helped us understand how use cases differ/overlap and
provided insight into what functionality should be part of PRAIS.

The user interface of the PRAIS Recorder Application. The red rectangles indicate
four parts of the user interface that each have their own purpose.

The class diagram that represents the design of the LiveSwitch WebRTC Implementor.
Rectangles in green represent interfaces part of AlgorithmCore. Rectangles in orange
represent LiveSwitch classes. Note that, to make the diagram readable, not all meth-
ods/properties are included. In particular, several asynchronous versions of methods
areleftout.

Source code for PRAIS.nuspec

Source code for Install.psl

The first part of the Gantt chart that shows the project planning. The second part is
illustrated in Figure L.2

The second part of the Gantt chart that shows the project planning. The first part is
illustrated in Figure L.1o oL

41
43

51

58

71

74

98

115

174
175

178

The Philips Remote Al Streaming platform xvii / Version 1.0

Eindhoven University of Technology

xviii The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Contents
Abstract i
Foreword iii
Preface v
Acknowledgements vii
Executive Summary ix
Glossary xi
List of tables xiii
List of figures xiii
1 Introduction 1
1.1 ProjectconteXt i v i e e e e e e e e e 1
1.1.1 Philips Remote Al Streaming platform 2
1.1.2 Theoriginof PRAIS 3
1.2 Scopeand Goal e 4
1.3 Outline e e 4
2 Problem analysis 5
2.1 WebRTC e e 5
2.2 WebRTC providers it e 6
22.1 ICELink 6
222 LiveSwitch 6
223 Summary e e e 7
2.3 TheexiSting SyStem i i e e e e e e e e e 7

The Philips Remote Al Streaming platform xix / Version 1.0

Eindhoven University of Technology

XX

2.4 Use Cases

24.1
242
243
244
245

2.5 Algorithm and Al analysis
2.6 Stakeholder Analysis

Neonatal pose detection
Neonatal apnea detection
Algorithm sharing
Audio/video recording

Summary

System Requirements

3.1 Technical goals

3.1.1

3.2 Requirement gathering
3.3 PRAIS use cases

3.4 Requirement overview

34.1
342

Visualization Streaming

Functional requirements

Non-Functional Requirements

PRAIS Architecture & Design

4.1 The 4+1 View model of architecture
4.2 Software Engineering Project (SEP)
4.3 Maxima Medisch Centrum
PRAIS Recorder Application
4.4 Logical View
The PRAISC#APL.

4.5 Process View

43.1

441

45.1
45.2
453
45.4

4.6 Physical View
4.7 Development View

Authentication

Manual Signaling

Connection setup implementation details

Visualization Streaming

Verification and Validation

5.1 Functional evaluation

5.1.1

Automated system testing

The Philips Remote Al Streaming platform / Version 1.0

10
10
11
11
12
12

15
15
15
16
18
20
20
22

25
25
25
26
28
29
31
34
34
36
39
40
40
42

52 Usability.
5.2.1 Usability Study Goal
5.2.2 Methodology
523 Results
5.2.4 Discussion and Conclusion
5.3 Vendor Abstraction
54 Installability
5.5 Deployability
5.6 Security
5.7 Integratability
5.8 Compatibility

6 Conclusion and Future Work

6.1 Recommendations and Future Work

7 Project Management

7.1 Wayofworking
7.2 Planning oL
7.3 Risk Management
7.4 Retrospective
Bibliography
About the author

A WebRTC Providers

B SFU and MCU

C Use Case Analysis

D Requirements

E SEP project description

F PRAIS Recorder Application

G PRAIS Documentation

Eindhoven University of Technology

55

.......................... 56

57

........................ 57
........................ 57
........................ 59
........................ 59

65

67

69

71

73

77

89

97

929

The Philips Remote Al Streaming platform xxi / Version 1.0

Eindhoven University of Technology

H Additional Design

I Usability Study Files

J PRAIS Usability Study Results
K NuGet generation

L Project management

xxii The Philips Remote Al Streaming platform / Version 1.0

115

117

123

173

177

Eindhoven University of Technology

The Philips Remote Al Streaming platform xxiii / Version 1.0

Eindhoven University of Technology

1 Introduction

In this chapter, we introduce the context of the problem statement (Section 1.1). Afterwards, in
Section 1.2, we define the project scope and goals. Finally, in Section 1.3, we provide an outline of
the report.

1.1 Project context

Philips [21], one of the leading health technology companies in the world, strives to make the world
healthier and more sustainable. In particular, its goal is to improve the lives of three billion people per
year by 2030 [21]. To this end, Philips Research (PR) [19], which is part of Philips, aims to provide
meaningful innovations that improve people’s lives. Also, being at the forefront of innovation puts
Philips in a stronger and more beneficial business position. Therefore, PR actively stimulates open in-
novation, in which PR leverages its knowledge, intellectual property, and technologies to collaborate
and innovate together with selected organizations. In practice, open innovation often manifests in a
situation in which Philips provides the technical infrastructure that enables others to innovate faster.
The leading architecture of such infrastructure is defined by the Philips HealthSuite Reference Archi-
tecture (HSRA) [20]: a consistent, unified, and company-wide approach to architecture and platform
development. In particular, the HSRA provides a framework of shared rules, guidelines, APIs, data
models, and technology choices that centralize customer experience and stimulate innovation. The
practical manifestation of the HSRA is Philips’ HealthSuite Digital Platform (HSDP) [49]. Since
these two refer to the same concept, we only refer to the HSRA in the remainder of this work. While
the Philips Chief Architect Office (CAO) is responsible for managing and updating the HSRA, one of
the main goals of PR is to mature and validate new technologies such that they can be adopted in the
HSRA. Overall, the HSRA is used within Philips itself and by open innovation partners.

An extremely relevant topic for Philips (and healthcare in general), is Artificial Intelligence (Al),
which has the potential to improve many aspects of people’s lives. Philips is already actively using
Al in the medical data interpretation domain, in which Al is used to detect/interpret medical data. Be-
cause Philips sees significant potential in this domain, many new research projects are being started.
For example, to improve aspects such as availability and deployability of Al, PR is maturing technolo-
gies to bring Al to the cloud. In addition, relatively new data sources in the medical data interpretation
domain are audio/video/data streams. Such streams deliver data in real time and enable many new Al
use cases. For example, an Al algorithm that monitors the vitals and a video of a prematurely born
baby can be used to detect apnea faster and more reliably [Mon20, SBM " 15].

The combination of Al in the cloud and streaming is what the PR Scalable Service Delivery team
(hereafter referred to as PR team) is investigating. This project took place in the PR team, which
is maturing the technology and developing the infrastructure required for remote Al streaming: the

The Philips Remote Al Streaming platform 1 / Version 1.0

Eindhoven University of Technology

remote (in the cloud or on premise) execution of Al algorithms that take an audio/video/data stream
as input and/or output. Reasons for developing such technology include:

* The technology enables remote Al streaming use cases (see Section 2.4 and Appendix C).

* Hospitals or other care providers do not always have the required hardware to run certain Al
algorithms. Such hardware is often expensive and requires maintenance.

* Hospitals or other care providers rarely have the required knowledge and infrastructure to de-
velop and maintain streaming technology.

» Algorithms are not always developed using the same technologies. Consequently, in a typical
scenario where algorithms are directly integrated with the systems that use them, integration
can be non-trivial.

* In a setting where an algorithm has been integrated into existing systems, whenever the algo-
rithm is modified/improved, then all systems using that algorithm need to be updated.

* In addition to PR, there are other parties such as academic hospitals that also develop Al. For
them, there are several technical and non-technical reasons (see Section 2.4.3) to not share their
developed algorithms.

The above listed issues indicate a need for technical infrastructure that allows the easy setup of au-
dio/video/data streams between remote peers. Such technology would drive open innovation and
would be a valuable addition to the HSRA. In this work, we present the Philips Remote Al Streaming
(PRAIS) platform, which aims to fill this newly identified technological gap.

1.1.1 Philips Remote AI Streaming platform

During this project, aiming to tackle the above-mentioned issues, we developed the Philips Remote Al
Streaming (PRAIS) platform (see Figure 1.1). At the foundation of PRAIS, lies Web Real-Time Com-
munications (webRTC) [6], which is the streaming technology that enables real-time communication
between peers. Built on top of that, is a set of easy-to-use Application Programming Interfaces (APIs)
that enable developers to easily set up streams between Al algorithms and other peers. Combined with
the provided infrastructure, PRAIS is a platform with which we aim to tackle the above-mentioned
issues and turn these into innovation opportunities:

» Streaming use cases: PRAIS enables many valuable use cases that involve streaming Al algo-
rithms (see Section 2.4 and Appendix C).

* Open innovation: As a platform, PRAIS can be used by other organizations, allowing them
to more quickly develop and use streaming Al algorithms. They do not need the technical
knowledge/infrastructure anymore to do this.

¢ Technical obstacles: With PRAIS, we tackle several technical obstacles:

— Accessibility: By running algorithms remotely (on Philips hardware), the algorithm func-
tionality becomes much more accessible. In theory it could be used from any device, e.g.,
smartphone, tablet. Furthermore, hospitals or other healthcare entities can save money
because they do not have to buy/maintain expensive hardware.

— Deployability and Replaceability: Individual algorithms can be deployed/updated/re-
placed without significantly affecting other algorithms/systems.

2 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Artificial
Intelligence

Algorithm {3&,] Participant

Figure 1.1: A conceptual overview of the Philips Remote Al Streaming (PRAIS) platform. Via audio
(blue), video (red), and data (green) streams, users (called participants) can easily connect to Als or
any other algorithm.

— Composability: Algorithm functionality can be composed for different purposes.
— Scalability: New algorithm instances can be spawned depending on the system load.

— Technology Heterogeneity: PRAIS standardizes the communication between algorithms,
meaning that the algorithms themselves can be implemented using different technologies.

At the start of this project, the PR team already had a system in place, which formed the starting point
of PRAIS. In Section 1.1.2 we describe this system.

1.1.2 The origin of PRAIS

As described before, PR matures and validates technologies to be incorporated in the HSRA. To this
end, PR employs three research phases:

1. Exploration phase: Explore whether a concept be interesting. Read, talk, sketch, and validate.
2. Proof of concept: Build demos and/or do in-house pilots in a safe environment.

3. Advanced development: Develop a pilot at an actual customer/partner. Further advertise the
technology within PR using demonstrators/pilots/proofs of concept.

These phases are all about maturing technology to a level where it can be adopted into the HSRA.
This means that others (the CAO, for example) need to be convinced that the technology is mature
enough. In practice, this entails the building of demonstrators/pilots/proofs of concept. Furthermore,
an important driver behind such convincing is whether the technology serves a valuable business case.

At the start of the project, the PR team already had a system in place (see Figure 1.2). This system
formed the basis of PRAIS and it had already gone partially through the PR research phases. More
specifically, webRTC [6] is a technology that the PR team matured through the advanced development

The Philips Remote Al Streaming platform 3 / Version 1.0

Eindhoven University of Technology

Algorithms Participants
Research RTC
Backend
Prototype C# RTC API [< > < > Javascript RTC API
S R L e >
Audio/Video/Data streams

Figure 1.2: An overview of the existing system at the start of the project. The Prototype C# RTC
API was only a prototype, meaning that it served as a proof of concept. In contrast, the more mature
Javascript RTC API had already been transferred to the CAO to be incorporated into the HSRA. The
Research RTC back-end mostly consists of infrastructure required to set up audio/video/data streams.

phase, to be incorporated into the HSRA. WebRTC functionality is exposed via the Javascript RTC
API (see Figure 1.2) to participants, who get access to RTC functionality by using web applications.
In particular, the API contains a vendor abstraction layer that makes sure the same functionality can be
provided using different implementations. This is an important requirement from the HSRA, which
aims to prevent vendor lock-in as much as possible.

To enhance the Javascript RTC API and to prove the concept of remote Al streaming, the PR team
developed the Prototype C# RTC API. This API brings webRTC functionality to C# algorithms (this
was a given for this project), enabling audio/video/data streaming between algorithms and partici-
pants. With the Prototype C# RTC API, the PR team proved the potential of remote Al streaming
and filed a patent on it. As a proof of concept, however, the Prototype C# RTC API was much less
mature than the Javascript RTC API. It was not designed as a platform and does not contain a vendor
abstraction layer. All in all, the Prototype C# RTC API had only reached the end of the proof of
concept phase and during this project we aim to mature it through the advanced development phase.

1.2 Scope and Goal

Given the project context (Section 1.1) and the existing system (Section 1.1.2), the scope, main goal,
and the sub-goals of this project are:

G1 Mature remote Al streaming such that it reaches a maturity level that is suitable for the advanced
development phase. This means that:
(a) PRAIS is ready to be used by open innovation partners.
(b) Demonstrators that show the potential of PRAIS have been implemented.

In the remainder of this work, we refer to these (sub)goals as: (GX), where X indicates the goal
number. In Section 3.1, we describe a set of technical goals that follow from these (sub)goals.

1.3 Outline

In the remainder of this document, we first provide a more in-depth problem analysis in Chapter 2.
After that, in Chapter 3, we describe the requirements gathering process and provide an overview of
the requirements. Then, in Chapter 4, we describe the architecture and design of PRAIS. Following
that, we describe how we verified and validated PRAIS in Chapter 5. Then, in Chapter 6, we provide
a conclusion and directions for possible future work. Lastly, in Chapter 7, we describe the project
management process and provide a retrospective on this project.

4 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

2 Problem analysis

To better understand the problem at hand, we investigated both technical and non-technical aspects,
which we describe in this chapter. In Section 2.1, we describe and explain webRTC, which is the
streaming technology that forms the foundation of PRAIS. After that, in Section 2.2, we describe
and compare different webRTC providers that were used during the project. Then, in Section 2.3,
we describe an analysis of the existing system to understand its functionality and limitations. After
that, we describe a use case analysis conducted to find suitable real-time Al streaming use cases
(Section 2.4). Then, in Section 2.5, we describe a technical analysis that we did to better understand
the typical inputs and outputs of algorithms/Als. Finally, to better understand the stakeholders and
their concerns, we conducted a stakeholder analysis (Section 2.6).

2.1 WebRTC

Web Real-Time Communications (webRTC) [6] is a collection of standards, protocols, and Javascript
APIs. It enables Peer-to-Peer (P2P) Real-Time Communication (RTC) capabilities in a browser and
was introduced by Google. Nowadays, it is actively supported by many companies such as Apple,
Microsoft, and Mozilla. With webRTC, it is possible to add real-time audio/video/data streaming
capabilities to an application via JavaScript APIs that are present in all major browsers.

While webRTC provides the streaming functionality itself, it does not provide a default implemen-
tation for signaling, which is the discovery and negotiation process prior to setting up the actual
connection. More specifically, two peers that wish to connect over a webRTC connection typically
reside in different networks, which means that they first have to locate one another. After that, the two
peers negotiate the media format that they shall use in their communication.

Setting up a webRTC connection to a peer is not straightforward for several reasons: firewalls may
need to be bypassed, Network Address Translation (NAT) typically hides devices behind routers, and
if the router does not allow direct connections, then a relay may be required. To tackle these issues, the
Interactive Connectivity Establishment (ICE) framework was introduced. ICE uses Session Traversal
Utilities for NAT (STUN) servers to discover the public Internet Protocol (IP) address of a peer and
to determine whether the peer’s router would prevent a direct connection. If this is the case, then
ICE uses Traversal Using Relays around NAT (TURN) servers to bypass the router’s restrictions by
opening a connection with a TURN server that relays all information to the other peer (see Figure 2.1).

Given the issues described above, webRTC requires some extra infrastructure to make it work prop-
erly. Because of this, there exist a number of companies that provide this infrastructure and (typically)
their own API layer built on top of webRTC. Furthermore, some of those companies also implement
their own native webRTC stack such that native applications can also use webRTC. In Section 2.2, we
describe the webRTC providers relevant to this project.

The Philips Remote AI Streaming platform 5 / Version 1.0

Eindhoven University of Technology

Who am 1? Who am I?

You are: You are:
131.155.217.209:1234 131.155.217.239:5@78 \
(Not) behind symmetric NAT (Not) behind symmetric NAT ————g,

P2P connection

TURN

Figure 2.1: Peers use a STUN server to discover their public IP. If a peer is behind a symmetric NAT,
then the peer uses a TURN server as a relay (in red). Otherwise, a direct P2P connection is set up (in
blue).

2.2 WebRTC providers

In this project, the choice for using webRTC was given, but which webRTC provider to use was still
an open question. As mentioned in Section 1.2, vendor (a webRTC provider is a vendor in this case)
abstraction is an important requirement for the HSRA, and at the start of this project, PR already had
licenses for two webRTC providers: ICELink (Section 2.2.1) and LiveSwitch (Section 2.2.2). The PR
team, however, indicated that there may be other (better) webRTC providers out there, which is why
we investigated and compared several other webRTC providers using the following criteria:

o C# client library: The algorithm RTC API is written in C# (which was a given for this project).
* Back-end flexibility: The system should be deployable both in the cloud and on premise.

* Licensing: PR already had licenses for ICELink and LiveSwitch, making it possible to use them
immediately.

Our investigation showed that ICELink and LiveSwitch were indeed the best choice. An overview of
the other investigated webRTC providers can be found in Appendix A.

2.2.1 ICELink

ICELink [2] allows developers to easily add webRTC functionality to their applications by providing
a cross-platform API that can be used in web applications, native mobile applications, and native
desktop applications. ICELink, like webRTC, is signaling-agnostic, so it requires a separate signaling
mechanism. FrozenMountain [4], the developer of ICELink, also develops WebSync [5], which can
be used to implement signaling both in the cloud and on premise. Furthermore, at the start of this
project, the PR team was already using the JavaScript and C# ICELink SDKs in the JavaScript RTC
API and Prototype C# RTC API, respectively.

2.2.2 LiveSwitch

LiveSwitch [1] extends ICELink and is also being developed by FrozenMountain. The additional
LiveSwitch server adds features such as out-of-the-box signaling, peer presence management, and

6 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

flexibility to combine Peer-to-Peer (P2P), Selective Forwarding Unit (SFU), and Multipoint Control
Unit (MCU) connections (see Appendix B for more details). The LiveSwitch server can be deployed
both in the cloud and on premise.

2.2.3 Summary

At the start of the project, the PR team was already familiar with ICELink while LiveSwitch was
relatively new. There were, however, no customers that used Philips applications built using ICELink,
which is why Philips did not renew the ICELink license. On the other hand, LiveSwitch was used
more actively, which is why Philips did renew the LiveSwitch license. Consequently, LiveSwitch was
chosen initially as the preferred webRTC provider. Later on in the project, when the PR team sold an
application built using ICELink, the ICELink license got renewed again. To make PRAIS work with
this application, we also added ICELink as a webRTC provider (see Chapter 4).

From a technical point of view, we deem it easier and less work to simply use a single webRTC
provider instead of implementing multiple. The story above, however, shows that there are also non-
technical forces that influence which technology can be used. This is exactly why vendor abstraction
is so important.

The starting point of PRAIS is an existing system, which we have to understand in depth. We describe
an analysis of this system in Section 2.3.

2.3 The existing system

We analyzed the system that the PR team already had in place to understand its structure and limi-
tations. A conceptual overview is shown in Figure 2.2 while the deployment diagram for the same
system is shown in Figure 2.3. Note that the blue, yellow, and orange colors in both figures identify
the same parts of the system. For both algorithms and participants there is a layered structure.

Participants use the TeleHealth web application, which was built using the Javascript RTC API, to join
webRTC conferences: remote RTC sessions between one or more peers. As mentioned before, the
Javascript RTC API provides a vendor abstraction layer such that different webRTC providers can be
used. Initially, there were two webRTC providers: ICELink (see Section 2.2.1) and Vidyo [13] (also
see Appendix A). Vidyo, however, only provided its service in the cloud, which is why ICELink was
the preferred webRTC provider.

Algorithms join webRTC conferences by using the Prototype C# RTC API. At the start of this project,
the API was tightly coupled to ICELink (note the dotted line in Figure 2.2), did not contain a vendor
abstraction layer, and was designed as a proof of concept.

Using the Research RTC back-end, participants and algorithms are able to connect to each other over
webRTC audio/video/data streams. The required components for setting up such a connection include:
the WebSync [5] signaling server, the ICELink STUN/TURN server, and the Amazon Web Services
(AWS) [22] authentication lambda function that verifies authentication tokens provided by peers that
wish to connect to the STUN/TURN or signaling server. The other two lambda functions and the
DynamoDB are used for logging purposes.

An important entity within the existing system is the Innovation Rack Manager (IRM). The IRM
is essentially an algorithm that lives in its own webRTC conference and has the responsibility of

The Philips Remote Al Streaming platform 7 / Version 1.0

Eindhoven University of Technology

adding/removing algorithms to/from other conferences. It is identifiable by name and participants
use this name when sending messages over the signaling channels to instruct the IRM. The signaling
server also knows the name of the IRM and can therefore forward the message correctly. The IRM
would spawn algorithms as separate processes on the same machine and instruct the algorithm to

connect to the correct conference.

Algorithms

Figure 2.2: A high-level overview of the system the PR team had in place at the start of this project.
The blue, yellow, and orange colors map to the similarly colored components in Figure 2.3. Algo-
rithms and participants use the Research RTC back-end to set up webRTC audio/video/data connec-

tions among each other.

Participants

Aq A, TeleHealth
Prototype C# RTC API o REBEENEN NS o Javascript RTC API
......................... Slgnallng Backend S|gna||ng - -
ICELink < > |CELink Vidyo
WebRTC R R R LR LR LR EEEEEEEEE LRl > WebRTC
Audio/Video/Data

<<forwards to>>

<<Environment>> Amazon Web Services

<<HTTPS>>

«Lambda Function» REST

Authentication

>

<<HTTPS>>

«Lambda Function» REST

A

Call Data Recording

«API Gateway»
HTTPS/Websocket

2]

«Lambda Function»
Quality Data Recording

<<AWS>>
DynamoDB

<<Machine>> C5n.large
«WebSync» EI
FrozenMountain
«ICELink» {I «lIS Web App» EI
STUN/TURN/TURNS Signaling/Messaging
Server Server

<<HTTPS>>

<<Websockets/HTTPS>>

<<DTLS>>
REST ICE
<<Device>> Client browser <<Machine>> .Net environment
<<uses>>| o %I «C# Application{l
Javascript RTC AP | AR ﬂggﬁﬁ;“" ey Algorithm
A l<<uses>>
<<uses>>
<<uses>> v {l
. <<uses>>
«WebRTC C# Library»
«Web Page»{l «WebRTC Javascript Stail ICELink V< ype C# RTC API
TeleHealth Browser provided
<<WebRTC>>
Audio/Video/Data

Figure 2.3: An overview of how the system the PR team had in place at the start of this project was
deployed. The blue, yellow, and orange colors map to the similarly colored components in Figure 2.2.

Following the analysis of the existing system, we identified the following issues, all of which are

motivators for the requirements described in Chapter 3:

* An IRM is identified by name, which is not necessarily unique. Furthermore, participants need

to know the IRM names and which algorithms can be spawned by which IRM.

8

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

* The default WebSync server was extended to make the sending of messages to IRMs work.
This creates a mix of responsibilities where the WebSync server is used for both signaling and
messaging to the IRM.

* The system only allowed the creation of a single default webRTC connection between two
peers.

* Algorithms could only broadcast their results to the whole conference as there was no mecha-
nism to selectively send it to a single peer.

» Tokens were stored in browser applications/algorithms because they could not be generated
dynamically. This is not secure, because anyone who manages to get such a token gets access
to the system.

* Peers only have a (not necessarily unique) name to identify themselves.

* The Prototype C# RTC API did not have any documentation and was part of a large Visual
Studio [23] solution that also contains other (unnecessary) elements than the API.

2.4 Use Cases

The PRAIS platform should be generic in the sense that it should work for different applications
in as many use cases as possible. Therefore, during several brainstorming sessions and discussions
with domain experts and PR team members, we explored many different use cases. A select few
were eventually chosen to be implemented (see Sections 2.4.1-2.4.4) while the others are described in
Appendix C. By implementing applications for the use cases (see Sections 4.2 and 4.3.1), we tested
PRAIS and obtained valuable demonstrators (G1b). Most of the use cases involve a Neonatal Intensive
Care Unit (NICU).

A NICU is an intensive care unit that is typically used for prematurely born babies. The parents of
such babies cannot stay with their baby indefinitely, which makes it emotionally very tough. The
NICU Screen-to-Screen (S2S) application, which was developed by the PR team, aims to tackle this
problem. By placing a camera inside the NICU, parents can remotely view their baby. In addition
to helping with the emotional burden of the parents, it also creates the opportunity to use the baby
footage and other sensory data for Al (and other) use cases. Two of such use cases are described in
Sections 2.4.1 and 2.4.2.

2.4.1 Neonatal pose detection

Cerebral Palsy (CP) is a group of neurological disorders that permanently affect body movement and
muscle coordination. It appears in infancy and is therefore a highly relevant topic in NICU research.
Recent work [EBK ™ 19] has shown that the absence of fidgety movements at three to five months of
age is a strong indicator for developing CP. Nowadays, a doctor has to look at a baby for approximately
ten minutes to assess whether or not fidgety movements are present. Furthermore, such an assessment
often occurs remotely or at the parent’s home because at three months of age, a baby is typically
already home. To shorten this time-intensive task and to make remote assessment easier, the PR team
is investigating whether Al can be used to analyze the movements of a baby. As a first step, the team
developed a pose detection Al that is able to detect the baby’s skeletal structure (see Figure 2.4) and
visualize the movement patterns.

The Philips Remote Al Streaming platform 9 / Version 1.0

Eindhoven University of Technology

Figure 2.4: By using Al, we can detect the skeletal structure of a baby in an image. Colors are used
to more easily distinguish body parts.

2.4.2 Neonatal apnea detection

Apnea is a disorder where breathing temporarily (approximately 20+ seconds) pauses or is very shal-
low, resulting in a dangerous drop of oxygen saturation. It occurs during sleep and those affected are
typically sleepy or feel tired during the day. Apnea can be obstructive, in which breathing is inter-
rupted by a blockage of airflow, it can be central, in which the brain simply stops sending signals to
breathe, or it can be a combination of the two.

While apnea typically only occurs during sleep, the brain of a prematurely born baby is not fully
developed yet, which can result in apnea occurring while the baby is awake. Nowadays, the sensors in
a NICU trigger an alarm whenever apnea is detected (i.e., breathing stops for 20+ seconds and oxygen
saturation is too low). Nurses then have to make sure the apnea goes away by stimulating the baby,
e.g., touching/shaking the baby, or by administering some caffeine. The moment an alarm goes off,
it is basically too late because oxygen saturation is already too low. Therefore, every second counts,
which is why the PR team is investigating whether Al can be used to detect apnea faster and more
reliably, as well as maybe even predict it [Mon20]. In particular, the team developed an Al that, given
video and sensory data, can detect and classify apnea. In addition, the Al estimates the baby’s heart
rate and breathing rate, which removes the need for a sensor that measures these values. Considering
that a neonatal is very small and vulnerable, this is a major improvement.

2.4.3 Algorithm sharing

In an academic hospital, in addition to the standard medical care, the staff is also involved in medical
research. In the Netherlands, for example, we have academic hospitals in Amsterdam, Utrecht, Maas-
tricht, and other cities. With the rise of Al, such hospitals are focusing more on developing Al (or
any other algorithm) that can be used for medical purposes. While hospitals have the desire to share
their algorithms to improve healthcare, there are several reasons why this is troublesome. First, on the
academic level, there is the precious balance between sharing for better healthcare versus academic
competition (who publishes first and protection of intellectual property). Second, privacy and security

10 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

are sensitive topics in the healthcare domain and often introduce constraints. Also, hospitals do not
always have the technical knowledge to share algorithms and even if they do, setting up the techno-
logical infrastructure and arranging all contracts between the hospitals can take months. Finally, we
believe it to be more practical to keep the algorithm with the experts such that they can maintain and
develop it further while others use it. Overall, hospitals would greatly benefit from technology that
lets others make use of their (Al) algorithms without sharing the actual algorithm itself. PRAIS is
a first step towards providing such technological infrastructure that has been verified and is easy to
work with. From a security perspective, the usage of P2P streaming technology means that there is no
server between the peers and that there is no need to store sensitive data on secondary storage outside
the hospital (assuming the algorithm does not store the data it receives).

2.4.4 Audio/video recording

To train an Al model, researchers typically use prerecorded audio/video. Obtaining such data is mostly
a labor-intensive task and there are often privacy/security constraints to tackle. In a use case that we
encountered in the past, a PhD student spent about five months tackling privacy/security constraints
and setting up the technological infrastructure for recording audio/video from a NICU camera, to
eventually change directions because it turned out to be too much work.

Maxima Medisch Centrum (MMC) Veldhoven bought the NICU S2S application and hired a PhD
student to develop Als that use the NICU camera footage. Similar to the case described above, in a
collaboration with MMC, recording of NICU camera footage is again needed. This time, however,
with PRAIS, the technological infrastructure works out-of-the-box, making it possible to record NICU
footage.

This use case is a nice example of how PRAIS enables open innovation (Gla), where researchers can
focus on the research instead of having to bother with technological infrastructure and privacy/security
constraints.

2.4.5 Summary

The use cases described above are the main drivers behind the PRAIS requirements. All use cases
require some form of audio, video, and/or data streaming between peers in a fast and secure manner.
This means that topics such as peer authentication, peer-to-peer streaming, and media source diversity
have high priority. More detailed requirements are defined and discussed in Chapter 3.

During a Software Engineering Project (SEP) with computer science bachelor students (see Sec-
tion 4.2), we implemented applications that realize the pose (Section 2.4.1), apnea (Section 2.4.2),
and algorithm sharing (Section 2.4.3) use cases. In a collaboration with MMC (see Section 4.3),
we explored the recording use case (Section 2.4.4) and built the PRAIS Recorder Application (see
Section 4.3.1).

In Section 2.5, we describe an analysis that we performed to better understand typical algorithm/Al
inputs/outputs.

The Philips Remote Al Streaming platform 11 / Version 1.0

Eindhoven University of Technology

2.5 Algorithm and AI analysis

On a high level, algorithms and Al have input and output, i.e., they can be seen as a black box. Since
PRALIS should be able to stream those inputs and outputs, we conducted a technical analysis in which
we explored the most common inputs and outputs. In particular, we did the analysis by doing online
research, by leveraging the knowledge within the PR team, by leveraging the algorithm/Al experience
of the trainee, and by considering the algorithms required for the use cases described in Section 2.4.

Since algorithms are developed in C#, we first considered the C# built-in types [16]: bool, (s)byte,
char, decimal, double, float, (u)int, (u)long, (u)short, object, and string. While this list is quite long,
note that all of these types are stored as bytes and that they can be encoded as strings, e.g., Json [18]
(which is more human readable). Therefore, PRAIS should be able to stream both bytes and strings.
While byte/string streaming is already quite enabling, note that typical algorithms use/provide collec-
tions/data structures [17] that consist of bytes and strings. For example, a typical image classification
Al takes an image (a multidimensional array of ints) as input and provides an array of probabilities
(doubles, for example) as output. In particular, considering the use cases described in Section 2.4,
there is also a need to stream audio/video. Video is essentially a sequence of images, which are
multidimensional arrays of numbers. Audio is encoded as a sequence of numeric samples taken at
a certain frequency. While audio and video could be streamed using bytes/strings, it would require
quite some additional logic, which is not user-friendly. Therefore, PRAIS should be able to stream
audio and video. These insights were used in the requirements gathering process, which we describe
in Chapter 3.

2.6 Stakeholder Analysis

We conducted a stakeholder analysis to identify stakeholders and to understand their concerns. The
stakeholders belong to three organizations: Eindhoven University of Technology (TU/e), Philips, and
Maxima Medisch Centrum (MMC). An overview of the stakeholders is provided in Table 2.1.

Two important stakeholders actually used PRAIS. The first was a group of ten TU/e bachelor students
who worked together with us during their final Software Engineering Project (SEP). More details on
this collaboration are described in Section 4.2. The second PRAIS user was a PhD student at Maxima
Medisch Centrum, who worked on the recording use case (Section 2.4.4). More information on this
collaboration is described in Section 4.3. In Section 7.1 we describe how we communicated with each
of the stakeholders.

Lastly, observe that the scope of this project does not include the actual transfer of PRAIS to the
HSRA, i.e., the CAO. This is a process that typically takes months and is therefore envisioned to be
done after this project is completed. Consequently, the CAO is not a stakeholder for this project.

In the next chapter, we describe the requirement gathering process and provide an overview of the
requirements.

12 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Eindhoven University of technology

Name

Role

Interest in

Robin Mennens

PDEng trainee

Gaining architectural/design/development knowl-
edge and experience. Successfully graduating.

Alexander Serebrenik

TU/e supervisor

Successful project delivery, report quality, and
PRAIS verification and validation.

Yanja Dajsuren

PDEng ST manager

Quality of project results, relationship with
Philips, successful graduation of trainee.

SEP students PRALIS user Usability and functionality of PRAIS (see Sec-
tion 4.2).
Philips
Name Role Interest in

Marcel Quist

PR team lead and
Project owner

Successful demos using PRAIS, increasing
awareness around PRAIS, and further maturing
PRALIS concepts.

Zoran Stankovic

PR team soft-
ware architect and
Project mentor

Successful demos using PRAIS, increasing
awareness around PRAIS, and further maturing
PRAIS concepts. Usability/extensibility/main-
tainability of PRAIS.

Arjan Draisma

PR team research
engineer

Usability/extensibility/maintainability of PRAIS.

Ralitsa Kehayova

PR team intern: al-
gorithm developer

Successful integration of the pose detection algo-
rithm with PRAIS.

Roel Montree

PR team intern: al-
gorithm developer

Successful integration of the apnea detection al-
gorithm with PRAIS.

Maxima Medisch Centrum

Name Role Interest in

Ilde Lorato PhD Researcher and | Functionality of PRAIS Recorder Application
PRAIS user (see Section 4.3.1).

Carola van Pul Supervisor PhD Re- | Functionality of PRAIS Recorder Application
searcher (see Section 4.3.1).

The Philips Remote Al Streaming platform

Table 2.1: The identified stakeholders for this project.

13 / Version 1.0

Eindhoven University of Technology

14 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

3 System Requirements

In this chapter, we describe a set of technical goals (Section 3.1) that more precisely describe what
we aimed for during this project on a technical level. After that, in Section 3.2, we describe the
requirement gathering process. In Section 3.3, we give an overview of the PRAIS use cases. Finally,
in Section 3.4, we provide an overview of the requirements using a requirements model.

3.1 Technical goals

The main goals of this project (see Section 1.2) mostly focus on business aspects. To better understand
what was technically required to achieve these goals, we provide a set of technical project goals:

TG1 Design and implement the PRAIS C# API. In particular, a vendor abstraction layer should be
added.

TG2 Integrate the PRAIS C# API with the existing Javascript RTC APL

TG3 Address the technical limitations of the existing system (see Section 2.3).

TG4 Investigate and prototype visualization streaming (see Section 3.1.1).

In the remainder of this work, we refer to these goals as: (TGX), where X indicates the goal number.
The first technical goal (TG1) follows from the fact that the Prototype C# RTC API was designed
as a proof of concept. In particular, it does not contain a vendor abstraction layer. With TG2, we
aimed to combine the strengths of the Javascript RTC API and the PRAIS C# API. By making sure
they integrate, developers can easily connect participants in the browser to algorithms. TG3 directly
follows from the limitations identified in the existing system (see Section 2.3). We aimed to address
most of these limitations during this project. Lastly, TG4 is a technical exploration that is of interest
to the PR team (see Section 3.1.1).

3.1.1 Visualization Streaming

In a typical scenario, as shown in the top part of Figure 3.1, an algorithm streams its output over a
data channel to a participant (who uses a web application). The web application then visualizes the
algorithm results. In this setup, there is a dependency because the web application needs to know
the algorithm output format and how to visualize it. With visualization streaming, we aim to remove
this dependency by moving the responsibility of result visualization to the algorithm itself (see the
bottom part of Figure 3.1). The algorithm sends the code required for visualizing the output to the
web application. By running this code in a placeholder, the web application is able to visualize the
algorithm output. Overall, with visualization streaming, we aim to have algorithms that are compatible
with any web application that supports visualization streaming and vice versa. During this project, we
aimed to explore the technical feasibility and to implement a prototype of visualization streaming.

The Philips Remote Al Streaming platform 15 / Version 1.0

Eindhoven University of Technology

v
A

Algorithm Algorithm

Web application

A

Algorithm eeeoaasd JERR— Algorithm

Web application

Figure 3.1: A conceptual view of visualization streaming. In a typical setup (top), algorithms stream
their output over a data channel to a web application (which is used by a participant) that then visual-
izes the output. In contrast, when using visualization streaming (bottom), the algorithm first streams
the visualization code to the web application, which has placeholders for such visualizations. After
that, the algorithm streams its output to the web application, which can then visualize the output.

3.2 Requirement gathering

Throughout the project, there were three requirement gathering iterations, resulting in three project
phases (also see Section 7.2). The first two phases mainly relate to the fact that at the start of the
project, there were no customers who used Philips applications built using ICELink, which is why
LiveSwitch was chosen initially as the preferred webRTC provider (see Section 2.2.3). Later on in
the project, when the PR team sold the ICELink-powered NICU S28 application, the ICELink license
got renewed again, resulting in the second phase. Lastly, we iterated through the requirements with
the specific recording use case (see Section 2.4.4) in mind. The three phases are described in detail
below.

In the first phase, we started gathering those requirements that would comprise the core of PRAIS,
i.e., the functionality that would definitely be required. We did this during several activities:

* Asdescribed in Section 2.3, we analyzed the existing system to identify limitations. We defined
requirements to address these limitations.

» Since PRAIS should support several use cases, we analyzed several of them (see Section 3.3)
to better understand what functionality should be provided by the PRAIS C# API.

* Within the PR team, we held several brainstorming sessions around the whiteboard. In particu-
lar, the experience of the PR team with the Prototype PRAIS C# API offered valuable insight-
s/knowledge.

¢ We consulted several literature sources:

— Remote Al results in a setting that is very similar to a microservices architecture [NN15],
in which an application is structured as a collection of independently deployable services,

16 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

i.e., algorithms. Consequently, literature [NN15] on best practices regarding microser-
vices architectures provided inspiration for important aspects to include in the require-
ments.

— HSRA guidelines are provided by the CAO on Platform as a Service (PaaS) [vDWvVvZ18]
development. Since PRAIS is essentially a PaaS, we consulted this document on top-
ics such as logging and security. In particular, the document prescribes the usage of
OAuth2.0 [42] with (optionally) OpenID Connect [38] for access management.

— We consulted Philips privacy and security officers to discuss related aspects around PRAIS.
We quickly found out that privacy concerns the processing of data. PRAIS itself, as a
platform, only transfers data and does not really process it. The processing is done by
the algorithms developed by PRAIS users. Consequently, privacy concerns did not play
a major role in this project. Security, on the other hand, did play a major role. In fact,
one of the Philips security officers provided us with a document [Prob] that lists about
400 security and privacy requirements that should be fulfilled by Philips services. For this
project, this list is too long to fully consider. Therefore, we used the document as a source
of inspiration for important security requirements that we could take into account.

By combining all the knowledge/insights from the above-mentioned activities, we collected an ini-
tial set of requirements that resulted in the PRAIS C# APIL. Important criteria in prioritizing these
requirements were as follows:

* Whether the functionality is essential to get things working, i.e., minimum viable product.
* Whether the functionality is required in one of the use cases described in Section 2.4.

 Lastly, we first wanted to make sure that the PRAIS C# API is usable in a simple but common
setting, which we considered to be the scenario where a developer uses the API on his/her
computer and from there also runs the algorithms he/she is developing. This means that topics
such as advanced security, centralized logging, and containerization have lower priority.

Given the initial set of requirements, the PRAIS C# API was designed and developed using LiveSwitch
as a webRTC provider (see the darker green boxes in the LiveSwitch rectangle in Figure 3.4). To con-
nect algorithms (built using the PRAIS C# API) to participants, we developed a simple LiveSwitch-
powered web app [33]. The outcome of this phase was used by the SEP students (see Section 4.2),
providing us with a first iteration of user experience (see Section 5.2.1).

For the second phase, the plan was initially to implement the Javascript RTC API using LiveSwitch.
This would make the PRAIS C# API and Javascript RTC API compatible. As described above, how-
ever, the ICELink-powered NICU S2S application required algorithm functionality, which is why
ICELink was added as a webRTC provider to the PRAIS C# API (see the darker green boxes in the
ICELink rectangle in Figure 3.4). This allowed us to verify the vendor abstraction layer built into the
PRAIS C# API. Furthermore, after modifying the existing JavaScript RTC API, both APIs became
compatible.

In the last phase, now that both APIs were compatible, we defined and prioritized the requirements for
the recording use case, which was to be implemented at Maxima Medisch Centrum (MMC). We did
this by having meetings with the PhD student who is doing a NICU-based research at MMC. Based
on her input, we would further define the requirements during brainstorming sessions within the PR
team.

The Philips Remote Al Streaming platform 17 / Version 1.0

Eindhoven University of Technology

Audio/Video Recording Neonatal Pose Detection
Recording Pose
Baby » 4 . ®(Researcher Baby »| detection
algorithm :
algorithm
Neonatal Apnea Detection Algorithm Sharing
Baby Inside hospital Outside hospital Inside hospital
> \
Apnea '
detegtlon ! Baby | Algorithm X #\ /Researcher | |
algorithm ' '
Database
reading
algorithm |

Figure 3.2: Illustrated are the streaming infrastructures of the four use cases described in Section 2.4
(top left: Section 2.4.4, top right: Section 2.4.1, bottom left: Section 2.4.2, and bottom right: Sec-
tion 2.4.3). Circles represent participants while squares represent algorithms. Audio, video, and data
streams are represented by blue, red, and green arrows respectively.

As described above, an important factor in prioritizing the requirements was whether or not a piece
of functionality was required in one of the use cases. To this end, we analyzed the use cases in depth,
which we describe in Section 3.3.

3.3 PRALIS use cases

At the start of phase one, in order to determine the set of requirements that comprise the core function-
ality of PRAIS, we conducted a use case analysis. We analyzed the use cases described in Section 2.4
to determine what functionality should be offered by the PRAIS C# API. Note the distinction between
use cases and what we call PRAIS use cases. A use case essentially describes an application that a
developer would build using PRAIS. A PRAIS use case describes a piece of PRAIS functionality that
is used by such a developer. So, by understanding use cases we aim to identify and understand the
required PRAIS use cases.

For each use case, we determined the required streaming infrastructure, as shown in Figure 3.2. Note
that each of these use cases can be implemented in different ways. The ones shown in Figure 3.2 are
just examples that helped us understand the PRAIS use cases. In the Audio/Video Recording use case
(top left and see Section 2.4.4), the audio and video footage of a baby is streamed to an algorithm
that records all incoming media. Afterwards, a researcher can watch/use the footage by replaying the
recording. The Neonatal Pose Detection use case (top right and see Section 2.4.1) covers the situation
in which video footage of a baby is streamed in real time to a pose detection algorithm that sends the
output over a data channel to a doctor, who can then view the results. The Algorithm Sharing use case
(bottom right and see Section 2.4.3), represents a more generic scenario. Baby media/data is streamed
from inside a hospital to an external algorithm X that then streams the output media/data back to a
doctor/researcher in the hospital again. Finally, for the Neonatal Apnea Detection use case (bottom
left and see Section 2.4.2), we considered two scenarios. The first is a real-time scenario where baby
video and sensor data is directly streamed to the apnea detection algorithm. The second is a scenario

18 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

where recorded baby video (that was, for example, recorded using a recording algorithm) and sensor
data is streamed from a database to the apnea detection algorithm. In both scenarios, the algorithm
streams the output to a doctor who analyzes the results.

An overview of other use cases that we considered in our analysis, but did not dive into deeply, is
provided in Appendix C. The output of the use case analysis is a set of PRAIS use cases, which are
shown in Figure 3.3. These PRAIS use cases form the basis of the requirements, which are described
in Section 3.4.

PRAIS CR#AFI

Publish messages to Send messagesto

conference peers

ubscribe to message Receive messages

topics

from peers

Leave Conference

- 7
~ L—
~ “agxtend=> Developer
wextend? /
A Vv

Add/remave
—-——= — — — 1 algorithmstoffrom
aextandn conference

<<extend=>

Create P2P Data
Stream

Receive data

wincludes

Send data l-:'

Define video
parameters

Authenticate

AY |
% winclude®
.

Create P2P Video

Create P2P Audio
Stream

Define audio

parameters tincludes Stream

/ 7
<=extend>> <<extend®>
i td
.
I s

Stream audiofvideo

Capture Screen Use Camera
file pr

wextend®

Receive audio/video Send custom

Select Camera

Record audio/video |- — —— audio/video frames

Figure 3.3: A visual overview of the PRAIS use cases. The Developer actor is shown to be only
associated with the Join Conference PRAIS use case, which is done to make the diagram readable. In
fact, a Developer can be involved in any of the PRAIS use cases.

The Philips Remote Al Streaming platform 19 / Version 1.0

Eindhoven University of Technology

3.4 Requirement overview

The outcome of the requirement gathering process includes two sets of MoSCoW [25] (Must, Should,
Could, Won't) prioritized functional and non-functional requirements. The functional requirements
are described in Section 3.4.1 while the non-functional requirements are described in Section 3.4.2.

3.4.1 Functional requirements

A complete list of all 150 functional requirements is provided in Appendix D. Since we deem this
list too long to discuss in the main text, we group the requirements into categories, of which a visual
overview is shown in Figure 3.4 (except for the won’t requirements). Each category represents a
set of requirements that form a piece of functionality and colors indicate priority (must, should, and
could, are dark'gréen, green, and yellow respectively). Observe that the LiveSwitch and ICELink
requirement categories have quite some overlap because they mostly cover the same functionality
that is implemented using different webRTC providers. The requirement categories shown under
‘Common’ are those requirements that describe functionality that is generic to the system and is
thus webRTC provider agnostic. Each requirement category is described below (where overlapping
LiveSwitch and ICELink requirements categories are discussed together).

LiveSwitch Common ICELink

Back-End
Controlled Security
Extends— Authentication server —Extend
& Solution Provider

Identification

Extends Extends

Requires

Advanced
Conference
Management
Algorithm
Registration &
L Management |

Requires) —Extend:

Requires Requires Extends

Algorithm Multi-
Connections

Visualization
Streaming

Algorithm Multi-
Connections

,—Requires Requires Requires Requires—l
Algorithm Media
n Sources q
Recording Camera & Screen Extend Recording
capture

A
Requires—T Extends
|

—Requiresl Requires—

Extends Extends

" . Algorithm Media
Algorithm Media oS

—Extends»|
Sources Camera & Screen

File capture File

QgortimMedia PRAIS Recorder)
Sources At Recording
Application

Figure 3.4: A visual overview of the requirement categories (except for requirements with won’t
priority) and their relations. Colors indicate MoSCoW priorities where must, should, and could, are

dark'green, green, and yellow respectively.

20 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

3.4.1.1 Basic Conference Management

Must: Before peers can connect to each other, they need to join a conference. Once joined, algorithms
should detect the joining/leaving of other peers such that connections can be set up.

3.4.1.2 Security

Must: We want to control who can join a certain conference. So, participants and algorithms shall
authenticate themselves before joining a conference. Authentication shall be done using tokens that
have an expiration date.

3.4.1.3 Peer-To-Peer Connections

Must: In order to connect peers, algorithms shall set up P2P connections to other peers. This includes
both audio/video and data connections.

3.4.1.4 Algorithm Media Sources

Must: When an algorithm sets up an audio/video P2P connection, then the algorithm shall send cus-
tom audio/video frames to the other peer. With custom audio/video frames, basically any frame can
be sent. This offers a lot of flexibility and therefore has must priority.

Should: When an algorithm sets up an audio/video P2P connection, then the algorithm shall use
screen capture or a webcam as a media source.

Could: When an algorithm sets up an audio/video P2P connection, then the algorithm shall use a local
file as a media source.

3.4.1.5 Algorithm Messaging

Must: Audio/video/data connections can already be used to stream media/data. Streaming connec-
tions, however, are quite resource intensive and are therefore excessive when, for example, simple
event triggers need to be sent. Therefore, algorithms shall have a lightweight method to send mes-
sages to other peers.

