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Abstract 

Perfluoroalkyl and polyfluoroalkyl substances are environmental contaminants with adverse 

properties owing to the presence of the particularly strong C�F bond. 

In this thesis, the biotransformation potential of fluorotelomer ethoxylates (FTEOs) was 

assessed under aerobic conditions. After investigation of the technical FTEO mixture by 

electrospray�mass spectrometry (ESI�MS) techniques, it could be shown that two pathways are 

possible, one involving oxidation to ω�oxidized carboxylates (FTEOCs), which can be stable 

under certain conditions, and another pathway releasing perfluorocarboxylates, in function of 

the perfluoroalkyl chain length of the FTEO. After successful synthesis of two short�chain 

FTEOCs, these compounds were quantified in a wastewater treatment plant (WWTP) effluent 

by solid phase extraction and high performance liquid chromatography coupled to ESI�MS/MS. 

Alongside the FTEOCs, a set of perfluorocarboxylates and perfluoroalkane sulfonates was 

determined in seventeen WWTP effluent samples and four surface water samples. 

The biotransformation behavior of three building blocks of potential novel environmentally 

friendly fluorosurfactants was investigated. It could be shown that 6�(trifluoromethoxy)�hexan�1�

ol released 100% inorganic fluoride, whereas 3�(trifluoromethoxy)�propan�1�ol yielded only 15% 

fluoride. The remainder was shown to be organically bound as the non�degradable 3�

(trifluoromethoxy)�propanoic acid. The building block 1�(2,2,3,3,4,4,4�heptafluorobutoxy)�

propan�2�ol expectedly released perfluorobutanoic as the persistent transformation product. 

The toxicity of the dead�end transformation product PFBA towards the green algae 

Pseudokirchneriella subcapitata and towards the Cladoceran Chydorus sphaericus was 

assessed with standardized tests. The results suggested no acute toxicity of these compounds 

at environmental levels. Oth 

er fluorinated compounds were included in the screening suggesting a general increase of 

toxicity with longer perfluoroalkyl chain length. However, the functional group itself showed a 

major effect on toxicity. 

The mass spectrometric fragmentation characteristics of the compounds studied in this thesis 

were carefully scrutinized. Comparison of different fluorotelomer�based compounds revealed a 

general fragmentation pattern for these compounds after negative electrospray ionization and 

collision�induced dissociation, which can be utilized to screen for novel fluorotelomer�based 

contaminants hereafter.  
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Abstract 

Polyfluorierte und perfluorierte Verbindungen stellen eine Gruppe von Umweltkontaminanten 

dar, die aufgrund der starken C�F�Bindung besonders negative ökologische Eigenschaften 

besitzen. 

In dieser Arbeit wurde das Biotransformations�Potenzial von Fluortelomerethoxylaten (FTEO) 

unter aeroben Bedingungen untersucht. Nach Ermittlung der molekularen Zusammensetzung 

eines technischen FTEO�Gemischs mittels Elektrospray�Massenspektrometrie (ESI�MS) konnte 

aufgezeigt werden, dass zwei Transformationswege möglich sind, wobei einer dieser Wege 

über ω�oxidierte Carboxylate (FTEOCs), welche unter bestimmten Bedingungen nicht weiter 

abbaubar sind, verläuft. Ein anderer Abbauweg mündet in Perfluorcarboxylaten. Nach 

erfolgreicher Synthese zweier kurzkettiger FTEOCs konnten diese Verbindungen mithilfe einer 

Methode basierend auf Festphasenextraktion und HPLC�ESI�MS/MS in einer 

Kläranlagenablaufprobe nachgewiesen und quantifiziert werden. Neben den FTEOCs konnten 

eine Reihe von Perfluorcarboxylaten und Perfluoralkansulfonaten in siebzehn 

Kläranlagenabläufen und vier Oberflächengewässern bestimmt werden. 

Die Untersuchung der Bioabbaubarkeit dreier potentieller Bausteine für neue, 

umweltfreundliche Fluortenside ergab, dass 6�(Trifluormethoxy)�hexan�1�ol 100% 

anorganisches Fluorid freisetzte. Die homologe Verbindung 3�(Trifluormethoxy)�propan�1�ol 

hingegen setzte lediglich 15% Fluorid frei, wobei das verbleibende Fluor in der nicht weiter 

abbaubaren 3�(Trifluormethoxy)�propansäure organisch gebunden blieb. Der dritte Baustein � 1�

(2,2,3,3,4,4,4�Heptafluorbutoxy)�propan�2�ol – führte erwartungsgemäß zur persistenten 

Verbindung Perfluorbutansäure. 

Die Toxizität der Perfluorbutansäure gegenüber der Algenspezies Pseudokirchneriella 

subcapitata und dem Kleinkrebs Chydorus sphaericus wurde anschließend ermittelt. Die 

toxikologischen Kenndaten ergaben keine akute Gefährdung dieser Organismen bei 

umweltrelevanten Konzentrationen. Weitere fluorierte Verbindungen wurden untersucht, wobei 

gezeigt werden konnte, dass die Toxizität mit zunehmender Kettenlänge im Allgemeinen 

zunimmt, die funktionelle Gruppe jedoch einen signifikanten Einfluss auf die Toxizität hat. 

Die massenspektrometrische Fragmentierung aller untersuchten Verbindungen wurde 

untersucht. Dabei ergab sich ein allgemeiner Fragmentierungsweg für Fluortelomer�basierte 

Verbindungen unter negativen Elektrospray�Bedingungen und stoßinduzierter Fragmentierung. 

Diese Erkenntnisse können in Zukunft zur Detektion neuer unbekannter Fluortelomer�basierter 

Verbindungen verwendet werden.  
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1 Introduction 

1.1 The role of transformation products for sustainable chemistry 

Numerous organic anthropogenic chemicals have been identified and quantified in 

environmental specimen throughout the past decades [1�9]. Distribution of legacy environmental 

pollutants results from direct use of these compounds and as such, they are target analytes to 

analytical chemists. Well�known examples for these compounds are pesticides, 

pharmaceuticals, surfactants and polychlorinated compounds such as polychlorinated biphenyls 

and polychlorinated dibenzodioxins. Screening of such target analytes is often carried out 

effortlessly by routine analysis, because scientists are aware of the chemical structure and 

physico�chemical properties. As a result, analytical methods can be developed by virtue of 

these features and even analytically challenging analytes may be measured by customized 

optimization of protocols. 

However, organic anthropogenic compounds in the environment are not confined to those which 

are directly and intentionally produced by humans. The number of compounds is largely 

increased when taking into account transformation products (TPs) of organic compounds. 

These substances may be a result of biotic or abiotic processes, which are summarized in 

Figure 1.  

 

Figure 1: Overview of biotic and abiotic processes involved in the formation of transformation products 
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Biotic processes involve metabolic enzymatic reactions by higher organisms, such as humans, 

animals or plants as well as microbial transformations by bacteria, fungi, algae or protozoa. 

Most of these organisms may transform organic compounds as a source of energy, carbon or 

other elements the respective compound consists of. Higher organisms may also transform 

these compounds to facilitate excretion of otherwise toxic compounds. 

Microbial transformation is an essential process which is made use of in modern wastewater 

treatment plants (WWTPs), where organic anthropogenic compounds can be transformed or 

even entirely degraded [4,8,10�12]. However, even after entering the environment, organic 

compounds can be transformed microbially due to the ubiquity of microorganisms. Thus, these 

reactions may occur in all kinds of aqueous environmental compartments and in soil. 

Processes without the involvement of enzymatically driven chemical reactions are summarized 

under the term abiotic processes. These reactions are mediated by photons, chemicals or 

thermal energy and may occur in different environmental compartments as well as in man�made 

facilities or factories. 

Phototransformation is an important process, which includes the direct or indirect reaction of a 

compound with sunlight in aqueous solution. Direct phototransformation refers to reactions 

occurring between the compound and photons, whereas indirect phototransformation describes 

processes involving mediators such as natural organic matter, which effectively absorbs the 

photons and induces further reactions with the target compound [13]. Closely related to 

phototransformation is atmospheric transformation of substances in the gas phase. Under these 

conditions, hydroxyl radicals are formed and may effectively react with organic molecules [14]. 

Chemical reactions may be induced notably under harsh conditions, e.g. in drinking water 

facilities, where ozonation and chlorination are still the methods of choice for disinfection [15]. 

Both of these chemicals do not only attack microorganisms, but are very reactive towards 

organic and inorganic compounds. Hence, several toxic TPs have been identified to result from 

their use, such as the highly carcinogenic N,N�dimethylnitrosamine [16,17]. A particularly 

important transformation by chemical reaction is hydrolysis, which represents cleavage of 

esters, amides or similarly labile compounds by the influence of water. Its importance is 

corroborated by the fact that pollutants in the environment are most often present in aqueous 

solution. 

Thermal transformation has not gained scientists’ attraction until the discovery that chlorinated 

organic compounds may be transformed to the extremely toxic polychlorinated dibenzodioxins 

or dibenzofuranes under high temperatures [18]. 

The fact that all of these processes may theoretically proceed consecutively drastically 

increases the number of possible TPs. An impressive example is the abovementioned formation 

of N,N�dimethylnitrosamine during chlorination in drinking water facilities. One of the sources 
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was pinpointed to be dimethylsulfamide, which in turn is a microbial TP of the pesticide 

tolylfluanide [17]. 

Adverse effects arising from microbial transformation processes have been first revealed in 

1984, when biotransformation of nonylphenol ethoxylates (NPEO) was shown to yield the toxic 

TP 4�nonylphenol [19]. Although self�commitment of manufacturers lead to reduced use of 

NPEO shortly after this ascertainment, the fact that the application of NPEO was only restricted 

in 2003 by the European Union [20] underlines the complexity and tediousness when chemicals 

are about to be legislated. This in turn emphasizes the need to study environmental fate and 

effects of compounds before releasing them onto the market. 

In addition to the pronounced environmental benefits, this modus operandi would facilitate 

tracing of these TPs in the environment after their release, because analytical chemists could 

develop specifically designed analytical methods. Unless scientific studies simulating these 

processes are carried out, detection and identification in environmental samples is usually 

extremely complex [21] and time�consuming due to the very low concentrations and – even 

more severely – because non�target analysis has to be performed. Although analytical 

instrumentation and data evaluation tools have become more and more powerful, target 

analysis will certainly always be the method of choice, especially at low concentrations. 

A shift from pollution reduction by treatment processes after use towards pollution prevention is 

necessary and inevitable [22], which is also implemented by the European Union Regulation 

‘Registration, Evaluation, Authorisation, and Restriction of Chemicals’ (REACH). In the REACH 

legislation, it is addressed that ”a characterisation of possible degradation, transformation, or 

reaction processes and an estimation of environmental distribution and fate shall be performed” 

[23], which is required for chemicals exceeding production amounts of more than 100 t/y [24].  

The necessity for this mode of action is substantiated by the fact that TPs can be more toxic 

than their parent compounds, as illustrated in Figure 2, although this figure demonstrates that 

most of the TPs are indeed less toxic than their parent compound. The sustainability of novel 

compounds brought onto the market should thus be contemplated integrally, including 

knowledge on identity, properties and toxicity of TPs. This can only be affected by means of 

sophisticated analytical methods, such as mass spectrometry (MS) or nuclear magnetic 

resonance (NMR) spectroscopy. Thus, non�specific biodegradation tests such as those 

suggested by the Organisation for Economic Co�Operation and Development (OECD) [25] 

relying on sum parameters cannot evaluate environmental friendliness. For instance, even if a 

compound is shown to be 90% biodegradable within a short time (based on dissolved organic 

carbon (DOC) or carbon dioxide evolution tests), the remaining 10% may be present in form of 

a lower molecular weight toxic TP. 
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Figure 2: Toxicity of a set of pesticides versus the toxicity of its TP. Toxicity towards fish, daphnids and 

algae are shown. Reprinted from Ref. [26]. Please notice that the different icons do not reflect the species 

tested. 

Prediction of environmental properties, especially of toxicity and degradability, will certainly play 

an important role with the implementation of REACH, but it will probably not replace laboratory 

experiments. The complexity of these properties is extremely complex, because both toxicity 

and degradability are often linked to their ability to bind to proteins – enzymes or receptors – 

which depend at least on the species under investigation. With this knowledge, it is 

recommended to use both in silico methods and laboratory methods synergistically. 

1.2 Fluorinated compounds 

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are anthropogenic compounds, which 

are mainly used in technical applications, but also in consumer products. Apart from well�known 

genuine fluorocarbons, such as polytetrafluoroethylene (PTFE) and perfluoroalkanes, and 

hydrofluorocarbons, such as polyvinylidene difluoride (PVDF), numerous functionalized highly 

fluorinated compounds of lower molecular weight have been used in various applications. 

These will be referred to herein as PFASs. By definition, all fictive hydrogen atoms on an 

aliphatic carbon backbone are substituted by fluorine in perfluorinated substances, whereas 

polyfluorinated substances contain one or more C�H bonds. 

Among the various substance classes, perfluorinated carboxylic acids (PFCA) and 

perfluorinated sulfonic acids (PFSA) are the most prominent perfluorinated substances today, 
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especially perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). These 

compounds have been identified to occur ubiquitously and to exhibit several adverse effects 

towards humans and the environment, as described in chapter 1.5. And yet, the effects and 

significance of PFASs to the environment can only be assessed, when all PFASs are taken into 

account. However, the entirety of PFASs is very difficult to assess, which is substantiated by a 

list provided by the OECD, where more than 900 compounds are listed, which may degrade to 

PFCA or PFSA [27]. The spectrum of compound classes ranges from carboxylic acids, sulfonic 

acids to phosphonic and phosphinic acids, amines, sulfonamides, polyethoxylates, and many 

more [28]. 

Only very few indications on naturally occurring defluorinating enzymes have been discovered, 

which is due to the scarcity of fluorinated molecules in nature and the high bond enthalpy. 

Indeed, only 4�fluorothreonine, several fluorinated fatty acids as well as fluorocitrate, 

fluoroacetone and one fluorinated nucleoside derivative (nucleocidin) have been discovered so 

far [29,30]. 

1.3 Chemical and physico2chemical properties of fluorinated compounds 

Most of the unique and often deleterious effects of PFASs are connected to the properties of 

fluorine, which can be considered an element of extremes within the periodic table of elements. 

The most important characteristics with consequences for environmental effects analytical 

problems of PFASs are summarized in the following. 

Fluorine has an atomic number of 9 and a relative atomic weight of 18.9984 u. In contrast to 

most other elements, fluorine is monoisotopic. Thus, fluoroorganic compounds do not exhibit 

characteristic isotopic patterns in MS, which is one of the disadvantageous properties of fluorine 

for the analytical chemist, especially the mass spectrometrist. In contrast, other 

organohalogens, like organochlorines and organobromines offer very pronounced isotopic 

patterns, which can be made use of by means of MS. 

Fluorine has a very small van der Waals radius of 147 pm [31] and, although very difficult to 

measure, a covalent radius of approximately 60 pm [32�34]. Associated with this, it has the 

highest electronegativity in the entire periodic system of 3.98 on Pauling’s scale [35], which 

inevitably causes every bond A�F to have considerably ionic character, unless A is oxygen, 

nitrogen or fluorine itself [32]. Thus, the C�F bond is better described as Cδ+�Fδ�. As a result of 

these rather ionic interactions, the C�F bond is considered the strongest single bond in organic 

chemistry with a bond enthalpy of 481 kJ mol�1 in CH3F, which is substantially higher than that of 

other bonds [36]. This pronounced bond strength is reflected by the notorious environmental 

and chemical stability of PFASs.  
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In mammalian organisms, cytochrome P450 monooxygenases can defluorinate certain 

molecules, but the number of articles on microbial defluorination is very scarce, at least this is 

true for aliphatic compounds. Aromatic fluoroorganics seem to be more susceptible to 

defluorination, as the number of scientific papers on defluorination of aromatic compounds 

exceeds that of aliphatic compounds by far [37].  

Another consequence of its low van der Waals radius is a very low electronic polarizability, 

which causes London forces and surface energies of fluorinated molecules to be very low [38] 

and may represent a reason for the unique partitioning characteristics of highly fluorinated 

molecules. They are both hydrophobic and lipophobic/oleophobic [39,40] and, depending on the 

functional groups attached to the fluorinated carbon chain, have low aqueous solubility. For 

instance, the aqueous solubility of 8:2�fluorotelomer alcohol (8:2�FTOH) is approximately two 

orders of magnitude lower than its non�fluorinated counterpart 1�decanol [41]. Furthermore, 8:2�

FTOH is rather liquid, whereas 1�decanol is solid, which also implies very low intermolecular 

forces between 8:2�FTOH molecules. Despite the low intramolecular forces, PFASs tend to 

show distinct partitioning onto parts of the high�performance liquid chromatography (HPLC) 

instrument or environmental solids such as soil [42] or activated sludge [43] or any material 

used to conduct the study, e.g. vessels, tubes and other surfaces [44]. This effect may be 

ascribed to ionic and non�ionic interactions. As a consequence of this property, sterile controls 

should always be carried out simultaneously in order to differentiate between biotransformation 

processes and sorption.  

Another effect of the low aqueous solubility of some of the compounds is volatilization, if the 

compounds exhibit high vapor pressure and low aqueous solubility at the same time, such as 

FTOH and other fluorotelomer�based biotransformation products. For instance, 8:2�FTOH 

exhibits caused a low boiling point of approximately 80°C, a vapor pressure of 3 Pa at 25°C [45] 

and poor water solubility of ca. 150 Rg L�1, which results in a relatively high water�air partitioning 

coefficient [46,47]. Furthermore, when dissolved in water, the tendency to sorb onto particles is 

very high [43], which was investigated in detail by Liu et al., who found a log KOC of 4.13 ± 0.16, 

but a log KDOC value of 5.3 ± 0.29 and partially irreversible binding of 8:2�FTOH to DOC [45].  

1.4 Sources and application of perfluorinated and polyfluorinated compounds 

As a result of their unprecedented surface tension reduction and chemical stability, PFASs have 

been produced for more than 50 years [48] and have been used in various industrial, household 

and consumer applications. The fields of use range from aqueous firefighting foams (AFFF), 

inks, varnishes, leveling agents, lubricants and auxiliary chemicals in polymerization processes 

to applications in the semiconductor manufacturing, galvanic, leather, paper and textile industry 
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[49]. Several of the lower molecular weight PFASs, for instance FTOHs and N�EtFOSE are 

used as intermediate products for polymers, which is one of their main fields of application [48]. 

The use in these products renders unintentional and intentional emissions into the environment 

inevitable. Unintentional emissions may be caused by wash�off or volatilization, whereas 

intentional emissions are largely confined to usage of AFFF containing PFASs. 

A rather complex source for several PFASs is biotransformation of other PFAS species. The 

most prominent examples are the degradation of 8:2�FTOH to PFOA and the transformation of 

N�EtFOSA to PFOS [50]. This subject will be discussed more thoroughly in chapter 1.6. The 

global fate of PFASs is further complicated by atmospheric degradation (photodegradation), 

which plays an important role for volatile PFASs, such as FTOHs, fluorotelomer olefins (FTO) 

and FOSEs [51�54].  

1.5 Environmental occurrence, effects and regulation of PFASs 

First hints on the widespread occurrence of fluorinated and perfluorinated molecules arose 

already in the 1960s, when Taves discovered “two forms of fluorine in human serum” by ashing 

and subsequent potentiometric analysis with a fluoride�selective electrode [55]. Nearly ten years 

later, Taves et al. were able to identify that the organically bound fluorine in human plasma was 

partially attributed to PFOA [56]. 

During that time, however, no powerful tool that allowed for sensitive and selective detection of 

these compounds was available. Gas chromatography coupled to MS (GC�MS), which was 

already on the market, did not meet these criteria, mostly due to the ionic structure of the 

majority of PFASs, which disallows volatilization required for GC�MS. This issue was solved 

only in the 1980s, when the group of John Fenn invented electrospray ionization (ESI) [57,58] 

technique based on previous work by Dole and co�workers [59].  

With the invention and commercialization of these new techniques, sensitive analysis of PFASs 

was facilitated and soon led to the ubiquitous detection of several PFASs. Concerns began to 

arise when several PFASs, especially PFOS and PFOA, were not only detected in blood from 

directly exposed workers in PFAS manufacturing facilities [60], but ubiquitously in human blood 

around the world [61�63]. Concentrations were usually in the Rg L�1 range. Half�lives of several 

months up to years imply that PFAS concentrations in human blood only decline gradually 

[64,65]. The notorious persistence of PFASs is reflected by rather high concentrations even in 

remote areas such as the Arctic or Alaska, where they have been detected in polar bears, 

snow, ocean water and numerous other matrices [66�68]. Despite the phase�out of PFOS, it is 

still the PFAS occurring at highest concentrations in aquatic biota [68,69]. 

PFASs have also been detected in the water cycle. Usually, concentrations are in the low ng L�1 

range, both in WWTP effluent, surface water, ground water, tap water and mineral water [70�
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73]. These concentrations can be considered ubiquitous background levels. However, higher 

concentrations may be caused when point sources are present. In this case, concentrations in 

the Rg L�1 range have been detected [74,75], which may become a cause for concern.  

When PFASs, especially acidic PFASs, enter mammalian organisms, they are concentrated in 

the blood circulation, where they are bound to serum proteins, especially albumin [76,77]. This 

is one of the key differences to legacy organic pollutants such as polychlorinated biphenyls, 

which are enriched in fatty tissues. This behavior is caused by the lipophobic and hydrophobic 

nature of PFASs and the ionic character of acidic PFASs. 

The most intensively investigated toxic effect of PFASs is their peroxisome proliferator potential, 

which was already discovered in the 1980’s [78�82]. Furthermore, decreased body weight 

[83,84], developmental effects [85,86], carcinogenicity [87,88] and immune system alterations 

[89,90], have been described, the latter ones may even occur at environmentally relevant 

concentrations [91]. 

As it fulfills the criteria ‘persistent, bioaccumulative, toxic’ (PBT) with the lowest half maximal 

effective concentrations (EC50) of PFASs, it was added to Annex B of Stockholm Convention on 

persistent organic pollutants (POPs) in 2009 [92]. For Germany, mainly regulations for drinking 

water have been established, where a sum of PFOA and PFOS of 0.3 Rg L�1 is accepted and 

0.1 Rg L�1 is considered a target value for the future. Only recently, PFOS was proposed to be 

added to the list of priority substances within the European Water Framework Directive [93,94]. 

It was shown in several studies that toxicity and ecotoxicity generally decreases with decreasing 

perfluoroalkyl chain length. Latała et al. found decreasing toxicity to different algae species, 

including green, blue and red algae [95]. Also toxicity to the bioluminescent bacterium Vibrio 

fischeri decreased significantly with declining perfluoroalkyl chain lengths [96]. The same trend 

could be demonstrated for saturated and unsaturated fluorotelomer acids [97]. Their toxicity 

towards the three algal species Hyalella azteca, Chlorella vulgaris and Pseudokirchneriella 

subcapitata generally decreased with decreasing chain length. None of these studies included 

perfluorobutanoic acid (PFBA) in the experimental plan. However, it becomes obvious that more 

attention should be paid on perfluoroalkyl substances with shorter chain lengths, as it is likely 

that novel fluorinated products will incorporate such short perfluoroalkyl chains. So far, only one 

study assessed the toxicity of perfluorobutanoic acid (PFBA) to an aquatic organism, i.e. 

zebrafish (Danio rerio) embryos [98]. The observed EC50 values and no observed effect 

concentrations (NOEC) suggest that PFBA is less toxic by at least one order of magnitude as 

compared with PFOA. Also in this study, PFOS was the most toxic compound among the four 

PFASs tested (PFOS, perfluorobutane sulfonate (PFBS), PFOA and PFBA). 
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1.6 Biotransformation of fluorinated compounds 

Perfluorinated compounds have been proven to be non�biodegradable under aerobic 

conditions. In a study under sulfur�limiting conditions, the degradability of PFOS, 1H,1H,2H,2H�

PFOS (6:2�fluorotelomersulfonate, 6:2�FTS), trifluoromethane sulfonate (TFMS), 

difluoromethane sulfonate (DFMS) and 2,2,2�trifluoroethane sulfonate (TFES) was investigated 

with respect to desulfonation and release of inorganic fluoride [99]. 6:2�FTS is used in AFFFs 

and has been proven to leach into groundwater upon application [100]. It was clearly shown that 

only those compounds bearing at least one hydrogen atom in α�position to the sulfonate group 

are desulfonated, namely 6:2�FTS, DFMS and TFES. Defluorination was only observed for 6:2�

FTS and TFES. The TPs generated remain unknown. It is worth mentioning that sulfur�limiting 

conditions are by no means representative of environmental conditions, but if desulfonation 

under these extreme conditions does not occur, it is unlikely to be possible under environmental 

conditions. 

Recently, the biodegradation of 6:2�FTS was studied in more thoroughly [101]. It was 

discovered that biotransformation proceeds very slowly and almost 70% of the initial 6:2�FTS 

concentration was detected after 90 days. The main stable TPs generated were 

perfluoropentanoic acid (PFPeA) and PFHxA at approximately 1%. 

The thermodynamic aspect of defluorination has been assessed very thoroughly by Parsons et 

al. [102] comparing defluorination with other dehalogenation reactions. In conclusion, the 

implementation of long perfluorinated alkyl chains is very likely to result in a non�

biodegradability of the compound, although defluorination is a thermodynamically favored 

reaction. If biotic transformations occur at all, they will cease in proximity to the perfluorinated 

moiety in the molecule leaving long�lived highly fluorinated TPs. It is stated that reductive 

defluorination – similarly to other reductive dehalogenations – is favorable under anaerobic 

conditions. 

A number of highly fluorinated chemicals have been subjected to biodegradation studies. 

Among these, the group of fluorotelomer�based chemicals has attracted high scientific attention, 

which can be explained both due to their complex metabolism and their high production 

amounts. The most prominent fluorotelomer�based chemicals are fluorotelomer alcohols 

(FTOHs) and fluorotelomer olefins (FTOs), which are mainly used as chemical intermediates in 

the production of fluorinated polymers.  

Biodegradation of FTOHs has been studied in soil, wastewater and mineral media amended 

with bacteria originating from different environmental compartments. The striking partitioning 

behavior of FTOHs complicates the understanding of the environmental fate of these 

compounds in several ways: Firstly, mass balance is difficult to achieve in laboratory 

experiments and this can only be remedied by working with closed systems, which, in turn, does 
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not represent environmental conditions. Secondly, owing to the high tendency to be volatilized, 

diverse atmospheric chemical reactions may occur, which may finally also lead to PFCAs [51�

53]. Briefly, atmospheric chemical reactions of FTOHs with radicals do also lead to different 

PFCAs, thus, these reactions must be taken into account to evaluate the sources of PFCAs. In 

the following, microbial degradation of 8:2�FTOH is described in detail. The degradation of other 

FTOHs is likely to be similar, but not much effort has been put on these other chemicals.  

