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Abstract

Thermally induced deformations are becoming increasingly important for the control performance of pre-
cision motion systems. The aim of this paper is to identify the underlying thermal dynamics in view of
precision motion control. Identifying thermal systems is challenging due to strong transients, large time
constants, excitation signal limitations, large environmental disturbances, and temperature dependent be-
havior. An approach for non-parametric identification is developed that is particularly suitable for thermal
aspects in mechatronic systems. In particular 1) reduced experiment time is achieved by utilizing tran-
sient data in the identification procedure. 2) an approach is presented that exploits measured ambient
air temperature fluctuations as additional inputs to the identification setup. 3) the non-parametric model,
obtained through 1) and 2), is used as a basis for parameter estimation of a grey-box parametric model.
The presented methods form a complete framework that facilitates the implementation of advanced control
techniques and error compensation strategies by providing high-fidelity models, enabling increased accuracy
and throughput in high precision motion control.

Keywords: Identification, Frequency Response Function, Thermo-mechanical, modeling

1. Introduction

Impressive progress in advanced motion control
of precision mechatronics has led to a situation
where thermally-induced deformations are a ma-
jor error source [1] in positioning accuracy and are
no longer negligible on the overall system perfor-
mance. These deformations are typically induced
by heat dissipation from actuators and encoders or
by environmental temperature fluctuations. Mod-
ern precision motion systems are capable of achiev-
ing positioning accuracy in the nano-meter range.
These precise movements are essential in several in-
dustrial applications, e.g., the manipulation of the
sample in an electron microscope and the manufac-
turing of integrated circuits.

?This work is supported by the Advanced Thermal Con-
trol consortium (ATC), and is part of the research pro-
gramme VIDI with project number 15698, which is (partly)
financed by the Netherlands Organisation for Scientific Re-
search (NWO).

1Corresponding author: e.evers@tue.nl

To meet the ever increasing demands to enhance
the throughput and positioning accuracy, thermal
deformations must be analyzed and compensated
for through advanced control approaches utilizing
an appropriate thermo-mechanical model.

Ideally, using a limited amount of temperature
measurements combined with an accurate thermo-
mechanical model enables the use of advanced con-
trol and error-compensation techniques [2, 3]. An
application of error-compensation is illustrated in
[4] where a thermo-mechanical actuator is employed
to complement the closed-loop performance of a
hard disk drive positioning system. Here, the
small thermal mass of the hard disk drive magnetic
head allowed the thermal actuator to obtain an ex-
tremely fast response rate. Unfortunately, the ther-
mal mass of the systems considered in this paper,
e.g., electron microscopes, are significantly larger,
thereby drastically increasing the time constant of
the thermo-mechanical response.

Earlier solutions to compensate for the defor-
mations in electron microscopes, e.g., image-based
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feedback in [5], can not always cope with large de-
formations and strongly depend on model quality
[6, 7]. Therefore, an accurate parametric model is
desired for a model-based control approach. Accu-
rate modeling of precision thermo-mechanical sys-
tems is complex, resulting in large scale finite ele-
ment models that require significant effort to con-
struct due to, e.g., uncertainty in the parameters
and contact resistances.

In sharp contrast, modeling for advanced motion
control, see, e.g., [1, 8] is fast, accurate and in-
expensive. Significant progress has been made in
Frequency Response Function (FRF) identification,
particular in addressing identification in transient
conditions. These recent developments include the
local parametric methods, see [9] for initial results
in this direction. The Local Polynomial Method
(LPM) [10] exploits the local smoothness of the
transient term that otherwise would cause a bias.
Both the transient contribution and system dynam-
ics are modeled with a polynomial in a small fre-
quency window. The local rational method (LRM)
[11], is an extension of the LPM that can lead to im-
provements over the LPM [12]. However, the LRM
is non-convex due to the rational parameterization.
In addition, the variance is only accurately com-
puted for a high SNR, since measured output sig-
nals are included in the regression matrix.