3.4.1.6 Javascript RTC API

Must: The signaling implementation of the Javascript RTC API had to be changed to manual signaling
(see Section 4.5.2) to make the API integratable with the PRAIS C# APL

3.4.1.7 Algorithm Multi-Connections

Should: Algorithms shall set up multiple audio/video/data connections between the same peer. This
is especially useful for data channels, where different channels can be used for different purposes.
Many use cases can already be implemented with only a single connection, however, which is why
this has should priority.

The Philips Remote Al Streaming platform 21 / Version 1.0

Eindhoven University of Technology

3.4.1.8 Recording

Should: Algorithms shall record incoming audio/video to a local file. This has should priority for
ICELink because it was actually used at MMC.

Could: For LiveSwitch, we have the same requirements as above, but there was no direct need to
have this functionality with LiveSwitch, which is why this has could priority. Additional could re-
quirements include the recording of additional metadata and making sure that recorded video frames
have the same resolution (which was desirable but not required by MMC).

3.4.1.9 PRAIS Recorder Application

Should: The PRAIS Recorder Application was used at MMC and is essentially a user interface on top
of the PRAIS recording functionality. In Section 4.3.1, we describe its functionality and design.

3.4.1.10 Back-end Controlled Security

Could: In the basic security setup (see Section 3.4.1.2), peers authenticate themselves with the back-
end using locally stored or generated tokens (see Section 4.5.1.1). With this extended security, algo-
rithms have to first authenticate themselves with an authentication server to obtain such a token.

3.4.1.11 Advanced Conference Management

Could: With basic conference management (see Section 3.4.1.1), algorithms have control over when
they join a conference and which conference that is. This is in contrast to the original IRM function-
ality (see Section 2.3), where other peers can decide when algorithms join/leave a certain conference.
With advanced conference management, we aim to again provide such functionality. In particular,
algorithms shall register themselves with a server upon startup and other peers shall then instruct
algorithms (via the server) to join/leave certain conferences.

3.4.1.12 Visualization Streaming

Could: These requirements cover the visualization streaming exploration/prototype (TG4).

3.4.2 Non-Functional Requirements

The list of non-functional requirements is shown in Table 3.1. Each non-functional requirement is
placed into a context, i.e., an ility. Note that a lot of security requirements are already included in
the functional requirements. NF-9, in practice, means that PRAIS should support OAuth2.0 [42] and
OpenlD Connect [38]. NF-10, in practice, means that the PRAIS C# API should be implemented as a
.NET Standard library [26].

In the next chapter, we describe the architecture and design of PRAIS, which followed from the
requirements described in this chapter.

22 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Table 3.1: An overview of the non-functional requirements. Each non-functional requirement is
placed into a context, i.e., an ility.

1))

NF-1
NF-2
NF-3

NF-4
NF-5

NF-6
NF-7
NF-8

NF-9

NF-10

Priority Context

Must
Must
Must

Must
Must

Must
Must
Must

Could

Could

Usability
Usability

Vendor abstrac-
tion

Installability
Installability

Deployability
Deployability
Integratability

Security

Compatibility

Description

The PRAIS C# API shall be documented for developers.
The PRAIS C# API shall be easy to use.

The system shall abstract away the webRTC provider.

The PRAIS C# API shall be easy to install by users.

Philips shall control who gets access to the PRAIS C#
APL.

The system shall run in the cloud.
The system shall run on premise.

The PRAIS C# API shall integrate with the Javascript
RTC APL

The system shall use the access control technology pre-
scribed by the Philips PaaS document [vDWvZ18].

The PRAIS C# API shall be usable from any .NET imple-
mentation.

The Philips Remote Al Streaming platform 23 / Version 1.0

Eindhoven University of Technology

24 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

4 PRAIS Architecture & Design

In this chapter, we describe the design and architecture of PRAIS by using the 4+1 view model of ar-
chitecture [Kru95] (see Section 4.1). First, we describe how we cover the use cases (i.e., the +/ view)
described in Section 2.4 during the two collaborations that took place during this project. In particular,
in Section 4.2, we describe a project that we did together with a group of computer science students.
After that, in Section 4.3, we describe the collaboration with a hospital that does NICU research.
Then, the logical, process, physical, and development views are described in Sections 4.4, 4.5, 4.6,
and 4.7. Since the architecture and design follow from the requirements, we use (FR-X) and (NF-Y)
notation to refer to functional requirement category X and non-functional requirement Y.

4.1 The 4+1 View model of architecture

The 4+1 view model of architecture, originally introduced by Kruchten [Kru95], is a model for de-
scribing the architecture of software-intensive systems, based on multiple views[Kru95]:

e The logical view, which is the object model of the design (when an object-oriented design
method is used).

o The process view, which captures the concurrency and synchronization aspects of the design.

* The physical view, which describes the mapping(s) of the software onto the hardware and re-
flects its distributed aspect.

* The development view, which describes the static organization of the software in its develop-
ment environment.

The description of an architecture — the decisions made — can be organized around these four views
and then illustrated by a few selected use cases or scenarios which become a fifth view.

Before diving into the design of PRAIS, it is important to understand the contexts of the projects in
which we brought the use cases/scenarios described in Section 2.4 into practice (i.e., the +/ view). In
Section 4.2, we describe a Software Engineering Project (SEP) that we did together with a group of
computer science bachelor students. After that, in Section 4.3, we describe how we collaborated in an
open innovation project with Maxima Medisch Centrum (MMC).

4.2 Software Engineering Project (SEP)

At the end of their last computer science bachelor year, students of Eindhoven University of Technol-
ogy participate in a SEP project. For ten weeks, they work with a real customer to obtain their first

The Philips Remote Al Streaming platform 25 / Version 1.0

Eindhoven University of Technology

real software development experience. For us, SEP provided the perfect opportunity to let a group of
students work with the PRAIS C# API and thereby assess its usability (see Section 5.2.1). The SEP
project started on April 20 and lasted until July 3. Relating this to the timeline of this project, this
means that the SEP students were provided the PRAIS C# API with LiveSwitch as webRTC provider.
Figure 4.1 provides a high level overview of what the SEP students worked on. In Appendix E, a
detailed description of the SEP project can be found. The SEP group represented two academic hos-
pitals that want to share NICU AI algorithms with each other. Hospital A developed a pose detection
algorithm for neonates while hospital B developed an apnea detection algorithm. Observe that the
pose detection (Section 2.4.1), apnea detection (Section 2.4.2), and algorithm sharing (Section 2.4.3)
use cases are covered here. We already possessed the pose and apnea algorithms, which we provided
to the students. Given Figure 4.1, the students developed the following:

» The pose detection, apnea detection, and database bots, which were developed using the PRAIS
C# API. The pose and apnea detection algorithms that we provided to the students are written
in Python, so the students developed a Python wrapper that enables running a Python algorithm
from C#.

* The hospital A [37] and B [36] web applications, which are used to simulate doctors and NICUs.
Since we did not have LiveSwitch as a webRTC provider in the Javascript RTC API, the students
had to use LiveSwitch directly in these web applications.

* The hospital A authentication back-end, which consists of an OpenID Connect [38] authentica-
tion server and an OpenID Connect identity provider (see Section 4.5.1.2 for more details).

* A simulated database for hospital A that contained (simulated) NICU sensor data. This was
done because Philips has NICU sensor data on an internal network drive. By having a database
bot that connects to this drive and then streams the data to an algorithm, we aimed to demon-
strate that algorithm input can come from different/multiple sources (G1b).

All in all, with the SEP project, we aimed to achieve the following:

» Assess the usability of PRAIS, which we did using a usability study (see Section 5.2).
» Assess the stability of PRAIS, i.e., to discover bugs/other issues.

* To explore the options regarding combining OpenID Connect and PRAIS. This relates closely
to the security non-functional requirement (NF-9).

* To explore and prototype visualization streaming (TG4 and see Section 3.1.1).
To build demonstrators that show the potential of PRAIS (G1b).

In the following sections, where relevant, we include parts of the design of the SEP project.

4.3 Maxima Medisch Centrum

MMC is a hospital located in Veldhoven that has several NICUs. To allow parents to remotely view
their babies, MMC is using the NICU S2S application that was built using the Javascript RTC API. A
PhD student at MMC is doing a NICU-based research and her project required NICU video recordings,
i.e., the recording use case described in Section 2.4.4. This use case required the integration of PRAIS
with the NICU S2S application. On a technical level, this meant we had two options:

26 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

EEE Hospital A EEE Hospital B

r— 5 ad View Alg

{s} | <Video — Results

O4 30 m

Pose detection Results > </ >

Doctor
bot
Hospital B Web
Application Video

=

NICU Vid&‘ NICU
s Videq &

View Alg /> Sensor Data > 5 Ope’“D (?innect
[Results / < Visualizgtion d Y. ;
: (code), G} :
i Hospital A Web 0L ™ 16 |

Doctor Application Apnea detection
bot
= = ra . SensorData |Hospital A Hospital A
{0} Database Authentication back-end || !

Database bot

OpenlD Connect

Figure 4.1: A conceptual overview of the system developed by the SEP students.

1. Add ICELink as a webRTC provider to the PRAIS C# APIL.
2. Add LiveSwitch as a webRTC provider to the Javascript RTC APL

Eventually, we chose option 1 for two reasons. The first is that adding ICELink to the PRAIS C#
API allowed us to test whether the vendor abstraction layer was properly designed and implemented
(TG1). It turned out that this was the case because we were able to add ICELink as a webRTC provider
without having to change the design. Secondly, the NICU S2S application was already running at
MMC (indirectly on ICELink). Switching it to LiveSwitch while it was already live was deemed too
much of a risk.

Since the PhD student is not very technically proficient in C#, we developed the PRAIS Recorder
Application (see Section 4.3.1), which is essentially a Ul layer on top of the PRAIS C# API. All in
all, with the MMC collaboration, we aimed to achieve the following:

¢ Integration of the PRAIS C# API and Javascript RTC API was already an important non-
functional requirement (NF-8) and goal (TG2). The MMC collaboration provided the perfect
opportunity to test the integration.

* To demonstrate how PRAIS can be used to stimulate open innovation (Gla). In particular,
PRALIS essentially provides an academic layer on top of the NICU S28S application. Any hospital
that uses the NICU S28S application can now use PRAIS to connect algorithms to their NICUs.

* To demonstrate the recording functionality of PRAIS (G1b).

The Philips Remote Al Streaming platform 27 / Version 1.0

Eindhoven University of Technology

4.3.1 PRAIS Recorder Application

In addition to being a demonstrator, the PRAIS Recorder Application is a tool that was built for
pragmatic purposes: to enable recording of NICUs at MMC. Its functionality mostly follows from
the requirements specified by MMC (FR-3.4.1.9). For example, features include: log-in before a
researcher can connect to a NICU, only connect to NICUs that have informed consent, and recording
of a specified number of video chunks of specified duration. By using PRAIS as a basis, most features
were trivial to implement (because PRAIS already provides the actual recording functionality), which
is why we provide a more elaborate description of the PRAIS Recorder Application in Appendix F.

A more difficult requirement to satisfy relates to the fact that the video recordings are used for research
purposes. In this case, an accurate timestamp per recorded video frame was required, which turned out
to be difficult to obtain. More specifically, the timestamp should represent the moment a video frame
was generated, should describe a UTC date and time, and should be millisecond accurate. Figure 4.2
provides a visual overview of the recording flow at MMC. A webcam is attached via a USB cable to a
tablet that runs the NICU S2S web application. The PRAIS Recorder Application, which runs on the
researcher’s computer, connects to the NICU (the tablet) and then retrieves the video to be recorded.
As is shown in Figure 4.2, the ideal moment to generate a timestamp for a video frame is directly
after it has been generated. Note, however, that dashed rectangles indicate steps that are executed by
software tools/components that we do not control. Consequently, we can only generate a timestamp
when we actually record a video frame. After doing some tests, we found that the delay between
generating a video frame and actually recording it is about 700 milliseconds. Unfortunately, this
delay heavily depends on the network bandwidth availability and CPU availability of the tablet and
computer. All in all, aiming to satisfy this requirement, we explored different solutions (see Table 4.1)
but concluded that, given the available time, this is the best we can do. In the future, when more time
is available, we deem it worthwhile to implement one of the potential solutions listed in Table 4.1.

With the SEP and MMC collaborations, we cover all the use cases described in Section 2.4. Further-
more, the collaborations combined required the implementation of all must and should requirements
(see Section 5.1 for more details). In the next sections, we describe each of the views of the 4+1 view
model of architecture [Kru95].

Webcam attached Vid
to tablet via USB, ideo—>

Tablet running
NICU S2S in a browser Computer running the
PRAIS Recorder Application

Video——>»

Evi . framei_ ------)1 Encode ——>~ Packetize ——)1 Encrypt ------)' Send ------ >~ Decrypt E——»:Depacketlze -—>~ Decode E—-) Record
Ia_eél_ t_ir_n_e_s_tér_n_p __ Actual timestamp
generation moment generation moment

Figure 4.2: A visual overview of the recording flow at MMC. The top part of the figure illustrates
which entities are involved in the recording pipeline while the bottom part details which steps are
executed by each entity (note the color mapping). In the bottom part, dashed rectangles represent
steps that we do not control, i.e., they are part of software tools/components that we use.

28 The Philips Remote Al Streaming platform / Version 1.0

Description

Pros

Eindhoven University of Technology

Cons

Generate frame times-
tamps upon receiving
them (chosen solution)
Embed a timestamp in
the video frame itself

Send timestamps in par-
allel over a data channel

Replace NICU S2S in
the browser with a na-
tive version of NICU
S28

Easy to implement. Only
requires changes in the
PRAIS C# APIL.

Timestamps are accurate.

Timestamps are accurate.

Enables control over
video frame generation
and thus enables accurate
timestamp generation at

Timestamps are not accurate.

Both NICU S2S and the PRAIS C# API
need to be changed. Unsure about feasibil-
ity. Higher coupling: extra dependency be-
tween NICU S2S and PRAIS (embedding
of timestamps should somehow be toggled
from PRAIS).

Both NICU S2S and the PRAIS C# API
need to be changed. Generation of video
frames is done by the browser, so we are
not sure whether this is feasible. Higher
coupling: extra dependency between NICU
S2S and PRAIS (extra datachannel needs to
be opened).

Requires a significant amount of develop-
ment.

the sending side.

Table 4.1: A comparison of the different solutions we considered regarding the generation of times-
tamps for recorded video frames.

4.4 Logical View

In Figure 4.3, an overview of all the packages and components of PRAIS is shown. On the highest
level, we have a C# package and a Javascript package.

The C# package contains the PRAIS C# API NuGet package [30]. A NuGet package is the Microsoft-
supported mechanism for sharing code and thereby makes installation of the PRAIS C# API easy (NF-
4). As we can see, the NuGet package includes four components that follow a layered architectural
pattern. AlgorithmCore contains the core functionality of PRAIS. It defines all API functions but does
not implement these functions itself because that is the responsibility of the webRTC implementors:
LiveSwitch WebRTC Implementor and ICELink WebRTC Implementor. The only responsibility and
functionality of the PRAIS component is to connect and instantiate AlgorithmCore with one of the
implementors at runtime. With this setup, we allow the user to pick a webRTC implementor at runtime
and thereby achieve a vendor abstraction layer (NF-3).

Observe that the components of the NuGet package use different .NET variants: .NET Framework
4.7.2 and .NET Standard 2.0. Another .NET variant (that we did not use) is .NET Core. Both .NET
Framework and .NET Core are implementations of .NET, while .NET Standard is a formal specifi-
cation of the APIs that are common across all NET implementations [26]. In practice, this means
that NET Standard libraries can be used from any .NET implementation. This is exactly why Algo-
rithmCore is implemented as a .NET Standard library, making the core of PRAIS compatible with

The Philips Remote Al Streaming platform 29 / Version 1.0

Eindhoven University of Technology

1 1

Javascript package C# package

NuGet J

«Typescript» «.NET Framework 4.7.2» »;
Existing Javascript RTC API [

“ — | —
5

«.NET Framework 4.7.2»
DemoAlgorithms

A

«Typescript» «NET Eﬁ;’;ﬁgﬁ 4'7'2@ «NET F{ggi;ﬁ:k 4'7'2@ «.NET Framework 4.7.2»
Manual Signaling WebRTC Implementor WebRTC Implementor TestPRAIS
; Y ;
«External» {l s
SEP Project > «-"EIT !a}:\dard 2.0» < < PI;;L\:E; Framewzrk Alt__7_2_»
Source Code gorithmCore ISRecorderApplication

Figure 4.3: An overview of all the packages and components of PRAIS. All arrows represent a uses
relationship. Overall, we have a Javascript package and a C# package that each contain different
components. Furthermore, the NuGet frame represents which components are part of the PRAIS C#
NuGet package.

essentially any .NET webRTC implementor (NF-10). Table 4.2 shows a comparison of .NET Frame-
work and .NET Core. Given this comparison, we would ideally implement the webRTC implementors
in .NET Core (or .NET Standard) because it works cross-platform, is faster, and does not need to run
in a Windows docker container. Unfortunately, at the start of this project, ICELink was only provided
as a .NET Framework library. LiveSwitch, on the other hand, did also come as a .NET Standard li-
brary, which did unfortunately not include relevant features such as camera/screen/microphone media
capture and the H.264 video codec on MacOS [39]. Because of this, we used the LiveSwitch and
ICELink .NET Framework libraries.

Other components shown in Figure 4.3 include:

* DemoAlgorithms: A collection of demo algorithms built using the PRAIS C# API (G1b).

» Test. PRAIS: A collection of automated system tests that verify the functionality of the PRAIS
C# API. See Section 5.1 for more details.

PRAISRecorderApplication: The recorder application developed for MMC (see Section 4.3.1).
* SEP Project Source Code: The SEP students worked with the PRAIS C# API NuGet package.

.NET Framework .NET Core
Performance Lower Higher
Cross-platform Windows only Windows, Linux, and MacOS
Maturity Released in 2002 Released in 2016
Owner Microsoft Open source
Docker support Windows docker containers only Linux docker containers. More op-

timized for containerization.

Table 4.2: Comparison of .NET Framework and .NET Core

30 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

* Existing Javascript RTC API: This is the Javascript RTC API that was already there at the start
of this project.

* Manual Signaling: This represents an extension of the Javascript RTC API which was required
for the integration of the PRAIS C# API and the Javascript RTC API (NF-8).

In Section 4.4.1, we discuss the NuGet package, i.e., the design of the PRAIS C# API in more detail.

4.4.1 The PRAIS C# API

As shown in Figure 4.3, the PRAIS C# API consists of four components. Recall that the PRAIS
component is a simple layer that connects and instantiates the other components. Therefore, in this
section, we only describe the designs of AlgorithmCore (Section 4.4.1.1), and ICELink WebRTC Im-
plementor and LiveSwitch WebRTC Implementor (Section 4.4.1.2). The documentation that belongs
to the PRAIS C# API (NF-1) can be found in Appendix G and online [29].

4.4.1.1 Algorithm Core

The class diagram representing the design of AlgorithmCore is shown in Figure 4.4. Observe the
rectangles in green that represent interfaces that are implemented by the ICELink WebRTC Imple-
mentor and LiveSwitch WebRTC Implementor. With this bridge design pattern [40], we realize the
vendor abstraction layer (NF-3). To make the API easily accessible, all core functionality resides in
the AlgorithmImpl class (NF-2). After instantiating such a class with the correct configuration, an al-
gorithm can perform actions such as Join()/Leave() conferences (FR-3.4.1.1), SendMessageToPeer()
(FR-3.4.1.5), OpenDataChannels(), and OpenMediaStream() (FR-3.4.1.3, FR-3.4.1.7) with a certain
media source when desired (FR-3.4.1.4). By using an observer design pattern [Proa], several events
that are triggered by the API can be observed. For example, after joining a conference, the OnPeer-
Connected event is triggered whenever a peer joins the same conference. During this project, we
reviewed the design of AlgorithmCore in a design/code review session with Zoran and Arjan (see
Section 2.6). Overall, there were six important design decisions to consider.

Firstly, both ICELink and LiveSwitch use generic connection concepts that bundle audio, video, and
data streams. In contrast, webRTC splits these concepts into separate media and data streams. Con-
ceptually, both approaches make sense and technically there also is not a very big difference. In the
end, we decided to go for the webRTC approach because of three reasons. Firstly, we noticed that in
ICELink/LiveSwitch, a connection has a direction, which makes sense for audio and video but not so
much for data. In their documentation, they even write that data connections are always bi-directional.
Secondly, we believe that conceptually, audio and video always go well together while data is a more
separate concept. Thirdly, the functionality that goes with audio/video and data streams is different.
Simply put, a data stream is used to send/receive strings/bytes while an audio/video stream is used to
send/receive audio and video frames. Because of these reasons, we decided to split the concepts of
media and data streams (NF-2).

Secondly, in addition to a unique Id (TG3), Peers also have a DisplayName, Tag, and list of Roles.
We decided to add the Tag because it allows developers to add any custom (json) string to its peers.
Furthermore, we also saw value in enabling algorithms to reason based on a peer’s role, which is why
we added the Roles attribute (NF-2).

The Philips Remote Al Streaming platform 31 / Version 1.0

Eindhoven University of Technology

DataReceivedArgs {Sealed}

+ Peer: Peer

+ Label: string

+ DataChannel: DataChannel
+ DataString: string

AudioReceivedArgs {Sealed}

+ Peer: Peer
+ MediaStream: MediaStream

+ Duration: int

VideoReceivedArgs {Sealed}

+ Peer: Peer
+ MediaStream: MediaStream

'gs {Sealed}

+ Peer: Peer

lc i h A

g

+ DataBytes: byte] + Audio: byte] + Frame: Bitmap + Message: string + State: ConnectionState
IceServer {Sealed} Algorithmimpl 1 «interface»
0.
+ Url: string ®| + Applicationld: string o EUeLRICE plel entoy
+ Username: string + Conferenceld: string * 7 Peer {Sealed} 0.% DataChannel {Sealed}
+ Password: string + ConferenceState: ConferenceState +|d: string g + State: ConnectionState PN «interface»
<enum> PeerType + |d: string[] + DisplayName: string + Label: string IDataCl
+ i + : stri
prm— Disp : string Roles: string[] + SendDataBytes(byte[]): void
9 + Tag: string + Tag: string . I
Participant > + SendDataString(string): void .
+ Roles: string[] + PeerType: PeerType & . h . «interface»
<enum> Implementor + LiveSwitchGatewayUrl: strin, ’ gem O'nStgteC Cahnged.dA e lementey
enul plementol yUrl: g + HasRole(string): bool onnectionStateChangedArg
. + : stri
LiveSwitch WebsyncGatewayUr: string + IsAlgorithm(): bool
. + Token: strin
ICELink "9 L— 1 cinterface»
— + Secret: string ‘ IVideoStreamimplementor
RenumeSteamBiecion + Join(): void MediaStream {Sealed}
Inactive + Leave(): void ®] + Id: string
ReceiveOnly + OpenDataChannel(Peer, string): DataChannel X " -— «interface»
P (9) + State: ConnectionState 1 |AudioStreamimplementor
SendOnly + OpenDataChannels(Peer, string[]): DataChannel[]
SendReceive + Openh eam(Peer, MediaStreamConfig): + Event: OnStateChanged: ConnectionStateChangedAr¢
Medi + Close(): void 1 1
l<enum> ConferenceState + SendMessageToPeer(Peer, string): void L1
Registered + DoGetConferenceToken(): string Bl
" VideoStream {Sealed} AudioStream {Sealed}
Registering + SetlceServers(): void 0.1
. + GetPeer(string): Peer + StreamDirection: StreamDirection + StreamDirection: StreamDirection
Unregistered
Unregisterin + Event: OnPeerConnected: Peer + IsRecordingIncomingVideo: bool + IsRecordinglncomingAudio: bool
(Mnregistering |
+E! : OnPeerLeft: P
vent: OnPeerleft: Peer + StartRecordinglncomingVideoToMkv(file, path): voi | | + StartRecordingincomingAudioToMkv(file, path): voi
i - O Jel ived: i <
LT [R RS + Event: Received: 9 + StopRecordingIncomingVideoToMkv(): void + StopRecordingIncomingAudioToMkv(): void
Camera + Event: OnVideoFrameReceived: VideoReceivedArgs
+ X i ived: Audi ;
ScreenCapture Event: OnAudloFrarr.\eRece\ved. Au‘dloRece\vedArgs L MediaSource {Sealed}
Custom + Event: OnDataReceived: DataReceivedArgs oo e - «interface»
+ Event: O Opened: Medi + Type: MediaSourceType IMediaSourcelmplementor
<enum> ConnectionState + Event: OnDataChannelOpened: DataChannel + Start(): void
+ Stop(): void
Connected MediaStreamConfig {Sealed}
Connecting
+ AudioDirection: StreamDirection N
Closing X : o CustomMediaSource {Sealed}
Closed + VideoDirection: StreamDirection ’ «.in‘er'ace»
Failing + MediaSource: MediaSourceType + SendAudioFrame(int, byte[]): void Ic
Failed + SendReceiveMethod: SendReceiveMethod + SendVideoFrame(Bitmap): void

Figure 4.4: The class diagram that represents the design of AlgorithmCore. Rectangles in green repre-
sent interfaces that are implemented by the ICELink WebRTC Implementor and LiveSwitch WebRTC
Implementor. Note that, to make the diagram readable, not all methods/properties are included. In
particular, several asynchronous versions of methods are left out. The complete API specification can
be found in Appendix G and online [29].

The LiveSwitchGatewayUrl and WebsyncGatewayUrl define the address of the back-end server. De-
pending on which webRTC provider is used, one of the fields should be defined. The Secret and Token
fields are used for authentication (FR-3.4.1.2), which we describe in more detail in Section 4.5.1.

Another design decision relates to the consideration of having a default (inactive) connection to every
peer that joins the same conference (which was the behavior in the Prototype C# API). A user would
then change the direction of this default connection instead of creating new ones. While, from a
design perspective we preferred not having default connections (NF-2, FR-3.4.1.7), it also turned out
that LiveSwitch has a bug that prevents the changing of connection directions. At this point, this bug
still has not been solved, which made the decision regarding this design trade off easy.

We considered whether there is a requirement for an algorithm instance to be present in multiple con-
ferences at the same time, which is possible in the Javascript RTC API. After some discussion and use
case investigation, we could not identify a use case where this functionality is really needed. There-
fore, we concluded that the extra technical effort, complexity, and uncertainty (in terms of technical

32

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

feasibility) did not outweigh the envisioned benefits.

Lastly, observe that all classes (except Algorithmlmpl) are sealed, which means they cannot be ex-
tended. This is mainly done from the consideration that in the future, the PRAIS C# API may change.
By preventing extension, there is a smaller chance that application code that uses the PRAIS C# API
breaks, i.e., there is better backwards compatibility (NF-2).

4.4.1.2 ICELink and LiveSwitch WebRTC Implementors

The class diagram representing the design of ICELink WebRTC Implementor is shown in Figure 4.5.
The design of LiveSwitch WebRTC Implementor is very similar, which is why it is included in Ap-
pendix H. The main difference between the two is that ICELink WebRTC Implementor also contains
ManualSignaling (NF-8, FR-3.4.1.6). The green rectangles represent the interfaces that are part of Al-
gorithmCore. By implementing them here, and by connecting them to ICELink functionality (orange
rectangles), we realize the bridge design pattern [40], i.e., the vendor abstraction layer.

An important design decision, regarding the LiveSwitch WebRTC Implementor, relates to the way in
which we implement the connections. Recall that peers can only handle about four simultaneous
P2P connections (depending on the hardware) and that LiveSwitch offers support for SFU and MCU
connections (see Section 2.2.2). While it would be nice to use such SFU/MCU connections under
the hood, it also adds quite some complexity to the system. Furthermore, considering our use cases,
there is no use case that really requires more than four active simultaneous connections. Therefore,
we decided to use P2P connections (FR-3.4.1.3).

+ SendMessageToPeer(Peer, string): void

«interface» T USSR IceLinkWebRtclmplementor lo-1—| ManualSignaling
* Algliipl: Algorithmimpl !
DataChannelWrapper gimpt: Alg P ~ OpenConnection(): void
~ LiveSwitchWebRtcImplementor(AlgorithmImpl): void ~ SendMessageToPeer(): voic
«interface» Genen + Getld(): string [®1— DataChannel + Join(): void 4
IDataChannellmplementor + GetLabel(): string + Leave(): void R teClient
emoteClients
+ SendDataBytes(bytel]): void + OpenDataChannel(Peer, string): DataChannel _—
+ SendDataString(string): bool + OpenDataChannels(Peer, string[]): DataChannel[] 0.*
«interface» " " .
. <l-- . leé1— PeerConnection + OpenMediaStream(Peer, MediaStreamConfig):
' pp %7 I MediaStream RemoteClientState

7| * Getid(): string M c " + GenerateToken(): string - "
«interface» <-- + Close(): string gnagegCongecton] CustomVideoSink

) + SetlceServers(): void
IVideoStreamimplementor

VideoStreamWrapper 1 + Getld(): void ~ DoProcessFrame(): void
H 1
torioce 1 + StartRecording(file, path): voic [®~1 VideoStream @1 RtcRemoteMedia @—— VideoSink CustomVideoRecorder
« » <
1Audi 4 + StopRecording(): void 1 —
H | 1 AudioSink ~ DoProcessFrame(): void
AudioStreamWrapper @1 AudioStream JAVAN
td RemoteMedia CustomA
+ StartRecording(file, path): voic ‘
+ StopRecording(): void 1| + StartAudioRecording(file, path): 1 ~ DoProcessFrame(): void
+ StopAudioRecording(): void ! CuctomAud
: «interface» <--- LocalMedia < LocalScreenMedia l 1 + StartVideoRecording(file, path): bl

I—_—

+ StopVideoRecording(): void o—1

~ DoProcessFrame(): void

+ StartSource(): void LocalC Modi
ocalCameraMedia
ﬁ + StopSource(): void 4—1—|‘
I—‘K > i 1 CustomAudioSource
t RtcL ia —> LocalMedia
" Customl i
cinterfacen - ustom + SendAudioFrame(int, byte[]): void
Ic : CustomVi ce .
~1 + SendVideoFrame(Bitmap): void VideoSource AudioSource
+ SendAudioFrame(int, byte[]): void | | + SendVideoFrame(Bitmap): void

Figure 4.5: The class diagram that represents the design of ICELink WebRTC Implementor. Rect-
angles in green represent the interfaces of AlgorithmCore. Rectangles in orange represent ICELink
classes. Note that, to make the diagram readable, not all methods/properties are included. In particu-
lar, several asynchronous versions of methods are left out.

The Philips Remote Al Streaming platform 33 / Version 1.0

Eindhoven University of Technology

4.5 Process View

Within the process view, there are several important aspects to consider. In Section 4.5.1, we describe
how we use tokens to authenticate peers. After that, in Section 4.5.2, we describe manual signaling.
Then, in Section 4.5.3, we discuss some implementation aspects regarding connection setup. Lastly,
we describe the design of the visualization streaming prototype developed during the SEP project in
Section 4.5.4.

4.5.1 Authentication

PRALIS enables the easy streaming of audio/video/data, which makes security, i.e., authentication, a
very important topic. In general, we note the following regarding security in PRAIS:

* As mentioned before, the Javascript RTC API has already been transferred to the CAO. From
a security perspective, this means that webRTC has been checked, verified, and approved as a
technology to be incorporated into the HSRA (FR-3.4.1.2).

* At the start of this project, the PR team was using token-based authentication [38, 42], in which
a peer is authenticated using a token (see Section 4.5.1.1 for more details).

* WebRTC streams are always encrypted. Furthermore, webRTC only works over HTTPS, which
means that also the signaling channels are encrypted.

Recall non-functional requirement NF-9, which essentially states that PRAIS should support OAuth2.0
[42] and OpenlID Connect [38] (which both work with tokens). These technologies are the leading
standard for Single Sign-On (SSO) and identity provision on the internet, which is why Philips pre-
scribes using them [vDWvZ18]. Furthermore, since the existing system was already using token-
based authentication and since LiveSwitch also uses tokens [43], we decided to use token-based au-
thentication in PRAIS.

4.5.1.1 Token based authentication

A peer uses a token to authenticate with the back-end (FR-3.4.1.2). For ICELink, this means that
a peer requires a token to connect to the WebSync/TURN server. For LiveSwitch, a peer requires a
token to connect to the LiveSwitch server. With token-based authentication, there are two important
considerations: token generation and token distribution.

Token generation

A token is essentially a piece of data that the back-end uses to authenticate a peer. A token is encoded
using a secret that should only be known to the back-end because the back-end uses the same secret
to decode the token. Ideally, the tokens used to connect to the ICELink and LiveSwitch back-ends are
the same, i.e., there is just one token type for PRAIS. Since the PR team already defined what tokens
look like for ICELink and since LiveSwitch uses its own tokens, we have two types of tokens, which
are shown in Table 4.3. In the future, it is possible to change one of the systems to make sure one
token type can be used by both back-ends.

As we can see in Table 4.3, both tokens use the same core concepts. At the highest level, there is an
application for which conferences are created (FR-3.4.1.1). The difference is that LiveSwitch tokens

34 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

ICELink LiveSwitch [43] Description

Application Salt Application ID A unique identifier for the application

- Client ID A unique identifier associated with a specific
LiveSwitch instance

User ID User ID A unique username

- Device ID A unique identifier associated with a particular de-
vice

- Roles A list of roles belonging to the peer

- Conference ID Conference that may be connected to

Not valid before time - Earliest time at which the token is considered valid

Expiration time Expiration The token is not valid anymore after this time

time
Type - Is either TRN or MSG. Indicates whether the token

should be used for connecting to the TURN server
or WebSync server respectively.

Table 4.3: Comparison of the ICELink in LiveSwitch token contents

explicitly specify which conference may be joined (which is safer). The application salt in an ICELink
token maps to an application ID that is only known by the back-end. An organization key that maps to
this application ID is used to encode and decode ICELink tokens. Similarly, LiveSwitch uses a secret
for encoding and decoding. Lastly, the most important field in both tokens is the expiration time. With
this field, we make sure that tokens are not valid anymore after some point in time, which is vital in
case a token is lost/illegally shared (FR-3.4.1.2).

Token distribution

Peers require a token to connect to the back-end, which means they somehow have to obtain this
token. Recall that we first want to make things work in a simple but common setting, which we
consider to be the scenario where a developer uses the API on his/her computer and from there also
runs the algorithms he/she is developing. To this end, in the requirements, we already split token
distribution into two levels, resulting in the two requirement categories: Security (FR-3.4.1.2) and
Back-end controlled security (FR-3.4.1.10). Security concerns the common setting in which the back-
end authenticates using tokens but does not generate those tokens yet. For ICELink, this means that
peers simply have a locally stored token. For LiveSwitch, peers generate tokens locally using a secret
(see the first alternative in Figure 4.6). Note that this is not safe, but that it is practical for developers.
For both back-ends, we have test applications for which these tokens can be used. In applications such
as NICU S28S and the PRAIS Recorder Application, Back-end controlled security should be used. In
such a setting, we use SSO, which we explain in Section 4.5.1.2.

4.5.1.2 Single Sign-On: OAuth2.0 and OpenID Connect

SSO allows a user to log in with a single username and password to different software systems.
In our case, this means that a peer obtains ICELink/LiveSwitch tokens by authenticating with an
external identity provider (NF-9, FR-3.4.1.10). The biggest advantage of this setup is that the PRAIS
back-end does not need to know any credentials, it just needs to be connected to identity providers.
Regarding SSO technologies, the Philips HSRA prescribes [vDWvZ18] OAuth2.0 [42] and/or OpenlD

The Philips Remote Al Streaming platform 35 / Version 1.0

Eindhoven University of Technology

:Algorithm :AuthServer :LiveSwitch Server :External Identity ‘WebApp
Provider

Participant
1

i i

'
: RequestFunctionality() :
'

alt Alternative A/ .
Fl DoGetConferenceToken():

T T
L '
i i
' '
' 1
[Generate locally using secret] Token : : RedirectToAuthorizeURL()
| ' ' <
----------------------------- | &
[Obtain from auth server] 1 1 1 1 .
\ SendCredentials() - i : PartlcwpantlLogsln()
] : or= !
T T H ! RedirectBack(): id_token__ !
e o ! e >
1
1 !
! 1 !
'
[

[chucstL\'chwitchTokcn(ia_tokcn)

i i
! Success(): Token
————————————— :————---————————----————————----————>J
i
I

Join(Token)

] 1
1 1
. ! 1
U< _______________ Contim)_J_____________ : :
i Join(Token) H
1
'

1 <
! T
Confi
| | u >J
I : |
! Events: OnPeerConnected, OnPeerLeft, Events: OnPeerConnected, OnPeerleft,

""""" OnM R d()==========-- TTTTTTTTTTT i ittt
|:_|< nMessage! CCC‘VCE(J ﬁ OnMestsageRecelved() >[:]

Figure 4.6: A sequence diagram representing the authentication flow implemented by the SEP students
for algorithms and participants. Algorithms use the client credentials grant type [45] while participants
use the implicit flow grant type [44]. The two bottom-most event calls indicate how the LiveSwitch
server notifies peers of certain events.

Connect [38]. OAuth2.0 was developed as a standard for secure authorization for external parties, and
later the OpenlID Connect specification was defined to add secure authentication as well. All in all,
both frameworks define different grant types that can be used to obtain access tokens.

During the SEP project, we explored integrating OAuth2.0 and OpenID Connect with PRAIS. To this
end, the students developed an authentication server and simulated an identity provider that does the
actual authentication. Figure 4.6 illustrates how algorithms and participants obtain LiveSwitch tokens
from the authentication server. Algorithms are not human, meaning they do not really have an identity
and they can not interact with a login screen. Because of this, algorithms follow the client credentials
grant type [45], in which they directly send locally stored credentials to the authentication server. If
they are correct, the authentication server returns a LiveSwitch token. Participants, on the other hand,
can interact with a login screen, which is why they follow the implicit flow grant type [44]. In this
flow, participants are redirected to the identity provider where they log in. This results in an id_token
that tells the authentication server the user was authenticated.

All in all, the SEP results show that PRAIS and OAuth2.0/OpenID Connect nicely integrate. For
now, the SEP results serve as a prototype and should still be integrated with PRAIS. In the future,
the authentication server should be extended to also generate ICELink tokens (or tokens should be
standardized). By supporting OAuth2.0/OpenID Connect, PRAIS will allow organizations to use
their own authentication mechanism, giving them control over which peers get access to PRAIS.

4.5.2 Manual Signaling
As described in Section 2.1, webRTC enables peer to peer connections but still requires signaling [41]
to set up such connections. While the signaling protocol is predefined, the means used to transfer

signaling messages is not. In our case, LiveSwitch provides out-of-the-box signaling but ICELink
does not. In particular, for ICELink, we have to set up our own signaling server, which the PR

36 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

team already did by using WebSync [5]. Since WebSync is the ICELink recommended approach for
signaling, ICELink provides a default signaling implementation called AutoSignaling. The JavaScript
RTC API uses AutoSignaling internally, so ideally, the PRAIS C# API also uses AutoSignaling. We
identified some limitations, however:

* AutoSignaling always sets up a default connection to a newly connected peer. This does not
work for us because we want to control how and to which peers we connect (NF-2).

* AutoSignaling does not provide functionality to easily connect over additional connections to
already connected peers. Since we want to potentially have multiple connections to the same
peer, AutoSignaling does not suffice (FR-3.4.1.7).

For these reasons, we decided to implement signaling ourselves, which allows us to get the flexibility
that we require. ICELink already provides a very basic template for implementing signaling, which
they call ManualSignaling. We extended and implemented ManualSignaling both in the Javascript
RTC API (FR-3.4.1.6) and the PRAIS C# API (which is required to make them integrate).

Since we already had the WebSync server in place and since the signaling protocol itself [41] is prede-
fined, we mostly had to define how peers exchange (signaling) messages. Figure 4.7 illustrates how an
ICELink-powered algorithm obtains a token and connects to the WebSync server. WebSync provides
a publish-subscribe messaging mechanism [5], where peers publish and subscribe to channels. In
Figure 4.7, for example, the WebSync server creates the channels and the algorithm/participant sub-
scribes to the relevant channels. Overall, we use the following channels (ifalic text represents literal
strings while {text} represents a placeholder):

* /Clientld/{ClientID} is used to send messages to a peer that is not in the same conference (which
is required by one of the Javascript RTC API calls). Any peer can publish to this channel (for
which they need to know {ClientID}) and only the peer with {ClientID} subscribes to this
channel.

* /Confld/{ConferencelD} is used to send messages to the whole conference. All peers that are
part of the conference publish and subscribe to this channel. Furthermore, the WebSync server
publishes events whenever a peer subscribes/unsubscribes. This allows the peers to keep track
of which peers are present in the conference.

* /SigClient/{ ConferencelD}/{ClientID} is used to send messages to a peer that is in the same
conference. Furthermore, this channel is used as the messaging channel for a specific peer. All
peers part of {ConferencelD} can publish while only the peer with {ClientID} subscribes to
this channel.

As we can see, we not only require a channel for signaling messages but also channels for peer man-
agement (FR-3.4.1.1) and message exchange (FR-3.4.1.5). Note that each of the channels has a certain
prefix. We use these prefixes in the WebSync server to filter and log conference subscribe/unsubscribe
events (FR-3.4.1.6). Overall, ManualSignaling provides a lot of flexibility and enables the integration
of the Javascript RTC API and the PRAIS C# API (NF-8). In Section 4.5.2.1, we describe how we
achieved this integration.

The Philips Remote Al Streaming platform 37 / Version 1.0

Eindhoven University of Technology

:NICU-525-Back-end :Algorithm

1 1
op‘: only in PRAIS Recorder épplication/

T T
| __SendCredentials() |
-

:WehSync server :Participant

—

I
1
|
|
|
Token :
___________ |
|
: Connect{Token) - :
Confirm(): ClientABC
! SRR L e O M !
! /Clientld/ClientABC: ‘ !
| Channel | create(] | |
1 1
1 L —Exld Connect{Token) |
Bl
: : Subscribe() : U‘ Confirm(): ClientDEF %_‘
| [} Fu 5
i i : ‘ /Clientid/ClientDEF: X
1 1 | | _EF_EE_TE_(]% Channel 1
1 1 | 1
i i . | i i
: |_|l_| JoinConference(ConferenceABC) : - } Subscribe() :
: 1 JConfld/ConferenceABC: : 1 L“l Ll'l
create
: : Channel Ffififﬂifi‘ } :
| - | : |
| | [ConferenceABC/ClientABC:| - _ _ _ _ __ _Create) | I |
: : Channel } 1 } :
1
| | I : I I |
JoinConferenceSuccess{)
| o L N | |
| LIT(| | :_ | JoinConference(ConferenceABC) !
: ! : Subscribe() ! : o ; Tl
! subscribef) ! | I I /sigClient/ |
1 Dwﬁ I] | create() | | ConferenceABC/ClientDEF: !
! ! ! M- T Channel !
|] : | | | |
[[| | l [
1 1 : | | loinCenferenceSuccess() } = |
1 1 | T s B]
1 1 1 | | L Subscribe() | }
: : : Lr| : } } | _Subscribe()
| | | | | | I
| | ! | | | | I
1 1 I SendMessageToPeerNotinConference(] | I |
: X ; : ; MessageReceived() =
________ o k- — 2
: : } ! 1 SendMessageToPeerNotinConference() |
i I I MessageReceived() _ | ____ ‘ ‘ ‘
| ! I ﬂ I I |
: PublishToConferencef) } : } PublishToConferencef) !
[! 1 ! | |
: 14 _ _ _MessageReceived{)and_ __ || | MessageReceived() and Events: OnPeerSubscribed, [-~
| | Events: ; OnPeerUnsubscribed T
| OnPeerSubscribed, 1 | | i
| | 1 ! ! .
: OnFi'eerUnsubs:r\bed | PublishSignalingMessages() ! | ReceiveSignalingMessages()
1 ! | i | | /|_|> ,,,,,, =
1 | l | I
: ReceivesignalingMessages() | | PublishSignalingMessages() | |
T T T T
| I | I I } L
! ! 1 ! |

Figure 4.7: A sequence diagram that illustrates the typical ManualSignaling flow of an algorithm
and participant. Furthermore, the diagram shows how the PRAIS Recorder Application obtains a
token (see Section 4.3.1). Blue lifelines represent the algorithm and the channels that the algorithm
subscribes to while orange lifelines represent the participant and the channels that the participant
subscribes to. The yellow lifeline represents the conference channel that both the algorithm and
participant subscribe and publish to. The messages/events in the red rectangle can essentially happen
in any order. They are shown here to illustrate what types of messages/events are sent over which

channels.

38

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

4.5.2.1 Manual Signaling integration

As described in Section 4.5.2, we added manual signaling to make the integration of the Javascript
RTC API and the PRAIS C# API possible. Furthermore, at MMC, the NICU S2S application was
already being used by nurses and parents. Consequently, we had to deploy the modified Javascript
RTC API without breaking the existing system. To this end, we used the following procedure:

1. Implement manual signaling in both the Javascript RTC API and the PRAIS C# APL

2. Verify the implementation by using the automated system tests with the ICELink test app (see
Section 5.1.1).

3. In a code review session with Zoran and Arjan (see Section 2.6), we inspected and verified the
design and implementation of manual signaling.

4. Set up a test deployment of the NICU S28S application that uses the modified Javascript RTC
APIL.

5. Manually test the application in combination with PRAIS, and fix bugs where needed.

6. Deploy the modified Javascript RTC API to the NICU S2S deployment running at MMC.

By following these steps, we successfully deployed the modified APIs to the NICU S2S application
at MMC. By doing so, we realized the connection between NICU S2S and PRAIS, enabling MMC to
use NICU footage for research. All in all, we see this as the first example of how PRAIS enables open
innovation (Gla).

4.5.3 Connection setup implementation details

There are several implementation aspects to consider regarding the setting up of a connection. In
Section 4.5.2, we explained how some of the manual signaling channels include a {ConferencelD}.
Also, recall that we always create conferences that belong to a certain application (see Section 4.5.1.1).
Consequently, it is possible for two applications to have conferences with the same ID. Therefore, to
prevent this, the {ConferencelD} in a manual signaling channel is actually a concatenation of the
ICELink application salt and conference ID.

Another problem to tackle when setting up a data channel(s), is that both peers must use the same
label for the data channel(s). Unfortunately, both ICELink and LiveSwitch do not have a built-in
mechanism to exchange such a label(s). Luckily, for both, when setting up a connection, a tag can be
added. We use this tag to include a json string that lists the data channel label(s). By doing so, both
peers know which data channel label(s) should be used.

Lastly, in our manual signaling implementation, we use a similar approach for the signaling mes-
sages that we exchange. More specifically, we tag every signaling message with a json string that
contains: DataChannelLabels, ConnectionID, and a Tag. Depending on the signaling message type
(offer, answer, or candidate), not all fields are required. We include a ConnectionID because multiple
connections may be set up simultaneously. The Tag field has value offer, answer, or candidate, to
indicate the signaling message type.

The Philips Remote Al Streaming platform 39 / Version 1.0

Eindhoven University of Technology

4.5.4 Visualization Streaming

During the SEP project, we worked with the students on a visualization streaming (see Section 3.1.1)
prototype (FR-3.4.1.12). The visualization streaming process and design is illustrated in Figure 4.8.
By using a data channel, the algorithm first streams the Javascript visualization code to the partici-
pant, who then loads the script into the browser. The visualization code should implement a simple
interface with just three functions: initializeVisualization(), updateVisualization(data), and remove-
Visualization(). On the participant side, we can then simply call these functions to load, update, and
delete the visualization from a placeholder. Afterwards, another data channel is used to continuously
send data to be visualized.

For this project, the goal was to prototype visualization streaming (TG4). In the future, the Javascript
RTC API and PRAIS C# API can be extended to provide easy access to visualization streaming.