In general, biodegradation of 8:2�FTOH is initiated by oxidation of the hydroxyl group to the 

respective aldehyde (8:2�FTAl) and to the carboxylic acid (8:2�FTA) (see Figure 3). The 8:2�FTA 

is then transformed to an unsaturated carboxylic acid (8:2�FTUA) by formal cleavage of 

hydrogen fluoride, representing the first step within the cycle of β�oxidation. Both FTA and FTUA 

of various chain lengths have been determined in low concentrations in environmental samples 

[103,104]. It appears that 8:2�FTUA can be further metabolized by several pathways. One gives 

rise to the 7:3�FTUA and then to the potentially persistent 7:3�FTA, which was first described in 

the literature by Wang et al. [105]. If this step can be confirmed, this would be one of the first 

reports on microbial defluorination [39]. Also PFHxA is generated via 7:3�FTUA by unknown 

metabolic pathways. PFHxA may crop up to approximately 4 mol% [42], albeit it was not 

detected in other studies.  

Most importantly, also for environmental regulations, the metabolic conversion of 8:2�FTOH 

leads to PFOA, which was detected in all degradation studies of 8:2�FTOH performed so far. 

The elucidation of the metabolic pathway resulting in PFOA is still matter of ongoing research. 

While initial studies proposed β�oxidation of 8:2�FTA after activation to its CoA�derivative [106], 

latest studies suggest that 8:2�FTA is transformed to the transient TP 7:2�sFTOH, and finally to 

PFOA by an unknown pathway [42]. It has to be pointed out, that these studies were carried out 

under very different conditions (degradation study in defined mineral medium vs. study in soil), 

so it cannot be excluded that both mechanisms are possible. However, the pathway suggested 

by Wang et al. was corroborated by synthesizing a number of transient TPs and subjecting 

them to individual degradation tests in order to explicitly conclude the metabolic pathways.  

The yield of PFOA ranged from 0.5 % [107] to 25 % [42] and is certainly dependent on the 

duration of the degradation tests. Later, yet another stable TP derived from 8:2�FTUA 

degradation, namely 2H�PFOA was discovered [42]. The detailed metabolic reactions have not 

been identified yet. Analogously to 8:2�FTOH, also 6:2�FTOH degradation has been scrutinized 

and lead to coherent results [108,109]. 
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Figure 3: Biotransformation pathways of 8:22FTOH as studied in soil by Wang et al. showing the partial 

transformation of 8:22FTOH to PFOA. Figure reprinted with modifications from Ref. [42]. Dead2end TPs are 

tagged with rectangles. 

Fluorotelomer ethoxylates (FTEO) are polyethoxylated fluorotelomer derivatives used mainly as 

additives in paints and coatings. Their degradation behavior has been briefly analyzed by 

Schröder, who detected carboxylic intermediates under aerobic conditions [110]. 
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In a comparative study of compounds with low degree of fluorination, ω�substituted alkane�1�

sulfonates were tested for biotransformation and mineralization potential [111�113]. The concept 

behind the study was based on implementation of fluorinated functional groups into inherently 

degradable alkane�1�sulfonates. These studies were carried out to elucidate which fluorinated 

functional groups were apt to undergo mineralization to fluoride and other inorganic and non�

toxic TPs. It is evident that none of such functional groups can contain long�chained 

perfluoroalkyl chains. 

Once such fluorinated functional groups were found, these should be implemented into newly 

designed fluorinated surfactants. The application�oriented advantages of PFASs are related to 

their perfluoroalkyl chain length. Short�chained functional groups cannot reach the peerless 

properties of long perfluoroalkyl chains. However, implementation of several such functional 

groups into one molecule is supposed to impart at least comparable properties. The principle 

design of such a novel fluorinated surfactant is depicted in Figure 4 b). Herein, the fluorinated 

functional group (green) is covalently bound to a biodegradable spacer (red). Several of these 

joint moieties are connected to a hydrocarbon backbone (blue). If surfactant properties are 

required, polar or ionic groups (R) can be attached to the hydrocarbon backbone. 

The bond between the degradable spacer and the hydrocarbon backbone can be cleaved 

hydrolytically or enzymatically, e.g. an ester bond. This would allow for cleavage of the subunits 

(Figure 4 c), which are biodegraded releasing the fluorinated functional group. In an ideal case, 

this group is chemically instable or completely biodegradable leaving behind fluoride and other 

inorganic and non�harmful substances. If this is goal is not accessible, short�chained fluorinated 

organic TPs with better environmental properties can be tolerated. As outlined in chapter 1.5, 

toxicity of PFASs often decreases dramatically when the perfluoroalkyl chain is shortened. 
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Figure 4: a) Design of traditional long2chained PFASs b) Schematic illustration of a novel PFAS c) 

Transformation pathway of novel PFASs via multi2step hydrolysis and biotransformation. For detailed 

explanation please consult text. 

One of the functional groups studied was the trifluoromethyl (TFM) group. In this context, 

biotransformation of 10�(trifluoromethoxy)decane�1�sulfonate was investigated and it was 

proven that this compound is mineralized to an extent of 90% under aerobic conditions [111]. 

It was proposed that the biotransformation pathway ending up in inorganic fluoride involves the 

initial cleavage of the sulfonate group followed by ω�oxidation and stepwise scission of C2 

moieties in terms of β�oxidation results in the formation of trifluoromethanol (TFMeOH) (see 

Figure 5).  
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Figure 5: Biotransformation routes of the surfactant candidate 102(trifluoromethoxy)decane212sulfonate. The 

left2sided pathway accounts for approximately 90% and yields inorganic fluoride. Taken from Ref. [111] with 

modifications. 

TFMeOH is instable in water and reacts to carbonyl difluoride (COF2) under release of HF [114]. 

Carbonyl difluoride is also instable in water and finally decays to HF and CO2 [115]. Due to the 

results presented above, the TFM group was adjudged an appropriate functional group to be 

utilized in the development of novel fluorosurfactants. 

A question which still remains to be answered is the role of highly fluorinated polymers. These 

polymers comprise perfluorinated polymers such as poly(tetrafluoroethylene) or 

perfluoropolyethers, fluorotelomer�based polymers such as acrylates, methacrylates and 

urethanes [116,117], and N�ethyl�perfluorooctane sulfonamidoethanol (N�EtFOSE) or N�methyl�

perfluorooctane sulfonamidoethanol (N�MeFOSE)�based polymers, which are of the acrylate, 

urethane or adipate type [48]. 

The number of published work on degradation of polymers is still very scarce due to the 

complexity of this subject and difficulties involved in the experimental setup, since most 

polymers are water�insoluble, especially those which contain fluorine. The water�insolubility 

dramatically affects the time�scale of biodegradation and reproducible results are also difficult to 

obtain [118]. 
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Russell et al. studied the biodegradation of a copolymer being constituted of fluorotelomer 

acrylate monomers, hydrocarbon acrylate monomers and dichloroethylene monomers [116]. 

The resulting polymer had a number average molecular weight of 40,000 Da and was incubated 

in aerobic soil for two years. Formation of PFOA and other 8:2�FTOH related TPs was 

observed, but it was shown by mass balance that this is the result of degradation of impurities 

present in the starting material. The perfluorinated alkyl chain might shield the ester group from 

esterases or other enzymes that might catalyze the decomposition of the ester to the respective 

FTOH and the remainder [119].  

However, in another article describing the biodegradation of an acrylate�linked fluorotelomer�

based polymer similar to the one Russell et al. investigated, it was shown that biodegradation of 

this polymer did occur releasing several well�known FTOH TPs [117]. Thereby different half�

lives ranging between 870 – 1400 y were calculated. Assuming that biodegradation of such 

polymers is surface�mediated, the half�life of more finely grained commercial fluorotelomer�

based polymers might be as low as 10 – 17 y. Chemical hydrolysis of this polymer type was not 

observed within a pH�range from 1.2 to 9 [120].  

The findings upon polyfluorinated polymers are still contentious [119] and new data to confirm 

the non�degradability are urgently needed in order to assess the relevance of polymer 

biodegradation. Similarly to fluorotelomer�based polymers, N�EtFOSE and N�MeFOSE�based 

polymers might be enzymatically cleaved or hydrolyzed to N�EtFOSE and N�MeFOSE, 

respectively. The release of these chemicals would then result in PFOS formation. 

Unfortunately, no studies on biodegradation of such polymers have been published yet.  

1.7 Objectives 

PFASs exhibit several deleterious effects for humans and the environment which must be 

regarded and understood in an integral way. Only by interdisciplinary use of chemical analysis 

including trace analysis, biotransformation studies and mass spectrometric comprehension as 

well as toxicological assessment is it achievable to assess the environmental relevance of 

newly introduced chemicals. Therefore, the objectives of this PhD thesis were of versatile 

nature. 

The first objective was to investigate the biotransformation behavior of a fluorotelomer�based 

compound, namely FTEO. Other fluorotelomer based compounds had been shown to exhibit 

complex biotransformation routes including partial defluorination. The detailed biotransformation 

route should be enlightened via HPLC�ESI�MS methods, which allows for simultaneous 

assessment of degradability for structurally similar compounds, such as commercial FTEO 

mixtures. Before biotransformation can be carried out, such a mixture must be characterized as 

to the degree of ethoxylation and the perfluoroalkyl chain length. 
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The significance of biotransformation products detected in the laboratory experiment should be 

determined by monitoring them in environmental samples. To allow for correct quantification, 

these TPs should be synthesized and characterized by hybrid triple quadrupole/linear ion trap 

(QqQLIT) MS and high�resolution MS as well as NMR spectroscopy. Traditional PFASs, such as 

PFOA and PFOS should also be included in the monitoring campaign so that a current picture 

of the PFAS concentrations in German WWTPs and surface waters is assessed. 

Fluorinated surfactants with a shorter perfluoroalkyl chain may substitute long�chained PFASs 

in several applications, where the unparalleled chemical stability is not required. Fluorinated 

building blocks which could be released from the fluorinated surfactants by hydrolysis, should 

be investigated with respect to their potential to be mineralized. If no mineralization occurs, 

stable TPs should be identified by hyphenated MS techniques and their toxicity towards 

aqueous organisms be determined.  

If possible, it should be aimed at conceiving chemical structural requirements that allow for 

complete mineralization. This would enable chemists to design new biodegradable fluorinated 

compounds and thus diminish the burden of environmental compartments in the future. 

Generalizable structural demands can be considered too ambitious due to the complexity of 

enzymatic reactions when compounds with different functional groups are regarded. Thus it was 

focused on specific functional groups, such as the TFM group.  

Since numerous fluorinated substances were measured during this thesis by ESI�MS and 

collision�induced dissociation (CID) techniques, the rather scarce common knowledge on the 

fragmentation pathways should be extended. Different state�of�the�art mass spectrometric 

techniques should be used for this purpose including multi�stage MS and high�resolution MS. 

The knowledge obtained is not only of significance from a mass spectrometric point of view, but 

can deliver valuable information for environmental analytics. The newly gained knowledge can 

be applied during detection and identification of new environmental fluorinated pollutants. 

Whereas identification could be performed by comparing the fragmentation of compounds with 

the spectra presented in this thesis, detection could be possible, if substance�class specific 

fragmentation patterns are discovered, which could then be exploited by scan modes such as 

neutral loss scans or precursor ion scans on QqQ instruments. 
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2 Theory 

2.1 Liquid chromatography 

Chromatography describes a physico�chemical process, where a mixture of compounds is 

separated between a mobile and a stationary phase due to adsorption, partitioning or other 

physico�chemical effects. In combination with mass spectrometric methods, HPLC is usually 

carried out under reversed�phase (RP) conditions implying higher polarity of the mobile phase 

(eluent) as compared with the stationary phase. The principles behind chromatography and 

HPLC are considered familiar and hence, will not be explained in more detail [121]. 

Although modern MS, especially tandem mass spectrometers (MS/MS), achieve an 

unprecedented selectivity, chromatography may become crucial when working with complex 

matrices. Such matrices often have to be dealt with when performing biotransformation studies 

or trace analysis in contaminated matrices. Today, the separation step via HPLC when 

combined with MS/MS fulfills two major tasks: The most important is separation of analytes from 

highly concentrated matrix components, which can cause ion suppression during ESI [122�124]. 

The second task is separation of isomeric and thus isobaric components (although isobaric 

showing very different fragmentation patterns do not pose a significant problem). Especially 

structural isomers cannot be separated by MS only and in these cases, only chromatography or 

other separation techniques can help distinguish and resolve such structurally similar 

compounds. 

Although some applications are still based on gas chromatography (GC) – MS (e.g. analysis of 

FTOHs by GC�chemical ionization (CI) – MS) most analyses for PFASs are performed using 

HPLC. The typical PFASs such as PFCAs and PFSAs are non�volatile and therefore not suited 

for GC analysis without hazardous and time�consuming derivatization. Chromatographic 

separations of PFASs are routinely carried out by HPLC and exclusively under reversed�phase 

(RP) conditions [125]. Thus, PFASs are retained chiefly by their perfluorocarbon chain length, 

but of course, functional groups attached to that moiety also influence the chromatographic 

behavior. Improved chromatographic selectivity compared with common C18 or C8 phases can 

be achieved by special phases such as pentafluorophenyl (PFP) [126] or perfluorinated C8 

phases [42,110], which both provide better selectivity for highly fluorinated substances and, in 

the letter case, circumvented false�positive results as compared with RP�C18 phases. 
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Figure 6: Definition of mass resolving power by the FWHM 

method 

2.2 Mass Spectrometry 

 Application of mass spectrometry and definitions 2.2.1

Mass spectrometers represent instruments, which are capable of determining the mass�to�

charge ratio (m/z) of charged particles [127]. As a result, they can be used in various 

applications and for numerous issues. They can be used either as a stand�alone instrument or 

coupled to other instruments, usually separation techniques such as chromatography or 

capillary electrophoresis. 

Every MS consists of three main parts: an ion source, a mass analyzer and a detector. The ion 

source allows for ionization of neutral molecules and/or transfer of ions into the gas phase. The 

latter step is required since ions can only be separated by their m/z ratio if high vacuum 

conditions persist, which is the case in the mass analyzer. Detection of ions can be carried out 

spatially separated from the mass analyzer (e.g. with quadrupole instruments) or within the 

mass analyzer (e.g. with Fourier�transform ion cyclotron resonance MS). 

When quadrupole instrumentation is 

used, detection of the ions is carried out 

by electron multipliers, usually 

continuous electron multipliers with a 

horn�shaped design. These devices 

generate an electronic signal which is 

proportional to the impacts per time 

interval – at least this is true for a given 

dynamic range. Since understanding of 

the processes does not contribute 

significantly to the understanding of this 

thesis, it will not be discussed more 

thoroughly. 

Depending on the setup used, different tasks may be solved by application of MS. When 

investigating unknown compounds, they can provide the nominal mass or the exact mass of an 

unknown compound or – if fragmentation is provoked – provide valuable information about the 

structure of the compound. 

When coupled to other techniques, mass spectrometers serve as ultra�sensitive detectors, e.g. 

for environmental samples. They can exhibit unprecedented selectivity for target compounds 

and thus allow for analysis of trace compounds even in very complex matrices.  

Two main characteristics of mass analyzers are the resolving power (often interchangeably 

used with the term “resolution”) and mass accuracy. Resolving power is defined as the quotient 
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of the measured mass and the peak width, often expressed as full width at half height (FWHH), 

as depicted in Figure 6.  

Mass accuracy is expressed by the error of mass measurement 
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and is usually calculated in parts per million (ppm). Although not inherently linked to each other, 

high resolving power generally also implies high mass accuracy. 

An important characteristic of a MS is the so�called duty cycle. It can be expressed as the 

percentage ratio of target ions that enter the MS and target ions which are effectively detected. 

The duty cycle plays a significant role as far as MS sensitivity is concerned. 

 Ion sources 2.2.2

When coupled to HPLC, the ion source has to fulfill several purposes. Besides the previously 

mentioned ionization and transfer of analytes into the gas phase, evaporation of the mobile 

phase is crucial to maintain vacuum in the mass analyzer. Ion sources compatible to HPLC are 

named atmospheric pressure ionization (API) methods since the ion source region is normally 

not under vacuum. 

The most important API technique today is ESI, which allows for ionization and transfer into the 

gas phase of polar or ionic compounds and macromolecules up to molecular weights beyond 

100 kDa. ESI�MS after LC has been routinely used ever since its commercialization [128]. 

The ESI technique was invented by the group of John Fenn [57,58] based on previous work by 

Dole and co�workers [59]. ESI can be operated in positive or negative polarity and produces 

protonated molecules, deprotonated molecules or adduct ions (with Na+, K+, NH4
+, Cl�, acetate, 

solvent clusters, etc.) by spraying a solution through an electrically charged capillary (see 

Figure 7). The droplets formed contain a net charge and are accelerated towards a counter�

electrode. Their size diminishes by evaporation, which may be thermally assisted. When a 

certain charge density is reached (the so�called Rayleigh limit), the droplets disintegrate by 

coulombic repulsion releasing smaller droplets. This process is referred to as “Coulomb 

explosion”. Formation of the free ions is explained by two different models: the “ion evaporation 

model” (IEM) by Iribarne and Thomson [129,130] and the “charge residue model” (CRM) as 

proposed by Dole et al. [59]. Briefly, IEM suggests that ions are emitted from highly charged 

droplets into the gas phase, whereas with CRM, ions are generated by repeated and complete 

evaporation of solvent resulting in free ions in the gas phase.  
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Figure 7: Basic setup and functionality of an ESI ion source and the ESI process; Reprinted from Ref. [131] 

While IEM holds for small inorganic ions, ionization of macromolecules such as proteins seems 

to be better explained by CRM process. It is interesting that the ions observed in the gas phase, 

that is, those detected by the mass spectrometer, are not necessarily the same as those in 

solution [132]. This is only true for very stable ions, such as sodium ions. In the case of PFASs, 

transfer from the liquid to the gas phase possibly only occurs for anions of very strong acids, 

such as PFSA, but possibly not for PFCA and related compounds, which may have higher pka 

values (although discussed very controversially, see [133�135]). This may seem odd, but is a 

direct consequence of the differences between liquid�phase and gas�phase acidity and basicity, 

respectively. The specific mechanism of PFAS ionization has not been investigated in detail.  

The ESI source represents a special form of an electrolytic cell [136]. In positive ESI polarity, 

the capillary is an anode, where oxidation occurs. Depending on the material of the capillary 

and the ions and solvents used, different reactions may occur, for example: 

Reaction (1): M  Mx+ + x e� 

Reaction (2) 4OH�  O2 + 2H2O + 4e� 

In Reaction (1), metal atoms (M) from the surface of the capillary are oxidized leaving behind 

metal ions and electrons. In Reaction (2), hydroxide ions present in the solvent are oxidized to 

molecular oxygen, water and electrons. Both reactions result in an excess charge, in this case 

cations. The electric circuit is closed by reduction of cations on the counter electrode. Some 

excellent reviews on the fundamentals of ESI have been published [131,132,137,138]. 
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Other API techniques, such as atmospheric pressure photoionization (APPI) and atmospheric 

pressure chemical ionization (APCI) have been marginally applied. Although providing 

advantages over ESI, such as reduced matrix effects, APCI has been rarely applied for PFAS 

analysis. Analytes measured with APCI comprise various ethoxylated PFASs [110,139] and 

PFOA [140]. However, no investigations with respect to matrix effects were made in these 

papers. 

 Mass analyzers 2.2.3

The mass analyzer represents the heart of every MS. Its task is to separate a bulk of ions by 

their m/z ratio. This effect can be achieved by electronic or magnetic fields. 

 

Figure 8: Simplified scheme of a quadrupole mass analyzer showing the trajectories of an ion with resonant 

m/z (passing the quadrupole) and a non2resonant ion (colliding with one of the quadrupole rods). Reprinted 

from Ref. [141] 

The simplest and cheapest mass analyzer is a quadrupole, which consists of four metal rods, 

which are equidistantly spread around a central axis (see Figure 8). A positive direct current is 

applied to two opposing rods and a negative direct current to the remaining two rods. An 

alternating current, which is shifted by 180° between the two rod pairs, is added onto the direct 

current. Thus, the voltage can be expressed as 

��� � 	 !�� ! " ∙ sin�& �� 
and 

�'� � 	 ��� ! " ∙ sin�& �� 
where U+(t) and U�(t) are the resulting voltages at the positively and negatively charged rods in 

function of the time, respectively. U represents the direct current, V is the amplitude of the 

alternating current and ω is its angular frequency. 
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A qualitative approach to the functionality of a quadrupole can be made as follows: Regarding 

positive ions and the rods with positive direct current, ions below a critical m/z ratio respond 

quickly to the alternating current and are distracted towards the rods when the rods temporarily 

change their polarity due to the high�frequency alternating current. Heavy ions however respond 

slowly and are not distracted. These rods with positive direct current represent a high�pass filter 

for cations.  

The inverse behavior is true for rods with negative current. Ions with an m/z above a critical 

value are attracted by the rods because they respond slowly when the alternating current 

temporarily renders the rods positive for a brief moment. Light ions however are able to alter 

their trajectory away from the rods and thus do not collide with them. This means that rods with 

a negative direct current work as a low�pass filter for cations. 

The two rod pairs can be regarded as a combination of a high�pass filter and a low�pass filter 

creating a band�pass filter of a certain band width. This band width represents the resolution of 

a quadrupole and is governed by the ratio of the direct current U and the alternating current V. 

The m/z position of the band�pass filter is adjusted by the magnitude of U and V and it 

represents the m/z ratio of an ion with a stable trajectory through the whole quadrupole, i.e. of 

an ion which can pass the quadrupole. Thus, a mass range may be scanned for by ramping of 

the voltages U and V while maintaining a constant U/V ratio [142]. A quantitative approach to 

describe a quadrupole can be made with the help of Mathieu’s equation which results in stability 

diagrams of ions. Since this does not significantly contribute to the present thesis, it will not be 

explained in detail. 

Quadrupole mass analyzers usually achieve mass resolving powers of approximately 1000 and 

can only determine the nominal m/z ratio of the ions because mass accuracy is usually in the 

range of 0.1 Da. Due to their robustness and low price, they are the most commonly used mass 

analyzers [143]. 

Quadrupoles can be operated in three modes: Single ion monitoring (SIM), scan and radio�

frequency only (RF only). In SIM mode, the voltages remain at one distinct value so that only 

ions of one certain m/z ratio can pass. This implies a duty cycle of (nearly) 100%, since the 

target analytes are measured incessantly. However, also the temporally shifted alternating 

measurement of several distinct m/z values is referred to as SIM. In scan mode, voltages are 

varied constantly so that a range of m/z values can be measured allowing to record mass 

spectra. Since at any one time, only ions of one m/z ratio can pass the quadrupole and be 

detected, this implies much lower duty cycles in scan mode as compared with SIM mode. In 

fact, if only a small m/z range of 100 is scanned for, the duty cycle drops to 1% and inevitably 

causes lower sensitivity. On the downside, SIM can only be utilized only for target analysis. 
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Finally, in RF only mode, all ions can pass the quadrupole regardless of their m/z ratio, which 

plays an important role for ion optics and for multi�stage MS collision cells.  

 

Figure 9: Setup of the Applied Biosystems 3200 Q Trap 
®
; Reprinted from Ref. [144] 

Single quadrupole MS instruments have been largely replaced with triple quadrupole 

instruments (QqQ) today, at least that is true for HPLC�MS. QqQ instruments consist of two 

quadrupoles (Q1 and Q3), which can be used for mass analysis, separated by a collision cell, 

which is basically a quadrupole (or hexa/octapole) that can be filled with an inert gas such as 

nitrogen or argon (see Figure 9). Q2 is always maintained in RF�only mode offering no m/z 

separation. By acceleration of the ions that pass the first quadrupole (so�called precursor ions), 

collision of these ions with the inert gas molecules or atoms can result in the formation of 

characteristic fragments, called product ions, which are then analyzed in the third quadrupole. 

This process is referred to as CID and represents the most frequently applied technique to 

provoke fragmentation in instruments applying API.  

QqQ instruments are routinely used 

for trace analysis, since they are both 

very sensitive and selective due to 

multiple stage mass separation. 

Recent advances include exchange 

of Q3 by a linear ion trap (LIT) [145]. 

An LIT can be described as a 

quadrupole to which an entrance 

lens and an exit lens are added. 

Direct current can be applied to 

these lenses generating an 

electrostatic field, which retains the 

ions within the trap. During the fill 

 

Figure 10: Schematic illustration of one LIT scan cycle; RF = radio 

frequency, AC = alternating current. Reprinted with modification 

from Ref. [145]. Compare with Figure 9. 
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time of a cycle (see Figure 10), the entrance lens IQ3 is open, and the exit lens EXB is closed. 

Afterwards, a potential is applied to the entrance lens, and the ions are allowed to cool, i.e. to 

decelerate, for a short time. The actual m/z separation is achieved by ramping the so�called 

‘drive radio frequency’ and an auxiliary alternating current that is applied to the quadrupole rods 

in a quadrupolar fashion, while maintaining a direct current at the exit lens, which is of lower 

amplitude than during trapping. The radio frequency specifically excites ions of a certain m/z 

ratio and thus accelerates them axially allowing them to overcome the potential barrier of the 

exit lens, which finally makes them reach the detector. 

In contrast to quadrupole scan mode, ions are trapped and ejected sequentially during a mass 

scan. Therefore, the duty cycle of LITs is much higher compared with quadrupole scans, where 

most of the ions are discharged and do not reach the detector. The duty cycle of a LIT can be 

estimated by the ratio of ion trap fill time and total cycle time and can be even increased by 

application of Q0 trapping during the mass scan. 

The MS used for most of the analyses carried out in this study was an Applied Biosystems 3200 

Q Trap MS (see Figure 9), which is a hybrid triple quadrupole/linear ion trap MS (QqQLIT). These 

instruments can also be used in “normal” quadrupole mode, offering the very same modes as 

QqQ instruments, but they may alternatively be operated in so�called ‘enhanced modes’ utilizing 

the Q3 as an LIT allowing for higher sensitivity, higher mass resolving power and MS³ scans. 

The mass�resolving power can be improved by slower mass scan rates. Although LITs cannot 

be considered high�resolution MS, they can easily outperform conventional quadrupole in terms 

mass�resolving power, reaching values of several thousands [145]. 

The versatility of these instruments is illustrated in Table 1, where the modes used in this study 

are summarized. The applications range from detection of unknowns (Q1MS, EMS, neutral loss 

scan, precursor scan) to sensitive target analysis (multiple�reaction monitoring, MRM) and 

structural elucidation by CID (product ion scan, enhanced product ion scan, MS³). 

