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Abstract

Optically induced Mie resonances in dielectric nanoantennas feature low dissipative

losses and large resonant enhancement of both electric and magnetic fields. They offer

an alternative platform to plasmonic resonances to study light-matter interactions from

the weak to the strong coupling regimes. Here, we experimentally demonstrate the

strong coupling of bright excitons in monolayer WS2 with Mie surface lattice resonances

(Mie-SLRs). We resolve both electric and magnetic Mie-SLRs of a Si nanoparticle array

in angular dispersion measurements. At the zero detuning condition, the dispersion

of electric Mie-SLRs (e-SLRs) exhibits a clear anti-crossing and a Rabi-splitting of
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32 meV between the upper and lower polariton bands. The magnetic Mie-SLRs (m-

SLRs) nearly cross the energy band of excitons. These results suggest that the field

of m-SLRs is dominated by out-of-plane components that do not efficiently couple

with the in-plane excitonic dipoles of the monolayer WS2. In contrast, e-SLRs in

dielectric nanoparticle arrays with relatively high quality factors (Q ∼ 120) facilitate

the formation of collective Mie exciton-polaritons, and may allow the development of

novel polaritonic devices which can tailor the optoelectronic properties of atomically

thin two-dimensional semiconductors.
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Introduction

Mie resonances have recently triggered significant interest in the field of nanophotonics due

to their unique optical properties,1 which can lead to novel optical devices such as super-

cavities,2 optical sensors,3 light-emitting metasurfaces,4–7 and lasers.8 These resonances arise

from displacement currents in dielectric or semiconducting nanoparticles with high refractive

indices. Dielectric nanoparticles offer an alternative platform to plasmonic nanostructures

for nanophotonics due to the low material absorption and the rich diversity of their elec-

tromagnetic modes.9 For instance, the interference of electric and magnetic resonances in

dielectric nanoantennas satisfying the Kerker condition leads to the full suppression of back-

ward scattering.10–14 The combination of dielectric nanoparticles in arrays can lead to collec-

tive resonances with narrow line-widths.15 Symmetry protection for radiation losses in these

arrays can generate bound states in the continuum with infinite quality factors.16–18 The

coupling of Mie resonances with excitons is expected to tailor the performance of optoelec-

tronic materials.,19 e.g., two-dimensional (2D) semiconductors, and enable new phenomena

such as polariton lasing and condensation.20–23

Atomically thin transition metal dichalcogenides (TMDs) such as MoS2 or WS2 are typ-

ical 2D semiconductors, exhibiting unique optoelectronic and structural properties. Mono-

layer TMDs display a direct band gap compared with bulk or multilayer TMDs.24,25 The

photogenerated bright excitons in monolayer TMDs possess very large (hundreds of meV)

binding energies and are stable at room temperature.24–26 Despite being atomically thin,

monolayer TMDs show strong absorption in the visible and near infrared. Further en-

hancement and control of lightmatter interactions is still possible through the integration of

monolayers into optical architectures.

Different types of photonic or plasmonic nanostructures have been demonstrated to cou-

ple with monolayer TMDs.27–36 In the weak coupling regime, the external nanostructures

enhance the absorption efficiency,27 modify the local density of optical states through the

Purcell effect,37 and increase the directivity of the emission of TMDs.28,29 When the coher-

3



ent energy exchange between excitonic transitions in TMDs and the optical resonances in

nanostructures is faster than any damping rate in the system, the interaction between them

reaches the strong coupling regime and leads to the formation of hybrid light-matter states,

i.e., exciton-polariton states. Very recently, theoretical works have proposed that magnetic

resonances supported by single silicon nanoparticles can lead to Mie exciton-polaritons in

monolayer TMDs.38–40 These works use a core-shell structure with the monolayer TMD onto

Si spheres to maximize the coupling strength. However, in experiments it is only possible

to deposit Si nanoparticles on top of flat TMDs.39,40 The weak electromagnetic field on the

surface of the Si nanoparticle and the high radiative damping rates of Mie resonances hinder

the interaction with the monolayer TMDs.

In this letter, we successfully achieve strong coupling of bright excitons in monolayer

TMDs with collective Mie resonances in periodic arrays of nanoparticles, i.e., Mie surface

lattice resonances (Mie-SLRs). We use monolayer WS2 coupled to low-loss polycrystalline

Si nanodisk arrays embeded in an optically homogeneous medium. We resolve both elec-

tric and magnetic Mie-SLRs in the dispersion measurements with different polarizations.