4.6 Physical View

A visual overview of how different entities are deployed is shown in Figure 4.9. To the back-end,
we added an Amazon Elastic Container (EC2) machine T3a.medium that runs the LiveSwitch server.
This server can essentially run anywhere, meaning that it will also work on premise when needed
(NF-6, NF-7). For now, by deploying it on Amazon, we make sure it is available in the cloud (the
same is true for C5n.large). We added an Amazon S3 bucket (healthrtc.org) that contains the files for
the PRAIS documentation (NF-1) and several web apps: ICELink Test App, LiveSwitch Test App,
and SEP Web Apps. Observe that these web apps are also shown in the orange Client browser to
illustrate how they connect to other components. An S3 bucket that already existed at the start of this

:Algorithm :Participant

| OpenDataChannel-5()

oo sueeess()________ qﬂj
*Send Javascript ‘
visualization code in I

string chunks over E]
datachannel §() !

I
All code transferred() !

X VisualizationScript
Append script to html()

onVisualizationLoaded(): 1

-
I

I

I L

s Visualization

map Visualization

1
1

to variable vis() 1
vis.initializeVisualization() }

OpenDataChannel-D() }

e success) J

!
I

loop / SendDataToVisualize over I

i

datachannel D(data) ————=>
L } i vis.updateVisualization(data)
i
|
L

il

Figure 4.8: A sequence diagram that represents the envisioned visualization streaming design

40 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

project (healthrtc.net) was extended by adding Telehealth PRAIS and NICU S2S PRAIS. Telehealth
PRALIS is a modified telehealth application that uses the Javascript RTC API that contains manual
signaling. NICU S2S PRALIS is a test deployment of the NICU S2S application that also runs the
modified Javascript RTC API. Both were used to verify the integration of manual signaling with the
existing NICU S28 application (NF-8); see Section 4.5.2.1 for more details.

As described before, the PRAIS C# API only runs on .NET Framework. Therefore, the blue .Net
environment machine needs to be a Windows machine. When developing, .NET Framework 4.7.2
also needs to be installed. Since webRTC is supported on all major browsers, there is quite some
flexibility in which Client browser to use.

<<Environment>> Amazon Web Services /\

v M~ N 000
«Lambda Function» «Lambda Function» <<AWS S3 Bucket: healthrtc.net>>
Call Data Recording Authentication Telehealth PRAIS
NICU S2S PRAIS

f ~
Mee——"""""~

<<Machine>> EC2: C5n.large

<<fofwards|to>>

{] <<AWS S3 Bucket: healthrtc.org>>
PRAIS C# APl Documentation,
. #\:é ﬁvatiway;: : = ICELink Test App,
Gl — «WebSync» LiveSwitch Test App,
FrozenMountain SEP Web apps

<<forwards to>>

<<Machine>> EC2: T3a.
«ICELink» {] «lIS Web App» {] «LiveSwitch» {]
STUN/TURN/TURNS Signaling/Messaging Server
«Lambda Function» <<AWS>> Server Server
Quality Data Recording DynamoDB
™
—
L
™
<<DTLS>> ! k<Websockets/HTTPS>>
ICE !
1
1 <<Websockets/HTTPS>>
<<HTTPS>> e e e mmmmmmcccc e e e ed e e oo LI | Signaling
REST 1 -=-=1
1 1
1 1
T 1
]
<<Device>> Client browser: 1 <<Machine>> .Net environment
]
1
_______________ 1
] 1 '
I $:| 15<USeS>>| \WebRTC Javascript Librgl ! $:| <<uses>> | (C# Applicalion{l
Javascript RTC API L 5 * = =|= - PRAIS C#RTC API p
1 ICELink Algorithm
1 1
I e e e e e e = = 1
<<uses>>T <<uses>>T l«uses» l <<uses>> <<uses>> ¢
«Web Page» At F?age» «WebRTC Javascript Stagl E » E
ICELink =
TeleHealth Test A Browser provi «WebRTC C# Library» «WebR:TC C# Library»
‘est App <<WebRTC>> ICELink LiveSwitch
Audio/Video/Data
<<uses>>
S % I
|
“‘g’;‘;';sgss” “I_".V9b Page» | <<usesz>l (WebRTC Javascript Libr;g
rg 7 3
apps Test App LiveSwitch

Figure 4.9: A visual overview of how different entities are deployed. This figure is an extended version
of Figure 2.3, which shows the deployment of the system at the start of this project. Recall that yellow,
orange, and blue colors refer to back-end, participant side, and algorithm side entities, respectively.
Lines/rectangles with a bold border are new entities/connections. Dashed lines/rectangles represent
connections/entities that were modified.

The Philips Remote Al Streaming platform 41 / Version 1.0

Eindhoven University of Technology

4.7 Development View

In this section, we describe how the software is organized in its development environment. Non-
technical aspects such as project planning, risk management, and way of working are described in
Chapter 7. Figure 4.10 provides a visual overview of how the software development is organized. All
code is present in the following Philips Gitlab repositories:

* PRAIS: Contains all PRAIS source code including the Extensible Markup Language (XML)
comments that are used to autogenerate the API documentation, for which we use Docfx [46].
Docfx automatically detects the XML comments included in the source code and compiles
them to readable API documentation. In addition, Docfx allows the inclusion of handwrit-
ten documentation. We use this, for example, to also include content such as the conceptual
PRAIS documentation and the installation instructions. Docfx can be used locally (through
the build_docs and serve_docs batch files), to check whether the documentation is generated
correctly. Alternatively, Docfx can be used in the Continuous Integration/Continuous Develop-
ment (CI/CD) pipeline that automatically builds and uploads the documentation to AWS [29].
The PRAIS repository also contains all automatic system tests, which we describe in more de-
tail in Section 5.1.1. Since some of these tests require a webcam, which is not available in
a CI/CD pipeline machine, we decided that for now, it is sufficient to run these tests on the
developer’s machine before pushing to the main branch. Lastly, whenever a developer builds
the PRAIS project, the PRAIS C# API NuGet package is automatically generated locally (see
Appendix K).

* HealthRtcOrg: Contains the source code of several web apps that are hosted on healthrtc.org.
In particular, it contains the LiveSwitch Test App [33], ICELink Test App [32], and the web
apps [36, 37] created by the SEP students. Similar to the PRAIS repository, whenever a devel-
oper pushes to the main branch, all code is automatically deployed to AWS.

* PRAISExamples: This is a private repository that we aim to selectively share with developers
in the future. It contains PRAIS examples (including the PRAIS Recorder Application) and
the PRAIS NuGet package(s). By providing access, we essentially allow the developer to use
PRAIS (NF-5).

* uc-pal-private: Contains the Javascript RTC API. During this project, a branch was created
for the version that contains manual signaling. We use this new version by manually copying it
to the Telehealth repository and the AWS S3 bucket that hosts the NICU S2S test deployment.
We used this deployment to test whether everything still worked after adding the new Javascript
RTC API; more details can be found in Section 4.5.2.1.

* Telehealth: To test whether the Telehealth application still works with the new Javascript RTC
API (that contains manual signaling), we manually add the new API version, build the required
web app files, and then copy the build output to an S3 bucket that is hosted on healthrtc.net.

On AWS, Route 53 is Amazon’s Domain Name System (DNS) service that we use to route users to
the correct domains. CloudFront is also an AWS service that we use to host two AWS S3 buckets
as websites: healthrtc.org and healthrtc.net. The reason for splitting the two is that the .net domain
was already live at the start of the project while the .org domain was not. To make sure we could
safely work without affecting the existing S3 bucket, we added the .org domain (and corresponding
S3 bucket).

42 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Developer

On push/merge to

PRAIS : Gitlab HealthRtcOrg : Gitlab Telehealth : Gitlab

manual copy by dev of

philipsrtcapi.1.0.4n.js

<<master>>< to /src/assetsl/lib/avlib

<< >>lg »I<< ter>>| <
Add PRAIS releases master>>i< i
and PRAIS examples ¢ ¢ ¢
Cl/CD Cl/CD ;
/ / Build uc-pal-private :| Gitlab
1
Build Docs Deploy to AWS <<branch>>
¢ release/104n
I
d manual copy by dev of I
copy /demo, build output to manual copy by dev of
Deploy to AWS ficelinktestapp, /thpraﬁs philipsrtcapi.1.0.4n.js
/sep-apnea-v1, to /nicuprais/incubatorijs,
/sep-apnea-v2, /nicuprais/nurseljs,
copy /docs /sep-pose-v1 and /nicuprais/parent/js
AWS)
Y Y
<<S3 Bucket>> | <<83 Bucket>>
aws-website-healthrtcorg «EC2 Instance» aws-website-healthrtcnet-zxbir

/docs LiveSwitch Server Inicuprais
/demo Ithprais

licelinktestapp
/sep-apnea-v1
/sep-apnea-v2

Jsep-pose-v1 liveswitchl.healthrtc.org Hosts
HostsT
\ 4
@ - s
PRAISExamples : Gitlab ‘ healthrtc.org healthrtc.net
<« _—

- g 'y

<<master>> Route 53
x CloudFront A CloudFront

| Getaccess to PRAIS
and PRAIS Examples

Users

Figure 4.10: A visual overview of how the software development is organized.

The Philips Remote Al Streaming platform 43 / Version 1.0

Eindhoven University of Technology

44 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

5 Verification and Validation

In this chapter, we describe how we verified and validated different aspects of PRAIS. In particular,
in Section 5.1, we describe which of the functional requirements were actually implemented and how
we tested the functionality. Then, in Sections 5.2 through 5.8, we address each of the non-functional
requirements and describe how we validated them.

5.1 Functional evaluation

In Chapter 3, we provided an overview of all 150 functional requirements (see Appendix D) by split-
ting the requirements into 24 MoSCoW prioritized categories. All requirement categories with won’t
priority were not implemented during this project because of time limitations. The requirement cate-
gories with must, should, or could priority are listed in Table 5.1 with their implementation status. As
we can see, all requirements with must and should priorities were implemented successfully. Some
requirement categories with could priority were not implemented. Regarding Back-end controlled
security, a first design/prototype was made during the SEP project (see Section 4.5.1.2) and thereby
provides a starting point for future development. For the IL: Recording requirements, the technical
obstacle described in Section 4.3.1 impeded a proper design/implementation. To validate the require-
ments that were implemented, we used automated system tests (where possible), which are described
in Section 5.1.1.

5.1.1 Automated system testing

In general, there are four levels at which software can be tested: unit, integration, system, and ac-
ceptance testing [BCS " 10]. In a typical development process, unit tests are added first to test the
functionality of individual components. Then, the integration of components is tested by adding in-
tegration tests. After that, the system as a whole is tested by adding system tests. Finally, the system
is provided to actual users, who test the system by using it. Ideally, the first three test types are au-
tomated such that changes in the software can be quickly verified. In our case, for example, C# test
frameworks such as MSTest [27] provide the tools to easily automate testing.

While developing the PRAIS C# API, we also implemented automated tests, but we did not follow
the typical development process because of the nature of PRAIS. More specifically, most algorithm
functionality only becomes available after joining a conference and involves other peers. This makes
it very difficult to only test individual components or sets of components. Consequently, we decided
to only implement tests on the system level. In particular, we used functional testing [BCS ™ 10] and
implemented automated functional tests. In practice, this means that all our tests only use PRAIS C#
API calls, i.e., the APl is treated as a black box. By doing so, in a way, we are indirectly also doing

The Philips Remote Al Streaming platform 45 / Version 1.0

Eindhoven University of Technology

Table 5.1: An overview of all functional requirement categories (except the requirements with won’t
priority) and their implementation status at the end of the project. M, S, and C stand for Must, Should,
and Could respectively. IL and LS refer to ICELink and LiveSwitch. Categories without IL or LS are
the categories generic to the system.

Category Prio. Impl. Comment

IL: Algorithm Media Sources M v

IL: Algorithm Messaging M v

IL: Basic Conference Management M v

IL: Javascript RTC API M v

IL: Peer-to-peer Connections M v

IL: Security M v

LS: Algorithm Media Sources M v

LS: Algorithm Messaging M v

LS: Basic Conference Management M v

LS: Peer-to-peer Connections M v

LS: Security M v

IL: Algorithm Media Sources S v

IL: Algorithm Multi Connections S v

LS: Algorithm Media Sources S v

LS: Algorithm Multi Connections S v

PRAIS Recorder Application S v

IL: Recording S v

IL: Recording C X See the technical obstacle described in Sec-
tion 4.3.1.

LS: Recording C v

Back-end Controlled Security C During the SEP project, an OpenID Con-
nect authentication server that generates
LiveSwitch tokens was implemented (Sec-
tion 4.5.1.2). To make this server compati-
ble with PRAIS, ICELink token generation
should also be added, which is potential fu-
ture work (see Section 6.1).

LS: Algorithm Media Sources C X Not required for any of the implemented use
cases.

IL: Algorithm Media Sources C Same as above.

Advanced Conference Management C X Due to time limitations, we did not imple-
ment this functionality.

User Interface Streaming C V" During the SEP project, a prototype of user
interface streaming was implemented (see
Section 4.5.4). This proves the feasibility
of the concept and serves as a starting point
for future development.

46 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

unit and integration testing. Furthermore, it allows us to easily test the implementation of different
webRTC providers. This was especially useful when adding ICELink as a webRTC provider. For
the tests that involve a participant, we created two test webapps, one for LiveSwitch [33] and one for
ICELink [32]. By using Selenium [28], we automatically open a browser window with a test webapp
(depending on which webRTC implementor we are testing), resulting in a participant that joins a
conference. In total, we implemented 80 functional tests using the MSTest framework to verify the
functionality of the PRAIS C# APL

In the following sections, we discuss and validate each of the non-functional requirements.

5.2 Usability

Regarding usability, we defined two non-functional requirements in Section 3.4.2:
“The PRAIS C# API shall be documented for developers."
“The PRAIS C# API shall be easy to use."”

For the first requirement, the documentation written for PRAIS and the PRAIS C# API can be found
online [29] and in Appendix G. In the usability study with the SEP students (see Section 5.2.2), we
asked the students what they thought of the documentation. Overall, they were very positive (see
Section 5.2.4).

Assessing whether the PRAIS C# API is easy to use is more difficult, because it is a very subjective
matter. It requires us to understand the human activities of the PRAIS C# API users. To this end, we
did a usability study with the SEP students (see Section 5.2.1).

5.2.1 Usability Study Goal

At the time of executing this project, the SEP students were the only PRAIS users, which is why we
aimed to assess the usability of PRAIS using their experience and insights. There exist many different
research methods to study and understand the human activities [ESSDO08, KILL.97] regarding the usage
of a system. To pick an applicable research method, we considered the following:

* We have a limited user population (only ten SEP students).

* While the SEP project lasted for ten weeks, we only had two weeks to execute the usability
study.

* The benefits of using PRAIS are hard to quantify. More specifically, there are no PRAIS al-
ternatives (that we know of) that were used by the SEP students in the past. The only possible
comparison we can do is within the project itself, where LiveSwitch was used for participants
in the browser and the PRAIS C# API was used for algorithms.

Considering these factors, we decided to do an exploratory case study [ESSDO08], in which we collect
quantitative data using a questionnaire and qualitative data through interviews. With the questionnaire
results, we aim to understand how the SEP students experienced the usability of PRAIS. Furthermore,
by using the Net Promotor Score (NPS) [31], we aim to understand whether or not the students would
recommend PRAIS to others. The interview results serve to understand why the students had certain
experiences and to understand the strong/weak points of PRAIS. All in all, this user study serves as

The Philips Remote Al Streaming platform 47 / Version 1.0

Eindhoven University of Technology

an initial investigation of the usability of PRAIS. We aim to derive new hypotheses and build theories
regarding PRAIS’ usability. The complete study is described in detail in Section 5.2.2.

5.2.2 Methodology

There exist many different tools for assessing the usability of software systems. The System Usability
Scale (SUS) [BJ96] was designed to take a quick measurement of how people perceive the usability
of software systems they were using. It consists of ten five-point questions with alternating positive
and negative tone. A tool that was designed to provide similar results to those obtained with the
SUS, is the Usability Metric for User Experience (UMUX) [Fin10]. UMUX consists of four seven-
point questions where two are positively and two are negatively toned. In an attempt to even further
reduce the number of questions, UMUX-LITE [LLUM13] only contains two out of the four UMUX
questions. Lastly, another tool we considered and compared against the above-mentioned tools is the
Technology Acceptance Model (TAM) [Dav89, VD00, VBOS, L1.S20]. All in all, since TAM nicely
splits and defines usability as a combination of perceived usefulness and perceived ease-of-use we
decided to use it (see Section 5.2.2.1).

5.2.2.1 The Technology Acceptance Model (TAM)

The Technology Acceptance Model [Dav89] aims to measure perceived usefulness (PU) and perceived
ease-of-use (PEU). PU is defined as “The degree to which a person believes that using a particular
system would enhance his or her job performance.” [Dav89]. PEU, in contrast, refers to “The degree
to which a person believes that using a particular system would be free of effort.” [Dav89]. The
TAM questionnaire consists of 12 questions, six for the measurement of PU and six for PEU. In later
works [VDO00, VB08], TAM got extended into TAM2 and TAM3 respectively. In the extended models,
aspects such as social influence, cognitive instrumental processes, trust, and perceived risk on system
use are also included.

Observe that the purpose of TAM is to predict future use instead of rating the experience of actual use.
Lah et al. [LL1.S20] address this shortcoming by introducing modified TAM (mTAM). In mTAM, re-
spondents indicate agreement with statements regarding actual user experience instead of anticipated
experience. Similar to TAM, mTAM still consists of 12 items, six for PU and six for PEU. We used
these 12 items as a basis for defining the PRAIS questionnaire items. In Section 5.2.2.2, we describe
the complete study and the questionnaire in more detail.

5.2.2.2 The usability study

As described above, the PRAIS usability study consist of a questionnaire and an interview, which can
both be found in Appendix I. The questionnaire consists of 12 seven-point statements about PRAIS
that are based on mTAM. More specifically, we modified each statement to specifically talk about
PRAIS. Furthermore, the first statement was modified to explicitly talk about LiveSwitch to make
the statement more specific: “Using PRAIS in my job enables me to accomplish tasks more quickly
than LiveSwitch." In addition to these 12 statements, the questionnaire includes an NPS [31] question:
“How likely is it that you would recommend PRAIS to a friend or colleague?" With this question,
we aim to understand whether or not the students would recommend PRAIS to others. By following
interview guidelines [34], we designed the interview questions to understand the experience of the

48 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

SEP students and to understand the strong/weak points of PRAIS.

Since the SEP students were the only PRAIS users thus far, we did not have a group to test the
usability study with. Instead, we asked the PR team to review the study. Their feedback was used
to improve the initial version of the study. Furthermore, the study was reviewed and approved by
the Eindhoven University of Technology Ethical Review Board of the Mathematics and Computer
Science department (Reference ID: ERB2020MCS6).

All ten SEP students were asked via email to participate (voluntarily) in the usability study and five
ended up actually participating. Since the students have different responsibilities within their team,
we checked with the participants whether they actually worked with PRAIS during their ten-week
project. The five students that did not participate in the study did not work a lot with PRAIS because
they had other responsibilities such as testing, documentation, and front-end development. All of
the students are in the last year of their computer science bachelor’s program. The questionnaire was
distributed via email as a Word file that the students could fill in. The interview was done online via the
LiveSwitch test app [33]. This allowed us to add an algorithm that recorded the audio of the individual
speakers, which made the audio to text transcription much easier. Every interview took approximately
half an hour. In Section 5.2.2.3, we discuss aspects to consider regarding the reliability and validity
of the study. The results of the questionnaire and interviews are described in Section 5.2.3.

5.2.2.3 Reliability and validity

We assess the reliability and validity of our study by using the following four aspects [KL.L.97,
ESSDO8]: construct validity, internal validity, external validity, reliability. Each of these aspects
is discussed in more detail below.

Construct validity is used to determine how well a test measures what it is supposed to measure.
In our case, this refers to the question whether or not our study actually measures usability. Firstly,
usability is a very broad term that can be interpreted in many ways. Because of this, we defined
usability more specifically by following the TAM [Dav89] model and we split it into PU and PEU.
TAM has been shown to properly measure PU and PEU [Dav89]. A risk to consider here is that
we modified the first statement of the mTAM model to talk about LiveSwitch, which may affect the
reliability of the results. Secondly, the NPS question aims to determine likelihood to recommend
and not usability. Consequently, we cannot use its result to determine usability. Still, it provides an
indication of how the students experience working with PRAIS. Lastly, there is no guarantee that the
questions asked during the interview are the right ones.

Internal validity considers the study design itself, i.e., whether the results really follow from the data.
A factor of influence is the fact that the author of this document was the customer for the students.
This introduces the risk of the students being biased in their feedback because there is a hierarchy
between the researcher and the participants. In particular, we had to grade the SEP students, which
may lead to the students giving mostly positive feedback. To reduce this bias as much as possible, we
did the usability study only after grading the SEP project.

Another factor to consider is the comparison to LiveSwitch. The students used the LiveSwitch type-
script API while for PRAIS they used the PRAIS C# API. This difference in programming language
and the fact that students may be more adept at certain languages may affect how the students feel
about the usability of PRAIS compared to LiveSwitch.

External validity considers whether claims regarding the generality of the results are justified. In

The Philips Remote Al Streaming platform 49 / Version 1.0

Eindhoven University of Technology

our case, the envisioned users of PRAIS are software developers, i.e., professionals. The usability
study, however, was done with bachelor level computer science students. In general, students and
professionals have different characteristics, e.g., differences in skill/motivation. Consequently, we
cannot claim with certainty that the SEP students are good proxies for the envisioned professional
users [FZB " 18].

Reliability considers whether the study can be repeated with the same results. In our case, the ques-
tionnaire and interview can be reused as is in a different study. The biggest challenge in reproducing
the results would be the setting of the SEP project.

To test the internal consistency of the PU and PEU measurements, we computed Cronbach’s alpha
values for both. For PU and PEU, we have Cronbach’s alpha values of 0.90 and 0.29 respectively.
While the first is acceptable, the second is not. Note that these values do not say much because our
sample size is small, even smaller than the number of questions asked, which is a risk to the reliability
of this study. Given that the SEP students are the only PRAIS users so far, however, this is the best
we could do.

5.2.3 Results

The detailed questionnaire results and interview transcriptions can be found in Appendix J. In Sec-
tion 5.2.3.1, we describe our findings based on the questionnaire results. After that, in Section 5.2.3.2,
we describe how we analyzed the questionnaire transcriptions and report our findings.

5.2.3.1 Quantitative Results

Lah et al. [1.1.520] describe in their mTAM work how to compute mTAM scores for PU and PEU:
“To get mTAM scores that, like the SUS and UMUX, range from 0 to 100, for PU and PEU separately,
compute the mean of the item scores, subtract one from that mean, then multiply by 100/6. To get an
overall mTAM score, compute the mean of PU and PEU." [LLL.S20]. Using the questionnaire results,
we computed mTAM scores for PU and PEU, which are both 72.77. This appears to be a coincidence
as the results for PU and PEU differ. Unfortunately, Lah et al. [L.1.520] do not specify how to interpret
these values. Luckily, since mMTAM scores were designed to be similar to SUS scores, we can use other
resources [BKMO9] that provide guidelines on how to interpret such scores. In particular, Bangor
et al. [BKIMO09] describe three scales to interpret SUS scores. On an acceptable/not acceptable scale,
our 72.77 score would be rated as acceptable. On a classical American grading scale, we would get a
C, and on an adjective scale, the score can be interpreted as good.

When we do not convert the quantitative results to mTAM scores, we can do some statistical analysis
on the original answers. Recall that these values range from 1 to 7, representing strongly disagree
to strongly agree respectively. For PU, we have a mean of 5.36 with a standard deviation of 0.91.
Similarly, for PEU, we have a mean of 5.36 with a standard deviation of 0.75. This indicates that, on
average, participants are positive with respect to PU and PEU of PRAIS.

Regarding the NPS question, all participants answered with either seven or eight, which translates
to all participants being neither promoters nor detractors [31]. This results in an NPS score of zero,
which is the lowest possible score. Considering that all participants are essentially neutral, we do not
deem this as a bad result.

50 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

5.2.3.2 Qualitative Results

To analyze and interpret the interview results, we used card sorting [35]. We first transcribed the five
interview audio recordings to text. After that, we selected all sentences/statements made about PRAIS
and turned these into 166 so-called cards (which can be found in Appendix J). Lastly, all cards were
put into one Excel sheet and during a card sorting session, we grouped the cards into categories. The
output of this grouping is a hierarchical structure (see Figure 5.1) that essentially represents the mental
model of the participants regarding PRAIS. At the highest level, we found three main categories: tips,
tops, and neutral statements. Within those categories, we again have subcategories and even sub-
subcategories, which can be seen in Figure 5.1. In Section 5.2.4, we discuss these results more in
depth.

5.2.4 Discussion and Conclusion

Given the quantitative and qualitative results, we make the following observations regarding the us-
ability of PRAIS.

* Overall, participants are happy with PRAIS (96 tops compared to 67 tips and mTAM scores of
72.77). They feel that PRAIS is simple and easy to use, and that most required functionality is
already there.

* There appears to be more consensus when it comes to tops. More specifically, there is no tip
that was mentioned by all five participants.

Better documentation . More conceptual
(4/5) P loloctirziicztion (A documentation (2/4)
Easier to learn/use .NET Framework
(4/8) (2/6) More examples (2/4)

Compared to

Add Javascript API
LiveSwitch (5/27)

Saving time (5/6) | (212)

Other (3/4)

Closing Datachannels
(2/2)

General (5/8)

LiveSwitch has more

features (2/2)
Completeness (3/4)

/ Logging (3/8
Tops (5/96) et AR | Tips (5/67) 9ging (3/8)

(5/69) Documentation (5/26)

More advanced
security (3/4)

Simplicity/Ease-of-

Neutral (2/3)

use (5/17) Testability/Add
Would recommend interfaces (3/13)
dependlr;g/g? context Not a complete
platform yet (1/3

General (5/17) Unsure if would

recommend (2/3

Other (4/12)

Figure 5.1: A visual overview of the hierarchical structure and categories that were identified after
card sorting. The numbers in parentheses represent: number of participants/number of statements.
For example, all five participants provided tops about PRAIS using 69 statements.

The Philips Remote Al Streaming platform 51 / Version 1.0

Eindhoven University of Technology

* Participants are happy with PRAIS’ documentation, especially compared to LiveSwitch’s doc-
umentation. They would like some more examples and conceptual documentation, however.

» Compared to LiveSwitch, participants find PRAIS easier to learn, that PRAIS saves time, and
that PRAIS is better in general. They also note, however, that LiveSwitch has more features
which makes it more suitable in complex use cases.

* Most participants would recommend PRALIS if a friend or colleague were to build a streaming
application.

* Most tips refer to additional nice-to-have features such as closing of data channels, better log-
ging, and more interfaces to make testing easier.

* The tip regarding .NET Framework is more fundamental to PRAIS and even directly relates
to NF-10 (also see Section 5.8). In essence, .NET Framework is Windows-only and the stu-
dents encountered some issues with Visual Studio. They recommend providing PRAIS as NET
Core/Standard to make PRAIS also available on Linux/MacOS.

* The tip regarding adding a Javascript API is something we had already solved by implementing
ICELink as a webRTC provider in the PRAIS C# APL

Overall, the usability study results provide very valuable insights into the usability of PRAIS. In the
future, we definitely recommend considering adding the features that were identified as missing (see
Section 6.1). Given the scope and goals of this project, we can conclude that PRAIS satisfies the
usability requirements. It is to be seen whether these results can also be generalized to a broader
audience. Therefore, we hypothesize: “PRAIS is perceived as useful and easy to use by software
developers."

5.3 Vendor Abstraction

Regarding vendor abstraction, we defined the following non-functional requirement in Section 3.4.2:
“The PRAIS C# API shall abstract away the webRTC provider."

In Section 4.4, we described how we achieve vendor abstraction in our design with a bridge pat-
tern [40]. By adding both LiveSwitch and ICELink as webRTC providers, we have shown that dif-
ferent providers can be added. Furthermore, the automated system testing (see Section 5.1.1) at API
level makes it very easy to check whether a new webRTC provider implementation works correctly.
The only place where vendor specific infrastructure is required is the back-end, where we have both a
WebSync and a LiveSwitch server. All in all, we deem that this requirement is satisfied.

5.4 Installability

Regarding installability, we defined the following non-functional requirements in Section 3.4.2:
“The PRAIS C# API shall be easy to install by users."
“Philips shall control who gets access to the PRAIS C# APL"

As described in Section 2.3, the Prototype C# RTC API was part of a large Visual Studio [23] solu-
tion that also contained other (unnecessary) elements than the API. To make the installation easier,
the PRAIS C# API is distributed as a NuGet [30] package. The NuGet package is internally avail-
able within a Philips repository. Where needed, Philips can grant access to others if they wish to use

52 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

PRAIS. The PRAIS installation instructions are written in the online documentation [29]. Further-
more, after asking, the SEP students indicated that all of them were able to install the PRAIS C# API
without any issues.

5.5 Deployability

Regarding deployability, we defined the following non-functional requirements in Section 3.4.2:
“The system shall run in the cloud."
“The system shall run on premise."

In Section 4.6, we described the deployment of PRAIS. Whether or not the system can run in the
cloud or on premise depends on the back-end. Currently, both the WebSync and LiveSwitch server
run in the cloud. Each of these servers can also be deployed on an on-premise machine, making it
possible to also run the system on premise.

5.6 Security

Regarding security, we defined the following non-functional requirement with could priority in Sec-
tion 3.4.2: “The system shall use the access control technology prescribed by the Philips PaaS docu-
ment [vDWvZIS8]."

As described in Section 4.5.1, during the SEP project, we successfully prototyped the integration of
Auth2.0/OpenlD Connect and PRAIS. Due to time limitations, however, we did not manage to fully

integrate the authentication server with PRAIS. Still, the provided design (see Section 4.5.1.2) and
implemented authentication server provide a good starting point for future integration.

5.7 Integratability

Regarding integratability, we defined the following non-functional requirement in Section 3.4.2: “The
PRAIS C# API shall integrate with the Javascript RTC APL"

As described in Section 4.5.2, with manual signaling, we realized the integration of the Javascript RTC
API and the PRAIS C# APIL. At MMC we tested this integration with the PRAIS Recorder Application
(see Section 4.3.1) in a real-life scenario where recording functionality was added to the NICU S2S
application being used at MMC.

5.8 Compatibility

Regarding compatibility, we defined the following non-functional requirement with could priority in
Section 3.4.2: “The PRAIS C# API shall be usable from any .NET implementation."

In Section 4.4, we described the four core components of the PRAIS C# API and explained our choice
for different .NET variants. Currently, the PRAIS C# API is only available in .NET Framework. The
core of the API, however, is implemented as a .NET Standard library, meaning that in the future, any
.NET webRTC provider can be added.

The Philips Remote Al Streaming platform 53 / Version 1.0

Eindhoven University of Technology

54 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

6 Conclusion and Future Work

There are two fronts on which Philips leverages its Health Suite Reference Architecture (HSRA).
Firstly, the HSRA provides a consistent, unified, and company-wide approach to software architec-
ture and development within Philips itself. Secondly, the HSRA provides architectural building blocks
that are leveraged in open innovation collaborations. Philips Research (PR) is mainly responsible for
maturing and validating new technologies such that they can be adopted in the HSRA. Remote Al
streaming, is one of such technologies, and with it, we aim to address several issues (as listed in
Section 1.1): to enable remote Al streaming use cases, to remove the need for care providers to buy/-
maintain expensive hardware, to remove the need for care providers to develop/maintain streaming
technology, to make Al algorithms more available/replaceable, and to enable sharing of Al algorithms.

In this work, we presented the Philips Remote Al Streaming (PRAIS) platform, which aims to address
the above-listed issues. The design and development of PRAIS was driven by a set of technical and
non-technical project goals, which are repeated below:

G1 Mature remote Al streaming such that it reaches a maturity level that is suitable for the advanced
development phase. This means that:
(a) PRAIS is ready to be used by open innovation partners.
(b) Demonstrators that show the potential of PRAIS have been implemented.

TG1 Design and implement the PRAIS C# API. In particular, a vendor abstraction layer should be
added.

TG2 Integrate the PRAIS C# API with the existing Javascript RTC APL.

TG3 Address the technical limitations of the existing system (see Section 2.3).

TG4 Investigate and prototype visualization streaming (see Section 3.1.1).

At the core of PRAIS lies the PRAIS C# API, which supports both ICELink and LiveSwitch as we-
bRTC providers (TG1). We verified the usability of the API in a collaboration with SEP students,
during which PRAIS demonstrators were built (G1b). Furthermore, we did a usability study of which
the results show that users find the API easy to use. During the SEP project, we also established
the feasibility of visualization streaming. This proof of concept provides the basis for further explo-
ration (TG4). After adding manual signaling, we successfully integrated the PRAIS C# API with the
Javascript RTC API (TG2). By doing so, we connected PRAIS to the NICU S2S application run-
ning at MMC. By using the PRAIS Recorder application (G1b), MMC is able to record NICU video
footage, which they use for research purposes. This is a first example of how PRAIS can stimulate
open innovation (G1la). In addition to designing and implementing the PRAIS C# API, we addressed
most of the identified limitations in the existing system, either by implementing functionality or by
providing a design for an envisioned solution (TG3). All in all, the project results provide strong
evidence that PRAIS is becoming mature (G1). In the future, more demonstrators should be built to
further prove PRAIS’ value and we envision adding several features, as described in Section 6.1.

The Philips Remote Al Streaming platform 55 / Version 1.0

Eindhoven University of Technology

6.1 Recommendations and Future Work

In this section, we list possible directions for future work.

LiveSwitch and .NET Standard

Overall, based on our experience with LiveSwitch and ICELink, we would recommend LiveSwitch.
While ICELink provides more flexibility in the sense that any signaling implementation can be used,
LiveSwitch provides out-of-the-box signaling, which saves a lot of development/maintenance time.
Furthermore, LiveSwitch supports features such as SFU/MCU connections, enabling use cases that
require more than four simultaneous connections. The main drawback of LiveSwitch is that the
LiveSwitch server must be used. This means that FrozenMountain [4] also requests payment for
P2P connections (which is not the case with ICELink).

On a technical level, we already mentioned in Section 4.4 that LiveSwitch is also provided in .NET
Standard. In addition, around the end of this project, ICELink was also released in .NET Standard.
Since .NET Standard works cross-platform, is faster, and can run in a Linux container, we recommend
implementing PRAIS with .NET Standard. Do note, however, that not all features are supported in
NET Standard [39].

Authentication back-end and Standardized tokens
As mentioned in Section 4.5.1.1, we use different tokens for ICELink and LiveSwitch. In the future,
we recommend standardizing the token format such that both back-ends can use the same tokens.

In parallel, we recommend integrating the authentication server built during the SEP project with
PRAIS. By doing so, PRAIS will support OpenlID Connect, which is in line with the Philips PaaS
guidelines [vDWVZ18]. Once integrated, the authentication server can be extended to also support
other SSO protocols such as LDAP [47].

Visualization streaming

During the SEP project, we successfully prototyped visualization streaming. To make visualization
streaming more usable/accessible, we recommend extending the Javascript RTC API and the PRAIS
C# API with functionality that enables the easy setting up of visualization streaming. The design
described in Section 4.5.4 provides a starting point for such an extension.

Recording timestamps

As described in Section 4.3.1, we considered several solutions regarding the generation of timestamps
per recorded video frame. In the future, to improve upon the current approach, we recommend to
implement one of the considered solutions.

56 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

7 Project Management

In this chapter, we discuss several aspects regarding the project management of this project. In Sec-
tion 7.1, we discuss our way of working. After that, in Section 7.2, we provide a complete overview
of the project planning. Then, in Section 7.3, we describe how we managed risks during this project.
Lastly, in Section 7.4, we provide a retrospective by the author of this document. In this chapter, we
refer to the main author as the trainee.

7.1 Way of working

In total, this project lasted for ten months, during which the trainee was part of the PR team. Because
of the corona virus, this was a very interesting project from a project management perspective. The
first 2.5 months of the project took place in the office, but the remainder was done almost completely
remotely. This also implied a change in the way of working.

Within the PR team, a Scrum/Agile [48] working methodology is used. Originally, sprints lasted for
two weeks and stand-ups were held two times per week. When we started working remotely, however,
we increased the stand-up frequency to five times per week. Other recurring meetings such as the
sprint planning and sprint demo provided a structured way to keep the team up to date. Furthermore,
where needed, ad hoc meetings were scheduled.

In addition to the Scrum/Agile process, weekly meetings were held with the TU/e supervisor to keep
track of the project’s short-term progress. On a monthly basis, during the Project Steering Group
(PSG) meetings, the trainee, TU/e supervisor, Project owner, and Project mentor came together to
discuss the project planning on a higher level. During the SEP project, weekly demo and planning
meetings were held to monitor and steer the SEP project. During the collaboration with MMC, we
planned remote meetings on an ad-hoc basis when needed.

7.2 Planning
On a high level, this project can be split into three phases:

1. LiveSwitch phase in which we gathered requirements, defined relevant use cases, prepared the
SEP project, and designed and implemented the PRAIS C# API using LiveSwitch as a webRTC
provider.

2. ICELink phase in which we implemented the PRAIS C# API using ICELink as a webRTC
provider, added manual signaling, and integrated the Javascript RTC API and the PRAIS C#
APL. In parallel, we executed the SEP project.

The Philips Remote Al Streaming platform 57 / Version 1.0

Eindhoven University of Technology

3. Recording phase in which we deployed the new API versions to MMC, added recording features
to PRAIS, and built the PRAIS Recorder Application.

Throughout these phases, other activities also took place such as report writing and the comeback day
presentation. In Appendix L, we provide a Gantt chart that illustrates the complete project planning. A
milestone trend analysis chart that shows how we planned/achieved different milestones over time is
shown in Figure 7.1. In this chart, the User Doc V1, System V2, and PRAIS Recorder App milestones
represent the ends of the LiveSwitch, ICELink, and Recording phases, respectively. Overall, the
planning of the first phase went smoothly, mainly because the start of the SEP project resulted in a
very strict deadline. Consequently, almost all effort went into designing and developing the PRAIS
C# API. During the second and third phases, the planning was more flexible, especially when it came
to the report (note how the report milestones change a lot). The goal was to finish all main chapters of
the report before a big review session (and holiday) at the beginning of August.

Date of forecast update

o Q & £) Qo A\) Q S
63 < Q W N 5 @ fox
& & e & & & & s & &
Il
|
2-Oct
rd /
2-Sep -
8 3-Aug
] |
k-]
c |
=] W W W O N RN LR I W oW W w w w3
T 4-Jul
=
E
=]
o
o 4-Jun e
c
]
k]
2
‘E 5-May
]
]
© BB -
S 5-Apr
w
6—M3[1----->'/
5-Feb ’r
6-Jan
PP —s=—Requirements V1 === | iveSwitch Prototype Demo
—e— System V1 ——PRAIS Examples | Jser Doc V1
System V2 —i— Comeback day presentation Report first chapter draft
R. Ch1 introduction —+«—R. Ch2 problem analysis R. Ch3 Requirements
R. Ch4 Design & Architecture R. Ch5 Implementation R. Ché V&V
R. Ch7 Conclusion & FW —=—R_Ch8 PM & Retro Complete report review
PRAIS Recorder App = Final Report ==mes Final Presentation

Figure 7.1: A milestone trend analysis chart that shows how milestones were planned and achieved
over time. R. stands for Report.

58 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

7.3 Risk Management

In any project, there are risks, and to prevent/mitigate them as well as possible, we kept track of the
risks that we were aware of. For each risk, we defined an: identifier, status, description, likelihood,
impact, priority, mitigation action (reduce likelihood), and contingency action (reduce impact). The
likelihood value ranges from 1 to 5 and represents: extremely unlikely, remote possibility, possibly
occur, will probably occur, and almost certain, respectively. The impact value ranges from 1 to 5 and
represents: insignificant, minor, moderate, major, and catastrophic, respectively. To get a risk priority,
we multiply the likelihood and impact values. During every PSG meeting, we would discuss newly
identified risks and check if there were unidentified risks. The complete list of identified risks is too
large to include in the main text, which is why Table 7.1 lists only one risk to show how we managed
them. The complete risk table can be found in Appendix L.

ID Status Description L I P Mitigation action Contingency action (re-

(reduce likelihood)

duce impact)

12 Mitigated,

The SEP students

0

4

0

First, defining and

Assuming there is at least

all re- will have to work agreeing on what is a minimal workable sys-
quired with the system, included in the min- tem, i.e., the minimal vi-
features which means that imal viable system able system is not com-
were when they start, is essential. Robin plete but there is at
imple- there should be shall do this by least some functionality.
mented a minimal viable defining priorities Then, it is essential to
on time. version that works of the requirements. come up with a project

well enough for
them to complete
the project. So,
there is a risk that
the system would
not be ready yet.

Second, finishing
the minimal viable
system shall have
the highest prior-
ity until the SEP
project begins.

that is still doable and
also has value to this
project. In the worst
case, when there is no
working system at all, we
may have to cancel the

SEP project.

Table 7.1: A risk that we identified during the project. The ID, L, I, and P columns represent Identifier,
Likelihood, Impact, and Priority, respectively. The P column is color coded with a gradient from red
to yellow that represent high to low priority respectively.

7.4 Retrospective

In this section, I reflect on different project aspects and discuss some lessons learned.

Philips

In addition to being the longest project that I ever worked on, this was also my first project in a very
large company. In the beginning, this was quite challenging because I had to figure out what my
position was in this enormous organization. Luckily, after some time, I learned who is a relevant
stakeholder and who is not. In addition, I learned that one can greatly benefit from the connections of
colleagues. For example, I had to get in touch with privacy/security officers. Instead of going around
looking for them myself, I simply asked my supervisor who already knew whom to contact.

The Philips Remote Al Streaming platform 59 / Version 1.0

Eindhoven University of Technology

SEP

Something I really enjoyed during this project was supervising the SEP project. For me, it was the
first time that I was a customer. It was amazing to experience a collaboration where both parties
really benefit. The students indicated that they really enjoyed the project and I ended up with useful
demonstrators and PRAIS feedback. It was amazing to see how a group of enthusiastic students picks
up your project definition and delivers a working product after just ten weeks. On a personal level, I
learned that I really enjoyed managing a group and feel confident in saying that [was also good at it.

MMC

The collaboration with MMC was also very motivating and rewarding. After working on PRAIS
for approximately seven months, it was very rewarding to see it finally being used in practice by
researchers. Especially the knowledge that PRAIS enables innovation that is eventually going to help
babies is very exciting. In addition, it was my first collaboration with an actual hospital. Throughout
the project, I heard several stories within the team about how privacy and security are important topics.
Only until I actually talked to the people in the hospital did I realize how important such topics are.
All in all, I see the collaboration with MMC as a very valuable experience.

Changing Environment

This project was pretty dynamic for two main reasons. The first is the corona virus, which resulted
in suddenly having to work full-time from home. The second lies in the switch from LiveSwitch to
ICELink. All in all, this required quite some flexibility and I believe that I managed quite well. With
the Scrum/Agile way of working, it was fairly easy to react to the changing environment. Furthermore,
in Philips Research, it is quite normal to encounter unexpected/new circumstances, meaning that the
team was also very supportive in adapting to new situations.

It is all about money

As software engineers, we love to stay in our technical bubble and simply want to develop software.
When money is involved, however, which is the case in any company, business aspects play an im-
portant role. In this project, this became especially apparent for the webRTC providers. Vendor
abstraction was an important design aspect to prevent vendor lock-in, and obtaining a new ICELink
license turned out to be quite a long process. All in all, this taught me two things. Firstly, no matter
how perfect a technical solution is, if it is too expensive, it will not matter. Secondly, in a big company,
it often takes some time to get what you need because there are quite some people/steps to go through.

60 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]
[19]

[20]

[21]

Liveswitch. https://help.frozenmountain.com/docs/liveswitch. Ac-
cessed: 2020-04-30. 6

Spitfire. https://github.com/RainwayApp/spitfire. Accessed: 2020-05-
12. 69

Webrtc for the universal windows platform. https://webrtc-uwp.github.io/.
Accessed: 2020-05-12. 69

Mixedreality-webrtc project. https://microsoft.github.io/
MixedReality-WebRTC/manual/introduction.html. Accessed: 2020-05-
12. 69

Vidyo.io. https://developer.vidyo.io/#/documentation. Accessed:
2020-05-12. 7,70

Opentok platform. https://tokbox.com/developer/guides/basics/.
Accessed: 2020-05-12. 70

C# built-in types. https://docs.microsoft.com/en-us/dotnet/csharp/
language—-reference/builtin-types/built-in-types. Accessed:
2020-05-19. 12

C# data structures. https://docs.microsoft.com/en—-us/dotnet/
standard/collections/. Accessed: 2020-05-19. 12

Json. https://www.json.org/ json—en.html. Accessed: 2020-05-19. 12

Philips research. https://www.philips.com/a-w/research/about-
philips—research.html. Accessed: 2020-05-26. 1

Icelink. https://help.frozenmountain.com/docs/icelink3. Accessed:
2020-04-30. 6

Healthsuite reference architecture. https://www.philips.com/a-w/
research/blog/20191209-reference—-architectures—and-
guardrails—-burden-or-opportunity-for-innovation.html. Ac-

cessed: 2020-05-26. 1

Philips. https://www.philips.com/a-w/about/company/our—
strategy/our—-strategic—focus. Accessed: 2020-05-27. 1

The Philips Remote Al Streaming platform 61 / Version 1.0

https://help.frozenmountain.com/docs/liveswitch
https://github.com/RainwayApp/spitfire
https://webrtc-uwp.github.io/
https://microsoft.github.io/MixedReality-WebRTC/manual/introduction.html
https://microsoft.github.io/MixedReality-WebRTC/manual/introduction.html
https://developer.vidyo.io/#/documentation
https://tokbox.com/developer/guides/basics/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/built-in-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/built-in-types
https://docs.microsoft.com/en-us/dotnet/standard/collections/
https://docs.microsoft.com/en-us/dotnet/standard/collections/
https://www.json.org/json-en.html
https://www.philips.com/a-w/research/about-philips-research.html
https://www.philips.com/a-w/research/about-philips-research.html
https://help.frozenmountain.com/docs/icelink3
https://www.philips.com/a-w/research/blog/20191209-reference-architectures-and-guardrails-burden-or-opportunity-for-innovation.html
https://www.philips.com/a-w/research/blog/20191209-reference-architectures-and-guardrails-burden-or-opportunity-for-innovation.html
https://www.philips.com/a-w/research/blog/20191209-reference-architectures-and-guardrails-burden-or-opportunity-for-innovation.html
https://www.philips.com/a-w/about/company/our-strategy/our-strategic-focus
https://www.philips.com/a-w/about/company/our-strategy/our-strategic-focus

Eindhoven University of Technology

62

[22]

[23]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Amazon web services. https://aws.amazon.com/. Accessed: 2020-06-04. 7

Microsoft visual studio. https://visualstudiomicrosoft.com/. Accessed:
2020-06-04. 9, 52

Moscow. https://www.volkerdon.com/pages/moscow—
prioritisation. Accessed: 2020-06-16. 20

.net standard. https://docs.microsoft.com/en—-us/dotnet/standard/
net—-standard. Accessed: 2020-06-16. 22, 29

Mstest framework. https://docs.microsoft.com/en-us/visualstudio/
test/getting-started-with-unit-testing?view=vs-20109. Ac-
cessed: 2020-06-22. 45

Selenium. https://www.selenium.dev/. Accessed: 2020-06-22. 47

Prais online documentation. https://healthrtc.org/docs/articles/
conceptual.html. Accessed: 2020-06-24. xvi, 31, 32,42, 47, 53, 99

Nuget packages. https://docs.microsoft.com/en-us/nuget/what—1is-
nuget. Accessed: 2020-06-24. 29, 52, 173

Net promotor score (nps). https://hbr.org/2003/12/the-one-number—
you-need-to-grow. Accessed: 2020-06-26. 47, 48, 50

Icelink test webapp. https://healthrtc.org/icelinktestapp/
testapp.html?&channel=Conferenceld&mode=P2P&username=
Anonymousé&tag=tag&roles=roleone&token=ENTERTOKENHERE. Ac-

cessed: 2020-06-22. 42, 47

Liveswitch test webapp. https://healthrtc.org/demo/index.htm. Ac-
cessed: 2020-06-22. 17,42, 47, 49

Survey best practices & design guidelines. https://www.surveymonkey.com/
mp/survey-guidelines/. Accessed: 2020-06-26. 48

Card sorting. https://github.com/ds4se/chapters/blob/master/
zimmermann/card-sorting.md. Accessed: 2020-07-08. 51

Sep hospital b web application. https://healthrtc.org/sep-pose-vl/
index.html. Accessed: 2020-07-15. 26, 42

Sep hospital a web application. https://healthrtc.org/sep—apnea-vl/
index.html. Accessed: 2020-07-15. 26, 42

Openid connect. https://openid.net/connect/. Accessed: 2020-07-15. 17,
22,26, 34, 36

Liveswitch library versions. https://help.frozenmountain.com/docs/
liveswitch/clients#.NET. Accessed: 2020-07-15. 30, 56

The Philips Remote Al Streaming platform / Version 1.0

https://aws.amazon.com/
https://visualstudio.microsoft.com/
https://www.volkerdon.com/pages/moscow-prioritisation
https://www.volkerdon.com/pages/moscow-prioritisation
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/visualstudio/test/getting-started-with-unit-testing?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/getting-started-with-unit-testing?view=vs-2019
https://www.selenium.dev/
https://healthrtc.org/docs/articles/conceptual.html
https://healthrtc.org/docs/articles/conceptual.html
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://healthrtc.org/icelinktestapp/testapp.html?&channel=ConferenceId&mode=P2P&username=Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE
https://healthrtc.org/icelinktestapp/testapp.html?&channel=ConferenceId&mode=P2P&username=Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE
https://healthrtc.org/icelinktestapp/testapp.html?&channel=ConferenceId&mode=P2P&username=Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE
https://healthrtc.org/demo/index.htm
https://www.surveymonkey.com/mp/survey-guidelines/
https://www.surveymonkey.com/mp/survey-guidelines/
https://github.com/ds4se/chapters/blob/master/zimmermann/card-sorting.md
https://github.com/ds4se/chapters/blob/master/zimmermann/card-sorting.md
https://healthrtc.org/sep-pose-v1/index.html
https://healthrtc.org/sep-pose-v1/index.html
https://healthrtc.org/sep-apnea-v1/index.html
https://healthrtc.org/sep-apnea-v1/index.html
https://openid.net/connect/
https://help.frozenmountain.com/docs/liveswitch/clients#.NET
https://help.frozenmountain.com/docs/liveswitch/clients#.NET

[4]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[6]
[7]

[8]
[9]

Eindhoven University of Technology

Frozenmountain. https://www.frozenmountain.com/. Accessed: 2020-04-30.
6,56

Bridge design pattern. https://refactoring.guru/design-patterns/
bridge. Accessed: 2020-07-15. 31, 33, 52

Webrtc signaling. https://developer.mozilla.org/en-US/docs/Web/
API/WebRTC_API/Signaling_and_video_calling. Accessed: 2020-07-20.
36, 37

Oauth 2.0. https://oauth.net/2/. Accessed: 2020-07-20. 17, 22, 34, 35

Liveswitch tokens. https://help.frozenmountain.com/docs/
liveswitch/server/advanced-topics#CreatinganAuthServer.