  



 
Theory 
 

33 

Table 1: Selected modes, which the Applied Biosystems 3200 Q Trap can be operated with. Please note that 

the names are adopted from Applied Biosystems software Analyst
®
 

Mode Q1 
q2 

Collision 
Gas 

Q3 
Exemplary 
Application 

Q1MS Scan off RF only Complete Mass Spectrum 

Q1MI SIM off RF only 
Analysis of compounds showing 

no fragmentation 

Enhanced MS RF only off LIT 
Complete Mass Spectrum 

Higher sensitivity 

MRM SIM on SIM 
Trace analysis / Analysis in 

complex matrices 

Product Ion Scan SIM on Scan 
Structural elucidation / 

Investigation of fragmentation 
patterns 

Enhanced Product 
Ion Scan 

SIM on LIT 
Structural elucidation / 

Investigation of fragmentation 
patterns 

Precursor Ion Scan SIM on Scan 
Detection of unknown 

compounds 

Neutral Loss Scan Scan on Scana 
Detection of unknown 

compounds 

MS³ SIM on LIT/eject/excite/LIT 
Structural elucidation / 

Investigation of fragmentation 
patterns 

a Fixed m/z difference between Q1 and Q3 

 

Besides low�resolution MS, other analyzers are frequently used nowadays which achieve very 

high resolution and much higher mass accuracy. Among these, orbitrap MS has gained growing 

attention since its commercialization in 2005. An orbitrap consists of an outer electrode which is 

split in half by a ceramic ring and an inner spindle�like electrode [146]. The orbitrap is based on 

a rather ancient design called a Kingdon trap [147], which was further optimized be Knight et al. 

[148]. However, none of their instruments was able to determine m/z ratios, instead they used 

the devices for ion storage purposes. 
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In contrast to ion cyclotron resonance MS, 

which exhibits similar characteristics in terms 

of mass�resolving power and mass 

accuracy, no strong magnetic fields are 

required for orbitrap MS, which leads to less 

expensive maintenance of the instrument. 

Orbitrap MS exclusively makes use of 

electrostatic fields around the inner 

electrode. Ions are transferred into the 

orbitrap orthogonally to the z�axis (see 

Figure 11), and circulate around the inner 

electrode at a frequency, which is 

independent of their m/z ratio. However, ions 

also move back and forth along the z�axis.  

The frequency of motion along the z�axis is 

given by the formula 

&(	 	 	)*	 ∙ +
� 

where q is the charge, m is the mass and k is the field curvature, which is a constant for any 

orbitrap. It becomes obvious that the frequency of motion is inversely proportional to the square 

root of m/z. 

In order to measure the frequency of motion and thus to determine the m/z ratio of the ions, an 

image current is recorded between the two halves of the outer electrode, which is amplified by 

differential amplification. Ions of one distinct m/z ratio produce a sine wave current. When ions 

of different m/z ratios are present, each of the ions will generate its own sine wave current, 

which in turn requires Fourier transformation of the data in order to calculate the independent 

m/z ratios. Orbitrap MS usually achieves mass�resolving powers of greater than 105 and mass 

accuracies of < 2 ppm when internal mass standards are used [149]. 

The high mass�resolving power and mass accuracy has rendered orbitrap MS widespread in 

analytical laboratories. Its main application fields are in the bioanalytics, especially proteomics, 

but also in other analytical sectors which deal with the detection and characterization of 

unknown compounds [150]. Use of orbitrap MS for analysis of PFAS has been restricted to the 

confirmation of novel TPs [109]. 

Figure 11: Schematic illustration of an orbitrap mass 

analyzer. Please notice that the frequency of oscillation 

along the z2axis is measured for m/z determination. 

Reprinted from Ref. [149]. 
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2.3 CID fragmentation of aliphatic fluorinated compounds 

Most up to date MS/MS instruments make use of CID, sometimes referred to as collision(ally)�

activated dissociation (CAD), to form product ions of the species investigated. This process 

utilizes inert gas, mostly nitrogen or argon, to provoke collisions with accelerated ions that will 

lead to characteristic product ions. Unlike fragmentation after electron impact (EI), CID generally 

produces even�electron product ions, i.e. ions with no unpaired electrons. This implies that 

neutral, non�radical species are generally cleaved off the precursor ions, often small organic or 

inorganic compounds, such as CO2, HF, or H2O. An informative review on the detailed 

processes during CID has been published by Levsen and Schwarz [151]. 

MS fragmentation of organic compounds is greatly influenced by the technique used. 

Fragmentation reactions occurring after EI are largely known and often follow distinct rules, 

such as α�cleavage or McLafferty rearrangement [152], which also hold for fragmentation of 

PFASs. For CID, such general pathways do not exist and fragmentation differs largely from 

what has been known for EI fragmentation. Attempts have been made to study characteristic 

product ions or losses from organic compound classes [153], but these generalized pathways 

do not hold for every compound. The different fragmentation routes are a logical consequence 

of the different ion species produced: EI�MS initially leads to high�energy radical cations, 

whereas the ESI process – which is the most common ionization technique prior to CID – leads 

to protonated or deprotonated molecules. When performing CID fragmentation with fluorinated 

compounds, unfortunately, there is no common fragmentation pathway that is significant for 

fluorine. Furthermore, odd reactions may occur in the presence of fluorine, which will be subject 

of this section. Due to the unique properties of fluorine, fragmentation pathways of fluorinated 

molecules may differ largely from their non�fluorinated counterparts. 

Fragmentation of classic PFASs, such as PFOS and PFOA has been studied very thoroughly 

[126,154]. PFSAs are mainly known to produce sulfur�containing ions, such as SO3
.� (m/z 80) 

and FSO3
� (m/z 99). However, this is only one part of the story. Technical mixtures of PFOS 

contain a number of positional isomers and the formation of the FSO3
� ion is by far less 

abundant for these isomers as compared with non�branched PFOS [126]. Besides the two 

sulfur�containing ions, product ions of linear PFOS comprise – albeit to a low extent – 

perfluoroalkyl carbanions CmF2m+1
� (the so�called ‘9�series’, since the m/z values end with ‘9’) as 

well as .CnF2nSO3
� radical anions (the so�called ‘0�series’) [126,155]. The latter ones are 

suspected to be generated by initial radical cleavage of a C�C�bond within the perfluoroalkyl 

chain and subsequent losses of tetrafluoroethene. The perfluoroalkyl carbanions are supposed 

to derive from initial loss of SO3 and subsequent loss of perfluoroalkenes such as 

tetrafluoroethene, hexafluoropropene, and so forth [155]. Interestingly, Langlois and Oehme 
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found that the substitution site of trifluoromethyl�branched PFOS can be determined because of 

one missing ‘0�series’�ion in the spectrum, depending on the branching site [126]. 

Perfluorocarboxylate fragmentation is generally initiated by loss of CO2, leading to a 

perfluoroalkyl carbanion CmF2m+1
�, which is normally only encountered with aromatic carboxylic 

acids, but not often with aliphatic carboxylates [153]. This can be explained by stabilization of 

the negative charge by the proximity of the perfluoroalkyl chain or similar groups in terms of 

negative inductive effects. 

Further fragmentation of perfluoroalkyl carbanions was studied very thoroughly by Arsenault et 

al. [154], who found that the initial formation of the respective CmF2m+1
� ion is followed by fluorine 

atom migration and thus charge migration throughout the whole linear perfluoroalkyl chain. They 

rationalize this hypothesis by stating that the charge shift produces more stabilized secondary 

carbanions in contrast to the primary carbanions initially generated. Further fragmentation of 

these ions occurs by cleavage of different perfluoroalkenes. Similar fragmentation patterns are 

observed for fluorotelomer acid derivatives, which also include loss of CO2, and HF. 

Interestingly, if only one hydrogen atom is present in a perfluorinated alkyl chain, the 

fragmentation pathway may be altered substantially in contrast to the perfluorinated molecule. 

Under those circumstances, loss of hydrogen fluoride is often observed. A reason for this may 

be the energetically favored loss of HF in comparison to, for instance, loss of F2, whose 

difference is energetically favored by 110 kcal mol�1 compared with F2 [155]. Compounds falling 

under this category are 6:2�fluorotelomer sulfonates (6:2�FTS) [100] and 2H�PFOS [155]. 

Analogous to PFOS fragmentation, 6:2�FTS delivers SO3
.� (m/z 80) and HSO3

� (m/z 81) as 

product ions. 

FTOHs may fragment by multiple loss of HF. However, FTOHs are very delicate species with 

respect to their ESI�MS performance. If only traces of organic anions, such as formiate or 

acetate are present, FTOHs will form adducts such as [M + formiate]� or [M + acetate]�. Under 

exclusion of acetate or formiate salts, the deprotonated molecule is formed [156]. It was 

discovered that methanol (MeOH) favors its formation, whereas ACN inhibits it [157]. 

Additionally, addition of basic compounds such as ethanolamine can promote formation of the 

[M – H]� species [158]. Interestingly, it was discovered with the help of deuterated standards that 

the proton in vicinity to the perfluoroalkyl chain is cleaved off, not the hydroxyl proton, as one 

might expect. This again underlines the strong negative inductive effect of perfluoroalkyl groups. 

Upon deprotonation, FTOHs suffer loss of all hydrogen atoms, although being separated by 

several bonds. A characteristic ion of fluorotelomer�derived compounds seems to be the ion at 

m/z x55, where x = 3 for 8:2�fluorotelomer derivatives and x = 4 for 10:2�fluorotelomer 

derivatives and so forth. This ion was observed for fluorotelomer alcohols [156]. 
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3 Results and discussion 

3.1 Characterization of a commercial fluorotelomer ethoxylate mixture 

 ESI2MS 3.1.1

Technical surfactants are often composed of chemical mixtures of structurally similar 

compounds. The reason for this is chemical synthesis, which may not only lead to one 

structurally defined chemical or because natural educts are used, e.g. fatty acids, which 

naturally occur as mixtures and it would be time� and cost�intensive to purify them. Eventually, 

these surfactants are optimized for performance regardless of the actual chemical structure of 

the compounds. 

The first task to be solved when examining biotransformation is to elucidate the chemical 

structure of the product under investigation. The biotransformation experiment was carried out 

with a commercial mixture named ‘Zonyl FSH’. Based on the information given by the 

manufacturer, the active ingredient are fluorinated compounds with the general structure as 

presented in Figure 12, thus a nonionic structure, and the molecular weight is stated to be 650 

Da. The fraction of active ingredient is 50%, the remainder being water and dipropylene glycol 

methyl ether at equal shares [159]. 

 

 

Figure 12: Structure and acronymization of FTEOs. The respective congeners will be acronymized x:22FTEOy 

The active ingredient with the chemical formula is a derivative of FTOHs, which is probably 

reacted with ethylene oxide to form polyethoxylated FTOH. Following previous terminology of 

non�ionic surfactants like nonylphenol ethoxylates, these compounds will be termed 

fluorotelomer ethoxylates (FTEOs). The acronyms are based on FTOH acronyms, as presented 

in Figure 12. The x represents the number of perfluorinated carbon atoms, ‘2’ signifies the two 

methylene groups and the ‘y’ indicates the degree of ethoxylation of the respective FTOH. 

Please notice that also FTOHs already contain one ethoxy group. Thus, FTOH would be 

FTEO0. 

The components of the Zonyl FSH mixture were studied in detail by measurements with ESI�

MS. An ESI�MS full scan spectrum in positive mode is shown in Figure 13. This spectrum was 

recorded after dissolving Zonyl FSH in a mixture of H2O and MeOH. Since FTEOs do not 

contain any highly acidic or basic functional groups, such as sulfonic acid groups or amino 

functions, adduct formation is the dominating type of ionization here.  
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Figure 13: (+)ESI2MS Q1MS spectrum of 15 Eg mL
21

 Zonyl FSH in H2O/MeOH (1/1; V/V) . The denotation x|y|z 

signifies: x = number of perfluorinated carbon atoms, y = degree of ethoxylation, z = cation  

Indeed, the resulting spectrum is qualified by a high number of peaks. Even at first glance 

several distributions with equidistant peaks of 44 Da are visible, which is characteristic of 

polyethoxylates [160], e.g. m/z 519, 563, 607 etc. By calculating potential m/z values for well�

known adducts, e.g. H+, Na+, K+ and NH4
+, the peaks can be assigned to the respective 

compounds. As can be seen especially for the peaks with high intensities, ion species [M + H]+, 

[M + NH4]
+ and [M + Na]+ occur in this spectrum side�by�side with the sodium adducts showing 

greatest intensity for all species detected. Sodium cations are nearly ubiquitous and thus 

sodium adducts regularly appear in mass spectra even though no sodium has been added to 

the solution intentionally. Since the mass spectrum was recorded on a mass spectrometer 

which is often used in combination with HPLC and eluents containing ammonium acetate 

(NH4OAc) or ammonium formiate, ammonium can be hardly eliminated from this system. This is 

the reason why ammonium adducts occur in this spectrum. Proton adducts can result either 

from direct protonation of the FTEO by the constituents of the eluents, or by fragmentation of 

ammonium ions. This will be discussed more thoroughly in the course of this section. 

The compounds detected with this method showed a perfluoroalkyl chain length of six and eight 

and a degree of ethoxylation from 2 to 11. 

In order to generate a less complex spectrum, the same measurement was conducted with the 

addition of 5 mM NH4OAc to the solvent. The resulting spectrum is shown in Figure 14. 
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Figure 14: (+)ESI2MS Q1MS spectrum of 15 Eg mL
21

 Zonyl FSH in H2O/MeOH (1/1; V/V) containing 5 mM 

ammonium acetate. The denotation x|y|z signifies: x = number of perfluorinated carbon atoms, y = degree of 

ethoxylation, z = cation 

The resulting spectrum shows fewer peaks per compound, i.e. only ammonium and proton 

adducts and the signal intensity is by far higher. Under these conditions, ammonium can be 

considered in high excess of all inorganic ions like Na+, and as such, ammonium adducts are 

preferably formed. Another positive effect is the gain in signal intensity as compared with the 

previous measurement without addition of ammonium. This allowed detection of 10:2�FTEOs, 

which was not possible without addition of NH4OAc. Furthermore, higher degree of ethoxylation 

(y = 14) could be determined for 6:2�FTEO. 

 HPLC2ESI2MS 3.1.2

When using HPLC�ESI/MS in SIM mode, the components in the mixture can be detected even 

more sensitively. The m/z values of ammonium adducts of a wide variety of FTEOs were 

measured, ranging from x = 2�14 and y = 0�25. Compounds were considered present when 

peak signal�to�noise ratio was greater than three and retention times were similar to other 

ethoxymers of the same perfluoroalkyl chain length. With this method, FTEOs with x = 4�12 

(even numbers only) and ethoxylate chain lengths from one up to 18 were detected. The 

reasons for higher sensitivity compared with direct injection ESI�MS are a higher duty cycle in 

SIM mode compared with scan mode as well as lower suppression as a result of 

chromatographic separation. During direct injection, the different FTEOs can suppress each 

other and therefore, congeners of low abundance may be entirely absent. With preceding HPLC 

separation, FTEOs are at least separated by their perfluoroalkyl chain length and thus minimize 

mutual suppression. 
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 Molecular weight distribution 3.1.3

It is well�known that molar responses in ESI can differ significantly even for structurally similar 

compounds [161]. Thus, it is not possible to assess the exact molecular distribution of the FTEO 

commercial mixture by means of ESI�MS. However, at least an estimation of the distribution can 

be made when comparing relative intensities in ESI. In order to minimize suppression effects, 

this estimation was done by LC�ESI/MS under isocratic HPLC conditions. If gradient elution had 

been chosen, ionization response would be further affected by the composition of the mobile 

phase when the compounds are eluted, which would further complicate comparison of the 

intensities.  

MS of polyethoxylates using ammonium additives may involve the following processes 

Reaction (1): M + NH4
+  [M + NH4]

+ 

Reaction (2): [M + NH4]
+  [M + H]+ + NH3

 

Reaction (3): M + H+  [M + H]+ 

Reaction (4): [M + X]+solv  [M + X]+ + solvent (X = cation) 

Reaction (5): [M + H]+  [F1 + H]+ + F2
 

where M is the uncharged polyethoxylate and F represent fragments of M. Reaction (2) is 

initiated by CID. Thus, more vigorous collision will lead to higher degree of dissociation and thus 

lower the signal intensity of ammonium adducts. Inversely, too gentle collision will produce 

solvent ion clusters and thus decrease sensitivity for the ammonium adduct as well. The 

protonated molecules [M + H]+ may be created both by reaction (3) and the combination of 

reaction (1) and (2). Reaction (4) represents the process which is intensified by higher 

declustering potentials (DP). At high DP settings, fragmentation of the molecule itself will occur, 

as represented by reaction (5). 

In order to obtain more information about the processes occurring during CID of ammonium 

adducts and in order to assess the expressiveness of comparison of intensities of such 

compounds, the Zonyl FSH mixture was chromatographed under RP conditions and the MS 

operated at three different DP values, i.e. 10 V, 25 V and 40 V. As the name implies, DP is the 

voltage responsible for the acceleration of ions when colliding with the curtain gas, i.e. when 

declustering of the ions shall be achieved prior to entering the m/z separation stages (Reaction 

(4)). All measurements were carried out in triplicate in order to achieve higher significance of the 

results. For the following calculations, only congeners were used whose relative standard 

deviation for triplicate analysis was below 25%. 

As can be seen in Figure 15 b), most of the congeners showed increased absolute signal 

intensities (as calculated by the HPLC�ESI/MS peak areas in SIM mode). Only compounds of 
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short perfluoroalkyl chain length and ethoxylate 

chain length showed a reduction in intensity. This 

is probably due to cleavage of ammonia from the 

ammonium adducts (reaction (2)). Longer 

chained compounds show a positive gain in 

intensity as a result of cleavage of solvent 

clusters (reaction (4)). 

This different behavior of congeners at varying 

DP implies that – apart from different response 

factors during ESI – assessment of the molecular 

distribution in a polyethoxylate compound is also 

dependent on the MS settings. 

This is also reflected in Figure 15 a), where the 

percentage gain in relative intensity is plotted for 

each compound. The relative intensities were 

calculated by dividing the peak area for a 

congener by the sum of all peak areas. It could 

be shown that again shorter chained compounds 

would be underestimated at higher DP values. 

Whereas for compounds with very low 

abundance the relative differences may be up to �

60%, the results are in the 20% range for most of 

the compounds at higher abundance. 

A correlation between the molecular weight and 

the gain in absolute intensity was established 

with the help of a second�order polynomial 

function (Figure 15 c), which showed a fairly high 

correlation with R² = 0.73. This behavior implies 

that in the range of approximately 400 Da to 

550 Da, ammonium adducts tend to be 

fragmented to proton adducts and ammonia. In 

the range of 550 Da to 800 Da, a constant 

increase in the gain in sensitivity can be observed reaching ca. 60%, where the function then 

seems to reach a plateau (which is naturally not reflected by the quadratic function). 

The contour plots expressing the percentage relative intensities of FTEO congeners in Zonyl 

FSH measured at different DP settings are illustrated in Figure 16. These plots clearly 

Figure 15: a) Percentage gain in relative intensity 

of FTEO ammonium adducts b) Percentage gain 

in absolute intensity of FTEO ammonium adducts 

c) Percentage gain in absolute intensity of FTEO 

ammonium adducts in function of the molecular 

weight of the respective congener 
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demonstrate that a maximum in intensity is always reached around 6:2�FTEO5 to 6:2�FTEO7, 

regardless of the DP value set. While the red area, which reflects the maximum abundance at 

10%, is reduced from DP = 10 V to DP = 25 V, the two contour plots at DP = 25 V and 

DP = 40 V are nearly identical suggesting no major differences in the CID fragmentation of 

ammonium adducts between these values.  

While the similarity between the measurements does not necessarily imply transferability from 

relative intensities to molar distributions, it 

could yet be shown that the relative 

intensities indeed do represent an 

approximation of molar distribution in this 

case. When summing the relative intensities 

of FTEO ethoxymers with the same 

perfluoroalkyl chain lengths, 6:2�FTEOs 

account for approximately 57%, whereas the 

fraction of 8:2�FTEO is approximately 33%. 

This ratio (2.3) is comparable to the ratio of 

6:2�FTOH to 8:2�FTOH detected by 

quantitative measurement in Zonyl FSH, 

which is ca. 1.7. Interestingly, it is also 

possible to measure FTEOs as their 

respective deprotonated molecule, if no 

ammonium�based modifier is present. This 

is in accordance with the findings of Berger 

et al. [156], who found the same 

phenomenon for FTOHs. However, signal 

intensities were several orders of magnitude 

lower than for ammonium or proton adducts 

in positive polarity. Details about 

deprotonated FTEO are discussed in 

chapter 3.2.2. 

  

 

Figure 16: Relative molar intensities of FTEOs in 

technical mixture Zonyl FSH at DPs of 10 V (top), 25 V 

(middle) and 40 V (bottom).  
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 Semiquantitative determination of FTEO 3.1.4

In order to assess the temporal course of FTEO and its TPs, a method based on RP�HPLC and 

ESI�MS was developed. Just like the biodegradation experiment, also analysis may suffer from 

adsorption effects, especially when long perfluoroalkyl chains and high aqueous content is 

considered (data not shown). This can be circumvented by dissolving the samples in at least 

50% of organic solvent, either ACN or MeOH. 

Since the signal intensity of protonated and sodiated molecules is greatly influenced by the 

sodium concentration in the eluents or in HPLC tubes, it was decided to use ammonium 

adducts of FTEO for semi�quantitative SIM or MRM methods. In order to maximize the 

reproducibility of the measurement, an internal standard should be used. This internal standard 

must be measured in positive mode � because FTEOs are measured in positive mode � and 

should also form ammonium adducts. In an ideal way, it should also have the same or similar 

retention time as the analytes in LC. 

Three compounds were tested as potential internal standards: nonylphenol diethoxylate 

(NPEO2), poly(ethyleneglycol)�6 (PEG�6) and atrazine, which does not form ammonium 

adducts. 16 measurements were carried out on three subsequent days and the relative 

standard deviation (RSD) was calculated for the ratio of the signal of all FTEO and the potential 

internal standard. NPEO2 showed by far the best results with a percentage RSD of 1.6%, 

followed by PEG�6 (RSD = 5.7%) and atrazine (10.8%). The difference between NPEO2 and 

PEG�6 can be explained by the greatly different retention times in HPLC. Since PEG�6 does not 

contain any non�polar backbone, it elutes very early, unlike NPEO2 and all FTEOs. Atrazine, 

which was measured as the protonated molecule, cannot overcome fluctuations in ammonium 

concentration and therefore gives rise to higher deviations. Thus, NPEO2 was chosen as the 

internal standard for all further semiquantitative measurements of FTEO and also of FTEOC, 

when measured as the ammonium adduct. 

Since RP�HPLC was chosen as the chromatographic separation prior to MS, retention times of 

FTEO and FTEOC were mainly affected by the perfluoroalkyl chain length (see Figure 17 a)), 

which represents the non�polar moiety of these molecules. In fact, the ethoxylate chain length 

can be regarded as rather ‘neutral’ with respect to the interactions with the stationary phase, 

implying nearly coelution of all ethoxymers with one perfluoroalkyl chain length. Slight reduction 

of retention time can be observed with each ethoxylate group added to the molecule (Figure 

17 b). 
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Figure 17: HPLC2(+)2ESI2MS/MS chromatogram of 750 ng Zonyl FSH mL
21

 a) Total ion chromatogram (TIC) 

showing I: 6:22FTEO II: 8:22FTEO and III NPEO2 b) Extracted ion chromatograms of 6:22FTEO congeners 

reflecting the poor resolution of ethoxymers of the same perfluoroalkyl chain length 

The NPEO2 used as the internal standard was from a technical mixture. Since different nonyl 

isomers are present in this mixture, the chromatographic peak of NPEO2 appears as a very 

broad and non�Gauss�shaped peak. However, this had no negative implications for semi�

quantitative measurement of FTEO.  

For 10:2�FTEOs, no reliable method could be developed, because the signal intensities for 

these congeners were tremendously reduced within several hours. Thus, these were not 

included in further biotransformation experiments of FTEO. 

 

 Conclusion 3.1.5

The characterization of commercial fluorosurfactant mixtures via HPLC and MS techniques was 

successfully carried out up to a level where the distribution of distinct congeners of FTEO can 

be assessed. The qualitative approach via ESI�MS and HPLC�ESI�MS allows for detection of 

different cationic ion species of FETO, such as proton, sodium and ammonium adducts.  

ESI�MS cannot describe the exact distribution by comparison of peak intensities due to 

molecular response changes caused by MS settings, such as acceleration voltages, or the 

solvent used. The influence of the DP, which accelerates solvent clusters towards a stream of 

nitrogen gas on signal intensity of FTEO ammonium adducts was quantified. It was shown that 
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high molecular weight FTEOs show increased intensities at higher DP settings, whereas the 

intensity of lower molecular weight FTEOs is reduced. The velocity of low molecular weight 

compounds is supposed to be higher than that of their larger counterparts, leading to 

fragmentation of low molecular weight FTEO. High molecular weight FTEO however profit from 

more pronounced declustering which in turn means higher signal intensities of the free FTEO 

ammonium adducts. 

Including an internal standard for the semiquantitative determination of FTEOs via HPLC�ESI�

MS resulted in high method reproducibility for 6:2�FTEOs and 8:2�FTEOs. For 10:2�FTEOs, 

signal intensities dropped within several hours, which is ascribed to adsorption onto the HPLC 

glass walls. 

3.2 CID fragmentation of FTEO and its TPs 

 Fragmentation of cationic species 3.2.1

Collision induced dissociation of FTEO congeners can be easily induced from their respective 

ammonium adduct, which is useful to perform structural analyses, as ammonium adducts 

generally can be transformed to protonated molecules by CID. These protonated molecules 

may then further fragment to provide structural information. This is not possible with sodium 

adducts, which only cleave off the charged sodium ion upon CID leaving behind a neutral 

molecule. 

CID of ammonium adducts of FTEO leads to several series of ions differing by 44 Da (Figure 

18). First, loss of ammonia yields the protonated molecule, which decays by multiple cleavage 

of C2H4O, generating a series of oxonium ions. Interestingly, at some point, loss of water 

occurs, yielding a carbenium ion which is stabilized by conjugation with an ether function. 

Thereupon, sequential loss of 44 Da leads to shorter carbenium ions. The importance of 

conjugation by the ether function is displayed by the fact that none of these carbenium ions is 

observed below m/z 391 for 6:2�FTEOs. If further cleavage of 44 Da occurred, no oxygen could 

account for the mesomeric stabilization. 
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Figure 18: (+)ESI2MS/MS product ion spectrum of 6:22FTEO7 (m/z 690) and tentative structural assignment of 

the product ions. The spectrum was recorded by syringe pump infusion of a solution containing 

approximately 500 ng mL
21

 total FTEO in H2O/ACN + 5 mM NH4OAc 

A third series of product ions is depicted in blue, representing carbenium ions that do not carry 

the perfluoroalkyl chain, but represent the well�known series of ions for PEG and its derivatives 

at m/z 89 + 44n [160]. 

