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Influence of Noise on Scattering-Parameter
Measurements

Dazhen Gu, Jeffrey Jargon, Matthew Ryan and Anouk Hubrechsen

Abstract—We present a general model of noisy scattering-
parameter (S-parameter) measurements performed by a vector
network analyzer (VNA). The residual error of the S-parameter
due to the noise is examined to appear as a complex Gaussian
quotient. The statistical analysis of the residual error is given and
relevant statistical quantities are derived and discussed. Experi-
ments were conducted on a two-port VNA to validate the noise-
influenced S-parameter model. We show that the uncertainty
due to the noise is often critical in S-parameter measurements,
in particular for S-parameters of a small magnitude.

Index Terms—Network analysis, noise, probability distribution,
random variable, scattering parameter, uncertainty.

NOMENCLATURE

·∗ Complex conjugate of a complex variable.
〈·〉 Ensemble average (expectation value) of a ran-

dom variable.
⊗ Kronecker product.
·† Matrix conjugate transpose operator.
·−1 Matrix inversion operator.
·> Matrix transpose operator.
Arg(·) Argument of a complex variable.
a, b Raw forward and backward composite waves

containing both signals and noise.
a, b Raw forward and backward signal waves (noise-

less waves).
ac, bc Corrected forward and backward composite

waves.
as VNA source wave. It only contains one non-

trivial entry Pm, where index m indicates the
excitation port.

ãnm Random variable in the denominator of δS̃m′m.
Also simplified as ãn.

α Wave measured by VNA reference (forward)
receivers. Its m-th element is αm.

α̃n Noise wave due to the detector noise in VNA
reference receivers and its m-th element is α̃nm.

b̃nm′ Random variable in the numerator of δS̃m′m.
Also simplified as b̃n.

β Wave measured by VNA test-port (backward)
receivers. Its m′-th element is βm′ .
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β̃n Noise wave due to the detector noise in VNA
test-port receivers and its m-th element is β̃nm.

C(·) Joint cumulative density function (copula) of
random variables.

CN Complex normal distribution.
d̃n Noise wave associated with a multiport network

and and its m-th element is d̃nm.
diag(·) Diagonalization operator that produces a diago-

nal matrix from a column vector.
δS̃m′m Residual error of Sm′m due to noise in VNA

measurements. Also simplified as δS̃ and ex-
panded as x+ y.

Ei(·) Exponential integral function.
êi i-th Cartesian base, equivalent to a column

vector with one unit entry at the i-th position
[0, 0, · · · , 0, 1, 0, · · · , 0]>.

η Ratio of RMS noise determined by σb/σa.
f·(·) Probability density function of a random vari-

able.
F·(·) Cumulative density function of a random vari-

able.
Γsm Reflection coefficient of the VNA stimulus in-

side Port m.
Γtl Reflection coefficient of the VNA termination

inside Port l.
Γ VNA internal reflection coefficients. Its elements

are either Γsm or Γtl.
γ̃n Noise wave emanating from internal VNA

sources or terminations. Its elements are either
s̃nm or t̃nl.

h(·) Normalization coefficient of the Phi-Square test.
I Identity matrix.
Iν(·) Modified Bessel function of the first kind at the

order of ν.
J
(
·,·
·,·

)
Jacobian determinant.

 Imaginary unit.
Lν(·) Laguerre polynomial of degree ν.
max(·, ·) Maximum operator.
N Normal distribution.
O(·) On the same order of.
Pm RMS amplitude of the VNA stimulus applied to

Port m. Also simplified as P .
Φ2 Output of the Phi-Square test for checking mu-

tual independence among random variables.
Π (·) Product of the individual CDF of random vari-

ables.
<, = Real and imaginary part of a complex number.
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RD Real-coordinate space with a dimension of D.
S Noiseless raw S-parameters associated with the

external DUT cascaded by the VNA error boxes.
Its m′m-th element is Sm′m.

S
c

Corrected S-parameters of the external DUT.
S̃m′m Measured S-parameter by taking ratio between

βm′ and αm.
S, S ′ Signal to noise ratio. S = P 2/σ2

a and S ′ =
P 2/σ2

b .
s̃nm Noise wave of the VNA stimulus due to signal

impurity inside Port m.
Σ· Covariance matrix of a random vector.
σa RMS value of ãn.
σb RMS value of b̃n.
T Transfer matrix. It can be partitioned to block

matrices; T11, T12, T21, and T22.
t̃nl Noise wave of VNA termination due to passive

radiation inside Port l.
Vij Empirical probability density of a real random

variable at vij .
v Real random vector. It represents one observa-

tion of random variables of interest in practice.
vec(·) Matrix vectorization operator. All columns are

concatenated in order to form a one-column
vector.

z Modulus of the residual error δS̃.

I. INTRODUCTION

SCATTERING-parameters (S-parameter) are widely used
physical quantities that describe the signal-dissipation

(or signal-amplification) and phase-delay characteristics of a
component, particularly at radio and microwave frequencies.
They are often measured on a vector network analyzer (VNA)
and represented by complex numbers. A stimulus wave is sent
by the VNA as a probing signal to a device under test (DUT).
The signals reflected by and transmitted through the DUT
are then measured on the VNA receivers. The reflected and
transmitted signals, along with the original probing signal, are
used for computing the S-parameters of the DUT.

Prior to the measurements of the DUT, calibrations are
performed to account for the imperfections of the internal
components in the instrument and the external test fixtures.
Measurement uncertainties are mainly due to the uncertainty
of the calibration standards, such as the variance of their
physical dimensions. However, the impact of noise on the S-
parameter measurements has rarely been systematically inves-
tigated except very limited modeling by Rytting [1] and Garelli
[2]. Electronic noise is a manifestation of ubiquitous random
processes in any system. For S-parameter measurements, there
is noise present in the stimulus sources and the receivers inside
the VNA. In addition, external DUTs, regardless of being pas-
sive or active, introduce extra noise into the signal detection.
Both Rytting and Garelli modeled the effect of noise on all the
waves in two parts; a multiplicative term and an additive term
[1], [2]. Neither model accounts for the physical origins of the
noise. More recently, Marinov proposed a model that includes
noise in the generator and the receiver for one-port reflection

measurements [3]. Several experiment studies showed that
the signal-to-noise ratio (SNR) was crucial for predicting the
influence of noise on S-parameter measurements performed
by the VNA and the reflectometer [3]. In active load-pull
systems, Nopchinda et. al. modeled the noise contributions
to the VNA waves solely due to the receiver impairments [4].
Some accuracy improvements were demonstrated in measuring
reflection and transmission coefficients [4]. Nevertheless, a
comprehensive picture to account for multiple noise origins
in S-parameter measurements is not available to date.

When SNR is high, the influence of noise may be min-
imal and can be safely neglected if uncertainties of other
dominating factors are included in the analysis. However, the
influence of noise becomes pronounced when SNR is low. For
example, a scattered “cloud” of S-parameter data centered at
its noiseless mean value are commonly encountered during
measurements. Even when SNR is high, the uncertainty due
to the noise may be critical if the S-parameter magnitude of
the DUT is very small, e.g. reflection off a highly absorptive
device and transmission through a highly dissipative attenua-
tor. Customarily, we make redundant measurements in order to
average out the noise. However, some fundamental concerns
remain; can we predict the magnitude of the spread of the
S-parameters, how do we account for the uncertainty due to
the noise, what is the tolerance interval associated with such
variation? This paper aims to answer these concerns.

In this paper, we develop an analytical model and derive an
expression for the noise-induced residual error in the complex
S-parameters, as presented in Section II. Next, we analyze the
residual error from the statistical perspective in Section III.
Section IV extends the uncertainty analysis for the corrected
S-parameters. Various experiments verify the noise model and
show the importance of the noise-related uncertainty under
certain circumstances in Section V. In the end, results were
discussed and the conclusion was drawn in Sections VI and
VII.