Accessed: 2020-07-22. 34, 35

Implicit flow. https://openid.net/specs/openid-connect—-core-
1_0html#ImplicitFlowAuth. Accessed: 2020-07-22. xvi, 36

Client credentials flow. https://oauth.net/2/grant-types/client-
credentials/. Accessed: 2020-07-22. xvi, 36

Docfx. https://dotnet.github.io/docfx/. Accessed: 2020-07-23. 42
Ldap. https://ldap.com/. Accessed: 2020-07-27. 56

Scrum. https://www.scrum.org/resources/what—-is—scrum. Accessed:

2020-07-28. 57
Healthsuite digital platform. https://www.hsdp.i0/. Accessed: 2020-08-13. 1

Websync. https://help.frozenmountain.com/docs/websync4. Accessed:
2020-04-30. 6, 7, 37

Philips realtime communications platform. https://
share.philips.com/sites/STS020170418141503/
architecture/Lists/Asset%20Categoryl/Category.aspx?ID=
56&Source=https%3A%2F%$2Fshare%2Ephilips%$2Ecom%
2Fsites%$2FSTS020170418141503%2Farchitecture$
2FSiteAssets%$2FPages%2FPlatform$2520Details%
2Easpx%3FPF%3DHSRA%2520%28CA0%29&ContentTypeld=
0x010054F21D110376634C81B77A41A6A257C60072939D0FAFEODS84EA18279A5E38F 3"
Accessed: 2020-09-14. ix

Webrtc. https://webrtc.org/. Accessed: 2020-04-30. 2, 3, 5

Kurento. https://doc-kurento.readthedocs.io/en/6.13.2/
index.html. Accessed: 2020-05-12. 69

Janus. https://Jjanus.conf.meetecho.com/docs/. Accessed: 2020-05-12. 69

Openvidu. https://docs.openvidu.io/en/2.13.0/. Accessed: 2020-05-12.
69

The Philips Remote Al Streaming platform 63 / Version 1.0

https://www.frozenmountain.com/
https://refactoring.guru/design-patterns/bridge
https://refactoring.guru/design-patterns/bridge
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://oauth.net/2/
https://help.frozenmountain.com/docs/liveswitch/server/advanced-topics#CreatinganAuthServer
https://help.frozenmountain.com/docs/liveswitch/server/advanced-topics#CreatinganAuthServer
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://oauth.net/2/grant-types/client-credentials/
https://oauth.net/2/grant-types/client-credentials/
https://dotnet.github.io/docfx/
https://ldap.com/
https://www.scrum.org/resources/what-is-scrum
https://www.hsdp.io/
https://help.frozenmountain.com/docs/websync4
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://webrtc.org/
https://doc-kurento.readthedocs.io/en/6.13.2/index.html
https://doc-kurento.readthedocs.io/en/6.13.2/index.html
https://janus.conf.meetecho.com/docs/
https://docs.openvidu.io/en/2.13.0/

Eindhoven University of Technology

[BCS™10] Paulo Borba, Ana Cavalcanti, Augusto Sampaio, Jim Woodcook, Patricia Machado,

[BJ96]

[BKMO9]

[Dav89]

[EBK'19]

[ESSDO8]

[Fin10]

[FZB*18]

64

[KLL97]

[Kru95]

[LLS20]

[LUM13]

[Mon20]

Auri Vincenzi, and José Maldonado. Testing Techniques in Software Engineering, vol-
ume 6153. 2010. 45

BROOKE and J. SUS : A ’quick and dirty’ usability scale. Usability Evaluation in
Industry, 1996. 48

Aaron Bangor, Philip T. Kortum, and James T. Miller. Determining what individual SUS
scores mean: adding an adjective rating scale. undefined, 2009. 50

Fred D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly: Management Information Systems, 13(3):319-
339, 9 1989. 48, 49

Einspieler, Bos, Krieber-Tomantschger, Alvarado, Barbosa, Bertoncelli, Burger,
Chorna, Del Secco, DeRegnier, Hiining, Ko, Lucaccioni, Maeda, Marchi, Martin, Mor-
gan, Mutlu, Nogolov4, Pansy, Peyton, Pokorny, Prinsloo, Ricci, Saini, Scheucheneg-
ger, Silva, Soloveichick, Spittle, Toldo, Utsch, van Zyl, Vifials, Wang, Yang, Yardimci-
Lokmanoglu, Cioni, Ferrari, Guzzetta, and Marschik. Cerebral Palsy: Early Markers of
Clinical Phenotype and Functional Outcome. Journal of Clinical Medicine, 8(10):1616,
10 2019. 9

Steve Easterbrook, Janice Singer, Margaret Anne Storey, and Daniela Damian. Selecting
empirical methods for software engineering research. In Guide to Advanced Empirical
Software Engineering, pages 285-311. Springer London, 2008. 47, 49

Kraig Finstad. The Usability Metric for User Experience. Interacting with Computers,
22(5):323-327,9 2010. 48

Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, Andreas
Jedlitschka, Natalia Juristo, Jiirgen Miinch, Markku Oivo, Per Runeson, Martin Shep-
perd, Dag LK. Sjgberg, and Burak Turhan. Four commentaries on the use of students
and professionals in empirical software engineering experiments, 12 2018. 50

Barbara Kitchenham, Stephen Linkman, and David Law. DESMET: A methodology for
evaluating software engineering methods and tools. Computing and Control Engineering
Journal, 8(3):120-126, 1997. 47, 49

Philippe B. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42—
50, 1995. 25, 28

Urska Lah, James R. Lewis, and Bostjan Sumak. Perceived Usability and the Modified

Technology Acceptance Model. International Journal of Human—Computer Interaction,
pages 1-15, 2 2020. xiii, 48, 50, 123

James R. Lewis, Brian S. Utesch, and Deborah E. Maher. UMUX-LITE - When there’s
no time for the SUS. In Conference on Human Factors in Computing Systems - Pro-
ceedings, pages 2099-2102, New York, New York, USA, 2013. ACM Press. 48

R.J. H. Montree. Apnea detection and classification in neonates using non-invasive elec-
tromyography and video analysis. Master’s thesis, Eindhoven University of Technology,
the Netherlands, 2020. 1, 10

The Philips Remote Al Streaming platform / Version 1.0

[NN15]

[Proa]

[Prob]

[SBMT15]

[VBOS]

[VDO0O0]

[VDWvZ18]

Eindhoven University of Technology

Sam Newman and Sam Newman. Building microservices : designing fine-grained sys-
tems. O’Reilly Media, 2015. 16, 17

Programming in the Large with Design Patterns - Eddie Burris - Google Books. 31

Product Security and Services Office. Services Security and Privacy Requirements -
Revision 5. Technical report, Philips (Confidential). 17

Shashank Sharma, Sourya Bhattacharyya, Jayanta Mukherjee, Parimal Kumar Purkait,
Arunava Biswas, and Alok Kanti Deb. Automated detection of newborn sleep apnea
using video monitoring system. In ICAPR 2015 - 2015 8th International Conference on
Advances in Pattern Recognition. Institute of Electrical and Electronics Engineers Inc.,
22015. 1

Viswanath Venkatesh and Hillol Bala. Technology Acceptance Model 3 and a Research
Agenda on Interventions. Decision Sciences, 39(2):273-315, 5 2008. 48

Viswanath Venkatesh and Fred D. Davis. Theoretical extension of the Technology Ac-
ceptance Model: Four longitudinal field studies. Management Science, 46(2):186-204,
2000. 48

Ronald van Driel, Klaas Wijbrans, and Jan van Zoest. CAO - Philips PaaS Reference
Architecture Design. Technical report, Philips (Confidential), 2018. 17, 23, 34, 35, 53,
56

The Philips Remote Al Streaming platform 65 / Version 1.0

Eindhoven University of Technology

66 The Philips Remote Al Streaming platform / Version 1.0

About the author

Eindhoven University of Technology

Robin Mennens received his bachelor’s degree in
Software Science (2016) and his master’s degree
in Computer Science and Engineering (2018) from
Eindhoven University of Technology (The Nether-
lands). During his master’s program, he had an intern-
ship and carried out his master’s thesis project at Pro-
cessGold in Eindhoven. His master’s thesis, “Graph
layout stability in process mining,” was in the fields
of process mining and graph drawing and involved
the development and implementation of a graph lay-
out algorithm. Still eager to learn more, he started the
Software Technology PDEng program in 2018, also
at Eindhoven University of Technology. During the
program, he was involved as a project manager, devel-
oper, SCRUM master, and product owner in Al, agri-
culture, and software quality management projects for
Philips, Precision Agrotech Center, and ASML.

The Philips Remote Al Streaming platform 67 / Version 1.0

Eindhoven University of Technology

68 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

A WebRTC Providers

During this project, we investigated several webRTC providers and compared them. In this chapter,
we describe the webRTC providers that we investigated but did not end up working with. Each of the
providers has some kind of limitation, which we describe below.

Kurento [7]

Kurento provides a webRTC media server and a set of client-side APIs to simplify the development
of audio/video applications for the web and smartphone platforms. By defining media pipelines, the
media server can be configured to handle media elements in a certain order/way. Similar to our use
case, they have modules (which are essentially algorithms) that run on the media server (while in our
case we want to run the algorithms as webRTC clients). Also, Kurento only provides JavaScript and
Java client-side APIs.

OpenVidu[9]

OpenVidu is built on top of Kurento and therefore suffers from the same drawbacks. It aims to further
wrap and hide all the low-level technicalities such that users are provided with a simple, effective, and
easy to use APL

Janus [8]
Janus is a general-purpose webRTC server written in C. Extra functionality can be added by adding
plug-ins to the server. Unfortunately, there are no client-side APIs and we found the documentation
to be poor.

Spitfire [10]

Spitfire is a library that wraps the webRTC native code such that .NET applications can take advan-
tage of data channels. Considering our use case, Spitfire did not suffice because we also required
audio/video streaming.

WebRTC for the Universal Windows Platform [11]

Microsoft launched this project in an effort to port the webRTC codebase to Universal Windows
Platform (UWP). It is open source and available as a NuGet package. On the API level it is very
similar to the standard webRTC API, which means that it is still quite low level. Because of this, we
preferred other providers such as ICELink and LiveSwitch, which abstract away some of the details.

MixedReality WebRTC Project [12]

The MixedReality webRTC project consists of a set of components designed to help mixed reality
app developers integrate peer-to-peer audio, video, and data real-time communication into their ap-
plication. Like the name suggests, the project mainly focuses on features that enhance collaborative
experiences in mixed reality apps. Since we require a more general-purpose webRTC implementation,
this option did not really suit our needs.

The Philips Remote Al Streaming platform 69 / Version 1.0

Eindhoven University of Technology

Vidyo.io [13]

Vidyo.io is a platform as a service (PaaS) that makes it easy for developers to integrate real-time video
communication capabilities into their application. It mainly consists of client-side SDKs that provide
APIs for integrating such communication capabilities. All of the clients connect to the Vidyo cloud
service, which means that there is no on-premise option. For the same reason, we did not use Vidyo.

OpenTok platform [14]

OpenTok is similar to Vidyo. In addition to providing client-side SDKs, it also provides server-side
SDKs that give more control over RTC sessions and authentication. Like Vidyo, all clients connect to
the cloud (OpenTok Cloud), which means that there is no on premise option.

70 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

B SFU and MCU

Figure B.1 visually compares a Peer-to-Peer (P2P), Selective Forwarding Unit (SFU), and Multipoint
Control Unit (MCU) setup. While P2P connections are the fastest in terms of transmission speed,
they also require quite some CPU power because encoding audio/video is an expensive operation
(while decoding is not). A typical Personal Computer (PC), for example, can only manage three P2P
connections at the same time. By placing an SFU or MCU between the peers (see Figure B.1), peers
only need to encode their audio/video signal once; the SFU/MCU then takes care of the distribution to
other peers. A disadvantage of an MCU is that it needs to decrypt, decode, encode, and encrypt each
incoming stream (in that order) to merge them into one outgoing stream. This means that an MCU
needs a decryption/encryption key, which is less secure than a P2P/SFU connection.

Peer-to-Peer (mesh network) Selective Forwarding Unit Multipoint Control Unit
3 download and 3 upload streams (star network) (star network)
3 download and 1 upload stream 1 download and 1 upload stream

per peer per peer per peer

@

o

7N

o O

Figure B.1: A visual representation of P2P/SFU/MCU. Circles represent peers while squares represent
a server. When using P2P, all peers connect to each other, resulting in a mesh network. By using an
SFU/MCU, a star network is created in which all traffic goes via the server. An MCU differs from an
SFU in the sense that it merges all incoming streams into a single outgoing stream, which is done per
peer.

The Philips Remote Al Streaming platform 71 / Version 1.0

Eindhoven University of Technology

72 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

C Use Case Analysis

During the use case analysis, we explored many different use cases, out of which some were picked
to be investigated in more detail (see Section 2.4). In the sections below, we describe the other use
cases and explain why we did not investigate them in more detail. Figure C.1 shows the output of one
of the brainstorming sessions we had while exploring use cases.

Bilingual conversation
Two actors that speak different languages are having a remote audio/video session. To make sure that
the actors can understand each other, the system does the following:

1. Convert the spoken audio into text.
2. Translate the text to the other language.
3. Show the translated text as subtitles.

4. (Optional) synthesize the translated text into audio again.

Before this project, the PR team already implemented a demonstrator for this use case in a project
done together with a group of PDEng Software Technology trainees. As a first test for PRAIS, we
implemented this use case again to verify the PRAIS functionality. Currently, the involved algorithm
is part of the PRAISExamples repository (see Section 4.7).

Multilingual conversation

The same as bilingual conversation but now there are three or more actors that speak two or more
different languages. Since this is simply a more complex case of the bilingual conversation, we did
not investigate it further.

Condition monitoring
In a scenario where a doctor and a patient have regular remote sessions, the system automatically
keeps track of different aspects of these sessions. Think of:

* The emotional state of the patient (can be based on audio and/or video).

A (translated) transcription of the conversation.

A (translated) summary of the conversation.

* A history of transcriptions and summaries.

* A sentiment score per participant based on the transcription.

» Live sentiment analysis to give live feedback to the doctor/patient.

* Video snapshots of the conversation (of the patient’s face, for example).

The Philips Remote Al Streaming platform 73 / Version 1.0

Eindhoven University of Technology

Figure C.1: During use case brainstorming, we would draw how participants and algorithms connect
among each other. This helped us understand how use cases differ/overlap and provided insight into
what functionality should be part of PRAIS.

* An Al can detect topics of interest/entities during the conversation. If someone, for example,
mentions paracetamol then the system can provide more information on this medication. This
can be done live during conversation or as a summary afterwards.

* Multilingual instant messaging, i.e., translate chat messages.

Before this project, the PR team had already implemented a demonstrator (containing most of the
features of this use case) in a project done together with a group of PDEng Software Technology
trainees. Therefore, use-case-wise, there was not much value to gain anymore.

De-identification of private data

Whenever video is shared between two or more actors (screen share, for example), the system detects
private data in the video and automatically blurs it. The same can be done for audio, i.e., one can
replace sensitive data with beeps.

Before this project, the PR team had already implemented (the video part of) this use case in a project
done together with a group of PDEng Software Technology trainees. Therefore, use-case-wise, there
was not much value to gain anymore.

74 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Neonatal Intensive Care Unit (NICU) sleep-wake detection
With an Al algorithm and a camera that is constantly filming a prematurely born baby, the system can
automatically detect whether the baby is awake or sleeping.

The PR team had already managed to prototype this use case in the past. Also, it is very similar to the
apnea detection (Section 2.4.2) and pose detection (Section 2.4.1) use cases (for which no prototype
existed yet).

Patient pose detection

With a camera that is constantly filming a patient and an Al algorithm, the system is able to detect
the position/pose of the patient. This information can be used to detect seizures, for example, i.e., to
detect the shaking of the body. Since one of our team members was actively working on neonatal pose
detection (which is a similar use case), we preferred that use case instead of this one.

Controlling a remote device

In a screenshare session, one of the clients takes over control of the other’s machine. During use case
analysis, we did not have a stakeholder who would directly benefit from such a system, which is why
we did not investigate it further.

Take over screen of remote machine (that is broken)

By attaching a device that runs an algorithm to a hospital machine (MRI for example), it would be
possible to see the MRI screen and even control it. More specifically, the device can read the video
signal of the machine and stream it to a remote service engineer. At the same time, the remote service
engineer can send mouse/keyboard input to the machine via the attached device. During use case
analysis, we did not have a stakeholder who would directly benefit from such a system, which is why
we did not investigate it further.

Augmented Reality (AR) video streaming

A field service engineer (FSE) who is unable to solve a problem and who is wearing an AR headset
can get remote help from a remote service engineer (RSE). The RSE sees whatever the AR headset
is filming and he or she can point to places on the screen. An algorithm then converts this 2d pointer
to 3d space and shows it in AR to the FSE. We did not have such an algorithm/AR headset directly
available, which is why we did not investigate this use case further.

Hospital control room

In a central hospital location, many RTC streams come in from different cameras/algorithms. This
gives the crew watching these streams a means to have an overview of the complete hospital. While
hospitals have shown interest in such a system in the past, during use case analysis, we did not have
a concrete stakeholder that would directly benefit from such a system, which is why we did not
investigate it further.

The Philips Remote Al Streaming platform 75 / Version 1.0

Eindhoven University of Technology

76 The Philips Remote Al Streaming platform / Version 1.0

D Requirements

Eindhoven University of Technology

Table D.1 lists all the functional requirements. The requirements are categorized and priorities follow
the MoSCoW model: Must, Should, Could, Would.

1))

Priority Category

Description

F-13

Must

ICELink
/LiveSwitch:
Security

Algorithms shall generate tokens locally

F-36

Must

ICELink
/LiveSwitch:
Security

The system shall uniquely identify applications

F-51

Must

ICELink
/LiveSwitch:
Security

The system shall uniquely identify conferences

F-52

Must

ICELink
/LiveSwitch:
Security

The system shall uniquely identify peers

F-53

Must

ICELink
/LiveSwitch:
Security

Peers shall authenticate themselves using tokens before
joining a conference

F-54

Must

ICELink
/LiveSwitch:
Security

A conference shall uniquely map to an application

F-57

Must

ICELink
/LiveSwitch:
Security

An algorithm instance shall be present in at most one con-

ference

F-148

Must

ICELink
/LiveSwitch:
Security

The system shall encrypt streams

F-149

Must

ICELink
/LiveSwitch:
Security

Tokens shall have an expiration date

The Philips Remote Al Streaming platform

77 / Version 1.0

Eindhoven University of Technology

F-9 Must ICELink: Al- An ICELink algorithm shall use a custom media source to
gorithm Media send audio/video to other peers
Sources

F-111 | Must ICELink: Algo- An ICELink algorithm shall send messages to specific
rithm Messaging peers in the same conference.

F-112 | Must ICELink: Algo- An ICELink algorithm shall receive messages from spe-
rithm Messaging cific peers in the same conference.

F-116 | Must ICELink: Basic An ICELink algorithm shall join a conference
Conference
Management

F-117 | Must ICELink: Basic An ICELink algorithm shall leave a conference
Conference
Management

F-118 | Must ICELink: Basic An ICELink algorithm shall terminate itself
Conference
Management

F-127 | Must ICELink: The Javascript RTC API shall use manual signaling to set-
Javascript RTC tle peer-to-peer connections
API

F-119 | Must ICELink: Peer- An ICELink algorithm shall send audio peer-to-peer to
to-peer Connec- specific peers over audio stream when specified by the
tions user

F-120 | Must ICELink: Peer- An ICELink algorithm shall send video peer-to-peer to
to-peer Connec- specific peers over video stream when specified by the
tions user

F-121 | Must ICELink: Peer- AnICELink algorithm shall send data peer-to-peer to spe-
to-peer Connec- cific peers over data stream when specified by the user
tions

F-122 | Must ICELink: Peer- An ICELink algorithm shall disconnect from specific
to-peer Connec- peers over any stream when specified by the user
tions

F-123 | Must ICELink: Peer- An ICELink algorithm shall receive audio peer-to-peer
to-peer Connec- from specific peers over audio stream when specified by
tions the user

F-124 ' Must ICELink: Peer- An ICELink algorithm shall receive video peer-to-peer

to-peer Connec-
tions

from specific peers over video stream when specified by
the user

78

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-125 | Must ICELink: Peer- An ICELink algorithm shall receive data peer-to-peer
to-peer Connec- from specific peers over data stream when specified by
tions the user

F-126 | Must ICELink: Peer- An ICELink algorithm shall use manual signaling to set
to-peer Connec- up a peer to peer connection
tions

F-150 | Must ICELink: Peer- Manual Signaling shall integrate with the existing back-
to-peer Connec- end WebSync call data record logging functionality
tions

F-79 | Must LiveSwitch: Al- A LiveSwitch algorithm shall use a custom media source
gorithm Media to send audio/video to other peers
Sources

F-69 | Must LiveSwitch: Al- A LiveSwitch algorithm shall send messages to specific
gorithm Messag- peers in the same conference.
ing

F-83 | Must LiveSwitch: Al- A LiveSwitch algorithm shall receive messages from spe-
gorithm Messag- cific peers in the same conference.
ing

F-34 | Must LiveSwitch: Ba- A LiveSwitch algorithm shall join a conference
sic Conference
Management

F-35 | Must LiveSwitch: Ba- A LiveSwitch algorithm shall leave a conference
sic Conference
Management

F-38 | Must LiveSwitch: Ba- A LiveSwitch algorithm shall terminate itself
sic Conference
Management

F-1 Must LiveSwitch: A LiveSwitch algorithm shall send audio peer-to-peer to
Peer-to-peer specific peers over audio stream when specified by the
Connections user

F-2 Must LiveSwitch: A LiveSwitch algorithm shall send video peer-to-peer to
Peer-to-peer specific peers over video stream when specified by the
Connections user

F-3 Must LiveSwitch: A LiveSwitch algorithm shall send data peer-to-peer to
Peer-to-peer specific peers over data stream when specified by the user
Connections

F-4 Must LiveSwitch: A LiveSwitch algorithm shall disconnect from specific
Peer-to-peer peers over any stream when specified by the user
Connections

The Philips Remote Al Streaming platform

79 / Version 1.0

Eindhoven University of Technology

F-70 | Must LiveSwitch: A LiveSwitch algorithm shall receive audio peer-to-peer
Peer-to-peer from specific peers over audio stream when specified by
Connections the user

F-71 Must LiveSwitch: A LiveSwitch algorithm shall receive video peer-to-peer
Peer-to-peer from specific peers over video stream when specified by
Connections the user

F-72 | Must LiveSwitch: A LiveSwitch algorithm shall receive data peer-to-peer
Peer-to-peer from specific peers over data stream when specified by
Connections the user

F-65 Should ICELink: Al- An ICELink algorithm shall use screen capture as a media
gorithm Media source to send audio/video to other peers
Sources

F-110 Should ICELink: Al- An ICELink algorithm shall use a camera/microphone
gorithm Media (connected to the device the algorithm runs on) as a media
Sources source to send audio/video to other peers

F-113 Should ICELink: Algo- An ICELink algorithm shall connect over multiple video
rithm Multi Con- streams to the same peer when specified by the user
nections

F-114 Should ICELink: Algo- An ICELink algorithm shall connect over multiple audio
rithm Multi Con- streams to the same peer when specified by the user
nections

F-115 Should ICELink: Algo- An ICELink algorithm shall connect over multiple data
rithm Multi Con- streams to the same peer when specified by the user
nections

F-67 Should ICELink: An ICELink algorithm shall record incoming audio from
Recording peers specified by the user

F-68 Should ICELink: When an ICELink algorithm records audio and video from
Recording a peer, then the algorithm shall synchronize the audio and

video

F-131 Should ICELink: An ICELink algorithm shall record incoming video from
Recording peers specified by the user

F-132 Should ICELink: An ICELink algorithm shall store a recording as mkv for-
Recording mat

F-133 Should ICELink: An ICELink algorithm shall store a recording with a file-
Recording name specified by the user

F-134 Should ICELink: An ICELink algorithm shall store a recording in a folder
Recording specified by the user

80

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-135 Should ICELink: An ICELink algorithm shall store an absolute millisecond

Recording accurate frame receival timestamp time for every recorded
video frame

F-80 Should LiveSwitch: Al- A LiveSwitch algorithm shall use a camera/microphone
gorithm Media (connected to the device the algorithm runs on) as a media
Sources source to send audio/video to other peers

F-81 Should LiveSwitch: Al- A LiveSwitch algorithm shall use screen capture as a me-
gorithm Media dia source to send audio/video to other peers
Sources

F-5 Should LiveSwitch: A LiveSwitch algorithm shall connect over multiple data
Algorithm Multi streams to the same peer when specified by the user
Connections

F-6 Should LiveSwitch: A LiveSwitch algorithm shall connect over multiple video
Algorithm Multi streams to the same peer when specified by the user
Connections

F-7 Should LiveSwitch: A LiveSwitch algorithm shall connect over multiple audio
Algorithm Multi streams to the same peer when specified by the user
Connections

F-136 Should PRAIS Recorder The PRAIS Recorder Application shall record a number
Application of video chunks specified by the user

F-137 Should PRAIS Recorder The PRAIS Recorder Application shall record video
Application chunks of a duration specified by the user

F-138 Should PRAIS Recorder The PRAIS Recorder Application shall authenticate a user
Application before allowing connections to incubators

F-139 Should PRAIS Recorder The PRAIS Recorder Application shall only record incu-
Application bators at MMC that have consent

F-140 Should PRAIS Recorder The PRAIS Recorder Application shall terminate a con-
Application nection to an incubator when the nurse disables the same

incubator

F-141 Should PRAIS Recorder The PRAIS Recorder Application shall show the video of
Application a connected incubator

F-142 Should PRAIS Recorder The PRAIS Recorder Application shall connect to exactly
Application one incubator at the same time

F-143 Should PRAIS Recorder The PRAIS Recorder Application shall stop showing the

Application

video of a connect incubator when specified by the user
via the UI

The Philips Remote Al Streaming platform

81 / Version 1.0

Eindhoven University of Technology

F-144 Should PRAIS Recorder The PRAIS Recorder Application shall configure the file
Application name of the recording based on what the user specified via
the UI

F-145 Should PRAIS Recorder The PRAIS Recorder Application shall store the recorded
Application video in a local folder specified by the user

F-39 Could Advanced Con- An algorithm shall register with the system before joining
ference Manage- a conference
ment

F-40 Could Advanced Con- The system shall keep track of all registered algorithms
ference Manage-
ment

F-41 Could Advanced Con- An algorithm shall be identified by name within a solution
ference Manage- provider
ment

F-42 Could Advanced Con- The system shall instruct an algorithm to join a specific
ference Manage- conference
ment

F-43 Could Advanced Con- When a peer is in a conference, then the peer shall add
ference Manage- algorithms to the same conference
ment

F-66 Could Advanced Con- When a peer is in a conference, then the peer shall remove
ference Manage- algorithms from the same conference
ment

F-109 Could Advanced Con- The system shall instruct an algorithm to leave a specific
ference Manage- conference
ment

F-10 Could Back-end Con- Peers shall be authenticated by solution providers using
trolled Security open ID connect

F-11 Could Back-end Con- The system shall generate tokens and provide them to au-
trolled Security thenticated peers

F-37 Could Back-end Con- An application shall uniquely map to a solution provider
trolled Security

F-50 Could Back-end Con- The system shall uniquely identify solution providers
trolled Security

F-55 Could Back-end Con- An algorithm shall uniquely map to a solution provider
trolled Security

F-56 Could Back-end Con- An algorithm shall join a conference if the algorithm and
trolled Security conference belong to the same solution provider

82 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-58 Could Back-end Con- The system shall encrypt all security related messages
trolled Security
F-8 Could ICELink: Al- An ICELink algorithm shall use a local file as a media
gorithm Media source to send audio/video to other peers
Sources
F-146 Could ICELink: An ICELink algorithm shall store an absolute millisecond
Recording accurate frame created timestamp time for every recorded
video frame
F-147 Could ICELink: An ICELink algorithm shall record all video frames at the
Recording same resolution
F-82 Could LiveSwitch: Al- A LiveSwitch algorithm shall use a local file as a media
gorithm Media source to send audio/video to other peers
Sources
F-128 Could LiveSwitch: A LiveSwitch algorithm shall record incoming audio from
Recording peers specified by the user
F-129 Could LiveSwitch: When a LiveSwitch algorithm records audio and video
Recording from a peer, then the algorithm shall synchronize the au-
dio and video
F-130 Could LiveSwitch: An ICELink algorithm shall record incoming video from
Recording peers specified by the user
F-63 Could User Interface An algorithm shall send a user interface to other peers
Streaming
F-64 Could User Interface A peer shall display a user interface that was sent by an-
Streaming other peer
F-44 Won’t Algorithm The system shall run algorithms as docker containers
Deployment
F-45 Won’t Algorithm The system shall orchestrate the docker containers
Deployment
F-46 Won’t Algorithm The system shall load balance the algorithms
Deployment
F-14 Won’t Algorithm When an algorithm uses a camera as media source and
Media Sources when there are multiple cameras connected to the de-
vice the algorithm runs on, then the algorithm shall select
which camera shall be used as media source.
F-15 Won’t Algorithm When an algorithm uses a microphone as media source

Media Sources

and when there are multiple microphones connected to the
device the algorithm runs on, then the algorithm shall se-
lect which microphone shall be used as media source.

The Philips Remote Al Streaming platform

83 / Version 1.0

Eindhoven University of Technology

F-24 Won’t Audio Stream An algorithm shall specify the required sample rate of the
Parameters audio stream
F-25 Won’t Audio Stream An algorithm shall specify the desired sample rate of the
Parameters audio stream
F-26 Won’t Audio Stream An algorithm shall specify the required sample size of the
Parameters audio stream
F-27 Won’t Audio Stream An algorithm shall specify the desired sample size of the
Parameters audio stream
F-28 Won’t Audio Stream An algorithm shall specify the required channelCount of
Parameters the audio stream
F-29 Won’t Audio Stream An algorithm shall specify the desired channelCount of
Parameters the audio stream
F-30 Won’t Audio Stream An algorithm shall specify the required audio bandwidth
Parameters of the audio stream
F-31 Won’t Audio Stream An algorithm shall specify the desired audio bandwidth of
Parameters the audio stream
F-32 Won’t Audio Stream An algorithm shall check whether required constraints are
Parameters supported by the device it runs on
F-33 Won’t Audio Stream An algorithm shall check whether required constraints are
Parameters supported by the peer it connects to
F-94 Won’t LiveSwitch: Ba- A LiveSwitch participant shall join a conference
sic Conference
Management
F-95 Won’t LiveSwitch: Ba- A LiveSwitch participant shall leave a conference
sic Conference
Management
F-89 Won’t LiveSwitch: Par- When A LiveSwitch participant uses a camera as media
ticipant Media source and when there are multiple cameras connected
Sources to the device the participant runs on, then the participant
shall select which camera shall be used as media source.
F-90 Won’t LiveSwitch: Par- When A LiveSwitch participant uses a microphone as me-
ticipant Media dia source and when there are multiple microphones con-
Sources nected to the device the participant runs on, then the par-
ticipant shall select which microphone shall be used as
media source.
F-91 Won’t LiveSwitch: Par- A LiveSwitch participant shall use a local file as a media
ticipant Media source to send audio/video to other peers
Sources
84 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-92 Won’t LiveSwitch: Par- A LiveSwitch participant shall use a camera/microphone
ticipant Media (connected to the device the participant runs on) as a me-
Sources dia source to send audio/video to other peers

F-93 Won’t LiveSwitch: Par- A LiveSwitch participant shall use screen capture as a me-
ticipant Media dia source to send audio/video to other peers
Sources

F-84 Won’t LiveSwitch: Par- A LiveSwitch participant shall receive messages from spe-
ticipant Messag- cific peers in the same conference.
ing

F-85 Won’t LiveSwitch: Par- A LiveSwitch participant shall send messages to specific
ticipant Messag- peers in the same conference.
ing

F-86 Won’t LiveSwitch: A LiveSwitch participant shall connect over multiple data
Participant Multi streams to the same peer in the same conference
Connections

F-87 Won’t LiveSwitch: A LiveSwitch participant shall connect over multiple
Participant Multi video streams to the same peer in the same conference
Connections

F-88 Won’t LiveSwitch: A LiveSwitch participant shall connect over multiple au-
Participant Multi dio streams to the same peer in the same conference
Connections

F-102 Won’t LiveSwitch: A LiveSwitch participant shall send audio peer-to-peer to
Peer-to-peer specific peers over audio stream
Connections

F-103 Won’t LiveSwitch: A LiveSwitch participant shall send video peer-to-peer to
Peer-to-peer specific peers over video stream
Connections

F-104 Won’t LiveSwitch: A LiveSwitch participant shall send data peer-to-peer to
Peer-to-peer specific peers over data stream
Connections

F-105 Won’t LiveSwitch: A LiveSwitch participant shall disconnect from specific
Peer-to-peer peers over any stream when specified by the user
Connections

F-106 Won’t LiveSwitch: A LiveSwitch participant shall receive audio peer-to-peer
Peer-to-peer from specific peers over audio stream
Connections

F-107 Won’t LiveSwitch: A LiveSwitch participant shall receive video peer-to-peer
Peer-to-peer from specific peers over video stream
Connections

The Philips Remote Al Streaming platform

85 / Version 1.0

Eindhoven University of Technology

F-108 Won’t LiveSwitch: A LiveSwitch participant shall receive data peer-to-peer
Peer-to-peer from specific peers over data stream
Connections

F-73 ~ Won’t LiveSwitch: A LiveSwitch algorithm shall send audio via SFU to spe-
SFU Connec- cific peers over audio stream when specified by the user
tions

F-74 ~ Won’t LiveSwitch: A LiveSwitch algorithm shall send video via SFU to spe-
SFU Connec- cific peers over video stream when specified by the user
tions

F-75 Won’t LiveSwitch: A LiveSwitch algorithm shall send data via SFU to spe-
SFU Connec- cific peers over data stream when specified by the user
tions

F-76 Won’t LiveSwitch: A LiveSwitch algorithm shall receive audio via SFU from
SFU Connec- specific peers over audio stream when specified by the
tions user

F-77 ~ Won’t LiveSwitch: A LiveSwitch algorithm shall receive video via SFU from
SFU Connec- specific peers over video stream when specified by the
tions user

F-78 Won’t LiveSwitch: A LiveSwitch algorithm shall receive data via SFU from
SFU Connec- specific peers over data stream when specified by the user
tions

F-96 Won’t LiveSwitch: A LiveSwitch participant shall send audio via SFU to spe-
SFU Connec- cific peers over audio stream
tions

F-97 Won’t LiveSwitch: A LiveSwitch participant shall send video via SFU to spe-
SFU Connec- cific peers over video stream
tions

F-98 Won’t LiveSwitch: A LiveSwitch participant shall send data via SFU to spe-
SFU Connec- cific peers over data stream
tions

F-99 Won’t LiveSwitch: A LiveSwitch participant shall receive audio via SFU
SFU Connec- from specific peers over audio stream
tions

F-100 Won’t LiveSwitch: A LiveSwitch participant shall receive video via SFU
SFU Connec- from specific peers over video stream
tions

F-101 Won’t LiveSwitch: A LiveSwitch participant shall receive data via SFU from
SFU Connec- specific peers over data stream
tions

86 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

‘ F-59 Won’t Monitoring The system shall have a central log store ‘
‘ F-60 Won’t Monitoring The system shall log separately for every solution provider ‘
F-61 Won’t Monitoring The system shall display the solution provider’s logs to

the solution provider
‘ F-62 Won’t Monitoring A peer shall send log entries to the central log store ‘

F-47 Won’t Peer Async A peer shall publish events to the conference via a mes-
Communication sage broker

F-48 Won’t Peer Async A peer shall subscribe to events that are published by peers
Communication in the same conference

F-49 Won’t Peer Async The system shall use a centralized message broker
Communication

F-12 Won’t Security A LiveSwitch participant shall generate tokens locally

F-16 Won’t Video Stream An algorithm shall specify the required aspect ratio of the
Parameters video stream

F-17 Won’t Video Stream An algorithm shall specify the desired aspect ratio of the
Parameters video stream

F-18 Won’t Video Stream An algorithm shall specify the required resolution
Parameters (width,height) of the video stream

F-19 Won’t Video Stream An algorithm shall specify the desired resolution
Parameters (width,height) of the video stream

F-20 Won’t Video Stream An algorithm shall specify the required framerate of the
Parameters video stream

F-21 Won’t Video Stream An algorithm shall specify the desired framerate of the
Parameters video stream

F-22 Won’t Video Stream An algorithm shall specify the required video bandwidth
Parameters of the video stream

F-23 Won’t Video Stream An algorithm shall specify the desired video bandwidth of
Parameters the video stream

Table D.1: A list of all the functional requirements. The requirements are categorized and priorities
follow the MoSCoW model: Must, Should, Could, Would.

The Philips Remote Al Streaming platform

87 / Version 1.0

Eindhoven University of Technology

88 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

E SEP project description

The Philips Remote Al Streaming platform 89 / Version 1.0

EINDHOVEN PHILIPS
e UNIVERSITY OF
TECHNOLOGY

Philips Remote Al Streaming (PRAIS)

SEP project description

Eindhoven University of Technology

Philips Research

Mennens, R.J.P.
16 April, 2020
Version: 1.0

Eindhoven University of Technology Philips Research

Table of Contents

Table Of CONTENTS.....iiiiiiiiicee bbbt b e e b e san e sanesreesreenne s I
Lo = PPN I
ASSIZNMENT AESCIIPTION oot e e et e e e st e e e sabe e e e ataeeessbaeeesnsaeeesnsaeesnnseeas Il
(CTo T 1 o) i 1 0TI 2d o 1= ot RS v
DEIIVEIADIES. ..t st she e b e b e bt bt et saeesreen v
TECHNICAI GUIANCE ...ttt ettt sttt e s b e b e b e et e sat e s bt e sbeesbe e beenbeenbeeatesaeenbeens v
(0o Y01 = Yot o] oY s o =Y o 1 s VU PSR PR Vi

Context

Philips aims to rapidly transform from a company that sells products to a company that co-creates
strategic partnerships with customers and delivers solutions and services over a long term. By
standardizing and optimizing the building blocks of healthcare — hardware, software, and services — Philips
aims to connect consumers to their caregivers and enable health systems to deliver better outcomes at
lower cost.

Providing services involves multiple touchpoints with customers. For efficiency, some of these interactions
can be done remotely. Additionally, part of providing a service is to help an organization become more
efficient and to facilitate remote collaboration inside the hospital and beyond. Overall, Philips sees a wide
variety of opportunities for remote collaboration throughout Philips businesses and is currently
implementing the Philips Remote Al Streaming (PRAIS) platform.

In an academic hospital, in addition to the standard medical care, the staff is also involved in medical
research. In the Netherlands, for example, we have academic hospitals in Amsterdam, Utrecht,
Maastricht, and other cities. With the rise of artificial intelligence (Al), such hospitals are focusing more
and more on developing Al that can be used for medical purposes. In this project, we shall, in particular,
focus on Neonatal Intensive Care Unit (NICU) Al algorithms. Like the name suggests, a NICU is an intensive
care unit that is typically used for prematurely born babies. The parents of such babies cannot stay 24/7
with their baby, which makes it emotionally very tough. Therefore, there is ongoing research into placing
a camera in a NICU, allowing the parents to view their baby remotely (see Figure 1). Furthermore, the
video and other sensory data can be used for Al use cases.

g

Figure 1 - A camera in a NICU enables remote viewing of the baby.

SEP Project Description |

Eindhoven University of Technology Philips Research

Collaboration between the academic hospitals is significant, and we see an increasing need to safely share
Al algorithms between the hospitals. This means that aspects such as privacy and security, which are very
important in the healthcare domain, need to be taken care of. In this project, we shall explore the sharing
of Al algorithms between hospitals and investigate security, privacy, and visualization aspects.

Assignment description

Your group represents two academic hospitals that want to share NICU Al algorithms with each other.
Academic hospital A developed a pose detection algorithm for neonates that detects the skeletal structure
of the baby (see Figure 2). Al pose detection enables many interesting use cases. For example, by analyzing
the movement patterns of a baby, a doctor can assess whether there is brain damage. Academic hospital
B has developed an apnea detection algorithm that, given video and sensory input, detects apnea and its
type (central, obstructed, mixed). By using Al, fewer sensors are required to detect apnea, the
monitorability of the babies is improved, and in the future, apnea prediction may even be possible.

Figure 2 - Baby pose detected
Overall, the project is split into two phases. At first, there is a “feature-first” phase, which focuses mostly

on development and integration with PRAIS. The second phase, “architecture-first”, is more explorative
and focuses on different ways to implement certain features (see below).

Feature-first

In this project, we do not want to focus on algorithm development but rather on building applications
(using the PRAIS platform) that use the algorithms. Therefore, we shall provide both algorithms. It is up
to you to integrate the algorithms with PRAIS such that they can be used remotely in a streaming fashion.
Figure 3 shows an overview of the complete use case. In both hospitals, there are doctors who want to
see the results of the algorithms, and there are NICUs that provide the video (and sensory) inputs for the
algorithms. Since we cannot provide you with a NICU camera, we leave it up to you to simulate one. You
can either use your own web cam or you can consider implementing functionality for streaming a video
file. Regarding the data, we shall provide you with a CSV file that contains the sensory data.

SEP Project Description]

Eindhoven University of Technology Philips Research

EHE Hospital A EHE Hospital B

o=
< Video aee Resulis
o] '@ [o \‘leg\\\' ﬁl\

Pose detection Results > (/)

Doctor
algorithm
Hospital B Web
Application Video

e |. =

NICU Sensor Data

NICU
= Videq &
Alg Sensor [ata = ﬁ -
Results (/) <Alg 4 g 3
Results {5}
Hospital A Web o O
Doctor Application Apnea detection

algorithm

Figure 3 - Use case overview

Architecture-first
After implementing the setup as shown in Figure 3, we want to investigate different options (and
implement one of them) regarding three issues we identified.

The first issue is related to security and shall be implemented in hospital B. With the current
implementation, basically anyone can use their web application, which is of course not what we want.
Therefore, at Hospital B, they decided to add an additional layer of security, i.e., participants and
algorithms first need to authenticate themselves before they can join a conference. To this end, we want
to explore how open ID connect should be used in combination with PRAIS.

The second issue is related to the visualization of the apnea detection algorithm results. In the current
implementation, the Hospital A Web Application developers depend on the apnea detection algorithm in
the sense that they need to know the exact output format in order to properly visualize the results. We
want to remove this dependency by generating the visualization (code) at the algorithm side. Hospital A
Web Application would then only require a placeholder/container for the visualization.

Finally, the CSV file that we provided you contains fake data. The real data is stored in a database (also
CSV file). Since this is data about actual patients, it is very privacy sensitive. More specifically, the data
should never be stored anywhere else except for the database. So, instead of using the CSV that we
provided, we want to investigate whether it is possible for the NICU in Hospital A to stream the real data
directly from the database to the apnea detection algorithm. By doing this, the data is only stored in-
memory and not copied to disk.

Figure 4 visually shows the use case with the extra features described above. Red indicates the
changed/new elements.

SEP Project Description 1

Eindhoven University of Technology

Goals of the Project

Authentication before
joining (OpenID Connect)

Hospital B
Authentication back-end

Authentication before
joining, (OpenID_Connect)

R Z5F "‘\\ < Video

Pose detection
algorithm

&

NICU

%‘7

Doctor

View Alg
Results

T K2

Results =

Hospital B Web‘\
Application Video

Database

e Verify the usability and stability of PRAIS.

e Explore the options regarding combining OpenID Connect and PRAIS (capture learnings).

e Explore the options regarding user interface streaming (capture learnings).

e Build demonstrators.

Deliverables

The following elements are of interest to us:

e Report, including:

o Architectural Design

o Learnings and Recommendations

o Demo Script

e Demo(s)

Videq &
Sensor Data > d
View Alg
Results (/) < Visualizgtion 0 g i
(code)| @
Hospital A Web ©4 $©
Application Apnea detection
algorithm
Sensor Data
Hospital A

Figure 4 - Use case with extra features. Red indicates changes compared to Figure 3

Philips Research

We are aware that you already have to write a lot of documentation for SEP itself. So, delivering a short
readme that describes where we can find these topics is fine.

Technical Guidance

All important concepts are explained in the PRAIS conceptual documentation. In short, PRAIS is a platform
that allows developers to easily build applications that require real-time audio/video/data streaming
functionality. At this point, it only contains a C# SDK which you will have to use to integrate the provided
algorithms (note that the algorithm we provide are written in Python, so you will have to find a way to
run Python inside/from C#). In the future, we also envision having a JavaScript SDK such that it becomes

SEP Project Description

v

Eindhoven University of Technology Philips Research

easier to add participants to conferences via a browser. Since we do not have this yet, for this project, we
shall provide you with two JavaScript applications (one for each hospital) that directly use LiveSwitch (the
C# SDK also uses LiveSwitch under the hood). You will have to extend/adapt these applications such that
they fit better in the use cases. More specifically, when a doctor uses the application, then he/she should
be able to see the algorithm results and when a NICU connects to the application, then it should simply
send its video (and sensory data) to the algorithm.

We will provide you with CSV files that contain the sensory data required for the apnea detection
algorithm. Unfortunately, we do not have a NICU camera available. Therefore, you can simply simulate a
NICU camera (how, is up to you). As stated before, the focus of this project is not on the algorithms
themselves but on the integration with PRAIS. So, it does not matter too much if the inputs to the
algorithms are not perfect, as long as there is some output that we can visualize/use.