 

Figure 19: (+)ESI2MS/MS product ion spectrum of the ammonium adduct of 6:22FTEO5C (m/z 616) and 

tentative structural assignment of the product ions 
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The fragmentation pattern of ammonium adducts of FTEOCs in positive polarity is very similar 

to those observed for FTEO (see Figure 19). 

In contrast to FTEO fragmentation, no oxonium ion series is formed from FTEOC. By loss of the 

terminal acetic acid function, the same series of carbenium ions is generated by multiple 

sequential loss of C2H4O as found for FTEO.  

 Fragmentation of anionic species 3.2.2

As already mentioned, it is also possible to measure FTEO in negative mode, if no ammonium 

is present. The product ion spectra differ greatly from those of proton and ammonium adducts, 

respectively, which can be considered a common phenomenon. Enhanced product ion spectra 

of 8:2�FTEO7 and 8:2�FTOH are presented in Figure 20.  

 

Figure 20: (2)ESI2MS/MS enhanced product ion spectra of a) 8:22FTEO7 b) 8:22FTOH and the corresponding 

structural formulae 
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It becomes obvious that FTEOs show a CID fragmentation behavior which is partially similar to 

their respective parent FTOH. Since the fragmentation pattern of 6:2�based compounds and 

8:2�based compounds is coherent, spectra will be shown exclusively for 8:2�based compounds. 

There are two clusters of product ions in the spectra of FTEOs, one being located below 

m/z 450, the other one lies above m/z 600. The pattern at higher m/z values origins from 

multiple loss of C2H4O and HF from the precursor ion (see Figure 21). Interestingly, the 

carbanion species dominate the spectrum in the higher m/z range, although the negative charge 

located at the carbon atoms cannot be stabilized by neighboring groups, as shown in Figure 18 

for the analogous 6:2�FTEO after positive ionization. 

The pattern at lower masses is representative of the fluorotelomer chain. The latter statement 

becomes obvious when compared with the respective FTOH spectrum. The product ions at 

m/z 403, 383, 355 and 317 occur both in 8:2�FTEO and 8:2�FTOH product ion spectra and it 

was thus hypothesized that these ions are characteristic of fluorotelomer compounds.  

 

 

Figure 21: Proposed fragmentation pathway of 8:22FTEO7 after negative ESI. The associated product ion 

spectrum is shown in Figure 20. 

The nature of the lower mass pattern was subjected to more detailed investigation. In order to 

do so, the synthetized short�chained FTEOCs 6:2�FTEO1C and 8:2�FTEO1C were measured by 

QqLIT and high�resolution MS on an orbitrap MS. The latter measurement allows for 

determination of the accurate mass of the ions and thus, to determine the sum formulae of the 
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product ions. The orbitrap MS and enhanced product ion spectrum of a QqLIT of 8:2�FTEO1C 

are shown in Figure 22 and the summarized measured masses, theoretical masses, errors, 

proposed sum formulae and corrected ring and double bond equivalents (RDBE) of the product 

ions are presented in Table 2.  

Corrected RDBEs are calculated by the formula 

,����, �-	./01 	 2 �	32 � 5
2 ! 0.5 

where C is the number of carbon atoms, H is the number of hydrogen atoms and F is the 

number of fluorine atoms. As the measured species are anions, the RDBE has to be increased 

by 0.5 to assess the true number of rings and double bonds. 

 

 

Figure 22: (2)ESI2MS/MS spectra of 8:22FTEO1C measured on a) orbitrap b) QqLIT (enhanced product ion) 

The indicative masses of the 8:2�fluorotelomer structure – m/z 403, 383, 355 and 317 – also 

appear in the spectrum of this compound. Their suggested sum formulas are coherent with 

previously proposed formulae for 8:2�FTOH by Berger et al. [156]. Whereas it was proven that 

FTOH deprotonation occurs at the methylene group in adjacencies to the perfluoroalkyl chain, 

this seems highly unlikely for FTEOCs, which carry the carboxylic acid function and are believed 
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to be deprotonated at this very functional group. Thus, it is astonishing that FTEOCs and 

FTOHs partly generate the same product ions. 

Numerous other product ions are observed for 8:2�FTEO1C. The enhanced product ion 

spectrum of 8:2�FTEO1C (Figure 22 b) shows one large peak, which does not occur in the 

orbitrap spectrum, that is the product ion at m/z 75 representing HO�CH2�COO�. The orbitrap is 

not capable of measuring such low�mass product ions when rather high�mass precursor ions 

are fragmented. 

Table 2: Measured m/z versus theoretical m/z of orbitrap MS measurement of 6:22FTEO1C and 8:22FTEO1C. 

Elemental compositions are proposed based on lowest errors and corrected ring and double bond 

equivalents are given. For further information, please see text. 

 measured m/z  theoretical m/z Error [ppm] 
Elemental 

Composition 
corrected 

RDBE 

8
:2

2F
T

E
O

1
C

 

521.0057 521.0051 1.15 C12H6O3F17
� 1 

500.9997 500.9989 1.60 C12H5O3F16
� 2 

480.9935 480.9926 1.87 C12H4O3F15
� 3 

460.9870 460.9864 1.30 C12H3O3F14
� 4 

440.9808 440.9801 1.59 C12H2O3F13
� 5 

420.9746 420.9740 1.43 C12H2O3F12
� 6 

402.9816 402.9809 1.74 C10HOF14
� 3 

400.9684 400.9677 1.75 C12O3F11
� 7 

392.9797 392.9790 1.78 C11HO2F12
� 5 

382.9753 382.9747 1.57 C10OF13
� 4 

372.9734 372.9728 1.61 C11O2F11
� 6 

364.9846 364.9841 1.37 C10HOF12
� 4 

356.9786 356.9779 1.96 C11OF11
� 6 

354.9803 354.9798 1.41 C9F13
� 3 

344.9784 344.9779 1.45 C10OF1
�
1 5 

328.9834 328.9830 1.22 C10F11
� 5 

316.9832 316.9830 0.63 C9F11
� 4 

306.9815 306.9811 1.30 C10OF9
� 6 

278.9864 278.9862 0.72 C9F9
� 5 

6
:2

2F
T

E
O

1
C

 

421.0118 421.012 �0.48 C10H6O3F13
� 1 

401.0056 401.0053 0.75 C10H5O3F12
� 2 

380.9994 380.9990 1.05 C10H4O3F11
� 3 

360.9931 360.9928 0.83 C10H3O3F10
� 4 

340.9868 340.9866 0.59 C10H2O3F9
� 5 

320.9804 320.9803 0.31 C10HO3F8
� 6 

312.9920 312.9917 0.96 C9H2O2F9
� 4 

302.9874 302.9873 0.33 C8HOF10
� 3 

300.9743 300.9741 0.66 C10O3F7
� 7 

292.9855 292.9854 0.34 C9HO2F8
� 5 

282.9812 282.9811 0.35 C8OF9
� 4 

272.9794 272.9792 0.73 C9O2F7
� 6 

264.9907 264.9905 0.75 C8HOF8
� 4 

256.9844 256.9843 0.39 C9OF7
� 6 

254.9863 254.9862 0.39 C7F9
� 3 

244.9844 244.9843 0.41 C8OF7
� 5 

228.9894 228.9894 0.00 C8F7
� 5 

216.9893 216.9894 �0.46 C7F7
� 4 

206.9875 206.9875 0.00 C8OF5
� 6 

178.9924 178.9926 �1.12 C7F5
� 5 

166.9924 166.9926 �1.20 C6F5
� 4 
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As can be seen, a sum formula could be determined for most product ions detected and the 

errors were < 2 ppm, often even < 1 ppm. 

More detailed information was gathered by recording MS³ scans of all product ions of 8:2�

FTEO1C and 6:2�FTEO1C using the QqLIT instrument. With the help of this mode, 

fragmentation pathways can be elucidated since the sequence of fragmentations can be 

unscrambled, which is not possible with MS/MS methods. To visualize the results, the 

fragmentation scheme as well as the sum formulae and the nominal masses of the product ions 

of 8:2�FTEO1C are presented in Figure 23. 

The findings suggest two major fragmentation routes. The pathways I and II are directly 

connected to each other and product ions are exclusively formed by abstraction of CO or HF, 

except for the very last fragmentation step, where difluorocarbene, CF2, is cleaved off. This 

whole fragmentation pathway is restricted to FTEO1C fragmentation and cannot be generalized 

for other fluorotelomer�based compounds. Pathway III shares several product ions with 8:2�

FTOH and FTEO fragmentation (see Figure 20). 

The latter pathway is induced from m/z 481 by loss of C2H3O2F. It is striking that this 

fragmentation pathway can only be triggered from the product ion with m/z 481 (or higher mass 

product ions), but not from those with lower m/z like m/z 461. This is conspicuous because one 

would expect that, for instance, m/z 461 could also be transformed to the product ion at 

m/z 383, but this was excluded by the MS³ measurement. The second peculiarity of the FTOH�

based fragmentation pathway is that the fluorocarbon anion at m/z 317 is generated from 

m/z 383 by loss of carbonyl difluoride, but not from m/z 355. This would be theoretically possible 

by cleavage of molecular fluorine (F2). This observation suggests a rearrangement of m/z 383 to 

m/z 317. 

Interestingly, the two fragmentation pathways I and III coalesce in the product ion at m/z 317, 

although no link between these two routes occurs prior to m/z 317. However, it cannot be 

verified if both pathways virtually concur into the very same product ion or in two isomeric ions. 

Since this ion only has one successive product ion at m/z 267, this could be a hint that only one 

isomeric form of m/z 317 is present. 
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Figure 23: CID Fragmentation scheme of 8:22FTEO1C as measured by MS³ scans using QqLIT2MS. The sum 

formulae were determined with the help of orbitrap MS. 8:22FTOH is added to this figure to denote the 

similarity in fragmentation. 
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Taking into account the information given in Table 2 about corrected RDBE values and sum 

formulae, it turns out that some of the structures of the fragments are very likely to be cyclic. 

Whereas the first losses of HF could be readily explained by abstraction of neighboring 

hydrogen and fluorine atoms and concerted double bond formation, the same cannot be stated 

for further reactions. Already the third loss of HF must either have resulted from HF abstraction 

of distant hydrogen and fluorine atoms, or rearrangement in form of hydrogen or fluorine 

migration must have taken place. In the first case, cyclization seems a likely explanation, 

whereas the second suggestion could give rise to linear, unsaturated molecules.  

However, for fragments such as m/z 401 containing seven RDBEs, a cyclic structure seems by 

far more likely, because otherwise, the very labile cumulative double bonds would have to be 

formed. This product ion consists of 12 carbon atoms and is generated from deprotonated 8:2�

FTEO1C by sequential loss of six molecules of HF. 

The exact structures cannot be determined without the help of sophisticated computational 

modeling methods such as density�functional theory based calculations. Another very valuable 

tool would be exchange of certain hydrogen atoms by deuterium, for instance by synthesizing 

mass�labeled FTEO1C based on the synthetic route presented in Figure 33, by using mass�

labeled bromoacetic acid or mass�labeled FTOHs. In this way, one could determine the order of 

HF cleavage (in case deuterium�labeled educts are used), or the sequence of CO abstraction (if 
13C�labeled educts are used). All of these methods are very complex and costly and the results 

would not yield further information relevant for this work, thus they were not carried out.  

A tentative suggestion for the fragmentation route of FTOH�based product ions of 8:2�FTEO1C 

is given in Figure 24, starting with the common fragment at m/z 403. This fragment cleaves off 

HF under simultaneous fluorine migration leading to a new double bond, which increases the 

number of conjugated double bonds and thus, the mesomeric system. Thereupon, either decay 

of carbonyl difluoride or of CO occurs, leading to the product ions at m/z 317 or m/z 355. The 

latter one undergoes alkyl chain shortening by loss of difluorocarbene. This is probably 

achieved by abstraction of the terminal CF2 group and migration of the fluorine atom previously 

attached to this CF2 group. 

The formation of conjugated double bonds and the stability of the leaving groups HF and CO 

are assumed to be the major driving forces for all fragmentation reactions of 8:2�FTEO1C. 
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Figure 24: Tentative fragmentation pathway of FTOH2related product ions of 8:22FTEO1C. Several 

rearrangements occur during fragmentation. 

Even though the structures could not be pinpointed, the investigations resulted in several 

findings of interest for the analytical community, but also for environmental purposes. It can be 

concluded that CID fragmentation pathways of polyfluorinated compounds, i.e. those which are 

not perfluorinated, generally suffer loss of HF, which serves both as a stable leaving group and 

leads to stable fragments if several molecules of HF can be cleaved off, leading to conjugated 

double bonds. This hypothesis should be scrutinized by computational methods. 

Most importantly, the investigation shows that fluorotelomer�based compounds are likely to yield 

several product ions, if it is possible to measure these compounds in form of their deprotonated 
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molecule. This can be made use of when searching for novel environmental contaminants with 

the help of tandem MS that allow for precursor ion scans. The product ions presented in Figure 

24 are suited for this purpose, except for m/z 305, which usually occurred at low intensities. 

Neutral loss scans for 20 Da can also be used to detect unknown PFASs, since the mass of 

20 Da can only be achieved by combination of hydrogen and fluorine. However, this method 

would be suited for compounds containing these elements in general, whereas the precursor 

scans of m/z 403, 383, 355 and 317 are specifically related to fluorotelomer�based compounds. 

 Conclusion 3.2.3

Combination of MS techniques using different mass analyzers enabled the detailed 

investigation of fragmentation pathways of several fluorotelomer�based compounds. Whereas 

QqLIT�MS turned out to be a valuable tool for identifying the order of fragmentations due to the 

possibility of MS³ scans, the high mass accuracy and mass resolving power of orbitrap MS 

could be used to determine the sum formulae of product ions. 

In this way, a general CID fragmentation pathway of deprotonated molecules of fluorotelomer�

based compounds was observed and the product ions involved were identified in terms of their 

sum formulae and order of fragmentation. The exact structures of these characteristic product 

ions could not be revealed, but conclusive suggestions were made. These characteristic 

fragments can be made use of by subjecting them to precursor ion scans in environmental 

samples or consumer products analysis to detect unknown fluorinated compounds. 

FTEO and FTEOC fragmentation after positive ESI showed fragmentations similar to other 

oligoethoxylates as well as product ions characteristic of the fluorotelomer chain.  
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3.3 Biotransformation of a commercial fluorotelomer ethoxylate mixture 

 FTOH residues in the commercial mixture  3.3.1

The crude commercial mixture was analyzed for residual unreacted 6:2�FTOH and 8:2�FTOH. 

HPLC�(�)ESI�MS/MS analysis showed that the 6:2�FTOH content was 0.54% and 8:2�FTOH 

content was 0.29% (see Figure 25). 

 

Figure 25: HPLC2(2)ESI2MS/MS XICs for 6:22FTOH (red, m/z 423  59) and 8:22FTOH (blue, m/z 523  59) of a 

solution containing 10 Eg mL
21

 Zonyl FSH 

These results are in the range of those reported by Dinglasan�Panlilio and Mabury [162], who 

found 1.03 % for a different commercial FTEO product (Zonyl FSO�100). However, they used a 

completely different method (purging FTOH out of the raw material capturing volatilized FTOH 

on cartridges) and calculated the FTOH content as % of dry weight, which was not performed in 

the present study. 

 Generation of perfluorocarboxylic acids by biotransformation 3.3.2

The residual FTOHs in the commercial mixture represent a significant source of PFCAs by 

microbial transformation as proved in several studies [42,106,163]. On the other side, ultimate 

ethoxylate shortening of FTEOs would theoretically end up in FTOHs rendering FTEOs a 

potential source of PFCAs. 

Monitoring of PFHxA and PFOA during the biodegradation experiment revealed that 

approximately 4.3 nM of PFHxA and even less PFOA (ca. 0.2 nM) was formed within 48 days. 

This corresponds to a 2.5% molar conversion of 6:2�FTOH to PFHxA and 0.3% molar 

conversion of 8:2�FTOH to PFOA. These values are coherent with previous studies.  

An additional biodegradation test was carried out with 8:2�FTOH under the same conditions as 

for Zonyl FSH. This test was performed in order to evaluate potential loss of FTOH and volatile 
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TPs by aerating the bottles. Since no new information was gathered during that study, data is 

not shown here. These results suggest that FTEOs were not degraded to PFCAs, but to other 

unknown TPs. This issue will be discussed in chapter 3.3.4. 

 Primary degradation vs. adsorption 3.3.3

As described in the experimental section, FTEOs were expected to exhibit strong adsorptive 

behavior, thus sterilized control experiments were inevitable to obtain reliable results. Figure 26 

contrasts elimination of FTEOs in non�sterilized and sterilized degradation medium with respect 

to the fluorotelomer chain length. As expected, congeners featuring longer perfluorinated alkyl 

chains show increased adsorption rates as opposed to shorter perfluorinated chains. Moreover, 

adsorption decreases with longer polyethoxylate chain length, thus, in general adsorption 

decreases with higher hydrophilicity.  

 

Figure 26: a) Structural formula and acronyms of FTEOs b) Adsorption of FTEOs in sterilized controls. Please 

notice that the error bars do not represent standard deviation of multiple experiments but standard deviation 

of c/c0 of different ethoxymers as further illustrated in c) Dependency of ethoxylate chain length on 

adsorption of FTEOs in sterilized controls after 15 d 
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In contrast to the sterilized controls, no FTEOs were detectable in the non�sterile biodegradation 

experiment after three days (Figure 27). Although a considerable fraction may have been 

sorbed to glass or particles, comparison to the sterilized experiment proves that 

biotransformation had occurred. The steeper curve for 8:2�FTEOs may be attributable to their 

more pronounced adsorption. In general, the longer ethoxylates showed slower elimination as 

compared with shorter homologues.  

 

Figure 27: Biodegradation of FTEOs expressed as concentration divided by initial concentration. Please 

notice that the error bars represent standard deviation for different ethoxymers. 

The rapid biotransformation rate is rather striking for fluorinated molecules, but is typical for 

polyethoxylates, such as alcohol ethoxylates [164] and nonylphenol ethoxylates [165]. This is 

attributable to the well biodegradable polyethoxylate chain [166,167]. 

As to the metabolic pathway of FTEOs, only the carboxylate species were detected. However, it 

is supposed that biotransformation starts with an oxidation to the respective aldehyde followed 

by a second oxidation to the carboxylate, analogous to polyethylene glycol biodegradation. 

Since aldehydes are very reactive species, their fast oxidation to FTEOCs may have disallowed 

analytical detection. The ether bond is assumed to be cleaved by an enzyme called diglycolic 

acid dehydrogenase, which oxidizes the carbon in α�position to the carboxylic acid function and 

subsequently cleaves off glycosylate leaving a polyethoxylate shortened by one ethoxylate 

group [168]. 
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 Temporal evolution of FTEOC 3.3.4

As shown in Figure 28, FTEOCs were generated without a significant lag phase. The long 

FTEOC (y > 8) were nearly completely degraded within 18 days. It is assumed that ethoxylate 

shortening transforms the longer chained FTEOC to shorter�chained FTEO, which are then 

reoxidized to the respective FTEOC.  

In stark contrast, the intensities for shorter FTEOC remained constant after approximately 

20 days. A steady state, in which the reaction rates of generation and shortening of a specific 

congener are equal, is very unlikely, because in this case the FTEO1C compounds should be 

degraded as well. Thus, it is concluded that the shorter FTEOCs were not further degraded, 

even within a 48 days period. In fact, concentration of FTEOyC with y < 9 remained stable once 

generated. 

 

Figure 28: Temporal evolution of FTEOCs a) Peak are ratios of 6:22FTEO128C b) 8:22FTEO127C c) 6:22FTEO9213C 

d) 8:22FTEO8211C; please notice the logarithmic scale in a) and b) as well as different x2axis scales in a)/b) 

compared with c)/d); for further information see experimental section. 

The unforeseen stability of these compounds under the given conditions is possibly caused by 

prevalence of perfluorocarbon chain in the lower ethoxylated molecules. This proximity of the 

perfluoroalkyl group might decrease the binding potential of the substrate to the active center, 

since the perfluoroalkyl group is both hydrophilic and hydrophobic. Similar effects of fluorinated 
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functional groups were observed in several other studies carried out in our laboratory [112,113]. 

These findings might suggest that FTEO degradation does not immediately contribute to the 

PFCA burden in the environment. However, it needs to be pointed out that this study was a 

short�term study compared with other studies that have been carried out e.g. for 8:2�FTOH in 

soils [42]. Nonetheless, further measurements confirming the findings were performed, which 

will be discussed in the following section. 

3.4 Biotransformation of fractionated long2chained fluorotelomer ethoxylates 

 Two2dimensional fractionation of technical fluorotelomer ethoxylate mixture 3.4.1

The biotransformation experiment conducted with a technical mixture of FTEO was impeded by 

the presence of residual unreacted FTOHs, which lead to the formation of PFCAs during the 

biotransformation process. 

Attempts were made to fractionate the technical mixture to as pure as possible congeners so as 

to investigate the fate of only one congener – preferably free of FTOHs – in a biotransformation 

study. In this way, it would be ultimately possible to tell apart whether the formation of PFCAs, 

as seen in chapter 3.3.2, is attributed only to biotransformation of residual FTOHs, or whether a 

part of the FTEOs is also converted to PFCAs. 

In order to do so, the technical mixture was chromatographed two�dimensionally. First, the 

congeners were separated according to their perfluorocarbon chain length by reversed�phase 

column chromatography, and thereupon, the fraction containing the 8:2�FTEOs was separated 

under normal�phase conditions in order to separate the ethoxymers from each other (see 

6.1.5.). 

Even though quantification and semi�quantification across congeners is not entirely reliable 

when using ESI [161] due to different response factors during ionization, the relative amounts of 

the homologues were estimated in this manner. It is assumed that the response factors are 

comparable for long&chained ethoxymers of similar EO chain length. In this case, the distribution 

was calculated based on ammonium adducts of FTEO. These are presumed to be generated by 

chelation of the ammonium adduct by the oxygen bridges of the EO chain. Minor differences of 

the EO chain length are unlikely to cause major differences in the affinity to the ammonium ion 

and thus, in the response factor of the ethoxylates. 

The fraction used for biotransformation study contained mainly 8:2�FTEO14 (33.1%) and 8.2�

FTEO15 (60.6%) as well as minor amounts of 8:2�FTEO16 (2.7%). 8:2�FTEO6�13 were also 

present with contents of less than 1%. Importantly, no 8:2�FTOH could be detected in the 

fraction with a limit of detection (LOD) of 0.01% with respect to FTEO. 
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An ideal separation, i.e. fractions consisting of one ethoxymers only, could not be achieved, 

which is due to the relatively poor resolution of column chromatography and the pronounced 

similarity of the ethoxymers with high degree of ethoxylation. However, fractionation yielded a 

product which met the desired criteria of preferably long EO chains and a lack of any FTOH. 

 Primary degradation and adsorption 3.4.2

Three different experiments were carried out to study the biotransformation behavior of the 

fractionated FTEO, which differ mainly in the aeration frequency and technique of aeration. The 

most relevant parameters are summarized in Table 3. 

 

Table 3: Summarized parameters for biotransformation experiments of fractionated FTEO 

Acronym Material Aeration 
Capturing of volatile 

TPs 

‘PP1’ PP 
Regularly 

(1�5 d) 
No 

‘PP2’ PP Never No 

‘G’ Glass 
Regularly 

(1�5 d) 
Yes 

 

As expected, adsorption was significant in all experiments, even though the compounds mainly 

contained long EO chains. The course of the FTEO in the sterilized and non�sterilized 

experiments is visualized in Figure 29. After 40 days, adsorption accounted for approximately 

75% in ‘G’ and 90% in ‘PP1’, respectively. Volatilization of these high molecular weight 

compounds is supposedly negligible. Despite the high degree of adsorption, biotransformation 

could be proven unambiguously, since no FTEOs were detectable after 37 d in both 

experiments. 
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Figure 29: Course of FTEO in experiment 'PP1' (top) and 'G' (bottom) expressed as concentration of the sum 

of FTEO14216 divided by the sum of initial concentrations 

Percentage adsorption was much more pronounced as compared with the previous experiment 

conducted with the technical FTEO mixture. In this experiment, adsorption of the 8:2�FTEO with 

the longest EO chain which was measured semi�quantitatively – 8:2�FTEO13 – accounted for 

approximately 20%. Two effects may be the reason for this observation: Firstly, this can be 

explained by the different concentrations used in this experiment (0.5 Rg FTEO mL�1) and the 

one carried out with technical FTEO (β = 5.7 Rg FTEO mL�1). Secondly, the percentage of the 
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long�chained FTEO in the technical mixture is very low, whereas these are the only compounds 

present in the fractionated FTEO. Adsorption can only take place on distinct adsorption sites. 

Therefore, different compounds – also different FTEO congeners – will compete for these sites. 

Thus, adsorption of long�chained FTEO could be suppressed in the experiment with technical 

FTEO due to pronounced competition with other congeners.  

Compared with the previous experiment, biotransformation was much slower. Likewise, this 

may be reasoned with reduced concentration as well as the fact that FTEO was added to the 

vessels in form of a methanolic solution. MeOH concentration was approximately 0.07% or 

17.6 mM, which is five orders of magnitudes higher than the FTEO concentration. Thus, 

microorganisms are likely to consume MeOH as a first source of energy and carbon before 

attacking FTEOs.  

 Formation of transformation products 3.4.3

As explained previously, the main goal of this biotransformation experiment was the 

unambiguous clarification whether FTEOs may be degraded to PFCAs, which could not be 

proven with the experiment, in which technical grade FTEOs were used due to FTOH 

contamination. 

Contrarily to the biotransformation experiment with the technical FTEO mixture (see chapter 

3.3), PFOA formation was observed herein, as demonstrated in Figure 30. Whereas in the 

assays with regular aeration, only 1.4% and 2.4% conversion of FTEOs to PFOA was observed, 

PFOA concentration accounted for 6.5% conversion of FTEOs in the experiment with no regular 

aeration. These results are comparable with other studies on biotransformation of fluorotelomer�

based compounds resulting in PFCAs, although 6.5% can be considered a rather high value. 
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Figure 30: PFOA formation in three different biotransformation experiments with fractionated long2chained 

FTEOs. Formation is expressed as molar % conversion of FTEO. Please notice that in experiment ‘PP2’, only 

two points are present, since the tube was not opened until day 105. 

The pronounced generation of PFOA in the closed�bottle experiment ‘PP2’ can be easily 

explained, since there are no losses of potential volatile TPs such as 8:2�FTOH, thus the entire 

8:2�FTOH is available for biotransformation. The other two experiments may suffer from losses 

of volatile TPs in solution during aeration, which are then trapped on SPE cartridges in 

experiment ‘G’. Unfortunately, no trapped FTOH could be detected in this test, which can be 

ascribed to the comparably high LOD of 8:2�FTOH (ca. 6 ng/cartridge). More effort should be 

put on this subject, e.g. longer sampling intervals for the cartridge leading to more enrichment of 

8:2�FTOH above its LOD. 