Related work in the mechanical domain includes
a newly developed rational parametrization with
prescribed poles (LRMP), introduced in [8] where it
is applied to a simulation example featuring lightly
damped mechanics, and first applied to an experi-
mental thermal system in [13], that yields superior
estimation accuracy over the LPM while maintain-
ing linearity in the parameters. Although thermo-
mechanical interactions are increasingly relevant,
the modeling of this behavior in view of control is
a key challenge. And although estimating FRFs
using a local modeling approach shows promising
results by suppressing the transients, these tech-
niques are not yet applied to thermal dynamics in
precision motion systems. The methods are mainly
developed and applied on (lightly damped) mechan-
ical systems, see, e.g., [14, 15]. Important aspects
such as excitation signal design, transient measure-
ment conditions and ambient disturbance reduction
need to be re-evaluated.

To improve low frequency estimation quality of
the FRF, a measurement of the ambient air tem-
perature is used as an additional uncontrollable ex-
citation input in the identification procedure. It is

shown that by utilizing the additional excitation,
mainly present at lower frequencies, the estimation
quality of the FRF can be significantly improved.
Comparable approaches in the mechanical domain
have been explored in an active vibration isolation
application [16], using ground vibrations.

For some applications, e.g., direct feedback of a
fast thermal system in [4], models based on curve
fitting a frequency response function can be suf-
ficient. The application considered in this pa-
per requires a more extensive model. Therefore,
a first principles lumped-mass modeling approach
is adopted in conjunction with frequency response
function parameter calibration to obtain a predic-
tive model of sufficient complexity.

Although FRF identification is well-developed
for mechatronic systems from the electromechanical
perspective, at present these techniques are not tai-
lored towards identifying accurate thermal models
for precision control. The aim of this paper is to de-
velop a framework for advanced identification, par-
ticularly suitable for thermal-mechanical systems
and to experimentally validate this approach on a
representative experimental setup.

This paper builds on previous results reported in
[17] and expands on these results with additional
details and techniques providing a complete frame-
work. The main contributions of this paper are:

C1 An overview of the significant challenges in
thermal system identification, illustrated on a
representative experimental setup.

C2 Application of a new FRF identification ap-
proach that facilitates identification under
transient conditions.

C3 Exploiting additional temperature measure-
ment to reduce the low-frequency estimation
error by explicitly including ambient air tem-
perature fluctuations in the identification pro-
cess.

C4 Estimation of a temperature dependent con-
vection coefficient to improve model quality
over a large temperature range.

C5 An extensive case study, leveraging the im-
proved FRF identification results to calibrate
model parameters yielding a high fidelity para-
metric model.
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Camera
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Figure 1: A general overview of a typical transmission elec-
tron microscope. The key component considered in this pa-
per is the sample holder stage. The expansion loop repre-
sents the collective thermal expansion of different compo-
nents in the mechanical positioning stage assembly. Dom-
inant heat sources in the system are the coils ( ) that are
used to shape the electron beam.

2. Thermal system identification: challenges
and problem formulation

In this section, an overview of the challenges in
thermal system identification for precision motion
systems is given. Moreover, the experimental setup
that serves as a representative case study to il-
lustrate the significance of these challenges is pre-
sented. The setup also provides a suitable exper-
imental platform for the application of improved
identification techniques.

2.1. Industrial challenges

Deformations induced by thermal gradients are
increasingly relevant in several industrial applica-
tions, see, e.g, [18] for a selection. Examples
include, warping and wafer edge deformation in
lithography applications, thermal-induced drift in
Transmission Electron Microscopy (TEM) [7], see
Fig. 1, and frame deformations in machine tools
[19, 2]. While the full temperature field is relevant
for the prediction of thermal induced deformations,
the expansion is often most relevant in a single De-
gree of Freedom (DOF). In this paper, it is assumed
that many industrial applications can be considered
in one dimension (1D) such that the geometry can
be simplified without loss of generality. This sim-
plification is valid for many industrial applications
where the thermal behavior is often analysed in 1D,
e.g., in the tool-path direction in machine tools [19]
or perpendicular to the electron beam in TEM ap-
plications [18], e.g., the expansion loop shown in
Fig. 1.