Required software

e Visual Studio community edition 2019

e PRAIS installation instructions, examples, conceptual and APl documentation can be found here:
https://healthrtc.org/docs/index.html

e We prepared two client-side browser applications that use LiveSwitch such that they work with
PRAIS. You should use these applications as a basis and extend/modify them where needed. Both
applications are hosted using GitHub pages at:
HospitalA: XXX
HospitalB: XXX
Please send Robin your GitHub email addresses such that he can add you to the repository.

We already created two applications (and their secrets) in the PRAIS back-end for you. The two client-side
applications are already configured with these values:

Applicationld: XXX

Secret: XXX

Applicatoinld: XXX
Secret: XXX

Required hardware

The required hardware consists of bring-your-own-device hardware such as laptops and smart phones.
The built-in cameras and microphones on your devices should be sufficient. All the envisioned client-side
software is compatible on both PC and mobile phone. Finally, you will need a Windows machine to run
the algorithms (the PRAIS C# SDK runs on .NET Framework).

Required expertise
On a non-technical level:
e Cross discipline, with a common denominator in Software technology.
e Al, audio-video/multimedia communications
e Requirements collection
e Systems engineering, requirements management
e Prototyping, demo building

SEP Project Description \Y,

Eindhoven University of Technology

On a technical level, we recommend having a look at the following:

e PRAIS documentation

e LiveSwitch documentation

¢ Open ID connect

e Running Python in/from C#

Contact Information
Several people are involved on the end of the client, see Table 1. To keep things simple for you, Robin is
your main customer and point of contact. We prefer communication via email or Microsoft teams. For

short and quick questions, feel free to add us to a WhatsApp group.

Table 1 Philips Research stakeholders

Philips Research

developer)

Name Project Role (Official role) E-mail Phone

Robin Mennens | Project customer (PDEng trainee | XXX XXX
Software Technology)

Marcel Quist Project support (Concept XXX XXX
Business Architect)

Zoran Stankovic | Project support (Software XXX XXX
Architect)

Arjan Draisma Project support (Software XXX XXX

SEP Project Description

\

Eindhoven University of Technology

F PRAIS Recorder Application

The User Interface (UI) of the PRAIS Recorder Application is shown in Figure F.1. The four red
rectangles indicate the following parts of the UI:

1. A user first needs to log in before any functionality of the application becomes available. When
the PRAIS Recorder Application is started, only the Ul elements in rectangle 1 are enabled.

2. Provides an overview of all NICUs that have informed consent, i.e., those incubators that may
be connected to. The Refresh button can be used to refresh the list of NICUs while the Connect
to incubator button is used to connect to one of the incubators.

3. After connecting to a NICU, the live camera feed is shown. The Show video checkbox can be
used to toggle the showing of the camera feed.

4. Allows the user to configure different recording parameters such as: Recording Folder, Record-
ing File Name, Recording Chunk Duration, and Number of Chunks to be recorded.

The Philips Remote Al Streaming platform 97 / Version 1.0

Eindhoven University of Technology

87 PRAIS Recorder

— O X
Email Password Logged in as: researcher@healthric.net 1
Incubators: 2
LaptopPersonalFirefox (Location: Thuis2) Enabled: Yes L

MQ PC (Location: Veldhoven home) Enabled: No
LaptopPersonal (Location: Thuis) Enabled: Yes
TULaptopRobin (Location: Philips) Enabled: Yes

CONNECTED: LaptopRobin (Location: Overal) Enabled: Yes %

Successfully connected to
incubator

Show video

4 Recording Folder: |C:\Users\32008596?\Documents | | Select Folder... | | Start Recording

Recording File Name: |2020-22—09_BabyRemrding

Recording Chunk Duration (s): |1200
Number of chunks:

Figure F.1: The user interface of the PRAIS Recorder Application. The red rectangles indicate four
parts of the user interface that each have their own purpose.

98 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

G PRAIS Documentation

Below, to show what the documentation looks like, we include some PRAIS conceptual and API
documentation. The complete documentation can be found online [29].

The Philips Remote Al Streaming platform 99 / Version 1.0

The PRAIS platform

The Philips Remote Al Streaming (PRAIS) platform is a platform that allows developers to easily build
applications that require real-time audio/video/data streaming functionality.

The platform consists of:

* A C# Net Framework SDK (called the PRAIS C# API) that allows you to easily connect your (Al) algorithms
to other peers.

* The Javascript RTC API that allows you to easily integrate the streaming functionality in your browser
applications.

* (not yet implemented) A management console that gives you control over and insight in your
applications.

The documentation of the Javascript RTC API can be found here (https://healthrtc.net/philipsrtcapibackup/#/)
and is not further discussed in this documentation. Important to know is that the Javascript RTC API uses the
ICELink webRTC provider. This means that you should also use the ICELink webRTC provider in the PRAIS C# API.

C# API Prerequisites

Before you begin, ensure you have met the following requirements:

® You have installed the latest version of .NET Framework
* You have a Windows machine

Installing the PRAIS C# API

Prerequisites:

® You are using Visual Studio 2019 (any edition).

* You already have a C# project.

® You already have the PRAIS C# NuGet package. The package is located in the PRAIS examples repository,
to which you get access via us.

The PRAIS C# APl is distributed as a NuGet package (https://docs.microsoft.com/en-us/nuget/what-is-nuget). All
you have to do is install the NuGet package in your project:

1. In Solution Explorer, right-click References and choose Manage NuGet Packages.

Solution Explorer v X

Wi o-s¢ca@ K-
Search Solution Explorer (Ctrl+;) P~

b Solution 'App1’ (1 of 1 project)
4 App1

b M Properties
Add Reference... config
Add Service Reference... xaml

&» Add Connected Service Window.xaml

Add Analyzer...

@ Manage NuGet Packages... j

Scope to This

New Solution Explorer View

Manage Packages for Solution
2. Click the gear icon next to the Package Source.
Package source: nuget.org - 3

3. Click on the + icon to add a new NuGet package source. Give it an appropriate Name, set the Source to
the folder location where you stored the PRAIS C# NuGet package, and click OK.

Options 7 >
Search Options (Ctrl+E) AP Available package sources: e [X[¥
I> Container Tools ~ nugetorg
P CresEimT https://api.nuget.org/v3findex json
I> Database Tools PRAIS C# SDK Nuget
b F#Teols CA\Path\To\Locally\Stored\NuGet
b Graphics Diagnostics Microsoft Visual Studic Offline Packages
b IntelliCode Ch\Program Files (x86)\Microsoft SDKs\NuGetPackages\
I+ Live Share
4 NuGet Package Manager
General
Package Sources
I> ReSharper Ultimate
I SQL Server Tools
[» Test
I> Test Adapter for Google Test
b Text Templating Name: |PRAIS C# SDK Nuget |
I: Web Forms Designer
b Web Performance Test Tools v| Source: |C\Path\To\Locally\Stored\NuGet || w |[Update]

OK Cancel

4. Change the Package Source to the source you just created. The PRAIS C# APl Nuget package should now
be listed. Click on it and then click on Install.

NuGet: Appl + X -

Browse Installed Updates NuGet Package Manager: App1
Search (Ctrl+L) PG I:‘ Include prerelease Package source: ' o
All
. et.org
PRAIS pussher -
-B PRAIS by s V100 e Micresoft Visual Studic Offline Packages

) PRAIS C# SDK Nuget
PRAIS C# SDK NuGet Package
Version: Latest stable 1.0.0 -
Using the PRAIS C# API

After installation, add the PRAIS using directives to the C# code files in which PRAIS is used.

using PRAIS;
using PRAIS.EventModels;

* See the conceptual documentation (articles/conceptual.html) for explanations about how PRAIS works
conceptually.

* See the examples (articles/examples.html) page for example usages of PRAIS.

® See the APl documentation (api/PRAIS.html).

License

Class AlgorithmImpl

The main point of algorithm functionality. Do not use this class directly. Instead, extend AlgorithmBase to access
all functionality.

Inheritance

l, System.Object
L, AlgorithmImpl
l, AlgorithmBase (AlgorithmAPI.AlgorithmBase.html)

Implements
System.IDisposable

Inherited Members

System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()

System.Object.GetType()

System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()

Namespace: AlgorithmAPI (AlgorithmAPIL.html)
Assembly: AlgorithmCore.dll

Syntax

public abstract class AlgorithmImpl : IDisposable

Properties

Applicationld

Gets the application identifier.

Declaration

public string ApplicationId { get; }

Property Value

Type Description
System.String The application identifier.
Conferenceld

Gets the conference identifier.

Declaration

public string Conferenceld { get; }

Property Value

Type Description
System.String The conference identifier determines which conference shall be joined.
ConferenceState

The registration state of the algorithm in the conference.

Declaration

public ConferenceState ConferenceState { get; }

Property Value
Type

ConferenceState (AlgorithmAPIl.ConferenceState.html)

DisplayName
Gets the display name of the Algorithm.

Declaration

public string DisplayName { get; }

Property Value

Type Description
System.String A human-readable display name.
Id

Gets the identifier of the Algorithm.

Declaration

public string Id { get; }

Property Value

Type Description
System.String A unique identifier.
LiveSwitchGatewayUrl

Gets the LiveSwitch gateway URL.

Declaration

Description

The state of registration.

public string LiveSwitchGatewayUrl { get; }

Property Value

Type Description

System. The URL at which the LiveSwitch gateway is present, only used when the LiveSwitch implementor
String is used.

Peers

Gets the peers currently present in the conference.

Declaration

public ReadOnlyDictionary<string, Peer> Peers { get; }

Property Value
Type Description

System.Collections.ObjectModel.ReadOnlyDictionary <System.String, The peers.
Peer (AlgorithmAPI.Peer.html)>

Roles
Gets the roles of this Algorithm.

Declaration

public string[] Roles { get; }

Property Value

Type Description

System.String(]

Secret

Gets the secret that is required to generate tokens for joining a conference of an application.

Declaration

public string Secret { get; }

Property Value
Type Description

System.String The string representing the secret.

Remarks

Tokens should be generated by a secure server that has authenticated your algorithm's identity and is
authorized to allow you to register with the LiveSwitch server. It is strongly recommended to not store your
Secret here but to store it securely with you authentication server.

Tag
Gets the tag of the Algorithm.

Declaration
public string Tag { get; }
Property Value
Type Description

System.String An (optional) tag that can be used to identify the Algorithm.

Methods

Dispose()
Leaves the conference asynchronous, and then removes the algorithm from memory.

Declaration

public void Dispose()

DoGetConferenceToken(String)

Generates a token for a conference with conferenceld .

Declaration

public virtual string DoGetConferenceToken(string conferenceId = null)

Parameters

Type Name Description

System conferenceld (optional) The conference identifier. If not provided, then
.String Conferenceld
(AlgorithmAPIL. AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Conferenceld)

is used.
Returns
Type Description
System.String The token that can be used to join the conference.

Remarks

The default implementation of this method generates a token locally using Secret

(AlgorithmAPIL. AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Secret). This approach is not recommended.
Tokens should be generated by a secure server that has authenticated the algorithm identity and is authorized
to allow you to register with the LiveSwitch server. It is strongly recommended to not store your Secret here but
to store it securely with you authentication server.

This method is called by Join(String)

(AlgorithmAPIL. AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Join_System_String_) and JoinAsync(String)
(AlgorithmAPIL. AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_JoinAsync_System_String_) so it does not need
to be called manually.

GetPeer(String)
Gets the peer with the specified id.

Declaration

public Peer GetPeer(string id)

Parameters
Type Name Description
System.String id The identifier of the peer.
Returns
Type Description
Peer (AlgorithmAPI.Peer.html) The Peer (AlgorithmAPI.Peer.html) with provided id.
Exceptions
Type Condition
System.Exception Peer with id: id does not exist
Join(String)

Joins a conference synchronous.

Declaration

public void Join(string conferenceld = null)

Parameters

Type Name Description

Syste conferenceld (optional) The identifier of the conference to join. If not provided, the value of

m. Conferenceld

String (AlgorithmAPIL. AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Conferenceld)
is used.

Remarks

This method calls DoGetConferenceToken(String)
(AlgorithmAPI.AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_DoGetConferenceToken_System_String_) and
sets Conferenceld (AlgorithmAPI.AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Conferenceld) if
conferenceld is provided.

JoinAsync(String)

Joins a conference asynchronous.

Declaration

public Task JoinAsync(string conferenceld = null)

Parameters

Type Name Description

Syste conferenceld (optional) The identifier of the conference to join. If not provided, the value of
m. Conferenceld

String (AlgorithmAPIL. AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Conferenceld)
is used.
Returns
Type Description
System.Threading.Tasks.Task awaitable Task
Remarks

This method calls DoGetConferenceToken(String)
(AlgorithmAPI.AlgorithmImpl.html#AlgorithmAPI_AlgorithmIimpl_DoGetConferenceToken_System_String_) and
sets Conferenceld (AlgorithmAPI.AlgorithmImpl.html#AlgorithmAPI_AlgorithmImpl_Conferenceld) if
conferenceld is provided.

Leave()

Leaves the conference synchronous.

Declaration

public void Leave()

LeaveAsync()

Leaves the conference asynchronous.

Declaration

public Task LeaveAsync()

Returns

Type Description

System.Threading.Tasks.Task Awaitable Task

OpenDataChannel(Peer, String)

Opens a send/receive peer-to-peer data channel to the specified peer with specified label.

Declaration

public DataChannel OpenDataChannel(Peer peer, string label)

Parameters

Type Name Description

Peer peer The peer.

(AlgorithmAPI.Peer.

html)

System.String label The label of the data channel to be created. The label should be unique among

all data channel labels related to this peer.

Returns

Type Description

DataChannel (AlgorithmAPl.DataChannel.html) The created DataChannel (AlgorithmAPl.DataChannel.html).

OpenDataChannelAsync(Peer, String)

Opens a send/receive peer-to-peer data channel to the specified peer with specified label asynchronous.

Declaration

public Task<DataChannel> OpenDataChannelAsync(Peer peer, string label)

Parameters

Type Name Description

Peer peer The peer.

(AlgorithmAPI.Peer.

html)

System.String label The label of the data channel to be created. The label should be unique among

all data channel labels related to this peer.

Returns

Type Description

System.Threading.Tasks.Task < The created

DataChannel (AlgorithmAP|.DataChannel.html)> DataChannel (AlgorithmAPl.DataChannel.html).

OpenDataChannels(Peer, String[])

Opens multiple send/receive peer-to-peer data channels to the specified peer.

Declaration

public DataChannel[] OpenDataChannels(Peer peer, string[] labels)

Parameters

Type Name Description

Peer peer The peer.

(AlgorithmAPI.Peer.

html)

System.String([] labels The labels of the data channels to be created. The labels should be unique

among all data channel labels related to this peer.

Returns

Type Description

DataChannel An array of DataChannel (AlgorithmAP|.DataChannel.html)s with
(AlgorithmAPIl.DataChannel.html) specified labels .

[l

OpenDataChannelsAsync(Peer, String[])

Opens multiple send/receive peer-to-peer data channels to the specified peer asynchronous.

Declaration

public Task<DataChannel[]> OpenDataChannelsAsync(Peer peer, string[] labels)

Parameters

Type Name Description

Peer peer The peer.
(AlgorithmAPI.Peer.
html)

System.String(] labels The labels of the data channels to be created. The labels should be unique
among all data channel labels related to this peer.

Returns
Type Description

System.Threading.Tasks.Task < An array of
DataChannel (AlgorithmAPl.DataChannel.html)[]> DataChannel (AlgorithmAPl.DataChannel.html)s with
specified labels .

OpenMediaStream(Peer, MediaStreamConfiq)
Opens a MediaStream (AlgorithmAPI.MediaStream.html) to the specified peer.

Declaration

public MediaStream OpenMediaStream(Peer peer, MediaStreamConfig config = null)

Parameters

Type Name Description

Peer (AlgorithmAPI.Peer.html) peer The peer.

MediaStreamConfig config (optional) The media stream configuration. If not provided,
(AlgorithmAPIl.MediaStreamConfig.html) then a default config is used.
Returns

Type Description

MediaStream (AlgorithmAPIl.MediaStream.html) A MediaStream (AlgorithmAPIl.MediaStream.html)
Exceptions

Type Condition

System.Exception Cannot open media stream: peer does not exist.

OpenMediaStreamAsync(Peer, MediaStreamConfig)
Opens a MediaStream (AlgorithmAPIl.MediaStream.html) to the specified peer asynchronous.

Declaration

public Task<MediaStream> OpenMediaStreamAsync(Peer peer, MediaStreamConfig config = null)

Parameters

Type Name Description

Peer (AlgorithmAPI.Peer.html) peer The peer.

MediaStreamConfig config (optional) The media stream configuration. If not provided,
(AlgorithmAPI.MediaStreamConfig.html) then a default config is used.
Returns

Type Description
System.Threading.Tasks.Task < A

MediaStream (AlgorithmAPIl.MediaStream.html)> MediaStream

(AlgorithmAPI.MediaStream.html)

Exceptions

Type Condition

System.Exception Cannot open media stream: peer does not exist.

SendMessageToPeer(Peer, String)

Sends a message to specified peer.

Declaration

public void SendMessageToPeer(Peer peer, string message)

Parameters

Type Name Description
Peer (AlgorithmAPI.Peer.html) peer The peer.

System.String message The message.

Exceptions

Type Condition

System. algorithm is not registered in conference yet. or message cannot be null or provided peer is not
Exception in the conference (anymore).

Events

OnAudioFrameReceived

Occurs when an audio frame is received on any of the media streams. Runs asynchronous.

Declaration

public event EventHandler<AudioReceivedArgs> OnAudioFrameReceived

Event Type
Type Description

System.EventHandler <AudioReceivedArgs (AlgorithmAPI.EventModels.AudioReceivedArgs.html)
>

OnDataChannelOpened

Occurs when another algorithm opens a data channel to this algorithm. Runs asynchronous.

Declaration

public event EventHandler<DataChannel> OnDataChannelOpened

Event Type
Type Description

System.EventHandler<DataChannel (AlgorithmAPI.DataChannel.html)>

OnDataReceived

Occurs when data is received on any of the data channels. Runs asynchronous.

Declaration

public event EventHandler<DataReceivedArgs> OnDataReceived

Event Type
Type Description

System.EventHandler<DataReceivedArgs (AlgorithmAPI.EventModels.DataReceivedArgs.html)>

OnMediaStreamOpened

Occurs when another algorithm opens a media stream to this algorithm. Runs asynchronous.

Declaration

public event EventHandler<MediaStream> OnMediaStreamOpened

Event Type
Type Description

System.EventHandler<MediaStream (AlgorithmAPl.MediaStream.html)>

OnMessageReceived

Occurs when a message is received from another peer in the conference. Runs asynchronous.

Declaration

public event EventHandler<MessageArgs> OnMessageReceived

Event Type
Type Description

System.EventHandler<MessageArgs (AlgorithmAPI.EventModels.MessageArgs.html)>

OnPeerConnected

Occurs when a Peer (AlgorithmAPI.Peer.html) connects to the conference. Is called for peers already present
when joining and called for peers that join after you. Runs asynchronous.

Declaration

public event EventHandler<Peer> OnPeerConnected

Event Type
Type Description

System.EventHandler<Peer (AlgorithmAPI.Peer.html)>

OnPeerLeft

Occurs when a Peer (AlgorithmAPI.Peer.html) leaves the conference. Runs asynchronous.

Declaration

public event EventHandler<Peer> OnPeerLeft

Event Type
Type Description

System.EventHandler <Peer (AlgorithmAPI.Peer.html)>

OnVideoFrameReceived

Occurs when a video frame is received on any of the media streams. Runs asynchronous.

Declaration
public event EventHandler<VideoReceivedArgs> OnVideoFrameReceived
Event Type
Type Description

System.EventHandler<VideoReceivedArgs (AlgorithmAPI.EventModels.VideoReceivedArgs.html)
>

Implements

System.IDisposable

See Also

System.IDisposable

Eindhoven University of Technology

H Additional Design

The class diagram representing the design of LiveSwitch WebRTC Implementor is shown in Fig-
ure H.1.

«interface» 4 LiveSwitchWebRtcImplementor

¥ Algimpl: AlgorithmImpl

DataChannelWrapper
~ LiveSwitchWebRtclmplementor(AlgorithmImpl): void
«interface» G- + Getld(): string [®1—_DataChannel + Join(): void
IDataChannellmplementor + GetLabel(): string + Leave(): void
+ SendDataBytes(byte[]): void + OpenDataChannel(Peer, string): DataChannel
+ SendDataString(string): bool + OpenDataChannels(Peer, string[]): DataChannel[]
«interface» . . |
<t-- . apper l®1— PeerConnection + OpenMediaStream(Peer, MediaStreamConfig):

MediaStream
+ SendMessageToPeer(Peer, string): void

“1+ Getld(): string

ManagedConnection + GenerateToken(): string C VideoSink
i : stri ustomVideoSinl
WVid s:lnterflace;) 0 <t-- + Close(): sting + SetlceServers(): void
ideoStreamimplementor -)
VideoStreamWrapper 1 + Getld(): void ~ DoProcessFrame(): void
i |
ntortace -1 + StartRecording(file, path): voic [®1 VideoStream @1 RtcRemoteMedia €—— VideoSink CustomVideoRecorder
« » <
<t-- |+ StopRecording(): void 1 ‘
| 1 AudioSink ~ DoProcessFrame(): void
AudioStreamWrapper @1 A dioStream e—1 ALF
L RemoteMedia CustomA k
+ StartRecording(file, path): voic ‘
+ StopRecording(): void 1| + StartAudioRecording(file, path): 1 ~ DoProcessFrame(): void
+ StopAudioRecording(): void ! p——
«interface» < --- LocalMedia < LocalScreenMedia ‘ 1 + StartVideoRecording(file, path): aer
+ StartSource(): void + StopVideoRecording(): void 1 ~ DoProcessFrame(): void
. LocalCameraMedia
+ StopSource(): void

l—‘i > ’ 1 CustomAudioSource
RtcLocalMedia —{> LocalMedia

i CustomLocalMedia
J«_lnterface» g ﬁ + SendAudioFrame(int, byte[]): void
CustomVi ce >

1 + SendVideoFrame(Bitmap): void
+ SendAudioFrame(int, byte[]): void + SendVideoFrame(Bitmap): void

VideoSource AudioSource

Figure H.1: The class diagram that represents the design of the LiveSwitch WebRTC Implemen-
tor. Rectangles in green represent interfaces part of AlgorithmCore. Rectangles in orange represent
LiveSwitch classes. Note that, to make the diagram readable, not all methods/properties are included.
In particular, several asynchronous versions of methods are left out.

The Philips Remote Al Streaming platform 115 / Version 1.0

Eindhoven University of Technology

116 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

I Usability Study Files

Below, included are the informed consent form and the questionnaire (including the interview ques-
tions) the participants had to fill in.

The Philips Remote Al Streaming platform 117 / Version 1.0

EINDHOVEN
I U e UNIVERSITY OF
TECHNOLOGY
Information form for participants

This document gives you information about the study “PRAIS usability evaluation”. Before the
study begins, it is important that you learn about the procedure followed in this study and that
you give your informed consent for voluntary participation. Please read this document carefully.

Aim and benefit of the study

The aim of this study is to measure the usability and ease-of-use of PRAIS. This information is
used to determine the strong/weak points of PRAIS. More specifically, PRAIS is in development
and the outcomes of the study help us improve PRAIS and provide input for the training of future
PRAIS users.

This study is performed by Robin Mennens, a Software Technology PDEng Trainee under the
supervision of dr. Alexander Serebrenik (Mathematics and Computer Science department).

Procedure

This study consists of two parts that should be executed in this order:

1. A questionnaire mostly consisting of (closed) usability/ease-of-use questions. This
guestionnaire shall take place using a word file via email.

2. An online semi-structured interview with Robin to dive deeper into the
“Why/how/what/which”. This questionnaire shall be done via Microsoft Teams.

Risks
The study does not involve any risks, detrimental side effects, or cause discomfort.

Note that Robin will not take the study results into account when grading the SEP project as a
whole. To this end, this study will take place after Robin graded the SEP project.

Duration
The instructions, measurements, and debriefing will take approximately 40 (10 for the
questionnaire and 30 for the interview) minutes.

Participants

You were selected because you are part of the Philips Healthcare Exchange (PHEX) SEP group
that worked with PRAIS. Please note that in order to properly take part in this study, you need
to have worked with PRAIS in any possible way: actually used it or maybe just used its
documentation.

Voluntary

Your participation is completely voluntary. You can refuse to participate without giving any
reasons and you can stop your participation at any time during the study. You can also withdraw
your permission to use your data up to 24 hours after they were recorded. None of this will have
any negative consequences for you whatsoever.

Confidentiality and use, storage, and sharing of data.
This study has been approved by the Ethical Review Board of Eindhoven University of
Technology.

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

In this study, no personal data is explicitly recorded. Experimental data (your responses to the
questionnaire and an audio recording + transcription of the interview) will be recorded,
analyzed, and stored. Only the audio recording of the interview may contain personal
information. We will anonymize this information during transcription and remove the original
audio recording. The goal of collecting, analyzing, and storing this data is to answer the research
guestion and to describe the experiment results in Robin’s final report. To protect your privacy,
all data will be stored on a protected PDEng Software Technology server that is only accessible
by Robin and the PDEng Software Technology manager (Yanja Dajsuren). No information that
can be used to personally identify you will be shared with others.

We will not share personal information about you or your responses in this study with anyone
outside of the research team (Robin Mennens, Marcel Quist, Zoran Stankovic, Arjan Draisma,
Alexander Serebrenik, Yanja Dajsuren). Only Robin will know your identity because he is the
interviewer.

The anonymized data collected in this study that will be released to the public will (to the best
of our knowledge and ability) not contain information that can identify you. It will include all
answers you provide during the study.

The audio recordings that are made will not be distributed and will not be played back in the
presence of persons other than the researchers. The material will be used only for scientific
analysis and deleted after transcribing the data.

Further information
If you want more information about this study, the study design, or the results, you can contact
Robin (contact email: r.j.p.mennens@tue.nl).

If you have any complaints about this study, please contact the supervisor, Alexander Serebrenik
(a.serebrenik@tue.nl). You can report irregularities related to scientific integrity to confidential
advisors of the TU/e.

EINDHOVEN
I U e UNIVERSITY OF
TECHNOLOGY
Informed consent form

PRAIS usability evaluation

- | have read and understood the information of the corresponding information form for
participants.

- I have been given the opportunity to ask questions. My questions are sufficiently answered,
and | had sufficient time to decide whether | participate.

- | know that my participation is completely voluntary. | know that | can refuse to participate
and that | can stop my participation at any time during the study, without giving any reasons.
| know that | can withdraw permission to use my data up to 24 hours after the data have
been recorded.

-l agree to voluntarily participate in this study.

- Iknow that no information that can be used to personally identify me or my responses in
this study will be shared with anyone outside of the research team.

- | o do
0 do not
give permission to make my anonymized recorded data available in Robin’s final
report.

Certificate of consent

[(INAIVIE) oottt ettt st es et st st bt es et st e s et eae et sas st esesease sanensessesane et sessessesens
want and provide consent to participate in this study.

Participant’s Signature Date

Part 1 - Questionnaire

To as great an extent as possible, think about all the tasks that you performed with PRAIS while you answer
these questions. Note that some statements refer to a job. For those statements, we would like you to
interpret SEP as a job. Please read each statement carefully and indicate how strongly you agree or
disagree with the statement (where 1 = extremely disagree and 7 = extremely agree) by putting an X in
the appropriate table cell. If you cannot answer a statement because you, for example, did not work with
LiveSwitch, then leave the answer empty.

Using PRAIS in my job enables me to accomplish tasks more
quickly than LiveSwitch.

Using PRAIS improves my job performance.

Using PRAIS in my job increases my productivity.
Using PRAIS enhances my effectiveness on the job.
Using PRAIS makes it easier to do my job.

| have found PRAIS useful in my job.

Learning to operate PRAIS was easy for me.

| found it easy to get PRAIS to do what | want it to do.
My interaction with PRAIS has been clear and
understandable.

| found PRAIS to be flexible to interact with.

It was easy for me to become skillful at using PRAIS.

| found PRAIS easy to use.

Please answer the following question, where 0 = not likely and 10 = very likely.

0 1 2 3 4 5 6 7 8 9 | 10

How likely is it that you would
recommend PRAIS to a friend or
colleague?

Part 2 — Interview

The second part of this study consists of an interview with Robin. He will plan a 30-minute timeslot with
you in which he will ask some open questions about your experience with PRAIS. For your reference, the
questions are already included below.

1. Overall, how was your experience with PRAIS?

2. Which things did you like the best about PRAIS? Why?

3. Which things did you like the least about PRAIS? Why?

4, If you could change something about PRAIS, what would it be? Why?

5. What do you think is still missing in PRAIS? Why?

6. What do you think about PRAIS’ documentation?
7. How much time do you think you saved by using PRAIS, instead of having to use LiveSwitch?

8. Why would you or would you not recommend PRAIS to a friend or colleague?

Eindhoven University of Technology

J PRAIS Usability Study Results

Table J.1 lists the results of the questionnaire. Each column refers to one of the questionnaire ques-
tions. In particular:

* Q1: Using PRAIS in my job enables me to accomplish tasks more quickly than LiveSwitch.
* Q2: Using PRAIS improves my job performance.

* Q3: Using PRAIS in my job increases my productivity.

* Q4: Using PRAIS enhances my effectiveness on the job.

* Q5: Using PRAIS makes it easier to do my job.

* Q6: I have found PRAIS useful in my job.

¢ Q7: Learning to operate PRAIS was easy for me.

¢ Q8: I found it easy to get PRAIS to do what I want it to do.

* Q9: My interaction with PRAIS has been clear and understandable.

¢ Q10: I found PRALIS to be flexible to interact with.

* QI11: It was easy for me to become skillful at using PRAIS.

* Q12: I found PRALIS easy to use.

* Q13: How likely is it that you would recommend PRALIS to a friend or colleague?

Table J.2 lists the 166 cards used during card sorting and their assigned categories. After that, the

audio transcriptions of the 5 interviews are shown. In those transcriptions, sentences in bold are the
statements that were converted into cardsorting cards.

Participant QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 QI12 QI3

A 5 6 6 5 5 6 7 5 5 5 6 6 8
B 6 5 6 6 6 6 5 5 5 5 5 5 7
C 7 6 6 6 7 6 5 6 7 4 5 6 7
D 5 4 5 4 4 5 6 6 6 4 6 6 8
E 6 6 4 5 6 5 5 5 7

Table J.1: The results of the questionnaire. Participant E mentioned he could not fill in questions 2, 3,
4, and 5, which is why he left them empty. In the analysis, we replaced these empty values with the
middle value 4, which is recommended by the mTam [LLS20] model.

The Philips Remote Al Streaming platform 123 / Version 1.0

ty of Technology

.

.

1Versi

Eindhoven Uni

-1dLoseae(

Idv

UM 03 A[qeqoid prnom [-a3ueyd nok prnom jeym ‘moj uonsonb paromsue os[e [Yuryl | yduoseae[ppy sdi,
'$$900NS SIom
€ A[[e9I JOU SeM [YOIYM OIpNIS [ensIA Sursn ur sem STV I Yim Surdo[oasp noqe 210w [[9p wel] IAN sdiy,
“Je) 03 anp Isnl axoym s3ury
1sow asnedaq swa[qoid oy} [[& A[TBaU QA0S P[NOM 1T JIOMAWERIJ JoU" WOIJ YoIms 1snf nok YI0m
J pey om swd[qoid oy} [[e seamdes Jo pury 31 JIOMIWERIJ JoU° Y} ‘910D Jou’ Y uIyl | -owely IAN sdig,
‘ssong T Isea] A}
OYI] oM Jury) oY SeA JeY], ‘SSWINAWOS OIPNIS [BNSIA 9SN 0) 9ABY O} ‘}0] B joeq sn 3as Isnf D RO
A9y) puy "waIsAs SUI[00] 2INUS Y} PUB SMOPUIAN IIM PIRISAIUT AToA ST YIOMIWEI] Jou -wel] IAN sdry,
-9[qrssod JT 0100 10U 0} JurAOW IIPISUOD I0m
A[[ea1 p[nom 1 ‘0§ ‘yojams e 9q Aewr smopuipy uo dde) e Surkojdep ‘[endsoy e 103 ‘0§ wely AN sdig,
"XNUIT UNJ SISAISS ISOW ‘SWIIOS[E el NOA JI0Mm
USUAA "OpIS WLIOS[e oY) A[ISOW Yoeq 39S S0P ey} JUIY) ["'SMOPUIAN A[UO SeM JI 9sneddq -owel] IAN sdig,
"IOAQ ‘ure3e 10A9 SI0Mm
OIpMIS [BNSIA 9SN JOAU O) POMOA [[B SABY AN TOMOWEI) Jou” A[Tea[0 AI9A I0MoWe) Jou- -owel] IAN sdi,
"SIV ¥d 9sn Yoy s30q Y} 03 JA0 9pIs Jey) Adoo o3 1opIey
yonwl Jey) U2aq 9A,P[NOM 11 UIY} 3,Uop [(YOIMSIAI] Surures[) auop jeyl 103 [Ioye ing [ennaN
‘IdV suonedIunNuIwod
QWIN-Teal J9YJ0 AUk M 0uaLIadXa 9ABY 3, UOP [9snedaq "os[e SuIyjowos uasoydo Apeaife
aaey Ao} J1 STV ¥d 2SN 0) WAy} 90UIAUOD A[[enjoe 0) J[qe 9q 3, Up[noMm [YI[‘0[/8 IO USAQS [ennaN
‘Suryiou uey) 19339q A[IUYIP S I Ing plIom
oY} UI SUIY) 2INDIS JSOUI Y} JOU ST ‘S19103S Ay} SuIsn 99I39p B 0) UONEBINUAYINE SI I, [ennaN

juuRle)S AI1033)eHqNSqns

£10393eHqnS £103938) OYA

The Philips Remote Al Streaming platform / Version 1.0

124

ty of Technology

1versl

.

Eindhoven Un

"9JBIOQR[Q 2I0W JIq B Ik Jey) So[durexa 210U 0M) JO 9UO 9qABW dARY 0} PooS 2q JYSTW I1 ‘Sax

sdif,

S9K :99MATAIIU] ‘UOBIPPE POOS & 9gqAeur
901U 9q p[nom yey 31 Adoo ued NoA uaYy) YIIM JIom 0} 9Jes A[[eal JoU ST SWIRI] Y} JBY} MOUY
nok J1 ‘A[remdaouod syIom SIY) MOY INOQR SOOP AIOW SWOS PIdU am agAewl ssang [Yeax

sdip,

*9S[@ SUIYIAWOS JIAO I ISN P[NOM AYM Puy A[SNOUOIYOUASE
urol 03 sueaw J1 Jeym INOQE JUIY) QWOS aqArW pue poylow ulol Jenga1 e pue oukse urof
0] 9ABY NOA ‘) SI 919U} ‘MOU UONBIUWNOOP Y} Je SUYOO[W, ‘OS[e SI A1) PUY YBIX

sdig,

“9yeW PINOd NOA JuswaAoIdwr ATUo Ay
9q p[noM Jey], “3 YIIM Op P[nod [Jeym Jou Ing ‘seop J1 jeysm ure[dxa nox (:uoneuawnoo(])

sdip,

JuowaAoIdwl Uk 9q p[noMm Jey], -aiow 10adxa ued noA 1eym UO [1eIap 0Ul 0F aqAew
08 ¢ sowery isnf asuds jey) JuryiAue 1 ST (9q 20IN0S BIPIUW WOISNO € P[NOJ Jeym INg ‘WoIsnd
pue U2210s IdWERD A0 ‘9dA) 90In0S BIpawW ‘901nos eipaw Jo 2dA) ay) sAes 31 90urISUI JO]
(UOIMSIATT UO JUIpUIdap Jey) SI “90IN0S BIPIW B ST Jeym 1] 9SUIS Jetf) U] ‘3, USeM I ‘O9PIA
puas 01 Asea A[[Ba19q P[NOoMm 1 IYINOY) oM ‘pUS-JUOIJ Y} UO I8} [PIM PA[33nI)s OSTe om YUIy)
[Apsour Jey) YUIY) [PUY (,S9OINOS BIPAW Ik STUIY) JO PULY JBYAN (I YIIm Op A[[BO1)2I09Y)
I PINOD JeyMm INQ 92INOS BIPAW € SI JBUM UJAD JON "90INOS BIPAW B [IIM Op [UBD Jeym
Mouy 0] Juem A9y} 0S "Aem JBY] WIB[0] SIUBM APOQAIdAQ JOU INg UIBd[0} ABMm POOS € S B
YUy} [pUy ‘SOWp wopuel awos Juneard isnf ySnoayy Surpueisiopun Jno Jo 1SOW PIp am
YUy} [puejsiopun o} s19do[oAdp owos 10J pIey 1Iq & oq Aewr)] osudins [ouueyo vIRp ®
91ea10 A[qeqoid prnom jeym SSe[d [oUUBYD BIEP © SI 219y} OS YSI[SUF Ul S JI pue weigerp e
ST 919Y) Y3noy) uaad oS "s3doouod [erouad oy st aaoxdwir ppnom [yeys wed A[uo ayy aqhewr

sdif,

UOTJBIIWI] YOJIMSIALT B SeM JBY) INOge pay[e)
Apeare om Suryiowos Jey) ng ‘s[ouUBYOR}Ep SUNRUIWLI) JOJ SUIy) oy} SI 1Y) yeak yo

so[dwiexyg IO UOT)BIUSWNIO(]
$00(T Tem
-doouo) QIO UONEBIUAWINOO(]
so0(oM
-doouo) QIO UOIBIUSWINOO(]
$00(T Tem
-doouo) QIO UOBBIUAWINOO(]
soo(em
-doouo) QIO UOIBIUAWINOO(]
s[ouueyd

elep Suisor)

sdif,

*Jey) JOJ POYIoW OU S I3} INq S[oUURYORIEp
95010 pue uado A[qeI[aI 01 pojuem am AIOYM FUIY) B OJUI UBI am Jurod Qwos J8 9AI[q |

S[ouueyod
elep SuIsop)

sdip,

"91euN)IOJUN SeM UOTYM OIIMSIALT INOQe UIed] 0 pey
s am os s3ury) jo apis sdde gom o) 10J STV U OU SI 213y} Jey) SI [[Us wa[qoid oy [[om

IdV
jduoseae[ppy

sdif,

125 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

‘[[9M s SSUIY) 9s0Y) JO SWOS dABY 0} Q01U 2q P[hoM 31 Ing jonpoid [euy ay} ur
paxmbai [[1s seam 1 J1 mouy 3, uop [Jutod awos je AJeuonouny 108X ey} SUIPAdU SAA[SSINO
punoy am UIyl I [[@M Se STV Id PUe eyl I SUIyjawos 193 0) 201U 3q P[nom J1 agAew
1ey) oY1 Suryewos 10 dn Sumes [N 16 Aoy} JOYISYM SNIB)S B 99S UBD NOA S[QUUBYORIED

SaInjeaJ aIowr

JARY NOA YOIIMSIAIT UL PAONIOU | JOJ A0TU 9q P[NOM 9qABW IT [9AS] [BITUYI) B UO IS S 3O Sey UONMSIAIT] sdiy,
"PBAISUL YOILMSIATT asn Isnf
0] JOISBD 31 JUIY} | ‘USY) SA0P STV U Teym UBY) JUIYIP IIq B SI 8y} JJmS op 01 9AeY NoK JI
‘0§ “Apsour Ajeuonouny STV QUi YIm OIS A[[ea1 p[noys nok STV 9sn NOA uaym oS
SIV¥d AJipowt 03 mO[[e A[[eal 3,Us0p 11 A1eIqI o) uryim orqnd are jeyy saoejIoiul Jo J0[B SaINJe9) AI0W
10U JSBI[JB JO AJBLISUI JO JO[B JOU PUB SISSB[O PI[IS JO JO[B SUIRIU0D STV U 2SNeI2q [[9A Sey UONMSIAIT sdiy,
"QUO INZY }JOSOIOIA Y3 J0J 3daoxg PO UONBIUAWNIO sdiy,
“QAISU)X? 210U }1q [N B 9q P[NOd
UOTIRIUSWINOOP Y} JBy} UIY) [18IS 3Y) I8 Sem Isea] oYI] T Suryl oy J[osi STV U 10J yeak ing IO UONEBIUAWNIO] sdiy,
"a3ueyd pno [jey Suryy A[uo ay3 s eyl Jury [inq yury | Aeepdurod
10U JO PAJuaWNoop 3, uare Aoy} jurod swos je pappe noA eyl suondadxs umoIy) syl A[uQ IO UONBIUAUWINIO(sdiy,
‘Jo 9[qedes
A[[ea1 ST 31 ey ST SIY) 9YI] JO BapI Uk NoA 9AIS A[[eal 0) uoleuISew 9y} 01 yonwl 003 Jiq ©
SOABQ JUIY) | Ing [[oM A19A STV PUIY2q BIpI oY smoys I “ojdwexa o1seq A[[eal & S 31 Sof PO UONEBIUAWNIO] sdi,
JoN1ISU0d JO 2dA) YoIyMm asn 03 uaym 1] OS[e A[[e10adsa puy "AJoBX? ‘S9x
:09MATAIU] [JoNaq s1deouod ay) Surpuejsiopun ur djoy pinom sojdwexs arow os ‘Aey(sojdwexq QIO UONBIUAWNIO(sdif,
pap1aoid a10m JeY) S10q UOIIR[SURI) Y} PUEB 10q OYI2 U1 ST jeyMm ‘ay) uey) Joy1o STV d
JoJ 219y} 10 sopdwexa Jo 0] B 10U S,919y) [[om asnedeq sTury) ojdwexs owos oghewr ng so[dwiexq QIO UONEBIUSWINIO(] sdiy,
uoneuawNdop Y} Isnl woij 1e9[d sAemye jou
S Jey) 9snedaq SPOYIaW dOY1oads € asn 03 MOY IOUW NOA SMOYS A[[BaI Jey) 210J3q pres [1|
o[dwrexa Joyjoue agAew ayI] SUIYIAWOS 9g P[NOM ppe pinom [1eys Sury) A[uo ayj asoddns | so[dwrexg @10\ UONBIUSWNIO sdif,

The Philips Remote Al Streaming platform / Version 1.0

126

ty of Technology

1versl

.

Eindhoven Un

Ny :99MIIAIU] "9pPBW NOA I9AISS UOBONUIY) A)1In99g
-ne ue 1] Ineyep Aq d[oy 03 Suryiowos 9q p[nom UOHBINUIYINE PAUONUAW NOA 0S ABYO PAdUBAPY QIO sdif,
A1moag
suonouny 31 Aoy Jo 1red [ewIou & 9YI[T 9YBW ‘ST U d OIUI JOAIdS UOTIEIIIUAYINE A} PPV PASUBAPY QIO sdiy,
S181REIN
"BIPI POOST ® 9Q P[NOM UONBINUYINE JO Aem pasueApe 10w & 10§ 11oddns ing PASUBAPY QIO sdiy,
Amoag
"Po[pURY A1k S}OI03S Aem oY) SUISURYD SIY) PUONUIW AL T [[oM PASUBAPY QIO sdiy,
yeok
:09MATAIU] 319 0] ® d[oy Apeaife pinom 3ur330[9y jey) pauonuawl Apeale noAk ng 3ur33og sdi,
ynyn :99marAIu ;3uoim 3urod s eym Sur33dngop ur nok djoy pjnom
jey} ‘uo Furog SJeym UO Jnoge NoA S[[A) SIVUd s3ury ayy o1 Suraoxdurn yury) nok og Sur33og sdi,
'SaK ‘Yny :99MIrAIU] ¢, SUISIO[QI0W ‘0§ Sui3So sdiy,
"JOU S0P YOIMSIATT 9SNBIAq S9Fessow
[nyasn 30[STV @Ay isnf -Yury) [Sui330[] SIVd S [ereuad ur ng (:s3ury) Surssmu) 3ur3so7 sdig,
[BoA :99MITATINU] JBy) U0 dA0IdWI AT[BAI UBD oM UIY) |
0§ "IoA®[UONORISqE Y} OIUI UaYR) A[[Ba1 JOU JO pury SI SUISIO[YoM SIAIT Y] [[B 9snedag Sur33og sdif,
‘suondaoxa at) SI pauonual Apeaife | a3ueyd p[nom [jey3 Sury) auo oS Sur33og sdi,
“Jey) Y1 SUIYIOWIOS SUO JUAIPIP & MmoIy} Jo uondaoxs [enjoe
oy} arededoad snf royire Aem swos ur pajesedord wayy 93s 03 aYI] A[[ea1 pinom | pajededoad
j0u INq STV Id A9 payoled sowmnowos are A9yl ‘suondadoxa 9y SI 919y} puey SUO Yl UQ w3307 sdif,
pue suondaoxa yi1m [eap 0} ASeaun JeyMaWOs 1
soyew siy T, ‘3t 9Jesedoid J0u s90p Ing I1 SAYDILD STV U pue uondaoxa ue SMOIY) YOIMSIAT]
sawrowos suondaoxa oyl YUIy) [21om STV SuIsn uaym ss9f 31q & 21aMm Jeyf) SSUIy) om) Y], Sur33og sdi,

127 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

"QI9Y papnjoul 03 Ao ayj 1oy isnl
‘910J2q 1By} PAUONUIW ApPBAI[e | INQ ‘YOIMSIAIT INOge SIUIY) SWIOS MOUY 0} Pey NoA Jey],

10

sdip,

D

"A[reoyroads Suryy STV Ad © 18yl Uiy 3,Uop [Ing ‘SIoAe] uonoensqe Jo apIsumop
AUo 2y} S 38} 0OS "YOIMSIAIT PI[[8O NOA asnedaq sem wa[qoid ay) 219y puy p[nod noA og

10

sdif,

9)

‘SuIyIowWos J0 YINIMSIALT s3nq 31 Uy}
PUe STV UI POYISW 3y JO SNO0J UTRW Y} J, USeM 3SeD asn oy1oads A1oa swios nq ‘Y3 i1
Op PIp NOA awn ay) JO IsOW pue JYSLI J1 pIp NOA ey} uolssaidw oy} Jopun a1om nok STV Id
ySnoIy) 31 pIp nok usym asnedaq STV d Ysnoiy uey) swa[qoid asouSeIrp 0} I91Ses s
-QUIOS SeM PU-JUO0I) 9Y) SuIsn NOA ‘YOIMSIAI] purIsIapuUn NoA JI 1yl JuIry) A[[enoe [yeak

Y10

sdip,

D

YOMMSGIAIT 10 ‘STV U ‘Med ok sem
J1 JT 9SOuZeIp 1, UpP[Nod NoA asnedaq Aem Y} UI J03 epuL Uondensqe ay) uay) pue pauaddey
JBUM INO PUY 0} UOHBIUWNIOP YIIMSIAIT 0) 0F 0) pey [[1IS NOA U], (I[NBJ S, UIMSIAT]
1o Jney Aw it st ‘uaddey sy pip AYAL "YOIMSIAIT [[IIS Ik SaLnua 30[9y} asnedaq ‘UmoIy)
JIOLI9 STY) ST AUy Yo 1] 03Ul awred APoInb A19A noA 1nq ‘ST s sSury op isnf ued nok
[9A9] J1Seq AI9A 9} 1Y "ABM B UI YOJIMSIAIT MOUY O} PIPIU [[1IS NOA JeY) J[qeJewual SI 1
nq STV JO 3[neJ oy} A[[B1I0U SII ‘Sem 9oUudLIadxa pIp om Jey) Sury) Suo 3} Jeyl Juryl op |

10

sdif,

"SI} pUIYaq 9010YD UIISAP AUB SI I3} JOYIAYM JO 1 Op 01 ABM 1S9q
QY SYI] S,J8Y) JT 2InS A[[BS1 J0U UL] "9seq WIYILIOT[B PUalXa 0) 9ABY NOA Alfeuonouny STV d
oy} 395 O, '} INOQe S)qNOp SWOS pey [Ing Jnoge aIns A[[eal J0U Ul] ey} as[Suryjowos

Y10

sdip,

19K wroperd
[[0J © ST 31 Uy, "SI9SN SB SN JOJ UIAQ OWAP [BIIUYDII) B JO 9IOW S 31 SUISSIW ST JBy) 9snedaq
JUSWIOW Q) 1B 9OUSISJUOD UMO AW JJBAID . UBD] J9I09S UMO AW 9JBaId j ued [os sued
Surssrur awos a4 ‘Owos 9ABY 3, UOP NOA ‘AU) 9ABY NOA 9snedaq St J[osi STV U Uy I ON

1oA uroperd
91o1dwos e 0N

sdip,

‘s Jey) Sury) AJuo a3 3ey) JUIy) [pue uoneIIUNUI
-WO0d pueq JO 1IN0 SWOS WOoIJ 9pod #)) 9yl 393 1snl [dde Aw 19351301 03 [oued ou aAey | ‘1oL
JUNOJOE UB JJBAIO J,UBD | 194 II pRO[UMOP } UED | Ing SYIom Jonpoid oy} Jey) Swaas 1 219y

19K woperd
919[dwiod ® JoN

sdip,

*0)o[dw0d [99 3, USQOP 1 ASNBIAQ ST JOA 3, UP[NOM [UOSEBAI ATUO YT, (:UONEPUSWUIOINY)

19K woperd
jo[dwos ' 10N

sdip,

The Philips Remote Al Streaming platform / Version 1.0

128

ty of Technology

1versl

.