There is at least a hint that biotransformation of the FTEOs followed the FTOH transformation 

scheme, as depicted in Figure 3. In the samples after 106 d, 2H�PFOA (see Figure 31) was 

detected in MRM mode. No signal was obtained in sterile and control experiments. To confirm 

the identity of 2H�PFOA, the sample from ‘PP2’ experiment was concentrated 20�fold and 

studied by QqLIT�MS. The resulting enhanced product ion spectrum is shown in Figure 31.  
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Figure 31: HPLC2(2)ESI2MS/MS enhanced product ion spectrum of 2H2PFOA (m/z 395) and structural 

assignment of the product ions in a sample of ‘PP2’ experiment after 106 days. The sample had been 

previously enriched 202fold by SPE. 

Fragmentation of 2H�PFOA only yields the product ion at m/z 331 resulting from loss of HF and 

CO2 from the precursor ion. Whereas this fragmentation pattern itself is not expressive, it is 

exactly what has been found by Wang et al. in previous studies [42]. Interestingly, the formation 

of an [M�H�CO2]
� ion seems to be suppressed here and only by cleavage of further HF and 

consequent formation of a terminal double bond, stability is high enough to allow for monitoring 

of the product ion. 

Interestingly, only long�chained FTEOCs were detected in this experiment and no accumulation 

of short�chained FTEOC like 8:2�FTEO1C was observed, as shown in 3.3.4. These FTEOCs 

were measured as their ammonium adducts in positive ESI and thus, NPEO2 could be used as 

the internal standard here. In fact, only 8:2�FTEO13�15C could be measured above their LOD 

(see Figure 32). These FTEOCs are directly derived from the FTEOs which were used in this 

experiment.  
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Figure 32: Temporal course of 8:22FTEO13215C in experiment ‘PP1’ (top) and ‘G’ (bottom) expressed as the 

peak area ratio of the respective FTEOC and the internal standard NPEO2 

In experiment “PP1’ the maximum intensity of the signal intensities is reached after 11 days, 

whereas in ‘G’, the maximum is attained after a duration of 20 days. It is worth noticing that the 

course of the FTEOCs is coherent with each other implying no visible dependency of the TPs in 

a way that one TP is generated from the other one. 
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This implies either very rapid transformation rates and no release of these FTEOCs or a 

different biotransformation pathway with cleavage in proximity to the perfluoroalkyl chain. The 

reasons for the complete biodegradation reaching the dead�end TP PFOA are not entirely clear, 

but one reason may be the relatively high concentration of these TPs in the assay with technical 

FTEO (see 3.30). This might have led to intoxication of the microorganisms by the carboxylic 

acid TPs and thus hamper further metabolic activities. Another explanation might be the inocula 

used in the different experiments. Although taken from the same source (but at a different time), 

differences in the microorganisms cannot be prevented unless microbiological purification steps 

and confirmation of the species present are performed. A further reason might be the use of 

MeOH to dissolve the fractionated FTEO, which may lead to reinforced growth of one or several 

species being able to degrade FTEOC to FTOH and thus PFOA. 

 Conclusion 3.4.4

The biotransformation of FTEOs was investigated with two different approaches. The first 

experiment revealed biotransformation to the respective carboxylate and further shortening by 

cleavage of the ethoxylate groups is supposed to occur. For carboxylates with a short 

ethoxylate chain, no further biotransformation occurs rendering them recalcitrant in the 

experiment. 

In stark contrast, in a series of other experiment carried out with previously fractionated 8:2�

FTEO14�16, pronounced formation of PFOA was observed, particularly in a closed�bottle test, 

where a molar conversion of 6.5% was measured after 105 d. The FTEOCs associated with the 

test compounds were detected and it was shown that these are transformed. However, no 

short�chained FTEOCs were detected which suggests that the biotransformation route is 

different from the abovementioned one. The exact route remains unknown, but one of the 

known TPs of 8:2�FTOH, namely 2H�PFOA, was detected and its presence confirmed by mass 

spectrometric fragmentation analysis. 

3.5 Monitoring of PFASs in environmental samples 

 Synthesis of standards 3.5.1

The stability of long�chained FTEOCs in the biodegradation experiment of the technical FTEO 

mixture suggests that these compounds may be present in environmental compartments. Waste 

water treatment plants receiving industrial waste water are a well�known entry path of organic 

pollutants into natural compartments [4,8]. Therefore, a selective and sensitive method was 

developed based on solid phase extraction (SPE) on weak anion exchanger and HPLC�ESI�

MS/MS. In order to provide quantitative data, 6:2�FTEO1C and 8:2�FTEO1C were successfully 
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synthesized by Williamson etherification of the respective FTOH and bromoacetic acid (Figure 

33) to be used as standards. 

 

Figure 33: Synthetic route to FTEO1C; n = 6,8 

In principle, higher ethoxylated FTEOCs can be synthesized in the same manner by subsequent 

extension (etherification with bromoacetic acid) and reduction with LiAlH4. However, this 

procedure is highly laborious and particularly complex when considering clean�up of mixtures of 

fluorinated compounds. Even clean�up of the crude FTEO1C products was complex since 

common procedures such as column chromatography failed due to irreversible adsorption to the 

stationary phase. As a consequence, synthesis of higher ethoxylated FTEOCs was not 

performed. 

 Monitoring of FTEO1Cs and classic PFASs in environmental samples 3.5.2

A method based on solid�phase extraction (SPE) on polymeric sorbent exhibiting weak anion�

exchanger properties was developed for FTEO1Cs, PFCAs and PFSAs. Quantitation via HPLC�

ESI�MS/MS suffered from strong memory effects in the instrument, especially for 8:2�FTEO1C, 

which apparently sorbed to parts in the HPLC system and desorbed at higher organic solvent 

fraction. This entailed blank values of several ng mL�1 and complicated quantification 

tremendously. In contrast, 6:2�FTEO1C was much less problematic showing no or carryover.  

The regularly measured PFCAs and PFSAs were also included in this study in order to obtain 

an overview of the PFAS contamination of Hessian WWTP effluents and polluted river waters. 

These WWTP effluent samples were two�week mixed samples, the surface water samples were 

grab samples. All samples were from the state of Hesse, Germany. The method developed was 

valid for the matrix investigated showing high recoveries for nearly all compounds investigated 

(see Annex, Table 21). Unfortunately, PFBA and PFPeA could not be included in this monitoring 

campaign at that time due to very low recoveries, which can be explained by the high polarity of 

PFBA leading to weak retention on RP materials. Furthermore, broad chromatographic peak 

shapes implying low peak heights are a result of the high polarity. All this prevented reliable 

measurement in these rather contaminated matrices. 

The main problem arises by the fact that for long�chained PFASs, high content of organic 

solvent in the storage HPLC vials is necessary to overcome pronounced adsorption of the 

analytes. Thus, the analytes were reconstituted in a mixture of water and MeOH at equal 

shares. This in turn is problematic for compounds with low retention times in HPLC. These 
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compounds are poorly retained in the beginning of the HPLC gradient, when dissolved in 

mixtures with higher organic solvent fraction than that in the initial mobile phase. When only 

PFBA is measured, this problem can be easily circumvented by dissolving the sample in water 

only, because in contrast to long�chained PFCAs and PFSAs, PFBA does not show adsorption 

to the HPLC vials (data not shown). 

The data obtained are summarized in Table 4 underlining the ubiquitous detection of PFASs. 

Several compounds, namely PFHxA, PFHeA, PFOA, PFBS, PFHxS and PFOS were detected 

in all of the samples. The novel TPs 6:2�FTEO1C and 8:2�FTEO1C were measured above the 

LOQ in one WWTP sample, where 8:2�FTEO1C was the compound of highest concentration 

with 51 ng L�1, and 6:2�FTEO1C was measured at 15 ng L�1. Apart from WWTP�14, 6:2�FTEO1C 

was detected in two samples and 8:2�FTEO1C was detected in another sample below their 

respective LOQ. 



 
 
 
 

 
 

Table 4: PFAS concentrations measured in selected WWTP effluents and river waters; concentrations in ng L
21 

Location Type of Water 6:2-FTE1OC 8:2-FTEO1C PFHxA PFHeA PFOA PFNA PFDA PFBS PFHxS PFOS PFDS Sum PFAS 

River-1 River n.d. n.d. 20.3 7.1 19.6 2.0 2.8 32.7 35.0 159 <LOQ 278 

River-2 River n.d. n.d. 40.3 11.1 23.5 2.2 2.9 72.0 290 320 0.575 762 

River-3 River <LOQ n.d. 9.0 4.6 9.9 1.3 1.2 5.6 21.3 29.7 n.d. 83 

River-4 River n.d. n.d. 2.0 1.7 3.0 <LOQ n.d. 1.4 0.9 2.2 n.d. 11 

WWTP-1 WTTP effluent n.d. n.d. 11.1 3.8 19.7 1.5 1.6 4.3 1.8 3.0 n.d. 47 

WWTP-2 WTTP effluent n.d. n.d. 12.9 6.4 13.4 4.3 2.1 4.9 3.1 13.7 n.d. 61 

WWTP-3 WTTP effluent n.d. n.d. 4.8 2.2 7.0 0.9 <LOQ 1.3 1.4 1.7 n.d. 19 

WWTP-4 WTTP effluent n.d. n.d. 3.1 2.6 6.8 0.8 <LOQ 1.4 5.2 4.2 n.d. 24 

WWTP-5 WTTP effluent n.d. n.d. 23.3 6.7 24.7 3.1 4.8 1.2 0.8 1.4 n.d. 66 

WWTP-6 WTTP effluent n.d. n.d. 3.7 2.4 7.3 1.0 <LOQ 1.2 1.6 5.5 <LOQ 23 

WWTP-7 WTTP effluent n.d. n.d. 5.5 1.8 6.9 0.7 1.7 2.0 2.7 3.3 <LOQ 24 

WWTP-8 WTTP effluent n.d. n.d. 6.8 3.2 10.9 1.2 1.9 0.7 1.3 6.7 n.d. 33 

WWTP-9 WTTP effluent n.d. n.d. 3.6 1.8 6.9 0.9 2.0 0.5 2.2 32.6 n.d. 50 

WWTP-10 WTTP effluent n.d. n.d. 5.7 3.5 7.0 1.3 1.2 1.8 2.2 2.9 n.d. 26 

WWTP-11 WTTP effluent n.d. n.d. 3.1 2.2 6.9 0.5 <LOQ 2.8 6.2 2.6 <LOQ 24 

WWTP-12 WTTP effluent n.d. n.d. 3.3 1.2 7.1 0.5 <LOQ 3.2 1.9 2.5 n.d. 20 

WWTP-13 WTTP effluent n.d. n.d. 2.5 1.5 6.1 0.8 n.d. 1.4 1.4 1.2 n.d. 15 

WWTP-14 WTTP effluent 15.1 51 15.9 8.5 30.6 2.3 11.8 3.4 5.0 2.7 n.d. 146 

WWTP-15 WTTP effluent n.d. <LOQ 4.5 1.9 7.4 0.7 n.d. 1.3 2.1 1.8 n.d. 20 

WWTP-16 WTTP effluent n.d. n.d. 5.2 2.5 10.3 1.9 2.2 1.6 3.7 14.8 n.d. 42 

WWTP-17 WTTP effluent <LOQ n.d. 8.3 4.0 7.9 1.0 <LOQ 3.1 1.2 1.5 n.d. 27 

n.d. = not detected 

<LOQ = lower than limit of quantification 
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As mentioned before, higher ethoxylated FTEOC show more pronounced response in positive 

ESI polarity and were thus analyzed in a different method. Validation of this method was not 

performed since no standards were available or synthesized. In the sample WWTP�14, higher 

ethoxylated FTEOCs were detected as well, namely 8:2�FTEO4�8C (see Figure 34). Retention 

times matched those found in samples from the biodegradation test, and the transitions 

[M + NH4]
+  m/z 491 and [M + NH4]

+  m/z 579 were monitored to confirm the identity of the 

compounds present.  

 

Figure 34: LC2(+)ESI2MS/MS XICs for 8:22FTEO427C in sample from WWTP214; measured in MRM mode 

monitoring the transitions for [M + NH4]
+
  m/z 491 

As far as WWTP samples are concerned, summed up concentrations of PFASs were in the two�

digit ng L�1 range, except for the sample for WWTP�14, where high concentrations of 8:2�

FTEO1C made the concentrations exceed the 100 ng L�1 level. Except for three samples, PFOA 

occurred at highest concentrations. Linear correlation showed fairly high coefficients of 

determination between concentrations of C6�C9 PFCAs, as depicted in Table 5. For all other 

combinations of compounds, no such statistically significant correlation could be found. For 

PFOA and PFOS, correlation was extremely low with R² = 0.04. These correlations may give a 

hint that the origins for PFCA pollution may be derived from conjoint sources, whereas different 

sources may be the reason for PFSA pollution. Also correlations among PFSAs do not show 

any statistically significant correlation. 
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Table 5: Linear coefficient of determination (R²) between concentrations of PFHxA, PFHpA, PFOA and PFNA 

in WWTP samples 

 PFHpA PFOA PFNA 

PFHxA 0.77 0.76 0.58 

PFHpA  0.75 0.61 

PFOA   0.36 

 

The lowest of all PFAS concentrations with only 11 ng L�1 total PFASs were detected in one 

surface water sample. Other river samples showed high concentrations with up to 762 ng L�1, 

which was mainly caused by high concentrations of PFHxS and PFOS. These surface waters 

are known to be fed with high fraction of industrial wastewaters.  

In order to validate the results, they were verified by interlaboratory comparison with a certified 

method (Gellrich, internal communication), which had successfully participated in interlaboratory 

tests for PFAS analysis. Results generally differed not more than 20%. 

 Conclusion 3.5.3

The presence of 6:2�FTEO1C and 8:2�FTEO1C, two previously detected TPs from FTEO 

biotransformation, should be investigated in environmental samples by SPE and HPLC�ESI�

MS/MS. Analytical standards were synthesized from 6:2�FTOH and 8:2�FTOH by Williamson 

etherification. 

A monitoring study in 17 WWTP samples and 4 surface water samples showed one positive 

finding above the respective LOQs for both compounds as well as three detections below the 

LOQ. Furthermore, higher FTEOCs were detected in one sample, but could not be quantified 

due to a lack of analytical standard. The low number of positive samples suggests that FTEOCs 

indeed may be transformed, as shown in chapter 3.4.  

Classic PFASs, such as PFCAs and PFSAs were also included in the monitoring campaign and 

their nearly ubiquitous presence was confirmed. Whereas the sum of PFAS concentrations 

most WWTP samples was in the range of 15�150 ng L�1, high concentrations up to 762 ng L�1 

were measured in a polluted river sample. Statistical analysis revealed high linear correlation 

factors for the concentrations of PFHxA, PFHpA, PFOA and PFNA, but no high correlation 

between any other compound pair. 
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3.6 Biotransformation of novel fluorosurfactant building blocks 

 32(Trifluoromethoxy)212propanol 3.6.1

3�(Trifluoromethoxy)propan�1�ol (TFMPrOH, see Figure 35) is a novel TFM�based building block 

designed to be used in innovative fluorosurfactants. In order to discover whether it is 

appropriate as an environmentally friendly building block for higher molecular weight 

fluorosurfactants, its biodegradation potential was studied. 

Initially, a method for the parent compound TFMPrOH was aimed at. Thus, a method based on 

HPLC�ESI/MS should be established. Its mass spectrometric behavior was studied by MS/MS 

and it could be shown that it forms a proton adduct at m/z 145. CID fragmentation leads to the 

trifluoromethoxy cation at m/z 85 and the trifluoromethyl(methylen)oxonium ion at m/z 99 (see 

Figure 35). Surprisingly, no cleavage of water was observed.  

 

Figure 35: (+)ESI2MS/MS product ion spectrum of TFMPrOH and proposed structures of the product ions 

Even though mass spectrometric signals were observed for TFMPrOH, the study of 

biotransformation suffered from the incapability of measuring the initial compound by HPLC�

ESI�MS. The reason for this could be suppression of the very weakly basic aliphatic hydroxyl 

group due to early elution from the HPLC and ion suppression effects. Also GC�EI/MS was 

tested as a commonly applied method for volatile analytes, but no signal of the initial compound 

was observed either. 

Thus, focus was set on TPs, mainly on acidic ones, since alcohols are commonly transformed 

to acids under aerobic conditions. Since TFM�substituted compounds had been previously 
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measured in our laboratory [111], negative ion CID fragmentation of compounds bearing this 

functional group were known. Fragmentation usually yielded the trifluoromethanolate anion at 

m/z 85. In such cases, precursor ion scans can give valuable information about unknown 

compounds. As shown in Figure 36, a compound with an m/z ratio of 157 could be detected.  

 

Figure 36: HPLC2(2)ESI2MS/MS precursor ion scan of a TFMPrOH biodegradation sample after seven days a) 

TIC b) precursor ion spectrum at 8.1 min suggesting the presence of TFMPrA (m/z 157) 

The molecular mass of 158 Da (m/z 157 in negative ESI polarity) suggests an ω�oxidized TP, 

namely 3�trifluoromethoxypropionic acid (TFMPrA). Furthermore, a second TP at m/z 129 was 

detected (data not shown), which suggests the presence of trifluoromethyl carbonate (TFMC). 

Their structure was verified by ‘enhanced product ion scans’ using the LIT (see Figure 37). 
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Figure 37: HPLC2(2)ESI2MS/MS enhanced product ion spectrum of a) TFMC and b) TFMPrA. Tentative 

fragmentation pathways are presented 

Both molecules yield the trifluoromethanolate ion at m/z 85, which had been known from 

previous measurements [111]. This is generated by loss of carbon dioxide (in case of TFMC) 

and acrylic acid (in case of TFMPrA), respectively. TFMC further leads to the trifluoromethyl 

peroxide anion at m/z 101, which could not be generated from TFMPrA or any other substance 

containing the TFM moiety. The reason for this might be accounted for by the mechanism of 

formation, which is tentatively explained by a concerted rearrangement of the free carboxylic 

oxygen atom to the esterified oxygen atom under simultaneous cleavage of carbon monoxide. 

Although the trifluoromethanolate ion can be formed directly from TFMC by cleavage of carbon 

dioxide, as explained above, cleavage of atomic oxygen from the trifluoromethyl peroxide anion 

might also contribute to the signal obtained for trifluoromethanolate. The signal intensities for 

product ions of TFMC are very low and could not be substantially increased by increasing the 
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collision energy (CE). This is an odd behavior and might be due to the formation of lower�mass 

product ions, whose m/z ratio is below the instrumental cut�off mass at m/z 50.  

The temporal evolution of the two TPs detected was investigated in SIM mode and is presented 

in Figure 38. 

 

Figure 38: Temporal evolution of TFMPrOH metabolites TFMPrA and TFMC 

As described in the experimental section, the assay was kept closed for the first four days to 

prevent volatilization of TFMPrOH or volatile TPs. Therefore, no data points are available for 

this time period. Both TFMC and TFMPrA showed a rapid increase in peak area. Whereas 

TFMC reached a maximum after seven days and was then completely metabolized showing no 

signal anymore after 14 days, TFMPrA reached a plateau just at this time point. Even after 34 

days, no decline was observed suggesting stability of this TP. 

This is rather striking since so far, it was assumed that longer ω�TFM substituted alkanoic acids 

were degraded by β�oxidation until free unstable TFMeOH is generated [111]. The stability of 

TFMPrA was also verified by different fluoride measurements, as depicted in Table 6. Besides 

free inorganic fluoride, fluoride was also measured after UV decomposition of organic 

compounds, and after filtration and UV decomposition. This is a very valuable method to affirm 

results obtained from organic analysis, such as LC�ESI�MS, and to determine the percentage of 

biotransformation pathways in case of multiple pathways [112].  
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Table 6: Fluoride determination in TFMPrOH biodegradation samples after 77 days 

 β(F�) [mg L�1] Fluoride [% theoretical] 

Inorganic 0.75 19.3 

After filtration and UV decomposition  4.5 116 

After UV decomposition of the whole sample 4.54 117 

 

Herein, fluoride measurement after UV decomposition yielded 4.54 mg L�1, which is ca. 17% 

higher than the theoretical value, as calculated based on the initially spiked test compound. This 

value can be explained by evaporation of the biodegradation medium, which was kept at room 

temperature and aerated regularly, which contributes to evaporation of water. Assumed that 

only biotransformation of TFMCA can lead to inorganic fluoride and that this pathway yields 

100% fluoride, it accounts for 0.75/4.54 = 16.5%. 

The tentative biotransformation pathway is presented in Figure 39. The first pathway is likely 

achieved by ω�oxidation of the hydroxyl group to the carboxylate group yielding TFMPrOH, 

probably via the short�lived aldehyde. 

It must be highlighted that the pathway leading to TFMC and inorganic fluoride is highly 

speculative, since no intermediate TPs were detected. However, it can be stated that no link 

between TFMPrA and the second pathway can be established, since the HPLC�MS signal of 

TFMPrA remains constant. Thus, a second reaction to TFMPrOH must have occurred. The 

detection of TFMC must have been preceded by an insertion of an oxygen atom into the alkyl 

chain. A possible but unproven explanation is given as follows: 

A likely reaction would be the in�chain oxidation of the alkyl chain in proximity to the TFM group 

yielding the hemiacetal I (Figure 39), which can be oxidized to the ester II. A Bayer�Villiger�

oxidation�like reaction, that is an insertion of an oxygen atom leading to the 3�hydroxypropyl 

trifluoromethyl carbonate III. Ester hydrolysis leads to TFMC, which subsequently decays to 

TFMeOH and thus finally yields fluoride and carbon dioxide [111,114,115]. 
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Figure 39: Proposed biotransformation pathways of TFMPrOH; BVO = Bayer2Villiger oxidation. The dotted 

rectangles indicate the TPs identified by HPLC2ESI2MS/MS 

As the ω�oxidation pathway apparently proceeds much more rapidly, the 3�

(trifluoromethoxy)propoxy group does not seem to be a good candidate for environmentally 

friendly substitutes of PFASs assuming that in potential fluorosurfactants, the 3�

(trifluoromethoxy)propoxy group is cleaved off as TFMPrOH. Whereas at least approximately 

15% of the organically bound fluorine can be released as inorganic fluoride, the long�term fate 

and effects of the remaining TFMPrA are questionable and cannot be assessed without further 

laborious studies. 

 62(Trifluoromethoxy)212hexanol 3.6.2

Biodegradation of a building block with considerable structural similarity to TFMPrOH was 

investigated in a different experiment. The substance under investigation is 6�

(trifluoromethoxy)hexan�1�ol (TFMHxOH, see Figure 40). Herein, the similarities and differences 

between these two compounds with respect to biotransformation should be scrutinized. 

TFMHxOH biotransformation was initially investigated by the temporal assessment of the test 

compound itself. In this case it was possible by measuring the protonated molecule [M + H]+ in 

positive ESI mode.  
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Figure 40: (+)2ESI2MS/MS CID enhanced product ion spectrum of TFMHxOH and tentative assignment of 

chemical structures 

Fragmentation is initiated by loss of water which is characteristic of alcohol fragmentation from 

protonated molecules. This results in a carbenium ion species, which further decays by loss of 

the TFM group in form of TFMeOH leading to an unsaturated carbenium ion at m/z 83. 

Cleavage of ethane results in the unsaturated carbenium ion at m/z 55. These two ions were 

used as transitions for MRM during HPLC�MS measurement.  

A different fragmentation pathway of the carbenium ion at m/z 169 leads to the formation of the 

product ion at m/z 103. The proposed fragmentation pathway is shown schematically in Figure 

41. It is proposed that fragmentation involves a rearrangement where a fluorine atom of the 

trifluoromethyl group migrates to the methylene group in α�position to the ether bridge, while 

carbonyl difluoride is concertedly cleaved off. The carbenium ion at m/z 83 can also be 

generated through loss of HF from m/z 103. 
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Figure 41: Proposed fragmentation mechanism of the carbenium ion at m/z 169 deriving from TFMHxOH. 

Fragmentation is achieved by cleaving off carbonyl difluoride to form the fragment at m/z 103. This process 

represents a fluorine migration 

The assay suffers from loss of TFMHxOH also in the sterilized experiment. This can be 

reasoned by a mixture of volatilization and adsorption to glassware or particles present in the 

inoculum. Yet, the reduction in concentration of TFMHxOH proceeds more rapidly in the active 

assay indicating biotransformation. Complete primary transformation was achieved after 11 

days.  

 

Figure 42: Temporal evolution of TFMHxOH in active and sterile biodegradation assays. The black dotted line 

indicates the theoretical initial TFMHxOH concentration 

Similarly to the biodegradation assay of TFMPrOH, two acidic TPs were detected for TFMHxOH 

as well, in this case 6�(trifluoromethoxy)hexanoic acid (TFMHxA) and again TFMC. 

The identity of TFMHxA was verified by performing product ion scans (see Figure 43). Besides 

the common trifluoromethanolate anion at m/z 85, a second product ion at m/z 113 was 

observed, which represents an ω�unsaturated alkenoic acid anion. This ion results from 

cleavage of neutral TFMeOH from the precursor ion. This ion species had also been detected in 

measurements of Peschka et al. when examining 10�(trifluoromethoxy)decane�1�sulfonate 

[111]. 
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Figure 43: (2)2ESI2MS/MS product ion scan of TFMHxA and proposed structures of the product ions. 

Both compounds were generated rapidly with TFMC showing a maximum after only four days 

and no signal after 11 days, as shown in Figure 44. TFMHxA showed its maximum 

concentration after five days and � in stark contrast to TFMPrA – was completely degraded 

afterwards showing complete degradation also after 11 days. The main difference between the 

degradation between TFMPrOH and TFMHxOH, however, is a very high degree of 

defluorination, which represents almost 100% of the theoretical value.  

 

Figure 44: Temporal evolution of TFMHxOH TPs TFMC and TFMHxA (Please note the logarithmic scale) and 

percentage fluoride release. 
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This difference in mineralization yield between TFMPrOH and TFMHxOH cannot be entirely 

explained, because no further TPs were detected in the course of this experiment. Thus, the 

degradation pathways presented here are speculative (see Figure 45). It is assumed that 

TFMHxOH is oxidized in a similar manner as TFMPrOH, leading to TFMHxA. Unlike TFMPrA, 

TFMHxA is further metabolized, as suggested in Figure 45. 

 

Figure 45: Proposed degradation pathways of TFMHxOH; please note that possible transitions from the 

pathway A to pathway B are possible by oxidation, but not depicted here. For further information, see text. 

The dotted rectangles indicate the TPs identified by HPLC2ESI2MS/MS. 