2.2. Problem formulation

2.2.1. Experimental setup

In this section the experimental setup is pre-
sented. The setup consist of a round uniform cylin-
der with a length of 250 mm and a diameter of 25
mm. The system has two heat inputs u1, u2 and five
temperature outputs T1,...,5, in the form of power
resistors and negative thermal coefficient (NTC)
thermistors respectively. A photograph of the ex-
perimental setup including its inputs and outputs
is shown in Fig. 2. The experimental setup con-
sists of two aluminium cylinders with a small piece
polyoxymethylene (POM) in between that acts as a
high thermal resistance, as displayed in Fig. 2. This
setup represents a typical industrial use case, where
commonly mixed-material system designs are used.
Typically, thermal properties of aluminum are accu-
rately known, however, the thermal conductivity of
POM is often an uncertain parameter. The conduc-
tivity of POM varies between 0.22 to 0.39 W/mK
at 20◦C depending on the manufacturing process
of the material. Accurately identifying the conduc-
tivity parameter value provides an excellent bench-
mark for a grey-box parameter estimation problem.

T5

u1

T4 T2T3 T1

T 1
a T 2

au2 POM

Figure 2: The experimental setup used in this paper. It
consists of an aluminium cylinder with two heater inputs
(u1, u2), five temperature sensors (T1,...,5), and two ambient

temperature sensors (T 1,2
a ).

2.2.2. Transient response

Thermal actuators are often limited to positive
input signals or to binary sequences [20], e.g., the
power resistors in Fig. 2 can only apply a positive
thermal flux. As a result of this positive flux, the
temperature of the system increases, causing com-
ponents in the system to expand. This could exceed
the measurable temperature or deformation range.
Especially with systems with multiple inputs, where
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the applied heat input is cumulative. The design of
thermal excitation signals should have a low mean
input while the input spectra remains rich. Design-
ing optimal excitation signals remains a challenge
for accurate FRF estimation.

Conventional approaches to frequency response
function identification are typically unable to cope
with large transients present in the response. These
transient are, e.g., a result of the offset in the input
or initial system conditions.

Commonly, the measurement data obtained un-
der transient conditions is discarded in the identifi-
cation process leading to loss of usable data. More-
over, due to the slow dynamics of thermal systems,
removing this initial transient leads to an unaccept-
able increase of experiment time. In this paper,
a novel approach to FRF identification is applied,
first described in [8], that is suitable for FRF identi-
fication under transient conditions. This facilitates
a reduced experiment time by eliminating the need
for transient data removal and improves the overall
estimation quality by removing the biased caused
by the transient contribution.

2.2.3. Environmental disturbances

The response of thermal systems is highly influ-
enced by environmental disturbances, consequently
the identification accuracy often deteriorates. Typ-
ically, these environmental disturbances are domi-
nated by day/night cycles or fluctuations in ther-
mal conditioning systems, e.g., water chillers, which
have relatively slow dynamics. As a consequence,
the disturbance spectrum is relatively large at low
frequencies and converges to a typical flat spectrum
at higher frequencies, this is sometimes referred to
as 1/f noise [21]. This is illustrated in Fig. 3 where
a measured spectrum of the ambient air tempera-
ture surrounding the experimental setup is shown.

Specific limited time frames in the day/night cy-
cle, e.g., at night, have relatively little environmen-
tal disturbances, however performing experiments
at these specific time frames is not always viable.
Reducing the impact of environmental disturbances
is needed to increase the estimation accuracy and
to reduce the experiment time. In this paper, an
approach is used where the ambient temperature
measurement, taken by sensors shown as T 1

a , T
2
a in

Fig. 2, is taken as an additional system input. This
provides additional information for the system iden-
tification problem, and can increase the estimation
accuracy, specifically at low frequencies.
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Figure 3: A typical power spectral density of the tempera-
ture of the ambient air surrounding the experimental setup.
Illustrating the low-frequency ambient disturbances and high
frequency measurement noise.