II. MODEL OF S-PARAMETER MEASUREMENT WITH
NOISE

Similar to the noise analysis of multiport amplifiers [5], we
consider a linear multiport configuration with the port number
equal to M as shown in Fig. 1. At this point, the VNA error
terms are yet to be corrected. The error boxes for each port
are marked in red in Fig. 1 and they are lumped together
with the external DUT. As such, the M -port network consists
of both the external DUT and internal VNA error boxes.
In the following analysis, all the waves are uncorrected raw
waves. We will address the error corrections and uncertainty
propagation in Section IV.

In addition to the noiseless waves a and b (not shown in
the figure), the effective noise waves d̃n, α̃n, β̃n and γ̃n (i.e.,
s̃nm and t̃nl) are injected into various stages of the signal path.
As a consequence, all the components can now be regarded
noiseless. Here, a, b, d̃n, α̃n, β̃n and γ̃n are all M × 1
column vectors. Aside from the noise contributed by the M -
port network (d̃n), the new model consists of two primary
differences from the previous model [5]. 1) The noise due to
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Fig. 1. (A) An arbitrary M -port network measured by a VNA. The network
consists of both external DUT and internal error boxes marked in red. Port
m is the exciting or stimulus port and the other ports are in the receiving
mode. Note that the receiver noise is not included for graphical clarity. (B)
Sketch of Port m with additional components related to forward- (reference)
and backward-wave (test-port) receivers marked in blue.

either the VNA stimulus or internal terminations, designated
by γ̃n, is accounted for in the model. 2) Also included are the
noise components ascribed to the VNA receivers, denoted by
α̃n and β̃n.

We elaborate on the four noise waves as follows.
1) Noise d̃nm, emanating from Port m of the M -port net-

work, propagates towards the VNA internal terminations
or sources. It is either due to passive radiation or active
electronics intrinsic to the M -port network. All elements
of d̃n are emerging waves with respect to the M -port
network.

2) Elements α̃nm and β̃nm are associated with detection
noise of the reference and test-port VNA receivers inside
Port m. The reference receivers measure the wave as
it goes out of the VNA, while the test-port receivers
measure the wave as it comes into the VNA. All
these noise waves are only present in the corresponding

receivers. Note that none of α̃n is injected into the M -
port network.

3) Noise wave γ̃n has implicit dependence on which port
of the VNA excites a stimulus signal. For S-parameter
measurements, one of the VNA ports is in the excitation
mode at a time and the rest are in the receiving mode.
If Port m is in the excitation mode, a pure stimulus
signal Pm is generated along with the noise s̃nm due to
the signal impurity. The stimulus signal is a sinusoidal
wave with an amplitude of

√
2Pm at the frequency of

interest:
√

2Pm cos(2πft). Each of the other (M − 1)
ports is internally terminated with a load and all of them
act in the receiving mode. There are noise waves, t̃nl (l =
1 toM and l 6= m), emanating from these loads due to
the passive radiation. In the vector format, the source
signal as(m) and the associated noise γ̃n(m) can be
expressed by

as(m) = [0, 0, · · · , Pm, · · · , 0]>, (1a)

γ̃n(m) = [t̃n1, t̃n2, · · · , s̃nm, · · · , t̃nM ]>, (1b)

Noise in different noise waves is considered independent
from each other except that correlations may exist among
individual elements of d̃n. For a passive M -port network, the
correlation is deterministic and relates to its S-parameters [6].
Furthermore, each noise wave is a complex quantity. Its real
and imaginary parts represent, respectively, the inphase and
quadrature components of the noise signal at the frequency
of interest. For the narrow-band noise signal, the real and
imaginary parts can be regarded as independent and identically
distributed (i.i.d.) random variables (RVs) [7]. This fact is
implicitly used in the modeling and the statistical analysis
throughout the paper.

For an M -port network with Port m in the excitation mode,
the wave quantities are governed by

b = Sa + d̃n, (2a)

a = Γb + as(m) + γ̃n(m), (2b)

where S is the true S-parameters of the network. S should be
the measured raw S-parameters in the absence of noise. For the
sake of generality, we also include a diagonal M ×M matrix
Γ to account for the imperfect matches of the VNA source
and terminations, although the magnitude of the elements in
Γ is small in modern VNA instruments. The Γ matrix can be
expressed as

Γ = diag
(
[Γt1, Γt2, · · · , Γsm, · · · , ΓtM ]>

)
, (3)

where Γt variables are the reflection coefficients of VNA ter-
minations and Γsm is the reflection coefficient of the stimulus
in Port m. It can be shown that the outgoing wave a is

a =
(
I− ΓS

)−1
(
as + γ̃n + Γd̃n

)
=
(
I− ΓS

)−1
as + γ̃n +O

(
|Γγ̃n|, |Γd̃n|

)
≈
(
I− ΓS

)−1
as + γ̃n.

(4)

The approximation is made to the first order of the magnitude
of Γ and the root-mean-square (RMS) magnitude of the
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noise wave, since both of them are small quantities. With
substitution of a in (4) into (2a), the incoming wave b can
be expressed by

b = S
[(

I− ΓS
)−1

as + γ̃n

]
+ d̃n (5)

Extending to the waves measured by VNA receivers with
consideration of noise in the detectors as shown in Fig. 1(B),
we have

α = a + α̃n, (6a)

β = b + β̃n. (6b)

All α’s are referred to as reference receivers and all β’s are
referred to as test-port receivers. We want to point out that
the total noise measured by the receiver contains not only
the detection noise intrinsic to the receiver but also the noise
already presented in the measured waves. This is implicitly
shown in (6a) and (6b).

Under the noiseless conditions, a and α reduce to a, and
b and β reduce to b. Substitution of (4) and (5) to (6a) and
(6b) leads to

α =
(
I− ΓS

)−1
as + γ̃n + α̃n, (7a)

β = S
(
I− ΓS

)−1
as + d̃n + β̃n + Sγ̃n, (7b)

Most of the noise terms in (7a) and (7b) are fairly intuitive.
The last term in (7b) are those noise waves associated with the
VNA stimulus or internal terminations. They propagate toward
the M -port network and are eventually coupled to each test-
port receiver; i.e. β. For Port m′, the coupling coefficient of
each element in (1b) is Sm′l with l = 1 to M .

In view of (1a), (1b), (7a) and (7b), the noisy S-parameters
measured by the VNA are

S̃m′m =
βm′

αm

= Sm′m +

M∑
l=1
l 6=m

Sm′l

[(
I− ΓS

)−1
]
lm[(

I− ΓS
)−1
]
mm

+ s̃nm+α̃nm
Pm

+ δSm′m.

(8)

The detailed derivation can be found in Appendix A. The first
term is the raw S-parameter of the M -port DUT embedded
in the VNA error boxes. Aside from an SNR-related fraction,
the second term is due to the imperfect VNA internal termi-
nations. It can be taken care of by the so-called “switch-term”
correction during the VNA calibration [1], [8]. The third term
δSm′m is the noise contribution to the S-parameters. It is the
focus of this investigation. The noise-induced residual error is

δSm′m =
b̃nm′[(

I− ΓS
)−1
]
mm

Pm + ãnm

≈ b̃nm′

Pm + ãnm
,

(9)

where shorthanded notations ãnm and b̃nm′ are used. They are
given by

ãnm = s̃nm + α̃nm, (10a)

b̃nm′ = d̃nm′ + β̃nm′ − Sm′mα̃nm +

M∑
l=1
l 6=m

Sm′lt̃nl. (10b)

In addition, an approximation is made in (9) to neglect the
VNA source reflection. This is reasonable considering the
VNA generator (possibly in combination with isolators) is
typically well matched. Nevertheless, the following statistical
analysis should still be applicable if the approximation is
not made. After all, the approximated scaling factor only
insignificantly changes the stimulus strength Pm.