Since both TFMHxA and TFMC are degraded and no further organic TP was detected, it is 

hypothesized that both TPs – TFMHxA and TFMC – yield inorganic fluoride. Since the curves 

for TFMHxA and TFMC are not temporally shifted, no link between the two TPs can be made, 
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and yet, TFMHxA is assumed to be transformed to TFMC in a similar manner as TFMHxOH is 

metabolized itself. That is, TFMHxA is oxidized to an alcohol in proximity to the ether group 

yielding the hemiacetal I. In turn, this is oxidized to the ester II, which is oxidized to the Bayer�

Villiger�like carbonate III. Ester hydrolysis yields TFMC, which is eventually mineralized, as 

explained in chapter 3.6.1. Simultaneously, oxidation of TFMHxOH analogous to TFMPrOH 

proceeds. Even more complex, TPs IV to VI might be oxidized to the respective molecule on the 

left side. For instance, IV might be oxidized to I by oxidation of the terminal hydroxyl group to 

the carboxylic acid. Which of these reactions take place, cannot be scrutinized here, because 

some of these reactions are supposed to proceed very rapidly. 

Alternatively, TFMHxA might be shortened via β�oxidation, as was initially presumed during the 

investigation of 10�(trifluoromethoxy)decane�1�sulfonate by Peschka et al. [111] and also in 

other studies carried out with ω�substituted alkane�1�sulfonates, which were initially transformed 

to the respective carboxylates [112,113]. This would involve the two transient TPs VII and VIII 

(Figure 45) as shown in pathway C, whereas subsequent β�oxidation of VIII would contribute to 

the presence of TFMeOH. However, a β�oxidation pathway would not form TFMC, indicating 

that at least one other transformation pathway must be involved. Also, the TPs VII and VIII were 

not detected by MS, even though they are supposed to be analytes that can be detected in 

negative ESI mode in a straightforward way. 

The complete defluorination renders the 6�(trifluoromethoxy)hex�1�oxy group a promising 

building block for environmentally friendly substitutes of PFASs, as explained in chapter 1.6. If 

implemented in larger organic molecules via an ester bridge, TFMHxOH is a likely TP, either by 

enzymatic or chemical ester hydrolysis. The transformation rate is probably highly depending on 

the structure of the whole molecule, especially when it comes to enzymatic cleavage, where 

steric aspects may predominate. 

 12(2,2,3,3,4,4,42Heptafluorobutoxy)2propan222ol 3.6.3

The C3 perfluorinated building block 1�(2,2,3,3,4,4,4�heptafluorobutoxy)�propan�2�ol (HFBPrOH, 

see Figure 49) is a promising moiety for high�performance applications. The biodegradation 

potential of this moiety was assessed by assaying the actual alcohol, which may be formed by 

hydrolysis when connected to a larger molecule in form of a carboxylic acid ester. 

The test compound itself was found to be measurable as the acetate adduct [M + acetate]�, 

similar to FTOHs. In order to increase reproducibility of the quantitative analysis, 6:2�FTOH was 

used as an internal standard. MS was operated in MRM mode by monitoring the transition 

[M + acetate�]  acetate�. 

As illustrated in Figure 46, the initially spiked concentration cannot be verified by HPLC�MS 

measurement, which is probably due to pronounced adsorption of the compound. In the 
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sterilized assay, concentration is stable around 20 RM for 45 days, whereas in the active assay, 

a drop in concentration can be observed after 8 days. Primary biodegradation then proceeds 

rapidly so that almost no HFBPrOH can be detected after 14 days.  

 

Figure 46: Temporal evolution of HFBPrOH in the active and sterilized biodegradation assay. The dotted line 

indicates the theoretical initial concentration 

Different TPs were sought for by HPLC�MS/MS in MRM mode or SIM mode with subsequent 

verification by MS/MS measurements. Non�acidic potential TPs, i.e. those carrying only ether 

and hydroxyl groups, were monitored by [M + acetate]�  acetate�. The structures of these TPs 

are summarized in Table 20 in the Annex. 

Several TPs were observed, which were neither detected in the sterilized nor in the control 

assay. Unfortunately, for non�acidic compounds, no further verification of the structure could be 

made, since acetate adducts always fragment by decay to an acetate ion and the neutral 

molecule it was attached to, which disallows measurement by MS. For HFBAA however, 

verification by MS/MS experiments was carried out. 

The product ion spectrum of HFBAA is presented in Figure 47. It is suggested that HFBAA 

initially fragments by loss of HF leading to the unsaturated molecule at m/z 237, which further 

decays to the alkenolate at m/z 179 and the well�known perfluoropropyl anion at m/z 169, which 

is known from PFCA fragmentation [154]. A different pathway leads to the aldehyde derivative 

at m/z 197. 
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Figure 47: HPLC2(2)ESI2MS/MS product ion spectrum of HFBAA and proposed structures of product ions 

HFBAA fragmentation gives rise to several conclusions because of its structural similarity to 

FTEO1Cs (see 3.2). Both are based on a perfluoroalkyl chain (although of different lengths), one 

or two methylene bridges, an ether function and an acetic acid moiety. In contrast to FTEO1C, 

the perfluoroalkyl chain is separated from the ether bridge by only one methylene group, rather 

than two of them.  

Despite the structural similarity, HFBAA only loses one molecule of HF. This emphasizes the 

significance of the ethylene bridge for the manifold loss of HF, because in theory, four 

molecules of HF could be cleaved off from HFBAA. Also similarities in the CID fragmentation 

pathway are obvious: Unlike many other aliphatic acids, HFBAA as well as FTEOCs do not 

fragment by loss of carbon dioxide, which is probably related to the ether bridge located in β�

position to the carboxylic acid moiety. It can be concluded that this ether bridge destabilizes a 

potentially generated carbanion by the positive mesomeric effect of the oxygen atom, and 

hence, its formation is suppressed.  

The structure of HFBOHPrA could not be verified. In SIM mode, a compound with an m/z of 287 

was detected and its temporal evolution recorded as shown in Figure 48. However, no 

significant product ions were detected due to the rather low intensity. Thus, its structure was 

only postulated but not confirmed. 

The temporal evolution of the TPs is illustrated in Figure 48. The first signals were obtained 

after four days, except for PFBA, which was only measured above the LOD after 14 days, which 

suggests that PFBA is generated via an indirect pathway, i.e. via other transient TPs.  
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Figure 48: Temporal evolution of HFBPrOH TPs and their structural formulae 

It is suggested that PFBA is generated by a complex pathway as shown in Figure 49. Beginning 

with a hydroxylation in α�position (Figure 49, I) and subsequent oxidation of this terminal 

hydroxyl group to the aldehyde (Figure 49, II) and the lactic acid derivative 3�(2,2,3,3,4,4,4�

heptafluorobutoxy)�2�hydroxypropanoic acid (HFBOHPrA). This in turn is transformed to 

(2,2,3,3,4,4,4�heptafluoroboxy)acetic acid (HFBAA) by α�oxidation. β�oxidation then leads to 

2,2,3,3,4,4,4�heptafluorobutan�1�ol (HFBOH), which is easily converted to PFBA, probably via 

an aldehyde. As expected, PFBA seems to be the dead�end TP of HFBPrOH, since no fluoride 

could be measured by IC. 
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Figure 49: Proposed degradation scheme of HFBPrOH with PFBA being the dead2end transformation 

product. The dotted rectangle indicates detection of the TP without confirmation by MS/MS, the rectangle 

indicates detected and confirmed TPs. TPs I and II were not detected. 
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Unfortunately, the TPs I and II could not be detected, but such highly reductive and therefore 

transient TPs like aldehydes or vicinal diols are rarely detected in degradation studies, when no 

lysis of cell walls is carried out. 

Under environmental aspects, HFBPrOH exhibits both advantageous and disadvantageous 

properties. Whereas it does not lead to precarious and hazardous TPs like PFOS or PFOA, it is 

also not mineralized, which would represent the ideal case.  

Instead, the already known substance PFBA is generated via biotransformation. PFBA is not a 

novel PFAS and has been detected in environmental samples for several years [75,169�172]. 

PFBA has been proven to exhibit less environmentally adverse effects, such as less 

pronounced bioaccumulation and toxicity [173]. Ecotoxicity of PFBA has been restricted to one 

publication so far, but it also gives rise to dramatically reduced effects when compared with 

longer chained PFCAs [98]. Due to the scarcity of ecotoxicological data, PFBA was investigated 

in this respect, as presented in chapter 3.7. 

Whereas most properties and environmental effects of short�chained PFASs seem to be more 

benign as compared with the long�chained counterparts, there is at least one drawback of the 

short perfluoroalkyl chain: their mobility. It was shown that PFBA is not retained during soil 

passage, which in turn indicates that it may easily reach groundwater and eventually drinking 

water [174], where it has already been detected [71,72,75], sometimes even up to the Rg L�1 

range. 

Thus, it can be stated that this C3 perfluorinated building block represents a compromise 

between satisfactory performance and acceptable environmental and toxicological profile. 

 Conclusion 3.6.4

Three different candidates for building blocks in novel fluorinated surfactants were investigated 

with respect to their degradability. 

The two structurally related TFMPrOH and TFMHxOH showed analogous TPs, but a drastic 

difference in mineralization yield, expressed as the molar percentage release of fluoride. This is 

due to the stability of TFMPrA, the carboxylic acid associated to TFMPrOH, which is generated 

in the biotransformation assay, but not further degraded. In contrast to this, the carboxylic acid 

derivative of TFMHxOH, TFMHxA, is generated and completely transformed to other TPs. Thus, 

TFMHxOH biotransformation yielded nearly 100% of the theoretical fluoride, but TFMPrOH was 

only defluorinated to an extent of 15%. It is assumed that the remaining 85% are accumulated 

in form of TFMPrA. 

The biotransformation pathways of TFMHxOH and TFMPrOH were analyzed by combination of 

the observations for both compounds. Given the fact that TFMPrA is not further degraded, but 

nonetheless, TFMC is formed during the biotransformation experiment of TFMPrOH, an 
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insertion of oxygen into the alkyl chain must have occurred. Thus, it was hypothesized that 

TFMPrOH undergoes two different transformation pathways, one leading to non�degradable 

TFMPrA, and another one initiated by in�chain oxidation in proximity to the TFM group. The 

resulting hemiacetal is oxidized to the ester, which is then oxidized to a carbonic acid derivative 

by a Bayer�Villiger�like oxidation. This would be easily cleaved to form TFMC. 

The transformation pathways are supposed to occur coherently for TFMHxOH. However, the 

question remains, why TFMHxA is further degraded and what the mechanism behind its 

degradation is. Several transformation pathways are to be considered: β�oxidation would lead to 

C4 and C2 acids. Another transformation pathway would include consecutive oxidation of the 

alkyl chain in proximity to the TFM group, just as proposed for TFMPrOH degradation. 

Unfortunately, none of the proposed theoretical intermediates was detected by HPLC�ESI/MS, 

although at least the acidic TPs are presumed to be measurable with good response. 

The reason for the dissimilar stability of TFMHxA and TFMPrA cannot be entirely explained with 

the knowledge obtained. One possible reason is a different accessibility of the methylene group 

in vicinity to the TFM group in the two compounds. In TFMPrA, the methylene group might be 

shielded by the polar carboxylic acid function, so that it cannot be hydroxylated enzymatically, 

which in turn could be possible in TFMHxA, where the carboxylic acid group is separated by 

more methylene groups. However, these suggestions remain highly speculative unless one or 

several transient TPs are detected in other studies. 

3.7 Ecotoxicological assessment of selected PFASs 

 Selection of compounds and background 3.7.1

The environmental effects of several PFASs were studied by two standardized ecotoxicity tests. 

The investigations were part of the two EU projects ECO�itn (see www.eco�itn.eu) and 

CADASTER (see www.cadaster.eu). These projects aim to develop more reliable computational 

models to calculate environmental properties of organic compounds, including environmentally 

important compounds, such as triazoles and benzotrioazoles, polybrominated diphenylethers 

and also PFASs. In order to develop these models, several compounds were selected based on 

design of experiment and principle component analysis. One of the dead�end TPs of previous 

biodegradation measurements, namely PFBA, was included in the study. 

Previous experiments with PFBA in the laboratory had resulted in EC50 values much lower than 

expected from comparison with other PFCAs (data not shown). Thus, experiments were 

repeated to verify the validity of these results. 
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 Acute toxicity on Pseudokirchneriella subcapitata 3.7.2

The acute effects on the green algae Pseudokirchneriella subcapitata were examined with the 

help of a standardized test, which measures the effects of chemicals on the photosynthetic 

system of the plant with the help of a pulsed�amperometric fluorometer. 

It was discovered that problems associated with previous measurements were related to the 

acidity of the perfluorinated carboxylic acids. Even though problems in assessing the pKa 

values of perfluorinated acids exist [135], the pKa values are likely to be very low due to the 

electron�withdrawing effects of the perfluoroalkyl chain implying their occurrence in the 

environment mainly in the anionic form. 

The ecotoxicity test to algae is carried out in so�called 'Dutch standard water' (DSW), which has 

a buffer capacity of approximately 1.4 mM. Therefore, concentrations of any perfluorinated acid 

above 1.4 mM will cause a major drop in pH, which in turn is likely to lead to a toxic effect on the 

algae. To circumvent this problem, the stock solutions used for the assay were adjusted to a pH 

above 8, just like the test medium, with hydrochloric acid and sodium hydroxide solution. 

 

Figure 50: Logarithmic dose2effect curve for PFBA with and without pH adjustment. The dots represent the 

pH in the test vials at the respective PFBA concentrations. Red: without pH adjustment; green: with pH 

adjustment 

Figure 50 shows the logarithmic dose�effect graph for PFBA and contrasts the curves with and 

without pH adjustment. It is obvious that the pH drop at log c = 0.2 affects an increased toxicity, 
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which is not the case when pH is adjusted. Without pH adjustment, the toxicity is more than two 

orders of magnitude lower than with non�adjusted stock solution (EC50 = 1.76 mM vs. 279 mM). 

It could be shown that the previously measured values for other perfluorinated acids were 

equally biased by a pH effect. Figure 51 demonstrates that also for PFOA, pH adjustment is 

necessary. Here again, PFOA was measured with and without adjustment. A third assay was 

performed using the commercially available ammonium perfluorooctanoate (APFO). The dose�

response curves for pH�adjusted PFOA and APFO were very similar, which is also expressed 

by very similar EC50 values. 

 

Figure 51: Dose2response curves for APFO, PFOA without pH adjustment and PFOA with pH adjustment. 

Dots indicate the pH measured in the vials after the test. Please note that nominal concentrations are given 

for better comparison of the data between PFOA without pH adjustment and APFO. 

Various other perfluorinated compounds were tested in for acute toxicity on algae. The results 

are shown in Table 7. For a number of compounds, low water solubility prevented 

measurements of EC50 values, because even under saturated conditions, no effect was 

observed. 

The comparison of THPFOdiol and PFSubA clearly indicates that toxicity of a compound is not 

only related to the perfluoroalkyl chain length, but functional groups greatly affect the toxicity. In 

this case, the EC50 values will have a difference of at least two orders of magnitude, although 

both contain six difluoromethylene groups. The toxic effect of the two alcohol groups is much 

more pronounced than that of the two carboxylic acid functions. However, this may be different 
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for other species, because the PAM test is very specific since an effect will only be observed if 

the photosynthetic system is affected.  

The EC50 values reported herein suggest that under environmental conditions, no acute toxicity 

will emanate from the compounds investigated.  

PFOA, PFBA and the FTOH have been detected in numerous environmental samples, but have 

never been quantified in concentration levels close to the measured EC50 values. In general, 

concentrations in environmental samples lie in the ng L�1 range for samples with no direct 

sources such as PFAS manufacturing facilities or after application in situ (firefighting foams etc). 
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Table 7: Overview of results for acute toxicity of fluorinated compounds to Pseudokirchneriella subcapitata  

Structure Chemical name Acronym 
Concentrations 

verified 
EC50 PAM test

a
 

[mM] 
EC10 PAM test

a
 

[mM] 

 

Perfluorobutanoic acidb PFBA yes 
257 

(236 – 279) 
156 

(131 – 185) 

 

Perfluorooctanoic acidb PFOA yes 
5.96 

(5.43 – 6.53) 
3.68 

(3.27 – 4.15) 

 

Ammonium 
perfluorooctanoate 

APFO no 
6.94 

(6.07 – 7.94) 
4.31 

(3.60 – 5.16) 

 

Perfluorononanoic acidb PFNA yes 
0.732 

(0.599 – 0.894) 
0.232 

(0.169 – 0.519) 

 

Perfluorodecanoic acidb PFDA no 
> Sw 

> 0.438 mM 
 

 

1H,1H,2H,2H�
Perfluorooctanol 

6:2�FTOH no 
> Sw 

> 0.04 
 

 

1H,1H,2H,2H�
Perfluorooctanethiol 

6:2�FTSH no 
> Sw 

> 0.038 
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Structure Chemical name Acronym 
Concentrations 

verified 
EC50 PAM test

a
 

[mM] 
EC10 PAM test

a
 

[mM] 

 

N�Methyl 
perfluorohexanesulfonamide 

N�MePFHxSA no 
> Sw 

> 0.02 
 

 

N�Methyl,N�(2�
hydroxyethyl)�

perfluorohexanesulfonamide 
N�MeFHxSE no 

> Sw 

> 0.02 
 

 

N�Methyl�perfluorohexane 
sulfonamidoethyl acrylate 

N�MeFHxSEAc no 
> Sw 

> 0.02 
 

 

Perfluorooctanedioic acid 
(Perfluorosuberic acid) 

PFSubA no > 130  

 

1H,1H,8H,8H�
Perfluorooctane�1,8�diol 

THPFOdiol yes 
0.659 

(0.592 – 0.735) 
0.182 

(0.143 – 0.231) 

 

1H,1H�Perfluoroheptylamine DHPFHpAm no > 0.151  

 

a
 95% confidence interval in brackets  

b
 stock solutions neutralized with sodium hydroxide, therefore toxicity of the anion is assessed 
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 Acute toxicity to Chydorus sphaericus 3.7.3

The acute toxicity of PFBA was also measured to the cladoceran Chydorus sphaericus, which is 

a common species in Central European waters. The endpoint of this assay is the immobility of 

the test species, which most often equals mortality. However, assessment of mortality is much 

too complicated for routine tests, thus immobility is chosen as the endpoint. Previous 

measurements yielded an EC50 value of 2.51 mM. 

However, also in this assay, a medium is used which contains low buffer concentration, in this 

case 0.77 mM sodium bicarbonate. Therefore, when the PFBA concentration exceeds the 

bicarbonate concentration, a major pH reduction will occur, although this could not be proven in 

the test because of the very small volume used. 

Table 8: Results for acute toxicity of PFBA to Chydorus sphaericus 

 24 h  48 h 

 
[mM] 95% CI [mM] 

 
[mM] 95% CI [mM] 

EC50 30.6 25.4 - 35.2 
 

22.3 16.8 - 26.6 

EC10 16.6 11.0 - 20.9 
 

13.1 7.5 - 17.2 

95% CI: 95% confidence interval  

The test was carried out with a stock solution with pH adjustment. The resulting values are 

much higher than previous ones with an EC50 value of 22.3 mM after 48 h (see Table 8). This 

value is comparatively high and shows that toxic effects of PFBA are not likely to occur in the 

environment, where concentrations are usually in the pM to nM range, although its 

concentration might increase in the following years due to a shift towards rather short�chained 

PFASs. This increase is not suspected to be of several orders of magnitude, implying no acute 

toxicity of PFBA towards Chydorus sphaericus. 

 Conclusions 3.7.4

The ecotoxicological data collected on several PFASs illustrates several structure�activity 

relationships. The general correlation between the number of perfluorinated carbon atoms and 

toxicity was confirmed for the species tested. Short�chained compounds, such as PFBA, exhibit 

much higher EC50 and EC10 values as compared with their long�chained counterparts, like 

PFOA and PFNA. However, it must be pointed out that this relationship is only valid when 

comparing the same compound classes. This becomes particularly obvious when comparing 

the ecotoxicological characteristics of THPFOdiol and its oxidized derivative PFSubA, whose 

EC50 values are separated by at least a factor of 200, with the diol compound being more toxic. 

This highlights the influence of the functional group attached to the perfluoroalkyl chain, which 
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provides different modes of action by different physico�chemical interactions. For instance, 

PFSubA is capable of ionic interactions, whereas THPFOdiol can merely interact with 

biomolecules via dipole�dipole interactions. 

The algae toxicity test is very specific since effects can only be observed if the photosynthetic 

chain is hampered. This can be one explanation for the diverging ecotoxicological 

characteristics of PFASs with different functional groups. In contrast to this, toxicity assessment 

to Chydorus sphaericus is much less specific, since the immobility – which can be regarded as 

nearly equivalent to mortality – can be caused by numerous mechanisms. 

The EC50 and EC10 values measured for PFASs are much higher than environmental 

concentrations without any point sources. This is true for all measurements of ecotoxicity on 

Pseudokirchneriella subcapitata and Chydorus sphaericus, although for the latter one, only 

toxicity of PFBA was assessed. If the rule of thumb regarding perfluoroalkyl chain length holds 

for Chydorus sphaericus, relatively low EC10 and EC50 values are to be expected for PFOA and 

PFNA, since the responsiveness of Chydorus sphaericus was approximately 10�fold higher than 

for Pseudokirchneriella subcapitata. 

Toxicity measurements of PFBA and PFOA revealed that these tests should be carried out with 

care regarding the high acidity of PFCAs and PFSAs. Especially the pH value of the test media 

should be controlled in order to prevent false high toxicity assessments.  
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4 Perspectives 

Evaluation of biodegradability of PFASs has been assessed for several compound classes in 

this thesis. Although general rules for degradability cannot be established, further 

biotransformation tests for structurally similar compounds may be carried out to gain more 

knowledge on the processes involved during transformation. 

This is notably true for TFM�based alcohols, of which TFMPrOH and TFMHxOH have been 

studied herein. The minimum chain length of TFM�based alcohols allowing for complete 

defluorination would be interesting to know. As has been explained above, complete 

defluorination can only occur if the respective TFM�alkanoic acid can be cleaved by subsequent 

multiple oxidation. Furthermore, verification of the biotransformation pathway by detection of at 

least one of the transient TPs would be desirable. The Bayer�Villiger�oxidation products are of 

particular importance to corroborate this degradation pathway. The detection of these 

compounds could be carried out with the help of interdisciplinary co�operation between 

analytical chemists and microbiologists, because the latter ones could bring in their knowledge 

on cell lysis and release of transient TPs into the biotransformation medium. 

As for FTEOs, two different results concerning their degradability have been obtained herein. 

Whereas one experiment did not yield PFOA or PFHxA as a stable TP, PFOA was released in 

the second experiment in considerable amounts. It is certain that FTEOs are transformed to 

PFCAs by biodegradation, but the reasons for the different observations are not yet clear. Thus, 

different parameters, such as the inoculum, the concentration of the test compound and the 

oxygen supply, could be varied and their effects on the formation of PFCAs could be assessed. 

Also the biotransformation pathway of long�chained FTEOCs to PFCAs is not yet entirely 

evident, although the presence of 1H�PFOA suggests a transformation pathway via FTOH. The 

latter one could be captured and detected if higher concentrations of fractionated FTEO were 

applied in the assay. Finally, shorter�chained fractionated FTEOs could be examined, since it 

would be interesting to see similarities or differences in formation of FTEOCs and PFCAs. 

It is recommended that the characteristic product ions obtained during CID of fluorotelomer�

based compounds be used in precursor ion scans of environmental or consumer product 

samples. This allows for the detection of novel fluorinated contaminants whose structure can be 

elucidated via different MS techniques, especially high�resolution MS. The exact structures of 

these product ions could be found out by sophisticated mass spectrometric investigations, e.g. 

by isotopic labeling, and computational methods like density functional theory methods. 
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5 Summary 

The present thesis aimed at investigating different aspects regarding environmental occurrence, 

fate and effects of perfluorinated and polyfluorinated alkyl substances (PFASs).  

In two different studies, the aerobic biotransformation of the commercially available 

fluorotelomer ethoxylates (FTEOs) was studied. The first biodegradation study was carried out 

with a commercial FTEO mixture, which was found to be a vast mixture of compounds with 

different perfluoroalkyl chain lengths as well as a strongly varying degree of ethoxylation. With 

the help of HPLC�ESI�MS/MS methods, it was possible to show that the FTEOs were 

transformed to the respective ω�oxidized carboxylic acids (FTEOCs) by biotransformation. Long 

FTEOCs acids were degraded to shorter FTEOCs, which showed recalcitrance in this 

experiment. Perfluorocarboxylic acids (PFCAs) formation, more precisely perfluorooctanoic acid 

(PFOA) and perfluorohexanoic acid (PFHxA), was reasoned by biotransformation of residual 

unreacted fluorotelomer alcohols (FTOHs), which had been known to degrade to PFCAs before. 

In order to verify if the PFCAs generated in the previous experiment were effectively only due to 

FTOH degradation, the commercial mixture was fractionated two�dimensionally by perfluoroalkyl 

chain length as well as ethoxylate chain length with the help of column chromatography. One of 

the fractions containing mostly 8:2�FTEO15 and 8:2�FTEO16, were subjected to an individual 

biotransformation study. Surprisingly, formation of PFOA could be identified to approximately 

7%, which is coherent to PFOA formation from 8:2�FTOH as shown before by other research 

groups. Thus, FTEOs are another source of PFOA in the environment. 

In a monitoring campaign of 17 Hessian WWTP effluents and four Hessian surface waters, the 

widespread PFCAs and perfluorosulfonic acids (PFSAs) could be detected alongside one 

quantitative detection of 8:2�FTEO1C and 6:2�FTEO1C, the short�chained TPs of FTEO. PFAS 

concentrations in WWTP effluents showed an average of approximately 40 ng L�1, which is 

considered comparable with previous results. The surface waters showed relatively high PFAS 

burdens of up to 760 ng L�1, which can be attributed to sources of industrial wastewaters. 

Three building blocks for potential PFAS substitutes were investigated in view of their potential 

to form inorganic fluoride or other environmentally benign dead�end TPs. Two of these 

compounds were structurally very similar, namely 6�(trifluoromethoxy)�hexan�1�ol (TFMHxOH) 

and 3�(trifluoromethoxy)�propan�1�ol (TFMPrOH). Whereas TFMPrOH yielded only 15 mol% of 

inorganic fluoride, TFMHxOH yielded stoichiometric amount of fluoride after 35 days. Both 

TFMHxOH and TFMPrOH were found to be metabolized to their ω�oxidized carboxylic acid as 

well as to trifluoromethoxy carbonate (TFMC), which was further degraded in both experiments. 

However, the acid derived from TFMHxOH could be degraded after its formation, whereas the 

TFMPrOH derivative was recalcitrant. It is assumed that at least two biotransformation 

pathways occur for both alcohols. The first one includes initial oxidation of the alcohol to the 
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respective carboxylic acid, probably via the aldehyde intermediate. The second one is 

suggested to include oxidation of the methylene group adjacent to the trifluoromethoxy group to 

a hemiacetal and subsequently to an ester. This ester is oxidized in terms of a Bayer�Villiger�

like oxidation leading to a carbonic acid diester which is hydrolyzed under release of TFMC. 