The atomically thin monolayer provides a simple tool to detect the intensity of the electro-

magnetic field supported by different optical modes.3 When we deposit the monolayer WS2

on top of the array, the energy of electric Mie-SLRs (e-SLRs) redshifts 10 meV, while the

magnetic Mie-SLRs (m-SLRs) shows a smaller redshift of only 2 meV. At the zero detun-

ing condition between excitons and SLRs, the angular dispersion of e-SLRs exhibits a clear

anti-crossing with a Rabi-splitting of 32 meV between the upper and the lower polariton

bands. For the m-SLRs, the dispersion crosses the energy of excitons. The different coupling

strength and Rabi-splitting of the e-SLRs and m-SLRs indicates that the electric field of

m-SLRs is dominated by out-of-plane components that do not couple efficiently with the

in-plane excitonic dipoles in monolayer TMDs. In contrast, e-SLRs in dielectric nanoparticle

arrays with relatively high quality factors (Q ∼ 120) facilitate the formation of collective Mie

exciton-polaritons. Finally, we use numerical simulations to compare Si and Ag nanodisk
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arrays with the same symmetry and lattice constant. Si arrays with sharper resonance and

stronger near-field enhancement are more efficient for achieving strong coupling and forming

exciton-polaritons in atomically thin TMDs. Our results enrich the nanophotonic tools for

investigating the polariton physics in 2D semiconductors and pave the way for the design of

novel polaritonic devices.

Methods

Sample fabrication. The Si nanoparticle array was fabricated using electron-beam lithog-

raphy and selective dry etching. Polycrystalline Si thin films were grown on a fused silica

substrate by low-pressure chemical vapor deposition employing SiH4 gas as the source of Si.

A resist (NEB22A2, Sumitomo) was spin cast onto the Si film and patterned by electron-

beam lithography and development. The Si film was vertically etched using a Bosch process

with SF6 and C4H8 gases, and the resist residue was etched away by oxygen dry etching. A

high quality monolayer of WS2 with a size of 30 x 70 µm2 was mechanically exfoliated from

a synthetic single crystal (HQ Graphene). The monolayer region of the flake was determined

with white light microscopy and extinction measurements. The monolayer sample was ex-

foliated onto an optically transparent and flexible PDMS substrate. The monolayer on the

PDMS was aligned under a microscope and softly transferred mostly onto the Si nanoparticle

array and partially onto the flat quartz substrate for reference measurements.

Optical extinction measurements of the bare array. The optical extinction of

the bare nanoparticle array (2 x 2 mm2) covered with a 200 mm thick PDMS superstrate

was measured with a collimated white light beam and with the sample mounted on a ro-

tation stage to change the angle of incidence. The zero-order transmission spectrum was

recorded with a fiber-coupled spectrometer (USB2000+, Ocean Optics). The extinction is

defined as 1-T/T0, where T is the transmittance through the nanoparticle array and T0 is

the transmittance through the reference measured outside the array.
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Optical extinction measurements under a microscope. The extinction spectra of

the monolayer flake on the quartz substrate and the Si nanoparticle array were measured

using an optical microscope. The samples were aligned along the optical axis of the micro-

scope and illuminated with quasi-collimated white light. The light transmitted through the

samples was collected using a microscope objective lens (Nikon CFI S Plan Fluor ELWD

20x, N.A. = 0.45), and imaged with a spectrometer (Princeton Instrument SpectraPro 300i)

and an electron-multiplying charge-coupled device camera (Princeton Instruments ProEM:

512). The angular dependent extinction spectra of the nanoparticle array with/without the

monolayer were recorded by rotating the sample.

Coupled oscillators model fit. The hybrid system can be approximately described

with a model of two coupled harmonic oscillators:

ωe−SLRs − iΓe−SLRs

2
g

g ωex − iγex
2


 α

β

 = ω

 α

β

 , (1)

where ωe−SLRs and ωex are the resonant energies of the bare SLRs and excitons, respectively;

Γe−SLRs and γex represent the damping rates of e-SLRs and excitons, and g is the coherent

coupling strength. Diagonalizing the Hamitonian matrix yields the new exciton-polaritonic

eigenvalues ω±, defining the energies of the UP and LP bands and the Hopfield coefficients

α and β, the squares of which give the weight fractions of excitons and SLRs with | α |2

+ | β |2= 1. The value of the Rabi splitting, ω+ − ω− =
√

4g2 − (Γe−SLRs−γex)2

4
, is given at

the condition of zero detuning, namely, ωe−SLRs = ωex. We extract ωe−SLRs and the weight

fractions assuming ωex = 2.016 eV and fitting the peak positions of the UP and LP bands

to the model.

