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Preface

Mechatronic system designs for high-tech applications in many areas of tech-
nology often rely on high-cost solutions to achieve highly predictable and un-
derstandable system dynamics on the basis of accurate system models. These
models have enabled skillful control engineers in the high-tech industry to use
conventional and well-understood control solutions to meet stringent perfor-
mance requirements in terms of machine accuracy, operating speed, stability,
and reliability. However, major economic, social and technological trends push
performance, cost, and reliability requirements for current and future high-tech
systems to unparalleled levels, and will progressively challenge purely model-
based approaches to automatic control and system optimization. In particular,
the increasing complexity in terms of uncertainty, non-stationary nature of sys-
tem dynamic properties and disturbances, and mode-of-use dependent perfor-
mance specifications, constitute real challenges in achieving optimal performance
in current and future high-tech systems using model-based approaches.

To account for changing, uncertain, or unknown dynamics and disturbance
characteristics, and enable the satisfaction of accuracy and robustness demands
in high-tech systems, this dissertation focusses on supplementing model-based
control engineering by a data-based, model-free, automated optimization tech-
nique named extremum-seeking control. Attributable to its model-free nature,
extremum-seeking control is especially valuable in cases where the dynamical
behavior of the system at hand can not be represented by an accurate or com-
prehensible model, or cases where the disturbances are unknown, changing, or
mode-of-use dependent. Namely, this technique enables the possibility of achiev-
ing optimal system performance despite the lack of an (accurate) system model.

This dissertation presents newly developed extremum-seeking control meth-
ods that enable data-based automated performance optimization for a richer
class of optimization problems. The theoretical developments in this work are
inspired by a large variety of industrially relevant optimization problems, and are
experimentally demonstrated on industrial applications to illustrate the value it
may provide in supporting control engineers to get the most out of their high-tech
systems.
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Chapter 1

Introduction

1.1 Automatic control in the high-tech systems industry

Automatic control of dynamic processes is a key enabling methodology in a
substantial variety of technological innovations in many branches of our soci-
ety, and has proven indispensable in realizing the social welfare and economic
prosperity that we benefit today. This becomes particularly evident from the
broad range of high-tech industrial applications in which control plays a pivotal
role, ranging from photolithography systems in the semi-conductor industry to
instruments for research and analysis in biology, and life and material sciences
such as electron microscope systems, pick-and-place machinery in the manufac-
turing industry to industrial (three-dimensional) printing and copying systems,
robotics to medical imaging systems, and so on. Namely, these high-tech sys-
tems rely heavily on advanced control solutions, enabling exceptional machine
precision and high operating speeds, while guaranteeing reliability, stability, and
efficiency in machine usage. The importance of and dependence on automatic
control in the high-tech systems industry is expected to only increase in the
future (Lamnabhi-Lagarrigue et al., 2017).

Mechatronic system designs for high-tech applications in these areas of tech-
nology often rely on high-cost mechatronic solutions for system components such
as sensing equipment, bearings, actuators, transmissions, computational hard-
ware, communication technology, among others. These high-cost design choices
are usually made in favor of achieving highly predictable and understandable
system dynamics on the basis of accurate (mathematical) system models. These
models have enabled the use of conventional and well-understood control solu-
tions to meet stringent performance requirements in terms of machine accuracy,
operating speed, stability, and reliability. In particular, achieving top-level sys-
tem performance by means of these control solutions in the high-tech industry is
still largely realized by skillful control engineers on the basis of accurate system
models and expert knowledge. A benefit of such a model-based approach is the
fact that knowledge and experience of these control engineers on system dynam-
ics, disturbance characteristics, and performance specifications for the particular
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(a) ASML’s NXE:3300 lithography system1 (b) EUV light source system within
ASML’s lithography system2

Figure 1.1: Artist impression of next-generation extreme ultraviolet (EUV)
lithography system by company ASML.

application at hand can be exploited.

However, major economic, social and technological trends push performance,
cost, and reliability requirements for current and future high-tech systems to
unparalleled levels. For example, the ever-increasing demand for more function-
ality in, e.g., consumer electronics, and ongoing developments in, e.g., artificial
intelligence (AI) and automotive technology such as autonomous driving and
interacting cars, dictates the manufacturing of more powerful, smaller, cheaper,
and energy-efficient microchips. To achieve the imaging resolution and accu-
rate overlay1 required to manufacture these microchips, and achieve the desired
machine productivity for high-volume and reliable manufacturing, increasingly
complex lithography systems such as extreme ultraviolet (EUV) lithography
are devised and constructed, see, e.g., Fig 1.1 and Wagner and Harned (2010).
Another example can be found in electron microscope technology, which is re-
quired to provide ever-increasing magnification with extreme sample positioning
accuracy, e.g., for the purpose of fault and failure analysis in the nanometer
structures of ever-smaller integrated circuit designs, and to support research in
life sciences and biology. Currently, resolution advances in state-of-the-art cryo-
genic electron microscope systems enable the analysis of, e.g., protein structures,
molecular structures, and viruses at near atomic-resolution, see, e.g., Fig 1.2 and
Egelman (2016).

The inevitable and increasing complexity in terms of uncertainty and non-

1The image is acquired from Heertjes et al. (2016).
2The image is acquired from https://www.asml.com/en/investors/financial-calendar/past-

events-and-presentations, June 24th 2019 UBS Investor Forum presentation.
3Measure for the alignment of a lithographic pattern relative to a successive lithographic

pattern on a wafer.
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(a) Thermo Fisher’s cryogenic trans- (b) Images using Cryo-TEM. 3D visualization of
mission electron microscope a Golgi apparatus from a green alga with

Krios G4 Cryo-TEM1 2 nm resolution (left, Bykov et al. (2017)),
3D reconstruction of the GABA receptor
membrane protein with .275 nm resolution

(right,Masiulis et al. (2019)).

Figure 1.2: Cryogenic transmission electron microscope (Cryo-TEM) by com-
pany Thermo Fisher.

stationary nature of system dynamic properties and disturbances, and mode-of-
use dependent performance specifications in current high-tech systems and fu-
ture engineering developments, will progressively challenge purely model-based
approaches to automatic control and optimization. For example, the availability
of accurate, but simple system models for accurate system performance predic-
tions relies on physical insight and first-principle relations, which may be too
challenging with the increasingly complex technologies being developed. For in-
stance, accurate modelling of the working principle of Laser-Produced Plasma
(LPP) source systems for EUV light generation in next-generation lithography
systems, see, e.g., Fig. 1.1(b), may lead to far too complex models for control
(if possible at all). Namely, modelling of complex plasma physics phenomena
and droplet-laser interactions is required to study the generation of EUV light,
while modelling of and motion control design for the laser beam delivery system
within such an EUV light source is required for accurate positioning of driv-
ing lasers to realize optimal EUV light generation. Another example arises in
the use of nonlinear motion control methods to improve performance of mo-
tion systems in terms of improved disturbance rejection capabilities over the use
of well-known linear motion control methods. For example, methods such as

1The image is acquired from https://www.thermofisher.com/nl/en/home/electron-
microscopy/products/transmission-electron-microscopes/krios-g4-cryo-tem.html.
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nonlinear PID control (Zheng et al., 2005; Heertjes et al., 2009), variable-gain
control (van de Wouw et al., 2008; Pavlov et al., 2013), reset control (Clegg, 1958;
Aangenent et al., 2010; Beker et al., 2004; van Loon et al., 2017), split-path non-
linear integral control (van Loon et al., 2016; Foster et al., 1966) hybrid control
(Heertjes et al., 2019; Deenen et al., 2017) among others, can ensure superior
performance compared to that achievable by linear control strategies suffering
from fundamental limitations like Bode’s sensitivity integral (Freudenberg et al.,
2000; Seron et al., 1997). However, due to the lack of the superposition principle
in nonlinear motion control and the presence of (unknown and external) distur-
bances, the relation between tunable parameters and performance measures such
as positioning and reference tracking accuracy are non-trivial, thereby making
model-based performance optimization challenging and less intuitive for control
engineers.

Undoubtedly, system modelling will continue to serve as a basis for
(performance-optimal) control design. However, the increasing complexity, un-
certainty, and non-stationary nature of system dynamic properties and distur-
bances, and mode-of-use dependent performance specifications, constitute real
challenges in achieving optimal performance in current and future high-tech sys-
tems using merely model-based approaches. In those cases, the state-of-practice
control engineering intuition may fail in achieving optimal performance. To
account for changing, uncertain, or unknown dynamics and disturbance char-
acteristics, and enable the satisfaction of accuracy and robustness demands, a
lot can be gained by combining or supporting model-based control engineering
in future complex high-tech systems with data-based, automated and adaptive
performance optimization techniques.

1.2 Extremum-seeking control for data-based optimization

In this dissertation, data-based automated performance optimization of high-
tech systems is addressed by an adaptive control technique known as extremum-
seeking control. Extremum-seeking control is a data-driven and model-free
method for optimizing system performance in real-time, by continuously or iter-
atively adapting system parameters (Krstić and Wang, 2000; Teel and Popović,
2001; Nešić et al., 2010; Tan et al., 2006).

Fig. 1.3 depicts a schematic representation of an extremum-seeking con-
trol scheme, which typically consists of 1) a stable or stabilized system to-be-
optimized, for which we can tune or adapt certain input parameters and mea-
sure performance relevant outputs, 2) a user-defined cost function to quantify
the system performance on the basis of measurable outputs (and inputs), and 3)
an extremum-seeking controller that utilizes the measured system performance
to adapt the system inputs to their performance-optimal values. The majority
of extremum-seeking control techniques in the literature assume that, for con-
stant input parameters to the stable system, the (transient) dynamic behavior is
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System
Cost

function

Extremum-seeking
controller

tunable
inputs

measurable
outputs

system
performance

Figure 1.3: A schematic representation of an extremum-seeking control scheme.

sufficiently fast and all outputs of the system converge to constant steady-state
outputs, so-called equilibria solutions. In particular, the general requirement
in the extremum-seeking control literature is the existence of a time-invariant,
parameter-to-steady-state performance map, the extremum of which corresponds
to the optimal steady-state (equilibrium) plant performance (Krstić and Wang,
2000; Teel and Popović, 2001; Tan et al., 2006; Nešić et al., 2010; Guay and
Dochain, 2015). On the basis of an appropriate exploration of the system to-be
optimized, and without any (mathematical) models of the system or knowledge
about the performance map, extremum-seeking control is able to utilize the mea-
surements of the system performance and steer the tunable system inputs to that
extremum.

Due to its model-free nature, extremum-seeking control is especially valuable
in cases where the dynamic behavior of the system at hand can not be repre-
sented by an accurate or comprehensible model, or cases where the disturbances
are unknown, changing, or mode-of-use dependent. As a result, extremum-
seeking control and its practical application has been studied in many different
engineering domains, such as, e.g., internal combustion engines (Popović et al.,
2006; Killingsworth et al., 2009; van der Weijst et al., 2019; Mohammadi et al.,
2014), continuous variable transmissions (CVTs) (van der Meulen et al., 2012;
van der Meulen et al., 2014), anti-lock braking (ABS) systems (Drakunov et al.,
1995; Zhang and Ordónez, 2007; Dinçmen et al., 2014), nuclear fusion (Centioli
et al., 2005; Carnevale et al., 2009; Bolder et al., 2012; Lanctot et al., 2016), light
source systems for (EUV) lithography, (Ren et al., 2012), wind turbines (Cre-
aby et al., 2009; Johnson and Fritsch, 2012; Ghaffari et al., 2014; Xiao et al.,
2019), process and reaction systems (Wang et al., 1999; Guay et al., 2004; Bastin
et al., 2009; Dewasme et al., 2011), and high-precision motion systems (Haring
et al., 2013; Hunnekens et al., 2015). More examples of application domains of
extremum-seeking control are provided in the survey by Tan et al. (2010) and
references therein.
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1.2.1 Extremum-seeking control frameworks

Throughout the literature, two main extremum-seeking approaches to explo-
ration and optimization of general nonlinear systems can be identified. Namely,
so-called continuous-time approaches (see Fig. 1.4), and discrete or sampling-
based approaches (see Fig. 1.5). In continuous-time extremum-seeking control
approaches, optimization and exploration are performed continuously and si-
multaneously, while in sampling-based approaches, exploration is done through
sequential step-wise input variations and periodically-sampled output measure-
ments, and in which the optimization step is performed after the exploration
sequence is completed. Here, both approaches are briefly discussed.

Continuous-time extremum-seeking control

The working principle of the classical continuous-time extremum-seeking control
approach is schematically depicted in Fig. 1.4, see, e.g., Krstić and Wang (2000)
and Nešić et al. (2010). The scheme consists of the to-be-optimized dynamical
system and a user-defined cost function, a gradient estimator, and an optimizer.
For the dynamical system with cost function, it is assumed that there exists a
(unknown) static input-output relation between the (constant) system inputs
and the steady-state performance, denoted by F . Typically, the requirements
for the existence of such a static input-output relation have been formalized in
terms of (globally) asymptotic or exponential stability properties for dynamical
systems that admit equilibria solutions in steady-state for constant system in-
puts, see, e.g., Krstić and Wang (2000), Tan et al. (2006), Nešić et al. (2010).
In particular, the static input-output relation between the system inputs and
the steady-state performance of a dynamical system is characterized by these
equilibria solutions, which are dependent on the constant system inputs. Ex-
ploration of the input-output performance map F is usually done by perturbing
the system inputs with sinusoidal perturbation signals, so-called sinusoidal dither
signals (see the system input u depicted by ( ) in Fig. 1.4). On the basis of the
correlation between this continuous excitation and the continuously measured
outputs, the gradient estimator provides continuously an approximate gradient
of the input-output mapping, and hence the means to locate an extremum. Vari-
ous gradient estimators are proposed in the literature. In, e.g., Krstić and Wang
(2000) and Tan et al. (2006), band-pass filters are used to extract gradient in-
formation on the input-output map F from the measured outputs. In Haring
et al. (2013), a moving average filter for gradient estimation is proposed. In,
e.g., Haring (2016) and Moase and Manzie (2012), observers are employed to
provide a gradient estimate. Then, on the basis of the gradient estimation, a
gradient-based optimizer is typically employed to steer the tunable system input
towards its minimizer in real-time.

An important aspect in (continuous-time) extremum-seeking control is the
time-scale separation between the various elements in the extremum-seeking con-
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continuous-time extremum-seeking controller

u

t

System + cost function
with steady-state

input-output relation F

y

u

F

u∗ û

y

t

Gradient
estimator

Optimizer
û

+

dither

+

system inputs u

gradient
estimate

measurable
(cost) output y

dither

Figure 1.4: A schematic representation of the continuous-time extremum-seeking
control framework. The outputs depicted by ( ), ( ), and ( ), denote the
static output F (u), the steady-state system output ȳ(t), and the system output
y(t), respectively.

trol scheme, which explains the typical trade-off between accuracy and conver-
gence speed in extremum-seeking control. Namely, the measured system output
y, depicted by ( ) in Fig. 1.4, as used by the gradient estimator, differs from
the steady-state performance F , depicted by ( ) in Fig. 1.4, since the out-
put measurement y also contain transient behavior of the system dynamics and
the dynamical effect of the supplied perturbations in the system inputs. Typi-
cally, the supplied perturbations are designed to be small and slow enough. A
small perturbation amplitude allows for a more accurate gradient estimate of
F around the nominal input parameter û. In the presence of system dynam-
ics, a slow perturbation signal can lead to a measured output y, which suffers
less from transients and phase delay, leading to a better approximation of the
steady-state performance map F around û. However, in general, for a properly
working extremum-seeking control scheme, it is required that the dynamical sys-
tem operates on the fastest time-scale, the periodic perturbation operates on a
medium time-scale, and the gradient estimator with optimizer operates on the
slowest time-scale (Krstić and Wang, 2000). As a result, slow periodic perturba-
tion signals for improved accuracy of extremum-seeking schemes typically comes
at the expense of a deterioration of convergence speed.
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The required time-scale separation typically limits the convergence speed
of extremum-seeking schemes. Nevertheless, the idea of time-scale separation
between the adaptation mechanism and the system dynamics is important to
be able to reach the unknown extremum in this dynamic context. Moreover,
the time-scale separation has also been exploited in the analysis of stability of
many closed-loop extremum-seeking schemes, see, e.g., Krstić and Wang (2000),
Tan et al. (2006), Dürr et al. (2017), Nešić et al. (2010), Haring et al. (2013),
Nešić (2009). Specifically, in Tan et al. (2006), Haring et al. (2013), and Nešić
(2009), it is shown that semi-global practical asymptotic stability of the closed-
loop extremum-seeking scheme is achievable under appropriate conditions. In
particular, it is shown, under appropriate assumptions, that for an arbitrarily
large set of initial conditions for the dynamical system and the extremum-seeking
controller, there exist settings for the extremum-seeking controller so that all
solutions of the closed-loop extremum-seeking scheme converge to an arbitrarily
small neighborhood of the extremum (see Tan et al. (2006, Definition 1) for a
more rigorous definition of semi-global practical asymptotic stability). Reducing
the extremum-seeking controller parameters such as the perturbation amplitude,
perturbation frequency, and optimizer gain, typically increases the domain of
attraction and reduces the size of the neighborhood of convergence. However, the
improved convergence accuracy by reduction of these parameters often comes at
the expense of a reduced convergence speed of the closed-loop extremum-seeking
schemes.

Extensions to the classical continuous-time extremum-seeking control frame-
work have been provided in the literature to, e.g., improve convergence speed
and accuracy of the closed-loop extremum-seeking scheme. In Krstić (2000),
dynamic compensators are added to the extremum-seeking scheme to improve
convergence speed. In Tan et al. (2008), the use of different non-sinusoidal pe-
riodic perturbations in an extremum-seeking context is studied to enable faster
convergence to the extremum. Dither signals with a time-varying amplitude are
studied that can lead to asymptotic convergence to the extremum (Stanković
and Stipanović, 2010; Moura and Chang, 2013; Haring and Johansen, 2018)
as opposed to often practical asymptotic convergence to the extremum. Using
time-varying dither amplitudes can even lead to the ability to find the global
extremum amongst multiple local extrema (Tan et al., 2008; Nešić, 2009). Even
dither-free or self-driving approaches have emerged, which can lead to faster
and asymptotic convergence to the extremum as well, but without the disad-
vantage of externally supplied excitations (Frait and Eckman, 1962; Carnevale
et al., 2009; Hunnekens et al., 2014; Castanos and Kunusch, 2015; Haring, 2016).
For systems with a so-called (Wiener-)Hammerstein structure, that is, a series
connection of (linear dynamics followed by) a static nonlinearity and linear dy-
namics, and under the assumption that prior knowledge about the system’s
relative order is available, arbitrarily fast convergence of the extremum-seeking
scheme is achievable under high-frequency perturbation (Atta and Guay., 2017;
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Figure 1.5: A schematic representation of the sampled-data extremum-seeking
control framework. The outputs depicted by ( ), and ( ) denote the static
output F (u), and the system output y(t), respectively.

Moase and Manzie, 2012; Moase and Manzie, 2012).

Sampled-data extremum-seeking control

The working principle of the sampled-data extremum-seeking control approach is
schematically depicted in Fig. 1.5, see, e.g., Teel and Popović (2001), Kvaternik
and Pavel (2011) and Khong et al. (2013b). The sampled-data scheme consists of
the interconnection of the to-be-optimized dynamical system and a user-defined
cost function, a T -periodic sampler, a zero-order-hold, and some (discrete-time)
optimization algorithm. Similar to the continuous-time setting, it is assumed
that there exists a (unknown) static input-output relation between the system
inputs and the steady-state performance, denoted by F . Also, the requirements
for the existence of such a static input-output relation have been formalized in
terms of (globally) asymptotic or exponential stability properties for dynami-
cal systems that admit equilibria solutions in steady-state for constant system
inputs, see, e.g., Teel and Popović (2001), Kvaternik and Pavel (2011), Khong
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et al. (2013b). In this sampled-data context, exploration of the input-output
performance map F is done by supplying a sequence of n step-like inputs to
the system (see the system input u depicted by ( ) in Fig. 1.5), and, for each
step input and after a user-defined waiting time T > 0, the output measurement
y, depicted by ( ) in Fig. 1.5, is sampled and stored. The waiting time T is
selected sufficiently long and the step-size is typically selected small, such that
the transient behavior of the system dynamics has sufficiently decayed and the
output measurements indeed reflect the steady-state performance of the system.
The tuning guidelines for the waiting time and step size are the sampled-data
equivalent of the tuning guidelines for the perturbation frequency and ampli-
tude of the dither signals in the continuous-time extremum-seeking context. On
the basis of a suitable discrete-time optimization algorithm, dedicated step-like
inputs, and the T -periodically sampled outputs, an update of the input after
nT seconds can be realized using the optimization algorithm that will bring the
nominal input closer to the extremum. For example, a gradient-descent opti-
mization algorithm can be employed, the gradient of which can be estimated
by using finite difference computations, and for which the elements of the fi-
nite difference computation can be obtained by supplying n = 2 distinct inputs
and sampling the respective system outputs, see, e.g., Teel and Popović (2001),
Khong et al. (2013).