Evidently, the numerator of δSm′m is a linear combination
of (M + 2) independent RVs while the denominator contains
a static quantity and two linearly combined independent RVs.
By use of the identities of independence and zero means, the
following expressions of the variances can be deduced.

σ2
a = 〈ãnmã

∗
nm〉

= 〈|s̃nm|2〉+ 〈|α̃nm|2〉,
(11a)

σ2
b = 〈̃bnm′ b̃∗nm′〉
=〈|d̃nm′ |2〉+ 〈|β̃nm′ |2〉

+ |Sm′m|2〈|α̃nm|2〉+

M∑
l=1
l 6=m

|Sm′l|2〈|t̃nl|2〉.
(11b)

Although ãnm and b̃nm correlate through the term α̃nm, we
consider the correlation is approximately negligible. Therefore
ãnm and b̃nm are independent RVs, since two uncorrelated
normally distributed RVs are independent. This approximation
will be validated in Section V, where most of experimental
data showed that the reference receiver noise was much lower
than either the noise in stimulus signal or the noise in the test-
port receiver. This manipulation also simplifies the statistical
analysis in Section III.

We have now established the model of S-parameter mea-
surements subject to noisy conditions. The noise-induced
residual error manifests as a quotient containing various com-
plex RVs. Next, we can proceed to analyze how noise affects
the measurements from a statistics standpoint.

III. STATISTICS OF NOISY S-PARAMETERS

The goal is to investigate the statistical properties of the
complex quantity δS given in (9). A clear understanding of
the statistics of the residual error δS allows us to evaluate
the measurement uncertainty associated with noise and the
corresponding tolerance intervals. In addition, it provides the
theoretical basis for how the residual error caused by noise
is statistically distributed; under what conditions it can be
considered a normal distribution.

All the noise appearing in Section II corresponds to a ran-
dom stationary process. We only require wide-sense stationar-
ity, namely the mean and the auto-covariance of the random
process are invariant of time. More specifically, the mean of
the noise waves is zero and the variance of the noise waves
is constant, equivalent to the power of a band-limited noise
centered at the frequency of interest. Furthermore, any finite
samples of measured noise waves are normally distributed.
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We now suppress the port index of δS and other variables
for brevity in this section. RVs ãn and b̃n represent independent
narrow-band noise signals within the IF bandwidth set by the
VNA. Their individual components are shown in (10a) and
(10b). Both can be modeled as complex Gaussian RVs with
circular symmetry, denoted by CN .

The RV in the numerator of (9) follows CN (0, σ2
b ), where

σ2
b is equivalent to the noise power of wave b̃n within the

bandwidth. The mean of the RV on the denominator is a
non-zero number P . In general, P is a complex quantity
that represents the inphase and quadrature components of the
stimulus signal. Since the phase is a relative quantity, P can
be set to be real and positive. Therefore, P corresponds to
the RMS amplitude of the sine wave produced by the VNA
generator at the frequency of interest1. The entire denominator
can be viewed as an RV following CN (P, σ2

a). This is a well
studied subject largely due to Rice [9].

Direct computation of the probability distribution function
(PDF) of the real and imaginary parts of δS is prohibitively
complicated. We take a detour to study the PDF of its
magnitude and phase first. In what follows, we present the
statistical analysis in a relatively succinct way. The detailed
derivation was documented in [10].

A. PDF of |δS|
To facilitate the formulation, we normalize the RVs as

follows,

r1 =

∣∣∣∣P + ãn

σa/
√

2

∣∣∣∣ , (12a)

r2 =

∣∣∣∣∣ b̃n

σb/
√

2

∣∣∣∣∣ . (12b)

So that r1 follows the Rice (Nakagami-n) distribution of unit
noise power and r2 follows the Rayleigh distribution of unit
mode. Their PDFs can be expressed by

fR1(r1) = r1 exp

(
−r

2
1 + 2S

2

)
I0

(√
2Sr1

)
, (13a)

fR2
(r2) = r2 exp

(
−r

2
2

2

)
. (13b)

Both r1 and r2 are in the domain of [0, +∞). Otherwise, the
PDFs of r1 and r2 are zero. S symbolizes the SNR, namely
P 2/σ2

a.
We define the ratio of these two RVs as ẑ ≡ r2/r1. As

such, the modulus of δS, designated as z ≡ |δS|, is simply a
scaled variant of ẑ, given by ηẑ. Here the ratio of the RMSed
noise waves is η ≡ σb/σa. To determine the PDF of z, we
can start by finding the PDF of ẑ, followed by a change of the
variable. The PDF fẐ can be obtained by first computing the
the cumulative distribution function (CDF) FẐ(ẑ < ẑ0). The

1We adopt the power wave notation to match the experimental data.
Therefore, all the wave quantities implicitly contain a normalization constant
related to the system impedance. In this case, this constant is 1/

√
50.

Fig. 2. Expected values of z (red) and z2 (blue) for η = 1. Under the
medium and high SNR, 〈z〉 and 〈z2〉 linearly reduce with the SNR on the
logarithmic scale. The slopes are −0.5 and −1, respectively.

independence between these two RVs allows us to calculate
the CDF as

FẐ(ẑ < ẑ0) =

∫ +∞

0

dr1fR1
(r1)

∫ r1ẑ0

0

dr2fR2
(r2). (14)

Next, the derivative with respect to ẑ0 is applied to the CDF.
After lengthy algebraic steps, we reach

fZ(z) =
2ze−S

(
1 + S + z2/η2

)
η2 (1 + z2/η2)

3 exp

(
S

1 + z2/η2

)
. (15)

Once again, the PDF in (15) is valid for z ∈ [0,+∞). The
PDF vanishes for negative z.

B. First Moment of fZ(z)

The first moment (or the mean) is naturally the very first
parameter that warrants a close look. It can be used to compare
with the experimental data to validate the model. For example,
the mean of the radius of the noisy S-parameter can be
obtained from the measured data. It characterizes how big the
noise-induced spread in S-parameter measurements on a Smith
chart. Furthermore, other statistical properties can be inferred
from the first moment.

With its PDF available from (15), the mean of z can be
calculated directly from

〈z〉 =

∫ +∞

0

zfZ(z)dz. (16)

The integration is not straightforward. A feasible approach is
to first expand the exponential function into a power series.
Next, the summation and the integral can be switched in order,
which in turn enables closed-form solutions to each integration
term. Finally, the series of integrated expressions are summed
to arrive at the end result. The first moment turns out to be
the closed-form expression

〈z〉 = η
πI0 (S/2)

2eS/2
, (17)

where η = σb/σa.
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The asymptotic expressions of 〈z〉 are also of interest, not
only for ease of numerical calculations, but also for prediction
of its behavior at high SNR and low SNR limits. By use of
Hankel’s expansions of the modified Bessel functions [11], it
can be shown at a high SNR

lim
S→∞

〈z〉 =
η

2

√
π

S
+O

(
1√
S3

)
. (18)

By inspection of its original form in (9), δS acts like a
complex RV with its PDF approximate to CN (0, σ2

b/P
2) at

a high SNR. The mean of the modulus of such a variate is√
π/2 ·

[
σb/(
√

2P )
]
, which agrees with the result above. This

indicates that the spread of S-parameters at a high SNR scales
with the square root of the noise-to-signal ratio (NSR). For
example, the expected radius of the S-parameter spread is
roughly 0.001 at 60 dB SNR.

With Taylor’s expansion of the modified Bessel functions,
the limit at low SNR can be found as

lim
S→0
〈z〉 = η

π

2
+O(S). (19)

As the signal power becomes negligible to the noise power, δS
resembles the quotient of two complex RVs that independently
follow CN (0, σ2

b ) and CN (0, σ2
a). As a consequence, the

magnitude of the quotient converges to the ratio of two
Rayleigh RVs with scalar parameters of σa and σb respectively.
This tells us that the expected radius approaches a constant
level at about 1.57 times the ratio of the RMSed noise waves.