Simulations. We use a high-accuracy surface integral method for periodic scatterers,41,42

and modelled the nanoparticles as cylinders (Height H = 90 nm and diameter D = 126 nm

for silicon, H = 40 nm and D = 74 nm for silver) to obtain the best agreement with the

experimental extinction. The size of the unit cell is 420 ×420 nm2 in the xy-plane, with
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periodic boundary conditions applied to simulate an infinite array. The refractive index of

the surrounding medium is set to 1.43. For the dielectric function of silicon, we used the

measured values by Aspnes and Studna,43 with the imaginary part increased by 5 times to

achieve the most accurate results compared to the measurements, as the etching process is

likely to introduce imperfections on the particles that lead to an increased absorption. The

permittivity of silver was taken from Palik,44 and a conformal 5 nm thick alumina spacer

layer (material parameters from Boidin45) was placed on top of the silver particle array to

simulate experimental conditions.

Results & Discussion

Mechanism and Sample Design. Figures 1a and b illustrate the mechanism of in-plane

strong light-matter coupling that leads to the formation of collective Mie exciton-polaritons.

The resonant in-plane electric field associated with the nanoparticle array couples to the con-

fined excitons in the 2D semiconductor on top of the array (Figure 1a). This coupling leads

to hybridization and the formation of the lower (LP) and upper (UP) exciton-polaritons sep-

arated by the Rabi energy ΩR (Figure 1b). To observe Mie exciton-polaritons, we fabricated

a polycrystalline-Si nanoparticle array with a size of 2 × 2 mm2 on a fused quartz substrate

by electron-beam lithography and selective dry etching (see Methods for details). A scanning

electron microscope image of the nanoparticle array is shown in Figure 1d. We softly trans-

ferred an exfoliated WS2 flake on top of the array and left the flexible polydimethylsiloxane

(PDMS) as a superstrate (Figure 1c).46 Accordingly, the Si nanoparticle array and the flake

were sandwiched in a nearly homogeneous dielectric environment to enhance the coherent

in-plane scattering of light from the nanoparticles.47–49 The array has a square symmetry

with a lattice constant P = 420 nm. The individual nanoparticles are nanodisks with a

height of 90 nm and a diameter of 130 ± 4 nm. A bright-field microscope image of the

nanoparticle array with the WS2 flake partially on top is shown in Figure S1.
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Mie-SLRs of the Bare Array. We first characterize the optical resonances of the bare

Si nanoparticle array without the flake on top but with a PDMS superstrate. We illuminated

the particle array sample with a collimated white light beam and measured its angular ex-

tinction dispersion (see Methods). The incident wave vector lies in the yz plane and projects

its parallel component k‖ onto the surface of the array (xy plane). We set the polarization

of the incident beam along the x (y)-axis as TE (TM) polarization. The dispersion curves of

both TE and TM polarized modes (Figures 2a and b) exhibit a sharp resonance (∼2.0 eV)

and a broad one (∼2.4 eV), which are evident at the normal incidence condition (Figure

2c). The broad extinction peak is associated with the localized Mie-resonances in individual

nanoparticles and shows almost no dispersion. The wave vector dependence of the sharp res-

onance follows the condition of in-plane diffraction orders, i.e., Rayleigh anomalies (RAs).

Interestingly, TE/TM polarization modes show both linear and parabolic dispersion curves,

which are associated with the (1, 0), (-1, 0), and (0, ±1) order RAs. The results are different

from previous studies of plasmonic nanoparticle arrays, in which linear and parabolic dis-

persion are selected by the different polarization due to the existence of only electric dipole

resonances.50–52 In addition, the sharp peak with a high quality factor (Q-factor) of 120

approximately, estimated by fitting it with a Lorentzian, displays a pronounced extinction

as large as 0.92 at the energy of 2.0 eV. This peak corresponds to the so-called Mie-SLRs,

emerging from the coherent radiative coupling between the Mie scatters enhanced by the

in-plane diffracted orders, i.e., the RAs.53

We analyse more in detail the extinction spectra around the peak of the Mie-SLR (Figures