2.2.4. Parameter varying dynamics

Typically, the assumption of linear time invari-
ance (LTI) for thermal systems is only valid around
a certain temperature. Realistically, the convection
is expected to vary even within a relatively small
temperature range [22]. For larger temperature
ranges, the system behavior is nonlinear, and can
be modeled as a linear parameter varying (LPV)
system [23]. Typically, the convection coefficient
only significantly alters the low frequency response
of the system, resulting in a change in the largest
time constant. Typically, the relation between tem-
perature and the convection coefficient is described
empirically [24] based on the geometry of the setup
and properties of the fluid medium, e.g., air. In this
paper, an approach is shown where this empirical
relation is estimated for different operating condi-
tions, allowing it to be included in the model as a
temperature dependent parameter.

2.2.5. Problem formulation

In precision motion control thermo-mechanical
interactions are increasingly relevant, yet the mod-
eling of this behavior in view of control is a key
challenge. To obtain an accurate system model it is
key to take into account 1) transient contributions
2) environmental disturbances and 3) temperature
dependency of the parameters. In this paper, es-
timating the FRF is taken as a first step towards
high fidelity modeling. The estimated FRF can be
used directly, e.g., for controller tuning [25]. In this
work, the FRF is used as a basis for a grey-box
approach to calibrate model parameters based on
experimental data gathered under transient condi-
tions. This facilitates the use of high-fidelity models
for advanced model based control, enabling further
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G(q)
u(n)

d(n) ν(n)

y(n)

Figure 4: Discrete time linear dynamical open-loop system
with input u(n), environmental disturbance d(n), measure-
ment noise ν(n), and output y(n).

advances in precision motion control.

3. Improved thermal system identification

In this section, a framework for advanced system
identification is presented.

3.1. Non-parametric frequency response function
estimation

Consider a causal linear time invariant (LTI) sys-
tem in an open-loop identification setting as shown
in Fig. 4. Throughout, the excitation signal u(n)
is assumed to be a random phase multisine. Com-
monly, multisine signals are being used as a peri-
odic excitation since their spectrum is deterministic
[9, 26].

Definition 3.1. In this paper, a Random Phase
Multisine (RPMS) signal is defined as

u(n) =

N∑
k=1

Ak sin(2πfkn/N + φk) + ∆, (1)

where, n is a specific discrete sample, N is the
total number of samples, Ak is the amplitude of
the sinusoidal signal at frequency fk, φk is a uni-
formly distributed random phase on [0, 2π) such
that E{eiφk} = 0 and ∆ is an offset to enforce
u(t) ≥ 0.

These multisine excitation signals offer the possi-
bility to tune their frequency content by adjusting
Ak, and due their periodic nature spectral leakage
due to the excitation input can be minimized. Dif-
ferent possible realizations of multisine signals are
presented in [27], e.g., using a linear or logarithmic
power distribution to maximize the amplitude spec-
trum of the excitation signal. The response y(n) to
input u(n) of a discrete LTI system is as follows

y(n) =

∞∑
m=−∞

g(n−m)u(m) + ν(n), (2)

with g(n) the impulse response of the system and
ν(n) the additive noise contribution. The Discrete
Fourier Transform (DFT) of a signal is given by

X(k) =
1√
N

N−1∑
n=0

x(n)e−j2πnk/N . (3)

Applying the DFT to (2) results in

Y (k) = G(Ωk)U(k) + T (Ωk) + V(k). (4)

Here, Ωk = e−j2πnk/N , Y (k), U(k), V(k) are the
DFT of y(n), u(n), ν(n) respectively, G(Ωk) is the
frequency response function of the dynamic system,
and k denotes the kth frequency bin. Here, T (Ωk)
represents the combination of the system and noise
transient terms. These transients are the result of
the truncation of an infinite response to a finite
measurement interval.