However, the intermediates could not be detected with the analytical methods used. 

A third fluorosurfactant building block candidate investigated for biodegradation potential was 1�

(2,2,3,3,4,4,4�heptafluorobutoxy)�propan�2�ol (HFBPrOH). It could be shown that it is 

transformed consecutively via oxidation, α�oxidation and β�oxidation with perfluorobutanoic acid 

(PFBA) being the dead�end TP accounting for 4.5 mol%. PFBA is not further degradable, but its 

toxic potential is much lower than long�chained PFCAs, which was studied in what follows.  

The acute environmental effects of a set of PFASs were determined by comparative 

measurements of toxicity on the green algae Pseudokirchneriella subcapitata in the context of a 

molecular modeling study. It could be shown that short�chained compounds such as PFBA 

show much lower effective concentrations (EC50) than those with longer chains, e.g. PFOA. It 

was discovered as well that not only the perfluoroalkyl chain length is of importance, but also 

the functional groups were of high importance. Perfluorosuberic acid toxicity was lower by 

nearly a factor of 200 than that of the equally long�chained 1H,1H,2H,2H�perfluorooctane�1,8�

diol (THPFOdiol). EC50 values of all compounds were higher by several orders of magnitude 

than the concentration levels detected in the environment on a regular basis. 

The acute toxicity of PFBA, the dead�end TP of HFBPrOH, on the central European cladoceran 

Chydorus sphaericus, was assessed. The EC50 value of 22.6 mM after 48 h of exposure 

suggest no acute environmental effects of PFBA to the species examined. 

Since all measurements carried out in this thesis were performed with electrospray ionization�

mass spectrometry (ESI�MS) using collision�induced dissociation (CID), fragmentation pathways 

of a large set of compounds could be directly compared with each other allowing for 

enlightenment of characteristic fragmentation patterns. In this context, the characteristic 

fragmentation pathway of fluorotelomer�based compounds, i.e. such compounds that bear a    

F�(CF2�CF2)n�CH2�CH2�O� function), in negative polarity could be unveiled. All compounds of 

that kind that were measured in this thesis, namely FTOHs, FTEOs and FTEOCs lead to the 

same characteristic pattern of product ions at m/z 403, 383, 355 and 317 (for 8:2�fluorotelomer 

based compounds). With the help of MS³ scans as well as high�resolution orbitrap MS, the 

fragmentation pathway as well as the chemical formulae of the product ions were determined 

unequivocally.  
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6 Annex 

6.1 Materials and methods 

 Solvents, reagents, reference materials and instrumentation 6.1.1

All solvents and mobile phase modifiers used for HPLC, MS and biodegradation study 

applications were at least of HPLC grade and are summarized in Table 9. 

Table 9: List of solvents and reagents and their purities 

Solvent Manufacturer  Purity 

MeOH Merck, Darmstadt, Germany SupraSolv® 

Acetic acid Merck, Darmstadt, Germany 100% 

Acetone Merck, Darmstadt, Germany SupraSolv® 

Acetone (cleaning) Roth, Karlsruhe, Germany >99.5% 

ACN Merck, Darmstadt, Germany LiChrosolv® 

NH4OAc Fluka, Seelze, Germany >99% 

Ethyl acetate Merck, Darmstadt, Germany SupraSolv® 

i�Propanol Merck, Darmstadt, Germany p.a. 

 

Milli�Q water was prepared using a Millipore Simplicity 185 with a Slimpak 2 Cartridge (Millipore, 

Milford, USA). If not stated differently, this Milli�Q water was used for preparation of solutions 

and dilution, when ‘water’ is mentioned. 

A commercial mixture of FTEO was from DuPont (Neu�Isenburg, Germany), named ‘Zonyl 

FSH’. Its active content is 50%, the remainder being dipropyleneglycol methyl ether and H2O at 

equal shares [159]. 

TFMPrOH (98% purity), TFMHxOH (unknown purity) and HFBPrOH (87% purity, 5% methyl 

isomer impurity, HFBOH present in unknown fraction) were synthesized and supplied by Merck 

(Darmstadt, Germany).  

Fluorosurfactant reference materials were purchased from Wellington Laboratories (Guelph, 

Ontario, Canada) or from Neochema (Mainz, Germany). 6:2�FTOH, 8:2�FTOH and bromoacetic 

acid for synthesis were purchased from Sigma (Seelze, Germany). 

SPE was carried out on a Baker�10 SPE System (Baker, Phillipsburg, USA) coupled to a MPC 

101Z, 0.06 kW vacuum pump (Ilmvac, Ilmenau, Germany). 

Ion exchange chromatography was carried out on a Metrohm modular system consisting of a 

709 IC Pump, a 752 Pump Unit, a 733 Separation Center, a 732 IC Detector and a 762 IC 

Interface (all from Metrohm, Herisau, Switzerland). Ion chromatographic separations were 

carried out on a Metrosep A Supp 5 100 x 4.0 mm (Metrohm, Herisau, Switzerland) and a 
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Varian C18 3 Rm precolumn (Varian, Frankfurt, Germany). The eluent was aqueous Na2CO3 (1.6 

mM) and NaHCO3 (0.5 mM) at a flow rate of 0.8 mL/min. 

A fluoride stock solution was prepared from analytical grade sodium fluoride (Sigma, Seelze, 

Germany) at a concentration of approximately 1 mg mL�1. Standards were prepared at fluoride 

concentrations of 0.1 mg mL�1, 0.25 mg mL�1, 0.5 mg mL�1, 0.75 mg mL�1, 1 mg mL�1 and 

2.5 mg mL�1. 

 HPLC2ESI/MS analysis 6.1.2

6.1.2.1 General setup and methods 

The chromatographic setup consisted of two Series 200 Micro Pumps, a Series 200 vacuum 

degasser, and a Series 200 autosampler (Perkin Elmer, Norwalk, CT, USA).  

The chromatograph was coupled to a hybrid triple quadrupole linear ion trap tandem mass 

spectrometer 3200 Q Trap (Applied Biosystems, Foster City, CA, USA) using a Turbo Ionspray 

interface in ESI (‘‘Turbo Spray”). Nitrogen used for MS was generated by a Membrane nitrogen 

generator NGM�22�LC/MS (CMC, Eschborn, Germany) coupled to a SF 4 FF oil�free orbiting 

scroll compressor (Atlas Corpo, Stockholm, Sweden). Operation and data acquisition of the 

HPLC�MS system was carried out via Analyst Software, versions 1.4 and 1.5, respectively. 

Important parameters, which were used for all measurements on the 3200 Q Trap are 

summarized in Table 10. 

Table 10: MS parameters which were used throughout the whole thesis 

Setting Value 

IonSpray Voltage (IS) +5500 V / �4500 V 

Curtain Gas (CUR) 25 psi 

Nebulizer Gas (GS1) 55 psi 

Turbo Gas (Desolvation) (GS2) 65 psi 

CAD Gas (CAD) 
Medium 

 (equals 5 on an arbitrary scale from 1 to 12) 

Interface heater (ihe) On 

 

For target compound analysis, optimization of the MS parameters was performed via syringe 

pump injection of a solution of the analyte at an approximate concentration of 0.1�20 Rg mL�1 

depending on response factors. Optimization was either carried out automatically by the Analyst 
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software or manually by variation of the parameters DP, EP, CE and CXP. For FTOH analysis, 

optimization was carried out via syringe pump injection of the compounds into a stream of the 

eluent via a T�piece. Besides the abovementioned parameters, temperature of the desolvation 

gas (‘Turbo Gas’) was optimized. 

When CID spectra were recorded under constant infusion via a syringe pump, the settings 

governing the degree of fragmentation (CE or excitation energy) were always ramped through 

the whole range. Spectra shown in this thesis are averaged spectra of the most indicative 

settings. When such spectra were recorded by using preceding HPLC separation, the same 

gradient was used as for MRM or SIM measurement and CE or excitation energy were 

estimated by comparison with previous measurements. 

For biodegradation experiments, standards of the parent compounds were always prepared 

from 10% (or lower) of the theoretical concentration up to approximately 125�150% of the initial 

concentration. At least five calibration points were used. 

6.1.2.2 PFCA, PFSA and FTEO1C analysis 

Instrumental analysis of PFCAs, PFSAs and FTEO1Cs was optimized throughout the whole 

study. Only the final methodology is presented here. 

Besides the analytical column, which is a MZ Aqua C18 50 x 2.1 mm, 5 Rm particle size, 

equipped with a guard column with dimensions of 10 x 2.1 mm of the same material, a further 

column (Phenomenex Aqua C18, 50 x 2.0 mm, 5 Rm particle size from Phenomenex, 

Aschaffenburg, Germany) was placed between the mixing chamber of the eluent pumps and the 

sample loop in order to achieve separation of PFASs injected from those which were present as 

instrumental contaminations by tubings or PTFE parts in the degasser. Contaminant PFASs are 

trapped on this column and are eluted slightly later than PFASs injected. 

Injection volume was 50 RL, HPLC flow rate was set to 300 RL min�1 and the eluents were A: 

H2O/MeOH 95/5 (V/V) and B: H2O/MeOH (5/95) (V/V) both containing 5 mM NH4OAc. The 

chromatographic gradient is shown in Table 11. 
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Table 11: Chromatographic gradient for HPLC2MS analysis of PFCAs, PFSAs and FTEO1Cs 

Time 
[min] 

Conditions 

0 – 2 100% A 

2 � 15  0% A 

15 – 20 0% A 

20 – 25  100% A 

25 – 35 100% A 

 

The MS was run in MRM mode under negative ESI polarity. The compound�dependent 

parameters for all compounds are listed in Table 12 and ESI temperature was set to 600°C. 

Table 12: MS settings used for analysis of PFCAs, PFSAs and FTEO1Cs. Please note that only one of the 

mass2labeled internal standards of PFOA was used at any time. 

Compound 
Q1 mass 

(m/z) 
Q3 mass 

(m/z) 
DP 
[V] 

EP 
[V] 

CE 
[V] 

CXP 
[V] 

6:2�FTEO1C 421 75/255 �25 �9 �30/�44 0/�4 

8:2�FTEO2C 521 75/355 �25 �9 �40/�44 0/�4 

13C2�PFHxA 315 270/120 �10 �5 �10/�26 �4/0 

13C2�PFOA 415 370/170 �15 �4.5 �14/�24 �4/�2 

13C4�PFOA 417 372/169 �15 �6 �12/�26 �4/0 

PFBA 213 169 �13 �5 �16 �4 

PFPeA 263 219 �10 �8 �10 �6 

PFHxA 313 269/169 �15 �5 �10/�28 �4/0 

PFHeA 363 319/169 �15 �4 �12/�22 �4/�4 

PFOA 413 369/169 �15 �5.5 �12/�24 �4/�2 

PFNA 463 419/169 �15 �7.5 �14/�26 �14/�2 

PFDA 513 469/269 �10 �5 �14/�24 �16/�4 

PFBS 299 80/99 �55 �5 �48/�38 �2/0 

PFHxS 399 80/99 �45 �8.5 �70/�60 �2 

PFOS 499 80/99 �50 �10 �72/�70 �2 

PFDS 599 80/99 �75 �7 �98/�82 0 
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6.1.2.3 FTOH analysis 

HPLC was carried out on an MZ Aqua C18 50 x 2.1 mm, 5 Rm particle size, equipped with a 

guard column with dimensions of 10 x 2.1 mm of the same material. Injection volume was 

50 RL, HPLC flow rate was set to 200 RL min�1 and the eluents were A: H2O/MeOH (95/5; V/V) + 

and B: H2O/MeOH (5/95; V/V) both containing 5 mM NH4OAc. The chromatographic gradient is 

displayed in Table 13. 

Table 13: Chromatographic gradient for HPLC2MS analysis of FTOHs 

Time 
[min] 

Conditions 

0 – 2 50% A 

2 – 8  0% A 

8 – 10 0% A 

10 – 12  50% A 

12 � 25 50% A 

  
 
The MS was operated in MRM mode under negative ESI conditions. Compound�dependent 

parameters are shown in Table 14. ESI temperature was set at 150°C, which is an important 

parameter. The response factor will decrease drastically if much higher temperatures are used. 

Table 14: Compound2dependent MS parameters for FTOH analysis 

Compound 
Q1 mass 

(m/z) 
Q3 mass 

(m/z) 
DP 
[V] 

EP 
[V] 

CE 
[V] 

CXP 
[V] 

6:2�FTOH 421 59 �2 �10 �29 �1 

8:2�FTOH 521 59 �2 �10 �33 �1 

2H2,
13C2�8:2�FTOH 315 59 �2 �10 �50 �1 

 

6.1.2.4 FTEO and FTEOC analysis 

Biotransformation of whole Zonyl FSH: 

Chromatography was carried out on a HALO C18 column (Advanced Materials Technology, 

Wilmington, DE, USA), 50 × 2.1 mm, 2.7 Rm particle size (2.2 Rm solid core), 90 Å pore size. 

Mobile phases were A: H20/ACN (95/5; V/V) and B: H2O/ACN (20/80; V/V) both containing 

5 mM NH4OAc. 

A binary gradient, starting with 60 % A, held for 0.5 min, followed by a linear decrease to 0 % A 

within 5.5 min was used. The column was then rinsed at 0 % A for 3 min, brought back to 
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60 % A within 4 min and reequilibrated for 5 min. The flow rate was 300 RL min�1 and the 

injection volume was 50 RL. 

The MS was operated in multiple�reaction monitoring (MRM) mode. FTEO were measured as 

their ammonium adducts in positive ESI mode. The MRM transitions and the compound�

dependent parameters are given in Table 15. EP was set to 10 V and the CXP was 3 V for all 

transitions.  

Table 15: Compound2dependent MS parameters of 6:22FTEO and 8:22FTEO congeners used during 

biotransformation study of a technical FTEO mixture. The dotted line indicates a change in the MRM 

detection window 

Compound 
Q1 mass 

m/z 
Q3 mass 

m/z 
DP 
[V] 

CE 
[V] 

Dwell Time 
[ms] 

6:2�FTEO3 514 89 

40 55 25 

6:2�FTEO4 558 89 

6:2�FTEO5 602 89 

6:2�FTEO6 646 89 

6:2�FTEO7 690 89 

6:2�FTEO8 734 89 

6:2�FTEO9 778 89 

6:2�FTEO10 822 89 

6:2�FTEO11 866 89 

6:2�FTEO12 910 89 

6:2�FTEO13 954 89 

8:2�FTEO3 614 89 

8:2�FTEO4 658 89 

8:2�FTEO5 702 89 

8:2�FTEO6 746 89 

8:2�FTEO7 790 89 

8:2�FTEO8 834 89 

8:2�FTEO9 878 89 

8:2�FTEO10 922 89 

8:2�FTEO11 966 89 

8:2�FTEO12 1010 89 

8:2�FTEO13 1054 89 

NPEO2 326 183.3 
25 10 

50 

NPEO2 326 309.5 30 

 

FTEO TPs, namely FTEOCs, were analyzed with the same HPLC�MS setup as for FTEOs. Data 

was gathered both in positive and negative ESI in ‘Q1 Multiple Ions’ mode (similar to SIM in 

single quadrupole instruments). In positive mode, the acids were measured as their [M + NH4]
+ 

adduct, whereas in negative mode, deprotonated molecules were measured and peak area 

ratios were calculated by dividing the peak areas of the FTEOC by that for the internal standard 
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(13C2�PFHxA for 6:2�FTEOCs and 13C2�PFOA for 8:2�FTEOCs). No internal standard was used 

for positive ionization measurements. 

 

Biotransformation study of fractionated FTEO: 

The MS was operated in Q1 SIM mode under positive ESI conditions. Ions with m/z 524 �1360 

at 44 Da difference (for 8:2�FTEO ammonium adducts) and m/z 540 – 1376 at a difference of 

44 Da were monitored. Internal standard was NPEO2 at m/z 326 ([M+NH4]
+). Temperature was 

set at 600°C and DP = 40 V and EP = 10 V were set for all compounds. 

HPLC was carried out on a MZ Aqua C18 column with precolumn. Injection volume was 25 RL, 

HPLC flow rate was set to 300 RL min�1 and the eluents were A: H2O/MeOH (95/5; V/V) + and B: 

H2O/MeOH (5/95; V/V) both containing 5 mM NH4OAc. The chromatographic gradient is 

presented in Table 16. 

Table 16: Chromatographic gradient for HPLC2MS analysis of 8:22FTEO and 8:22FTEOC during 

biotransformation study of purified 8:22FTEO14216  

Time 
[min] 

Conditions 

0 – 0.5 60% A 

0.5 – 6  0% A 

6 – 9 0% A 

9 – 13  60% A 

13 – 18 60% A 

 

 

Determination of relative intensities 

Relative intensities of FTEO congeners were determined at different DP values (see 3.1) with a 

solution containing 10 Rg mL�1 of whole Zonyl FSH, implying an FTEO concentration 

of  5 Rg mL�1, which was dissolved in the mobile phase of whole Zonyl FSH biodegradation 

study (eluent A/B 10/90; V/V). Chromatography was carried out as described for investigation of 

whole Zonyl FSH degradation, but isocratic elution at 10% A was performed. The injection 

volume was 50 RL. 

The MS was operated in positive ESI polarity and in SIM mode monitoring the masses of FTEO 

ammonium adduct from x = 2�14 (even numbers only) and y = 0�20. Three different DP settings 

were used, namely 10 V, 25 V and 40 V. Gas temperature was maintained at 500°C and EP 

was set to 10 V. 
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6.1.2.5 TFMPrOH TPs 

Chromatography was carried out on a HALO C18 column (Advanced Materials Technology, 

Wilmington, DE, USA), 50 × 2.1 mm, 2.7 Rm particle size (2.2 Rm solid core), 90 Å pore size. 

Mobile phases were A: water/ACN (95/5; V/V) and B: water/ACN (20/80; V/V) both containing 

5 mM NH4OAc. HPLC flow rate was 300 RL min�1 and injection volume was set to 5 RL. The 

chromatographic gradient is presented in Table 17. 

Table 17: Chromatographic gradient for HPLC2MS analysis of TFMPrOH TPs 

Time 
[min] 

Conditions 

0 – 0.5 80% A 

0.5 – 6  5% A 

6 – 9 5% A 

9 – 13  80% A 

13 – 19 80% A 

 

The MS was operated in negative ESI polarity and MRM mode monitoring the transitions 

m/z 157  85 (CE = �30 V), 141  85 (CE = �30 V), 127  85 (CE = �30 V) / 83 (CE = �12 V) / 

63 (CE = �12 V) representing the TFM�alkanoic acids. Temperature was set to 550°C and DP, 

EP and CXP were maintained at �20 V, �10 V and �2 V, respectively. 

6.1.2.6 TFMHxOH and its TPs 

TFMHxOH 

Chromatographic conditions were the same as those for analysis of TFMPrOH TPs (see chapter 

6.1.2.5) except for the injection volume, which was set to 50 RL. Details about the 

chromatographic gradient are given in Table 18. 

Table 18: Chromatographic gradient for HPLC2MS analysis of TFMHxOH 

Time 
[min] 

Conditions 

0 – 0.5 90% A 

0.5 – 8  5% A 

5 – 8 5% A 

8 – 12  90% A 

12 – 21 90% A 
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The MS was operated in positive ESI polarity and in MRM mode. Transitions monitored were 

m/z 187  83 (CE = 11 V) and m/z 187  55 (CE = 23 V). Temperature was set to 400°C, DP, 

EP and CXP were held constant at 16 V, 9 V and 4 V, respectively. 

 

TPs 

Chromatographic conditions were the same as for the parent compound, except for the injection 

volume, which was changed to 5 RL. 

The MS was operated in negative ESI polarity and in SIM mode monitoring m/z 199, 185, 171, 

157, 143, and 129 representing the deprotonated TFM�alkanoic acids C1�C6. Temperature was 

set to 400°C, DP was �20 V and EP was �5 V. 

6.1.2.7 HFBPrOH and its TPs 

HFBPrOH and its TPs were chromatographed with a MZ Aqua C18 50 x 2.1 mm, 5 Rm particle 

size, equipped with a guard column with dimensions of 10 x 2.1 mm of the same material. 

Eluents were A: H2O/ACN (90/10; V/V) and B: H2O/ACN (10/90; V/V) both containing 5 mM 

triethylamine and 5 mM acetic acid. Two different HPLC�MS methods were used, one for non�

acidic compounds (alcohols and potential ketone and aldehyde TPs) and one for acidic TPs. 

The different gradients are presented in Table 19. Flow rate was set to 300 RL min�1 and 

injection volume for non�acidic compounds was 5 RL and for acids 10 RL. 

Table 19: Chromatographic gradient used for analysis of HFBPrOH and its potential non2acidic (left) and 

acidic (right) TPs 

 Non!acidic Acidic 

Time 
[min] 

Conditions 
Time 
[min] 

Conditions 

0 – 2 40% A 0 – 1 95% A 

2 – 4  0% A 1 – 7  0% A 

4 – 7 0% A 7 – 10 0% A 

7 – 8  40% A 10 – 12  95% A 

8 – 15 40% A 12 – 20 95% A 

 

MS analysis was carried out under negative ESI in MRM mode. For non�acidic compounds the 

transition [M + acetate]�  m/z 59 (acetate) was monitored. Temperature was set to 300°C for 

non�acidic compounds and to 550°C for acids. An overview of the compounds analyzed and the 

respective parameters are summarized in Table 20. 
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Table 20: Overview of HFBPrOH and its TPs analyzed 

Structure Name Acronym 

Molecular 

Weight  

[Da] 

MRM transition 

MS 

Parameters 

[V] 

Detected 

 

1�(2,2,3,3,4,4,4�
heptafluorobutoxy)propan�2�

ol 
HFBPrOH 258.1 

317  59 

[M + acetate]
-
  acetate 

DP: -1 

EP: -2 

CE: -25 

CXP: -1 

yes 

 

1�(2,2,3,3,4,4,4�
heptafluorobutoxy)propan�2�

one 
HFBPon 256.1 

315  59 

[M + acetate]
-
  acetate 

DP: -1 

EP: -2 

CE: -25 

CXP: -1 

no 

 

1�(2,2,3,3,4,4,4�
heptafluorobutoxy)�3�
hydroxypropan�2�one 

OH-

HFBPon 
272.1 

331  59 

[M + acetate]
-
  acetate 

DP: -5 

EP: -2 

CE: -25 

CXP: -3 

no 

 

(2,2,3,3,4,4,4�
heptafluorobutoxy)methyl 

acetate 
HFBMAc 272.1 

331  59 

[M + acetate]
-
  acetate 

DP: -5 

EP: -2 

CE: -25 

CXP: -3 

no 

 

3�(2,2,3,3,4,4,4�
heptafluorobutoxy)�2�
hydroxypropanoic acid 

HFBOHPrA 288.19 287 (SIM)  yes 
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(2,2,3,3,4,4,4�
heptafluorobutoxy)methanol 

HFBM 230.1 
289  59 

[M + acetate]
-
  acetate 

DP: -5 

EP: -2 

CE: -25 

CXP: -3 

no 

 

(2,2,3,3,4,4,4�
heptafluorobutoxy)acetic 

acid 
 

HFBAA 258.1 257 (SIM)  yes 

 

2,2,3,3,4,4,4�
heptafluorobutyl hydrogen 

carbonate 
HFBC 244.1 

243  199 

[M-H]
-
  [M-H-CO2]

-
 

DP: -30 

EP: -10 

CE: -25 

CXP: -3 

no 

 

2,2,3,3,4,4,4�
heptafluorobutan�1�ol 

HFBOH 200.1 
259  59 

[M + acetate]
-
  acetate 

DP: -1 

EP: -10 

CE: -25 

CXP: -3 

yes 

(also 

impurity 

of FS-

alcohol!) 

 

heptafluorobutanoic acid PFBA 214.0 
213  169 

[M-H]
-
  [M-H-CO2]

-
 

DP: -25 

EP: -10 

CE: -30 

CXP: -3 

yes 
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 Biotransformation setup and sample preparation 6.1.3

6.1.3.1 Biotransformation of a technical FTEO mixture 

Biodegradation experiments were carried out at approximately 25 °C in amber 1 L glass bottles 

filled with 1 L of unfiltered effluent water of the municipal waste water treatment plant 

Beuerbach (Hesse, Germany). Aerobic conditions were maintained by aerating the bottles 

regularly (1�2 h per day) with an aquarium pump. Permanent aeration was not chosen in order 

to reduce potential volatilization of TPs. In order to distinguish microbial degradation from 

adsorption to particles or the glass surface, additional experiments were carried out in waste 

water spiked with 10 g L�1 sodium azide, analogous to OECD guideline 309 [175]. The bottles 

were spiked with 9.5 mL of a solution containing 1.2 mg mL�1 Zonyl FSH in MilliQ water, 

resulting in an effective FTEO concentration of 5.7 mg L�1. Blank bottles containing WWTP 

effluent only were also prepared. Sample intervals decreased from daily in the beginning of the 

experiment to weekly after several weeks had passed.  

For FTEO analysis, 100 RL of the fresh samples were mixed with 500 RL of a 10 mM aqueous 

NH4OAc solution, 380 RL ACN and 20 RL of internal standard solution (10 ng NPEO2 RL�1 in 

ACN). The samples were vortex�shaken and filtered through a 0.2 Rm nylon membrane filter 

(Carl Roth, Karlsruhe, Germany). For TP analysis, 500 RL of the samples were mixed with 300 

RL 10 mM aqueous NH4OAc solution, 180 RL ACN and 20 RL of internal standard solution (13C2�

PFHxA and 13C2�PFOA, 100 pg RL�1 in MeOH).  

6.1.3.2 Biotransformation of purified FTEO 

The experiment was carried out with the fractionated FTEO congeners, which contain 8:2�

FTEO14 (33.1 %) and 8:2�FTEO15 (60.6 %) as well as traces of 8:2�FTEO16 (ca. 2.7%) and 8:2�

FTEO6�13 (< 1%). This fraction is called ‘F001’. The total mass concentration in the stock solution 

is 0.7 mg mL�1 MeOH as determined by weighing. It is free of FTOH (< 0.01 mass%), PFOA (< 1 

ppm), PFHxA and 6:2�FTEO congeners. 

Six 50 mL PP centrifuge tubes were filled with 20 mL WWTP effluent (WWTP Beuerbach, 

Germany, 16.08.2011), which was previously aerated. 

The active bottles contained 20 mL WWTP effluent, 14.3 RL ‘F001’ stock solution (‘F001’, 

0.7 mg mL�1 MeOH). Sterilized controls were prepared analogously to active experiments, but 

200 mg NaN3 were added, dissolved in effluent prior to addition of FTEOs. Blank controls were 

prepared as described for active experiments, but 14.3 RL MeOH instead of FTEO solution was 

added to the effluent. 