Different from the continuous-time approach in, e.g., Krstić andWang (2000),
which comes with certain smoothness requirements on the dynamics of the sys-
tem, assumptions of convexity on the steady-state performance map, and for
which the extremum-seeking controller is typically gradient-based, the periodic
sampled-data framework in Teel and Popović (2001) allows for the use of a
wide class of smooth and nonsmooth optimization algorithms for achieving opti-
mization of a larger class of nonlinear, possibly infinite-dimensional, dynamical
systems. Namely, the sampled-data extremum-seeking framework in Teel and
Popović (2001) requires less stringent assumptions on the system dynamics and
convergence properties of the extremum-seeking algorithms. Additionally, the
sampled-data framework in Khong et al. (2013b), which provides an extension of
the work in Teel and Popović (2001), also encompasses sampling-based (global)
optimization methods capable of non-convex optimization, enabling extremum
seeking for an even wider class of (global) optimization problems, see, e.g., Khong
et al. (2013a). Namely, their framework relies on the notion of attractivity as
opposed to asymptotic stability of the extremum-seeking algorithms, allowing
sampling-based, global optimization algorithms such as the so-called DIRECT
and Shubert algorithms (see Jones et al. (1993) and Shubert (1972), respectively)
for non-convex optimization problems.
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1.2.2 Challenges for optimization of high-tech systems

Both the continuous-time and sampled-data extremum-seeking control frame-
works have proven successful in many engineering domains. Moreover, many
extensions and adaptations to, and analysis tools for, the classical continuous-
time and sampled-data extremum-seeking control methods in Krstić and Wang
(2000) and Teel and Popović (2001), respectively, are provided throughout the
literature. However, for data-based performance optimization in the context of
high-tech systems, the state-of-practice extremum-seeking control methods face
three major challenges which we discuss here.

Optimization of time-varying steady-state behavior in high-tech systems

In the first place, extremum-seeking control methods are tailored primarily to-
wards the steady-state performance optimization of systems that admit equi-
libria solutions (Krstić and Wang, 2000; Tan et al., 2006; Nešić et al., 2010),
or periodic system responses with a known period time (Haring et al., 2013;
Wang and Krstić, 2000; Guay et al., 2007). Performance of high-tech systems,
however, is generally related to generically time-varying steady-state behavior,
and the dynamical behavior of these high-tech systems is heavily dependent on
(time-varying) disturbances, reference trajectories, and the operating condition
at hand. In particular, time-varying system behavior emerges, for example, in
reference tracking or disturbance attenuation problems, which are encountered,
for example, in industrial motion systems, such as, pick-and-place systems (van
Loon et al., 2016), electron microscopes, and wafer scanning systems (Heert-
jes and Nijmeijer, 2012; Heertjes et al., 2009). To enable extremum-seeking
control for data-based performance optimization of time-varying steady-state
behavior in high-tech systems, it is essential to consider generically time-varying
disturbances and the resulting to-be-optimized system performance in terms of
generically time-varying state responses an integral part of the extremum-seeking
control problem formulation.

Sampled-data extremum-seeking and constrained optimization

In the second place, extremum-seeking control methods are generally focussed
on finding tunable system parameters that optimize steady-state system per-
formance. However, many complex high-tech systems also have to deal with
constraints on operating conditions, originating from constraints on measurable
variables, while the relation between the constraints and the system inputs is
unknown. Indeed, constraints on measurable variables are typically unknown
in terms of their relationship with the tunable parameters. These constraints
may conflict with the otherwise performance-optimal operational condition of
these (high-tech) systems, and should be taken into account in the extremum-
seeking optimization procedure. Extremum-seeking approaches for constrained
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optimization problems with unknown but measurable constraint functions are
studied in, e.g., Srinivasan et al. (2008), Guay et al. (2015), Dürr et al. (2013),
van der Weijst et al. (2019), Ramos et al. (2017) and Liao et al. (2019), how-
ever, solely in the continuous-time extremum-seeking setting. The sampled-
data extremum-seeking setting, however, is compelling, given the larger class of
nonlinear, possibly infinite-dimensional, systems it addresses, and the potential
of including diverse types of optimization algorithms (Teel and Popović, 2001;
Khong et al., 2013b). This would allow the use of extremum-seeking control for
a richer class of optimization problems, relevant in the scope of the performance
optimization of high-tech systems.

Transient performance optimization in high-tech systems

In the third place, extremum-seeking control is aimed at finding constant in-
put parameters that optimize the steady-state behavior of dynamical systems,
while transient behavior in many high-tech systems may impair the achievable
performance. Data-driven, transient performance optimization techniques such
as, e.g., iterative learning control (ILC) (Moore et al., 1993; Longman, 2000;
Steinbuch and van de Molengraft, 2000; Bristow et al., 2006), and repetitive
control (RC) (Wang et al., 2009; Hara et al., 1988), are able to improve (tran-
sient) performance of industrial systems that perform time-varying, repetitive
tasks or are subject to time-varying, repetitive disturbances. However, classical
ILC and RC require (accurate) model knowledge to achieve and guarantee fast
convergence, while extremum-seeking control is able to deal with unknown, un-
certain, time-varying and general nonlinear systems. Extremum-seeking control
in the context of iterative learning control and optimizing transient behavior has
been studied in, e.g., Killingsworth and Krstic (2006), Ren et al. (2012), Frihauf
et al. (2013), Khong et al. (2016), Benosman (2016). Killingsworth and Krstic
(2006) and Benosman (2016) iteratively tune PID controllers having constant
gains, and in Ren et al. (2012) and Khong et al. (2016) a time-varying, step-like
system input signal is tuned. However, system performance may benefit from
a more generic, time-varying, system input obtained through extremum-seeking
control to shape the transient behavior of general nonlinear systems.

1.3 Objectives and contributions of the dissertation

This dissertation presents novel extremum-seeking control methods that enable
data-based performance optimization for a richer class of optimization prob-
lems, such as i) the data-based optimization of generic time-varying system
behavior, ii) data-based, constrained optimization on the basis of measurable
to-be-optimized objective function and constraint functions, and iii) data-based,
transient performance optimization for repetitive system operations on fixed-
time intervals. The developments in this dissertation in data-based optimization
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through extremum-seeking control are inspired by a large variety of industrially-
relevant optimization problems, and are experimentally demonstrated to illus-
trate their value in supporting model-based control engineering.

First, the main objectives of this dissertation are highlighted. Second, the
contributions of this dissertation are outlined.

1.3.1 Objectives

In view of the challenges described in Section 1.2, we can formulate four main
objectives of this dissertation. The first objective can be formalized as follows:

Objective 1. Develop an extremum-seeking control method for the data-based
optimization of time-varying steady-state responses of general nonlinear systems,
which is applicable for the optimization of time-varying behavior in industrial
high-tech systems.

The second objective can be formalized as follows:

Objective 2. Develop a sampled-data extremum-seeking control framework for
data-based constrained optimization of nonlinear dynamical systems, in which
information on system performance and constraints on system inputs is solely
obtainable through output measurements.

The third objective can be formalized as follows:

Objective 3. Develop a sampled-data extremum-seeking control method for op-
timization of transient system behavior, inspired by and applicable to optimiza-
tion of time-varying, repetitive tasks in high-tech positioning systems.

The fourth objective can be formalized as follows:

Objective 4. Implementation and validation of the developed extremum-seeking
control methods in industrially-relevant case studies.

The main contributions of this dissertation are outlined in the next section.

1.3.2 Contributions

The five main contributions of this dissertation are directly related to the four
objectives mentioned above.

Contribution 1. The first main contribution, addressing Objective 1 and
presented in Chapter 2, is the development of a novel extremum-seeking con-
trol approach for optimization of generically time-varying steady-state behav-
ior of nonlinear dynamical systems. In particular, an extension of the class of
extremum-seeking problems from those involving equilibria solutions or periodic
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time-varying steady-state responses, to those involving systems exhibiting gener-
ically time-varying steady-state responses is provided. Generically time-varying
disturbances and the resulting to-be-optimized performance, characterized in
terms of generically time-varying steady-state system responses, are considered
an integral part in the extremum-seeking control problem formulation. The
convergent systems property is exploited, being the time-varying analogue of
the global exponential stability property for systems with equilibria solutions as
commonly exploited in the extremum-seeking control literature, and is essential
in this generic, time-varying extremum-seeking context. A series connection of
a user-defined static cost function and user-defined generic filter structure, the
so-called dynamic cost function, is introduced to facilitate the use of extremum
seeking control in this more generic, time-varying context. Semi-global practi-
cal asymptotic stability of the closed-loop extremum-seeking control scheme is
proven in the presence of bounded and time-varying external disturbances.

Contribution 2. The second contribution, addressing Objective 1 and pre-
sented in Chapter 3, is a novel extension of the observer-based extremum-seeking
control strategy for optimization of generically time-varying steady-state be-
havior of nonlinear dynamical systems, exploited in Chapter 2. The extended
approach exploits knowledge about the user-defined dynamic cost function in
the observer-based extremum-seeking control strategy employed in Chapter 2 to
cope with the additional time-scale introduced by the dynamic cost function,
and facilitates enhanced convergence speed of the resulting extremum-seeking
control scheme. Moreover, a stability analysis for this extended approach is
performed.

Contribution 3. The third contribution, addressing Objective 2 and pre-
sented in Chapter 4, is the development of a sampled-data extremum-seeking con-
trol framework for constrained optimization of nonlinear dynamical systems. In
particular, an extension of the classical sampled-data extremum-seeking frame-
work is provided that encompasses 1) a class of dynamical systems in which both
the to-be-optimized objective function and the constraint functions are available
through measurement only, and 2) a class of smooth and nonsmooth optimiza-
tion algorithms to facilitate extremum-seeking in the presence of unknown but
measurable constraints, inspired by the use of barrier function methods. Un-
der the assumption that the initialization of the system inputs yield operating
conditions that do not violate the constraints, it is proven that 1) the result-
ing closed-loop dynamics is stable, 2) steady-state constraint satisfaction of the
inputs is guaranteed for all iterations of the optimization process, and 3) con-
strained optimization is achieved.

Contribution 4. The fourth contribution, addressing Objective 3 and pre-
sented in Chapter 5, is the development of an iterative learning control strategy
based on extremum-seeking control for high-accuracy repetitive setpoint control of
frictional motion systems. First, a novel proportional-integral-derivative-based
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controller with a time-varying integrator gain design is proposed that facilitates
improved time-domain behavior in terms of overshoot and setpoint accuracy for
repetitive motion in frictional motion systems. Second, on the basis of a suit-
able basis function parametrization, the optimal time-varying integrator gain
design is obtained through an automatic iterative controller tuning procedure
based on a sampled-data extremum-seeking algorithm, ensuring optimal setpoint
positioning accuracy despite unknown friction characteristics and unknown dis-
turbances.

Contribution 5. The fifth contribution, addressing Objective 4, is the im-
plementation and (experimental) validation of the Contributions 1 to 4 in
industrially-relevant case studies. The working principle of the developed
extremum-seeking method for optimization of time-varying steady-state system
behavior in Chapter 2, and described in Contribution 1, is illustrated in simula-
tion by means of the real-time performance optimal tuning of a nonlinear control
strategy for a motion control application. The effectiveness of the extremum-
seeking control methods for optimization of time-varying steady-state system
behavior in Chapters 2 and 3, and described in Contributions 1 and 2, respec-
tively, are both evidenced experimentally in Chapter 3 by application to an in-
dustrial motion stage set-up which represents the short-stroke motion of a wafer
stage system commonly found within lithography systems. The working princi-
ple of the proposed sampled-data extremum-seeking framework for constrained
optimization in Chapter 4, and described in Contribution 3, is illustrated by
means of a representative industrial case study of constrained optimization of
extreme ultraviolet light generation in a laser produced plasma source system
within a state-of-the-art lithography system. The effectiveness of the proposed
approach for transient performance optimization in Chapter 5, and described
in Contribution 4, is evidenced experimentally by application to an industrial
nano-positioning motion stage set-up of a high-end electron microscope.

1.4 Outline of the dissertation

This dissertation consists of three parts; Part I, entitled Continuous-time
extremum-seeking control, consists of Chapters 2 and 3, part II, entitled Sampled-
data extremum-seeking control, consists of Chapters 4 and 5, and part III, enti-
tled Closing, consists of Chapter 6. All chapters, except Chapter 6, are based on
research papers, and are therefore self contained and can be read independently.

Part I: Continuous-time extremum-seeking control

Chapters 2 and 3 present novel continuous-time extremum-seeking control
methods for the optimization of time-varying steady-state responses of general
nonlinear systems. In Chapter 2, the effectiveness of the approach is illustrated
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by the real-time performance optimal tuning of a nonlinear control strategy for
a motion control application.

InChapter 3, an extension of the continuous-time extremum-seeking control
method from Chapter 2 is presented, which enables enhanced convergence speed
of the extremum-seeking scheme compared to the one in Chapter 2. In Chap-

ter 3, the methods presented in Chapters 2 and 3 are experimentally demon-
strated for the performance-optimal tuning of a variable-gain control strategy
employed on a high-accuracy industrial motion stage set-up.

Part II: Sampled-data extremum-seeking control

Chapter 4 presents a sampled-data extremum-seeking control framework for
constrained optimization of nonlinear dynamical systems. The working principle
of the proposed framework is illustrated by means of an industrial case study of
the constrained optimization of extreme ultraviolet light generation in a laser-
produced plasma source within a state-of-the-art lithography system.

Chapter 5 presents a novel proportional-integral-derivative (PID) based
feedback controller with a time-varying integrator gain design to enable supe-
rior setpoint performance for frictional motion systems in a repetitive motion
setting. A sampled-data extremum-seeking control architecture is employed to
ensure optimal setpoint positioning accuracy and enable transient performance
optimization. The method is evidenced experimentally by application to an in-
dustrial nano-positioning motion stage set-up of a high-end electron microscope.

Part III: Closing

Chapter 6 presents conclusions and recommendations for future research.

1.5 Dissertation as part of research programme CHAMeleon

The research presented in this dissertation has been performed within the
research programme CHAMeleon: Hybrid solutions for cost-aware high-
performance motion control. This project is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO) under project number 13896.

The objective envisioned in this research programme is to develop novel con-
trol techniques that are able to cope with the tradeoffs between, on the one
hand, system cost and performance, and on the other hand, system performance
and adaptability to changing operating conditions. Moreover, the research pro-
gramme envisions these novel control techniques to have practical value in the
high-tech systems industry. The research programme consists of two main top-
ics. Topic I focusses on the development of novel control strategies that i) are
able to deal with nonlinear effects in high-tech (motion) systems such as, e.g.,
friction, originating from the use of cost-aware hardware components, and ii)
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venture beyond the state-of-practice, often linear, control strategies, to over-
come fundamental limitations in linear motion control by means of hybrid and
nonlinear control solutions. Topic II involves the development of data-driven
performance optimization techniques to ensure optimal performance in diverse,
uncertain, and changing conditions of machine usage.

The research reported in this dissertation has been mainly devoted to
Topic II. Chapters 2 and 3 present novel data-driven performance optimiza-
tion techniques to cope with generic time-varying system behavior, and en-
able optimal performance in complex high-tech systems. Chapter 4 presents
a novel framework in which data-driven, constrained performance optimization
for generic dynamical systems is achievable, ensuring optimal and safe oper-
ating conditions of machine usage. Additionally, in Chapter 5 a novel control
architecture has been proposed to enable high-accuracy repetitive positioning of
frictional motion systems, which benefits from similar optimization techniques
as developed in Chapter 4, but at the same time contributes to Topic I.

All contributions in this dissertation are inspired by case studies from the
high-tech systems industry amongst others, and (experimental) validation of the
developments in this dissertation are done in collaboration with the industrial
partners ASML and Thermo Fisher of the research programme.









Chapter 2

Extremum-seeking control for optimization

of time-varying steady-state responses of

nonlinear systems

Abstract - Extremum-seeking control is a useful tool for the steady-state per-
formance optimization of plants for which limited knowledge about its dynamical
behavior and disturbance situation is known. The case when the steady-state
plant responses correspond to equilibrium solutions received a lot of attention.
However, in many industrial applications plant performance is characterized by
time-varying steady-state behavior, generally induced by complex disturbances
and reference trajectories. In those cases, no static parameter-to-steady-state
performance map can be defined, which limits state-of-practice extremum-seeking
control approaches in achieving optimal system performance. In this chapter,
an extremum-seeking control method is proposed for optimization of generically
time-varying steady-state behavior of nonlinear dynamical systems. Generically
time-varying disturbances and the resulting to-be-optimized performance, char-
acterized in terms of generically time-varying steady-state system responses, are
considered an integral part in the extremum-seeking control problem formulation.
The proposed extremum-seeking control method utilizes a so-called dynamic cost
function to cope with time-varying steady-state responses of general nonlinear
systems, and enables securing performance-optimal operating conditions. Semi-
global practical asymptotic stability of the closed-loop extremum-seeking control
scheme is proven in the presence of bounded and time-varying external distur-
bances. Moreover, the working principle of the extremum-seeking control method
is illustrated by means of the real-time performance-optimal tuning of a nonlinear
control strategy for a motion control application.

The content of this chapter is based on: L. Hazeleger, M. Haring, N. van de Wouw,
Extremum-seeking control for optimization of time-varying steady-state responses of nonlinear
systems. Automatica (2020) 109068, https://doi.org/10.1016/j.automatica.2020.109068.
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2.1 Introduction

In most of the work on extremum-seeking control (ESC), the general require-
ment for optimizing performance of a stable or stabilized plant is the existence
of a (unknown) time-invariant parameter-to-steady-state performance map, i.e.,
a static input-output relation between tunable plant parameters and the steady-
state plant performance, the extremum of which corresponds to the optimal
steady-state (equilibrium) plant performance, see, e.g., Krstić and Wang (2000),
Teel and Popović (2001), Tan et al. (2006), Nešić et al. (2010), Dürr et al.
(2017), and Guay and Dochain (2015). In those references, the requirements
for the existence of such a static input-output relation have been formalized in
terms of stability properties for dynamical systems that admit equilibria solu-
tions in steady-state. Even in the presence of (high-frequency) measurement
noise, see, e.g., Zhang and Ordónez (2009), Stanković and Stipanović (2010), Fu
and Özgüner (2011), Tan et al. (2010), Haring and Johansen (2018), and Har-
ing (2016), extremum-seeking in the equilibrium setting to a neighborhood of
the optimum can be achieved, the size of which is often dependent on the noise
level. However, in many (industrial) applications plant performance is generally
related to generic, time-varying steady-state plant behavior. In those cases, no
static parameter-to-steady-state performance map can be defined, limiting state-
of-practice extremum-seeking control approaches in achieving optimal system
performance. Time-varying plant behavior emerges, for example, in reference
tracking or disturbance attenuation problems, which are encountered, for ex-
ample, in industrial motion systems, such as, pick-and-place systems (van Loon
et al., 2016), electron microscopes, and wafer scanning systems (Heertjes and
Nijmeijer, 2012; Heertjes et al., 2009). In those examples, optimal steady-state
plant performance and the corresponding optimal tuning of plant parameters
are heavily dependent on the (time-varying) disturbance situation and reference
trajectory at hand. Therefore, it is essential to consider generically time-varying
disturbances and the resulting to-be-optimized plant performance in terms of
generically time-varying steady-state responses an integral part of the ESC prob-
lem formulation for performance optimization of time-varying steady-state plant
behavior.