Traditionally, the empirical transfer function es-
timation (ETFE) is used to derive the FRF [9, 26].
The ETFE is defined as

Ĝ(Ωk) =Y (k)U(k)−1,

=G(Ωk) + T (Ωk)U(k)−1︸ ︷︷ ︸
Transient

+V(k)U(k)−1︸ ︷︷ ︸
Noise︸ ︷︷ ︸

Estimation error

(5)
For thermal systems, the transient contribution is
significant. While the ETFE can often yield accept-
able results on mechanical systems, since the tran-
sient is significantly shorter than the measurement
period, for thermal systems the estimation accuracy
is severely biased due to the transient component
in the estimation error in (5). In view of exist-
ing system identification methods, this poses addi-
tional challenges, since these methods often assume
the transient component to be negligible. In this
paper, a method is proposed that explicitly takes
these transient into account during the identifica-
tion procedure. This method is also applicable to a
more general class of systems.

3.2. Transient elimination

To cope with data gathered under transient con-
ditions, a local modeling method is adopted. This
method [8] uses a local rational parameterization of
G(Ωk) and T (Ωk) in (4) on a subset of points

w = {{k − l, . . . , k + l}|w 6= k} ⊂ N, (6)
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i.e., a local window of width l ∈ N, in the complex
plane. Consider again (5) and let

G(Ωw) =

Nb∑
b=0

θkG(b)Ψ(b, w) (7)

T (Ωw) =

Nb∑
b=0

θkT (b)Ψ(b, w), (8)

such that locally the terms in (5) are approximated
in a local window w by an expansion of degree
Nb using general basis functions Ψ(w) ∈ C where
θkG(b) ∈ C and θkT (b) ∈ C are the local coefficients
for the plant and transient respectively. An identi-
cal basis function is used for the system and tran-
sient estimation as the dynamics are the same. This
parametrization is linear in the parameters, i.e., θ
can be obtained in a closed-form solution, while
having the advantages of using a general basis Ψ
that allows for user-chosen parameterizations. For
instance, the basis Ψ can be chosen to be a polyno-
mial, rational, or fractional function of the window
parameter w. Moreover, the basis straightforwardly
allows for the inclusion of prior knowledge on the
system dynamics through pre-scribed poles in Ψ.

Generally, thermal systems are of first order with
inherently stable poles. Commonly, a first estima-
tion of the time constants of the system can be
made and included as prior knowledge through Ψ
to improve the estimation error of the FRF, see,
e.g., [13].

3.3. Incorporating additional inputs

One of the main environmental disturbances for
thermal systems is ambient air temperature fluctu-
ations. To reduce the effect of these flunctions on
the FRF identification, measurements of the ambi-
ent temperature are incorporated as an additional
input [26]. Since it is difficult to excite the ambi-
ent air temperature in this paper it is considered
an uncontrollable additional input. Measuring the
environment and treating it like an input is com-
monly done for identifying vibration isolation sys-
tems, e.g., using ground vibrations as additional ex-
citation sources [16].

The temperature of the environment is spa-
tially dependent, and therefore ambient temper-
ature measurements are only valid under the as-
sumption that the ambient temperature surround-
ing the experimental setup is relatively uniform.
The measured ambient air temperature is incorpo-
rated as an additional input in the identification

procedure, yielding

Y (w) = G̃(Ωw)

[
U(w)

D̃(w)

]
+ T (Ωw) + V(w) (9)

where D̃(w) is the DFT of the measured environ-
mental disturbance and w denotes the local window
(6). Here, G̃ is now a 1 × 2 multi-variable system
model due to the additional system input. The aug-
mented plant G̃ can now straightforwardly be esti-
mated through the procedure described in Sec. 3.2.

4. Thermal modeling: parametric model ap-
plications

In this section, an approach to lumped-parameter
parametric modeling for thermal systems is pre-
sented. Moreover, it is shown that the improved
FRF obtained by applying the framework presented
in Sec. 3 facilitates a grey-box parameter estima-
tion approach. Lastly, a preliminary approach for
identification of a temperature dependent convec-
tion coefficient is described.