Eindhoven Un

3unsay jrun

PIm STV 1591 01 9[qe 9q 01 SN PAMO[[e IT 9sNed9q AUTEW UONBIUSWNIOP Y} UT PIQLIOS SQoRLIUI
-01d noA se arowAue Aem awes oy) STV U oSN A[[Ba1 } UPIP oM ‘padnjoU 9ABY ABW NOA Sy PPV/AIqeIsa], sdig,
‘[1e e 9[qissod Sunsay ayew A[[eroual SQoBJIUI
pUE SISSB[O JIOW SN P[NOJ 9M OS SSUIY) [BIAS JOJ SIOBLIUI JWOS LM O) PeY M 0S PPV/ANTIqeIsa, sdig,
*1$9) J1un 03 J[qrssodurr yonur A)axd way) SAYBW YoM STV Y U0 puadap sasse[d Ino [[e SQoRIoUI
QAR AYI] JOU UBD 9M OS UONONNSUOD SSB[O SWOS ULIOJIad 0] S99BJI9IUT JUWIOS 9)BAIO 0) PBY M PPV/ANTIqeIsT, sdig,
09pIA Jey]) 0] SpuodsalrIod SI eiep Ay} Yeak Yo 29s pue Joy1a303 yorq oml ayj 9oard
ATISBO U} UBD NOA 9PIS JAYIO0 Y} U0 pue 3e) oyroads jey) 193 OS[e I puB S[OUUBYIRIEP JOAO
BIEP JO PUOIAS QUO PUAs NOA pue Fey oyroads B $393 I pue OIPIA JO PUOIIS U0 PUAS NOA 1|
KBS 0S SOWERIJ 09PIA JO JaS UIRLIAD B 0] BIep awos Yul[Jo dnoi3 Aes A[ISea 03 JonI1ISU0d ® SI
QIY} JI 901U 9q P[NOM I JWIT)-[BAI UO SNO0J oy YPIm A[[eroadss yiim Sury) auo ST 919y} SOx 00 sdiy,
"Q0TU 9q PINOM JBY) ‘SA :99MITAIU] (,d[oy pnom jey
‘$S9N3 [SWIBAI]S BIPAW OS[@ PUB S[QUURYILIEP JNOJR UOIIBULIOJUT 9)B)S 10U A[[BIISEq 0S ABYO YO sdig,
SIVdd Pue 4aIMSIATT [10q WIes| 0}
JABY 0] ASUIS LU JOU SA0P 1] STV U JO 20UdIpne J9318) AY) YIIM JUIY | S,JT 9SNLIAq YBIL hliilg) sdig,
"90IU 9q OS[e P[NOM Jey} J0J OB IUL
JWoS 0§ "9sn os[e pinom Auedwod e Jey) SANI[EUOIOUN I8 JSOY) JUIY) [pue dseqelep
e SuIppe pue UONEONUAYINE AY) OIUI PIYOO[M puR AJ[BUOIIOUN AIOW AYI[IARY SABM[E
PINOd Areiqi & yeak * - -Julssiul SUIyjawos SI a1y} SI uonsanb e oY1 pey nok jey) 1aje oI Ly0 sdif,
“JI punoIe s3ury} 10w
JWIOS PIU Op NOA II [[9s NOA 210J9q INg ‘peq S,18y) JUIY} },UOP [PUEB IPISINO Y} WOIJ W 0}
SWA9s 11 JeyM ISBI[I8 ‘Owap [earuydd) 1doouod jo jooird Suof A1oA AI19A © JO 210U S I YBIX heltilg) sdi,
M el 03 a3en3ue] AI10Ad
Ul S ® 9ARY NOA YOIYM JOJ JOAIIS STV ® Isnl sem 919y) JI JOOIU UJ2Q A, p[nom 1 Ing bl g) sdig,
‘Sumyp e Suideyoed Jo
poyaw 3599 Y3 S 31 JUIyl 3, Uop | ‘sadeoed 193nu Jo Jea[oun a1am jey sarouspuadap pey op Rq0 sdi,

129 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

Yo "o[qeyIpoul JOIsea S Jey) Surylowos asn inq SV oSN 03 J0U pUSWIOdI

pusatItIodax

PInoA [UIy3 [Uy} juswow SIy) Je op Jouued STV eyl sSUIy) op 0) PAdu NOA UIYM pInom JI ainsun) sdiy,
S90BJISIUT
“J1 JNOQE PaAY[[e} APBAI[e aM NG SAJBJIAIUI AIOW Ppe QAR PPV/AIIqeIsa], sdif,
S9oRLIIUT
“901U U9q 9A,P[NOM SOOBJIIUT QWIOS INg PPV/ANTIqeISa], sdiy,
"A[30911p QUO 9B} 9y} Puas Isnf p[nod am J1 ATessaoau Uaaq 9ABY JOU P[nom Jey)
19ad STV ¥d 2Y} JO UOISIOA Payoowl 1o 199d STV Y3 JO UOISISA aBJ SWOS 0) 31 LI9AUOD pue
1oad 1no aye} Isnf Jey) SISSE[O 9ABY M MOU 9SNBOAQ SWI) QWOS JUIY) | ‘SN PIABS QA P[NOM
ey, *eoue)Isul 109[qo ue jou ‘ooejisyur 199d B puss 03 31 axmnbar pnoys nox -aduesur 10§ 109d SooBJISIUL
& puas 03 3urnbar Jo peajsur aoejrajur oYy syuaweduur jey Suryiawos jdaooe isnf pnoys Iy PPV/AIIqeIsa], sdi,
[nJosn S90BJISIUT
9Qq p[nom 1uas aq 03 sadA) 9oejIa)uI FUIMO[R IO ‘sadA) 90BJI9)ul SUTUINIAIL ASUAS B UL OS ‘S9x PPV/AIIqeIsa], sdi,
S90BJIIUT
JNOYJIP dIow JIq B ST unsa) oy Ing PPV/ANIqeIsal, sdig,
SooBJIAIUI
*9[qe3Isa} JoU S 31 9seq WILI0I[e PuSIXa nok JI 0§ PPV/ANTIqeIsa], sdiy,
SooBJIIUI
"SQOBJIAIUI Q) 9Ie PP P[NoM] Jey) Suryiawos 1o a3ueyd pno I Jeyl Surgieuios ‘Sury) suQ PPV/ANT1qeISa], sdry,
‘[nFosn 9q p[nom SooBJIIUI
Jey) Wy} mnsqns 0} 9[qe SUIq MOYSWOS PUB SISSB[O ASAY) J0J SadejIaul SulAey ng PPV/ANTIqeIsa], sdry,
SooBJISIUT
593 03 Asea A[[ea1I0U S] PPV/AIIqeIsa], sdif,
S90BJISIUI
"Asea $$9[11q & sem 3unsa) PPV/ANIqeIsa], sdi,

The Philips Remote Al Streaming platform / Version 1.0

130

ty of Technology

1versl

.

Eindhoven Un

asn/ure9| UOUMSAT T
“901U S, JBU} OS ‘YOJIMSIAI] UBY) JOIBQ[O Aem sem Jiing 0} Ioise 01 paredwo) sdog,
‘SSUIYIOWIOS OP 0] SABM ()] I8 QIAY} YOIIMSIAIT UI UIY)
[SPOYIoW pue SUONOUN} PUE SIALIMIIAO AUBWL 00} ABM 9ABY JBY) SISSB[O QUWIOS 9ABY NOA
UOIMSOAI JOJ 90UBISUT JOJ OS "AUBW 00] JOU ATk A3} Inq Spoyawl YSNoua Juem noA jeym op asn/urea| UONMSOAL]
0] suonouUNJ Yy3nous aIe 919y J, ‘SUONOUNy AUBW JBY) I, U 9I9Y) SISSB[O oY) UIYIIM UAQ PUYy 0} Joisegq 01 paredwo) sdog,
"asn 0} Asea A[[ea1 s 31 pue op 03 pasoddns a1 Aoy}
JeyM UT JB[O A[[Bal aIe A9y} suonounj Jo 9[dnod e aAey 1snf nok SIvd 18 JOO[nok uaym
Jms Jo puny Jey) pue JoPIp Aoy} Moy aIns Jou 91,noA nqg s3uny) Je[Iwis op suonounj JwWos asn/urea| UOUMSOAL]
pue suonouny Jo sjo[I 9ABY NOA YOJIMSIAIT I8 YOO NOA UYM JO JO[B JOU Sem I3y, O) Ioisegq 01 paredwo) sdog,
uore) UOIMGIAT]
SNUOQ € OS[e 18y} YOIMSIATT UBY) PAIUSWINOOP 19139q S J1 -Uawmnoo(qIoneyg 03 paredwo) sdog,
‘unpom
s 198 A[Tenioe ued nok pue 19119q A[RIUYSP ST STV 10 "SIYI SQ0p A[[enioe uonounj uone) UOUMSIAT]
siyy surejdxa 1ey) uonejuawnoop Jadoid Aue aaey 3,UOP NOA [[oM SB [OIIMSIAIT JOJ asnedaqg -uawnoo(qtoneg o031 paredwo) sdog,
"PIP YONMGOAIT Jeym uorne) YONMSOALT
0) paredwod 3urzewe S 1 pue MOU JUSIOLJNS UBY) SIOW S I JUIy) [Ing (:UONBIUSWNOO(]) -uawndoIoneg o) paredwo) sdog,
YOIMMSIAIT Y 1 a1redwiod 03 A1) nok uaym uone) UOJIMSIAT]
A[reroadsa pooS 93nb st STV JO UONBIUAWNIOP Y} ey} JUIY) | OS[B 901U A[[BaI SBM UOIYA, -Uowmndo(Ionag o) paredwo) sdog,
uorne) UONMSIATT]
"Jonuwi Jey) nOA [[93 UBD [‘YOIMSIAIT URY) 1913q §,1] (UOIIBIUSWINIOD 9Y})) -USWNOO([IoNag 01 paredwo) sdog,
PUSWIUIOAI
“JI PUSWILLIOJAI P[NOM] JI 2IN0S JOU W] ‘0S pInom JI aInsun) sdi,
“Jou A[qeqoid uay) JuaISIp SUIYISWos op PUSWIUIODI
IO JOIARYQQ 9Y) AJIPOW 0) 9ABY NOA UaUM INg ‘STV Yd PUSWWIOodal jsnl pnom | Appsowr oS PINoM JI aInsun) sdif,

131 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

JuIy) [SIVd Wis s3ury Sulpping

uey]) a1y Apearfe sem dde o) y3noyy uaad JIom 03 YIIMSIAIT Sunjas awr arow juads am UOIMSOAT]
PUS-1UOIJ Y} UO YIIMSAIT 0} paredwiod Ing Jey) padonou ApoqAIaAd JI mouy 1,.UOp | puy [eIouen) 01 paredwo) sdo,
-asn 0] Asea o[duurs A19A S 1 9sneIaq STV Y d PUSWIWOAI A[[BaI P[NOM [U
Koue] A[[eal Suryiou 1 $9ssa001d ejep aWIOS 9A199a1 puas Isnf Jo Yury) | s1ead Auewr 00} J0U UOIMMSIALT
YA YOIMSIATT Pim s3ury) oidurs A[oAne[al op 03 sey ange9[[0d IO PuaLy AW JI 0s ‘AB() [BIouan) 03 paredwo) sdog,
UINMSIAT]
YOUMSIATT asn J uop asea[d Aes prnom [st Suryl 1s1y 3yl [[oM [BIouen) 01 paredwo) sdog,
UOIMGOAT]
-9[qerayeid Auyep st STV Suisn ‘oS [eIouen) 01 paredwo) sdog,
UONMGOATT]
“YOIIMSOATT 9sn 0] SUIARY JOU ST STV INOqe 1599 Y} 1] [Jeym [e10UoD) 03 paredwo) sdog,
‘01 Juem NoA Aem 9y YIom
0) JJns 3193 noA awr) dwos)b 198 A[UO USY) pue UONEBIISNIJ P[IUL SWOS UOHBIUIWNIOP
ojur SuI33Ip APueISUOD Sem I YIIIMGIAIT JOJ PUE JNOY UB JOPUN MOUY },UOP [‘I UL UNI asn/ures| LRIIINS=ING|
0) ordwrexa o1seq e OYI[SuUNJAS IOqUIAWAI [1Y) IO STV 9sn p[nom A[@iugep [0§ O} oiseg 03 paredwo) sdof,
*0130] ssaulsng InoA 3urop A[[enioe 1els nok pue STV 18 Joof A[[ed
-1seq 31 STV 10 "UI [[1S J[oSINOA 9pod 9)e[dIs[1oq JO JO[€ 9JLIm O} dABY NOA YIIMSIAT] asn/ure9| UOIMGIAT]
104 ‘s3ury) ssopoou uoruido Aw ur ayj) Sulop jou I NOK ‘A[[enjoe 10U I NOA asneIyg O} loiseq 01 paredwo) sdo,
"UONBIIUNWIWIOD JUWIT-[BAX Y} SUIOP JOJ
QOBJIIUI JOTU € SBY SIY) pue ANory 11q € S[39J JO pury I pue Aem 9WOS OJUL 9POD INOA YOOy Jsn/ures| UOJIMSAT]
0) 2ABY pue 9p0od Y} ojul SuI33Ip 03 A[[eal 0] 9ARY NOA AISYM [IIMSIAIT IoA0 A[[eroadsg 03 oiseg 01 paredwo) sdof,
‘SIviad osn/ures| UONMSIAL]
I YIom 0) SUruIes[uey) 9[SSey B JO a1ow Aem sem 1 ‘Suly) YoM SIAIT oY) 0JuI Jo3 [191y 0 wisegq 01 paredwo) sdog,
asn/uIeq| UOIMGIAT]
"YOIMSIALT UBY) JAISB A[QIIULSP YUIY) [SBM II)1 JOo Suey oY) 103 [@0UO)L SUISN PYI[[O} oiseq 01 paredwo) sdog,

The Philips Remote Al Streaming platform / Version 1.0

132

ty of Technology

1versl

.

Eindhoven Un

"9IoY) Apeal[e aIe JI WOIJ JueM NOA SUONOUNJ 9y [[& yonw A1a1g ssoualerdwo) SIVid sdo,
“YOIMSIAIT URY) JO Suey 9y 395 0] JJISed UONMSOAT]
Kem ST STV @seyd [entur oy ur Ajjeroadss ‘own) Jo 10] B sn SoABS A[QIULap 31 JUIY) T ‘SO owip, Suraeg 01 paredwo) sdog,
JIOIB9[d 10] B Sem Uone)
-UQWNOOP JY) 9SNELI2q W) JO O] B S9ALS STV I Iy} Ins A[[eal W,] 0S UONBIUSWINIOP Pajl UOUMSATT]
-WI[AU} JO asnedaq YoM SIAIT SUIpueIsiapun JosAw os[e pue AJnoyjIp Jo JO[B sem a1y, owi], Sutaeg 01 paredwo) sdo,
UOIMGOAT]
‘Al[qeqoad ayugur ‘wyp) (:3urAes owiLy,) owip, Suraeg 01 paredwo) sdog,
own UOIMGIATT
QW 9ABS PIP 31 INq AJJOBXS MOUY J,UOP [‘Yonw MOH 1By} INOGe 2INS W, ‘QUIT) OW dAES PIP I] owip, Sutaeg 01 paredwo) sdog,
‘ssong | 309load smyp ur sinoy ()¢ Inoqe
9qABIA "o JO 11q € 9)Inb oW 9ALS PO SIY) By} JUIY) | ‘OS "SA0P I1 JBYM 9N[O OU IABY NOA
uoneIuaWwnNoop Y} 38 3urjoo ng Afeuonouny Jo sjof ‘SuUorounj Jo sjof Sey YoM SAIT I UOUMSOAT]
‘geak ‘0§ "9[qruIOYy A[[eaI SeM JI PUB UONBIUSWNIOP YOIIMSIAIT Y} OIUI JIq I[N B PN0O] | owip, Sutaeg 01 paredwo) sdog,
0S YUIY) A[QIIUYOP | :99MIIAIIU] "W} NOA SAALS UOUMSOAT]
A[renmioe STV Uiyl nok J1 Yo9yd 01 sem 219y jutod urews 9y} ssong [‘poo3 spunos ‘yeax ownp, Sutaeg 01 paredwo) sdog,
UONMSIAT]
-Jo11adns s 31 s30adse Jo 10] & UL JUIy) | S,I1 eIk 0S [BIouan) 03 paredwo) sdog,
‘19)s8] Aem s 1 Aes p[nom [oS "A[3oal
-100 JIOM UYOIIMSIAIT Suraey YIim STBIp 18yl JJnis JO 1O] © Isnl 9ArY NOA 219Uym UOIMSOAL]
JO peaisur STVd Y 9130] ssoulsng A[O9IIp ISOWe A[JOSIIP S} 9Snedaq d[qeureluret UYOIMSIAT
aJow SI STV ¥ J0J 9p0d 2y} JUIyj [asned9q JOIU sJ1 unl Juo[9y} Ul Jury) | os[e puy [eIOUdD) 0} paredwo) sdog,
UM SAL]
‘pdop Ul yoIm oAl Surpueisiopun JnOYNM STV I YIM JIom ued nok JuIyj osfe [puy [eIouen) 01 paredwo) sdoy,

133 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

7 “Q01U A[[BAI ST UOTIBIUSUWINOOP Y} YUIY] [‘YB9x UONBIUAWNIO(] SIVid sdof, a 7
Juowdo[oAsp J9se) 10J smofre 1snl pue way IYIy3y 01 41
oy sdjoy AJ[ear sjuswiod TIAX 95Ul pappe noA jey) sd[oy os[e UONBIUSWNIOP POOS ‘Yeax UOHBIUWNIO(SIVid sdog, a
7 I8 S.Jey], [[9} Ued | Sk IeJ se 91o[dwod AI9A a1k A9y} (UOTIBIUQWINOOP AY}) ‘ON UOHBIUAWNIO SIVid sdof, a 7
‘sad£yerep woisno
SPI0OAI WOJSND SASSB[O W0ISND JO 10] B 9ARY NOA JI [njd[ay A[[eroadsy -owin oy [[& 995 3,Uop
no& 3uryjowos SI Yorya suInjal it jeyd ad4A) oy Jo uondrosap & UaAd YIIAL "SUINISI POYoW
B JeUm SAES ‘Spoy}owl 9y} asn 0} Moy sAes] ‘uondriosop e sey Sse[o AIoAd Jo uondrosop e
Sey poyiowl AI9AH ‘payroads [[om AIoA 1] ST SuryA1aAa yonw Apaid are s3ury) jsow ‘yeag uoneIUAWNI0(SIVId sdog, q
UOIIBJUAWNIOP Y} MOU JYILI
uado 11 pornd 1snf 1 ¢()dois 901n0os erpaw a1 Surylowos ‘Arojeue[dxa-J[os aJe Wy} JO ISOIN uoneIUAWNI0(J SIVid sdog, q
“UOIIB)USWINIOP
9 UI 3,UdIe Inq ISIX Op Jey} sUOnouny Aue punoj 3, uoAey | Quasaid ST SUMPAIOAD YUIY) [UONBIUIWNIO] SIVid sdof, q
7 ‘18910 9Inb St STV J0J UOTBIUSWNOOP Y} [BIQUAS UI ‘OU ‘Ing UONEBIUSWNIO] SIVid sdog, q 7
7 "1932q J1 pueisiopun awr padjay I "paure[dxa [[om se jeyy ojdwrexa ojdwis e 3se9[Je € ST a1y], uonBIUAWNIO SIVid sdog, q 7
7 ‘poure[dxa [[om oI a1k Jer) so[dwexa oI A[[ENoe 91om 2I3Y) 1By} J0B] oy} OYI] A[[BI] UONBIUAWNIO(] SIVid sdof, a 7
7 ‘Appomb Anaixd y1om 03 asoy) 303 [31q & 9SOy} Yim punote pakerd | uoneIUAWNI0(SIVid sdog, q 7
PUSqaM STV 9
U0 919M 18Y) SO[dWEX? 9y} oIe SYIoM STV MOy puelsiopun auwl pad[oy A[[ea1jey) SUl oy} UONBIUIWNIOJ SIVid sdof, a
7 Apeaife papunol [[om Anaixd st 3ey) YUyl | ‘A[[ea1 3, uop [JUSWOW 3y} I8 ON ssoualo[dwio) SIVid sdog, A% 7
"SIV ¥d Jo 93ejueA
-pe o) A[oIuyep sem Jey], ‘sSn JoJ poyuowd[dwil Apealfe 219M SINI[EUOIOUNy Ul 3y} pue ssouojorduio) SIVid sdog, q
JURIOYJNS JBy) JUIY) [OS "PASU NOA
JeyM JO pury Jey], "SWEalns JUAIQHIp pue WjIo3[e pue sioad oYI] 9ABY NOX “JUBm pP[noMm
NoA Jey) 2I0W YOnw JOu OS[e SI I} PUE 1Y) 218 SaNI[eUOnoOuUNn urew Yy ‘d3nb s 31 yury | ssauayodwo)) SIVid sdog, q

The Philips Remote Al Streaming platform / Version 1.0

134

ty of Technology

1versl

.

Eindhoven Un

‘Te9ro
SJLYUIY) T °SIY) 9JBIoUAS OIne UBD JI 9snedag "9pod INOoA ul uoneyuawndop rodoid opewr
noK 1ey) au S[[o) OS[e 18y} asnedaq snfd e sAemye s Jey], "‘parerouad one A[01u ‘Iea[d AIoA uoneIUAWNI0(J SIVid sdog, A%
‘sordwrexa ay) yrm 3uore Jutod
A[reroadsy "119sn ued 9am MOy Op P[NoYs JUIPIATIIA Jeym [[om A11a1d sure[dxa 31 1se9[18 oW 0} uoneIUAWNI0(J SIVid sdog, A%
7 ‘UOIIBIUSWINOOP AJTU SIIUIY} | UOHBIUIWNIO(] SIVd sdog, v 7
7 ‘uoneue[dxa [eUONIPPE PAdU NOK YUIY) J UOP [OS [OpOW A3Ie[€ A[[BaI JOU S J1 YBIX uonBIUAWNIO SIVId sdoj, q 7
"SIVdd ut oIe a1aty)
suonouNy JO PULy JBYM JO MIIAIIA0 pue APOInb 108 nox a3y renmydasuod ayy payI[os[e | uoneIUAWNI0(J SIVid sdog, q
7 “poo3 s 31 yuIy) | (UOHBIUAWNIO(]) UONBIUAWNIO(] SIVd sdof, q 7
7 "SOX Q9MATAINU] ([nyd[oy A[[ear a1om so[dwexa oy 0s Aey(YNy UOHBIUAWNIO] SIVid sdof, q 7
‘popualul Sem
SIV¥d MOY puBISIapuUN PUB PUA)X 0) JAISBI Aem Sem 1 o[durexa ue yons PIm sunie}s Aq UOHBIUSWNIO(SIVid sdof, q
7 10q 029 9y} ‘Juasard ojdwexs ue ApeoIe sem QI9Y) 1Y) I OS[E [UONBIUIWNIO] SIVid sdofg, q 7
7 “JE9[O SI UONBIUSWNIOP) JO ASNBIQ Isn 0) Asea ynb s3] uoneuawnooq SIVid sdog, q 7
7 *3UIy) © Q18I0 0 ST JI ASBQ MOY SMOYS OS[e I] (:UOTBIUWNIO(]) uoneIuaWNI0J SIVid sdog, D 7
7 0] ® padjay sojdwexs oy os[e pue 18213 Annaid Apeaife s jey JuIyl | soK oS uoneIUAWNI0(J SIVd sdo, 9 7
‘Te9ro
SJLYUIY) T °SIY) 9JBIoUAS OIne UBd JI 9sneddg "9pod INOoA ul uoneyuawndop rodoid opewr
noK 1ey) au S[[o) OS[e Jey) asnedaq snfd e sAemye s Jey], "‘parerouad one A[01u ‘Iea[d AIoA uoneIUAWNI0(J SIVid sdog, 0
“J] QY3 UI [Nfasn ST YOIYM SJUSWIWOD TINX 9ARY A2y], UONEBIUSWNIO(] SIVid sdog, a
“uInjox
A9y JeyM pUE Op AU} Jey Jnoqe suondiIosap JIoy) SABY SUOIIOUN) PAIUSWNIOP-[[9M SJI ‘0§ UOHBIUWNIO(] SIVid sdog, a

135 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

0) JUBIISAY 9IOW JIq B 9q P[NOM [Uy} A[939[dw0d SaLIRIqI] Y10q YIIM 9[qeII0]

-W0d 9q P[noys nok Jr inq Ioyio yoea uo puadop Aay) asneoaq Jury) poos e Os[e ST YIIYA [eIURD) SIVid sdog,

7 ‘[[eI2A0 syI10Mm 31 Moy yiim Addey o3mb sem 1 "Aq[earjou ‘oN [eIoUdD) SIVid sdog,
QUL POYIOM IR, :99MITAINU] /Jey)

)M SANSSI AUY "SSaN3 [SUONONIISUI UONB[[BISUL oY) PaMO[[0J NOA ‘a3eoed 19nnN yea4 oS [eIoUaD) SIVId sdog,

7 "SIVId WM Sunjiom pakoluo | [e19UAD) SIvVid sdof,

7 ‘SIVAd YIm Op 03 Sey Jey) JO 10] B ‘YA ‘S Jey) YUIY) [991U A[[ea1 sem ssa1301d 1no [eIoUaD) SIVid sdof,
‘SeaM
OAl AJuo 9qAeW ‘()] Uey} $S9 Ul Jury) SUIWELANS qoM B P[INg A[[eNIdoR P[NOD 210Joq pawwueIsd

-01d 19A9u aAey oym siowwer3ord awos yim dnois e jey) uowe)se) poos e S I Uiyl | [eIoUan) SIVid sdog,
‘[e03 QUO 10} A[IB9[D AIdA
QIR JeY) SOSSBIO JO JUnowe MO[& aYI[SurAey jo yiduans 1s9331q ay3 s Jey) JuIy) [puy ‘3ur

-WEBAI)S 0IPIA JNOGE MOUY I, USAOP OYM SUOIWOS 0 ISIX SASSB[O 35y} [[& Aym ure[dxa p[noo | [BIoURD) SIVid sdof,
"901U A[[eal

SI JOIYM SOLIBUIIS JSOW SIIA0D I PUB 18IS SI SV ‘SSuIy) dIseq op 01 Juem nok uaym [eIoUAD) SIVid sdog,

7 SIVd ynm Addey Ajjear wr [[[BI9A0 ‘SOX [eIoUaD) SIVd sdog,
ouI y[se noA Jr o3

0} Aem) AT[eAI ST STy Uyl DY qom Pm suonedrdde odwis a1eard 03 juem noA Jr 1] [eIoUdD) SIVid sdog,

7 "SIV Id WIim douanadxa poos e pey [18y} JUuIy) [[[BIRAQ [eIoUaD) SIVid sdof,
junowre JuedyIugIs a1 Aq pagueyod Jo pasoidwr aq 03 spasu

SIY], "peq SI suy) aI[st aw 0} no padwnl jey; s3ury) Aue A[[ear 3, uatom Ay ‘A[[ear JON [BIoUaD) SIVId sdoj,
"ds1Io pue soSeuIr Jea[d e S9OSR ‘[[9) UBD | SB JeJ Sk Jey]} Ul UOIBIOLId)IP

ou yonw Apaid st axay ‘Ajfenb 0opIA oYy ‘91eINdoe AIA A[[eIouas SI Ajifenb orpne yury) | [eIoUaD) SIVid sdog,
‘[[om AI9A WY} S0P 11 ‘op 01 pasoddns s 31

Jjey) suonouny ayj 3ey) pajou | -aanisod Anaid A[[erouad nq yonw jey) 31 YaIm YIom 1 UpIp | [eIoUaD) SIVid sdo,

The Philips Remote Al Streaming platform / Version 1.0

136

ty of Technology

1versl

.

Eindhoven Un

‘uorssaxduwr 3sIy AW sem Jey], ‘[OAQ] [BOIUYD) asn-jo
B U0 J0adx9 9gAewl pinom NOA uUey) Aem paUI[WEBALS QIOW B UL Uonduny 03 swaas isnl 1 -aseqg/Aorndwrg SIVId sdog, 0
‘s3ury op
0] Asea A19A 99 0} SWAAS J1 ‘pIey JBY) WIS }, USIOP I IPOJ INO I JOO[NOA JI asnedaq "dpod asn-jo
Ino Jo AJLIB[O QU) UL SMOUS A[[BaI Je) YUIY) [pUB MO S9SSB[d Jo junoure o) dooy 01 potn noA -oseg/Aordurg SIVd sdof, 9
asn-jo
‘1ea[o Anaid st STV Yurp [-oseg/Aorjdung SIVid sdop, D
asn-jo
159q 9Y) 219M Je]) STUIY) Ay} A[[Bal 918 9O} JUIY} ["uoneiuawnoop ayj pue Aordus [[opy -oseg/Aondurg SIVid sdo, a
SIVdd 1noqe Jsoul payI] T Jeym Sem Jey) Jull) J “osn
0] premIopys3rens Aeal isnf A[SnouoIyouAse 31 puas A[SNOUOIYIUAS)1 PUSS UONOUNJ WOS asn-Jo
9ARY NOA QI9Y], ‘SULISeIEp puas I Ased Suryiowios ‘Furyjowos I0j Jurjoo[aIe noA isnp -oseg/Aordwrg SIVd sdog, a
asn-jo
‘Ayoriduts oy sem STV NOQe 1s9q Ay I T Jeyam jey) yuryy [-oseg/Kyorjdung SIviad sdo, @
asn-jo
"SIV I PIm s3nq [8a1 AUk PaIsiuNOJUS 9M UIY)), UOP [PUE asn 0) ASea A[[eal SI SIVId -oseq/Amordurg SIVId sdog, a
‘pasn am jey)
sagen3ue[om) o) axe yorym 1duosadA) pue £ Y1oq ur 90uaLIadxe ou Sey OYysm UOAWOS IO asn-jo
A[reroadsy ‘[reisur pue dn 39s 03 Asea A[IreJ sem J1 90UQLIRdX? [[BISAO U Sk Jey) Aes pnom [-aseqg/Ayordurg SIVId sdoj, q
asn-jo
‘9sn 0] prey jeyljou s3] -aseqg/Anordurg SIVId sdoj, a
*3sn 0} 901U UI9q A[[BaI ST “Jey) pres Apeaife [910U SUIYIOU [[OA [eIoURD) SIVid sdof, v 7
-2AnIsod s 31 Aes prnom T (:SIVId Pis doudrradxy) [eIoUaD) SIVid sdofg, vV 7
-91qrssod 2q prnom jey) J1 urede 31 9sn pnom [0s STV A Sursn pay1| | [eIoUaD) SIVid sdo, q 7

137 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

J1 0JUI YOO[PINOYS A9y} 18y} STV id Uonuaul }sed[Je A[aIuyap prnom | sy sayoeoirdde

1X91U0D UO
Surpuadop puowr

I 3s983ns noAk pnom moy uonesijdde swos pring 01 Sulkn w [Aoy oY1 uonuawr Isnl A9y) JI -WO0O3I P[NOA SIVd sdog,
JX9JU0D U0
"Jey) ojur 3uroo[An pnoys noA Surpuadop puow
poo3 Aneid sem 31 awin auo SIY) STV Y PasIom [A9y SI Aes p[nom [SUly) puodas oy, -WO0aI P[NOA SIVid sdog,
Jey) Je
J[qe puBISIIPUN AIOW PUE J3JEIU JOO[9p0d Y} saxewr uoruido Awr Ut os[e 3T 910J9q pres [1] asn-jo
pue Surdo[eAsp yim ouIn 9ALS 0) Sul03 ureSe J1 asneddq STV Yd PUSWWOIAI PNoM [[[9p -oseq/Aordwrs SIVid sdog,
asn-jo
"soulys AJ[ear STV dd Jo Aorjduts oy axoym Ajrear st sty yurp | -eseg/Aondurg SIvVdd sdof,
asn-Jo
"Apoexa ‘sax :eamaratauy -Aorduwrs oy srog -oseg/Aondwrg SIVid sdog,
"90IU A[[Bal Sem asn-jo
1By, "SUIIAIond sa[pury STV d USY} pue SJUAAd 0) SUIquIosqns isnl sem 31 18y) oI [(YA -oseq/Aordurs SIVid sdof,
asn-Jjo
‘JseJ 9Inb 11 poojsiopun | Axeiqy e st -oseg/Ayordurg SIVd sdog,
"ouwIT) JO 1O[B SN PIAES By} JUIY) | "PISIOM IT PUB JBI[O AIoM SUONN[OS ‘Q[qepeal SBm asn-jo
Aq1sea sl 31 ‘pasrom Isnl 31 asneooq ‘uaddey 3, uprp eyl a1oym IoAI3s ay) uo sied ayy ‘o§ -aseqgyAyordug SIVid sdog,
‘[yramod K194 s Jey) yury | 3ed 91301 ssauisng oY) aYI']
"Op PINOYS 1 Jeym Po0ISIOpUN A3y} PUE 3S[d QUOSWOS 03 1 MOYS PUB 9POJ JWOS AJLIM P[NOI
UOAWIOS PuUy “paduaLddxe a1om jey) 9[doad pey os[e am pue #) IO [[B I8 D) [IIM paIom asn-jo
I9AQ 3, uaAey 9[doad awos a1oym Wed) & pey am 0§ “SuryiAroad 3ururedxa ur Ajued ayy, -oseg/Aordwig SIVid sdog,
"SOX oom asn-jo
-QIAIQIU] "puelSIopun 0} ASB AIOA S 31 IR, "901U SI AJoriduis oy Aes pnom nok os Y3Uy -aseg/Anordurg SIVid sdo,

The Philips Remote Al Streaming platform / Version 1.0

138

ty of Technology

1versl

.

Eindhoven Un

‘Sunios p1ed uunp pasn SpIed, Y} [e JO IS V [2[qeL

1X91U0D U0

Ynyn ‘Yeag :99MIIAINU] STV Sulisn IopIsuod Ao Aes p[nom nok uay) Suryiowos uon Jurpuadop puawt
-eorjdde/dde qom Surweans € uo SupfIom w [A9y sAes Apoqawios jey) Surnsse [0s Aexj() -WOJ3I PINOM SIVid sdog, q

109[01d A19A9 UT 9sn noA JeY) IUIPIAWOS 1X9]U0D U0

A[[ea1 10U S Jey) ‘Surweans erpaw Joj oyroads 9ymb si1 inq asn 03 Asea 93inb 31 punoj [aours Surpuadep puswr
109fo1d rerwirs e osn pynom A9y} Ji pusly Jowrrei3oid € 0) 31 pUSWIIONRI P[NOM [YUIY) [-WO0J3I PINOAA SIVid sdog, q

1X91U0D U0

Surpuadop puowr
‘wrojye[d [y ue SuIp[ing sem auOWOS JI STV PUSWIWIOIAI P[NOM [SI9MEBIS IO -WI00AI P[NOM SIVid sdog, o)

139 / Version 1.0

The Philips Remote Al Streaming platform

Interviewer

Then let’s just start with the question list. So something | would like to know
before actually going into the questions is you each probably had a role or job
within the team so how did you work with PRAIS? What was your responsibility
with respect to PRAIS?

Participant A

At the start of the project |, well, did some experimenting with PRAIS and seeing

exactly like how we can nicely use it to get images into python afterwards. | did a
small mockup with that and afterwards it was mainly working on the bot side of

things. So yeah that is just normal functionality of PRAIS getting the video stream
video frames and getting data from the datachannels and well processing that.

Interviewer So you also worked on the python wrapper, is that correct?
Participant A Yes | partially worked on that as well

Interviewer Okay, so mostly on processing of incoming data

Participant A Yes

Interviewer and anything on LiveSwitch that you worked on?

Participant A

Yeah LiveSwitch | also very slightly worked on. At least | have an idea on how to
where in the demo code if you will it where to begin with your own code

Interviewer All right okay, that’s nice so you actually worked on both sides

Participant A Yes

Interviewer Which kind of allows you to compare LiveSwitch and PRAIS?

Participant A Yes

Interviewer Very good, nice. Yeah then let’s go to the first question. Overall, how was your

experience with PRAIS?

Participant A

(Experience with PRAIS:) | would say it’s positive.

I liked using it, once | got the hang of it, it was | think definitely easier than
LiveSwitch.

Well the problem still is that there is no PRAIS for the web apps side of things so
we still had to learn about LiveSwitch which was unfortunate.

Interviewer

Yes that’s indeed something we are working on. We actually just for your info we
do have an API for the browser as well. That one works with ICELink, however,
that’s also by FrozenMountain the same developer as LiveSwitch. And during the
last few weeks | was implementing PRAIS in ICELink. So now the browser APl and
PRAIS they work together. So you used LiveSwitch while ICELink now actually
works with both.

Participant A

Nice

Interviewer

But that’s good feedback, indeed its a limitation of the LiveSwitch side.

Participant A

Yeah because it’s | think with the target audience of PRAIS It does not make
sense to have to learn both LiveSwitch and PRAIS

because

after | got into the LiveSwitch thing, it was way more of a hassle than learning to
work with PRAIS.

But after | got that done (learning liveswitch) | don’t think it would’ve been that
much harder to copy that side over to the bots which use PRAIS.

Interviewer

Okay, that makes sense thank you

Interviewer

| guess we can just continue to the more specific questions then. So, which things
that you like the best about praise and why?

Participant A

While I like that it was just subscribing to events and then PRAIS handles
everything. That was really nice.

Especially over LiveSwitch where you have to really go digging into the code and
have to hook your code into some way and it kind of feels a bit hacky and this
has a nice interface for doing the real-time communication.

Interviewer So it’s the simplicity
Participant A Yes exactly (refers to above)
Interviewer All right

Participant A

Because you’re not actually, you’re not doing the in my opinion needless things.
For LiveSwitch you have to write a lot of boilerplate code yourself still in. For
PRAIS it basically look at PRAIS and you start actually doing your business logic.

Interviewer

Uhubh, nice that’s good to hear. All right, very good. Anything else you want to add
to that things you like about PRAIS?

Participant A

Well nothing more | already said that, it’s really been nice to use.

Interviewer

Okay. I think it’s clear. Simplicity is indeed something we are really aiming for. To
hide all of this LiveSwitch complexity in setting up all the streams and like you say
putting in all the different pieces in some weird way. Instead we like you said |
think it’s a nice way to say it we want to immediately go with the business logic
instead of going for the complete infrastructure and all that other stuff you have to
do as well.

Participant A

Yes

Interviewer

Uhm okay, so of course which things that you like the least about PRAIS and why?

Participant A

Ahh well, the least thing I like about PRAIS..

Well more about developing with PRAIS was in using Visual Studio which was not
really a success.

But yeah for PRAIS itself the thing I like least was at the start | think that the
documentation could be a little bit more extensive.

Because for LiveSwitch as well you don’t have any proper documentation that
explains this function actually does this. For PRAIS it’s definitely better and you
can actually get stuff working.

But maybe some example things because well there’s not a lot of examples out
there for PRAIS other than the, what is it, echo bot and the translation bots that
were provided

Interviewer

Okay, so more examples would help in understanding the concepts better?

Participant A

(Refers to above) Yes, exactly. And especially also like when to use which type of
construct.

Interviewer

Uhuh

Participant A

So like yeah what is maybe a good instance for using a data channel and maybe
something also like on what format are we going to put stuff on a data channel.
But that might be a little bit out of scope for the documentation actually.

Interviewer

Okay, so it was not really clear when to use a media stream and went to use a data
channel for example?

Participant A

No that’s to me was clear. It would be nice to see some example for when to use
something.

Interviewer

All right, okay

Participant A

| don’t have a concrete example of that, I’'m sorry

Interviewer

No, that’s fine, it's indeed while making this | was like let’s add the most simple
example you can have, the echo bot and let’s make a more complicated one but
yeah the Azure one you need this Microsoft key. Which again makes it kind of hard
to redo it yourself. So, it is indeed | think a good point to add some more examples
that work out-of-the-box and show the concepts more in depth.

Participant A

Yeah. And there is also, I’'m looking at the documentation now, there is the, you
have to join async and a regular join method and maybe some think about what
it means to join asynchronously. And why would use it over something else.

Interviewer

Okay yeah so these things are already technical | guess multithreading using stuff
in the background but | must say this is like the most difficult part of PRAIS to make
sure all the threads are safe and do not break each other. Which is a real pain. |
agree that it’s not really clear when an async is better than sync. | could definitely
add something to the docs on a conceptual level what it means to do it in the
background and what you have to be careful with when you do run it in
background all right okay | think that clear

Participant A

Yes, good

Interviewer Anything else that you would say this is something | don’t really like about PRAIS?
Participant A No, | pretty much liked it for the rest of PRAIS
Interviewer Okay, the next one then. So if you could change something about PRAIS, what

would it be and why? | guess we already discussed some things like documentation
and examples but it or anything else that you maybe want to change on a technical
level anything?

Participant A

Let’s see on a technical level it maybe would be nice for | noticed in LiveSwitch
you have datachannels you can see a status whether they are still setting up or
something like that maybe it would be nice to get something like that and PRAIS
as well | think we found ourselves needing that exact functionality at some point
I don’t know if it was still required in the final product but it would be nice to
have some of those things as well.

Interviewer

Like the state of the channel

Participant A

Yes like a state of the channel

Participant A

So then, yeah you can actually also see like oh something before sending on a data
channel before like whether it still setting up and you should wait instead

Interviewer

Yes in principle it should you should only get this data channel when it has been
set up completely but | guess there are some scenarios where that’s not always
the case

okay so basically more state information about datachannels and also media
streams | guess, that would help?

Participant A

Yes that would be nice

Interviewer Okay, that’s a good one. Anything else you would like to see different in PRAIS?
Participant A No not really
Interviewer Okay yes the next question is very similar again but now more what do you think is

still missing in PRAIS and why?

Participant A

Yes there is one thing with especially with the focus on real-time it would be nice
if there is a construct to easily say group or link some data to a certain set of
video frames so say like you send one second of video and it gets a specific tag
and you send one second of data over datachannels and it also get that specific

tag and on the other side you can then easily piece the two back together and
see oh yeah the data is corresponds to that video

Interviewer

Okay so | guess on the data side it’s already possible but on the video there’s no
tag attribute for example

Participant A

Yeah it would be nice to have something where you can easily get data and video
of the same tag and group that together because | can imagine that being
important when you because you actually need stuff to be synchronized to some
extend

Interviewer Yes that is a good one, I've been thinking about this indeed and it’s not there but it
would definitely be of value, good that you mention it, thanks.
Interviewer Something else, so what else is there anything else that you feel like hey adding

this would be really of value to PRAIS?

Participant A

No at the moment | don’t really, | think that it is pretty well rounded already

Interviewer

Okay, thanks for that. Very useful insights. It’s also nice to see that you are the
third one and the other people already mentioned other things so it’s really nice to
get a different insights into what you felt is missing so | can really like implement in
very specific things to address this

Participant A

Okay, good.

Oh yeah there is the thing for terminating datachannels, but that something we
already talked about that was a LiveSwitch limitation

Interviewer Yes that is something. Yes | also discuss this with the other, it’s a trade-off that I'm
aware of and it’s good that you mention this. It’s a nice feature to have so | will
definitely rethink this. Thanks for that.

Interviewer We also discussed the documentation a bit already, but just to get back with what

do you think about the documentation, you already mentioned examples are
missing but may be the general impression, how is that?

Participant A

| think it’s nice documentation,

to me at least it explains pretty well what everything should do how we can use
it. Especially going along with the examples.

Interviewer All right, okay good to hear think you. | guess that covers all documentation.
Participant A Yes
Interviewer Next question is a tricky one you used LiveSwitch and PRAIS so you can compare

them | guess. Maybe this question is not so much about how much time that you
saved because it’s like impossible to estimate of course but comparing the two, do
you think that PRAIS saves you a lot of time?

Participant A

Yes, | think it definitely saves us a lot of time, especially in the initial phase PRAIS
is way easier to get the hang of than LiveSwitch.

So | definitely would use PRAIS for that. | remember getting like a basic example
to run in like, | don’t know under an hour and for LiveSwitch it was constantly
digging into documentation some mild frustration and then only after quite
some time you get stuff to work the way you want to.

I think this is really where the simplicity of PRAIS really shines.

And also | think in the long run it’s nicer because | think the code for PRAIS is
more maintainable because its directly almost directly business logic with PRAIS
instead of LiveSwitch where you have just a lot of stuff that deals with having
LiveSwitch work correctly. So | would say it’s way faster.

Interviewer Great great, that’s nice. | feel the same of course. Good to see it also others have
this struggle with LiveSwitch and that PRAIS really makes your life simple.

Interviewer Then we are already at the last question, we are going really quick. So why would
you or would you not recommend PRAIS to a friend or colleague?

Interviewer | guess assuming well of course PRAIS is quite a niche it is a very specific

application that you want to build with PRAIS but assuming a friend or colleague
worked with a similar setting, why which are which not recommend PRAIS?

Participant A

Well | would recommend PRAIS because it again going to save time with
developing and like | said before it also in my opinion makes the code look
neater and more understand able at that.

Lets see, more reasons to recommend PRAIS...

Yeah, | found it nice to work with. Typical event driven design at least for what
you are writing as business logic which is very nice.

Yeah that would really be all,

it’s better documented than LiveSwitch that also a bonus

so yeah it’s | think in a lot of aspects it’s superior..

Interviewer

It’s funny that everybody so far mentioned that the LiveSwitch documentation
really sucks

Participant A

Yeah we had a lot of struggles with that, that was not fun

Interviewer

Yeah, | know the feeling it’s just trial and error and you hope the docs are right but
sometimes they are just lying to you

Participant A

Yeah exactly

Participant A

All right, that’s great that was already last question. That'’s clear. | maybe have one
more question I’'m not sure if you were actually involved in any of this. Typically
you have this on video call or on audio and there are sometimes multithreading
issues there because the frame is kind of kept by PRAIS on a thread so you cannot
really modify it further. Did you have any issues with that?

Participant A

We did at some point | think run into an issue where we would store the video
frame in a variable somewhere and then only later find out that, well since it is a
reference that it would actually have changed at some point because well it was a
reference to the thing that PRAIS kept. | think it’s the only issue that we ran into
for that, or at least is the only one | know of. Yeah we fixed this by just making a
copy of the video frame.

Interviewer

Uhuh

Participant A

But we needed to keep it in memory anyway, so it was probably not really an
issue.

Interviewer

All right okay. This is a very specific thing | keep struggling with. On the one hand
you don’t want to give a copy and on the other hand you do. Do you think if it
would help if PRAIS would already give you a tread safe frame that you can just do
anything with?

Participant A

Well | would say at first it might be more intuitive to work with but on the other
hand if the user is going to make a copy of it for storing say for passing input to an
algorithm later they are probably going to store it in their own format something
anyway in that case it may only be a waste.

Interviewer

Yes that is also my concern and it’s quite an overhead on memory and
performance to keep to copy every frame you get

Participant A

Yes

Interviewer

Okay

Participant A

Yeah | would in this case especially since it’s real-time focused maybe leave those
concerns to the actual people building the application. That way they are in control
of how much overhead they introduce.