In Wang and Krstić (2000), Guay et al. (2007), and Haring et al. (2013),
ESC approaches have been proposed to deal with time-varying, periodic steady-
state plant behavior. Key in the proposed approaches is the design of a cost
function that defines a constant performance measure in terms of the periodic
steady-state plant response. In Wang and Krstić (2000), a so-called detector
is proposed that is able to capture the amplitude of sinusoidal-like limit cycle
responses, and has been exploited in, e.g., resonant mode-matching of vibrat-
ing gyroscopes (Antonello et al., 2009), sawtooth period control in tokamaks
(Bolder et al., 2012), instability control of gas turbine combustors (Banaszuk
et al., 2004), and suppression of subsonic cavity flow resonances (Kim et al.,
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2009). In Guay et al. (2007), a class of differentially flat periodic nonlinear sys-
tems is considered. By exploiting flatness and explicit plant knowledge, a period
of the periodic steady-state plant output and the corresponding steady-state
plant performance are computed. In Höffner et al. (2007), a similar approach is
pursued for a class of periodic Hamiltonian systems. In Haring et al. (2013), gen-
eral nonlinear plants with arbitrary periodic steady-state responses with known
period time are considered. A cost functional based on an Lp-norm, evaluated
over the known periodic time interval, is employed that links periodic steady-
state responses to a time-invariant performance measure. In Hunnekens et al.
(2015), this method was experimentally demonstrated for the adaptive design of
variable-gain controllers for a motion control application. In many (industrial)
applications, however, the steady-state response characterizing system perfor-
mance is generically time-varying, and periodicity of the steady-state response
is not evident due to the fact that responses can be induced by complex time-
varying (non-periodic) disturbances and reference signals. In such generic cases,
a static parameter-to-steady-state performance map may not be readily defined
as in the periodic cases in Hunnekens et al. (2015), Wang and Krstić (2000), and
Haring et al. (2013).

In this chapter, an extremum-seeking control method is proposed to opti-
mize generic time-varying steady-state behavior of general nonlinear systems.
The method utilizes a so-called dynamic cost function to cope with the time-
varying system behavior, and allows for the characterization of a time-invariant
parameter-to-steady-state performance map. The ESC problem formulation pre-
sented in this chapter generalizes the work in Haring and Johansen (2018) in the
sense that, in this work, generically time-varying disturbances and resulting
to-be-optimized performance characterized in terms of generically time-varying
steady-state responses are considered an integral part of the ESC problem for-
mulation. In general, we extend the class of problems from those involving dy-
namical systems admitting equilibria solutions, as mostly considered in ESC lit-
erature, or periodically time-varying steady-state responses in Wang and Krstić
(2000), Guay et al. (2007), and Haring et al. (2013), to those involving sys-
tems exhibiting generically time-varying steady-state responses. We prove semi-
global practical asymptotic stability of the closed-loop extremum-seeking control
scheme that includes general nonlinear systems subject to bounded and time-
varying external disturbances. The region to which the ESC scheme converges
can be made arbitrarily small, even in the presence of generically time-varying,
bounded disturbances. Moreover, the working principle of the extremum-seeking
control method is illustrated by means of the real-time performance-optimal tun-
ing of a nonlinear control strategy for a motion control application within an
industrial wafer scanner exhibiting time-varying steady-state responses.

Other works, which have studied extremum-seeking control in the presence of
time-varying system behavior, are, e.g., Scheinker and Krstić (2014), Scheinker
and Scheinker (2016) and Scheinker and Krstić (2013). In these references,
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extremum-seeking controllers are utilized directly as feedback controller, able to,
on the one hand, control unstable and time-varying input-affine systems, and on
the other hand, optimize steady-state equilibria in the presence of noise. We care
to emphasize that, in this chapter, we consider the problem of optimizing time-
varying steady-state responses of stable or stabilized plants, which is a different
problem from the one considered in Scheinker and Krstić (2014), Scheinker and
Scheinker (2016) and Scheinker and Krstić (2013). Moreover, we remark that
the methods in Scheinker and Krstić (2014), Scheinker and Scheinker (2016) and
Scheinker and Krstić (2013) typically rely on high dither frequencies relative
to the time-varying system dynamics, while the ESC method proposed in this
chapter can employ small dither frequencies relative to the time-varying system
dynamics, even in the presence of high-frequency disturbances. Additionally, in
the case of extremum-seeking control for already stable or stabilized systems,
the class of systems considered in this chapter is more general.

ESC for slowly time-varying performance maps is considered in, e.g.,
Grushkovskaya et al. (2017), Sahneh et al. (2012), Cao et al. (2017), Fu and
Özgüner (2011), and Rušiti et al. (2019). Herein, optimal plant performance
is obtained by tracking optimal, slowly time-varying, plant parameters. We re-
mark that this problem setting is different from the one considered in this chap-
ter. Namely, we consider the problem of optimizing static performance maps
in the spirit of Hunnekens et al. (2015), Wang and Krstić (2000), and Haring
et al. (2013), although more general in terms of the time-varying nature of the
disturbances. We propose an ESC method that seeks constant plant parameter
settings that optimize steady-state plant performance in terms of time-varying
steady-state system responses.

The main contributions of this chapter can be summarized as follows. The
first contribution is the proposition of an ESC approach for the optimization
of general, time-varying steady-state responses of general nonlinear systems.
A so-called dynamic cost function in terms of generically time-varying out-
put responses is utilized, allowing for the characterization of a time-invariant
parameter-to-steady-state performance map. The second contribution is a semi-
global practical stability analysis of the closed-loop ESC scheme that includes
general nonlinear systems that are subject to bounded and time-varying exter-
nal disturbances. The region to which the ESC scheme converges can be made
arbitrarily small, even in the presence of generically time-varying, bounded dis-
turbances. The third contribution is a demonstration of the ESC approach by
means of a case study of the performance-optimal tuning of a nonlinear control
strategy for a motion control application.

The chapter is organized as follows. Section 2.2 presents the problem formu-
lation. Section 2.3 gives the extremum-seeking controller. In Section 2.4, the
semi-global practical asymptotic stability result is stated and proven. In Section
2.5, an industrial case study is provided. Section 2.6 closes with conclusions.
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2.2 Extremum-seeking control problem formulation for opti-

mization of time-varying steady-state system responses

Consider the following generic description of a multiple-input-multiple-output
nonlinear system:

Σp :

{

ẋ(t) = f(x(t),u(t),w(t))

e(t) = g(x(t),u(t),w(t)),
(2.1)

where x ∈ Rnx denotes the state of the system, u ∈ Rnu denotes the input of the
system, e ∈ Rne denotes the output of the system, w ∈ Rnw are disturbances,
and t ∈ R is time. In the context of ESC, Σp represents the system to be
optimized, where the input u can be regarded as a vector of tunable system
parameters, the output e can be regarded as a vector of measured performance
variables, and w are piecewise continuous (time-varying) disturbances, defined
and bounded on t ∈ R. We denote this class of disturbances by PCw, and define
the following set of disturbances:

W := {w ∈ PCw : ‖w(t)‖ ≤ ρw ∀ t ∈ R} (2.2)

with ρw ∈ R>0.

Remark 2.1. In this chapter, we consider the time-varying disturbances w(t)
to be of an external nature. In particular, we consider the external disturbances
to be independent of the tunable system inputs u. A problem setting in which
disturbances are dependent on (variations of) the system inputs, for example,
disturbances caused complex interactions between various subcomponents within
a complex system which may vary with the tunable system parameters u, are
not considered in this chapter. On the other hand, the effect of the external
disturbances w(t) on the measurable performance variable e may depend on the
system inputs u.

Although the functions f and g in (2.1) are considered unknown, we adopt
the following assumption.

Assumption 2.2. The functions f : Rnx × Rnu × Rnw → Rnx and g : Rnx ×
R
nu×Rnw → R

ne are twice continuously differentiable in x and u and continuous
in w. Moreover, given any disturbance w ∈ W, there exist constants Lfx, Lfu,
Lgx, Lgu ∈ R>0 such that

∥

∥

∥

∥

∂f

∂x
(x,u,w)

∥

∥

∥

∥

≤ Lfx,

∥

∥

∥

∥

∂f

∂u
(x,u,w)

∥

∥

∥

∥

≤ Lfu,

∥

∥

∥

∥

∂g

∂x
(x,u,w)

∥

∥

∥

∥

≤ Lgx,

∥

∥

∥

∥

∂g

∂u
(x,u,w)

∥

∥

∥

∥

≤ Lgu,

(2.3)

for all x ∈ Rnx , and all u ∈ Rnu .
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To define the class of systems considered in the ESC problem setting, we
first give a definition of so-called convergent systems which we have adopted
from Pavlov et al. (2006). Thereto, consider a system of the form

ẋ = F(x, t), (2.4)

where x ∈ Rnx , t ∈ R, and F(x, t) locally Lipschitz in x and piecewise continuous
in t.

Definition 2.3. (Pavlov et al., 2006, Section 2.2.1, Definition 2.14). System
(2.4) is said to be

• convergent in a set X ⊂ Rnx if there exists a solution x̄(t), called the
steady-state solution, satisfying the following conditions:

i) x̄(t) is defined and bounded for all t ∈ R,

ii) x̄(t) is asymptotically stable in X .
• uniformly convergent in X if it is convergent in X and x̄(t) is uniformly
asymptotically stable in X .
• exponentially convergent in X if it is convergent in X and x̄(t) is exponen-
tially stable in X .
• uniformly exponentially convergent in X if it is convergent in X and x̄(t)
is uniformly exponentially stable in X .

If system (2.4) is (uniformly, exponentially) convergent in X = Rnx , then it is
called globally (uniformly, exponentially) convergent.

From Definition 2.3 we have that, if the system is globally, uniformly con-
vergent, then there exists a KL-function β(r, s) such that the solution x(t) of
system (2.6) satisfies

‖x(t)− x̄(t)‖ ≤ β(‖x(t0)− x̄(t0)‖, t− t0). (2.5)

The time-dependency of the right-hand side of the system in (2.4) can usually
be attributed to some input, for example, a disturbance or a control input.
The next definition defines the convergence property for systems with inputs.
Thereto, consider a system of the form

ẋ = F(x,v(t)), (2.6)

with state x ∈ Rnx , input v ∈ Rnv , and F(x,v) locally Lipschitz in x and
continuous in v.

Definition 2.4. (Pavlov et al., 2006, Section 2.2.2, Definition 2.16). System
(2.6) is said to be (uniformly, exponentially) convergent in X ⊂ Rnx for a class
of inputs V ⊂ PCv if it is (uniformly, exponentially) convergent in X for every
input v(·) ∈ V. In order to emphasize the dependency of the steady-state solution
on the input v(t), it is denoted by x̄v(t).
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The following definition is useful for studying the convergence property of
interconnected systems.

Definition 2.5. (Pavlov et al., 2006, Section 2.2.2, Definition 2.18). System
(2.6) is said to be (exponentially) input-to-state convergent if it is globally uni-
formly (exponentially) convergent for the class of inputs PCv, and for every
input v(·) ∈ PCv system (2.6) is input-to-state stable (ISS) with respect to the
steady-state solution x̄v(t), i.e., given an input v(·) ∈ PCv there exist a KL-
function β(r, s) and a K∞-function γ(r) such that the solution x(t) of system
(2.6) corresponding to some perturbed input v̂(t) := v(t) + ∆v(t) satisfies

‖x(t)− x̄v(t)‖ ≤ β(‖x(t0)− x̄v(t0)‖, t− t0) + γ

(

sup
t0≤τ≤t

‖∆v(τ)‖
)

. (2.7)

In general, the functions β(r, s) and γ(r) may depend on the particular input
v(·).

We adopt the following assumption on the system in (2.1).

Assumption 2.6. The nonlinear system Σp in (2.1) is globally uniformly expo-
nentially convergent for a class of disturbances w(·) ∈ W, and for all constant
inputs u ∈ R

nu , uniformly in u. In addition, given a disturbance w ∈ W the
globally exponentially stable (GES) steady-state solution, which we denote by
x̄w(t,u), is twice continuously differentiable in u and satisfies

∥

∥

∥

∥

∂x̄w

∂u
(t,u)

∥

∥

∥

∥

≤ Lxu, (2.8)

for all t ∈ R, all u ∈ Rnu , and some constant Lxu ∈ R>0.

Remark 2.7. Assumption 2.6 is the time-varying analogue of the common as-
sumption in the extremum-seeking control literature on the system exhibiting
globally exponentially stable equilibria (Krstić and Wang, 2000; Tan et al., 2006,
2010). This assumption is not considered restrictive, as it is exactly this prop-
erty that extends the needed stability property from the equilibria setting to the
time-varying steady-state setting considered in this work. A similar assumption
is imposed on the nonlinear plant in the periodic steady-state setting in Har-
ing et al. (2013). Moreover, in many (nonlinear) control problems, for example
reference tracking, synchronization, observer design and output regulation prob-
lems, the convergent system property that all solutions of a closed-loop system
converges to the same steady-state solution and thus ”forget” their initial con-
dition plays an important role (Pavlov et al., 2006; Pavlov and van de Wouw,
2016). In addition, the exponential property is immediate for asymptotically
stable linear time-invariant systems with inputs.
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Remark 2.8. A different notation for the steady-state solution can be x̄w,u(t),
which agrees with Definition 2.4 and v⊤ := [u⊤,w⊤]. Here, we opt for the nota-
tion x̄w(t,u), on the one hand, to emphasize the dependency on time-varying dis-
turbances w(t), and on the other hand, to be able to explicitly distinguish between
the dependency on either constant inputs u or time-varying inputs u(t). This will
prove instrumental in the scope of the stability analysis of the extremum-seeking
control scheme proposed later.

Given Assumption 2.6, for constant inputs u ∈ Rnu and a given disturbance
w ∈ W , there exists a unique, time-varying steady-state output of the system
Σp in (2.1), denoted by ēw(t,u), which is given by

ēw(t,u) = g(x̄w(t,u),u,w(t)). (2.9)

We aim to find constant inputs u that optimize the steady-state performance
of the system in (2.1). Common practice in the ESC literature is to define
a cost function in terms of the system responses and inputs that quantifies
the performance of interest for the system under study. For example, consider
performance measures of the following form and adopted from Haring et al.
(2013):

Lp(t, e(t)) :=
1

T

t
∫

t−T

‖e(τ)‖pdτ,

L∞(t, e(t)) := max
τ∈[t−T,t]

‖e(τ)‖,
(2.10)

with p ∈ [1,∞) and t ∈ R, where T ∈ R>0 is a known performance relevant
time-interval. In cases where, for constant inputs u, the steady-state plant
outputs ēw in (2.9) are constant for all time or periodic with known period
time T , the steady-state output of the cost functions in (2.10) is constant for
all time as well. Having a constant steady-state output of the cost function
for constant inputs u is one of the basic requirements in the extremum-seeking
control literature that study the data-based optimization of stable (nonlinear)
systems by means of extremum-seeking control (Krstić and Wang, 2000; Tan
et al., 2006; Haring et al., 2013). However, in many (industrial) applications this
requirement is not met, as the steady-state plant outputs ēw that characterize
system performance are generically time-varying in nature (also for constant u).
In addition, periodicity of the steady-state plant outputs ēw is not evident due to
the fact that system responses can be induced by complex time-varying, possibly
non-periodic disturbances and reference trajectories. In those cases, often the
neighborhood to which the ESC scheme converges can not be made arbitrarily
small, thereby limiting the achievable performance benefits.

To deal with the time-varying nature of the system responses, consider the
series connection of the system Σp as in (2.1), a cost function Z of the form

y(t) = Z(e(t),u(t)), (2.11)
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where y ∈ R, and additionally a user-defined filter, denoted by Σf , of the general
form:

Σf :

{

ż(t) = αzh(z(t), y(t))

l(t) = k(z(t)),
(2.12)

where αz ∈ R>0 is a tuning parameter, z ∈ R
nz is the state of the filter, y ∈ R is

the input of the filter defined by (2.11), and l ∈ R is the output of the filter. We
call the series connection of the cost function Z and the filter Σf the dynamic cost
function. The function Z : Rne ×Rnu → R is designed to be twice continuously
differentiable with respect to both arguments. Moreover, we choose Z in such a
way that there exist constants LZe, LZu ∈ R>0 such that

∥

∥

∥

∥

∂2Z

∂e∂e⊤
(e,u)

∥

∥

∥

∥

≤ LZe,

∥

∥

∥

∥

∂2Z

∂e∂u⊤
(e,u)

∥

∥

∥

∥

≤ LZu, (2.13)

for all e ∈ Rne , and all u ∈ Rnu . Given a disturbance w ∈ W , for all constant
inputs u ∈ Rnu , the steady-state output of Z is denoted by ȳw(t,u) and reads

ȳw(t,u) = Z(g(x̄w(t,u),u,w(t)),u). (2.14)

The functions h : Rnz × R → R
nz and k : Rnz → R in (2.12) are designed to

be twice continuously differentiable with respect to all arguments. Moreover, we
design Σf in such a way that there exist constants Lhz, Lhy, Lk ∈ R>0 such
that

∥

∥

∥

∥

∂h

∂z
(z, y)

∥

∥

∥

∥

≤ Lhz,

∥

∥

∥

∥

∂h

∂y
(z, y)

∥

∥

∥

∥

≤ Lhy,

∥

∥

∥

∥

dk

dz
(z)

∥

∥

∥

∥

≤ Lk, (2.15)

for all z ∈ Rnz , and all y ∈ R. In addition, we design the dynamic cost function
to satisfy the following property.

Property 2.9. The dynamic cost function consisting of the cascade of Z and
Σf , given by (2.11) and (2.12), respectively, is exponentially input-to-state con-
vergent (see Definition 2.5) for all constant inputs u ∈ Rnu and all αz ∈ R>0,
uniformly in u.

Intuitively, the filter Σf is introduced to act as an averaging operator on y(t),
utilized to quantify performance of the system similar to the use of exponentially
weighting filters (Wang and Krstić, 2000; Antonello et al., 2009). By tuning αz

small the solution z(t) will vary ”slowly” in time, i.e., the output of the filter
l(t) will be quasi-constant and determined predominantly by the average of y(t).
By properly designing cost function Z and tuning αz in (2.12) small, the output
of the dynamic cost function l(t) is quasi-constant and reflects the performance
of the system, while being characterized by the time-varying system response
e(t). By subsequently minimizing l(t) using ESC, we optimize the time-varying
system response e(t).
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dynamic cost function

ẋ = f(x,u,w)

e = g(x,u,w)
y = Z(e,u)

ż = αzh(z, y)

l = k(z)

u e y l

w

Figure 2.1: The extended plant Σ, i.e., series connection of the nonlinear system
Σp, the user-defined cost function Z, and the to-be-designed filter Σf .

Remark 2.10. In the scope of the proposed approach, a sufficiently slow filter Σf
is able to approximate the time-average of y(t) in real-time. This reveals the fact
that the proposed approach introduces an additional time-scale to the extremum-
seeking loop. That is, the filter Σf must operate on a slower time-scale than the
slowest one in y(t), but fast enough for gradient estimation in ESC. Depending
on the disturbance situation, this may lead to an increased convergence time1 of
the ESC strategy. However, the introduction of the dynamic cost function, and
the associated time scale, is essential to enable dealing with generic time-varying
steady-state responses. Note that, also in cases where time-varying disturbances
contain both low- and high-frequency behavior, our approach can still be used to
achieve extremum seeking.

The series connection of the nonlinear system Σp in (2.1) and the dynamic
cost function is referred to as the extended plant Σ and is schematically depicted
in Fig. 2.1. The dynamics of the extended plant is given by

Σ :











ẋ(t) = f(x(t),u(t),w(t))

ż(t) = αzh(z(t), Z(g(x(t),u(t),w(t)),u(t)))

l(t) = k(z(t)).

(2.16)

The following lemma deals with the series connection of a globally exponen-
tially convergent system as in Definition 2.4 and an exponentially input-to-state
convergent system as in Definition 2.5 and will prove instrumental in the scope
of the stability analysis of the ESC scheme proposed later.