4.1. Thermal modeling

Consider a thermal system, e.g., the setup in Sec.
2.2.1, where the thermal dynamics are described by
the heat equation

cp(x)ρ(x)
∂T (x, t)

∂t
= κ(x)

∂2T (x, t)

∂x2
+

h
(
T (x, t)− T∞(t)

)
+Q(x, t). (10)

With T (x, t) the temperature at position x, T∞(t)
the ambient temperature, Q(x, t) the heat flux, h
the convection coefficient, κ(x) the thermal conduc-
tivity, ρ(x) the material density, and cp(x) the spe-
cific heat capacity. The heat transfer due to radi-
ation is linearized and combined in the convection
coefficient h. By employing spatial discretization,
shown in Fig.5, the partial differential equation (10)
is transformed into a set of ordinary differential
equations and the parameterized model can be rep-
resented in state space form by

Ṫ (t) = A(ϕ)T (t) +B(ϕ)u(t)
y(t) = C(ϕ)T (t)

(11)

where ϕ ∈ RNp×1 is a parameter set with Np num-
ber of parameters including, but not limited to, ma-
terial constants and contact resistances.
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Figure 5: An illustration of the lumped-mass discretization
of the experimental setup. The setup is divided into lumps,
represented as capacitances C, that are interconnected to
each other and the ambient temperature Ta by resistances
R. The actuator inputs are represented as a heat flux Qu1,2

entering the appropriate lump. The dashed lines indicate a
repeating pattern of the appropriate lumps, the illustration
is simplified to facilitate the presentation.

4.2. Grey box identification

The parameterized model (11) contains uncertain
parameters ϕ that limit the prediction accuracy and
suitability for advanced control. The aim of grey
box identification is to calibrate the parameter set
ϕ such that the model (11) yields an accurate rep-
resentation of the real system. The grey-box ap-
proach is based on minimizing the discrepancy be-
tween the measured non-parametric FRF and the
FRF of the parametric model with the following
cost function

J = min
ϕ

{
‖W (Ωk)

(
G(Ωk)− Ĝ(Ωk, ϕ)

)
‖22
}
. (12)

Here, Ĝ(Ωk) is the measured non-parametric FRF
obtained by applying the approach presented in
Sec. 3, G(Ωk, ϕ) = C(ϕ)(ΩkI − A(ϕ))−1B(ϕ) is
the FRF of the parametric model (11), W (Ωk) ∈
CNy×Nu is a dynamic weighting filter depending on
the variance of the FRF at each frequency, and Nu
and Ny are the number of inputs and outputs, re-
spectively. By minimizing (12) the parameter set ϕ
is calibrated such that the model (11) best describes
the experimental system. This facilitates the use of
the calibrated model for advanced control and error
compensation techniques.

4.3. Non-linear convection coefficient estimation

In this section, a procedure is proposed to es-
timate the temperature dependent convection co-
efficient. The convection coefficient is often as-
sumed to be constant in a small temperature range.
However, realistically, the convection coefficient de-
pends, amongst others, on the temperature differ-
ence between the aluminium bar and its surround-
ings, ∆T = T (x, t)−T∞(t) [22] and therefore varies
with temperature. To accurately capture larger
temperature variations, this coefficient needs to be

estimated for a wide temperature range. The em-
pirical relation between the convection coefficient
and ∆T can be estimated, under the assumptions
that the Rayleigh number is linear in terms of ∆T
and the Prandtl number is constant, by

h(∆T ) = a+ b∆T c (13)

where a, b, c are model parameters. Here, it is
proposed to apply a staircase function to the input.
Due to the constant input, the temperature con-
verges to a steady state for various ∆T . Next, for
each steady state temperature, the convection coef-
ficient is estimated by minimizing the error between
the measured and simulated output.