Interviewer

Yeah | guess maybe we need some more docs about how this works
conceptually. If you know that the frame is not really safe to work with then you
can copy it that would be nice maybe a good addition.

Participant A

Yes

Interviewer

Any other remarks/comments/questions?

Participant A

Oh yes, out of curiosity... A question irrelevant to the interview followed.
Thereafter, the interview ended.

Interviewer

Okay then we can start the interview in English. | have a question before | go into the
actual list of questions, that’s more about how you used PRAIS. So you each of you
had a role in the team | guess. In what regard did you use PRAIS?

Participant B

| worked a bit on the bot side of the project which used PRAIS mainly but also quite
some on the authentication part which was mainly the website. So | worked a bit
with PRAIS but | didn’t do like the main programming of the peers and the
algorithms.

Interviewer And that you do anything with LiveSwitch?
Participant B | read some documentation but | didn’t really do any programming with LiveSwitch.
Interviewer Okay so you would say you have a pretty good understanding of PRAIS, what it looks

like?

Participant B

Uhuh

Interviewer But not so much about LiveSwitch, that’s fine. There is one question that asks to
compare them but | guess we can maybe skip it or maybe you can provide some
insight.

Participant B Uhuh

Interviewer

All right okay that’s clear.

Interviewer

First question, overall how was your experience with PRAIS?

Participant B

| enjoyed working with PRAIS.

Yes | will try not continue with the next question about what | liked.

It’s quite easy to use because of the documentation is clear.

So of course you had to adjust the bit how does everything work in this setting in this
context but

as a library I understood it quite fast.

Interviewer

Okay very nice. That sounds positive. Yeah you already jumped into the second
question, is there anything else that you would like to add. Other things that you
think that are nice about PRAIS?

Participant B

| also like that there was already an example present, the echo bot.

In the first week we could try to run that and then extend our idea from that.
Otherwise | think it would be more difficult to know how to start and which
functions you would need and

by starting with such an example it was way easier to extend and understand how
PRAIS was intended.

Interviewer

Uhuh. Okay so the examples were really helpful?

Participant B

Yes. (belongs to above)

Interviewer

Nice, okay that’s good to know. Anything else maybe? Otherwise we can go to next
question.

Participant B

| think that’s it, yeah. Uhuh.

Interviewer

Okay then of course | would also like to know which things did you like the least
about PRAIS and why?

Participant B

Maybe that it was like a NuGet package I’'m not sure if there are like other ways you
usually use to make libraries. But we had quite some dependency problemsm abd
different versions so like with the acceptance test that was sometimes a bit of a
hassle. When starting a new project then the dependencies were not correct but
yeah | don’t know if that is really PRAIS.

Interviewer

So yeah NuGet package, you followed the installation instructions | guess. Any
issues with that?

Participant B

That worked fine.

Maybe that was also more Visual Studio complaining rather than the NuGet package
itself.

Interviewer

Yes some of your colleagues also mentioned this Visual Studio dependencies
management is horrible. It sometimes always breaks randomly, you never know
why.

Participant B

It seems like every member of the team has the same thing installed but that some
way there are like three different types of dependencies in the background you don’t
know, or not really aware of how it worked.

Interviewer

Yes, | know the feeling, it’s not fun.

Interviewer

Okay, so maybe anything else that you say | did not really like this about PRAIS?

Participant B

No, not really. | was quite happy with how it works overall.

Interviewer

All right, that sounds good. Thanks for that.

Interviewer

Yeah the next question, if you could change something about PRAIS, what would it
be and why?

Participant B

| thought about you get already some message in the, like the box if so algorithm or
peer joined, but if something goes wrong, I’'m not sure if that’s also an error which
PRAIS tells. Or if the datastream is too slow, maybe PRAIS could do something with
that because that would help with debugging.

Interviewer

So, more logging?

Participant B

Uhuh, yes. (belongs to above)

Interviewer

All right, yeah. At this point its not really nicely integrated with the LiveSwitch
logging.

So you think improving like the things PRAIS tells you about on what’s going on,
that would help you in debugging what’s going wrong?

Participant B

Uhuh.

Interviewer

Okay, that makes sense. Maybe anything else that you say | would change this in
PRAIS?

Participant B

No, not really.

I think it’s quite, the main functionalities are there and there is also not much more
that you would want. You have like peers and algorithm and different streams.
That kind of what you need. So | think that sufficient

Interviewer

Okay, so you feel that it is already complete?

Participant B

Uhuh, yes.

Participant B

Like after that you had like a question is there is something missing... yeah a library
could always have like more functionality and we looked into the authentication
and adding a database and I think those are functionalities that a company would
also use. So some interface for that would also be nice.

But yeabh, if the PRAIS library doesn’t cover everything you just take another library
which does that stuff.

Interviewer

Yeah we of course want to offer everything, well not everything. But all the
necessary stuff,

okay so you mentioned authentication would be something to help by default like
an authentication server you made.

Participant B

Uhuh.

Interviewer Okay yeah | agree with that something we definitely want as well. At this point its
not really secure with all the secrets that are stored locally.
Interviewer Okay, so we already kind of covered the fifth question. Is there anything else that

you would say | would also add this, because it seems useful? You mentioned logging
already.

Participant B

No | think that’s it.

Interviewer

All right. Then we go to the sixth question. What do you think about PRAIS’s
documentation?

Participant B

(Documentation) I think it’s good.

I also liked the conceptual figure. You get quickly and overview of what kind of
functions there are in PRAIS.

And like the documentation itself | only looked at that when | was using some
specific methods and when | needed some information but looking through all of
that is kind of difficult | usually find myself you don’t know what you’re looking for
when you’re just starting out so that figure in the example really help me to grasp
what PRAIS was intended for.

Interviewer

Okay nice. Yes that’s good to hear | put some effort into this figure thinking it would
indeed have this purpose so it’s nice to hear that it actually helps you understand the
concepts better. So do you think the figure is enough or should also have some more
explanation next to it?

Participant B

| think it's enough, you can assume that software developer that they are
comfortable with reading such figures.

Interviewer

Uhuh

Participant B

So much documentation around it is probably not really needed.

Interviewer

All right, okay. Yeah that makes sense. | really try to balance the amount of text with
the amount of actual information you’re giving. If it becomes too much then there is
no point, people don’t look at it anymore.

Participant B

Yeah it’s not really a large model so | don’t think you need additional explanation.

Interviewer

All right, thanks for that.

Interviewer

So the seventh question is tricky | guess because you didn’t really work with
LiveSwitch on code level. Maybe based on some things you picked up within the
team, what do you think regarding PRAIS versus LiveSwitch?

Participant B

There was a lot of difficulty and also myself understanding LiveSwitch because of
the limited documentation so I’m really sure that PRAIS saves a lot of time because
the documentation was a lot clearer

and the main functionalities were already implemented for us. That was definitely
the advantage of PRAIS.

Interviewer

That’s good to hear, that’s exactly what we want of course. That you just start, it
works, tada, everybody happy.

Participant B

And | also think you can work with PRAIS without understanding LiveSwitch in
depth.

Which is also a good thing because they depend on each other but if you should be
comfortable with both libraries completely then | would be a bit more hesitant to
use PRAIS as is.

But it was way clearer than LiveSwitch, so that’s nice.

Interviewer

Yeah that makes sense. Well of course PRAIS kind of hides LiveSwitch, if you still
have to know LiveSwitch that still doesn’t make sense at all. One of your colleagues
did mention that if something goes wrong that it helps to know what LiveSwitch is
doing.

But you already mentioned that the logging would already help a lot there.

Participant B

Yeah

Interviewer

So you can at least see if the mistake is on your end or something within PRAIS.

Participant B

Yes especially like eventhandling things are more LiveSwitch related and also when

working with the authentication we had like a token and for that we also needed to
dive a bit deeper into LiveSwitch. But when we started doing that we were already

pretty comfortable with PRAIS so that was not really an issue.

Interviewer

All right, okay. That sounds nice, maybe anything else about PRAIS versus
LiveSwitch? | guess you already mentioned a lot.

Participant B

| think that’s it.

Interviewer

All right we are going really first we are already at the last question. So why would
you or would you not recommend PRAIS to a friend or colleague?

Participant B

| think I would recommend it to a programmer friend if they would use a similar
project since | found it quite easy to use but its quite specific for media streaming,
that’s not really something that you use in every project.

So, I’'m not sure if | would recommend it.

I liked using PRAIS so | would use it again if that would be possible.

Interviewer

Okay so | assuming that somebody says hey I’'m working on a streaming web
app/application something then you would say okay consider using PRAIS?

Participant B

Yeah, uhuh. (above)

Interviewer

All right, okay. That’s good to know. Thanks for that. Do | have any other questions....
Do you maybe have any all the questions left?

Participant B

No not really.

Interviewer

All right, then | think that already wraps up the interview.

Interviewer Do you have any questions about the interview itself?
Participant C No, the structure is clear the questionnaire is pretty clear | think you can start
Interviewer Nice nice. | would like to start with the question that is not on the list it’s more

for my understanding, in which way you used PRAIS, | can imagine you each took
a role within the team, bots, front-end, so how did you use PRAIS?

Participant C

| did more of an overall job, so | used LiveSwitch on the front-end a lot and did
review a lot of code on the backend that uses PRAIS so I've seen both being used
but haven’t written much code myself using it

Interviewer

Okay so you have a pretty good idea of what the interfaces are like.

Participant C

Yes | have a very good idea, I've also read the documentation multiple times. |
have an idea of all the interfaces | just haven’t struggled with a problem and
come up with a solution because I've reviewed the solutions, not so much tried
to create solutions. Which we mostly did in LiveSwitch not so much in CH.

Interviewer All right all right, nice to hear that the documentation was actually read probably
more than | did myself
Interviewer Alright let’s go to the first question, overall how was your experience with

PRAIS?

Participant C

| think PRAIS is pretty clear,

you tried to keep the amount of classes low and | think that really shows in the
clarity of our code. Because if you look at our code it doesn’t seem that hard, it
seems to be very easy to do things.

Like a bot joins, a function gets called, you do new datastream, go. And

it just seems to function in a more streamlined way than you would maybe
expect on a technical level. That was my first impression.

Interviewer

Alright so you would say the simplicity is nice. That it’s very easy to understand

Participant C

Yes (belongs to above),

| could explain why all these classes exist to someone who doesn’t know about
video streaming. And | think that’s the biggest strength of having like a low
amount of classes that are very clearly for one goal.

And even within the classes there aren’t that many functions. There are
enough functions to do what you want enough methods but they are not too
many. So for instance for LiveSwitch you have some classes that have way too
many overwriters and functions and methods | think in LiveSwitch there are 10
ways to do somethings.

Interviewer

Okay, yeah that’s nice to hear. The main goal is indeed to go for simplicity to
make it super easy to understand. One of your colleagues also said nicely | think
with PRAIS you can immediately focus on the business logic instead of having to
think about all the technical stuff behind it. That’s what we want

Participant C

| do think that the one thing that we did experience was, its not really the fault
of PRAIS but it is remarkable that you still needed to know LiveSwitch in a way.
At the very basic level you can just do things with PRAIS, but you very quickly
came into like oh why is this error thrown, because the log entries are still
LiveSwitch. Why did this happen, is it my fault or LiveSwitch’s fault? Then you
still had to go to LiveSwitch documentation to find out what happened and
then the abstraction kinda got in the way because you couldn’t diagnose if it
was your part, PRAIS, or LiveSwitch.

Interviewer

Okay, | think that makes sense. We still have some way to go in terms of the
logging. Because all the LiveSwitch logging is kind of not really taken into the
abstraction layer. So | think we can really improve on that.

Participant C

Yeah

Interviewer

Do you also think this is because on the front-end you had to work with
LiveSwitch or was it purely like C# stuff that went wrong?

Participant C

yeah | actually think that if you understand LiveSwitch, you using the front-end
was sometimes easier to diagnose problems than through PRAIS. Because
when you did it through PRAIS you were under the impression that you did it
right and most of the time you did do it right, but some very specific use case
wasn’t the main focus of the method in PRAIS and then it bugs LiveSwitch or
something.

Or when a bot joined and its IP was wrong, and PRAIS doesn’t care about that
part but LiveSwitch does and then you are like how does an IP get parsed?
Where does that even happen? | don’t know. That never happened in Javascript
because you could research where it was.

Interviewer

Yeah okay

Participant C

So you could find where the problem was because you called LiveSwitch. So
that’s the only downside of abstraction layers. But | don’t think that a PRAIS
thing specifically.

Interviewer So basically it’s nice until it goes wrong. Because then you are like okay where
does it go wrong?

Participant C Yes

Interviewer That's true, that’s a trade-off | guess

Participant C Yeah

Interviewer Okay, then the next question more specific so which things did you like the best

about PRAIS and why?

Participant C

The clarity in explaining everything. So we had a team where some people
haven’t ever worked with C at all or C# and we also had people that were
experienced. And someone could write some code and show it to someone
else and they understood what it should do. Like the business logic part | think
that’s very powerful.

Interviewer Nice nice
Participant C Very important
Interviewer That's nice to hear. Anything else that you think is good about PRAIS and why?

Participant C

| think it’s a good testament that a group with some programmers who have
never programmed before could actually build a web streaming thing in less
than 10, maybe only five weeks.

And that

our progress was really nice. | think that’s, yeah, a lot of that has to do with
PRAIS.

because | think the major setbacks we had was testing which is a university
thing. And | think all libraries have that, where you have sealed classes and you
have to make all the mocks and stuff yeah that is just hard. There is no way to
get around that. And then we had LiveSwitch on the front-end being annoying a
lot, LiveSwitch documentation held us back a lot.

So, the parts on the server where that didn’t happen, because it just worked, it
just easily was readable, solutions were clear and it worked. | think that saved
us a lot of time.

And | don’t know if everybody noticed that but compared to LiveSwitch on the
front-end we spent more time getting LiveSwitch to work even though the app
was already there than building things with PRAIS | think

Interviewer

Very nice, okay. That’s exactly what we want.

Interviewer

Mainly going into this mocking and testing, X mentioned this in particular saying
yeah we had to add all of these interfaces to make it testable. What is your
opinion on this? Do you think it would help if PRAIS would already include these
kind of interfaces?

Participant C

Yes, so in a sense returning interface types, or allowing interface types to be
sent would be useful

because | think. The problem is not that we should create interfaces because we
should for everything in the code. But the problem was that we had three
classes | think translate our versions of everything into the PRAIS versions of
everything.

Interviewer Yeah | saw those
Participant C That class shouldn’t be necessary
Interviewer Yes

Participant C

It should just accept something that implements the interface instead of
requiring to send a peer for instance. You should require it to send a peer
interface, not an object instance. That would’ve saved us, | think some time
because now we have classes that just take our peer and convert it to some
fake version of the PRAIS peer or mocked version of the PRAIS peer that would
not have been necessary if we could just send the fake one directly.

Interviewer

Yes if you have the interface you can implement it fakely.

Participant C

It would have exceptions but we know what’s going to be called and what’s not.
But | don’t think it’s PRAIS’ fault that we spent a lot of time on testing. That’s
really the other end.

But some interfaces would’ve been nice.

Interviewer

Okay, thanks

Interviewer

Let’s look at the next question, so which things did you like the least about PRAIS
and why?

Participant C

.net framework. Very clearly .net framework. We have all vowed to never use
Visual Studio ever again, ever.

Because Visual Studio just does such a poor job of actually managing itself. We
have had literal message boxes which said only catastrophic failure. What
happened? We don’t know. And the dependencies, just dependency failure
everywhere, that have nothing to do with the entire project, just dependency.
People had to install VM'’s just to get Visual Studio there. So we had two people
on Macs, they have been working in low memory VM’s the entire time

because it was only Windows. | think that does set back mostly the algorithm
side. When you make algorithms, most servers run Linux.

Interviewer

Uhuh.

Participant C

So, for a hospital, deploying a C# app on Windows may be a stretch. So, |
would really consider moving to .net core. If possible.

Interviewer

Yeah we actually designed PRAIS with like vendor abstraction so we have
LiveSwitch that you use we also have ICELink which is also FrozenMountain stuff.
There is an LiveSwitch version that is .net standard, but that doesn’t really
support all the features with video and audio so that’s why we did not do it yet
but | can imagine that in the future we want to do this so we can run on Linux for
example.

Participant C

And then you also get the freedom of choosing your own C# method framework
things around .net core. Because .net core can run as a separate thing while

.net framework is very integrated with Windows and the entire tooling system.
And they just set us back a lot, to have to use Visual Studio sometimes. That
was the thing we like the least | guess.

Interviewer

Okay, anything else that you say this is not so nice about PRAIS?

Participant C

That you had to know some things about LiveSwitch, but | already mentioned
that before, just for the clarity to included here.

Are there more things... No no other things.

| think the .net core, the .net framework it kind of captures all the problems we
had. If you just switch from .net framework it would solve nearly all the
problems. Because most things where just due to that.

We had dependencies that were unclear or nuget packages, | don’t think it’s
the best method of packaging a thing.

I’m also very used to everything that’s not C#. So C# was not my native choice,
but | think their packaging system just caused us, you have seen this in the
demo, it caused us a lot of random failure. Never occurred on any other PC ever
and then you do it and you start up a VM and one VM is fine and the other VM
has a problem. It’s incredibly annoying.

Interviewer

Yes you don’t want to know how much time | spend on getting all the
dependencies right. It’s horrible

Participant C

Yes, so it’s not a PRAIS problem but it’s a PRAIS dependency problem

Interviewer

Uhuh

Participant C

I think that’s the major setback. It’s that you don’t control the server so you
can’t make your own full SDK.

But it would’ve been nicer if there was just a PRAIS server for which you have a
SDK in every language to talk with.

But that’s what LiveSwitch kind of does, poorly on C# apparently. | don’t know
how you should solve that maybe allow creating bots in node, so if you make a
Javascript API for the website also allow it to run on nodelS so you can make
bots in nodelS. Maybe that’s one of the easier options to create other platforms.

Interviewer

Yeah it is really a future thing to consider. It’s a good point because .net
framework is kind of outdated.

Participant C

I think I also answered question four, what would you change. | would
probably go with Javascript..

Interviewer Javascript we are working on
Participant C Or python
Interviewer Okay anything else you would change in PRAIS?

Participant C

Maybe add more interfaces but we already talked about it.

Participant C

Add the authentication server into PRAIS, make it like a normal part of how it
functions

so you never. Also abstract away the LiveSwitch words, so we had client ID for
the auth server because you have some client registered to the authentication
system then you have a client ID for LiveSwitch but you also have a device ID you
have a peer ID and they all have some meaning within PRAIS. PRAIS uses them in
a specific way so the device ID for bot is apparently always the machine name.
That something we didn’t know and that’s a choice. The moment you start going
out of PRAIS, you need that info. That was something | would change | would
make sure that you never need to. That principle of a device ID is never a thing
because you don’t make the token. You never do, so | think | would include that
part. But you already want that yourselves as well. That would be something to
change.

Interviewer

Yes | looked at your server’s code and it looks really nice its well structured.
Especially considering the future, | already talked to Zoran in the team like hey
can we just replace our own authentication server with this please. Out of
curiosity, this is more like a future work for ourselves. | guess you made most of
the authentication server? So now you generate LiveSwitch tokens, as |
mentioned we also have ICELink which is basically PRAIS using a different
implementation. There we have different tokens that we generate ourselves.
How easy would it be to change the authentication server such that it can
generate different tokens depending on the API call.

Participant C

We now kind of struggled with the fact that LiveSwitch has some very specific
parameters that it needs. For instance device ID. And | think that if you want to
use it for multiple implementations, which would be very nice. You should either
make some scheme that you know which is gonna generate, so it’s not random
anymore, it’s some contract between the SDK and you. That you will know when
you use LiveSwitch the device ID will always be something, something specific.
Generated from some generic thing that both implementations could use as a
parameter. Because otherwise you are going to have a lot of parameters. We
have a standard contract, that’s going to be in the software design document it’s
the API specification for the thing. | would make sure that that works for both of
them and reduce the amount of parameters as much as possible. So if it is
possible to make it the same for all the clients or something, do that. And never
ask for it and just do that for LiveSwitch or guess it for a client or create it
predictably or make it a toggle in the management panel, that’s not included its
some todo line somewhere. But if you create a management panel for
companies to add their apps to the system, make them fill it in there for
instance. So they can pre-provide it, that would help a lot. So what you could do
is, if you toggle it to LiveSwitch in the panel, it would ask you: your new bot,
what should we call it? And use that name on both the bot and the server for
instance, then you already eliminate the device name.

Interviewer

Yes, yeah exactly

Participant C

Do some sort of thing with that

Participant C

Maybe the best would be if you could just provide a client ID a very specific
unique device identifier because then you can have multiple devices and an
authentication method, so either the ID token or the secret based thing. Then
you would have only four parameters and we would know which role you get,
would know which environment thing you get, you would know the user ID. So

thats all possible if you have some prior information sharing and we did not have
that so it was a lot of parameters.

Interviewer All right okay

Interviewer In my project | don’t think | will be able to add all of this, I'm almost done, | will
be done in October and there is also still holiday coming up. But | think it’s really
worth adding the server to PRAIS as an internal part because now having the
secret locally is really not done.

Interviewer That wraps up the fourth question. Then the fifth, is there anything that you

think is still missing in PRAIS? And why?

Participant C

I think I'm less qualified to answer what features are missing because | didn’t try
to solve a problem with PRAIS so | didn’t have the problem like oh | can’t close a
data channel for example so | can’t give you those | think maybe X is the most
qualified to give you like this method is missing and this method is missing.

Participant C

(missing things:) But in general it’s PRAIS logging | think. Just have PRAIS log
useful messages because LiveSwitch does not.

Interviewer

That’s indeed something on the roadmap. Good point. Indeed the function calls
that are missing are already mentioned by your colleagues so that’s taking care
of.

Participant C

Yeah

Interviewer Anything else that comes to mind?
Participant C Not really, no.
Interviewer All right let’s look at the six question, what do you think about PRAIS’s

documentation? You read it a few times

Participant C

Very clear, nicely auto generated. That’s always a plus because that also tells
me that you made proper documentation in your code. Because it can auto
generate this. | think it’s clear,

maybe the only part that | would improve is the general concepts. So even
though there is a diagram and it’s in English so there is a data channel class
what would probably create a data channel surprise. It may be a bit hard for
some developers to understand. | think we did most of our understanding
through just creating some random demos. And I think that’s a good way to
learn but not everybody wants to learn that way. So they want to know what
can | do with a media source. Not even what is a media source but what could |
theoretically do with it? What kind of things are media sources? And | think
that mostly I think we also struggled with that on the front-end, we thought it
would be really easy to send video, it wasn’t. In that sense like what is a media
source, is that dependent on LiveSwitch? For instance it says the type of media
source, media source type, okay camera screen and custom, but what could a
custom media source be? Is it anything that sense just frames? So maybe go
into detail on what you can expect more. That would be an improvement.

Interviewer

| don’t really explain like each of the classes in more detail right. | should
probably add that.

Participant C

(Documentation:) You explain what it does, but not what | could do with it.
That would be the only improvement you could make.

(Documentation:) But | think it’'s more than sufficient now and it’s amazing
compared to what LiveSwitch did.

So yes | think that’s already pretty great and also the examples helped a lot.

(Documentation:) It also shows how easy it is to create a thing.

Interviewer

Okay thanks for that. Thats some nice feedback and easy to add

Interviewer

Okay let’s see the seventh question is tricky because well let’s not really focus at
how much time you compared to LiveSwitch did save you time how does that
compare?

Participant C

I think if I look at the LiveSwitch documentation I've read it for Javascript but I’'m
also reading it in C now just to see.

(Time saving:) Uhm, infinite probably.

The LiveSwitch documentation is really poor, it also really assumes that you
know why you are doing things. So it assumes that they know what a video
stream is on like a bit level. Which codec do | want, | don’t know | don’t care. |
just want some video stream okay. It goes into detail on enabling acoustic echo
cancellation, | don’t really care about that | want the library to fix that right.
Whats an SFU connection? And then | have to read it, it says it stands for
selective forwarding unit, still don’t know anything. What's a selective
forwarding unit? | think that even reading the documentation for LiveSwitch
took most of the documentation reading time and | think that shows that, it’s
even though we haven’t used LiveSwitch that’s a major improvement because |
don’t have to select one of the 10 codecs to do it. And also it may be a downfall
if the codec doesn’t work, so | do then expect PRAIS to find out what works.
That’s the challenge but | think that if it does that then you are saving a lot of
time.

Interviewer

All right. Okay that’s good to hear. Let’s see let’s go to the last question. Why
would you or would you not recommend PRAIS to a friend or colleague?

Participant C

Okay why would you, okay.

For starters | would recommend PRAIS if someone was building an Al platform.

(Recommendation:) The only reason | wouldn’t yet is because it doesn’t feel
complete.

So if | build an app for ING and | go to the ING website for developer
documentation | get 10 million pages with the most detailed thing and | get a
developer panel and | can add my app there and | can go go go. | get a base
project and

here it seems that the product works but | can’t download it yet, | can’t create
an account yet, | have no panel to register my app | just get the C# code from
some out of band communication and I think that the only thing that'’s.

And it’s not within the scope of what you’re doing | guess so it’s not at all related
to the project scope but after this project is finished. Philips should make a clear
developer push developer marketing thing for this. | think then it feels more
complete as a product not the project.

Interviewer

Yeah | agree of course we are in Philips research so we kind of do it on the spot
and improvise but indeed if you want to offer it as a proper platform there is
much more that we need to add. Let’s see if that happens in the future, would
be cool.

Participant C

Yeah it’s more of a very very long proof of concept technical demo, at least
what it seems to me from the outside and | don’t think that’s bad, but before
you sell it you do need some more things around it.

Interviewer

You mean that SEP was a proof of concept?

Participant C

No I think PRAIS itself is because you have the, you don’t have some, yes some
missing parts so | can’t create my own secret | can’t create my own conference
at the moment because that is missing it’s more of a technical demo even for
us as users. Than it is a full platform yet.

And it’s not for PRAIS specifically, it’s not that hard to transition, | also had other
projects where | could make the technical demo in an hour and the entire
implementation to three months. So for PRAIS its not that much of the step, its
adding a developer panel, its having you create your own conferences, link some
bots in the panel and then you get all the secrets and you put them in. That’s it.
That would solve the entire thing. Right now it’s too much of an insider thing to
recommend | think. But again that’s not within the scope of what you have to do
| guess.

Interviewer

Yeah that’s true, but it’s also true that it’s not complete yet. So its a good point.
Okay that wraps up the last question. Do you have any other remarks comments
guestions?

Participant C

| guess not.

Interviewer

Okay we can switch to English just to keep this consistent with the others. Yeah there
is one question | would like to ask that not really on the list it is for my understanding
, how you used PRAIS?

Participant D

Have you already looked at the code that we supplied? Just as a question

Interviewer

A bit yes

Participant D

As you may have noticed, we didn’t really use PRAIS the same way anymore as you
prescribed in the documentation mainly because it allowed us to be able to test
PRAIS with unit testing

So we created some sort of helper class and we did dependency injection instead of
extending algorithm base with the actual bot. Besides that, we used PRAIS well the
main functionality that we used in PRAIS were event listeners. Going onPeerlLeft
onDataChannelOpened, onVideoReceived, onDataReceived, and of course we send
some data strings over datachannels and we use the custom media stream | think
those are the parts of PRAIS that we used

Interviewer

Alright so it was mostly for you on the C# end and yeah | looked at the code and | was
indeed seeing this whole basically copy of the PRAIS interface that you added to make
it testable

Participant D

Yes

Interviewer Okay that makes sense

Interviewer And you didn’t really work on the front-end, it was mostly algorithms?
Participant D | What do you mean front-end?

Interviewer The web apps

Participant D

No, we didn’t really use PRAIS a lot on the web apps mostly | think its the LiveSwitch
demo

Interviewer

Yeah, so what | mean is you developed on the algorithm side or also on the web
apps?

Participant D

Oh, | developed on both

Interviewer So you also have experience with LiveSwitch?

Participant D | A little bit, | didn’t really look too much at the LiveSwitch specifics

Interviewer Okay, good to know

Interviewer I think that’s clear let’s go to the first official question so, overall, how was your

experience with PRAIS?

Participant D

Overall | think that | had a good experience with PRAIS.

PRAIS is really easy to use and | don’t think we encountered any real bugs with
PRAIS.

Which was really nice also | think that the documentation of PRAIS is quite good
especially when you try to compare it with LiveSwitch.

Yeah, good documentation also helps that you added these XML comments really
helps the IDE to highlight them and just allows for faster development.

The two things that were a bit less when using PRAIS were | think the exceptions
sometimes LiveSwitch throws an exception and PRAIS catches it but does not
propagate it. This makes it somewhat uneasy to deal with exceptions and

testing was a bit less easy.

But | can elaborate on that later.

Interviewer

Okay so you have some cases where for example | modified PRAIS a bit for the
datachannels to throw exceptions and | guess there are other examples where you
have looked into the logs to see that there was something going wrong while you did
not see that on the PRAIS level?

Participant D

Yes, sometimes LiveSwitch prints these errors in the console but in the actual code
runtime you cannot catch any exception or very easily detect that something went
wrong and then deal with it

Interviewer Yeah okay because it’s all internal and some kind of DLL that super deep

Participant D | Yes

Interviewer Okay good to know

Interviewer Yeah | guess we will cover the specifics in the remaining questions. So, anything else

on the first question?

Participant D

No | think that was it for the first question

Interviewer

Okay

Interviewer

So, which things that you like the best about PRAIS? And why?

Participant D

| think that what | like the best about PRAIS was the simplicity.

There was not a lot of when you look at LiveSwitch you have like lots of functions
and some functions do similar things but you’re not sure how they differ and that
kind of stuff when you look at PRAIS you just have a couple of functions they are
really clear in what they’re supposed to do and it’s really easy to use.

Just you are looking for something, something easy like send datastring. There you
have some function send it synchronously send it asynchronously just really
straightforward to use. | think that was what I liked most about PRAIS

Interviewer All right, so it’s mostly simplicity
Participant D | Yes
Interviewer Okay, nice nice

Participant D

Like if you want to create simple applications with web RTC then this is really the
way to go if you ask me

Interviewer

And what do you think about more complex applications?

Participant D

Well because PRAIS contains a lot of sealed classes and not a lot of interface or at
least not a lot of interfaces that are public within the library it doesn’t really allow
to modify PRAIS so when you use PRAIS you should really stick with the PRAIS
functionality mostly. So, if you have to do stuff that is a bit different than what
PRAIS does then, | think it easier to just use LiveSwitch instead.

Interviewer

All right, so yeah the sealed classes was intentional indeed to the basic idea behind it
is that if you extend a class and | change PRAIS. Then your application may break

Participant D

Once it changes yeah

Interviewer

That's why we seal it to basically make sure okay that extending shouldn’t be needed.

Interviewer

Okay, so it’s mostly you’re limited to the PRAIS interface of course and then in case
you need something else you okay yeah.

Participant D

Yes

Interviewer

Anything else about what do you like which things that you like the best

Participant D

Well simplicity and the documentation. | think those are really the things that were
the best

Interviewer

All right, great, thanks for that

Interviewer

Then we also of course would like to know which things that you like the least about
PRAIS? And also why?

Participant D

I think | already mentioned them so it’s twofold.

On the one hand there is the exceptions, they are sometimes catched by PRAIS but
not propagated | would really like to see them propagated in some way either just
propagate the actual exception or throw a different one something like that.

And also of course document these exceptions with the XML documentation and on
the website.

Interviewer

Okay

Participant D

So that’s for the exceptions. | think that’s what I like the least. Secondly,

Participant D

It’s not really easy to test,

| didn’t really realize yet that there is a good reason to have sealed classes which |
agree with but perhaps it is a good idea to create interfaces for the sealed classes to
allow the user to or the developer to substitutes those sealed classes for another one.
So for example, when you want to test whether sending a message or whether a
message is sent or something like that when you receive a message you can create a
modified version of the data channel and use that one instead. Like | think it’s called
the strategy pattern, I’'m not sure

Interviewer

Yeah it’s a long time ago that | learned about these patterns. But, okay, so in general
you are saying that having the ability to extend the classes would make testing much
easier but also making your own custom data channel these kind of things?

Participant D

Not really extend, extending classes may be useful at some point but it’s not really
necessary. | think there is also no scenario in which you really want to change the
behavior of the class you either want to replace all of it or you want to extend it and
then you can also something else you can create some sort of wrapper before or after
calling the function on the data channel you can do some other stuff, so extending is
not really necessary, | think. So they can still be sealed, that’s fine. | think it’s actually
better when you think about it.

But having interfaces for these classes and somehow being able to substitute them
that would be useful.

Interviewer

Okay, so you define the interface and that can change of course but you can put
different objects basically behind it

Participant D

Yes

Interviewer

All right, yeah

Interviewer

Yeah | so in your code | saw that you have like an interface for every peer, media
stream, all the PRAIS concepts you had an interface. Okay, good point, thanks for the
feedback. Very useful to get it

Participant D

It’s really just mostly for testing that we did that. For the functionality it’s not really
necessary. But could still be useful sometimes | suppose

Interviewer

This is exactly why | think this interview is nice to do because | never, while | test
PRAIS itself but | never test applications that use PRAIS, so it’s good to get this
feedback like hey, you basically had to make all the interfaces yourselves while it
could be part of PRAIS of course.

Participant D

Yes that would be nice

Interviewer

All right,

Participant D

Also, because we created those interfaces and of course we want to keep the work
that we do minimal but maximal functionality so we only created interfaces for the
parts of PRAIS that we actually used. And not the other parts. Which has somewhat
limited our use of PRAIS indirectly

Interviewer

Yes that makes sense of course, you are not going to make an interface that you will
not use

Participant D

Uhu

Interviewer | guess that if we offer this from PRAIS then you are free to use whatever you like.
That should be fine.

Interviewer All right, any other remarks regarding things you did not like?

Participant D | No, no other remarks

Interviewer Okay, great. Thanks for the feedback, very insightful useful

Interviewer Then the next question, so if you could change something about PRAIS, what would

that be? And also why?

Participant D

So one thing that | would change | already mentioned is the exceptions.

| don’t think | need to repeat that.

Interviewer

No

Participant D

One thing, something that | would change or something that | would add are the
interfaces.

Which I’'m also not going to repeat further

Interviewer

Okay

Participant D

Something else that I’'m not really sure about but | had some doubts about it. To get
the PRAIS functionality you have to extend algorithm base. I’'m not really sure if
that’s like the best way to do it or whether there is any design choice behind this.

Maybe you can explain is there a reason you chose to extend algorithm base or

Interviewer

Well, initially the idea was that okay you have an algorithm and all you have to do is
make that algorithm extend algorithm base and then tada you have a lot of
functionality. But, actually like two weeks ago | was also working on a bot myself and |
did not really have this extension requirement and | think I’'m just going to make it
non-abstract so you can also just instantiate the class having to extend it.

Participant D

Okay

Interviewer

Because now we are basically limiting the user while the user should be free in
extension or just instantiate it and use it.

Participant D

Hmhm

Interviewer

| guess that answers your question?

Participant D

Yeah, mostly it does. This also relates a bit to the interfaces as discussed earlier. But
having to extend algorithm base means that you’re stuck with the actual
implementation that requires network activity.

So if you extend algorithm base it’s not testable.

That was our main concern with that | think. So, | think that if | had to change this
then | would create an interface that contains the PRAIS functionality such as open
data channel and also has some way to register event listeners, for example on peer
connected etc.

Participant D

And then have some concrete implementation that is provided in PRAIS so it's more
like dependency injection that you do. You can test, yet it just allows you to test your
functionality or algorithm essentially

Interviewer

Yeah yeah because you can have the interface in your test and you only provide the
functionality for the functions that you need.

Participant D

Yes, but like you can have the actual implementation PRAIS to run the algorithm in
production scenario but when you want to test you may want to use something with

the same interface but with different functionality so that for example you don’t
require network activity and that would be useful.

Interviewer All right, okay, so also | guess again testing would be much easier if you don’t have
this class but an interface that you can use yourself.

Participant D | Yes

Interviewer Okay

Participant D

So it’s like, when you construct the algorithm you pass some object that contains the
PRAIS functionality and then the algorithm expects something that extends the
interface.

Interviewer

| guess this nicely aligns with the other feedback on okay having interfaces for every
PRAIS concept essentially would really help in the testing especially

Participant D

Yes, overall I’'m really happy with PRAIS

so don’t get me wrong

Interviewer No no no

Participant D | But, the testing is a bit more difficult

Interviewer This is the part of PRAIS that they never had to do myself so it’s nice to see that there
are some limitations and that we can probably make it easier by having these
interfaces.

Interviewer All right,

Participant D

Yeah it’s nothing structurally wrong with PRAIS that can’t be changed. That would be
at the cost of other things | think.

Interviewer

Yeah it’s of course always design and trade-offs. This was the, you are the first group
that uses PRAIS. It was like a first usability test to see if there are any bugs or issues
and | am already very happy that there are no major bugs only like little usability
things that we can improve. So that’s actually very nice result | think.

Participant D

Uhuh

Interviewer

Okay, so that was the question. | guess the next question is very similar but this is
more about missing stuff. You already address some things like interfaces, exception
throwing. | guess there is, maybe there is something else? That you feel like is
missing?

Participant D

Yes, there is one thing that we didn’t really need in our scenario but | can imagine
that it may be useful in some other cases. Imagine having an algorithm that is in the
conference with a load of peers and it sometimes does require to send or receive
data or video with some of these peers. But not all of the time, then it would be a bit
of a waste to have data channel and a media stream open with every peer all the
time. And | think that in PRAIS at the moment there is no real functionality to close
datachannels and media streams. You have told a bit about the limitations in closing
datachannels. But maybe for media streams it’s really useful to be able to explicitly
close these as well. Then you can say, hey | need to send data to this peer now just a
little bit, I’'m opening a media stream and when you’re done you close it again. So that
when these or when you want to receive something at some point you're not
receiving all these bunches of data and you can yeah lower the load a bit.

Interviewer

That’s a good point, actually media streams are quite resource intensive especially
encoding audio video is really CPU intensive. There is a function that can close a
media stream so | think that’s already there but indeed datachannels is not present.
Luckily datachannels are quite cheap

Participant D

Less resource intensive

Interviewer

They are like always open in the back you don’t really see that but that’s what'’s
happening and yeah I still think it should be would be nice to have a ways to also
close datachannels explicitly but at this point it’s just cheaper to not have it. But it’s a
good point, | think for media streams it’s already taken care of.

Participant D

Okay, yeah we didn’t need it in our project so | didn’t really look into it. But if it’s
present already, then that’s great.

Interviewer Thanks thanks

Interviewer So, anything else that you think is missing?

Participant D | No I think there is not really much missing for the rest.

Interviewer Okay, perfect

Participant D | Not that | encountered at least

Interviewer Hmhmm

Interviewer Okay, then the sixth question you already also briefly talked about it. So what do you

think about PRAIS’ documentation?

Participant D

Yeah, | think the documentation is really nice.

So, it’s well-documented functions have their descriptions about what they do and
what they return.

They have XML comments which is useful in the IDE.

Only the thrown exceptions that you added at some point they aren’t documented
or not completely | think but | think that’s the only thing that | would change.

For the rest, it’s just really good

Interviewer Okay, good to know, | put quite some effort in this so it’s nice to see that it’s actually
being used. Very nice. | guess | should indeed do another sweep through it and see if
all the exception docs are up-to-date because | changed some things there.

Interviewer Yeah, | guess that covers the documentation question.

Participant D | Yeah | think so too

Interviewer Then a more difficult question, how much time, as you already said you did not really

work too much with LiveSwitch, but comparing PRAIS versus LiveSwitch how much
time do you think you saved by using PRAIS instead of using LiveSwitch.

Participant D

Okay, | think that you also have an interview scheduled with Bart and Bart should be
able to better answer this question than I. He worked a bit more with LiveSwitch in
the web apps, yeah,

I looked a little bit into the LiveSwitch documentation and it was really horrible. So,
yeah, like LiveSwitch has lots of functions, lots of functionality but looking at the
documentation you have no clue what it does. So, | think that this would save me
quite a bit of time. Maybe about 30 hours in this project | guess.

If I had to implement all this from scratch but but this estimate could be quite off
because I’'m not sure how much time it takes to get that part of the PRAIS
functionality that we used from using LiveSwitch.

Interviewer

Uhuhh

Interviewer

Yeah | guess estimating this is super difficult especially in terms of hours but indeed
the general impression is that LiveSwitch is much harder to know what it’s doing. |
also have the same experience actually that looking at the docs you have functions

and you have to guess what they do. You mostly learn it from their code examples.
Okay, and you basically feel the same that

Participant D

It did save me time, I’'m sure about that. How much, | don’t know exactly but it did
save me time.

Interviewer

That’s good to know, that also the goal of PRAIS. To all of this difficult networking and
streaming stuff is hidden.

Participant D

| can imagine that I’'m not really sure about this but | can imagine that when you use
LiveSwitch you have to take care of the encodings yourself do that somehow and
when you use PRAIS it’s just done for you

Interviewer Yeah, there’s a lot of, yes encoding is luckily done by LiveSwitch itself but there is
some certain connection setup, message exchange you have to do. Especially to bring
it all together into the PRAIS interface with peers and streams in these different types
of connections that’s where the most work is.

Interviewer And also, PRAIS was designed to, just for your info, not really relevant, but now we

use LiveSwitch under the hood but we also have ICELink which is also by
FrozenMountain.

Participant D

Yes, | noticed that in the documentation you have this implementor class that you can
more or less switch

Interviewer Yes, so
Participant D | Or will be able to switch
Interviewer Exactly that’'s what | was working on for the last few weeks | added ICELink as well so

now you can basically use LiveSwitch and ICELink because we have this Javascript API,
thats basically what you did in the browser but then also nicely abstracted and easy
to use. But that uses ICELink, so now that it all integrates nicely and PRAIS as all
becomes available in the browser and for algorithms.

Participant D | That’s nice
Interviewer Yes,
Interviewer Let’s go to the last question, yeah, so, you probably entered this in the questionnaire

but why would you or would you not recommend PRAIS to your friend or colleague?

Participant D

Okay, so if my friend or colleague has to do relatively simple things with LiveSwitch
with not too many peers | think or just send receive some data processes it nothing
really fancy then | would really recommend PRAIS because it’s very simple easy to
use.

When you need to do things that PRAIS cannot do at this moment then | think |
would recommend not to use PRAIS but use something that’s easier modifiable.
Yeah.

Participant D

So it depends a bit on the goal of the friend or colleague.

Interviewer

So mostly, it’s again like you said complexity wise PRAIS seems to supply functionality
for relatively simple use cases

Participant D

Simple use cases but it does cover most use cases. But there is always this, it’s also for
example when you try to create visualizations. It’s really easy to you just use Excel for
things and that works really easy for most things. But, when you want to modify it a
little bit it becomes very difficult really quickly. So, then you’re better off using either
no some python library seaborne something | that | think it’s kind of the same with
PRAIS,

when you want to do basic things, PRAIS is great and it covers most scenarios which
is really nice.

So mostly | would just recommend PRAIS, but when you have to modify the
behavior or do something different then probably not.

Interviewer

Okay, make sense.

Interviewer

| guess you also of course with SEP you were kind of forced to use it but this is all
assuming you have a similar future scenario or you need streaming of audio video
data?

Participant D

Yes

Interviewer

Okay, | think that’s clear. Maybe any other final remarks? Where done with the
questions.

Participant D

| don’t have any further remarks regarding usability study.

Interviewer

Okay, then thank you very much.

Participant D

You're welcome

Interviewer So let’s switch to English and just start | guess
Participant E All right
Interviewer So | have a question to start of that not on the list actually. This is more for my

understanding so | would like to know you used PRAIS but in what way? What part
of PRAIS did you use in your development? Because | guess each of you had a
separate role in the team?

Participant E

| personally did not work with PRAIS that much. PRAIS was mainly used at the bots
side of things. Mainly when those were being set up for the first time, | think that
was mainly | think X, K, and C who worked on those parts. | worked with elements
of PRAIS for a bit. When trying to do the video uploading although that was more a
web app side so | had to deal with LiveSwitch which | don’t ever want to deal with
LiveSwitch shenanigans again.

Interviewer

Okay, so you kind of had to connect to PRAIS when you were working on the web
apps

Participant E

Yes, | had to connect to PRAIS | had to make sure that it was sent over correctly.
Using a media stream

Interviewer All right, okay. So no direct development with PRAIS, more indirect?

Participant E No, | did not directly use PRAIS. | used the PRAIS LiveSwitch dependencies of PRAIS

Interviewer Okay

Participant E To make the functionality happen

Interviewer Okay great, that’s clear

Interviewer Yeah, so | guess for most of the questions it means you can draw from all those
dependencies yeah how you had to use those or the documentation maybe you
read those

Interviewer So the first question is how was your overall experience with PRAIS?

Participant E

Again,

I didn’t work with it that much but generally pretty positive. | noted that the
functions that it’s supposed to do, it does them very well.

| think audio quality is generally very accurate, the video quality, there is pretty
much no deterioration in that as far as | can tell, images are clear images and
crisp.

It’s not that hard to use.

Pretty much all the functions you want from it are already there.

Participant E

There is authentication to a degree using the secrets, it’s not the most secure
thing in the world. But it’s definitely better than nothing.

Interviewer

Yes we are indeed working on that. The authentication server that you made is the
first step to make it all more secure. Okay nice to hear that there is also some
experience on the audio video quality side. That’s good to hear. Any other
comments on the overall experience?

Participant E

How do you mean just trying to work with it?

Interviewer

Yes

Participant E

Not really. The interfaces,

we had to create some interfaces to perform some class construction so we can
not like have all our classes depend on PRAIS which makes them pretty much
impossible to unit test.

Interviewer

Yes

Participant E

So we had to write some interfaces for several things so we could use more
classes and generally make testing possible at all.

Interviewer Yes, X mentioned indeed that for testing purposes you had to create a lot of
interfaces.

Participant E Yeah

Interviewer All right

Participant E

| personally was not the one creating the interfaces | think that was X again. But |
did have to use them a bunch because | wrote a lot of test cases that involved those
kinds of those interfaces.

Interviewer Ah okay

Participant E | was involved mainly in testing during the later part of the project.

Interviewer All right so you have some experience with the C# interface

Participant E Yes

Interviewer All right okay nice

Interviewer So let’s go to the next question which things that you like the best about PRAIS and

why?

Participant E

Okay | will first give an unserious answer which is

what | like the best about PRAIS is not having to use LiveSwitch.

Interviewer

Hahaha all right. | get that

Participant E

Now for more serious answer. | think what | like best is it’s always hard to define
what you like best.

I would say that as an overall experience it was fairly easy to set up and install.
Especially for someone who has no experience in both C# and typescript which
are the two languages that we used.

So that was very steep learning curve for me.

Interviewer

| can relate to that. Okay nice

Participant E

So it was especially nice to have

the thing that really helped me understand how PRAIS works are the examples
that were on the PRAIS website.

Interviewer

Okay nice

Participant E

I played around with those a bit. | got those to work pretty quickly.

Participant E

Except for the Microsoft Azure one.

Interviewer That one is more of an issue because you need the Azure key
Participant E Yes and | don’t have an Azure key
Interviewer Yes that’s the biggest disadvantage but it’s good to hear that the examples actually

help.

Participant E

Yes, it might be good to have maybe one or two more examples that are a bit
more elaborate.

| think it would be echo bot right

Interviewer

Yes that’s a super basic example

Participant E

Yes it’s a really basic example. It shows the idea behind PRAIS very well but | think
leaves a bit too much to the imagination to really give you an idea of like this is
what it is really capable of.

Interviewer

Yes, | think we can add some more complex examples with some more streaming
maybe two other algorithms as well.

Participant E

Yes maybe one or two more complex examples...

I really like the fact that there were actually like examples that are like well
explained.

Interviewer

Okay

Participant E

There is a at least a simple example that as well explained. It helped me
understand it better.

Interviewer Great sounds good. Thanks for the feedback

Interviewer Any other thing that you like best? Otherwise we can go to the next question.
Participant E Not really anything else coming to mind at this point.

Interviewer Alright let’s see which things that you like the least about PRAIS and why?