Lemma 2.11. Consider the cascaded system

{

ẋ = F(x,v),

ż = G(z,x),
(2.17)

1In Chapter 3, a modified extremum-seeking controller design is proposed that incorporates
knowledge about the user-defined dynamic cost function, enhancing convergence speed of the
resulting extremum-seeking control scheme, especially in cases where the time-scale of the
dynamic cost function is slow due to a relatively small value of αz being used.
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with x ∈ Rnx , z ∈ Rnz , v ∈ Rnv , and F and G locally Lipschitz in their first ar-
gument and continuous in their second argument. Consider inputs v ∈ V ⊂ PCv.
Suppose the x-subsystem is globally uniformly exponentially convergent, and the
z-subsystem with x as input is exponentially input-to-state convergent. Then,
the cascaded system in (2.17) is globally uniformly exponentially convergent.

Proof. The proof of Lemma 2.11 can be found in Appendix 2.B �

Given Assumption 2.6 and Property 2.9, it follows from Lemma 2.11 that the
extended plant Σ in (2.16) is globally uniformly exponentially convergent for all
constant inputs u ∈ Rnu , uniformly in u. There exists a unique steady-state
solution of Σf , induced by the extended plant, which is defined and bounded
on t ∈ R and GES. We denote this steady-state solution by z̄w(t,u, αz) to
emphasize the dependency the time-varying disturbance w(t), constant inputs
u, and the tunable parameter αz, and satisfies

˙̄zw(t,u, αz) = αzh(z̄w(t,u, αz), ȳw(t,u)). (2.18)

For the steady-state solution of the extended plant Σ, we adopt the following
assumption.

Assumption 2.12. Given a disturbance w(t) ∈ W, there exists a twice con-
tinuously differentiable function qw : Rnu → Rnz , referred to as the constant
performance cost, such that

qw(u) = lim
αz→0

z̄w(t,u, αz), (2.19)

for all t ∈ R, and all u ∈ Rnu . Moreover, there exist constants δz1, δz2 ∈ R≥0,
related to the disturbance w(t) and the extended plant Σ, such that the difference
between the steady-state solution z̄w(t,u, αz) and the function qw(u) satisfies

‖z̄w(t,u, αz)− qw(u)‖ ≤ αz

(

δz1 + δz2‖u− u∗
w‖2

)

, (2.20)

for all t ∈ R, all u ∈ Rnu , and all 0 < αz ≤ ǫz for some constant ǫz ∈ R>0,
where u∗

w denotes the optimal vector of tunable system parameters. In addition,
ȳw(t,u) and z̄w(t,u, αz) are twice continuously differentiable in u. There exist
constants Ly1, Ly2, Lq, Lz1, Lz2 ∈ R>0 such that

∥

∥

∥

∥

∂ȳw(t,u)

∂u

∥

∥

∥

∥

≤ Ly1 + Ly2‖u− u∗
w‖, (2.21)

∥

∥

∥

∥

dqw

du
(u)

∥

∥

∥

∥

≤ Lq ‖u− u∗
w‖ , (2.22)

and
∥

∥

∥

∥

∂z̄w
∂u

(t,u, αz)−
dqw

du
(u)

∥

∥

∥

∥

≤ αz (Lz1 + Lz2 ‖u− u∗
w‖) , (2.23)

for all t ∈ R, all u ∈ Rnu , all 0 < αz ≤ ǫz.
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Remark 2.13. Let us give an example of the working principles of the dynamic
cost function, and provide intuition about Assumption 2.12. Consider, e.g., the
time-varying steady-state output ēw of (2.1) to be ēw(t, u) = (u − u∗w) sin(t)
for which we want to minimize the amplitude, similar to the work in Wang
and Krstić (2000). Here, we employ the following dynamic cost function, with
cost function Z : y(t) = e(t)2, and filter Σf given by a first-order low-pass
filter ż(t) = αz(y(t) − z(t)), l(t) = z(t) with αz ∈ R>0 the cut-off frequency.
The steady-state solution z̄w(t, u, αz) can be derived analytically. Namely, the
general solution reads

z(t) = e−αztz(0) + αz

(u− u∗w)2
2

t
∫

0

e−αz(t−τ)(1− cos(2τ))dτ,

where we have used that 2 sin2(t) := 1− cos(2t). By calculating the integral term
we obtain the following expression:

z(t) = e−αzt

(

z(0)− (u− u∗w)2
2

(

1− α2
z

α2
z + 4

))

+
(u− u∗w)2

2

(

1− αz

αz cos(2t) + 2 sin(2t)

α2
z + 4

)

.

For the limit t → ∞ and αz > 0, the first term of the solution vanishes. The
steady-state solution z̄w(t, u, αz) reads

z̄w(t, u, αz) =
(u− u∗w)2

2

(

1− αz

αz cos(2t) + 2 sin(2t)

α2
z + 4

)

.

From (2.19) in Assumption 2.12, we obtain the constant performance cost as

qw(u) = lim
αz→0

z̄w(t, u, αz) =
(u− u∗w)2

2
.

The function qw(u) is twice continuously differentiable. Moreover, it follows that
the difference between z̄w(t, u, αz) and qw can be bounded as follows

|z̄w(t, u, αz)− qw(u)| ≤ 1

2
αz|u− u∗w|2.

Clearly, the inequality in (2.20) in Assumption 2.12 is satisfied with δz1 = 0
and δz2 = 1

2 . Basically, inequality (2.20) tells us that the bound on the difference
between the time-varying steady-state solution and the constant performance cost
of the extended plant Σ is tunable by αz, and by tuning αz small, the steady-
state solution of the extended plant zw(t, u, αz) can be made arbitrarily close to
the constant performance cost qw(u), see Fig. 2.2. In cases of constant or no
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Figure 2.2: A visualization of the steady-state solution zw(t, u, αz) with a partic-
ular value of u (left) and the performance cost qw(u) (right) for different values
of αz for the example given in Remark 2.13. By tuning αz small, zw(t, u, αz)
can be made arbitrarily close to qw(u). The gray shaded area in the right figure
corresponds to the area in which zw(t, u, αz) lies when αz = 0.4.

disturbances w and, as a result, constant steady-state responses, this difference
will be zero (i.e., δz1 = δz2 = 0 in (2.20)) for any value of the tuning parameter
αz, as the steady-state solution will be independent of time. In case of time-
varying disturbances w(t) (i.e., δz1, δz2 > 0) the tuning parameter αz should be
tuned small in order to ensure a sufficiently close approximation of the constant
performance cost qw(u).

Remark 2.14. The choice for the functions h(z, y) and k(z) in (2.12) depends
on the specific optimization problem considered and the nature of the time-
varying disturbances w(t). In cases where the steady-state output of the cost
function Z, denoted by ȳw(t,u), are generally time-varying, a good choice for
the filter Σf would be a (first- or second-order) low-pass filter with a sufficiently
small cut-off frequency to suppress the (high-frequency) variations present in
ȳw(t,u). If, for example, a-priori knowledge is available about the specific na-
ture of the external disturbances and the effect on the steady-state output of the
cost function ȳw(t,u) in the frequency domain, notch filters can be introduced in
addition to the low-pass filter to suppress specific frequencies in ȳw(t,u). Sup-
pressing a specific known frequency in the measured output of the cost function Z
can be helpful in improving the convergence rate of the extremum-seeking scheme
proposed later, as it may allow for a higher cut-off frequency for the low-pass fil-
ter.

Hence, by Assumption 2.12, under steady-state conditions of the system Σp,
the cost function Z, the filter Σf , the limit αz → 0, and for constant inputs
u, we have that the static parameter-to-steady-state performance map of the
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system can be characterized by

Fw(u) := k(qw(u)), ∀ u ∈ R
nu . (2.24)

We refer to the map Fw as the objective function. To optimize the steady-
state system output ēw, we aim to find the system parameter values for which
the objective function in (2.24) is minimal. We further assume that, given a
disturbance w(t) ∈ W , the dynamic cost function is designed such that there
exists a unique minimum of the objective function Fw, where the minimum of
the map Fw corresponds to the optimal system performance.

Assumption 2.15. Given a disturbance w(t) ∈ W, the objective function Fw :
Rnu → R in (2.24) is twice continuously differentiable and exhibits a unique
minimum in R

nu . Let the corresponding optimal input u∗
w be defined as

u∗
w = argmin

u∈Rnu

Fw(u). (2.25)

There exist constants LF1, LF2 ∈ R>0 such that

dFw

du
(u)(u − u∗

w) ≥ LF1‖u− u∗
w‖2, (2.26)

and
∥

∥

∥

∥

d2Fw

dudu⊤
(u)

∥

∥

∥

∥

≤ LF2, (2.27)

for all u ∈ Rnu .

Information of the objective function can only be obtained through measured
outputs l of the extended plant in (2.16). The measured output differs from the
objective function Fw in (2.24) in two ways: i) due to the dynamics of the sys-
tem in (2.1) and the filter in (2.12) not being in steady-state, i.e., x̄w(t,u) and
z̄w(t,u, αz), respectively, and ii) due to the presence of time-varying disturbances
w(t) and the design parameter αz which, in the presence of time-varying distur-
bances w(t), is typically designed to be small, but still non-zero and positive.
This causes z̄w(t,u, αz) to differ from qw(u) (Assumption 2.12). Nevertheless,
we aim to steer the inputs u to their performance optimizing values u∗

w by using
the measured extended plant output l(t) as feedback to an extremum-seeking
controller that is introduced in the next section.

2.3 Extremum-seeking controller design

The extremum-seeking controller design that we exploit here is based on the
one in (Haring, 2016, Chapter 2). In contrast with classical ESC approaches
as in Krstić and Wang (2000) and Tan et al. (2006), where an estimate of the
gradient of the objective function is obtained solely by correlating the measured
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system performance with a user-supplied dither signal, this extremum-seeking
controller exploits both the user-supplied dither signal and the nominal system
parameter. This leads to a more accurate gradient estimate, and may lead to a
faster convergence (Haring and Johansen, 2018; Gelbert et al., 2012; Guay and
Dochain, 2015).

In Section 2.3.1, a dither signal design is presented, in Section 2.3.2, a model
of the input-to-output behavior of the extended plant is presented to be used as
a basis for gradient estimation, and in Section 2.3.3, a least-squares observer to
estimate the state of that model (and therewith the gradient) and a normalized
optimizer to steer the system parameters u to the minimizer u∗

w are presented.

2.3.1 Dither signal

In order to estimate the gradient of the objective function and use this estimated
gradient to drive u towards u∗

w by an optimizer, we supply the following dither
signal:

u(t) = û(t) + αωω(t), (2.28)

where αωω is a vector of perturbation signals with amplitude αω ∈ R>0, and û

is referred to as the nominal system parameter to be generated by the extremum-
seeking controller. The vector ω is defined by ω(t) = [ω1(t), ω2(t), ..., ωnu

(t)]⊤,
with

ωi(t) =















sin

(

i+ 1

2
ηωt

)

, if i is odd,

cos

(

i

2
ηωt

)

, if i is even,

(2.29)

for i = {1, 2, ..., nu}, where ηω ∈ R>0 is a tuning parameter.

2.3.2 Model of input-output behavior of the extended plant

To obtain an estimate of the gradient of the objective function, we model the
input-to-output behavior of the extended plant in (2.16), that is, from the nom-
inal system parameter input û to the measured output of the extended plant l,
in a general form. Let the state vector of the model be given by

m(t) =

[

Fw(û(t))

αω

dFw

du⊤
(û(t))

]

. (2.30)

The measured output of the extended plant l in (2.16) can be written as

l(t) = k(z(t)) − k(z̄w(t,u(t), αz)) + Fw(u(t)) + d(t), (2.31)

with the signal d(t) defined as

d(t) := k(z̄w(t,u(t), αz))− k(qw(u(t))). (2.32)
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Using Taylor’s Theorem and (2.28), the objective function Fw can be written as

Fw(u(t)) = Fw(û(t) + αωω(t))

= Fw(û(t)) + αω

dFw

du
(û(t))ω(t) +

1

2
α2
ω
ω

⊤(t)H(t, û(t))ω(t),
(2.33)

where H(t, û(t)) reads

H(t, û(t)) = 2

1
∫

0

(1− σ) d
2Fw

dudu⊤
(û(t) + σαωω(t))dσ. (2.34)

The dynamics of the state vector in (2.30) is then governed by

ṁ(t) = A(t)m(t) + α2
ω
Bs(t)

l(t) = C(t)m(t) + α2
ω
v(t) + r(t) + d(t),

(2.35)

with the matrices A, B and C defined as

A(t) =
1

αω

[

0 ˙̂u⊤(t)
0nu×1 0nu×nu

]

, B =

[

01×nu

Inu×nu

]

,

C(t) =
[

1 ω
⊤(t)

]

,

(2.36)

and the signals s, v, and r defined as

s(t) :=
d2Fw

dudu⊤
(û(t))

˙̂u(t)

αω

,

v(t) :=
1

2
ω

⊤(t)H(t, û(t))ω(t),

r(t) := k(z(t)) − k(z̄w(t,u(t), αz)). (2.37)

The signals s, v, r, and d can be interpreted as unknown disturbances to the
model in (2.35). The influences of s, v, r, and d on the state and output of the
model in (2.35) are small if i) û is slowly time varying, if ii) αω is small, if iii)
the states x of the system in (2.1) and the states z of the filter in (2.12) are close
to their steady-state values, respectively x̄w and z̄w, and if iv) αz is small.

The state m in (2.30) contains the gradient of the objective function, scaled
by the perturbation amplitude αω. Hence, an estimate of the gradient of the
objective function can be obtained from an estimate of the state m.

2.3.3 Extremum-seeking controller

The extremum-seeking controller is composed of a dither signal as in (2.28), a
least-squares observer to estimate the state m of the model in (2.35), and an
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optimizer that uses the estimate of the state m of the observer, denoted by m̂,
to steer the nominal system inputs û to their performance-optimal values u∗

w.
The least-squares observer, denoted by Σo, is given by

Σo :























˙̂m =
(

A− ηmσrQD⊤D
)

m̂+ α2
ω
Bŝ

+ ηmQC⊤(l −Cm̂− α2
ω
v̂)

Q̇ = ηmQ+AQ+QA⊤

− ηmQ(C⊤C+ σrD
⊤D)Q,

(2.38)

with initial conditions m̂(0) = m̂0 ∈ Rnu+1 and Q(0) = Q0 ∈ Rnu+1×nu+1,
where Q0 is a symmetric and positive definite matrix, D = [0nu×1 Inu×nu ],
ηm ∈ R>0 and σr ∈ R≥0 are tuning parameters related to the observer, referred
to as a forgetting factor and a regularization constant, respectively, and signals
ŝ and v̂ being approximations of signals s and v in (2.37), defined as

ŝ(t) := Ĥ(t, û(t))
˙̂u(t)

αω

,

v̂(t) :=
1

2
ω

⊤(t)Ĥ(t, û(t))ω(t),

(2.39)

with a user-defined function Ĥ : R×Rnu → Rnu×nu satisfying ‖Ĥ(t, û)‖ ≤ LH,
for all t ∈ R, all û ∈ Rnu , and with LH ∈ R>0. More details about the derivation
of the least-squares observer can be found in Appendix 2.A and in Haring (2016,
Chapter 2). Note that in order to arrive at the observer design in (2.38), we
have considered the signals r and d in (2.35) to be zero. This is justified for
steady-state conditions of the extended plant Σ, and sufficiently small αz. The
optimizer, denoted by Σr, is given by

Σr : ˙̂u(t) = −λu
ηuDm̂(t)

ηu + λu ‖Dm̂(t)‖ , (2.40)

with λu, ηu ∈ R>0 being tuning parameters related to the optimizer. Nor-
malization of the adaptation gain in (2.40) is done to prevent solutions of the
closed-loop ESC scheme from having a finite escape time if the state estimate
m̂ is inaccurate (Haring, 2016, Chapter 2). The closed-loop system, composed
of the extended plant Σ in (2.16), the observer Σo in (2.38), and the optimizer
Σr in (2.40), is depicted in Fig. 2.3.

2.4 Closed-loop stability analysis

In this section, we will provide a stability result and supporting stability proof
for the closed-loop system described in the previous sections and schematically
depicted in Fig. 2.3. The next result states conditions on tuning parameters
under which the ESC scheme guarantees that û converges to an arbitrarily small
set around the optimum u∗

w.
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extremum-seeking controller

ẋ = f(x,u,w)

ż = αzh(z, Z(g(x,u,w),u))

l = k(z)

˙̂m = (A− ηmσrQD⊤D)m̂+ α2
ω
Bŝ

+ ηmQC⊤(l −Cm̂− α2
ω
v̂)

Q̇ = ηmQ+AQ +QA⊤

− ηmQ(C⊤C+ σrD
⊤D)Q

ω

˙̂u = −λu
ηuDm̂

ηu + λu‖Dm̂‖
m̂

û

+

lu

˙̂u

αωω

+

w

Figure 2.3: The closed-loop system composed of the extended plant Σ, the
observer Σo, the optimizer Σr, and the dither signal αωω.

Theorem 2.16. Consider a (time-varying) disturbance w ∈ W and Assump-
tions 2.2, 2.6, 2.12, and 2.15. Moreover, consider arbitrary initial conditions
x(0) ∈ Rnx , Q(0) ∈ Rnu+1×nu+1 symmetric and positive-definite, z(0) ∈ Rnz ,
m̂(0) ∈ Rnu+1, and an arbitrary compact set U0 ⊂ Rnu of initial conditions
for û(t). Then, there exist sufficiently small constants ǫ0, . . . , ǫ6 ∈ R>0 such
that, for all tunable parameters αz, αω, ηu, λu, ηm, ηω ∈ R>0 and σr ∈ R≥0 with
αω ≤ ǫ0, αz ≤ αωǫ1, ηω ≤ αzǫ2, ηm ≤ ηωǫ3, αωλu ≤ ηmǫ4, ηu ≤ αωηmǫ5,
and σr ≤ ǫ6, the solutions of the closed-loop system consisting of the extended
plant in (2.16) and the extremum-seeking controller (consisting of the dither sig-
nal in (2.28), the observer Σo in (2.38), and the optimizer Σr in (2.40)) are
bounded for all t ≥ 0. In addition, there exist constants c1, . . . , c4 ∈ R>0 such
that the solutions û(t) with û(0) ∈ U0 satisfy

lim sup
t→∞

‖û(t)− u∗
w‖ ≤ max

{

αωc1,
ηω
αz

c2,
αzδz1
αω

c3, αzαωδz2c4

}

. (2.41)

Remark 2.17. Tuning guidelines. Under the conditions of Theorem 2.16 it fol-
lows that, if we are dealing with constant (or no) disturbances w, i.e., δz1, δz2 = 0
(Assumption 2.12), the optimizer state û converges to an arbitrarily small region
of the performance-optimal value u∗

w if the dither parameters αω and ηω are cho-
sen sufficiently small for an arbitrary bounded αz. Choosing αz large in general
allows faster convergence towards the performance-optimal value u∗

w. In the case
of time-varying disturbances w(t), i.e., δz1, δz2 > 0, see (2.41), we subsequently
tune αω small to make the first term in the right-hand side of (2.41) arbitrarily
small, tune αz small to make the third and fourth term in the right-hand side of
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(2.41) arbitrarily small, and finally tune ηω small to make the second term in
the right-hand side of (2.41) arbitrarily small.

Proof. To prove Theorem 2.16, we introduce the following coordinate transfor-
mation:

x̃(t) = x(t)− x̄w(t,u(t)),

z̃(t) = z(t)− z̄w(t,u(t), αz),

ũ(t) = û(t)− u∗
w,

m̃(t) = m̂(t)−m(t),

Q̃(t) = Q−1(t)− Ξ−1 − ηmn(t),

(2.42)

with

n(t) =

∫ t

0

[

0 ω
⊤(τ)

ω(τ) ω(τ)ω⊤(τ) − 1
2I

]

dτ, (2.43)

and

Ξ =

[

1 01×nu

0nu×1 2
1+2σr

Inu×nu

]

. (2.44)

Define the following vector fields

f̃w(t, x̃,u) := f(x̃+ x̄w(t,u),u,w(t)) − f(x̄w(t,u),u,w(t)),

h̃w(t, z̃,u, αz) := h(z̃+ z̄w(t,u, αz), ȳw(t,u))− h(z̄w(t,u, αz), ȳw(t,u)).
(2.45)

The analysis of the stability properties of the closed-loop system can be divided
into two temporal stages, characterized by some finite time instance t1 ∈ R>0,
as follows:

i) for 0 ≤ t < t1, the solutions x̃ and Q̃ are shown to converge to a neighbor-
hood of the origin and remain there, while the solutions z̃, m̃, and ũ may
drift, but remain bounded;

ii) for t ≥ t1, the solutions z̃, m̃, and ũ are shown to also converge to a
neighborhood of the origin.