5. Case study: from measurement to model

In this section, the proposed identification
methodology is applied to the experimental setup
presented in Sec. 2.2.1 to yield a high fidelity para-
metric model.

5.1. Measurement: obtaining the FRF

In this section, the FRF of the experimental
setup is estimated by using 1) transient suppression
techniques as presented in Sec. 3.2 and 2) incorpo-
ration of additional inputs, presented in Sec. 3.3,
to improve low-frequency estimation.

5.1.1. Transient suppression

Since the input to the system is constrained to be
positive, the excitation input u1(t) is selected as a
RPMS with offset, see Def. 3.1 for a definition. The
temperature response T1 to the input u1 is shown in
Fig. 6. Initially, the temperature response consist
of a first order step response due to the offset ∆ in
the excitation signal. After the initial transient has
settled, the output consist of the response of the
excitation signal and environmental disturbances.

Two sub-records of the same dataset are consid-
ered, one includes the first two periods, which con-
sist of a significant initial transient, and environ-
mental disturbances. The second sub-record con-
sist of the last two periods with a reduced transient
and environmental disturbance and is used as a val-
idation dataset.

In Fig. 7 the FRF estimation using sub-record
1 is shown. Clearly, the ETFE is unable to es-
timate the dynamics correctly using sub-record 1
since the transient contribution is relatively large.
The LRMP estimates and suppresses the transient
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Figure 6: Temperature response u1 → T1 of the experi-
mental setup to a random phase multi-sine with offset for
4 periods of each 4 [h]. The dataset is divided into two
sub-records, sub-record 1 ( ) contains the majority of the
initial transient and ambient temperature disturbance ( ),
and sub-record 2 ( ) contains significantly less initial tran-
sient.
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Figure 7: FRF estimation of u1 → T1 using ETFE and
LRMP from sub-record 1 in Fig. 6. It shows that the LRMP
( ) unlike the ETFE ( ), is invariant to the transient con-
tribution ( ) and provides a good estimate when compared
to the validation data ( ) obtained from sub-record 2 in
Fig. 6.

T (Ωk) and is invariant to significant transients in
the response. As a result, the estimation error of
the FRF Ĝ(Ωk) is improved by using the LRMP
when compared to the validation data.

5.1.2. Incorporating additional inputs

In this section a measurement of the ambient
temperature T∞ is used as an additional excitation
input, see (9), to improve the estimation accuracy
at low-frequencies. The procedure yields an esti-
mate for a 1× 2 plant model

G̃(Ωk) = [G(Ωk)u1→T1
, G(Ωk)T∞→T1

] (14)

containing the transfer function between the input
u1 and T1, i.e., the desired FRF, and the transfer
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Figure 8: FRF estimation of u1 → T1 using (a) LRMP with
only input u1 ( ) and (b) using the additional input ( ).
By incorporating the additional input the variance, shown
as ( , ), is significantly reduced at low frequencies.

function between T∞ and T1, where the latter can
be used for a disturbance sensitivity analysis.

In Fig. 8, the amplitude estimation of the FRF
G(Ωk)u1→T1

and the 3σ uncertainty bounds are
shown. The results show the estimation using only
the input u1, shown in red (a), and using u1 and
the ambient temperature measurements as an ad-
ditional input, shown in blue (b). The amplitude
estimation and variance at medium to high frequen-
cies are similar for both estimations. However, us-
ing only the input u1 a large variance is obtained
in the low frequency region. By then incorporating
the ambient measurement as an additional input,
the variance of the estimation of the FRF is reduced
significantly.

5.2. Model: parametric modeling and simulation

In this section, facilitated by the improved FRF
obtained in Sec. 5.1, a high fidelity parametric
model of the experimental setup is constructed.