Participant E

Things | like the least... | haven’t worked with it very extensively. But, | did hear
from other people that sometimes PRAIS expects very very particular input in some
cases. | don’t quite recall what exactly the issues they ran into were. But it was
some issue where something should have been more general should’ve accepted a
more general input but instead it required something very very specific which made
it again difficult to abstract from that.

Interviewer All right, okay I’'m also not sure.

Participant E | don’t quite recall what that was.

Interviewer If it ever comes to mind. But | guess somebody else will probably mention it
Participant E Again, that may have been a LiveSwitch thing. | don’t know.

Interviewer Yeah, I’'m not sure

Interviewer Except for that, any other things that you think this was not nice PRAIS could be

better?

Participant E

About PRAIS.

Not really, there weren’t really any things that jumped out to me is like this is
bad. This needs to be improved or changed by like significant amount

Interviewer

That’s nice to hear, okay

Interviewer

Very nice feedback of course to hear. Especially you guys are the first group that’s
actually using PRAIS to its fullest. So overall | think it’s quite successful considering
that you finished all the requirements which I’'m very impressed by

Participant E

Honestly I’'m pretty impressed surprised by that as well. It was generally a nice
surprise do not have any or basically any stress when it came to the project until
like two weeks ago when we had to basically finish the code. There were a few
things that still needed to be done that weren’t and they needed to be done rather
quickly or the acceptance test.

Interviewer That’s normal | guess in any project.
Participant E That was pretty much the only time we had to like really rush to get things done.
Interviewer Okay, sounds still like a pretty decent planning timewise.

Participant E

| suppose that may be caused by people being at home and having nothing better
to do.

Interviewer That’s also a bit weird yes in this case working from home with remote
collaboration.
Interviewer Okay so let’s see If you could change something about PRAIS, what would it be and

why?

Participant E

Well | briefly mentioned this changing the way secrets are handled.

| don’t know if you can just use any phrase as a secret. You just write password 123
and that counts as a secret. | don’t know if that’s particularly true

Interviewer

Yes you could

Participant E

But support for a more advanced way of authentication would be a good idea.

Interviewer

Uhuh

Participant E

There was anything that | told of but | slipped my mind just then. There was
something, if | remember | will bring it up.

Interviewer Okay sure

Interviewer So authentication again that’s indeed something we are looking into more
advanced ways after authentication | guess you already implemented that
yourselves so that’s nice. Good point.

Interviewer What do you think is still missing in PRAIS? | guess that is pretty similar question to

what you already mentioned regarding authentication. Is there anything else that
you would say this would be nice to add?

Participant E

Let me think. | honestly have no idea. | think I'm going to blame this one on my like
of experience with software design. | wouldn’t know like what functions would be
like very helpful to a programmer or. It difficult for me to come up with something
that | have very little experience with

Interviewer

That’s perfectly fine, you already mentioned that you didn’t work too much with
PRAIS so | guess this is a tough one. | mean it doesn’t need to be on the functional
level, it could be anything. | don’t know. But if you at this point can’t come up with
anything that’s fine.

Participant E

Yeah it’s probably an implementation thing but if someone else with a video feed
would connect to this conference | assume their video feed would also be shown
here.

Interviewer Yep
Participant E Yeah okay
Interviewer Yeah so indeed authentication really needs to move to the server and that’s what

we are trying to do you can only join these kind of conferences if you have the
tokens that you got from the server. And now anyone with this URL can join this
session. So, | hope nobody will join.

Participant E

Oh wait, | think | remember like a thing that | thought of to add maybe.

| believe at some point we ran into a thing where we wanted to reliably open and
close datachannels but there was no method for that.

Interviewer

X mentioned that closing datachannels is indeed not provided functionality. Media
streams can be closed, datachannels not really. That’s a limitation in the current
implementation indeed. As a trade-off datachannels are quite cheap to keep open
so we don’t really mind if they stay open. And adding the closing functionality
would make each individual data channel more expensive to keep open.

Participant E

That is true, but on the other hand they would also not be open for as long.
Because you can just close them when you don’t need them instead of having to
close them automatically.

Interviewer

True,

Participant E

| suppose for like short bursts of usage, such functionality would be preferable but
for a very long period of time you would want a | lighter, a lightweight version.

Interviewer

Okay

Participant E

| haven’t done the. | honestly have nothing to base this of but | think it would be
nice feature to maybe have it is an optional toggleable datachannels or something.

Interviewer Uhuh, that’s a good feedback. | think it’s design wise also weird that media streams
can be closed but datachannels cannot. So good that you mention this. | will think
about adding it. Thank you.

Interviewer If there is nothing else regarding potential additions. Then the next question is

about the documentation. So what do you think about PRAIS’ documentation?

Participant E

(the documentation) It’s better than LiveSwitch, | can tell you that much.

Interviewer

Haha | heard the same from many other people. So that’s nice

Participant E

That | say this mainly because LiveSwitch documentation is really really bad. It has
approximately 80% of functions in there which is not enough and those functions
have no descriptions which is bad. And it doesn’t even say that some functions are
deprecated while they really really are. | asked a friend of mine, he is also studying
an IT study. | asked him like what do you think would be the difference between
setMediaSource and setCustomMediaSource? Like | don’t know, probably nothing.
No, setMediaSource has been deprecated for like two years. But it doesn’t say that
anywhere.

Interviewer Oh okay, interesting. That’s LiveSwitch.
Participant E Yeah
Interviewer | know, the documentation is not really up-to-date. There are some functions that

exist but are not mentioned in the docs.

Participant E

Yes, which is incredibly annoying.

Participant E

But, no, in general the documentation for PRAIS is quite clear.

I think everything is present, | haven’t found any functions that do exist but aren’t
in the documentation.

Interviewer

Uhuh, okay great

Participant E

Most of them are self-explanatory. Something like media source.stop(), | just
pulled it open right now the documentation

Interviewer

Aah okay

Participant E

Yeah, most things are pretty much everything is like very well specified. Every
method has a description of every class has a description. It says how to use the
methods, says what a method returns. With even a description of the type that it
returns which is something you don’t see all the time. Especially helpful if you
have a lot of custom classes custom records custom datatypes.

Interviewer

Uhuh yeah.

Participant E

I suppose the only thing that | would add would be something like maybe another
example like I said before that really shows you more how to use a specific
methods because that’s not always clear from just the documentation

but that goes for pretty much any APl or program language.

Interviewer

Uhuh

Participant E

How to use a method is not always clear from just looking at what the method like
the how you call the method.

Interviewer

Yes, you need to more context in which scenario would you use the method

Participant E

Yes, that’s why | usually go to the Internet for like pretty much every method if it’s
not exactly clear how to use it

Interviewer

Yeah, okay. So more examples would definitely help

Participant E

That is something | would like to see personally. It helps you understand and it
really eases up on troubleshooting. If you have like an example that you know that
works.

Interviewer Uhuh, okay, clear thank you.

Interviewer Anything else from the docs? Otherwise we can go on

Participant E No, (the documentation) they are very complete as far as | can tell. That’s all
Interviewer Okay, thank you

Interviewer Yes, so, | guess you use LiveSwitch on the front-end and PRAIS not too much on the

C# side. Still, could you try to estimate whether or not you saved time using PRAIS
and how much?

Participant E

| can probably estimate a bit. LiveSwitch has the functionality behind LiveSwitch is
actually pretty decent although I’'m constantly bashing the documentation.
LiveSwitch is kind of confusing to work with. Because there are duplicate functions
that you don’t know about or you do know about but you don’t know that they
don’t work.

So, using PRAIS is definitely preferable.

I think in hours just setting up the bots | think that took about a week. That took
one sprint to set up the bots, it was like two people so let’s say that took 40 hours
this time. | think it would’ve taken at least another week to set up the basic
framework for the bots such that they can connect to the conference. | think it
would’ve taken at least another week. There is so much more research to do, so
much more trial and error.

Interviewer

Okay, here. | guess that estimating is super difficult because you of course never
saw LiveSwitch in C#. But you can say that PRAIS did save you time?

Participant E

Yeah, although maybe it’s not like a full week because as far as I’'m able to tell the
LiveSwitch C# API is actually better than the typescript API.

Interviewer | think so too, yes
Participant E Because there are functions that are possible in C# but not possible in typescript.
Interviewer True

Participant E

Which is frustrating. So, | think it would take approximately like 20 hours more so it
would be 1 % weeks something. 1 % weeks by two people

Interviewer

Uhuh, okay

Interviewer

Yeah, sounds good, | guess the main point here was to check if you think PRAIS
actually saves you time.

Participant E

| definitely think so

Interviewer

It is really hard to say how much.

Interviewer

All right, then let’s go to the last question. So why would you or would you not
recommend PRAIS to a friend or colleague?

Participant E

Well PRAIS has 3, it’s a very niche set of people that would use PRAIS. So like the
chances of that occurring would be like not very high.

Interviewer

Uhuh

Participant E

Because you would have some building exactly a real-time communication
application that makes use of code that you can’t easily share.

Interviewer

Yes true, it’s a very specific application. So let’s assume you have a friend or
colleague that says say I’'m going to build something with streaming, would you
recommend or would you not recommend PRAIS?

Participant E

Well the first thing is | would say please don’t use LiveSwitch.

The second thing | would say is hey | worked with PRAIS this one time it was
pretty good you should try looking into that.

Interviewer

All right, so definitely like a recommendation to look at it.

Participant E

Seven or 8/10, like | wouldn’t be able to actually convince them to use PRAIS if
they have already chosen something else. Because | don’t have experience with
any other real-time communications API.

Interviewer

Yeah yeah

Participant E

So have they already decided on something else, like hey sure. But

if they just mention like hey I’'m trying to build some application how would you
suggest | approaches this? | would definitely at least mention PRAIS that they
should look into it

Interviewer

Okay, clear. That pretty much wraps it up | guess | don’t think | have any other
guestions. Maybe you have any other remarks? Do you want to add anything?

Participant E

Not that much. | just want to say that, well, as a quick thank you for all the clear
support that you provided to us throughout the project. User stories were generally
pretty clear, you are open to feedback and you responded very quickly to a lot of
things. So, thanks for that. That definitely made our project a bit easier.

Eindhoven University of Technology

K NuGet generation

To define what should be included in the PRAIS C# API NuGet package, we use a so-called nus-
pec [30] file (see Figure K.1). In addition to package content, the nuspec file also defines metadata
such as package name, version, and dependencies. Noteworthy is that the package also includes an
Install.ps1 file (see Figure K.2) that configures some settings upon NuGet install. To build the NuGet
package, we run nuget pack PRAIS.nuspec from a command prompt in the folder where the nuspec is
located.

The Philips Remote Al Streaming platform 173 / Version 1.0

Eindhoven University of Technology

<?xml version="1.0" encoding="utf —-8"?>
<package >
<metadata>
<id>id</id>
<version>$version$</version>
<title>$title$</title>
<authors>Robin Mennens</authors>
<owners>Philips Research</owners>
<requireLicenseAcceptance>false</requirelLicenseAcceptance>
<license type="expression">MIT</license>
<projectUrl>https:// healthrtc.org/docs/index.html</projectUrl>
<description>PRAIS C# SDK NuGet Package</description>
<releaseNotes>First version.</releaseNotes>
<copyright>Copyright 2020</copyright>
<tags>PRAIS, C#, SDK</tags>
<dependencies>
<group targetFramework=".NETFramework4.7.2" >
</group>
</dependencies>
</metadata>
<files>
<file src="install.psl" target="Tools"/>
<file src="bin\Release\x.dll" target="1lib\netd72"/>
<file src="bin\Release\lib\win_x64\x.dll" target="content\lib\
win_x64" />
<file src="bin\Release\lib\win_x86\x.dll" target="content\1lib\
win_x86" />
</files>
</package>

Figure K.1: Source code for PRAIS.nuspec

174 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Sets the ’Copy to output directory ’ property of the dlls in the
lib folder to ’*Copy If newer’

param($installPath , $toolsPath , $package, S$project)

function MarkFileASCopyToOutputDirectory ($file)
{

$file . Properties . Item (" CopyToOutputDirectory ") . Value = 2
}

MarkFile ASCopyToOutputDirectory ($project.ProjectItems .Item (" 1ib").
Projectltems . Item (" win_x64").Projectltems . Item ("
libaudioprocessingfm . dll "))

MarkFile ASCopyToOutputDirectory ($project.Projectlitems.Item (" 1ib").
Projectltems . Item (" win_x64").Projectltems . Item (" libopenh264fm .
di1"))

MarkFileASCopyToOutputDirectory ($project.Projectltems . Item("1ib").
Projectltems . Item ("win_x64").Projectltems .Item (" libopusfm.dIll"))

MarkFileASCopyToOutputDirectory ($project. Projectltems . Item ("1ib").
Projectltems . Item ("win_x64") . Projectltems . Item ("libvpxfm.dll"))

MarkFileASCopyToOutputDirectory ($project. Projectltems .Item (" 1ib").
Projectltems . Item ("win_x64") . Projectltems . Item ("libyuvfm.dll"))

MarkFile ASCopyToOutputDirectory ($project. Projectltems .Item (" 1ib").
Projectltems . Item ("win_x86").Projectltems . Item ("
libaudioprocessingfm . dll "))

MarkFile ASCopyToOutputDirectory ($project.ProjectlItems .Item (" 1ib").
ProjectlItems . Item ("win_x86").Projectltems . Item (" libopenh264fm .
dili"))

MarkFile ASCopyToOQutputDirectory ($project.ProjectlItems .Item (" 1ib").
Projectltems . Item ("win_x86").Projectlitems . Item (" libopusfm.dll"))

MarkFile ASCopyToOutputDirectory ($project.ProjectItems .Item (" 1ib").
Projectltems . Item (" win_x86").Projectlitems . Item ("libvpxfm.dll"))

MarkFile ASCopyToOutputDirectory ($project.ProjectlItems .Item (" 1ib").
Projectltems . Item (" win_x86") . Projectltems . Item ("libyuvfm.dll"))

Figure K.2: Source code for Install.psl

The Philips Remote Al Streaming platform 175 / Version 1.0

Eindhoven University of Technology

176 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

L Project management

Figures L.1 and L.2 show a Gantt chart that illustrates the planning of this project. Table L.1 lists all
risks that we identified during this project.

The Philips Remote Al Streaming platform 177 / Version 1.0

ty of Technology

1Versi

Eindhoven Uni

71 23y ur pajensn[r st Jed puodss oy, -Suruued 109foxd ay) smoys 1ey) 1eyd Nuesn) 3y} jo 1red 1s1y oy, 11T 1N

4

P

I..m

Jaquapieg
|

JanBny
\

e
\

aunp
'

hep

[Z

-

ey
,

el
1

Adenugay
|

Aderig|

0giszie

02ivi6
0ZISTI6
0ZivLi8
0zILElL
0ZILENL
0TILLL

0g/elL
02i6HI

0g/si9
0ZI6ZIS
0ZIETIS

0zIHS

0ZIHS
0z/52i6

0g/elL
02ILHY
0ziLelL
0ZILLv
0ZI0Li¥
0ZI0LF
0zilzie
0zizie

0z/9iE
02ILHY
0ziLere
oziLere
ozilere
0zIzT

ozile
0z
QTILLL
QTILHLE
0ziLere

0zl

Sep pu3

0z/sele
02ivie
0z/Lers
0z/oLis
0z/LElL
0Z/0zIL
0z1L
ozicel9
ocreie
ozive
0z/sels
0Zivis
0ziLis
0Z/0ZiF
0z0ziy
ozioziv
[l
oz/oe/E
0z/0E/E
ogvert
0zvere
0ZILLE
0z/oLE
ozrEre
ogrere
oziLern
oz/er
0z/ogiL
0Z/0z/ L
oz/oziL
0ziail
oz
oz
oz
ozl

ajep ulbag

SJOA 3JNIN4 § U0ISNDUCD g JaldeuD

onay g Juwiup paloud 4 siaideyn

~160j0UYdS) B Walsis Bunss Apnis

W4 aupEa(UoISSIWENG
sdiiud £q %98UD ANand ¥4
podaidn desp

HIEQPEE] $58201d

aulpeap yIeapas) podal [euly

UoHERIEA § UONBIULEA § JaideyD

youy g ubisaq v 1aideyD
sjuswainbal g 1sideyD
uoganpoul | 18jdeyn
sisfleue wagoid Z 1sideyn
aUNpESp ¥IBGPa3) Podal|siy
SUOIP3S 15114] AUIND
yoday [euld

paloid 438

uogesedasd UONESSAILIQNN J3S
uolEBLINIOG JaSN

Buiig +jogoya3 uswsdw| o
8100 IdY #0 Sivyd uswsidw| o
J2pnoid YaImsan Juawajdw)
pua-yaeq ubisag

Id¥ #0 Sivdd ublsaa
BuldAolold
Iauawdojaneq g ubisag
sjusWwalnbay

s1gh[euy 8seD asn

SISAELY 18PI0YBYEIS

2 ¢ 5 2 85 0 0 8 @ & 0 8 8 0

®
B
°
°

SISA[EUY UIBLIOCO
WeJfeig Kalueo
QET2P0D D1MA3M

ue|d juswabeuep palold »

e @ 2 2 5 0 o

UOMUYRQ Waldld o 4])

LR
EIEIN

s s & o

e

I S ——

The Philips Remote Al Streaming platform / Version 1.0

178

ty of Technology

.

1Vers1

Eindhoven Un

11 231 ut payensnyt st ared 1s1yg oy, “Suruuerd 30slo1d ay3 smoys jey) 1eyd puer) 3y Jo 1red puodas Ay, g1 231

0znzie
0z/zie
0ZIETIL
0zivLie
02/8Z/2
0zrgnz
0zrezie
0Z/0E0L
ozrezie
0ziug
0zidzioL
ozigzioL
0zZ/aLoL
7oL
0zramL
0ziLemL
0Z/EHL
0Z/0HL
0z/ZHe
0Z/6T/5
0Z/5Z/6
0Z/5Z/6
0Z/LEIL
0ZIYTIL
0Z/5Z/6
0Z/0HL
02/64L/9
021519
0Z/0HL

0zZioL8
0z/5/8
0ZELIL
0ZI0EIL
029z
0ZELZ
ozivere
ozreziol
0ziLHE
oz/erns
0Z/6 0L
0zrzzinl.
0Z/ZoL
0ziLoL
ozrezie
0zrszie
/9L
ozIsHe
0Z/Hg
0zigHs
02/L/8
0zZ/Les
0ZELIL
0ZELIL
0ZELIL
0Z/SLI9
02/19
02/¥iG
02/¥iG

8pIl AEDIlOH

Japuexaly AeplioH

UEJOZ ABDIIOH

|82JE AEDIIOH

JapuExsly AEpIloH

Japuexaly AeplioH

UBI07 3 80JEq fEDIIOH

wgoy fEpiioH

wgoy AEpioH

wgoy fEpiioH

JUBLINI0(JBJSUBI] BIEMYOS
JieQ uoyenpelg

apmy 1ap00g palolg
uonejUasald [BULS
uopeuasaid |Buy asedald

dn de

uogeuasad feQ yorgaWoD
ipnig Aungesn Siviid

LpEoIdde \+J AW B 1531
yoE0IEdE A+ JUBLSIALI PUE BUYEQ]
J0ENSUOLUEP [BULUEWRIAW] o
DN 01 AoldEa e

dde Japioasy Siviid usweidwl o
Sainies) GUIDIOIEN WaWRIdW] o
€Auawdolasag g ubisaq

525 NOIN U aleibaill o
owaQ GuipIoday uswaldwi o
Japwosd yurao uswadw| o
ZAuawdojarsq g ubisag

s 508 8 o

e 8 8 0 0 08 0 8 8 8

s s 0 0 o

179 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1Versi

Eindhoven Uni

sy yoa djoy s
YSLI 9y} JO ssaualeme 9y, ‘Sumyun 2q
0] N0 uIm A9y} ased ul Aeme s3uIy)
MOIY) 0) prelje 9q JOU P[NOYs UIqOY

‘Pappe 2q ued
Anreuonouny oyroads yorym o3 SIS
-eq SUOIS B 9ABY oM 2INS OYBW oM
‘paxmbai A[oyrugep st eyl Ayjeuon
-ounj 2100 Fupuowodwr Is1y £q
‘os1y “A[3urpioooe uefd pue seyepIp
-ued [enusjod NOQe UBIOZ/[QOIBIA
01 Y[el [Im UIqoy “YSU oy} ed
-nmw djoy [9[qissod se Apes
Se SIOp[OYoyels JOUIO SUIA[OAU]

"SIOp[OYaBIS
IoY30 s A[[eaI JOoU S0P pue
palo[re} wea) AI9A SI UOIN[OS
[BUY 9y} Jey) ueaw Aew SIY)
‘wres) 9y} ur aouaLradxe Jo 101 ®
SI QI9U} 9[IYA\ "SIOp[OYaels Se
Wed) UMO INO ATUreu [aim wa)
-sAs oy urdojoAap 1els [[IM |

uadp 9

O pue
SN U99M}2q UOTJBIOQR[[0D [NJSSA0oNsun

ue 0] Spe9] YSII SIY} ‘9Sed JSI0M) U]
"an[eA jsow Y} sey osfe nq juowald
-wI 0} 1SAISea 2y} SI 1Byl uonn[os oy}
yoid 01 wire om ‘[erouad uy ‘[eWS JO
a3re[oq Aew joedwr ayp “yoid om uon
-njos [eo1uydd) yorym uo Surpuadeq

'sn Jo yjoq
10} SYI0M Jey} UOIIN[OS B OS[e A[[nJ
-odoy pue Furpuejsiopun UOUIWOD
€ 0] JWO0d ABW oM ‘OABY oM SINS
-ST oY) SuISSNOSIp pue DIAJA O} Sur
-yqre1 Aq ‘A[puooas owely 1od sdure)
-sown Jo 3uIpiodar 9y Surpie3ax
uonnjos 3s9q ay) yord pnoys om
1ey) sueow siyy, -sdureisown ojer
-nooeun JurAey JOo POOYII Y}
Q0NPaI UBD M ‘A[ISIL] 919y IOpIS
-uod 0} sypodse om) Qe AL

‘[[e 193ye
Areuonouny SuIpioddr Yl
wolj jgauaq jou Kew DN
‘Apuenbasuoy Juswarnbax
SIY} [[Y[NJ JOUUBD M Jey) YSLI
B SI 219() ‘0§ ‘pajoadxe uey)
JNOYJIP I0W q 0} N0 SUIn
oQwiely o9pra yoea 1oy sduwe}
-sow) JJeIndde SUIPIOIY

uadp g1

(3oeduur 3donpaa) uonde LHUISUNUO))

(pooy
-I[PYI] 9INPaI) uoyde UONEINIA

uondiasaq

sme)s dl

The Philips Remote Al Streaming platform / Version 1.0

180

ty of Technology

1versl

.

Eindhoven Un

‘OUWIdp Y} JO J0JOBJ MOM
9} seonpar yomm wopuel st indino
wyLIog[e 9yl Jey) SI 93BIUBAPERSIP Y],
"BIep Jo mop o) 19[dwod 01 ySnoud
9q pnoys ‘aoepul Ayl K[Uo 91
‘suonjpjudwodwr unpIose qnis Ay,

‘uoneuawardwr oy} s no
d[oy p[noo [‘pou Jo ased ul ‘Ss9|
-OUIRAQN sutiod[e oy jusward
-wit 0} AN(IqIsuodsar I1ay) SI 31 asned
-9q spuey Auw Jo 1o ApIsow SI SIY,

"SWYII03
-Te 9y} jo uonejudwo[dwr oy}
ysmuy o1 93euewt jou op Ay
ddS Suump os[e jey) S © SI
Q1YL SMEIS JHS ueym K
QUOP J0U Ik [90Y PUB BSH[BY
Aq padofeasp swpLog[e ayf,

uadp ¢J

‘SupLIoge [eu
-13110 2 se syndino swres ayy sonpoad
pue sindur swes 9y e} Jey) SWYILIOS3
-[e 9eJ, s way) ooepdar ose ued
oM UAY} “I0M 0) SWLIoS[e Iy} 193
jouued M JBY) N0 SUIN) I JT ‘OSUOS
JBY) Ul OS "9OUQIJUOD B OJUI Iy Aot
MO0Y JNOQE AJOW ‘J[ASWAY) SWILIOS[e
oY) JNOQe YONW 00) AIBD JOU OP M\

s
JIoM 01 uIylowos sn SQAIS I1 Inq
‘pasn 9q pnoYs wyLIog[e ue yons
MOY 100[3I 3,USQ0D SIY} ‘9SIN0D
JO wipuoS[e SIy urel o) pasn
[0 Yey3 BIEp Y} AINQLISIP UBD oM
IoUIoyM SWn Ul YO3Yd P[NOYS I\

"‘wyIIo3[e uonod)
-op asod s esyey Jo wyog[e
uonodlep eoude s, [00y Suru
-UNI USYM SINSSI QWOS ISNBD
Aewr swy], -9[qereae jndur
KI0suas 10 93e100J Aqeq aary
A[[eoI jou Op SjuApnNIs QYL

uadp 8

"0} Y[[€} 0} SIOS
-1A1odns 194310 9ABY sAem[e [9[qe[leA®
-un SI siosialadns AW JO QUO USYA\
‘g[qe[reaeun A[ureiodud) are o) uaym
UOA9 ‘OWI} Y3nOoud UIBWAI PNOYS
o109y} 9[qrssod SI 31 Se UOOS SB UOT)
-orIQMuI Jopjoyayels Aue Juruuerd Ag

“epuade o) ul s3unesur
9[NPAYDS [[I4 T U} SO[NPAYDS Asnq
00) anp 2oe[d oye} Jouued Sunesuw
[ewIoJuI ‘ouun swos Ioye ‘J1 *(ord
-wrexa 10j SAepIjoy 0} anp) d[qe[reae
-un 9q M A9y usaym 9[qrssod se
Uoo0S Se SIop[oyayeIs AW Yse [[Im |

“IN000 AeW Sons
-SI ‘WaY) paau [Jey) awn e e
J[qe[IBAR 10U JIB SIP[OY LIS
uoyMm :90UdSqe JOp[oyaNeIS

uwadp

‘WY uo Sa1o
-uopuadap 19yj0 Aue 918aI0 J0U 0] [BN
-uasse os[e st ‘yey) 9znuoud prnoys
am 0§ ‘DININ 01 wawAkordop ayy st
uelry uo Aouopuadop 1s9331g oy,

“JIOSAUI SONITAIIOR QWIOS Op
os[e ueod T ‘9[qrssod a1aym ‘U0 YIom
ued 9y Jeym own ur uSIfe o) [elA SI
1 08 “Yoom Jaod Aep ouo Juryrom 9q
4 uelry A9y SI uOnEdIUNWWIO)D)

cl

.V

"QuIT) UL QUOP 2q UBD
SurAIeas jou jeyy MSU B SI
QI9Y) “SINIAIIOR UIBIIdD Surop
wry uo souopuadop owos
aunb ore 210y Qoulg owm
-aed Sunpom pauels uelry

uadp g1

181 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

"JaK paye)s jou
sey Juopms (qUd Yl uaym uead DININ
Je UNI)$9) © Op 0} 9[qe 9q AeW oM ‘OS[Y
"SOA[QSINO wiyILIo3[e SIy 1S9 03 9[qIS
-sod [[1s SI 11 ‘0§ "3umas Aue Ul JIom
pPInoys yomym ‘wyiuiod[e Surpiodal e
dofoasp 01 SI 9sed osn urewr oy,

Juepms (qud ayp sut
-I14 Jo ssa001d gy dn paads 01 watp
ysnd Aew siyy, -ooed ur Aypeuon
-ounj 9y} 9ABY ApeaI[e 9Mm 18} Woy)
SMOUS Jetf} J0JeIISUOWIP A[Jed Ue SI
‘Joromoy ‘dioy Aewr 1eypm DININ
£q pairy Sureq st udpms qUd Ay
asneoeq spuey AW JO O SI SIYL,

“JuapnIs 1Rty
Qs Aeuonouny pajuswerd
-WI Y} 9JBN[BAS JOUURD | 1By}
JSU B ST 219y} ‘Qouay ‘30ofloxd
Aw Jo pua ay) 210joq 1 Isn
0) 3urod st juapmis (qud oyl
jey} 194 99juerens ou SI I
g ‘DNIN e 109foxd oy 10§
Anreuonouny Jurdofoasp w

9pII
Ym J0BIUOD

ur Apeaie e
oM ‘pAESNIA ¥]

"DINIA 1B 9[qQeIISap JoUu A[o)U
~JOp SI L ‘SN IO SIOM [[Im SIY) S[IYA
-o[dwrex?a J0J ‘QWoIy)) JO UOISIdA IIP[O
ue [[EISUl O} ST PUNOIENIOM JUIIUIA
-uoour Jnq Arerodwd) y o 'SI9SmoIq
9U) puB QABY M UOISIdA Urygdl
oY) ueamiaq Ajiquedwoour ue soje
-10 sy, (STLA) S[edojoid ureirad
JO SUOISIOA IoMAU FUISN I8 SIASMOI]
SNBO9Q ISLIB SANSSI [BIIUYI) ISOIN

*9su201] pajepdn ue SurAey
I0J posu Ay ssaxdxa [reys [‘arowr
-IoyIn, -smyels uonismboe sy pue
9suadI 9y} Inoqe 3upyse dooy ued |

"ouIn Ut 9sUadI] JUITHII
o) 198 j0U Op M 9sSNBIdq
SONSSI [BOTUYD) ISAY) SSAIPpe
jouued [JBY) MSU B SI 9I9U)
‘0S "SUOISIoA YUI'THD] MU Ul
POAJOS UJ3q 9ABY JBY) SONSSI
[eOIUYDd) QWOS FULIUNOIUD
w] ‘[orreed uy -paroadxe uey
Ia3uo yonwr Surye) SI ISUID
-1 YurTgOI Mdu e Sulmboy

uado L1

-9jedronred o3 Juem j0u
op syuapnis Aym suosear [enuajod ssno
-SIp [reys 1 ‘1odor Awr uf "sjnsaI [en
-Ted owos ow QAIS pInom ey, "oIeu
-uonsanb ayy ur [[y A[uo 01 WAy} Yse
ued [uay) ‘oredronred 0) juem jou op
Jey) SJUAPMIS) JOJ ANSSI Uk ST w1} J

‘A[reuosiad
woy) yoeoidde 03 pue Sunedonred
INOQE US}JO WY} PUIWIAI ST Op UBD |
[IV "Spuey AW JO N0 A[ISOW SI SIYJ,

‘Apmis A1
-Tiqesn oy ur 1red aye) wWay) Jo
M9J ' AUO JeYf) YSLI B ST Iy,
o1edronred A[fenyoe 01 sjuap
-ms JdS oyl Jo ssousurim
AU} U0 A[a1 am ‘Appuanbasuo))
‘Areyunjoa st Apmis Ajjiqesn
SIVid oy ur uonedonied

uadp 97

The Philips Remote Al Streaming platform / Version 1.0

182

ty of Technology

1versl

.

Eindhoven Un

‘wyod[e qepe oy se sindino
ques o) soonpoid pue syndur swres 9y}
saye) e} WYILIOS[R #D ,9Ne), © [IIM I1
doedar Os[e UBD 9M U SIOM O} WIYILT
-03[® 9y} 193 J0UULD 9M JBY) INO SUIN} I1
J1 OSUDS Je1]) Ul 0§ "QJUIJUOD B OJUL
S1J J1 MOY JNOQe dI0W ‘J[OSII WILIOT
-[& 9} INOQE YonwW 00} 218D JOU OP I\

*039 ‘syndinoys
-indut oy} ‘11 9sn 01 MO} °[IeIop Ul
wyuoS[e oY) sure[dxo [00Y SIoym
[90Y Y)IM UOISSIS B 9ARY [[IM UIQOY ()

"WAY) 9A[0S 0} piey 9q Aew
1L ‘SONSSI [edIUYD9) AIe Q)
J1 oS "suels dggs Ieye Suoj
AB)S JOU [[IM QAIUOIN [90Y

‘uophd ureq|

0} pajuem
it asned
-oq sdiiyq

I10] Sunpjiom
anunuod 0}
popIoop [0y

‘PArEININ

“I9ISBY qQNIID) 0} 9A0W)
oyew prnoys yorym ‘Ayrxedwods aonp
-9I ued am Ajrpeuonouny /1D ordwrs
Suraey A[uo Aq ‘Afeurq -1 9edonue
ued am eyl yons uaddey [[1m uoneild
-TW A} A[JOBXS UdyM JNno 2IN3Y 0} Jue)
-Todwr os[e ST 3] ‘A[[enuew 9pod IAY)
[T JQJSUBI) O} QABY [[IM M ‘OSBD ISIOM
oy up ndwod s,urqoy uo Ipod
) Jo Adoo 1ed0[B SAem[e SI 1],

qnpro
0) QAOW © SI 919y} ased ur doejdax
0 pIey 001 9q },UpP[NOYS JI pue ‘40U
ooe[d ur awos aAey 9p\ Aeuon

-ouny 4O/ qePID d1seq sn A[UQ

‘sanss1 pue suoneord
-WOJ $aONPOIUI STY) ey} JSLI ©
SI QI9Y [, "pPIYeI3IW 9q 0} SPAu
9pod (e urod owos e jey
SUBQW YOIyM ‘qe[IID) Ul SOPISAI
9pod (e ‘Apuaun) -‘qnujir) o}
qepin wolj uoneIdiu e 9q 0}
3u103 st 10y ‘sdI[Iy UPIA

JNnd20 jou
pIp ‘pArEININ

[T

"OWIaP B SE [[oMm
se joqid & se y10q QuOp 9q Ued Jey) 9sed
asn © uo yJom T A[[eap! ‘oS “sdiyd e
OWap B Op 0} 9q P[NOM QAIIBUII[E)
Uuay) ‘SIUTENSUOD W) Y} USAIS Suop
9q jouued joqid ® jey) Jno suim I Jj

‘senrunyroddo
jorid renuajod Juiknuopr ur djoy
[[14 [9OIBJA] Y3 SUOISSNOSIP A[Iey ()

199lo1d
Aw Surmp joqid e op jouued |
sanss1 Suruue[d 03 anp ey} YsuI
B ST 919U} ‘0§ "ouop 9q pnom
11 UayM Inoge aSpajmouy ou
os[e SI a1y} uay ‘o[qissod aq
p[nom I JI UsA9 puy "9[qIs
-sod ST 31 Joyjoym UIeIaD jou
st ‘quiod st 1y (fedsoy
e 1e) J1o[id ® uni 01 9q Aew
199f0ad Awr jo syeo3 ay Jo U

ODININ s
108IUOD UI QI

oM ‘pare3nIN

Y

183 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

109load gHS ay) [eoued 03
QABY ABUW 9M ‘[[€ I8 WAISAS FUDYIOMm OU
ST QIOY) UQUM ‘9SBO-}SIOM Q) U] SN 0)
an[eA sey os[e pue 9[qeop [[US SI 18y}
109(01d © pm dn owoo 03 [BIIUASSI SI
I ‘uay], “AJIeuonouny SWos Jsedl e SI
210y} Inq 939[dwod jou ST WAISAS J[qe
-TA [BUIIUIWI Q) 9T ‘WAISAS 9[qesiom
[EWIUTW B)SBI[I8 SI QI0Y) SUIUNsSsy

‘su13aq 109foxd Jgs
oy} mun Auoud 3say3Iy oYy aAey
[[eYs Wa)SAS J[qeIA [BWUIUIW Y} FUT
-ySIuy ‘puodas ‘syuawaImbaz oy jo
sanuond Jurugep Aq Syl op [[eys
uIqoy [BNUISSY SI WIAISAS 9[qBIA
[eWIUIW 93U} Ul papnoul SI jeym
uo Suraide pue Jumuygep “ISIL]

19K
Apea1 10U SI W9IsAs ay) Jeyl
S & st a1ay) ‘oS -109loxd ap
919[dwod 03 wey) Joj y3noua
PoOo3 SYIoM Jey) UOISIOA J[qe
-TA TRWIUIW B 9q P[NOYS 1Y)
1e)S A9U) uoym Jeyl suBowW
UoIyM ‘WAISAS I} M JIoMm
0} 9ARY [[IM SIUAPMIS JHS YL

"auIn uo
parusworduur
QIoM SaIMea)
paxmbar e
‘paresnIN

4!

‘paruoword
-WI 9q [s)ed JUBAJ[RI [[€ JBY) INS
Sunyew 03 A3y st uoneznuoud pue ut
-doos 1odoid ‘[eroAQ ‘swyIo3[E 0)
SI9SMOIQ J09UU0D 0) ABM QWOS dIInbax
pPInoM om ‘S "9I9Y} S,J1 Jey} WnNS
-se A[dwis o1 pue 2doos jo no 9pIs
-JUDI[O Y} 9ABI[0) IPIOIP PINOD M\

N Pm
Teriwue} are pue 1 padoaasp Aayp
Qours uelry ueioz woiy djoy swos
193 01 9[qissod aq Aew I ‘[dV DI
yduoseae[oy ojepdn 03 pasu op
9M 9SBD U] "OWSp UTRIUNOW UIZOIJ
oy} asn A1dwirs 03 ygnous 9q ‘opdure
-X9 10J ‘Aewl 1] "IdV DI 1d1ioseaef
oy 9repdn 0] PIpasuU USAD ST I
JOUJoyM WEd) 9Y) Ul SSNOSIP UBD oM
“Qrounoyng 4V DI diroseaer
oy 9jepdn 0) 9q prnom 3 MO
yonwl MOy wWed) Y} UIYIIM SSIS
-Se puB SSNOSIp 0} [BIIUASSY SI I

110139 Juswdoroaap
owos b saxmbar sy e
NS B ST QIdYJ, YOUMSIAI]
M QBOIUNWIWOD UBD I 1Y)
yons [dv DI YoIessar dy)
depdn 0] 9ABY OS[® [[IM oM
‘Apuenbasuo)y -puayorq oyl
Ul UOIIMSOAIT oSN [[Im om
jey) A1 AIOA SUIAIS I IOAD
-moy 9urod s 1Y [dV DI
jdiroseAe[9y} 9ARY Apealfe om
ASNBOJ(Q ‘TOSMOIQ A *9°'T “OPIS
-JUQI[O Y} UO 110JJ9 Juowdo[oA
-op Y31y A19A ® 9Q 31 UpP[NOM
1oy jeyy payorpaid sem)t
adoos 3109foad [eurSuo oyy uy

SIvVdd

01 JUrrddl
pappe m
‘OS[y ‘owrap
UONMSIAT]
ynejsp oh
paidepe am
‘pearsuf
duogeaer ur
UONMGSOAT]
juouwrarduur
j0U 0} POpPIOIP
oM ‘pare3nIN

01

The Philips Remote Al Streaming platform / Version 1.0

184

ty of Technology

1versl

.

Eindhoven Un

‘IdV suoneomu
-NWWod payiun Ay Aq paoejdar Afisea
9q ued 11 1By} yons [V DI 1duoseaer
[oIeasay oY) uo Aouspuadop mof B SI
Q1o JBy} Aem B UONS UI WIISAS oy}
u3ISop Ued [9SLIB ABW JRY) SINSSI [BN)
-uajod oy Sundaooe ur djoy ued sysu
) Jo sseuareMy 14V DI 1duoseaer
[OIeasay oY) 3uIsn Ul PIA[OAUI SYSLI
oyl (uoweSeuew uoneloadxd) SI9
-ployayels Aw yim SSnosip ued |

‘SurunNsuod-owI} 9q UBD YoIym
‘Gunsay owos axmnbar prnom SIy,
“J[NOYJIP IOW ST JWES Y} SIABYq
IdV oy puiyeq A3ojouyde) ayy jr
IOAIMOY ‘TUTUTWIA)A(] “SQOUILJIP
jueoyrugis Aue are 2Idy) JI 39S 0}
SO0BJIAIUI [V Y1oq 2redwod ued |

“109lo01d Aw
I9ye wAsAs oy dofeasp 1oyl
-Inj 0} 21I9Mm QUO JI J[qIssod oq
PINOM JeyM JO MIIA dNISI[eaIun
ue sopraoid 309foxd Awr axoym
OLIBUQDS B 0} ped] Aew SIYJ,
IdV SUOnEIIUNWWOd payrun
oy £q papraoid jou st jeyy A
-Teuonouny awos apraoid Aew
IdV DIy 1duoseae[yoreasoy
oy ‘odwexe 104 -JUAIMIP
9q ued AjfeUON}OUNy JY) OS[E
Nq ‘IOPIP S90BJIAUI YY) Aewr
A[UO 10N "9INJONIYIIE OUAID
-Jo1 9y} 10J padofaaap s jey
QUO JY) WO SIIRIAD [dV
DIV 1duoseaef yoreasay YL

“JUTBIISUOD
e o1owr ‘JJos
-1 109load o
0} YSII B 3,USI
STy} “pIeSNIA

‘wyILo3[e qepe oy se sindino
owres oy seonpoid pue sjndur owes oy
saye) e} WYILIOS[R #D ,ONe), © [IM IT
ooe[doI OS[E UBD oM U} “SIOM 0} WIYILT
-03[e o1 198 J0UURD oM 18] INO SuIN} 31
J1 ‘OSuas 1By} UI 0S °"Q0UAIJUOD B OJUl
S1J 31 MOY INOQe I0UI ‘J[9s)T WLIOS
-[e 9y} INOQe Yonw 00} 218D J0U OP I

SI0M
J1 9YEW 0} MOY] UO AZPI[MOUY SWOS
ARy Apeol[e p[nom am AQeidyf,
‘wyuode oyl Joj Joddeim opd
-WIS B QJUM 0]} SOA[SINO AN
ISIJ P[NOD M ‘SMO[[B QW) UIYA

‘Joddeim mau € 91Im
0] SJUApMIS Y} JOJ AUWI) JWOS
ey Aew 1 qms -9[qrssod
SIL MOUY oM OS ‘910Joq WL
-03[e qepie]N ' JoJ Joddeim
B udpum sey uelry sons
-st Aypiquedwoour awos aIe
319y ‘4D ul pado[aAap ST JIom
-owel INO AOUIS Qe IRIN
ur pado[oAsp sem 1Byl WL
-03[e uono9ep evoudy s 00y
A YI0M O} SJUSPMIS o} JUBM
am “9o9lord ggs ayr Suun

‘uoypLd 03
wypLoge sy
JI9AUOD [[eUS
[°0Y ‘pealsuy
‘qepeIN 9sn
jou 0} paprop
oM ‘pare3nIN

185 / Version 1.0

The Philips Remote Al Streaming platform

ty of Technology

1versl

.

Eindhoven Uni

‘A[oandadsar Kyuorid mof 03 Y31y 1uasaidal eyl MO[[eA 0] pPal WoIJ JUSIPeIS € YIm PIpOd JO[0I ST UWN[0d J Y], ‘A[eandadsar
‘fGuond pue 9oedwy ‘pooyrayr] ‘Ioynuap] juasardar suwmnjod J pue I “T ‘A QUL 10°loxd oy Suump pagnuapt am jeyy sYSU Ay, 1 9[qeL

"9q P[NOM QATIBUIdI[E 1S2q Y}
jeym sIostazadns Aw yyrm sSnosIp [[eysS
[‘uonenuUNUOd SII INOGE AJUTIIAoUN ST
Q1) Sk 3UO[SY "onunuod [193foad
oY} ISYIAUM QW UT AMOUY [[IM [‘N0
YIIM JoBJUOD 9SO[d Ul Jureq Aq o1
‘e1s 109[o1d ggs gy Sumoyuow Ag

‘uaaoypuryg NJ, Aq paziue3io st
11 9sNBO3q SpuRY AW JO INO SI SIY],

0

.V

-9oe[d aye1 01 Su103 st 309foxd
dAS oy Ioyleym urenedoun
SI 31 ‘SNIIABUOIOD QU} UM\

ourfuo

ouop 9q [iim

dds ‘paesniN - ¢

"TOAQ
-MOY ‘¢ S 99§ "IdV DI 1duoseaef
[OIBISAY Y} 9sn 0} 9q P[NOM ATIRU
-I9)[e U, '198pnq Swos puy A[[erud)
-od ued om Josiazadns Auedwoo Aw
yIm uo A[Ied YSu siy) Suissnosip Agq

"C# JSLI UT paqLIdsap a1e yoeoid
-de sy Suryel Ul POAJOAUL ‘A9
-MOY ‘SYSII 9y, 'yoreasar sdi[yd
1e juosard sI Jey) [dV Oyl M
JIoM 0] 9q P[NOM QANBUId)E UY

100lo1d Awr 10§ 9[qe[IRAR
198pnq ou SI 219y} ‘mouy | se
Ie] Sy POAJOAUI S}SOD QUIOS
9q Os[e AW 1Y) ‘[[oMm S [dV
U} osn 0} pAuem [JI Jey)
sueow SIYJ], “I9YJe50) $IS0D
959y} SULIDA0D ATk [V SIY} sn
oym srowoisnd sdijiyd ‘Apuar
-In0) °s}S09 Qwos Juofe s3uriq
Yorym ‘oI[im], Suisn ST [V
SUONEIIUNWIWOD payIun Y,

"Papaau JI [V 9y 2oe[dar A[a1e1d
-Wwod 0} JIJISB 9q p[nom 31 os Jurop
Ag 'IdV Suoneorunwiwod payrun ay)
uo Aouspuadap MO[® ST 219y} Jey) Yyons
Aem ® 4ons ur wajsAs oy u3isop ued |

‘(paxy way aAey A[njodoy pue)
no way jurod 03 dwn ysnous dwr
QAIS pInoys yorym ‘a3eis A[Iea ue ur
SanssI AJrjuapl ued [uo Aped v
oyl Y Iom 0) Surures| £q ‘os|y
"Q0UBApR UL [[oMm SansSI SurAjnuapt
ur aw djoy prnoys [y oy surdo
-[9AQp SI 1By} WEd) oY) YIIm UOInel
-0ge[[09 PUB UOHEIIUNWIIOD ISO[))

"POppE 9q Ued 1 910J9q dwn)
Suol © oyey Aew 31 Jurssiw
SI AjIfeuoriouny usayMm jey) pue
‘@8ueyd [[Us ued [dV Ul eyl
‘s3nq 9q Aew 919Y) JBY) SuBAW
SIYL, 19K paInjewr jou sey
pue Juawdo[oAap Ul [[1S ST [V
SUONEJIUNWIWOD pIyrun Y[,

Idv

D LY 1duoseaef
yoIeasay oy
asn [Im om
‘PARININ
IdVv

DLy 1duoseaef
YoIeasay Ay
asn [[Im oM
‘pIeININ

The Philips Remote Al Streaming platform / Version 1.0

186

PO Box 513

5600 MB Eindhoven
The Netherlands
tue.nl

PDEng SOFTWARE TECHNOLOGY

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

	Abstract
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Glossary
	List of tables
	List of figures
	Introduction
	Project context
	Philips Remote AI Streaming platform
	The origin of PRAIS

	Scope and Goal
	Outline

	Problem analysis
	WebRTC
	WebRTC providers
	ICELink
	LiveSwitch
	Summary

	The existing system
	Use Cases
	Neonatal pose detection
	Neonatal apnea detection
	Algorithm sharing
	Audio/video recording
	Summary

	Algorithm and AI analysis
	Stakeholder Analysis

	System Requirements
	Technical goals
	Visualization Streaming

	Requirement gathering
	PRAIS use cases
	Requirement overview
	Functional requirements
	Non-Functional Requirements

	PRAIS Architecture & Design
	The 4+1 View model of architecture
	Software Engineering Project (SEP)
	Maxima Medisch Centrum
	PRAIS Recorder Application

	Logical View
	The PRAIS C# API

	Process View
	Authentication
	Manual Signaling
	Connection setup implementation details
	Visualization Streaming

	Physical View
	Development View

	Verification and Validation
	Functional evaluation
	Automated system testing

	Usability
	Usability Study Goal
	Methodology
	Results
	Discussion and Conclusion

	Vendor Abstraction
	Installability
	Deployability
	Security
	Integratability
	Compatibility

	Conclusion and Future Work
	Recommendations and Future Work

	Project Management
	Way of working
	Planning
	Risk Management
	Retrospective

	Bibliography
	About the author
	WebRTC Providers
	SFU and MCU
	Use Case Analysis
	Requirements
	SEP project description
	PRAIS Recorder Application
	PRAIS Documentation
	Additional Design
	Usability Study Files
	PRAIS Usability Study Results
	NuGet generation
	Project management