Direct use of (17) is infeasible for prediction, especially
at SNRs above 30 dB where the large arguments lead to
difficulties in evaluations of the modified Bessel function and
the exponential function. At low and high SNR limits, we
resort to (18) and (19) instead.

We used Monte Carlo simulation to generate a large number
of samples of complex random variables that follow the
distribution CN (0, 2) and CN (

√
2S, 2). Next the division

was taken to produce z, which in turn allowed statistical
analysis, such as first and second moment computation, to
be implemented on the sample. Figure 2 shows the simulation
results compared with the theoretical prediction. An excel-
lent agreement between the simulation and the prediction is
reached at all SNR levels.

C. Second Moment of fZ(z)

The second moment is the value of 〈|δS̃|2〉. Such a quantity
has applications in VNA measurements when power related
quantities are of interest. For example, noise effects need to
be removed in Rician K-factor measurements conducted in a
reverberation chamber in order to extract the random signal
reflection solely due to paddle rotations [12]. More on this
topic will appear in a future publication.

The integral for calculating the second moment is also
straightforward. Although the definite integral does not gener-
ally converge, an asymptotic analysis shows that the integral
approaches a calculable limit under relatively high SNR con-
ditions. The asymptote can be expressed as

lim
S→∞

〈z2〉 = η2 Ei(S)

eS
=
η2

S
+O

(
1

S2

)
, (20)

Fig. 3. PDFs of the real (or the imaginary) part of δS at different SNR levels;
-10 dB, 0 dB, 10 dB, and 20 dB. Normal distribution followingN

(
0, 2
π
〈z〉2

)
for each case is also plotted for comparison. As the SNR increases, the
distribution is approximately a normal distribution.

where Ei is the exponential integral function. This shows
that, to the first order approximation, the second moment is
identical to the NSR at a relatively high SNR. Note that this
NSR refers to the noise power in b̃n wave or σ2

b/P
2.

Numerical simulations show that the high-limit approxima-
tion works very well above 20 dB SNR, as shown in Fig. 2.
The agreement at 20 dB and beyond is better than 99.9%.
Even at 10 dB SNR, the theoretical prediction is only off by
about 2%. Note that this excellent agreement is achieved by
retaining the approximation up to the second order of 1/S for
SNR levels below 20 dB.

The existence of the second moments at moderate and large
SNR levels also allows us to calculate the variance of the RVs.
We will use this finding implicitly in the covariance matrix
calculations in Section IV.

D. PDFs of Real and Imaginary Parts

In order to obtain the PDFs of <(δS) (denoted as x) and
=(δS) (denoted as y), the PDF of the phase angle (fΘ(θ)) is
also needed. It can be shown that the phase angle is uniformly
distributed [10]. With fZ and fΘ at our disposal, the PDF of
x (or the PDF of y) can be readily acquired from the marginal
distribution of the joint PDF fXY (x, y)

fX(x) =

∫ +∞

−∞
fXY (x, y)dy

=

∫ +∞

−∞
J
(
x, y

z, θ

)
fZ(z)fΘ(θ)dy. (21)

Here a coordinate transformation is included to change z and
θ to x and y. The integration is an involved process and can
be found in [10]. The result is

fX(x) =
exp

( S
2X
)

2ηeSX 3/2

[(
1 +
S
X

)
I0

(
S

2X

)
+
S
X
I1

(
S

2X

)]
,

(22)

where X = 1 + x2/η2. Note that the RVs corresponding to
the real and the imaginary parts distribute identically.
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Fig. 4. Tolerance for intervals of
[
−
√

2
π
〈z〉,

√
2
π
〈z〉
]

(red) and[
−2
√

2
π
〈z〉, 2

√
2
π
〈z〉
]

(blue). Asymptotic tolerance levels are marked at
high and low SNR limits.

Not surprisingly, both x and y are symmetrically distributed
about zero. Furthermore, it can be shown that the PDF in (22)
approaches N (0, 0.5/S ′) in high SNR conditions. S ′ is the
SNR with respect to noise power in b̃n, or P 2/σ2

b . This trend is
also evident from plots of the PDF as a function of SNR in Fig.
3. As the SNR increases, distribution of fX(x) resembles more
closely to a normal distribution. For lower SNR levels, the
probability is more concentrated around x = 0 in comparison
to the normal distribution. It is also interesting to note that x
and y are uncorrelated but not generally independent.

E. Uncertainty and Tolerance Interval

With the PDF fX(x) available, it is ready for us to evaluate
the noise-induced measurement uncertainty and the tolerance
interval associated with the variability of the RV. Assuming
the uncertainty of x is ux, the probability in the range of
[−ux, ux] can be calculated from the CDFs of x as

FX(ux)− FX(−ux) = 2

∫ ux

0

fX(x)dx. (23)

Unfortunately, a closed-form expression for the integral is not
available. Consequently, a numerical computation is needed
to solve ux for a desired tolerance, for example 68.3% and
95.4%.

Nevertheless, a heuristic guess can be made from the
analysis in Section III-B and III-D. Since fX approaches
N
(
0, 2

π 〈z〉
2
)

in high SNR limits, 〈z〉/
√
π/2 may be used

for the estimate of ux across all SNR levels.
Figure 4 shows the tolerance associated with [−ux, ux]

and [−2ux, 2ux] as a function of SNRs. The tolerance in the
interval [−ux, ux] grows monotonically from about 68.3% to
78.2% as the SNR reduces. Therefore, the use of 〈z〉/

√
π/2

as the uncertainty is relatively conservative across all SNRs.
However, the tolerance decreases slightly from 95.5% to
92.9% for the interval [−2ux, 2ux], corresponding to the
expanded uncertainty with a coverage factor of 2.

In practice, the SNR in VNA measurements is rarely below
40 dB [13]. As a result, the estimate we come up with should
be applicable to most VNA measurements. Nevertheless, the
analysis covers low SNR conditions as long as the developed
model still holds valid.

In passing, S±
(√

1
2S′ + 

√
1

2S′

)
and S±

(√
2
S′ + 

√
2
S′

)
represent 68.3% and 95.5% tolerance intervals respectively
due to the noise in ordinary S-parameter measurements. Uncer-
tainties between the real and imaginary parts are uncorrelated.
In other words, δS remains a circularly symmetric Gaussian
RV ∼ CN (0, 1/S ′) under moderate and high SNR conditions.

IV. UNCERTAINTY PROPAGATION

We have so far formulated the noise-induced uncertainty
of the uncorrected S-parameter. This uncertainty is associated
with the raw S-parameter of the DUT cascaded with the VNA
error boxes. We now turn our attention to how to propagate
uncertainty to the corrected S-parameter S

c
pertaining solely

to the DUT. Since it is independent from other uncertainty
sources, e.g. those due to dimensional uncertainties in calibra-
tion standards, the uncertainty due to noise can be propagated
independently.

For propagating the uncertainty, we need to obtain the
covariance matrix of the uncorrected S-parameters. From its
original form of a M × M matrix, δS first needs to be
vectorized by concatenating its columns in order.

vec(δS) = [δS11, · · · , δSM1, δS12, · · · , δSMM ]>. (24)

Each element in vec(δS) contains real and imaginary parts,
equivalent to 2M2 error terms. In general, we would have
to obtain the covariance of each pair of 2M2 variables. This
leads to a total 4M4 pairs. However, a simplified notation can
be implemented for these RVs under certain circumstances.
As noted in the last section, δSm′m is a Gaussian RV with
circular symmetry for ordinary VNA measurements when the
SNR is relatively high. It can be further shown that vec(δS) is
a circularly-symmetric Gaussian random vector. Consequently,
the covariance of 4M4 scalar RV pairs has a unique structure.
Their covariance values can be entirely determined by the M4

complex elements in the covariance matrix of the complex
random vector, i.e. Σvec(δS). This unique relation can be
expressed by

Σ[<(vec>(δS)),=(vec>(δS))]> =

1

2

[
<
(
Σvec(δS)

)
−=

(
Σvec(δS)

)
=
(
Σvec(δS)

)
<
(
Σvec(δS)

) ]
.