Firstly, bounds are derived on each of the variables in (2.42) corresponding to
these two temporal stages of convergence. Secondly, we exploit the obtained
bounds on the variables in (2.42) and employ the cyclic-small-gain criterion in
Liu et al. (2011) to show convergence of the extremum-seeking scheme.

From the plant Σp in (2.1) and its steady-state solution x̄w, the coordinate
transformation in (2.42), and the vector field defined by (2.45), it follows that
the dynamics of x̃ for constant inputs u is governed by

˙̃x(t) = f̃w(t, x̃(t),u). (2.46)

A preliminary result is presented in Lemma 2.18 on the existence of a Lyapunov
function for the x̃-dynamics for constant inputs u in (2.46).
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Lemma 2.18. Under Assumptions 2.2 and 2.6, there exists a function Vx :
R×R

nx ×R
nu → R, and constants γx1, ..., γx5 ∈ R>0, such that the inequalities

γx1‖x̃‖2 ≤ Vx(t, x̃,u) ≤ γx2‖x̃‖2, (2.47)

∂Vx
∂t

(t, x̃,u) +
∂Vx
∂x̃

(t, x̃,u)f̃w(t, x̃,u) ≤ −γx3‖x̃‖2, (2.48)

∥

∥

∥

∥

∂Vx
∂x̃

(t, x̃,u)

∥

∥

∥

∥

≤ γx4‖x̃‖, (2.49)

and
∥

∥

∥

∥

∂Vx
∂u

(t, x̃,u)

∥

∥

∥

∥

≤ γx5‖x̃‖, (2.50)

are satisfied for all t ∈ R, all x̃ ∈ Rnx , and all constant u ∈ Rnu .

Proof. See Appendix 2.C. �

Similarly, from the system Σp in (2.1) and its steady-state solution x̄w, the
coordinate transformation in (2.42), and the vector field defined by (2.45), it
follows that the state equation for x̃ for time-varying inputs u(t), generated by
(2.40) and (2.28), is given by

˙̃x(t) = f̃w(t, x̃(t),u(t)) − ∂x̄w

∂u
(t,u(t))u̇(t). (2.51)

A bound on the solutions of the x̃-dynamics for time-varying inputs u(t) in
(2.51) is presented in Lemma 2.19.

Lemma 2.19. Under Assumptions 2.2 and 2.6, for any ǫ3, ǫ5 ∈ R>0, and all
tunable parameters αω, ηω ∈ R>0, there exist constants cx1, cx2(ǫ3, ǫ5), βx ∈ R>0

such that, for all ηm ≤ ηωǫ3 and all ηu ≤ αωηmǫ5, the solutions x̃ of system
(2.51) satisfy

‖x̃(t)‖ ≤ max
{

cx1‖x̃(0)‖e−βxt, αωηωcx2
}

, (2.52)

for all t ≥ 0, all x̃(0) ∈ Rnx , and all time-varying u(t) ∈ Rnu .

Proof. See Appendix 2.D. �

From the observer in (2.38), the coordinate transformation in (2.42), and the
model of the input-output behavior in (2.35), we obtain that the state equation
for Q̃ is given by

˙̃
Q(t) = −ηmQ̃(t)− Q̃(t)A(t)−A⊤(t)Q̃(t)− η2mn(t)

−
(

Ξ−1 + ηmn(t)
)

A(t)−A⊤(t)
(

Ξ−1 + ηmn(t)
)

.
(2.53)

A bound on the solutions Q̃(t) is presented in Lemma 2.20.
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Lemma 2.20. For sufficiently small ǫ3, ǫ5, ǫ6 ∈ R>0 and all tunable parameters
αω, ηω ∈ R>0, there exist constants cQ, βQ ∈ R>0 such that, for all ηm ≤ ηωǫ3,
all ηu ≤ αωηmǫ5, and all σr ≤ ǫ6, the solutions Q̃ of system (2.53) satisfy

‖Q̃(t)‖ ≤ max

{

cQ‖Q̃(0)‖e−ηmβQt,
1

8

}

, (2.54)

for all t ≥ 0, all Q̃(0) ∈ Rnu+1×nu+1 for which Q(0) is symmetric and positive
definite, and all time-varying u(t) ∈ Rnu .

Proof. See the proof of Lemma 2.11 in Haring (2016). �

From Lemma 2.19 and Lemma 2.20, we conclude that there exists a finite
time t1 ≥ 0 such that ‖x̃(t)‖ ≤ αωηωcx2 and ‖Q̃(t)‖ ≤ 1

8 for all t ≥ t1. These

bounds on x̃(t) and Q̃(t) are utilized to obtain bounds on the solutions ũ(t),
z̃(t), and m̃(t) in Lemmas 2.21, 2.23, and 2.24, respectively.

Firstly, consider the ũ-dynamics. From the optimizer in (2.40) and the co-
ordinate transformation in (2.42), it follows that the state equation for ũ for
time-varying inputs u(t) is given by

˙̃u(t) = −λu
ηuD (m̃(t) +m(t))

ηu + λu ‖D (m̃(t) +m(t))‖ . (2.55)

A bound on the solutions ũ(t) in (2.55) for time-varying inputs u(t) is presented
in Lemma 2.21.

Lemma 2.21. Under Assumption 2.15, for any finite time t1 ≥ 0, and all tun-
able parameters ηu, λu, αω ∈ R>0, the solutions ũ of system (2.55) are bounded
for all 0 ≤ t ≤ t1, and all ũ(0) ∈ Rnu . In addition, there exists a constant
cu1 ∈ R>0 such that the solutions ũ of system (2.55) satisfy

sup
t≥t1

‖ũ(t)‖ ≤ max

{

‖ũ(t1)‖,
1

αω

cu1 sup
t≥t1

‖m̃(t)‖
}

, (2.56)

and

lim sup
t→∞

‖ũ(t)‖ ≤ 1

αω

cu1 lim sup
t→∞

‖m̃(t)‖. (2.57)

Proof. See the proof of Lemma 2.12 in Haring (2016). �

Secondly, consider the z̃-dynamics. From the filter Σf in (2.12) and its
steady-state solution z̄w, driven by steady-state input ȳw(t,u) defined by (2.14),
the coordinate transformation in (2.42), and the vector field defined by (2.45),
it follows that the dynamics of z̃ for constant inputs u is governed by

˙̃z(t) = αzh̃w(t, z̃(t),u, αz). (2.58)

A preliminary result is presented in Lemma 2.22 on the existence of a Lyapunov
function for the z̃-dynamics for constant inputs u in (2.58).
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Lemma 2.22. Under Assumptions 2.2, 2.6, 2.12, given (2.13), (2.15), and
Property 2.9, there exists a function Vz : R×R

nz ×R
nu ×R→ R, and constants

γz1, ..., γz6 ∈ R>0, such that the inequalities

γz1‖z̃‖2 ≤ Vz(t, z̃,u, αz) ≤ γz2‖z̃‖2, (2.59)

∂Vz
∂t

(t, z̃,u, αz) + αz

∂Vz
∂z̃

(t, z̃,u, αz)h̃w(t, z̃,u, αz) ≤ −αzγz3‖z̃‖2, (2.60)

∥

∥

∥

∥

∂Vz
∂z̃

(t, z̃,u, αz)

∥

∥

∥

∥

≤ γz4‖z̃‖, (2.61)

and
∥

∥

∥

∥

∂Vz
∂u

(t, z̃,u, αz)

∥

∥

∥

∥

≤ γz5‖z̃‖+ γz6‖z̃‖‖u− u∗
w‖, (2.62)

are satisfied for all t ∈ R, all z̃ ∈ Rnz , all αz ∈ R>0, and all constant u,u∗
w ∈

Rnu .

Proof. The proof of Lemma 2.22 follows a similar line of reasoning as The-
orem 4.14 and Lemma 9.8 in Khalil (2002), and the proof of Lemma 2.18.
Different from the results in Khalil (2002) and Lemma 2.18 is the inequal-
ity in (2.62); this stems from the bound on [∂h̃w/∂u], i.e., ‖∂h̃w/∂u‖ ≤
Lhz(ǫzLz1 + (ǫzLz2 + Lq)‖u − u∗

w‖), resulting from (2.15), Assumption 2.12,
and the coordinate transformation in (2.42). �

From the filter Σf in (2.12), the coordinate transformation in (2.42), and
the vector field defined by (2.45), it follows that the state equation for z̃ for
time-varying inputs u(t), and driven by (2.1), (2.40) and (2.28), is given by

˙̃z(t) = αzh̃w(t, z̃(t),u(t), αz)−
∂z̄w
∂u

(t,u(t), αz)u̇(t)

+ αz

(

h(z(t), y(t)) − h(z(t), ȳw(t,u(t)))
)

.
(2.63)

A bound on the solutions of the z̃-dynamics for time-varying inputs u(t) in (2.63)
is presented in Lemma 2.23.

Lemma 2.23. Under Assumptions 2.2, 2.6, 2.12, given (2.13), (2.15), and
Property 2.9, for any ǫ0, . . . , ǫ3, ǫ5, ǫz ∈ R>0, any finite time t1 ≥ 0, and all
αω ≤ ǫ0, αz ≤ αωǫ1 ≤ ǫz, ηω ≤ αzǫ2, ηm ≤ ηωǫ3, ηu ≤ αωηmǫ5, the so-
lutions z̃ of system 2.63 are bounded for all 0 ≤ t ≤ t1, all z̃(0) ∈ Rnz ,
all x̃(0) ∈ R

nx , and all ũ(0) ∈ R
nu . In addition, there exist constants

cz1, cz2(ǫ0, ǫ1, ǫ3, ǫ5), cz3(ǫ0, . . . , ǫ3, ǫ5, ǫz), and cz4(ǫ0, ǫ1, ǫ3, ǫ5, ǫz) ∈ R>0 such
that the solutions z̃ of system 2.63 satisfy

sup
t≥t1

‖z̃(t)‖ ≤ sup
t≥t1

max
{

cz1‖z̃(t1)‖,
αωηω
αz

cz2, α
2
ω
cz3,

αωηω
αz

cz4‖ũ(t)‖
}

, (2.64)
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and

lim sup
t→∞

‖z̃(t)‖ ≤ lim sup
t→∞

max
{αωηω

αz

cz2, α
2
ω
cz3,

αωηω
αz

cz4‖ũ(t)‖
}

, (2.65)

for all t ≥ t1, and all time-varying ũ(t) ∈ R
nu .

Proof. See Appendix 2.E. �

Thirdly, consider the m̃-dynamics. From the observer in (2.38), the coordi-
nate transformation in (2.42), the model of the input-output behavior in (2.35),
and the state definition in (2.30), we obtain that the state equation for m̃ is
given by

˙̃m(t) =
(

A(t)− ηmQ(t)
(

C⊤(t)C(t) + σrD
⊤D
))

m̃(t)

+ α2
ω
B (̂s(t)− s(t))− ηmσrαωQ(t)D⊤ dFw

du⊤
(û(t))

− ηmQ(t)C⊤(t)(α2
ω
(v̂(t)− v(t))− r(t)− d(t)).

(2.66)

A bound on the solutions m̃(t) in (2.66) for time-varying inputs u(t) is presented
in Lemma 2.24.

Lemma 2.24. For any ǫ0, ǫ1, ǫ3, ǫ5, ǫz ∈ R>0, any finite time t1 ≥ 0, all αω ≤
ǫ0, αz ≤ αωǫ1 ≤ ǫz, ηω ≤ αzǫ2, ηm ≤ ηωǫ3, ηu ≤ αωηmǫ5, all λu, σr ∈ R>0

and any δz1, δz2 ∈ R≥0, the solutions m̃ of system (2.66) are bounded for all
0 ≤ t ≤ t1, all ũ(0) ∈ Rnu , all z̃(0) ∈ Rnz , and all m̃(0) ∈ Rnu+1. In addition,
for sufficiently small ǫ3, ǫ4, ǫ6 ∈ R>0 and all αωλu ≤ ηmǫ4, there exist constants
cm1, ..., cm8 ∈ R>0 such that the solutions m̃ of system (2.66) satisfy

sup
t≥t1

‖m̃(t)‖ ≤ sup
t≥t1

max

{

cm1‖m̃(t1)‖, cm2
α2
ω
λu

ηm
‖ũ(t)‖, α2

ω
cm3, cm4‖z̃(t)‖,

αzδz1cm5, αzδz2cm6‖ũ(t)‖2, αzα
2
ω
δz2cm7,

√
σrαωcm8 ‖ũ(t)‖

}

,
(2.67)

and

lim sup
t→∞

‖m̃(t)‖ ≤ lim sup
t→∞

max

{

cm2
α2
ω
λu

ηm
‖ũ(t)‖, α2

ω
cm3, cm4‖z̃(t)‖,

αzδz1cm5, αzδz2cm6‖ũ(t)‖2, αzα
2
ω
δz2cm7,

√
σrαωcm8 ‖ũ(t)‖

}

,

(2.68)

for all t ≥ t1, and all time-varying ũ(t) ∈ R
nu .

Proof. See Appendix 2.F. �

The dynamics of ũ, z̃, and m̃ can be seen as feedback-interconnected sub-
systems for which the solutions satisfy the bounds in Lemmas 2.21, 2.23, and
2.24, respectively. To verify that this feedback-interconnected system exhibits
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bounded solutions, the cyclic-small-gain criterion in Liu et al. (2011) is employed.
Let us consider arbitrary initial conditions x(0) ∈ R

nx , Q(0) ∈ R
nu+1×nu+1

symmetric and positive-definite, z(0) ∈ Rnz , m̂(0) ∈ Rnu+1, an arbitrary large
compact set U0 ⊂ U ⊂ Rnu of initial conditions for û(t) with U0 := {û ∈ Rnu :
‖ũ(t)‖ ≤ ρu} and with ρu ∈ R>0, and U := {û ∈ Rnu : ‖ũ(t)‖ ≤ Lu} a (ar-
bitrarily large) compact set with some (sufficiently large) constant Lu ∈ R>0.
Later on, we will elaborate more on the role of the constant Lu. For now, we
consider it to exist, and additionally, we consider û(t) ∈ U for all time.

Under the conditions of Theorem 2.16, there exist sufficiently small con-
stants ǫ0, . . . , ǫ6 ∈ R>0, such that the cyclic-small-gain criteria that follow from
Lemmas 2.21, 2.23 and 2.24 and given by cu1cm2ǫ4 < 1, cu1cm6ǫ1δz2Lu < 1,
cu1cm4cz4(ǫ0, ǫ1, ǫ3, ǫ5, ǫz)ǫ2 < 1, cu1cm8

√
ǫ6 < 1 are satisfied, rendering the

closed-loop system of the extended plant Σ and the extremum-seeking controller
to have bounded solutions. The final property that needs to be validated is that
û(t) ∈ U for all time. We do this for the two temporal stages of convergence.

First, we consider 0 ≤ t ≤ t1. From the optimizer in (2.40) we have that
‖ ˙̃u(t)‖ ≤ ηu. For any û(0) ∈ U0, it follows that sup0≤t≤t1 ‖ũ(t)‖ ≤ ρu + ηut1.
Under the conditions in Theorem 2.16, sufficiently small ǫ0, . . . , ǫ6 ∈ R>0 such
that the cyclic-gain criteria are satisfied, and for any finite time t1 ≥ 0, there
exist tunable parameters ηu, αω, ηm ∈ R>0 with ηu ≤ αωηmǫ5 ≤ ǫ20ǫ1ǫ2ǫ3ǫ5,
such that sup0≤t≤t1 ‖ũ(t)‖ ≤ ρu + ηut1 < Lu for sufficiently large Lu ∈ R>0,
implying û(t) ∈ U for 0 ≤ t ≤ t1.

Secondly, we consider t ≥ t1. From (2.56), (2.64), (2.67), and the satisfaction
of the cyclic-small-gain criteria we obtain

sup
t≥t1

‖ũ(t)‖ ≤ max
{

‖ũ(t1)‖,
1

αω

cu1cm1‖m̃(t1)‖, αωcu1cm3,
ηω
αz

cz2cu1cm4,

1

αω

cu1cm4cz1‖z̃(t1)‖, αωcu1cm4cz3,
αz

αω

δz1cu1cm5, αzαωδz2cu1cm7

}

,

(2.69)
For the first term in the right-hand side of (2.69) we can make a similar ob-
servation as for the case when 0 ≤ t ≤ t1. Furthermore, for sufficiently
small ǫ0, . . . , ǫ6 ∈ R>0, there exist tunable parameters αω, ηω, αz with αω ≤
ǫ0, αz ≤ αωǫ1 and ηω ≤ αzǫ2, such that the third, and fifth through eight
term in the right-hand side of (2.69) can be made arbitrarily small (smaller
than Lu). Finally, we can derive expressions for the second and fourth term
in the right-hand side of (2.69) using Lemmas 2.23 and 2.24. Under the con-
ditions of Theorem 2.16, for the initial conditions x(0), Q(0), z(0), m̂(0), and
û(0) ∈ U0, and sufficiently small constants ǫ0, ..., ǫ6 ∈ R>0, there exist tun-
able parameters αz, αω, ηu, λu, ηm, ηω ∈ R>0 and σr ∈ R≥0 with αω ≤ ǫ0,
αz ≤ αωǫ1, ηω ≤ αzǫ2, ηm ≤ ηωǫ3, αωλu ≤ ηmǫ4, ηu ≤ αωηmǫ5, and σr ≤ ǫ6,
such that the second and fourth term in the right-hand side of (2.69) can be
made arbitrarily small (smaller than Lu). As a result, û(t) ∈ U for all time.
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Finally, from (2.57), (2.65), and (2.68) we obtain

lim sup
t→∞

‖ũ(t)‖ ≤ max
{

αωcu1cm3,
ηω
αz

cz2cu1cm4, αωcu1cm4cz3,

αz

αω

δz1cu1cm5, αzαωδz2cu1cm7

}

.
(2.70)

Concluding, given a (time-varying) disturbance w ∈ W and Assumptions 2.2,
2.6, 2.12, and 2.15. Consider arbitrary initial conditions x(0) ∈ Rnx , Q(0) ∈
Rnu+1×nu+1 symmetric and positive-definite, z(0) ∈ Rnz , m̂(0) ∈ Rnu+1, and
an arbitrary compact set U0 ⊂ Rnu of initial conditions for û(t). There exist
sufficiently small constants ǫ0, ..., ǫ6 ∈ R>0, such that, for all tunable parameters
αz, αω, ηu, λu, ηm, ηω ∈ R>0 and σr ∈ R≥0 with αω ≤ ǫ0, αz ≤ αωǫ1, ηω ≤
αzǫ2, ηm ≤ ηωǫ3, αωλu ≤ ηmǫ4, ηu ≤ αωηmǫ5, and σr ≤ ǫ6, the solutions of
the closed-loop system are bounded. Moreover, the bound on the solutions û(t)
with û(0) ∈ U0 in (2.41) follows from (2.70) with c1 := max{cu1cm3, cu1cm4cz3},
c2 := cz2cu1cm4, c3 := cu1cm5, c4 := cu1cm7, which completes the proof of
Theorem 2.16. �
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2.5 Case study: Performance-optimal nonlinear control strat-

egy for a short-stroke wafer stage

In this section, we consider an industrial case study of the performance-optimal
tuning of a variable-gain control (VGC) strategy for a short-stroke wafer stage
of a wafer scanner as also studied in Pavlov et al. (2013) and Hunnekens et al.
(2012). Wafer scanners are part of the complex machinery used to manufacture
integrated circuits (ICs), see, e.g. Fig. 2.4 and some of its crucial elements.
Basically, light, emitted by a laser, first passes through a so-called reticle which
contains an image of the desired topology of an IC. The image is then pro-
jected onto a photo-sensitive layer on a so-called wafer by an optical system.
The light in combination with the photo-sensitive layer induces a chemical reac-
tion, resulting in the desired topology being transferred onto the wafer. A wafer
typically contains 100 ICs, which requires extremely fast (re-)positioning of the
wafer stage in three degrees-of-freedom with nm-accuracy to achieve the desired
high machine throughput. Achieving nm-accuracy and high speeds of the wafer
stage are in general realized by high-bandwidth linear controllers. However,
due to the well-known waterbed-effect, see, e.g., Freudenberg et al. (2000), in-
creasing the bandwidth further to improve the ability to suppress low-frequency
disturbances comes at the expense of an increased sensitivity to high-frequency
disturbances and noise. Instead, a variable-gain controller can be used to bal-
ance this trade-off in a more desirable manner (Heertjes et al., 2009); it enables
a higher bandwidth only when necessary. Although VGC is intuitive in nature,
performance-optimal tuning of a variable-gain controller is far from trivial and
heavily depends on the disturbance situation at hand. In this section, we employ
the ESC method proposed in Section 2.2 to tune the VGC strategy for optimal

light beam

reticle stage

lens / optical system

wafer stage

Figure 2.4: Overview of the crucial elements of a wafer scanner.
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Figure 2.5: The closed-loop variable-gain control scheme.

steady-state performance of a short-stroke wafer stage simulation model, illus-
trating the effectiveness of the proposed ESC approach.