5.2.1. Parameter estimation

In this section, the parameters of a Multi-Input
Multi-Output (MIMO) lumped mass model, i.e., a
model in the form (11), are calibrated by minimiz-
ing the discrepancy between the parametric model
and the non-parametric FRF estimation using (12).
The parameters that are optimized include, but are
not limited to, the conduction coefficient, contact
resistances and material properties of the aluminum
and POM. In Fig. 9 the estimated non-parametric
FRF, estimated at a temperature of approximately
300 [K], and the calibrated parametric model, is
shown. Clearly, the estimated parametric model is
within the 3σ uncertainty of the FRF estimation.
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Figure 9: Non-parametric FRF estimate ( ) of the experimental setup and the 3σ estimation uncertainty ( ). The FRF is used
for a grey-box parameter estimation, yielding a high fidelity parametric model ( ).

The conductivity of the slice of POM material is
estimated at 0.32 W/mK, which is well within the
range supplied by the manufacturer. The proce-
dure yields a MIMO high fidelity parametric model
of the experimental system.

5.2.2. Estimating the convection coefficient

The method proposed in Section 4.3 is applied
to the experimental setup. The system is excited
using a staircase function with a step gain of 0.05
W and a step time of 5 hours. The response and
input signal are shown in Fig. 10. Clearly, the tem-
perature response suffers from ambient temperature
fluctuations. At each steady state, in terms of the
heat input, the error between temperature simula-
tion and measurement is minimized by tuning the
convection coefficient. The convection coefficient is
found for various ∆T . An temperature dependent
function is derived by fitting (13) onto the evalu-
ated points from the experiment in a least squares
manner, yielding results as shown in Fig. 11.

5.2.3. Time domain validation

By applying the framework presented in this pa-
per a high fidelity parametric model is obtained.
This model can be used for various objectives, e.g.,
controller design or predictive simulation studies.
The predictive accuracy of the model is validated
by using a step response measurement using heater
input u1. A step response of 0.5 [W] is applied
to u1, at t = 1[h], and the simulated response of
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Figure 10: Experimental data used to estimate the tempera-
ture dependent convection coefficient. The heater input ( )
is applied in a stair sequence. The resulting temperature
( ) is then evaluated at specific points ( ) . The ambient
temperature ( ) is recorded and taken into account.
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Figure 11: Estimated empirical function ( ) and calculated
convection coefficients ( ) from Fig. 10 describing the tem-
perature dependency of the convection coefficient.
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Figure 12: Time domain validation experiment on the para-
metric model obtained using the framework presented in this
paper. In the top figure, the simulated (blue dashed) is com-
pared to the measured (black dotted) output. In the bottom
figure, the simulation error is shown for both outputs.

T1 and T2 is compared to the measured response
as shown in Fig. 12(top). The results clearly show
the high thermal resistance of the POM, located
between u1 and T2, indicated by a slower response
when compared to T1. It is seen that by utilizing
the procedure presented in this paper a high fidelity
model is obtained as illustrated by the small pre-
diction error shown in Fig. 12(bottom). While the
results for the experimental setup are not yet in
the millikelvin range, it is expected that the pre-
sented approach scales well to more sophisticated
hardware.

6. Conclusion

The identification framework presented in this
paper enables fast and accurate identification of
thermal dynamics in view of precision motion con-
trol. By applying the local parametric method
an improved non-parametric FRF estimate is ob-
tained. Furthermore, by explicitly taking into ac-
count the transient contributions a significant re-
duction in measurement time is achieved when com-
pared to classical methods. Moreover, the esti-
mation error for low-frequencies is significantly re-
duced by incorporating additional sensor data that
makes use of environmental disturbances to provide
additional excitation input. Building on the im-
proved FRF estimation, a grey-box parameter cal-
ibration approach is presented that yields high fi-
delity parametric models of the thermo-dynamical
system. The proposed methodology is applied to
a multi-variable experimental setup. The method

achieves significant improvements in estimation ac-
curacy, and a reduced experimentation time by in-
corporating the transient and disturbance contri-
butions. The presented methods form a framework
that facilitates the implementation of advanced
control techniques and error compensation strate-
gies, enabling increased accuracy and throughput
in high precision motion control.
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