(25)

This identity enables us to simply focus on the covariance of
the complex RVs. Under moderate and large SNR conditions,
the covariance matrix Σvec(δS) can be expressed in block
matrix format as

Σvec(δS) =



Σ
b̃11

P 2
1

Σ
b̃12

P1P2
· · · Σ

b̃1M

P1PM

Σ
b̃21

P2P1

Σ
b̃22

P 2
2

· · · Σ
b̃2M

P2PM

...
...

. . .
...

Σ
b̃M1

PMP1

Σ
b̃M2

PMP2
· · · Σ

b̃MM

P 2
M

 . (26)
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TABLE I
VNA WAVE ESTIMATION AND CORRESPONDING MODEL PARAMETERS

Processed VNA Waves Physical Components

〈|α1(1)|2〉 P 2
1 + 〈|s̃n1|2〉+ 〈|α̃n1|2〉

〈|α1(1)|〉2 P 2
1

〈|α2(1)|2〉 〈|α̃n2|2〉+ 〈|t̃n2|2〉

〈|β2(1)|2〉 〈|β̃n2|2〉+ kBT0∆f

〈|α1(2)|2〉 〈|α̃n1|2〉+ 〈|t̃n1|2〉

〈|β1(2)|2〉 〈|β̃n1|2〉+ kBT0∆f

〈|α2(2)|2〉 P 2
2 + 〈|s̃n2|2〉+ 〈|α̃n2|2〉

〈|α2(2)|〉2 P 2
2

Here Σb̃ij in each cell is a M ×M matrix given by

Σb̃ij =Σd̃ + Σβ̃ + Sêiê
>
i Σα̃êj ê

>
j S
†

+ S
(
I− êiê

>
i

)
Σγ̃

(
I− êj ê

>
j

)
S
†
.

(27)

Note that all covariance matrices on the right hand side of (27),
except Σd̃, are diagonal. In addition, the fact Σb̃ij = Σ†

b̃ji
results in the expected Hermitian matrix Σvec(δS).

We are now ready to propagate the error in the raw S-
parameter S to the error in the corrected S-parameter S

c
. δSc

is approximately a linear transformation of δS. Consequently,
vec(δSc) remains to be a circularly-symmetric Gaussian ran-
dom vector [14]. Uncertainty propagation is governed by

Σvec(δSc) = (R> ⊗Q)Σvec(δS)(R
> ⊗Q)†. (28)

Matrices Q and R are explained in Appendix B. In essence,
the matrix (R> ⊗ Q) corresponds to the Jacobian matrix
that characterizes how sensitively Sc responds to a small
perturbation in S.

V. EXPERIMENTAL VERIFICATION

Obviously the theoretical developments merely remain an
academic exercise without validation by experiments. In this
section, experimental data measured by a two-port VNA are
presented to check the veracity of the developed model.
All the measurements were conducted with precision N-type
connectors in the frequency range from 3 GHz to 6 GHz.
An open-short-load-thru (OSLT) calibration was performed
in order to resolve the VNA switch-error terms and error-
box terms. The measurements of the OSLT standards were
conducted at the highest possible SNR levels. As a result, the
noise influence was minimized in the calibration stage. All
the experiments were conducted in a laboratory with tightly

controlled environment. The lab temperature was set in the
range of 23 ◦C ± 0.5 ◦C and the lab relative humidity was
set in the range of 40 % ± 5 %. As such, the ambient condition
was maintained and the instrument drift was minimized.

A. Noise Waves in VNA
Prior to measurements of the DUTs, a large number of wave

quantities were collected while both test ports of the VNA
were terminated by matched loads. The matched loads acted
like ambient noise sources with a known noise power level,
approximately kBT0∆f in the Rayleigh-Jeans limit. Here, kB
is the Boltzmann constant, T0 is the ambient temperature at
297 K, and ∆f is the VNA IF bandwidth equal to 10 kHz. This
ambient noise power level is about -134 dBm. Additionally, the
power spectral density of all the electronic noise within 10 kHz
was expected to be devoid of strong variation. A symmetry of
the power spectral density about the frequency of interest can
be assumed, so that the independence condition can be met
between the real and the imaginary parts of the noise wave.

All eight wave quantities, αl(m) and βl(m) (l, m = 1, 2),
were recorded, although only six of them were relevant to the
study. The relevant noise waves are listed in Table I. The index
on the subscript indicates the location of the receiver and the
index in the parenthesis indicates which port is the stimulus
port.

The stimulus power level was set in steps of 10 dBm from
-10 dBm to -90 dBm on the VNA. At each power level, ten
thousand redundant measurements were iterated. Next, data
were processed to compute the statistical quantities listed in
the first column of Table I. Note that six noise waves directly
obtained from VNA were processed. They were α1(1), α2(1),
α2(2), β1(2) and β2(1). The magnitude of the sampled wave
data were either squared and then averaged or averaged and
then squared. The corresponding noise source components are
listed in the second column of Table I. In this way, all the
pertinent noise power levels can be extracted. These in turn
can be used to calculate σ2

a and σ2
b in (11a) and (11b).

Experiment results at all frequencies were very similar. An
example of processed data at 4 GHz is shown in Fig. 5. The
following findings are of particular interest for determining the
model parameters.

1) The SNR in α1(1) and α2(2) remained pretty much
unchanged from -20 dBm to -80 dBm as shown in Fig.
5(A). This was primarily due to the specific VNA power
leveling mechanism. The VNA source power could be
tuned between -5 dBm to -10 dBm. For any desired
stimulus power levels below that range, a series of 5
dB source attenuation were automatically inserted by
the VNA. For example, the source power level at -7
dBm in combination with 25 dB attenuation resulted
in a VNA excitation power of -32 dBm at the test port.
The addition of attenuation was equivalent to adding the
ambient noise while reducing both the existing signal
and noise intrinsic to the VNA stimulus. As long as the
impurity noise in the stimulus is much stronger than
the ambient noise, the addition of attenuation would
not degrade the SNR in the VNA stimulus. This was
consistent with the observation.
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TABLE II
VNA SIGNAL AND NOISE POWER LEVELS IN UNIT OF DBM

Port 1 Port 2

P 2
1 〈|s̃n1|2〉

(
∼ σ2

a1

)
〈|α̃n1|2〉 〈|β̃n1|2〉 P 2

2 〈|s̃n2|2〉
(
∼ σ2

a2

)
〈|α̃n2|2〉 〈|β̃n2|2〉

-10 -81.2 -88.2 -90.7 -10 -79.9 -88.1 -90.2
-20 -85 -88.2 -90.6 -19.9 -82.9 -88.2 -90.2
-30 -81.2 -98.2 -90.6 -29.9 -93.1 -98.2 -90.2
-40 -105.5 -108 -90.7 -39.9 -102.9 -108 -90.3
-50 -115.7 -118 -90.7 -49.9 -113.4 -118 -90.2
-60 -125.7 -128 -90.6 -59.9 -121.7 -128 -90.3
-70 -135.2 -138 -90.7 -69.9 -133 -138 -90.2
-80 -144.9 -148 -90.6 -79.9 -142.2 -148 -90.2
-90 -135.3 -148 -90.6 -89.1 -133.2 -148 -90.2

<|α1(1)|>
2/(<|α1(1)|

2>-<|α1(1)|>
2)

<|α2(2)|>
2/(<|α2(2)|

2>-<|α2(2)|>
2)
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Fig. 5. Processed VNA data measured at 4 GHz. (A) Stimulus SNR for port
1 and 2. (B) Power levels of various noise signals. The SNR in the excitation
signals remained mostly invariant of the excitation power levels.