2d-f). A weak extinction shoulder at the energy around 2.05 eV can be appreciated at normal

incidence (Figures 2c and f). When increasing the in-plane wave vector, this weak extinction

peak follows a parabolic (linear) dispersion for TE (TM) polarization. The opposite relation

between the polarization and the dispersion of the main Mie-SLR peak and the weaker peak

is due to the excitation of both electric and magnetic dipolar resonances in arrays of dielectric

nanoparticles. The polarized incident beam generates an electric dipole in the nanoparticles
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oriented along the polarization direction, and the displacement current density generates

an orthogonal magnetic dipole. The radiative coupling of electric or magnetic dipoles on

the nanoparticles is enhanced by the orthogonal diffraction orders to form e- and m-SLRs,

respectively.12,13,15,53

Rabi Splitting of the Hybrid System. We only need to consider the in-plane com-

ponents of the electric field on the upper surface of the nanoparticle array for coupling with

the in-plane excitonic dipoles of the TMD monolayer. We use surface integral equations

(SIE, see Methods) to simulate the field enhancement at this surface with a plane wave

illumination at normal incidence (k‖ = 0). The in-plane field enhancement distribution at

the energies of 2.006 eV (Figure 3a) and 2.036 eV (Figure 3b) are very similar, with vertical

RA bands of enhanced field. This similar field distribution indicates that the in-plane field

at these two energies originates from the same mode, namely the e-SLRs. As expected,

the in-plane field enhancement is more pronounced at the peak position (2.006 eV) than

at the edge (2.036 eV). The simulations of the total field (Figures 3d, S5-S7) indicate that

out-of-plane field components are dominant for the m-SLRs.15 In particular, we see a total

field enhancement distribution at 2.006 eV (Figure 3c) very different to that at 2.036 eV

(Figure 3d) with the field enhanced along horizontal bands. This different total field distri-

bution indicates that the m-SLR dominates the total field at 2.036 eV, but with mainly a

out-of-plane field. Therefore, the light-matter coupling with TMD monolayers is dominated

by the in-plane field of the e-SLRs rather than by the out-of-plane field of m-SLRs. When

the energy exchange between the excitonic transitions and the e-SLRs is faster than their

damping rates, the regime of strong light-matter coupling is reached. The energy of excitons

and e-SLRs splits into two new hybrid light-matter states, i.e., the UP and LP states, that

we call Mie exciton-polaritons. The corresponding extinction spectra of the uncoupled and

hybrid systems are shown in Figure 1f. The energy difference between UP and LP defines

the Rabi-splitting ΩR and is equal to twice the coupling strength g.

Next, we evaluate the strength of light-matter interactions with e- and m-SLRs from
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the extinction measurements. We record the extinction spectra of the nanoparticle array

without (Figures 4a and c) and with (Figures 4b and d) the WS2 1L on top by varying the

angle of incidence from θ = 0◦ to 22◦. For TM polarization, the (0, ±1) e-SLRs dominate the

extinction spectra as indicated by the solid-red guide to the eye in Figure 4a. We note that

the spectral full width at half-maximum (Γe−SLRs) increases for larger angles of incidence.

This increase is similar to the one observed in plasmonic arrays and it is due to the reduction

in detuning between the Mie-resonances and the RAs.52,53 For the case of TE polarization,

the (±1, 0) e-SLRs of the bare array, which are degenerate at θ = 0◦, split into two bands

(denoted by the black arrows in Figure 4c) as the angle of incidence increases. The m-SLR

around the resonant energy of the excitons (vertical black dashed line in Figures 4a-d) has

a weaker extinction as indicated by the solid-red guide to the eye in Figure 4c. Due to the

large dispersion of the (±1, 0) diffraction orders, we only investigate the (0, ±1) SLRs of

both magnetic (TE) and electric (TM) modes. With WS2 1L on top of the array, we find

that the dispersion of the e-SLR splits into the LP and UP bands (the solid-blue guide to the

eye in Figure 4b). Unlike the e-SLR, the m-SLR (solid-blue guide to the eye in Figure 4d) is

similar to the bare nanoparticle array shown in Figure 4c (solid-red guide to the eye). The

main difference between Figures 4c and d is that the extinction spectrum of the excitons is

superimposed on that of the m-SLRs. These results indicate that strong coupling of excitons

in WS2 1L takes only place with e-SLRs and not with m-SLRs.