2.5.1 Variable-gain controlled wafer stage

Nonlinear feedback control scheme

The VGC structure is shown in Fig. 2.5. The scheme consists of a plant P , repre-
senting the dynamics of a short-stroke wafer stage in z-direction, and a nominal
linear controller C, having transfer functions P (s) and C(s), respectively, with
s ∈ C being the Laplacian variable, (time-varying) force disturbances fd(t), a
nonlinear control element ϕ(·, ·), and a shaping filter F (s). Furthermore, rz de-
notes the setpoint in z-direction, and ez denotes the tracking error in z-direction,
which is the performance variable to-be optimized. The setpoint is rz = 0. The
nonlinearity ϕ(ez , δ), representing the variable-gain element with ez and δ as
inputs, is given by a dead-zone characteristic

ϕ(ez, δ) =











α(ez + δ), if ez < −δ,
0, if |ez| ≤ δ,
α(ez − δ), if ez > δ,

(2.71)

where α and δ denote the so-called additional gain and the dead-zone length,
respectively. The plant is modelled as a 4th-order mass-spring-damper-mass
system, admitting the following transfer function representation

P (s) =
m1s

2 + bs+ k

s2(m1m2s2 + b(m1 +m2)s+ k(m1 +m2))
, (2.72)

for which we have used the following numerical values: m1 = 5 kg, m2 = 17.5 kg,
k = 7.5 ·107 N/m, b = 90 Ns/m. The nominal, and stabilizing linear controller C
consists of a PID-controller Cpid, a second-order low-pass filter Clp and a notch
filter Cn, i.e. C(s) = Cpid(s)Clp(s)Cn(s). The transfer function representation
of the filters are as follows:

Cpid(s) =
kp(s

2 + (ωi + ωd)s+ ωiωd)

ωds
, (2.73)
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where kp = 6.9 · 106 N/m, ωd = 3.8 · 102 rad/s, and ωi = 3.14 · 102 rad/s,

Clp(s) =
ω2
lp

s2 + 2βlpωlps+ ω2
lp

, (2.74)

where ωlp = 3.04 · 103 rad/s, and βp = 0.08, and

Cn(s) =
s2 + 2βzωzs+ ω2

z

s2 + 2βpωps+ ω2
p

, (2.75)

where ωz = 4.39 ·103 rad/s, ωp = 5.03 ·103 rad/s, βz = 2.7 ·10−3, and βp = 0.88.
The transfer function representation of the shaping filter F (s) is given by

F (s) =
s2 + 2βz,Fωz,F s+ ω2

z,F

s2 + 2βp,Fωp,F s+ ω2
p,F

, (2.76)

with ωz,F = ωp,F = 2 · 103 rad/s, βz,F = 0.6, βp,F = 4.8. The bandwidth, i.e.,
the cross-over frequency of the nominal open-loop frequency response function
C(s)P (s), is about 150 Hz.

Remark 2.25. Assumption 2.2 states that the dynamics of the plant (2.1) are
twice continuously differentiable with respect to the vector of tunable plant pa-
rameters. The use of a dead-zone nonlinearity as presented in (2.71) actually
violates this assumption. Although it is possible to define a sufficiently smooth
nonlinearity ϕ(·), for ease of implementation and the fact that the conclusions
with respect to convergence are similar, we use the non-smooth nonlinearity as
in (2.71).

Time-domain performance

The disturbance fd(t) acting on the system consists of a low-frequency force
disturbance contribution induced by (3rd-order) setpoint accelerations in the x-
and y-direction of the wafer stage (see Fig. 2.6 for a scaled acceleration profile in
y-direction depicted by ( )), and a high-frequency force disturbance contribu-
tion, modelled as a signal containing multiple sinusoidal components with both
random frequencies between 200-500 Hz and random phases between [−π, π]
rad/s, as similarly done in Pavlov et al. (2013) and Hunnekens et al. (2012).
From Theorem 1 in Pavlov et al. (2013), which is based on circle criterion type
arguments, it can be concluded that if the additional gain for the dead-zone char-
acteristic in (2.71) is chosen as α ≤ 4.34, then the closed-loop system satisfies
Assumption 2.6, i.e., the closed-loop variable-gain control scheme exhibits glob-
ally exponentially stable steady-state solutions. The dead-zone length δ turns
out to be a stability-invariant tunable plant parameter; however, the choice for
δ does affect significantly the achievable tracking performance as the optimal
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δ = 2 · 10−7 m
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Figure 2.6: The steady-state tracking error (depicted on time window t ∈ [5, 10]
and t ∈ [8, 8.25]) and its cumulative power spectral density for three cases with
additional gain α = 4.33; i) ( ) low-gain linear controller with max |e| <<
δ = 2 · 10−7 m, ii) ( ) high-gain linear controller with δ = 0 m, and iii) ( )
variable-gain controller with δ = 3 · 10−8 m. A scaled acceleration profile in
y-direction is depicted by ( ).

value for δ depends heavily on the disturbance situation and performance mea-
sure at hand, and is typically chosen in a heuristic manner. Fig. 2.6 shows a
time interval of the steady-state tracking error and its cumulative power spectral
density plot for three cases of dead-zone length δ with additional gain α = 4.33;
i) ( ) δ = 2 · 10−7, referred to as the nominal low-gain linear controller, ii) ( )
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δ = 0, referred to as the high-gain linear controller, and iii) ( ) δ = 3 · 10−8,
in which VGC is employed. Due to the low-frequency disturbance contribution
induced by the reference trajectory, the steady-state responses in Fig. 2.6 behave
near periodically with period time Tw = 0.25 seconds, which is most apparent in
the low-gain control situation. However, due to the high-frequency disturbance
contribution having randomly chosen frequencies and phases, the steady-state
responses are time-varying rather than periodic. Moreover, periodicity of the
responses is not clearly evident in the high-gain control situation. Generally, se-
vere non-periodic behavior may limit extremum-seeking control techniques such
as, e.g., in Haring et al. (2013), to achieve optimal system performance. In this
case study, we wish to optimize the tracking error signal ez by minimizing its
power content. As such, we propose to tune the dead-zone length δ in real-time
by the ESC scheme presented in Sections 2.2 and 2.3.

2.5.2 Performance optimization using extremum-seeking con-

trol

Here, the working principle of the proposed ESC strategy is illustrated, on the
one hand, by optimizing the performance of the variable-gain controlled motion
stage, and on the other hand, by exploring the influence of the time-scale of the
dynamic cost function and its effect on the convergence speed of the extremum-
seeking control scheme.

Identifying the objective function

For the ESC scheme as presented in Sections 2.2 and 2.3, the measured perfor-
mance variable is the tracking error ez, and the tunable system parameter is
the dead-zone length δ. We choose the cost function as Z(ez(t)) = e2z(t), and
the filter Σf as a second-order low-pass filter admitting the following state-space
formulation

Σf :











ż1(t) = αzz2(t)

ż2(t) = αz (y(t)− 2βzz2(t)− z1(t))
l(t) = z1(t),

(2.77)

which is of the form in (2.12). The specific choices for the cost function Z and the
filter Σ are motivated by the desire to minimize the power of the tracking error,
which ultimately leads to a performance-optimal tracking error. Furthermore,
the specific choice of the cost function Z and filter Σf with αz, βz ∈ R>0, ren-
ders the satisfaction of (2.13), (2.15), and Property 2.9. A sufficiently accurate
approximation of the objective function Fw(δ) is obtained through simulation
and depicted in Fig. 2.7. Note that, in general, obtaining an approximation of
the objective function can be an expensive and time-consuming task.

From the objective function in Fig. 2.7 it can be observed that the opti-
mal dead-zone length δ∗ for this specific disturbance situation is approximately
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Figure 2.7: Approximation of the objective function Fw obtained through sim-
ulation, and the minimization of the performance cost l by adaptation of δ for
different values of the filter parameter αz.

3·10−8 m. In the remainder, extremum-seeking control is used to find the optimal
dead-zone length in real-time, without any knowledge about the objective func-
tion itself. The nominal tuning of the extremum-seeking controller parameters
as used in the simulations is as follows: βz = 1

2

√
2, αω = 0.5 · 10−9 nm, αz = 4

rad/s, ηω = 5 rad/s, ηm = 0.5, σr = 1 · 10−6, λu = 1 · 108, Ĥ(t, δ) = 0.55 for all
t and δ, and ηu = 1 · 10−3. The initial conditions are chosen as z⊤(0) = [0 0],

m̂⊤(0) = [0 0], Q(0) =
[ 1 0
0 2

1+2σr

]

, and δ̂(0) = 10 · 10−8.

Convergence to optimal system performance

The extremum-seeking controller is enabled at t = 0 seconds. Fig. 2.8 shows
the dead-zone length δ and the measured performance cost l as a function of
time, and the tracking error ez for time windows t ∈ [10, 10.25] seconds and
t ∈ [149.75, 150] seconds for three cases; cases 1 and 2 in which two constant
values for δ are used, namely δ = 2 · 10−7 m (low-gain case) and δ = 0 m (high-
gain case) and depicted by ( ) and ( ), respectively, and case 3 in which δ
is tuned by an extremum-seeking controller, for which the results are depicted
by ( ). It can be seen that the plant parameter δ and the corresponding
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Figure 2.8: The performance cost l as a function of time for two constant values of
δ, associated with i) ( ) the nominal low-gain linear controller with δ = 2 ·10−7

m, and ii) ( ) the high-gain linear controller with δ = 0 m, and iii) ( ) the
variable-gain controller with the convergence of the tunable parameter δ to-
wards δ∗ and corresponding performance cost l using extremum-seeking control.
Moreover, the tracking error ez is depicted for the non-optimal (t ∈ [10, 10.25]
seconds) and optimal dead-zone length settings (t ∈ [149.75, 150] seconds).
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Figure 2.9: Convergence of the tunable parameter δ towards δ∗ and the associ-
ated performance cost l for different values for αz.

performance cost l converges to the performance-optimal region, which is also
illustrated by the convergence of the parameter δ to a neighborhood of the
extremum of Fw(δ) in Fig. 2.7 by ( ). Improved tracking error under VGC is
clearly shown in the case of optimal settings δ∗; during non-zero accelerations
(see the scaled acceleration profile by ( ) in Fig. 2.8) the tracking error behaves
similar to the high-gain settings, while during zero accelerations the tracking
error behaves similar to the low-gain settings.

Convergence speed and the time-scale of the dynamic cost function

In Fig. 2.9, the effect of the additional time-scale induced by the filter Σf
is shown for different values for αz. For smaller values of αz it is expected
that the transient response of the extended plant becomes slower, and that the
slower time-scale of the filter Σf leads to a slower convergence to the optimal
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variable-gain controller setting. This behavior can clearly be observed in Fig. 2.9.
However, with a smaller value for αz the extremum-seeking controller suffers less
from time-varying system behavior. This can be attributed to the fact that the
output of the cost l in steady-state is a more accurate approximation of the
objective function Fw(δ). This can be seen from Fig. 2.7, which shows the
convergence of the parameter δ and the corresponding performance cost l to a
neighborhood of the extremum of Fw(δ) for different values of αz. This can be
observed from Fig. 2.9 as well, in which the convergence of the parameter δ and
the corresponding performance cost l is shown against time. Decreasing the value
of αz further will eventually lead to loss of time-scale separation, unless other
parameters of the extremum-seeking controller, e.g., ηω and ηm and satisfaction
of the associated conditions ηω ≤ αzǫ2 and ηm ≤ ηωǫ3 in Theorem 2.16, are
properly re-tuned. For larger values of αz, the transient response of the filter
decays faster, usually leading to faster convergence of the ESC scheme to the
optimal setting δ∗. This is illustrated in Fig. 2.9. However, for even larger values
of αz convergence to the optimal setting is not guaranteed; in such a case the
extremum-seeking controller suffers from the time-varying system behavior and
is not able to estimate a proper gradient. This behavior is depicted in Fig. 2.9
for the setting αz = 64 rad/s. The results illustrate the necessity of the dynamic
cost function in the time-varying setting. However, the dynamic cost function
must operate sufficiently slow compared to the time-varying nature of the system
responses, and may compromise the convergence speed of the extremum-seeking
control scheme. In Chapter 3, a modified extremum-seeking controller design is
proposed which is able to enhance convergence speed of the resulting extremum-
seeking control scheme.

Convergence speed and the dither amplitude

In Fig. 2.10, the effect of the dither amplitude αω is shown for different values
for αω. For smaller values of αω, it is expected that convergence to the optimal
variable-gain controller setting becomes slower. This can clearly be observed in
Fig. 2.10. For larger values of αω, convergence to the optimal setting δ∗ is in gen-
eral faster. However, for larger values of αω the neighborhood of the extremum
to which the ESC scheme is converging is generally larger, and if the value of
αω increases even more, convergence to the optimal setting is not guaranteed;
in such a case the value of αz needs to be smaller to cope with the increased
time-varying system behavior caused by the increased dither amplitude. This
behavior is depicted in Fig. 2.9 for the setting αω = 5 · 10−9 m.

2.6 Conclusions

In this chapter, a novel ESC method for optimization of time-varying steady-
state responses of general nonlinear systems is proposed. The ESC method
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Figure 2.10: Convergence of the tunable parameter δ towards δ∗ and the asso-
ciated performance cost l for different values for the dither amplitude αω.

utilizes a so-called dynamic cost function which has proven instrumental in the
scope of optimization of time-varying system behavior, as it allows for the char-
acterization of a static input-output performance map, despite the presence of
time-varying disturbances which induces time-varying steady-state responses.
The proposed ESC method is proven to achieve semi-global practical asymptotic
stability of the closed-loop scheme in the presence of bounded and time-varying
disturbances. An industrial simulation study is provided that shows the steady-
state performance optimization of a closed-loop variable-gain controlled motion
system subject to a time-varying force disturbance by means of the proposed
ESC approach. Moreover, the effect of the time-scale of the dynamic cost func-
tion on the convergence of the ESC scheme is illustrated, and illustrates the
necessity of the dynamic cost function in the time-varying setting.
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2.A Derivation of the least-squares observer in Section 2.3

The least-squares observer in Section 2.3 is obtained by minimizing a quadratic
cost function with respect to an exponentially weighted time window of the
estimation error (Haring, 2016):

(t, m̂) = argmin
p(t)∈Rnu+1

J(t,p(t)),

subject to: ṗ(τ) = A(τ)p(τ) + α2
ω
Bŝ(τ)

l̂(τ) = C(τ)p(τ) + α2
ω
v̂(τ), ∀ τ ∈ [0, t],

(2.78)

where m̂ denotes the estimate of the state of the observer, and where the
quadratic cost function J is given by

J(t,p(t)) = ηm

t
∫

0

e−ηm(t−τ)

(

|l(τ)− l̂(τ)|2 + σr |Dp(τ)|2
)

dτ

+ e−ηmt(m̂0 − p0)
⊤Q−1

0 (m̂0 − p0),

(2.79)

with D = [0nu×1 Inu ×nu], m̂0 ∈ Rnu×1, with Q0 ∈ Rnu+1×nu+1 a symmetric
positive-definite matrix, l(τ) is the measured output of the extended plant in
(2.16), a forgetting factor ηm ∈ R>0, and a regularization constant σr ∈ R>0.

The derivation is as follows. First, we derive the solution for p(τ), expressed
in terms of p(t). Second, the equality constraints in (2.78) are substituted
into the quadratic cost function in (2.79), and we solve ∂J

∂p(t) = 0. Third, we

determine a set of differential equations for the least-squares observer.
Step 1: Let P(τ) be nonsingular for all τ , and define p(τ) = P(τ)κ(τ) such

that

ṗ(τ) = Ṗ(τ)κ(τ) +P(τ)κ̇(τ) = A(τ)P(τ)κ(τ) + α2
ω
Bŝ(τ). (2.80)

From this equality we obtain the following equivalent system

κ̇(τ) = P(τ)−1

(

A(τ)P(τ) − Ṗ(τ)

)

κ(τ) + α2
ω
P(τ)−1Bŝ(τ)

l̂(τ) = C(τ)P(τ)κ(τ) + α2
ω
v̂(τ).

(2.81)

Let Ṗ(τ) = A(τ)P(τ), i.e., P(τ) is the so-called fundamental solution matrix,
such that

κ̇(τ) = α2
ω
P(τ)−1Bŝ(τ), (2.82)

from which we obtain the following equality:

κ(τ) = κ(t) + α2
ω

τ
∫

t

P(σ)−1Bŝ(σ)dσ. (2.83)



2.A Derivation of the least-squares observer in Section 2.3 57

Define the so-called state transition matrix Φ(τ, t) = P(τ)P−1(t). Then from
p(τ) = P(τ)κ(τ) and substitution of (2.83) we obtain the following expressions:

p(τ) = P(τ)κ(τ) = P(τ)κ(t) + α2
ω

τ
∫

t

P(τ)P(σ)−1Bŝ(σ)dσ

= Φ(τ, t)p(t) − α2
ω

t
∫

τ

Φ(τ, σ)Bŝ(σ)dσ,

(2.84)

Step 2: The quadratic cost function in (2.79) can be written as follows:

J(t,p(t)) = ηm

t
∫

0

e−ηm(t−τ)
(

l(τ)− α2
ω
v̂(τ)

)⊤(

l(τ)− α2
ω
v̂(τ)

)

− 2p⊤(τ)C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

dτ

+ ηm

t
∫

0

e−ηm(t−τ)p⊤(τ)
(

C⊤(τ)C(τ) + σrD
⊤D
)

p(τ)dτ

+ e−ηmt(m̂0 − p0)
⊤Q−1

0 (m̂0 − p0).

(2.85)

By substitution of (2.84) in (2.85) we obtain the following expression:

J(t,p(t)) = ηm

∫ t

0

e−ηm(t−τ)

(

(

l(τ)− α2
ω
v̂(τ)

)⊤(

l(τ)− α2
ω
v̂(τ)

)

+ α4
ω

(

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)⊤(

C⊤(τ)C(τ) + σrD
⊤D
)(

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)

+ 2α2
ω

(

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)⊤

C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

)

dτ

+ e−ηmt
(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)⊤

Q−1
0

(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)

− 2ηmp⊤(t)

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

+
(

C⊤(τ)C(τ) + σrD
⊤D
)(

α2
ω

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)

)

dτ

+ ηmp⊤(t)

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)C(τ) + σrD
⊤D
)

Φ(τ, t)dτp(t)

− 2e−ηmtp⊤(t)Φ⊤(0, t)Q−1
0

(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)

+ e−ηmtp⊤(t)Φ⊤(0, t)Q−1
0 Φ(0, t)p(t).

(2.86)
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From ∂J
∂p(t) = 0 we obtain the following expression:

0 =
∂J(t,p(t))

∂p(t)
= −2ηm

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

+
(

C⊤(τ)C(τ) + σrD
⊤D
)(

α2
ω

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)

)

dτ

+ 2ηm

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)C(τ) + σrD
⊤D
)

Φ(τ, t)dτp(t)

− 2e−ηmtΦ⊤(0, t)Q−1
0

(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)

+ 2e−ηmtΦ⊤(0, t)Q−1
0 Φ(0, t)p(t).