2) Both variances, 〈|α1(2)|2〉 and 〈|α2(1)|2〉 (red and pur-
ple lines in Fig. 5(B)), decreased as the stimulus power
was reduced. For stimulus power levels lower than
-70 dBm, both of the noise power levels were lower than
-134 dBm.2 We therefore considered that the measured

2This was somewhat surprising in the sense that the combined VNA receiver
and termination noise was lower than the ambient noise. Although this didn’t
deter us from complete our experimental investigation, we planned to reach
out to the instrument maker for explanation and insight about this surprising
observation.

〈|α1(2)|2〉 and 〈|α2(1)|2〉 were solely due to the receiver
noise 〈|α̃n1|2〉 and 〈|α̃n2|2〉, respectively.

3) The noise due to the stimulus impurity for Port 1 can
be extracted by calculating 〈|α1(1)|2〉 − 〈|α1(1)|〉2 −
〈|α1(2)|2〉. As shown in Fig. 5(B), the stimulus im-
purity noise (the yellow line) was consistently higher
than the receiver noise (the red line) in Port 1.
The same conclusion could be drawn for Port 2.
We want to point out that the correlation condition
〈ã∗nmb̃nm〉/(〈|ãnm|2〉〈|̃bnm|2〉) � 1 must hold for the
independence between ãnm and b̃nm to be valid. This
condition was mostly met except two occasions at the
two highest stimulus power settings. However, as shown
in Section V-D, the noise influence was insignificant
for measurements of S-parameters of a relatively large
magnitude at these power levels.

4) Both variances 〈|β1(2)|2〉 and 〈|β2(1)|2〉 were mostly
invariant when varying the stimulus power levels. In
addition, they were much greater than -134 dBm. There-
fore, 〈|β̃n1|2〉 ≈ 〈|β1(2)|2〉 and 〈|β̃n2|2〉 ≈ 〈|β2(1)|2〉.

A summary of signal and noise power levels at different
stimulus settings is listed in Table II. These values can be
used as the model parameters to predict the behavior of noisy
S-parameters. The comparison with the experimental data will
be discussed in Section V-C.

B. Independence Check

The model we developed also relies on the independence of
the different noise waves. We used the multivariate version of
Hoeffding’s Phi-Square test on the measured VNA data [15].
In essence, the Phi-Square is an independence measure among
a number of RVs. We denote the total number of RVs by D.
For ease of notation, the RVs are populated in a D-dimensional
random vector v that is in the space of RD. The Phi-Square
of v is defined by

Φ2 = h(D)

∫
RD

[C(v)−Π (v)]
2
dv. (29)

Here, C(v) is the joint CDF and Π (v) is the product of the
individual CDFs of v. h(D) is a function of the dimension
number D and its value constrains Φ2 in the interval of [0, 1].

For mutually independent RVs, the joint distribution of D
RVs is a product of D multivariate marginals. In other words,
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Fig. 6. Phi-Square tests on 8 random variables independently generated by a
computer. The histogram of the Phi-Square values was obtained from 100000
realizations. Φ2 = 1.5×10−5 is marked with a dashed line. The comparison
indicates that various noise waves are independent.

the mutual independence among v is equivalent to C(v) =
Π (v) and therefore the Phi-Square would be zero.

For practical applications, the Phi-Square test needs to be
numerically implemented in order to estimate C(v) and Π (v)
from RV data. For example, we deal with a total of N samples
of D-dimensional random vectors: v1, · · · ,vN , so that the
empirical Phi-Square Φ̂2 can be estimated by [15], [16]

Φ̂2 = h(D)

 1

N2

N∑
j=1

N∑
k=1

D∏
i=1

[1−max(Vij , Vik)]

− 2

N

1

2D

N∑
j=1

D∏
i=1

(1− V 2
ij) +

1

3D

 .

(30)

Vij is the probability inferred from the ranks of vij in
all observations of the i-th RV, which is calculated by
(rank of vij in vi1, · · · , viN )/N .

We separated the four receiver waves into their real and
imaginary parts and recast them into a vector. The four waves
were α1(2), β1(2), α2(1) and β2(1). As such, we had ten
thousand samples of 8 × 1 random vectors v at each VNA
power level.

The empirical estimator of the Phi-Square from samples of
a finite size (N = 10000 in this case) wouldn’t be exactly zero
for mutually independent RVs. For all the noise data, the Phi-
Square values were mostly less than 1.5 × 10−5. The largest
Phi-Square value was 2.3 × 10−5 when the power level was
set to -30 dBm and the frequency was at 3 GHz.

The obtained Phi-Square values were meaningless without
comparing to that of known independent RVs. We applied
the Phi-Square test on computer generated 8× 1 independent
random vectors with the same sample size of ten thousand.
We simulated 100000 realizations and plotted the histogram
of Phi-Sqaure values in Fig. 6. The median of simulated Phi-
Squares was about 1.5 × 10−5. This fact implied that most
experimental RVs showed an independence better than the
half of the RV independently generated by the computer. As a
result, we were very confident that the noise waves measured
on the VNA were indeed mutually independent.
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Fig. 7. Comparison between experiments and models of the spread of raw
S-parameters due to noise at 4 GHz. (A) Thru. (B) 20 dB Attenuator. The
insets illustrate examples of scattered S̃21 measurements due to the noise.

C. Noisy S-Parameter At Various SNR

After we validated multiple assumptions made in the VNA
noise model, we proceeded to check how well the model would
predict the noise influence in the S-parameter measurements.
As mentioned in Section III-B, the mean spread of the scat-
tered S-parameter can be a good indicator for evaluation. We
measured two devices; a thru and a 20 dB attenuator. The
VNA power setting was varied from -10 dBm to -90 dBm
by 10 dBm per step. At each step, we measured two-port S-
parameters ten thousand times. Next, the data were processed
to obtain the mean of the noisy S-parameter spread, 〈|δS|〉.

For modeling, we can substitute the pertinent signal and
noise power levels listed in Table II into (9) and (18) to
calculate the model prediction. Alternatively, we can also take
the square root of the diagonal elements of the covariance
matrix in (26) and scale the results by a factor of

√
π/2 (see

the discussion following (18)). We ended up using the latter
approach, since the covariance matrix could be further used
for the uncertainty propagation in the following Section V-D.

An illustrative example of the comparison between the
model and the experiments is shown in Fig. 7. Overall, we
reached an excellent agreement for both devices at most of the
stimulus power levels. A few noteworthy points are addressed
here.
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1) Except for a couple of points in the thru data at the high
stimulus power levels, the mean of the radius of noisy
S-parameters grew logarithmically as the stimulus power
decreased. This is as expected by the model prediction
in (18). For these points, the variance σ2

b was primarily
due to the detector noise of the test-port receivers, (i.e.
σ2
b ∼ 〈|β̃n|2〉). All other noise components are negligibly

weak. Thus, the SNR with the respect to the noise power
in b̃n is roughly 〈|β̃n|2〉/P 2. As shown in Table II,
the noise strength measured by the test-port receiver
was mostly constant independent of the stimulus power.
Therefore, the SNR reduced linearly as the stimulus
power decreased, which in-turn led to a linear growth
of the radius 〈|δS|〉.

2) The experimental data showed that the values of 〈|δS21|〉
were always slightly larger than those of 〈|δS11|〉. The
same relation was applicable to 〈|δS12|〉 and 〈|δS22|〉.
The reason can be inferred from the model by checking
the elements in the covariance matrix Σvec(δS). The
difference of the first two diagonal elements is

〈|δS21|2〉−〈|δS11|2〉 ≈ (|S21|2−|S11|2)
〈|α̃n1|2〉
P 2

1

. (31)

For the thru and the attenuator used in the experiments,
|S21| > |S11| held at all measured frequencies. Con-
sequently, the noisy S-parameter S̃21 (or S̃12) had a
slightly larger spread than S̃11 (or S̃22).