After 15 minutes of shaking, t0 samples were drawn and prepared according to dilution 

procedure. The tubes were opened and aerated for 30 s daily.  
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Furthermore, 25 mL glass bottles with screw�cap and septum were filled with 15 mL of WWTP 

effluent and 10.72 RL ‘F001’ stock solution (active and sterilized test) or MeOH (blank test) and 

150 mg NaN3 (sterilized test only). After 30 min of automatic shaking, t0 samples were drawn. 

300 RL of the freshly drawn samples were transferred into 1.5 mL Eppendorf caps previously 

filled with 228 RL MeOH, 12 RL NPEO2 solution (10 ng RL�1 MeOH) and 60 RL PFAS�IS solution 

(100 pg RL�1 MeOH). The solution was vortexed for 5 s and centrifuged for 5 min at XXX g. 

Samples of the polypropylene (PP) centrifuge tube experiment were drawn just before aerating 

them (in order to sample potential volatile TPs). 

Sampling of the glass bottles was carried out in multiple steps: 

Firstly, an 8 x 40 mm Sterican needle (Braun, Melsungen, Germany) connected to an SPE 

cartridge (Varian Nexus ABS Elut, 60 mg, 3 mL) was pierced through the septum. The bottle 

was aerated for 30 s with compressed air by introducing a 120 mm Sterican needle into the 

solution, which was connected to an emptied SPE cartridge and a plastic nozzle. Thus, potential 

volatile TPs were captured on the SPE cartridges, which were then stored in a refrigerator at 

4°C. The SPE cartridges were used several times. 

After aeration, the emptied SPE cartridge was disconnected from the needle and replaced with 

a plastic syringe. Ca. 0.3�0.35 mL of the test solution was withdrawn and temporarily filled into a 

0.65 mL PP Eppendorf cap. After that, the SPE cartridge was also removed from the bottle. 

0.3 mL of the sample were then prepared as explained above. 

Elution of the SPE cartridges was performed with 2 x 1.5 mL MeOH. After elution, the remaining 

liquid was squeezed out of the cartridge with the help of an air stream. 60 RL of 13C2,
2H2�8:2�

FTOH (1 ng RL�1 MeOH) was added to the eluate, which was vortexed for 5 s and partially 

transferred into a 500 RL PP vial. 

The sample from ‘PP2’ after 105 d was enriched by SPE to confirm the presence of 2H�PFOA. 

10 mL samples were drawn through a WAX SPE cartridge (30 mg sorbent, 60 Rm, 3 cm³) 

(Waters, Eschborn, Germany) previously conditioned with 3 mL MeOH + 0.1% NH3 and 3 mL of 

water. The cartridges were dried und nitrogen for 5 min and the compounds were eluted with 

2 x 1.5 mL MeOH + 0.1% NH3. After evaporation to dryness under a gentle stream of nitrogen at 

50°C ± 1°C, the residue was reconstituted in 0.5 mL H2O/MeOH (1/1; V/V). 

6.1.3.3 Biodegradation of TFMPrOH 

Three 1 L amber glass bottles were filled with 0.5 L effluent waste water from waste water 

treatment plant Beuerbach, Germany, taken at 18 February 2009. The inoculum was aerated for 

0.5 h with an aquarium pump. 

A stock solution was prepared by dissolving 12.6 mg TFMPrOH in 2 mL MeOH. The active 

biodegradation sample contained 794 RL of the stock solution. The sterilized assay was 
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prepared in the same way, but 5 g NaN3 were added prior to adding TFMPrOH. A control assay 

was prepared by mixing 500 mL WWTP effluent and 794 RL MeOH. 

The bottles were stirred for 30 min and a sample of 10 mL was taken into a 22 mL glass vial. 

Initial TFMPrOH concentration in the active and sterilized sample was 9.8 mg L�1 (68.1 RM). 

The bottles were closed with a glass plug and parafilm for four days and continuously shaken at 

100 rpm on an automatic shaker. After four days, the glass plug and parafilm were removed and 

from then on, the bottles were aerated daily for half an hour with an aquarium pump. 

For IC analysis, the frozen samples were put in an ultrasonic bath for 5 min and 3.5 mL of the 

sample were mixed with 3.5 mL mQ�H2O. The samples were vortexed and filtered through a 

0.2 Rm membrane filter. 

6.1.3.4 Biodegradation of TFMHxOH 

The biodegradation assay for TFMHxOH was essentially carried out in the same way as for 

TFMPrOH (see 6.1.3.3). The following changes were made: 

The stock solution was prepared by mixing 13.0 mg TFMHxOH and 2 mL MeOH. The active 

and sterilized assays contained 769 RL of the stock solution. Initial TFMHxOH concentration 

was 10 mg L�1 (53.7 RM). 

6.1.3.5 Biodegradation of HFBPrOH 

A stock solution of HFBPrOH was prepared by weighing 33.0 mg into a 25 mL volumetric flask 

and filling up with water. The biodegradation assay was carried out in amber 1 L glass bottles. 

The bottles were filled with 500 g WWTP effluent (December 2 2010). After aerating the bottles 

for 1 min, 5 g of sodium azide were added to the sterilized bottle and shaken for several 

minutes. To the active assay and the sterilized assay, 3.79 mL of the stock solution were added 

and stirred with a magnetic stirrer for 45 minutes. Then, approximately 10 mL of a sample was 

transferred into a 22 mL glass vial and frozen. 

The bottles were aerated regularly (see table) and samples of 1 mL (in 1.5 mL Eppendorf PP 

caps) or 10 mL (in 22 mL glass vials) were taken approximately once a week. 

Sample preparation was carried out by transferring 300 RL of the sample into a 1.5 mL 

Eppendorf cap and mixing with 60 RL 6:2�FTOH solution (10 ng RL�1 ACN) and 240 RL ACN. 

The samples were vortexed and centrifuged for 5 min. The supernatant was transferred into 

500 RL PP vials with a glass pipette. 
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 Trace analysis of PFASs in wastewater treatment plant effluents 6.1.4

WWTP effluents were filtered through a Whatman GF6 glass fiber filter (Whatman, Dassen, 

Germany) with the help of a water�jet vacuum pump and spiked with 50 RL of internal standard 

(13C2�PFHxA and 13C2�PFOA, 100 pg RL�1 MeOH each). pH was adjusted to 6 ± 0.1 with 10% 

aqueous acetic acid. 

Enrichment of PFASs was achieved on Oasis® WAX cartridges (30 mg sorbent, 60 Rm, 3 cm³) 

(Waters, Eschborn, Germany) previously conditioned with 2 mL n�hexane, 2 mL MeOH + 0.1% 

NH3, 2 x 2 mL MeOH and 5 x 2 mL H2O mQ. The sample was drawn through the cartridge 

under vacuum at a flow rate of approximately 15 mL min�1.  

The cartridges were under a stream of nitrogen for 10 min and subsequently eluted with 

2 x 2 mL MeOH/acetone (1/1) and 3 x 2 mL MeOH containing 0.1% NH3. The latter eluate was 

evaporated at T ≤ 40°C under a gentle stream of nitrogen. 

The residue was reconstituted in 500 RL H2O/MeOH (1/1; V/V), vortexed for 15 s and filtered 

into a 500 RL PP vial through a 0.45 Rm membrane filter made of regenerated cellulose. 

Calibration was done by extraction of spiked PFASs from ground water (Niedernhausen, 

Germany) in the same manner as explained above. The PFAS concentrations were 0, 0.5, 1, 

2.5, 5 and 10 ng 200 mL�1 for PFCA and PFSA and 0, 1, 2.5, 5, 10 and 25 ng 200 mL�1 for 

FTEO1Cs. To all calibration points, 50 RL of the internal standard solution (see above) were 

added. Validation parameters are summarized in Table 21. If concentrations exceeded the 

calibration range, samples were diluted accordingly. 

Table 21: Validation parameters for trace analysis of PFASs. Recovery is expressed as method recovery of 

spiked WWTP samples (n=3), relative standard deviation in brackets. Repeatability is expressed as 

instrumental repeatability (n=4) 

Compound 
LOD 

[ng L
21

] 
LOQ 

[ng L
21

] 
Recovery 

[%] 
Repeatability  

[%] 

6:2�FTEO1C 1.0 1.8 98.8 (2.7) 9.4 

8:2�FTEO1C 14.6 25.3 79.1 (5.9) 7.5 

PFHxA 0.6 0.9 95.7 (15.2) 3.6 

PFHeA 0.3 0.5 120.5 (6) 7.6 

PFOA 0.7 1.2 79.5 (10.5) 7.6 

PFNA 0.2 0.5 63.1 (6.6) 7.7 

PFDA 0.7 1.2 86.7 (3.7) 8.1 

PFBS 0.3 0.5 150.8 (22.1) 4.3 

PFHxS 0.2 0.5 195.2 (48.2) 6.2 

PFOS 0.5 0.9 83.3 (9.3) 7.7 

PFDS 0.2 0.5 76.5 (10) 14.7 
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 Two2dimensional fractionation of FTEO 6.1.5

6.1.5.1 Reversed2phase column chromatography 

The crude FTEO mixture was chromatographed two�dimensionally in order to allow a 

comprehensive biodegradation test of only longer chained FTEOs with respect to the ethoxylate 

chain length. Therefore, the mixture was initially separated under reversed�phase conditions 

leading to separation mainly according to the perfluorocarbon chain length. Afterwards, NP 

chromatography was used to separate the compounds according to their ethoxylate chain 

length. 

500 mg Zonyl FSH (= 250 mg FTEO) were weighed and dissolved in H2O. A glass column was 

packed with 20 g C18 material (Bakerbond Octadecyl (C18), 40 Rm particle size, J.T. Baker, 

Phillipsburg, NJ, USA) and the compounds were eluted with mixtures of H2O and MeOH. Initial 

conditions were H2O/MeOH (50/50; V/V) and the MeOH fraction were increased stepwise 

towards 90%. Fractions of approximately 4 mL (in the beginning 10 mL) were collected in 12 mL 

centrifuge tubes previously rinsed with acetone. 

The fractions were diluted 1:200 with H2O/MeOH + 5 mM NH4OAc and measured by flow�

injection analysis on the 3200 Q Trap. Basic parameters were: ‘Enhanced MS’ mode (m/z 300�

1700), 5 RL injected, eluent: H2O/ACN (20/80; V/V) + 5 mM NH4OAc  

The fractions containing compounds with one perfluorocarbon chain length only were pooled 

and evaporated on a rotary evaporator. If foaming occurred, the remainder was evaporated at 

70°C under a stream of nitrogen. 

The residue was dissolved in 2 mL of the eluting solvent for normal�phase chromatography. 

6.1.5.2 Normal2phase column chromatography 

The 8:2�FTEO fraction was chromatographed under NP conditions on 30 g flash silica gel 

(Silica Gel 60, 40�63 Rm particle size, Carl Roth, Karlsruhe, Germany) with an eluent consisting 

of ethyl acetate/acetone/water (55/35/10; V/V/V) (based on Ref. [176]). Fractions of 2 to 15 mL 

were collected in 12 mL centrifuge tubes.  

Fractions were dissolved 1:100 with H2O/MeOH (1/1; V/V) + 5 mM NH4OAc and measured 

under the same conditions as described above (except: injection volume 100 RL). 

Fractions were pooled in a 22 mL glass vial according to the degree of ethoxylation (two to five 

ethoxymers each) and evaporated at 50°C ± 1°C under nitrogen. 

In order to determine the mass, the residues were reconstituted in 1 mL acetone, vortexed for 

15 s and transferred into a 2 mL glass vial previously washed with acetone and weighed. After 

evaporation to dryness, the vials were weighed again. A blank was prepared by transferring 

1 mL into such a vial in order to check for potential problems in the weighing procedure. 
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 Synthesis of TPs 6.1.6

6.1.6.1 8:22FTEO1C 

Synthesis of crude FTEO1Cs was adopted from the work of Abello et al. [177]. 172.5 mg sodium 

hydride (NaH, suspension in mineral oil, 4 eq.) were weighed into a round�bottom flask under 

nitrogen and washed twice with 10 mL n�pentane. After suspending in 3 mL dry THF, 500 mg 

8:2�FTOH (1 eq.) dissolved in 10 mL dry tetrahydrofuran (THF) were slowly added to the 

suspension. After stirring for 0.5 h, 180 mg bromoacetic acid (1.2 eq.) dissolved in 5 mL dry 

THF were added dropwise to the stirring solution. The reaction progress was monitored by 

means of thin layer chromatography on silica gel (Polygram® SIL G/UV254 with fluorescent 

indicator, Macherey Nagel, Düren, Germany) using ethyl acetate as the eluent (Rf
 (8:2�

FTOH) = 0.59). 

The mixture was stirred overnight, filtered, washed with 2 x 10 mL 1 M HCl and dried in a 

vacuum desiccator over silica gel for one week. 

6.1.6.2 6.22FTEO1C 

438 mg sodium hydride (NaH, suspension in mineral oil, 4 eq.) were weighed into a round�

bottom flask under nitrogen and washed twice with 10 mL n�pentane. After suspending in 5 mL 

dry THF, 1 g 6:2�FTOH (1 eq.) dissolved in 5 mL dry THF were slowly added to the suspension. 

After stirring for 0.5 h, 457 mg bromoacetic acid (1.2 eq.) dissolved in 5 mL dry THF were added 

in little portions to the stirred solution. The reaction progress was monitored by means of thin 

layer chromatography on silica gel (Polygram® SIL G/UV254 with fluorescent indicator, Macherey 

Nagel, Düren, Germany) using ethyl acetate as the eluent (Rf
 (8:2�FTOH) = 0.59). 

The mixture was stirred overnight and filtered. The residue was suspended in 50 mL 1 M HCl 

and extracted with 2 x 20 mL dichloromethane. The organic phase was evaporated with a rotary 

evaporator.   

6.1.6.3 Clean2up 

The crude products were dissolved in acetone, diluted 1:100 with water and purified in small 

portions on Oasis® MAX cartridges (6 cm³, 150 mg sorbent) (Waters, Eschborn, Germany) 

previously conditioned with 5 mL n�hexane, 5 mL MeOH and 2 x 5 mL 7.5 % aq. NH3. The 

FTEO1C solution was passed through the cartridge and the filtrate recovered in a centrifuge 

tube. The cartridge was washed with 5 mL 7.5 % aq. NH3, 5 mL MeOH/7.5 % aq. NH3 (1/1; 

V/V), 5 mL MeOH and 5 mL acetone/ethyl acetate (1/1; V/V) prior to elution with 10 mL 

MeOH/formic acid (100/5; V/V).  
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5 RL of all solutions were transferred into a HPLC Vial and 995 RL H2O were added. These 

samples were measured on the by HPLC�ESIMS/MS in MRM mode for 8:2�FTEO2C and 6:2�

FTEO1C. Only the eluate contained significant amounts of FTEO1C  

The eluate was transferred into a 22 mL vial, which had been previously weighed, and 

evaporated under a nitrogen stream at T ≤ 50°C.  

Due to the laborious clean�up procedure, the crude products were not entirely processed. 

Therefore, a determination of the overall yield of the synthesis is not possible. Clean�up of the 

crude products was ceased when approximately 5 mg of the final product was present. 

6.1.6.4 Analysis 

The final products were analyzed by (HPLC�)ESI�MS, (HPLC�)ESI�MS/MS, (HPLC�)ESI�

orbitrap�MS and NMR. ESI�MS, ESI�MS/MS and ESI�orbitrap�MS data are presented in the 

results and discussion section. 

The LC�ESI�MS measurements showed approximately 1% of cross�contamination of the 

FTEO1C products, which is due to non�pure educts (FTOH). No other contaminations were 

detected with any of the abovementioned methods, thus, the purity was determined to be 100%. 

 

NMR data 

6:2�FTEO1C: 

1H NMR (400 MHz, MeOD) δ 3.99 (s, 2H), 3.75 (t, 3JHH = 5.3 Hz, 2H), 2.44 (t, J = 19.0 Hz, 2H). 

13C NMR (101 MHz, MeOD) δ 175.62 (s), 115.47 (m), 70.27 (s), 65.09 (s), 33.14 (t, J = 21.4 

Hz). 

19F NMR (188 MHz, MeOD) δ �82.96 (tt, J = 9.9, 2.2 Hz, 3F, CF3�CF2�), �114.92 (m, 2F, �CF2�

CF2�CH2�), �123.40 (m, 2F, �CF2�CF2�CF2�CH2�), �124.42 (m, 2F, CF3�CF2�CF2�CF2�), �125.15 

(m, 2F, �CF2�CF2�CF2�CF2�CH2�), �127.84 (m, 1F, CF3�CF2�CF2�). 

19F NMR (1H decoupled) (188 MHz, MeOD) δ �82.96 (tt, J = 10.1, 2.2 Hz, 3F), �114.91 (m, 2F), �

123.38 (m, 2F), �124.39 (m, 2F), �125.18 (m, 2F), �127.83 (m, 2F). 

 

8:2�FTEO1C: 

1H NMR (400 MHz, MeOD) δ 4.02 (s, 2H, �O�CH2�COOH), 3.79 (t, 3JHH = 6.1 Hz, �CH2�CH2�O� 

2H), 2.49 (t, J = 19.2 Hz, 2H, �CF2�CH2�CH2�). 

13C NMR (101 MHz, MeOD) δ 174.88 (s, �CH2�COOH), 117.50 (m, perfluoroalkyl carbon atoms), 

69.64 (s, �O�CH2�COOH), 64.34 (s, �CH2�CH2�O�), 32.44 (t, 2JCF = 21.4 Hz, �CF2�CH2�CH2�). 
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19F NMR (188 MHz, MeOD) δ �82.90 (t, J = 10.1 Hz, 3 F, CF3�CF2�), �114.88 (m, 2F, �CF2�CF2�

CH2�), �123.35 (m, 6F, CF2�CF2�CF2�CF2�CF2�CF2�CH2�), �124.22 (s, 2F, CF3�CF2�CF2�CF2�), �

125.14 (m, 2F, �CF2�CF2�CF2�CH2�), �127.77 (m, 2F, CF3�CF2�CF2�). 

19F NMR (1H decoupled) (188 MHz, MeOD) δ �82.90 (t, J = 10.0 Hz, 3F), �114.90 (m, 2F), �

123.36 (m, 6F), �124.22 (s, 2F), �125.14 (m, 2F), �127.77 (m, 2F). 

 Ecotoxicological experiments 6.1.7

6.1.7.1 Acute toxicity on Pseudokirchneriella subcapitata 

Acute toxicity to algae was carried out with the "PAM test" (pulsed amplitude modulation) 

developed by the Rijksinstituut voor Volksgezondheid en Milieu (RIVM, National institute for 

Public Health and the Environment) and the University of Amsterdam [178]. Briefly, 

photosynthetic activity of the green algae Pseudokirchneriella subcapitata is measured by a 

pulsed�amperometric fluorometer under the influence of the selected chemical at different 

concentrations. Seven geometrically distributed concentrations and one blank are prepared and 

measured in duplicate. The end�point of the test is fluorescence yield compared with a blank 

after 4.5 h.  

The test is carried out in so�called ‘Dutch Standard Water’, which consists of 100 mg L�1 

NaHCO3, 20 mg L�1 KHCO3 and 180 mg L�1 MgSO4*7H2O dissolved in milli�Q water.  

6.1.7.2 Acute toxicity on Chydorus sphaericus 

Acute toxicity to Chydorus sphaericus was assessed by the help of a test developed at RIVM 

[178]. Briefly, a minimum number of 20 juvenile (age < 24 h) animals were exposed to a series 

of at least six concentrations of the test chemical and a blank. The animals were divided into at 

least four groups and the test was carried out in 2 mL HPLC vials with a test volume of 250 RL. 

Immobilization was assessed after 24 h and 48 h under a microscope after gently shaking the 

HPLC vial. EC50 and EC10 values were calculated with the Probit software provided by the US 

Environmental Protection Agency. 

6.1.7.3 Verification of concentrations 

Concentrations of the compounds in assays with PFBA (with pH adjustment), PFOA (with pH 

adjustment), perfluorononanoic acid (PFNA) and 1H,1H,8H,8H�perfluorooctane�1,8�diol 

(THPFOdiol) were confirmed by means of HPLC�ESI�MS/MS. Samples were drawn right after 

the test and immediately diluted 1:10 (V:V) with MeOH to prevent adsorption. For further 

measurement, these samples were subsequently diluted with water/MeOH (1:1; V:V) to fit into 

the calibration curve. For measurement of PFOA, PFNA and THPFOdiol, internal standard 13C2�

PFOA was added to the samples and used for quantification.  
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6.2 List of abbreviations 

ACN Acetonitrile 

AFFF Aqueous firefighting foam 

APFO Ammonium perfluorooctanoate 

API Atmospheric pressure ionization 

CAD Collisionally�activated dissociation 

CE Collision energy 

CID Collision�induced dissociation 

CRM Charge residue model 

cps Counts per second 

CXP Collision�cell exit potential 

DOC Dissolved organic carbon 

DP Declustering potential 

EC50 Half maximal effective concentration 

EP  Entrance potential 

ESI Electrospray ionization 

FTEO Fluorotelomer ethoxylate 

FTEOC Fluorotelomer ethoxycarboxylic acid 

FTO Fluorotelomer olefin 

FTOH Fluorotelomer alcohol 

FTS Fluorotelomer sulfonate 

FWHH Full width at half height 

HFB 2,2,3,3,4,4,4�Heptafluorobotoxy� 

HPLC High�performance liquid chromatography 

IEM Ion evaporation model 

LIT Linear ion trap 

LOD Limit of detection 

LOQ Limit of quantification 

m/z Mass�to�charge ratio 

MeOH Methanol 

MS Mass spectrometry 

MS/MS Tandem mass spectrometry 

N�EtFOSE N�Ethyl�perfluorooctane sulfonamidoethanol 

N�MeFOSE N�Methyl�perfluorooctane sulfonamidoethanol 

NH4OAc Ammonium acetate 

NMR Nuclear magnetic resonance 

NOEC No observed effect concentration 

NP Normal phase 

NPEO2 Nonylphenol diethoxylate 

OECD Organisation for Economic Co�Operation and Development 
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PBT Persistent, bioaccumulative, toxic 

PFAS Perfluoroalkyl and polyfluoroalkyl substance 

PFBA Perfluorobutanoic acid 

PFBS Perfluorobutane sulfonate 

PFCA Perfluorinated carboxylic acid 

PFDA Perfluorodecanoic acid 

PFDS Perfluorodecane sulfonate 

PFHeA Perfluoroheptanoic acid 

PFHxA Perfluorohexanoic acid 

PFHxS Perfluorohexane sulfonate 

PFNA Perfluorononanoic acid 

PFOA Perfluorooctanoic acid 

PFOS Perfluorooctane sulfonate 

PFPeA Perfluoropentanoic acid 

PFSA Perfluorinated sulfonic acid 

PFSubA Perfluorosuberic acid 

POP Persistent organic pollutant 

PP Polypropylene 

ppm Parts per million 

PTFE Polytetrafluoroethylene 

PVDF Polyvinylidene difluoride 

Q (q) Quadrupole 

QqQ Triple quadrupole 

QqQLIT Hybrid triple quadrupole / linear ion trap 

RDBE Ring and double bond equivalents 

RF Radio frequency 

RP Reversed phase 

RSD Relative standard deviation 

SIM Single ion monitoring 

SPE Solid�phase extraction 

TFES 2,2,2�Trifluoroethane sulfonate 

TFM Trifluoromethoxy 

TFMC Trifluoromethyl carbonate 

TFMeOH Trifluoromethanol 

TFMHxA 6�Trifluoromethoxyhexanoic acid 

TFMHxOH 6�Trifluoromethoxyhexan�1�ol 

TFMPrA 3�Trifluoromethoxypropanoic acid 

TFMPrOH 3�Trifluoromethoxypropan�1�ol 

TFMS Trifluoromethane sulfonate 

THF Tetrahydrofuran 
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THPFOdiol 1H,1H,8H,8H�Tetrahydroperfluorooctanediol 

TP Transformation product 

WWTP Wastewater treatment plant 
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6.5 List of compounds and their acronyms 

Acronymization of classic PFASs, such as PFCAs, is based on a common acronym for the 

compound class and inserting an acronym for the respective perfluorocarbon chain length.  

The acronyms for perfluoroalkyl chain lengths are depicted in Table 22. 

Table 22: Acronyms of perfluorocarbon chains. Please notice that in PFCAs the number of carbon atoms 

includes the carboxylic acid carbon. 

Number of carbon atoms Acronym 

3 Pr 

4 B 

5 Pe 

6 Hx 

7 Hp 

8 O 

9 N 

10 D 

11 Un 

12 Do 

13 Tr 

14 Te 

 

Table 23 summarizes the acronymization for PFCAs, PFSAs and their sulfonamide derivatives. 

The X must be substituted with the correct acronym for the chain length as shown in Table 22. 
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Table 23: General structures and acronyms of classic PFASs. The ‘X’ must be replaced with the acronym 

referring to the perfluoroalkyl chain length as presented in Table 22. 

Structure 
Acronym substance 

class 
Acronym single compounds 

 

PFCA PFXA 

 

PFSA PFXS 

 

 FXSA 

 

R = Me, Et 

 N�Me/N�EtFXSA 

 

R = Me, Et 

 N�Me/N�EtFXSE 

 

Fluorotelomer compounds are a group of chemicals with both perfluorinated carbon chains and 

one or several methylene groups as well as their derivatives. These compounds are named by 

special nomenclature, which is presented in Table 24. 
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Table 24: Structures and acronyms of fluorotelomer2based compounds 

Structure 
Acronym substance 

class 
Acronym single 

compounds 

 
FTOH x:2�FTOH 

 

FTAl x:2�FTAl 

 

FTA x:y�FTA 

 

FTUA x:2�FTUA 

 

 

FTUA x:3�FTUA 

 

sFTOH x:2�sFTOH 

 

FT ketone x:2�FT ketone 

 

FTS 
x:�2�FTS 

altern.: 1H,1H,2H,2H�PFXS 

 
FTEO x:2�FTEOy 

 

FTEOC x:�2�FTEOyC 

 

FTEOAl x:�2�FTEOyAl 

 
FTO x:2�FTO 
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Substances containing the TFM group or the HFB group are summarized in Table 25. 

Table 25: Structures and acronyms of compounds related to biotransformation of TFMHxOH, TFMPrOH and 

HFBPrOH 

Structure Acronym 

 
TFMPrOH 

 
TFMHxOH 

 

TFMPrA 

 

 

TFMHxOH 

 

 

TFMC 

 

HFBPrOH 

 

HFBOHPrA 

 

HFBAA 

 
HFBOH 
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Compounds, which do not belong to substance classes presented above, are summarized in 

Table 26. 

Table 26: Structures and acronyms of miscellaneous fluorinated compounds 

Structure Acronym 

 
6:2�FTSH 

 

PFSubA 

 

N�MeFHxSEAc 

 

 

DHPFHpAm 

 
THPFOdiol 
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