(2.87)

From (2.87) and the optimization problem in (2.78), we obtain the state estimate:

m̂(t) = Q(t)Ψ(t), (2.88)

for all t ∈ R≥0, with

Q(t) =

(

ηm

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)C(τ) + σrD
⊤D
)

Φ(τ, t)dτ

+ e−ηmtΦ⊤(0, t)Q−1
0 Φ(0, t)

)−1

,

(2.89)

and

Ψ(t) = ηm

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

+
(

C⊤(τ)C(τ) + σrD
⊤D
)(

α2
ω

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)

)

dτ

+ e−ηmtΦ⊤(0, t)Q−1
0

(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)

.

(2.90)

Step 3: We determine a set of differential equations for the least-squares ob-
server. By differentiating the expression in (2.88) we have that

˙̂m(t) = Q̇(t)Ψ(t) +Q(t)Ψ̇(t)

= Q̇(t)Q−1(t)m̂(t) +Q(t)Ψ̇(t).
(2.91)

First, we determine Q̇(t) by differentiation of (2.89) and by using Leibniz’s rule
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for differentiation:

Q̇(t) = −Q(t)
∂Q−1(t)

∂t
Q(t)

= −Q(t)
(

− ηmηm
∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)C(τ) + σrD
⊤D
)

Φ(τ, t)dτ

+ ηm

∫ t

0

e−ηm(t−τ)∂Φ
⊤(τ, t)

∂t

(

C⊤(τ)C(τ) + σrD
⊤D
)

Φ(τ, t)dτ

+ ηm

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)C(τ) + σrD
⊤D
)∂Φ(τ, t)

∂t
dτ

+ ηm
(

C⊤(t)C(t) + σrD
⊤D
)

− ηme−ηmtΦ⊤(0, t)Q−1
0 Φ(0, t)

+ e−ηmtΦ⊤(0, t)A⊤(t)Q−1
0 Φ(0, t) + e−ηmtΦ⊤(0, t)Q−1

0

∂Φ(0, t)

∂t

)

Q(t)

= ηmQ(t)− ηmQ(t)
(

C⊤(t)C(t) + σrD
⊤D
)

Q(t) +Q(t)A⊤(t) +A(t)Q(t),
(2.92)

where we have used the fact that ∂Φ(τ,t)
∂t

= −Φ(τ, t)A(t).

Second, we determine Ψ̇(t) by differentiation of (2.90) and by using Leibniz’s
rule for differentiation:

Ψ̇(t) = −ηmηm
∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

+ α2
ω

(

C⊤(τ)C(τ) + σrD
⊤D
)

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)

dτ

− ηme−ηmtΦ⊤(0, t)Q−1
0

(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)

− ηmA⊤(t)

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)
(

l(τ)− α2
ω
v̂(τ)

)

+ α2
ω

(

C⊤(τ)C(τ) + σrD
⊤D
)

∫ t

τ

Φ(τ, σ)Bŝ(σ)dσ
)

dτ

−A⊤(t)e−ηmtΦ⊤(0, t)Q−1
0

(

m̂0 + α2
ω

∫ t

0

Φ(0, σ)Bŝ(σ)dσ

)

+ ηm

∫ t

0

e−ηm(t−τ)Φ⊤(τ, t)
(

C⊤(τ)C(τ) + σrD
⊤D
)

Φ(τ, t)dτα2
ω
Bŝ(t)

+ e−ηmtΦ⊤(0, t)Q−1
0 Φ(0, t)α2

ω
Bŝ(t)

+ ηmC⊤(t)
(

l(t)− α2
ω
v̂(t)

)

= −ηmQ−1(t)m̂(t)−A⊤Q−1(t)m̂(t) + α2
ω
Q−1(t)Bŝ(t)

+ ηmC⊤(t)
(

l(t)− α2
ω
v̂(t)

)

.
(2.93)
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Finally, from (2.91), (2.92), and (2.93) we obtain the following differential equa-
tion for m̂:

˙̂m(t) = (A(t)− ηmσrQ(t)D⊤D)m̂(t) + α2
ω
Bŝ(t)

+ ηmQ(t)C⊤(t)
(

l(t)−C(t)m̂(t)− α2
ω
v̂(t)

)

.
(2.94)

This completes the derivation of the least-squares observer in (2.38) in Sec-
tion 2.3.

2.B Proof of Lemma 2.11

Consider some input v(·) ∈ V ⊂ PCv. Since the x-subsystem of the system in
(2.17) is globally exponentially convergent, there exists a steady-state solution
x̄v(t) that is defined and bounded on t ∈ R, and GES. Since the z-subsystem
of the system in (2.17) is exponentially input-to-state convergent, there exists a
steady-state solution z̄v(t) corresponding to the input x̄v(t). Moreover, z̄v(t) is
defined and bounded on t ∈ R, and GES. Let (x(t), z(t)) be some solution of the
cascade system with input v(t). Denote ∆x := x− x̄v(t), and ∆z := z− z̄v(t).
Then, ∆x and ∆z satisfy the differential equations

∆ẋ = F(∆x + x̄v(t),v(t)) − F(x̄v(t),v(t)), (2.95)

∆ż = G(∆z + z̄v(t),∆x+ x̄v(t))−G(z̄v(t), x̄v(t)). (2.96)

Since the x-subsystem of the system in (2.17) is globally exponentially conver-
gent, the system in (2.95) with input v(t) is GES. Since the z-subsystem of the
system in (2.17) is exponentially input-to-state convergent, the system in (2.96)
with input ∆x is ISS. As such, there exist class KL-functions βx and βz, which
are exponentially decaying functions with t, and a class K∞-function γz such
that the solutions of (2.95) and (2.96) satisfy

‖x(t)− x̄v(t)‖ ≤ βx(‖x(s)− x̄v(s)‖, t− s),

‖z(t)− z̄v(t)‖ ≤ βz(‖z(s)− z̄v(s)‖, t− s) + γz

(

sup
s≤τ≤t

‖∆x(τ)‖
)

,
(2.97)

where t ≥ s ≥ t0. Hence, by similar arguments as in Lemma 4.7 in Khalil (2002)
the series connection of (2.95) and (2.96) is GES. In the original coordinates
(x, z) this means that the system in (2.17) is GES with respect to the solution
(x̄v(t), z̄v(t)). This implies that the system in (2.17) is globally exponentially
convergent. �

2.C Proof of Lemma 2.18
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The proof of Lemma 2.18 follows a similar line of reasoning as Theorem 4.14
and Lemma 9.8 in Khalil (2002). The structure of the proof is as follows. First,
it is shown that the inequalities in (2.47) hold. Second, it is shown that the
inequality in (2.48) holds. Third, it is shown that the inequalities in (2.49) hold.

From Assumption 2.6 it follows that the system in (2.1) is globally expo-
nentially convergent for a class of disturbances w(·) ∈ W , and for all constant
inputs u ∈ Rnu , uniformly in u. As such, for each pair u ∈ Rnu and w(t) ∈ W ,
there exist constants µx, νx ∈ R>0 such that the solutions of the dynamics in
(2.46), starting at t0 with x̃(t0) ∈ Rnx , satisfy

‖x̃(t)‖ ≤ µ̄x‖x̃(t0)‖e−νx(t−t0), ∀ x̃(t0) ∈ R
nx , t ∈ R, (2.98)

where µ̄x, νx ∈ R>0 denote the maximum of all µx and minimum of all νx for
each pair u and w(t), respectively.

Let φ(τ ; t, x̃,u) denote the solution of (2.46) for constant inputs u that starts
at (t, x̃); that is, φ(t; t, x̃,u) = x̃. As such, φ satisfies the equation

∂φ

∂τ
(τ ; t, x̃,u) = f̃w(τ, φ(τ ; t, x̃,u),u), φ(t; t, x̃,u) = x̃. (2.99)

The notation φ(τ ; t, x̃,u) emphasizes the dependence of the solution on the con-
stant input u. Moreover, due to the exponentially decaying bound on the tra-
jectories in (2.98) we can write the following:

‖φ(τ ; t, x̃,u)‖ ≤ µ̄x‖φ(t; t, x̃,u)‖e−νx(τ−t), ∀ τ ≥ t. (2.100)

Define the function

Vx(t, x̃,u) :=

t+δx
∫

t

φT (τ ; t, x̃,u)φ(τ ; t, x̃,u)dτ, (2.101)

where δx > 0 is a positive constant to be chosen. Firstly, we prove that the
inequalities in (2.47) hold. Using (2.100), we obtain the following upper bound
on Vx:

Vx(t, x̃,u) ≤
t+δx
∫

t

µ̄2
xe

−2νx(τ−t)dτ‖x̃‖2 =
µ̄2
x

2νx

(

1− e−2νxδx
)

‖x̃‖2. (2.102)

Next, we construct also a lower bound for Vx. From Assumption 2.2, (2.46), and
the Mean-Value Theorem, we have

‖f̃w(t, x̃,u)‖ = ‖f(x̃+ x̄w(t,u),u,w)− f(x̄w(t,u),u,w)‖

≤
1
∫

0

∥

∥

∥

∥

∂f

∂x
(σx̃ + x̄w(t,u),u,w)

∥

∥

∥

∥

dσ ‖x̃‖ = Lfx‖x̃‖.
(2.103)
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By using (2.103) and (2.99) we obtain
∣

∣

∣

∣

∂

∂τ

(

‖φ(τ ; t, x̃,u)‖2
)

∣

∣

∣

∣

≤ 2 ‖φ(τ ; t, x̃,u)‖
∥

∥

∥
f̃w(τ, φ(τ ; t, x̃,u),u)

∥

∥

∥
,

≤ 2Lfx ‖φ(τ ; t, x̃,u)‖2 ,
(2.104)

from which we can derive the following bound:

∂

∂τ

(

‖φ(τ ; t, x̃,u)‖2
)

≥ −2Lfx ‖φ(τ ; t, x̃,u)‖2 , (2.105)

for all τ ≥ t. From the inequality in (2.105) we obtain

∂

∂τ

(

‖φ(τ ; t, x̃,u)‖2 e2Lfxτ
)

≥ 0. (2.106)

By integration of both sides with respect to time over the domain [t, τ ], it follows
that

‖φ(τ ; t, x̃,u)‖2 ≥ e−2Lfx(τ−t) ‖x̃‖2 . (2.107)

Then we obtain, using (2.101) and (2.107), that

Vx(t, x̃,u) ≥
t+δx
∫

t

e−2Lfx(τ−t)dt‖x̃‖2 =
1

2Lfx

(

1− e−2Lfxδx
)

‖x̃‖2. (2.108)

The bounds on Vx in (2.102) and (2.108) imply that the inequalities in (2.47)
are satisfied with

γx1 =
1

2Lfx

(

1− e−2Lfxδx
)

, and γx2 =
µ̄2
x

2νx

(

1− e−2νxδx
)

, (2.109)

and since Lfx, µ̄x, νx, and δx are positive constants, we have that γx1 > 0 and
γx2 > 0.

Secondly, we prove that the inequality in (2.48) holds. By Leibniz’s rule for
differentiation, the derivative of Vx along the trajectories of the plant is given
as follows:

∂Vx
∂t

+
∂Vx
∂x̃

f̃w(t, x̃,u) = φT (t+ δx; t, x̃,u)φ(t+ δx; t, x̃,u)− ‖x̃‖2

+

t+δx
∫

t

2φT (τ ; t, x̃,u)

(

∂φ

∂t
(τ ; t, x̃,u) +

∂φ

∂x̃
(τ ; t, x̃,u)f̃w(t, x̃,u)

)

dτ.

(2.110)
In order to evaluate the third term in the right-hand side of (2.110), we integrate
both sides of (2.99) with respect to time over the domain [τ, t] such that we obtain

φ(τ ; t, x̃,u) = x̃+

τ
∫

t

f̃w(s, φ(s; t, x̃,u),u)ds. (2.111)
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Taking the partial derivative to t and x̃, by Leibniz’s rule for differentiation we
obtain

∂φ

∂t
(τ ; t, x̃,u) = −f̃w(t, x̃,u) +

τ
∫

t

∂ f̃w
∂x̃

(s, φ(s; t, x̃,u),u)
∂φ

∂t
(s; t, x̃,u)ds,

∂φ

∂x̃
(τ ; t, x̃,u) = I+

τ
∫

t

∂ f̃w
∂x̃

(s, φ(s; t, x̃,u),u)
∂φ

∂x̃
(s; t, x̃,u)ds.

(2.112)
Therefore,

∂φ

∂t
(τ ; t, x̃,u) +

∂φ

∂x̃
(τ ; t, x̃,u)f̃w(t, x̃,u) =

τ
∫

t

∂ f̃w
∂x̃

(s, φ(s; t, x̃,u),u)

(

∂φ

∂t
(s; t, x̃,u) +

∂φ

∂x̃
(s; t, x̃,u)f̃w(t, x̃,u)

)

ds.
(2.113)

By differentiation of (2.113) with respect to τ , we obtain the following differential
equation

∂

∂τ

(

∂φ

∂t
(τ ; t, x̃,u) +

∂φ

∂x̃
(τ ; t, x̃,u)f̃w(t, x̃,u)

)

=

∂ f̃w
∂x̃

(τ, φ(τ ; t, x̃,u),u)

(

∂φ

∂t
(τ ; t, x̃,u) +

∂φ

∂x̃
(τ ; t, x̃,u)f̃w(t, x̃,u)

)

,

(2.114)
with the initial condition (which follows from (2.112))

∂φ

∂t
(t; t, x̃,u) +

∂φ

∂x̃
(t; t, x̃,u)f̃w(t, x̃,u) = −f̃w(t, x̃,u) + f̃w(t, x̃,u) = 0. (2.115)

From the differential equation in (2.114) and the initial condition in (2.115), it
follows that

∂φ

∂t
(τ ; t, x̃,u) +

∂φ

∂x̃
(τ ; t, x̃,u)f̃w(t, x̃,u) = 0, ∀ τ ≥ t, (2.116)

which renders the third term in the right-hand side of (2.110) zero.
In order to evaluate the first term in the right-hand side of (2.110), we use

(2.98) from which it follows that

φT (t+ δx; t, x̃,u)φ(t+ δx; t, x̃,u) = ‖φ(t+ δx; t, x̃,u)‖2

≤ µ̄2
xe

−2νxδx‖φ(t; t, x̃,u)‖2 = µ̄2
xe

−2νxδx‖x̃‖2.
(2.117)

By using the results in (2.116) and (2.117), the derivative of Vx along the tra-
jectories of the plant in (2.110) yields

∂Vx
∂t

(t, x̃,u) +
∂Vx
∂x̃

(t, x̃,u)̃f(t, x̃,u) ≤ −
(

1− µ̄2
xe

−2νxδx
)

‖x̃‖2. (2.118)
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The bound in (2.118) implies that (2.48) is satisfied with γx3 =
(

1− µ̄2
xe

−2νxδx
)

.

To show that γx3 > 0, we choose δx in (2.101) such that δx >
ln(µ̄x)
νx

> 0, where

µ̄x, νx ∈ R>0. Without loss of generality, this implies that

1 = µ̄2
xe

−2 ln(µ̄x) > µ̄2
xe

−2νxδx ≥ 0 (2.119)

As such, we have that γx3 > 0.
To show the validity of the inequality in (2.49), consider the derivative of Vx

with respect to x̃:

∂Vx
∂x̃

=

t+δx
∫

t

2φT (τ ; t, x̃,u)
∂φ

∂x̃
(τ ; t, x̃,u)dτ. (2.120)

Then we obtain

∥

∥

∥

∥

∂Vx
∂x̃

∥

∥

∥

∥

≤
t+δx
∫

t

2 ‖φ(τ ; t, x̃,u)‖
∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

dτ. (2.121)

From (2.100) it follows that

‖φ(τ ; t, x̃,u)‖ ≤ µ̄xe
−νx(τ−t)‖x̃‖, ∀τ ≥ t. (2.122)

Moreover, by differentiation of the second equation in (2.112) with respect to τ
we obtain

∂

∂τ

(

∂φ

∂x̃
(τ ; t, x̃,u)

)

=
∂ f̃w
∂x̃

(τ, φ(τ ; t, x̃,u),u)
∂φ

∂x̃
(τ ; t, x̃,u),

∂φ

∂x̃
(t; t, x̃,u) = I.

(2.123)

Then we obtain the following bound:

∥

∥

∥

∥

∂

∂τ

(

∂φ

∂x̃
(τ ; t, x̃,u)

)∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∂ f̃w
∂x̃

(τ, φ(τ ; t, x̃,u),u)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

. (2.124)

Using the fact that

∂

∂τ

∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∂

∂τ

(

∂φ

∂x̃
(τ ; t, x̃,u)

)∥

∥

∥

∥

, (2.125)

and that, by Assumption 2.2, we have
∥

∥

∥

∥

∥

∂ f̃w
∂x̃

(t, x̃,u)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∂x

∂x̃

∂

∂x

(

f(x,u,w) − f(x̄w,u,w)
)

∥

∥

∥

∥

=

∥

∥

∥

∥

∂f

∂x
(x,u,w)

∥

∥

∥

∥

≤ Lfx,

(2.126)



2.C Proof of Lemma 2.18 65

it follows from (2.124), (2.125), and (2.126) that

∂

∂τ

∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

≤ Lfx

∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

. (2.127)

The inequality in (2.127) can be rewritten as

∂

∂τ

(
∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

e−Lfxτ

)

≤ 0. (2.128)

By integrating both sides with respect to time over the domain [t, τ ] and using
the initial condition in (2.123), we obtain

∥

∥

∥

∥

∂φ

∂x̃
(τ ; t, x̃,u)

∥

∥

∥

∥

≤ eLfx(τ−t). (2.129)

Using (2.122) and (2.129) in (2.121), we obtain
∥

∥

∥

∥

∂Vx
∂x̃

∥

∥

∥

∥

≤ 2µ̄x

νx − Lfx

(

1− e−(νx−Lfx)δx
)

‖x̃‖. (2.130)

The bound in (2.130) implies that the inequality in (2.49) is satisfied with

γx4 =
2µ̄x

Lfx − νx

(

e(Lfx−νx)δx − 1
)

. (2.131)

Without loss of generality, we assume that Lfx 6= νx, and given the fact that
Lfx, µ̄x, νx, δx ∈ R>0, it follows that γx4 > 0.

To show the validity of the inequality in (2.50), consider the derivative of Vx
with respect to u which reads

∂Vx
∂u

=

t+δx
∫

t

2φT (τ ; t, x̃,u)
∂φ

∂u
(τ ; t, x̃,u)dτ, (2.132)

from which it follows that

∥

∥

∥

∥

∂Vx
∂u

∥

∥

∥

∥

≤
t+δx
∫

t

2‖φ(τ ; t, x̃,u)‖
∥

∥

∥

∥

∂φ

∂u
(τ ; t, x̃,u)

∥

∥

∥

∥

dτ. (2.133)

Differentiation of both sides of (2.111) with respect to u gives us

∂φ

∂u
(τ ; t, x̃,u) =

τ
∫

t

∂ f̃w
∂u

(s, φ(s; t, x̃,u),u)

+
∂f

∂x
(φ(s; t, x̃,u) + x̄w(s,u),u,w)

∂φ

∂u
(s; t, x̃,u)ds.

(2.134)
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By Assumption 2.2 and (2.126) we have that
∥

∥

∥

∥

∥

∂ f̃w
∂u

(t, x̃,u)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∂f

∂u
(x,u,w)− ∂f

∂u
(x̄w,u,w)

∥

∥

∥

∥

,

≤
∥

∥

∥

∥

∂f

∂u
(x,u,w)

∥

∥

∥

∥

+

∥

∥

∥

∥

∂f

∂u
(x̄w,u,w)

∥

∥

∥

∥

≤ 2Lfu,

(2.135)

Then from (2.134) we obtain the following inequality

∥

∥

∥

∥

∂φ

∂u
(τ ; t, x̃,u)

∥

∥

∥

∥

≤
τ
∫

t

(

2Lfu + Lfx

∥

∥

∥

∥

∂φ

∂u
(s; t, x̃,u)

∥

∥

∥

∥

)

ds,

≤ 2Lfu(τ − t) + Lfx

τ
∫

t

∥

∥

∥

∥

∂φ

∂u
(s; t, x̃,u)

∥

∥

∥

∥

ds.