3) In the experiments, the values of 〈|δS21|〉 for the thru
ticked up away from the linear line at the stimulus
power of -30 dBm, -20 dBm and -10 dBm. However,
this phenomenon didn’t appear for the attenuator. Again,
the model clearly predicted what exactly happened.
Referring to the second diagonal element of Σvec(δS),
it contains a term |S21|2〈|α̃n1|2〉/P 2

1 . This term became
appreciable only for the thru when 〈|α̃n1|2〉 was com-
parable to or larger than 〈|β̃n1|2〉. For the attenuator,
the transmission magnitude |S21|2 was small. Even if
the noise power 〈|α̃n1|2〉 was larger than 〈|β̃n1|2〉, its
attenuated contribution was insignificant. We were able
to very closely predict the experimental results when the
stimulus power was at -30 dBm and -20 dBm as shown
in Fig. 7(A). The prediction was slightly off at the -
10 dBm power level. We suspected that 〈|α̃n1|2〉 might
be underestimated from experiments at -10 dBm power
level. Nevertheless, the prediction by the model was
much less critical for the thru at this power level. This
claim will be evident from the uncertainty perspective
discussed in the next section.

D. Uncertainty Analysis

We have so far validated the noisy S-parameter model
developed in Section II. In this subsection, we want to
reiterate the importance of the uncertainty due to the noise
by comparing it to the conventional uncertainty estimates
without including noise. We used the Microwave Uncertainty
Framework (MUF) to obtain the conventional uncertainty due
to the non-idealities of the calibration standards [17]. The
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Fig. 8. (A) Calibrated S-parameter of the thru at 4 GHz. (B) Calibrated S-
parameter of the 20 dB attenuator at 4 GHz. Note that the SNR corresponds
to P 2

1 /σ
2
b2 or roughly P 2

1 /〈|β̃n2|2〉. The uncertainty associated with noise is
critical for attenuation measurements even at a relatively high SNR.

uncertainty due to the noise was propagated according to the
formula developed in (28). An example of the magnitude of
the transmission parameter |Sc

21| of the devices is shown in
Fig. 8. The calculation of this specific uncertainty is explained
in Appendix C.

Referring to (41) in Appendix B, we can roughly express
the error in the corrected S-parameter as follows.

δSc ≈
√
|S|2(δT )2 + |T |2(δS)2, (32)

where δT is associated with the conventional uncertainty
mainly due to the imperfections in calibration standards and
δS is the uncertainty due to the noise. Note that we didn’t
really use (32) to calculate the overall uncertainty. Rather,
this equation helped us gain insight of how the different
uncertainty components play a role in the overall uncertainty
when different kinds of devices were measured. These two
uncertainty contributions corresponded to the blue line and
the red line, respectively, in Fig. 8.

As shown in Fig. 8, while the conventional uncertainty
roughly remained at a constant level, the uncertainty due to
the noise increased as the stimulus power was reduced, or
equivalently as the VNA SNR was reduced. This is again not
surprising. The conventional uncertainty should be invariant



IEEE TRANSACTIONS ON MICROWAVE THEORY & TECHNIQUE, VOL. X, NO. X, XXXX 20XX 12

of VNA SNR levels once the calibration was completed.
However, the uncertainty due to the noise is highly dependent
on the SNR of the VNA as shown in Section III. We can
roughly estimate the uncertainty at a specific SNR by taking
the inverse of the square root of the SNR value. For example,
the uncertainty at 60 dB SNR is roughly 0.001, which corre-
sponded to the stimulus power level at -30 dBm in Fig. 8. At
this power level, the uncertainty due to the noise was fairly
appreciable for including it in the uncertainty analysis for the
thru. As shown in Fig. 8(A), the uncertainty due to the noise
became dominant when the SNR was further reduced. At the
extreme of the lowest SNR, the uncertainty due to the noise
was even comparable to the nominal value of |Sc

21|.
As shown in Fig. 8(B), the dominance of the uncertainty due

to the noise arrived at a much higher SNR level for the VNA
measurements on the attenuator. On one hand, the contribution
of the conventional uncertainty was commensurate with the
magnitude of the S-parameter as shown in (32). Because
of a much lower |S21| for the attenuator, the conventional
uncertainty for the attenuator was about one order of mag-
nitude smaller than the conventional uncertainty for the thru.
On the other hand, the contribution of the uncertainty due
to the noise, scaled by the same transmission coefficient in
(32), remained pretty much the same for both the thru and
the attenuator. As a result, the uncertainty due to the noise
was non-negligible for the attenuator even at 80 dB SNR and
became the primary component at the SNR levels of 70 dB
and less. As a matter of fact, the conventional uncertainty can
even be safely neglected at the stimulus power levels of -30
dBm or lower, corresponding to the SNR of no more than 60
dB. This fact substantiates the assertion made in Section I.
The uncertainty due to the noise is sometimes critical in VNA
measurements. This is particularly true for S-parameters of a
small magnitude, such as the reflection off an absorber and
the transmission through an attenuator.

VI. DISCUSSION AND REMARKS

All the experiments presented here were conducted on
passive DUTs. If we were to measure S-parameters of an
active device, such as an amplifier, we would have to know
its noise waves or at least its noise figure. It is expected that
measurements of amplification and the output-port reflection
of the amplifier are subject to stronger noisy conditions than
what is normally encountered in dealing with passive devices.

The high SNR condition is often associated with the use
of high stimulus power levels. Such a condition may not
be met in some specific, but not uncommon, circumstances.
For example, the measurements of wave parameters and S-
parameters above 67 GHz require a VNA instrument equipped
with extension modules. The stimulus power level is very
limited at high frequencies. Therefore, the SNR associated
with VNAs at high frequencies is usually not as high as
those at low frequencies. Even for VNA measurements at
low frequencies, the use of low stimulus power is sometimes
preferred to avoid harmonics and saturation of active devices.
Under all these circumstances, it is important to estimate
the noise-contributed uncertainty by use of the SNR of the

VNA. This estimation can help us decide whether or not the
uncertainty due to the noise warrants consideration.

The propagation of uncertainty was formulated by trans-
forming the covariance matrix, equivalent to the sensitivity
analysis in the MUF. This approach is only valid for linear
operations on variables and operations of insignificant nonlin-
earity. The circular symmetry specific to noise-related random
variables is no longer maintained under nonlinear operation.
As a consequence, the real covariance matrix of the real
and the imaginary parts of the complex variables, instead of
the complex covariance matrix, needs to be used [18], [19].
Furthermore, once the nonlinearity becomes significant, it is
critical to conduct numerical samplings to simulate the random
processes by use of the Monte Carlo method. Next, a statistical
analysis can be performed on the simulated data to extract
propagated uncertainty values.

Measurements of all wave parameters are recommended for
versatility and convenience even if S-parameters are ultimately
needed3. The switch-term correction is not required for the
calibration involving wave parameters. This is advantageous
because the switch-term correction becomes exponentially
complicated as the port number increases. Consequently, it
makes a lot of sense to assign noise-induced RV terms to
the wave quantities and track them numerically in the prac-
tical implementation. This also allows us to eliminate several
modeling approximations we have made in this investigation.
Furthermore, the noise-induced uncertainty can be included
in the calibration stage as well. Although it is minimal for
measurements on most calibration standards, the noise effect
may be significant for S-parameter measurements on specific
components such as calibration loads.

VII. CONCLUSION

For the first time, we have established a comprehensive
model to include noise effects in S-parameter measurements by
a VNA. The model includes a variety of noise sources and the
overall noise contribution to the S-parameter emerges as a ratio
between a zero-mean RV and a non-zero-mean RV. Both RVs
are the complex Gaussian type. The statistical analysis shows
that such a complex Gaussian ratio approaches the complex
normal distribution at moderate and high SNR levels. However
it deviates from the complex normal distribution at low SNR
levels.