To quantify the coupling strength between Mie-SLRs and excitons, we analyze the angular

dispersion of the hybrid system. We plot the energies of the extinction peaks as a function

of the incident in-plane momentum k‖ in Figures 5a and c. The blue triangles represent the

high and low energy bands of the coupled system. The red squares correspond to the energies

of the bare SLRs. In the case of m-SLRs (Figure 5c), the upper and lower energy bands

follow the dispersion curves of the bare Mie-SLR and excitons, respectively. The energies

of bare m-SLRs redshift 2 meV and overlap with the upper band. Therefore, we confirm

that magnetic dipole resonances cannot strongly couple with bright excitons in monolayer
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TMDs. Instead, the electric dipole resonances are efficient to achieve strong coupling with

2D semiconductors. The two new bands in Figure 5a, corresponding to the UP and LP

bands, exhibit a clear anti-crossing at the zero detuning between e-SLR and excitons. We

fit the angular dispersion of the UP and LP bands to a model with two coupled harmonic

oscillators as shown by the blue curves in Figure 5a (see Methods for details). We find

that the band of uncoupled e-SLRs (red solid curve) redshifts 10 meV when the monolayer

WS2 is transferred on top of the nanoparticle array compared with the bare array (also see

Figure S4b). We also obtain the Rabi energy ΩR = 32 meV at k‖= 2.4 µm−1, when the

UP or LP state is half mixed with e-SLRs and half with excitons (Figure 5a). Due to the

high Q-factor (Q∼120) of e-SLRs in the Si nanoparticle array, the Rabi energy satisfies the

strong coupling condition, i.e., ΩR > γex,Γe−SLRs, where γex = 25 meV,30,34,35,46 Γe−SLRs =

18 meV are the line widths of the extinction spectra of excitons and e-SLRs, respectively.

These linewidths were estimated by Lorentzian fits to the spectra. The results demonstrate

that Si nanoparticle arrays are a reasonable platform for the generation of collective Mie

exciton-polaritons in an atomically thin semiconductor.

Comparison of the Mie and Plasmonic Array. Combining these results with our

previous investigations of strong light-matter coupling with plasmonic arrays,23,35,54,55 we

raise the question of whether Mie or plasmonic nanoparticle arrays are more efficient for

achieving strong coupling with bright excitons in monolayer TMDs. We used simulations to

obtain the answer. The coupling efficiency of Mie or plasmonic SLRs with in-plane excitonic

dipoles is proportional to the in-plane field supported by SLRs. Hence, we first calculate

the in-plane field enhancement of SLRs and define the ratio of coupling efficiency of Mie

and plasmonic nanoparticle arrays. To enter the strong coupling regime, the Rabi-energy

should be larger than the line widths of SLRs. Sharper resonances allow more cycles of Rabi

oscillations and are easier to satisfy the criterion of strong coupling. We thus continue to

evaluate the line widths of Mie and plasmonic SLRs.

Considering the measurements, we simulate the extinction spectra and in-plane field
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enhancement factor of silicon and metallic nanoparticle arrays using SIE (details in Methods).

We use the experimental values of the height of the Si nanoparticles (90 nm) and 40 nm for

the Ag nanoparticles.23,35,52,54 The lattice constant of the square array is the same for both Si

and Ag arrays and equal to 420 nm. To find the same energy e-SLRs, we tune the diameter of

the Si and Ag nanodisks to 126 nm and 74 nm, respectively. The extinction spectra at normal

incidence and the root-mean-square value of the in-plane enhancement factor within a unit

cell of the bare particle array are shown in Figures 6a and b, respectively. The simulated

spectrum of Si array (blue curve in Figure 6a) qualitatively agrees with the measured result

(Figure 2f). For comparison, we focus on the e-SLRs of both Si and Ag array. The line-width

of the Si array (ΓSi ∼ 20 meV) is narrower than that of the Ag array ( ΓAg ∼ 34 meV) due

to the lower material absorption of Si comparing with Ag. The simulated damping rates of

Si and Ag array are qualitatively comparable with the current (ΓSi ∼ 18 meV) and previous

experimental measurements in similar Ag arrays (ΓAg ∼ 43 meV) ,35 respectively. The

extinction of Si array is a factor of 1.35 larger than the extinction of the Ag array (Figure

6a). The narrower and higher extinction peak of Si array leads to a stronger in-plane near

field enhancement (Figure 6b), suggesting that Si array is more efficient than Ag array to

achieve strong coupling with monolayer TMDs.