A number of statistical quantities of the complex Gaussian
ratio have been derived for model validation and uncertainty
estimation. For ordinary measurement conditions, the uncer-
tainties of the real and imaginary parts of the S-parameter
are identical and uncorrelated. The uncertainty value can be
estimated by the root square of the NSR. For passive devices,
this NSR is approximately the ratio between the detection
noise power of the test-port receiver and the signal power of
the VNA stimulus.

We designed and implemented a series of experiments on
a two-port VNA to validate model assumptions and extract

3However, it is not practical to measure all wave parameters on an
economical VNA with the reduced number of receivers. For example, a two-
port VNA with three receivers.
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model parameters. These parameters were fed to the model
to predict the noisy S-parameter behaviors. We reached an
excellent agreement of the mean of the noisy S-parameter
spread between experiments and predictions. Furthermore, it
was shown that the impact of noise is of vital importance in
S-parameter measurements. This is in particular crucial for
S-parameters of small magnitudes.

A full inclusion of noise effects in the VNA measurements
requires a reliable numerical tool. The NIST MUF software
is a good candidate to implement noise contributions sys-
tematically for the data processing and uncertainty analysis.
The procedure outlined in Section V-A can be followed to
determine the variance values of various noise sources. These
parameters can be attached to the raw waves measured by the
VNA as the uncertainty due to the noise. Subsequently, all
the derived quantities will contain the uncertainty component
contributed by the noise. The uncertainty correlations, if any,
are preserved as well.

APPENDIX A
S-PARAMETER INCLUDING NOISE COMPONENTS

In this appendix, we show how (8) is obtained. We start by
writing out the m-th element of α and m′-th element of β as
follows.

αm =
[(

I− ΓS
)−1
]
mm

Pm + s̃nm + α̃nm, (33a)

βm′ =

M∑
l=1

Sm′l

[(
I− ΓS

)−1
]
lm
Pm + d̃nm′ + β̃nm′

+ Sm′ms̃nm +

M∑
l=1
l 6=m

Sm′lt̃nl.

(33b)

Anticipating the division by αm, we rewrite (33b) as

βm′ =Sm′m

[(
I− ΓS

)−1
]
m′m

Pm + Sm′ms̃nm

+ Sm′mα̃nm − Sm′mα̃nm

+

M∑
l=1
l 6=m

Sm′l

[(
I− ΓS

)−1
]
lm
Pm + d̃nm′

+ β̃nm′ +

M∑
l=1
l 6=m

Sm′lt̃nl

=Sm′m

{[(
I− ΓS

)−1
]
mm

Pm + s̃nm + α̃nm

}
+

M∑
l=1
l 6=m

Sm′l

[(
I− ΓS

)−1
]
lm
Pm

+ d̃nm′ + β̃nm′ − Sm′mα̃nm +

M∑
l=1
l 6=m

Sm′lt̃nl.

(34)

As such, the three terms in (8) follow evidently.

Sc
T11 T12
T21 T22

a ac

bcb
(A)

S

a

b
(B)

‾ ‾

Fig. 9. (A) A M -port DUT of the S-parameter Sc is embedded in the VNA
error box (2M -port network) marked in red. (B) An equivalent network shows
VNA raw waves and the uncorrected S-parameter S.

APPENDIX B
MULTIPORT DE-EMBEDDING

The error correction routine in VNA measurements can be
generalized as a multiport de-embedding process. The waves
associated with the M -port DUT are embedded in a 2M -port
network as shown in Fig. 9. The 2M -port network represents
the physical VNA error boxes. The VNA raw waves are
the measurands immediately accessible in the measurements.
Error corrections are equivalent to de-embedding the corrected
S-parameters (or corrected wave parameters) from raw S-
parameters (or raw wave parameters).

We use the transfer matrix to facilitate handling the cascaded
multi-ports. The raw VNA waves a and b are the waves on the
left side of the 2M -port network, while the corrected waves ac

and bc are on the right side. They are related by the transfer
matrix via [

b
a

]
=

[
T11 T12

T21 T22

] [
bc

ac

]
(35)

In addition, these wave parameters are used to define the raw
and corrected S-parameters.

b = Sa, (36a)

bc = S
c
ac, (36b)

Elimination of waves in (35), (36a) and (36b) leads to

S
c

= (T11 − ST21)−1(ST22 −T12). (37)

All the sub-matrices of the transfer matrix can be determined
from the VNA calibration. Overall, the uncertainties in S

c
are

due to the uncertainty in all T’s and the uncertainty in S.
The uncertainty in T’s mostly come from the dimensional
uncertainty of the calibration standards. The uncertainty in S
is what this paper concerns. Therefore, we only need to focus
on how the uncertainty in S affects the uncertainty in S

c
.

As shown in (37), S
c

is a nonlinear function of S. Although
the relation can be approximately linearized, we preserve all
nonlinear terms in differentiation for rigor. Applying the partial
matrix derivative on S

c
in (37) with respect to S, we get

δSc = Q(δS)R. (38)

Here, matrices Q and R are given by [20]

Q = (T11 − ST21)−1, (39a)

R = T21S
c

+ T22, (39b)
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After vectorization for calculating the covariance matrix, we
reach

vec(δSc) = (R> ⊗Q)vec(δS). (40)

From the above equation, the uncertainty propagation ex-
pressed in (28) follows immediately.

Since the typical VNA error boxes are close to transmission
lines with good port matches, the T matrix in (35) is roughly
block diagonal and the following linear relation approximately
holds.

S
c ≈ T−1

11 ST22. (41)

As a consequence, the sensitivity analysis by the covariance-
matrix transformation is adequate for the uncertainty estima-
tion.

APPENDIX C
UNCERTAINTY OF S-PARAMETER MAGNITUDE

Taking the magnitude of a complex variable is a nonlinear
operation. As a consequence, the higher-order terms in the
Taylor series may impact the propagation of the uncertainty.
Although it’s a common practice to numerically propagate
the uncertainty in the S-parameters to the uncertainty in the
magnitude of the S-parameters, we can actually calculate the
variance of the magnitude of the S-parameters analytically
from the statistical properties of the residual error. By defi-
nition, the variance of |S̃c| is〈(∣∣∣S̃c

∣∣∣− 〈∣∣∣S̃c
∣∣∣〉)2

〉
=

〈∣∣∣S̃c
∣∣∣2〉− 〈∣∣∣S̃c

∣∣∣〉2

. (42)

Here, the noisy S-parameter S̃c has two components; the
nominal value S

c
and the complex Gaussian RV δSc.

Without changing its magnitude, we apply a phase shift on
the noisy S-parameter as follows

S̃ce−·Arg(S
c
) =

∣∣∣Sc
∣∣∣+ δSce−·Arg(S

c
). (43)

As such, the problem is analogous to studying the modulus
of the sum of a non-negative number and a rotated complex
Gaussian RV. It is well-known that the statistical properties of
a complex Gaussian RV are invariant to phase rotations. There-
fore, the magnitude of the noisy S-parameter is equivalently a
Rice RV. Its variance is given by [21]

〈∣∣∣S̃c
∣∣∣2〉− 〈∣∣∣S̃c

∣∣∣〉2

=

∣∣∣Sc
∣∣∣2 +

〈
|δSc|2

〉
−
π
〈
|δSc|2

〉
4

L2
1
2

−
∣∣∣Sc
∣∣∣2〈

|δSc|2
〉
 .

(44)

Here, L 1
2
(·) is the Laguerre polynomial of the degree of

1/2. The values of
〈
|δSc|2

〉
are directly obtainable from the

covariance matrix Σvec(δSc) in (28). By taking the square root
of (44), we get the uncertainty of the corrected S-parameter
magnitude due to the noise.
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