Conclusions

In summary, we have demonstrated an alternative nanophotonic structure, Si nanoparticle

arrays, for achieving strong light-matter coupling and collective Mie exciton-polaritons in

monolayer WS2. The in-plane electromagnetic field associated with e-SLRs in Si nanopar-

ticle arrays allows to strongly couple to in-plane excitonic dipoles in monolayer TMDs. At

room temperature, we observe Rabi splitting when the energy of e-SLR is tuned to the en-

ergy of the excitons. However, the orthogonality between the out-of-plane field distribution

with the in-plane excitons prevents the formation of exciton-polaritons for the m-SLR. We
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would expect that the m-SLR can be applied to couple with out-of-plane dipolar emitters,

e.g., direct-bandgap interlayer excitons in TMD heterostructures.56 In addition, Si nanopar-

ticle arrays benefit from lower absorption and stronger electromagnetic field enhancement

compared to Ag nanoparticle arrays with similar dimensions. Our findings contribute to

the understanding of light-matter interactions at the nanoscale and pave the way for the

investigation and design of low-loss polaritonic devices.
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Figure 1: Mechanism for in-plane coupling between dielectric nanoparticles and 2D semicon-
ductors. (a) Illustration of a side view of two nanoparticles in an array with electromagnetic
field coupling to in-plane excitons in a monolayer semiconductor on top. (b) Coherent
energy exchange between electric dipole surface lattice resonances (one type of collective
Mie-Resonances: e-SLR) in Si nanodisk arrays and bright A excitons of monolayer WS2,
leading to the formation of the upper (UP) and lower polariton (LP) states. The energy
difference between the UP and LP states is the Rabi energy ΩR. (c) Schematic of the sample.
A monolayer of WS2 (WS2 1L) is sandwiched between a superstrate of polydimethylsilox-
ane (PDMS) and the Si nanoparticle array on a fused quartz substrate. The WS2 1L is
in the xy plane, while the out-of-plane direction corresponds to the z axis. (d) Scanning
electron microscope image (top view) of the Si nanoparticle array. (e) Extinction spectra of
the bare e-SLR and excitons, and the coupled system. The strong coupling between e-SLR
(red-dashed curve) and excitons (black-solid curve) leads to the splitting into two new peaks
corresponding to UP and LP bands (blue solid curve).
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Figure 2: Extinction dispersion of bare Si nanoparticle arrays. Panels (a)(d) and (b)(e) are
recorded with TE and TM polarization, respectively. The dashed horizontal line represents
the energy of bare A excitons of WS2 1L. (c)(f) Extinction spectra for normal incidence,
i.e., k‖ = 0. The energy range in panels a-c allows to observe both the dispersive SLRs
and the broader Mie-resonance. The extinction spectra of panels d-f are close-up views of
the e-SLR and m-SLR. The degenerate mode at normal incidence splits into three different
bands, including two linear dispersion bands associated with the (1, 0) and (-1, 0) diffraction
orders and the parabolic band associated with the (0, ±1) order.
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incidence. The energy of the resonances in (a,c) corresponds to the e-SLR (2.006 eV) and
(b,d) to the m-SLR (2.036 eV).
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Figure 4: Extinction spectra of the Si nanoparticle array without ((a) and (c)) and with ((b)
and (d)) WS2 1L on top as a function of the angle of incidence θ from θ = 0◦ to 22◦. The
optical micrograph (top view) of the measured sample is shown in Figure S1. Panels (a)(b)
and (c)(d) are recorded with the TM and TE polarization, respectively. The extinction
spectra in all the panels are offset for clarity. The black arrows in panel (c) indicate the
peak energies of the (±1, 0) e-SLRs. The red solid curves in (a) and (c) are guides to the
eye illustrating the dispersion of the (0, ±1) e-SLRs and m-SLRs, respectively. The blue
solid curves in panel (b) and (d) are guides to the eye illustrating coupled modes in the Si
particle array and WS2 1L system. The black vertical dashed lines represent the energy of
A-excitons in WS2 1L obtained from the extinction peak of the bare flake shown in Figure
1f.
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Figure 5: The angular dispersion of the coupled system. (a) Upper polariton (blue downward
triangles) and lower polariton (blue upward triangles) bands for TM polarization extracted
from the solid-blue guide to the eye in Figure 3b, are fitted by a model with two coupled
harmonic oscillators. The fit indicates that the energies of uncoupled e-SLR (red squares)
redshift by 10 meV compared to the bare (0, ±1) e-SLR in Figure 3a (the solid-red guide
to the eye) and ΩR = 32 meV. The dashed horizontal line denotes the energy of bare A
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and Ag are shown in Figure 3a and Figure S8a, respectively.
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