(2.136)

By using Grönwall’s inequality, it follows that
∥

∥

∥

∥

∂φ

∂u
(τ ; t, x̃,u)

∥

∥

∥

∥

≤ 2Lfu(τ − t)eLfx(τ−t). (2.137)

Substitution of the exponentially decaying bound on the trajectories in (2.98)
and (2.137) in (2.133), and after some computation, it follows that

∥

∥

∥

∥

∂Vx
∂u

∥

∥

∥

∥

≤ 4µ̄xLfu

(Lfx − νx)2
(

e(Lfx−νx
)δx
(

(Lfx − νx)δx − 1
)

+ 1
)

‖x̃‖ (2.138)

The bound in (2.138) implies that the inequality in (2.50) is satisfied with

γx5 =
4µ̄xLfu

(Lfx − νx)2
(

e(Lfx−νx)δx
(

(Lfx − νx)δx − 1
)

+ 1
)

. (2.139)

Without loss of generality, if Lfx 6= νx and with µ̄x, νx, Lx, Lfu, Lfx, δx ∈ R>0,
it can be shown that γx5 > 0; the fraction in the expression for γx5 is defined
and positive whenever Lfx 6= νx. The expression between brackets is a function
of the form q(x) = 1 + ex(x − 1). The derivative of q(x) with respect to x is
given by dq

dx
= exx. From this follows that dq

dx
= 0 if x = 0 (the limit x → −∞

is not considered here). For x = 0 it follows that q(0) = 0. Furthermore, dq
dx
< 0

for x < 0, and dq
dx

> 0 for x > 0. As such, q(x) is positive for all x 6= 0. As a
result, if Lfx 6= νx, then γx5 > 0. This completes the proof of Lemma 2.18. �

2.D Proof of Lemma 2.19

By using the function Vx in Lemma 2.18 as a Lyapunov function candidate for
the x̃-dynamics in (2.51) with time-varying inputs u(t) and generated by (2.28)
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and (2.40), we obtain the following expression for V̇x:

V̇x =
∂Vx
∂t

+
∂Vx
∂x̃

f̃w(t, x̃,u) +

(

∂Vx
∂u
− ∂Vx

∂x̃

∂x̄w

∂u

)

u̇, (2.140)

for all x̃ ∈ Rnx , all time-varying inputs u(t) ∈ Rnu , for all t. Note that in
(2.140) we have omitted most arguments for notational clarity. Using Assump-
tion 2.2, (2.8) in Assumption 2.6, the inequalities from Lemma 2.18, and Young’s
inequality, it follows that

V̇x ≤ −
γx3
2γx2

Vx(t, x̃,u) +
(γx4Lxu + γx5)

2

2γx3
‖u̇‖2. (2.141)

To find an upper bound for ‖u̇‖, it follows from (2.28) that u̇ = ˙̂u+αωω̇. From
(2.29), we have that there exists a constant Lω1 ∈ R>0 such that ‖ω̇‖ ≤ ηωLω1.
Furthermore, from (2.40) we have that ‖ ˙̂u‖ ≤ ηu. Therefore, we obtain an
upperbound on ‖u̇‖ which is given by

‖u̇‖ ≤ αωηω (ǫ3ǫ5 + Lω1) , (2.142)

for all ǫ3, ǫ5 ∈ R>0, all ηu ≤ αωηmǫ5, and all ηm ≤ ηωǫ3 (as guaranteed by the
conditions in Theorem 2.16). Substitution of (2.142) in (2.141), and applying
the comparison lemma (Khalil, 2002, Lemma 3.4), it follows that

Vx(t, x̃(t),u(t)) ≤ Vx(0, x̃(0),u(0))e−
γx3
2γx2

t

+ α2
ω
η2
ω
γx2

(γx4Lxu + γx5)
2

γ2x3
(ǫ3ǫ5 + Lω1)

2
,

(2.143)

for all t ≥ 0, all x̃(0) ∈ Rnx , and all time-varying u(t) ∈ Rnu . From (2.47) in
Lemma 2.18, we obtain

‖x̃(t)‖ ≤ max
{

cx1‖x̃(0)‖e−βxt, αωηωcx2
}

, (2.144)

with positive constants βx = γx3

4γx2
, cx1 =

√

2γx2

γx1
, and

cx2 =

√

2γx2
γx1

γx4Lxu + γx5
γx3

(ǫ3ǫ5 + Lω1) , (2.145)

which completes the proof of Lemma 2.19. �

2.E Proof of Lemma 2.23

By using the function Vz in Lemma 2.22 as a Lyapunov function candidate for
the z̃-dynamics in (2.63) with time-varying inputs u(t) and generated by (2.28)
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and (2.40), we obtain the following expression for V̇z:

V̇z =
∂Vz
∂t

+ αz

∂Vz
∂z̃

h̃w(t, z̃,u, αz) + αz

∂Vz
∂z̃

(

h(z, y)− h(z, ȳw(t,u))
)

+

(

∂Vz
∂u
− ∂Vz

∂z̃

(

∂z̄w
∂u
− dqw

du
+
dqw

du

))

u̇,
(2.146)

for all z̃ ∈ Rnz , all time-varying inputs u(t) ∈ Rnu , for all t, and all y, ȳw ∈ R

satisfying (2.11) and (2.14), respectively. Note that in (2.146) we have omitted
most arguments for notational clarity. Using the inequalities from Lemma 2.22
and Assumption 2.12, it follows that

V̇z ≤ −αzγz3‖z̃‖2 + αzγz4Lz1‖z̃‖‖u̇‖+ αzγz4‖z̃‖‖h(z, y)− h(z, ȳw(t,u))‖
+ γz5‖z̃‖‖u̇‖+

(

γz6 + αzγz4Lz2 + γz4Lq

)

‖u− u∗
w‖‖z̃‖‖u̇‖.

(2.147)
By defining ỹ := y − ȳw(t,u) and the bounds in (2.15), it follows that

‖h(z, y)− h(z, ȳw(t,u))‖ ≤ Lhy ‖ỹ‖ . (2.148)

By defining ẽ := e− ēw(t,u), using (2.11), (2.14), and the bounds in (2.13), it
follows that

‖ỹ‖ ≤ LZe‖ēw(t,u)− ēw(t,u
∗
w)‖‖ẽ‖+ LZ∗‖ẽ‖

+
LZe

2
‖ẽ‖2 + LZu‖u− u∗

w‖‖ẽ‖,
(2.149)

with LZ∗ =
∥

∥

∂Z
∂e

(ēw(t,u
∗
w),u

∗
w)
∥

∥ ∈ R>0. From Assumption 2.2 and (2.8) in
Assumption 2.6, it follows that

‖ẽ‖ = ‖g(x,u,w)− g(x̄w(t,u),u,w)‖ ≤ Lgx‖x̃‖, (2.150)

and
‖ēw(t,u)− ēw(t,u

∗
w)‖ ≤ (Lgu + LgxLxu)‖u− u∗

w‖. (2.151)

From (2.29), it follows that there exists a constant Lω2 ∈ R>0 such that ‖ω‖ ≤
Lω2. From this fact, (2.28), and the coordinate transformation in (2.42), it
follows that

‖u− u∗
w‖ ≤ ‖ũ‖+ αωLω2. (2.152)

Substitution of (2.148) to (2.152) into (2.147), applying Young’s inequality, using
the bound on ‖u̇‖ in (2.142), and the inequality in (2.59) from Lemma 2.22,
results in

V̇z ≤ −
αzγz3
2γz2

Vz(t, z̃,u, αz) +
9αzz

2
1

2γz3
‖x̃‖4 + 9αzz

2
8

2γz3
‖x̃‖2 + 9αzα

2
ω
z29

2γz3
‖x̃‖2

+
9αzz

2
2

2γz3
‖ũ‖2‖x̃‖2 + 9α2

ω
η2
ω

2αzγz3
z210 (ǫ0ǫ1z4 + z3)

2 ‖ũ‖2

+
9α2

ω
z25

2αzγz3
α2
ω
η2
ω
z210 +

9α2
ω
η2
ω

2αzγz3
z210 (ǫ0ǫ1z6 + z7)

2
,

(2.153)
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for all αω ≤ ǫ0, all αz ≤ αωǫ1, all ηm ≤ ηωǫ3, and all ηu ≤ αωηmǫ5, where we
have used that ǫ2hǫ

2
i z

2
j + z2k ≤ (ǫhǫizj + zk)

2
when ǫh, ǫi, zj , zk ∈ R>0, and with

z10 = ǫ3ǫ5 + Lω1, and some positive constants z1, ..., z9 ∈ R>0.
From Lemmas 2.19 and 2.21, it follows that, for any finite time t1 ≥ 0, the

solutions x̃(t) and ũ(t) are bounded for all 0 ≤ t ≤ t1. As such, the right-hand
side of (2.153) is bounded for all 0 ≤ t ≤ t1. Therefore, Vz(t, z̃(t), ũ(t), αz) is
bounded for all 0 ≤ t ≤ t1, and from the bounds in Lemma 2.22 it follows that
the solutions z̃(t) are bounded for all 0 ≤ t ≤ t1.

From Lemma 2.19, it follows that here exists a time instance t1 ≥ 0, such that
‖x̃‖ ≤ αωηωcx2. Substitution in (2.153), subsequently applying the comparison
lemma and using the inequality (2.59) in Lemma 2.22, we obtain the bound on
z̃ as

sup
t≥t1

‖z̃(t)‖ ≤ sup
t≥t1

max
{

cz1‖z̃(t1)‖,
αωηω
αz

cz2, α
2
ω
cz3,

αωηω
αz

cz4‖ũ(t)‖
}

, (2.154)

and

lim sup
t→∞

‖z̃(t)‖ ≤ lim sup
t→∞

max
{αωηω

αz

cz2, α
2
ω
cz3,

αωηω
αz

cz4‖ũ(t)‖
}

, (2.155)

with

cz1 =
6

γz3

√

γz2
γz1

,

cz2 =
6

γz3

√

γz2
γz1

(z10 (ǫ0ǫ1z6 + z7) + ǫ0ǫ1z8cx2) ,

cz3 =
6

γz3

√

γz2
γz1

ǫ2 (z10z5 + ǫ0ǫ1cx2 (z9 + ǫ0ǫ1ǫ2z1cx2)) ,

cz4 =
6

γz3

√

γz2
γz1

(z10 (ǫ0ǫ1z4 + z3) + ǫ0ǫ1z2cx2) ,

(2.156)

for all t ≥ t1, all αω ≤ ǫ0, all αz ≤ αωǫ1, all ηω ≤ αzǫ2, all ηm ≤ ηωǫ3, and all
ηu ≤ αωηmǫ5, which completes the proof of Lemma 2.23. �

2.F Proof of Lemma 2.24

The proof of Lemma 2.24 builds upon the proof of Lemma 2.13 in Haring (2016,
Chapter 2). We define the following Lyapunov function candidate for the m̃-
dynamics in (2.66):

Vm(m̃,Q) = m̃⊤Q−1m̃. (2.157)

For notational clarity, from this point on we omit the time argument. We note
that

λmin(Q
−1)‖m̃‖2 ≤ Vm(m̃,Q) ≤ λmax(Q−1)‖m̃‖2, (2.158)
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where λmin(Q
−1) and λmax(Q

−1) are the smallest and largest eigenvalue of
Q−1, respectively. For further details on Q−1, the reader is referred to Haring
(2016, Chapter 2). From the observer in (2.38) and (2.66) we obtain the time
derivative of Vm as

V̇m = 2m̃⊤Q−1 ˙̃m− m̃⊤Q−1Q̇Q−1m̃,

= −ηmm̃⊤Q−1m̃− ηmm̃⊤
(

C⊤C+ σrD
⊤D
)

m̃

+ 2α2
ω
m̃⊤Q−1B (̂s− s)− 2ηmσrαωm̃

⊤D⊤ dFw

du⊤
(û)

− 2ηmm̃⊤C⊤(α2
ω
(v̂ − v)− r − d),

(2.159)

where we have used the fact that Q−1 is real and symmetric, i.e., Q−1 = Q−T ,
and, given A in (2.36), that m̃⊤

(

Q−1A−A⊤Q−1
)

m̃ = 0. Furthermore, given
C in (2.36) and D = [0nu×1 Inu×nu ], using the fact that −m̃⊤C⊤Cm̃ =

−
∥

∥m̃⊤C⊤Cm̃
∥

∥ = −‖Cm̃‖2 and
∥

∥m̃⊤C⊤
∥

∥ = ‖Cm̃‖, (2.157), and Young’s
inequality, we obtain

V̇m ≤ −
ηm
2
Vm(m̃,Q) + ηmσrα

2
ω

∥

∥

∥

∥

dFw

du⊤
(û)

∥

∥

∥

∥

2

+
2α4

ω

ηm
‖Q−1‖‖B‖2 ‖ŝ− s‖2

+ 3ηmα
4
ω
|v̂ − v|2 + 3ηm |r|2 + 3ηm |d|2 .

(2.160)

From (2.37), (2.39), the bound ‖Ĥ(t, û(t))‖ ≤ LH, the definition of ω in (2.29),
which implies that there exists a constant Lω2 ∈ R>0 such that ‖ω‖ ≤ Lω2, and
the bound in (2.27) we obtain

‖ŝ− s‖ ≤ 1

αω

(LH + LF2) ‖ ˙̂u‖,

|v̂ − v| ≤ 1

2
(LH + LF2)L

2
ω2.

(2.161)

From (2.37) and the bounds in (2.15), it follows that

|r| =
∥

∥

∥

∥

∥

1
∫

0

dk

dz
(σz̃+ z̄w)dσz̃

∥

∥

∥

∥

∥

≤ Lk‖z̃‖. (2.162)

From (2.152) and by using Young’s inequality, it follows that ‖u − u∗
w‖2 ≤

2‖ũ‖2+2α2
ω
L2
ω2. From this, (2.32), the bounds in (2.15), and Assumption 2.12,

we obtain
|d| ≤ Lkαz(δz1 + 2δz2‖ũ‖2 + 2δz2α

2
ω
L2
ω2). (2.163)

From the coordinate transformation in (2.42) and the bound in (2.27), we obtain

∥

∥

∥

∥

dFw

du
(û)

∥

∥

∥

∥

≤
1
∫

0

∥

∥

∥

∥

d2Fw

dudu⊤
(σũ + u∗

w)

∥

∥

∥

∥

dσ ‖ũ‖ = LF2 ‖ũ‖ . (2.164)
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By combining (2.160)-(2.164) and since we have from (2.36) that ‖B‖ = 1, we
obtain

V̇m ≤ −
ηm
2
Vm(m̃,Q) + ηmσrα

2
ω
L2
F2 ‖ũ‖2 +

2α2
ω

ηm
(LH + LF2)

2 ‖Q−1‖‖ ˙̂u‖2

+ 3ηmL
2
k‖z̃‖2 + 9ηmL

2
kα

2
z(δ

2
z1 + 4δ2z2‖ũ‖4 + 4δ2z2α

4
ω
L4
ω2)

+
3

4
ηmα

4
ω
(LH + LF2)

2
L4
ω2.

(2.165)
From Lemmas 2.21 and 2.22 we have that, for any finite time t1 ≥ 0, the solutions
ũ and z̃ are bounded for all 0 ≤ t ≤ t1. Moreover, from Lemma 2.20 we have
that Q−1 is positive definite and bounded for all 0 ≤ t ≤ t1. From these facts
and ‖ ˙̂u‖ ≤ ηu, which follows from (2.40), we obtain that the right-hand side of
(2.165) is bounded for all 0 ≤ t ≤ t1. Therefore, Vm(m̃(t),Q(t)) will be bounded
for all 0 ≤ t ≤ t1, and Q−1 is positive definite and bounded for all 0 ≤ t ≤ t1 as
well, it follows from (2.158) that the solutions m̃ are bounded for all 0 ≤ t ≤ t1.

Define t1 ≥ 0 such that from Lemma 2.19 and Lemma 2.20 we have that
‖x̃(t)‖ ≤ αωηωcx2 and ‖Q̃(t)‖ ≤ 1

8 , for all t ≥ t1. From the proof of Lemma
2.11 in Haring (2016, Chapter 2), we have that 1

4I � Q−1 � 5
4I for all t ≥ t1,

all ηm ≤ ηωǫ3 and all σr ≤ ǫ6, with ǫ3 and ǫ6 sufficiently small. Moreover, it
follows that 1

4‖m̃‖2 ≤ Vm(m̃,Q) ≤ 5
4‖m̃‖2, for all t ≥ t1, and ‖Q−1‖ ≤ 5

4 for
all t ≥ t1. From (2.30), (2.40), (2.42), ‖D‖ = 1, and the bound in (2.27), it
follows that ‖ ˙̂u‖2 ≤ 8λ2uVm(m̃,Q) + 2α2

ω
λ2uL

2
F2‖ũ‖2, for all t1 ≥ 0. From this,

and taking ǫ4 in Theorem 2.16 sufficiently small, we obtain from (2.165) that

V̇m ≤ −
ηm
4
Vm(m̃,Q) + ηmσrα

2
ω
L2
F2 ‖ũ‖2 +

5α4
ω
λ2u

ηm
(LH + LF2)

2
L2
F2‖ũ‖2

+
3

4
ηmα

4
ω
(LH + LF2)

2
L4
ω2 + 3ηmL

2
k‖z̃‖2

+ 9ηmL
2
kα

2
z(δ

2
z1 + 4δ2z2‖ũ‖4 + 4δ2z2α

4
ω
L4
ω2),

(2.166)
for all t ≥ t1, and all αωλu ≤ ηmǫ4. From the comparison lemma and the
inequality in (2.166), and using (2.158), we obtain

sup
t≥t1

‖m̃(t)‖ ≤
√
32 sup

t≥t1

max
{

√

5

4
‖m̃(t1)‖, 2

√
5
α2
ω
λu

ηm
(LH + LF2)LF2‖ũ(t)‖,

2
√
3Lk‖z̃(t)‖,

√
3α2

ω
(LH + LF2)L

2
ω2, 2
√
σrαωLF2 ‖ũ(t)‖ ,

12αzδz2Lk‖ũ(t)‖2, 12αzδz2α
2
ω
LkL

2
ω2, 6αzδz1Lk

}

,

(2.167)
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and

lim sup
t→∞

‖m̃(t)‖ ≤ 2
√
6 lim sup

t→∞

{

2
√
5
α2
ω
λu

ηm
(LH + LF2)LF2‖ũ(t)‖,

2
√
3Lk‖z̃(t)‖,

√
3α2

ω
(LH + LF2)L

2
ω2, 2
√
σrαωLF2 ‖ũ(t)‖ ,

12αzδz2Lk‖ũ(t)‖2, 12αzδz2α
2
ω
LkL

2
ω2, 6αzδz1Lk

}

.

(2.168)
for all t ≥ t1, all ηm ≤ ηωǫ3, all αωλu ≤ ηmǫ4, and all σr ≤ ǫ6. The bounds in
(2.67) and (2.68) of Lemma 2.24 follow from (2.167) and (2.168), respectively,
which completes the proof of Lemma 2.24. �



Chapter 3

Extremum-seeking control and enhanced

convergence speed for optimization of

industrial motion systems

Abstract - In Chapter 2, an extremum-seeking control approach has been devel-
oped for optimization of time-varying steady-state responses of general nonlin-
ear systems. A generic filter structure was introduced, the so-called dynamic cost
function, which has been instrumental in facilitating the use of extremum seeking
in the more generic, time-varying context. The dynamic cost function, however,
must operate sufficiently slow compared to the time-varying nature of the sys-
tem responses, thereby compromising convergence speed of the extremum-seeking
control scheme. The first contribution of this chapter is the proposition of a
modified extremum-seeking controller design that incorporates explicit knowledge
about the user-defined dynamic cost function, enhancing convergence speed of
the resulting extremum-seeking control scheme. The second contribution of this
chapter is a stability analysis for this extended approach. The third contribu-
tion of this chapter is an experimental demonstration of the extremum-seeking
controller design in Chapter 2 and the extended design in this chapter for the
performance-optimal tuning of a variable-gain control strategy employed on a
high-accuracy industrial motion stage set-up, exhibiting generically time-varying
steady-state responses. Experiments show that, for the unknown disturbance sit-
uation at hand, the variable-gain controller can be automatically tuned using
both ESC approaches to achieve optimal system performance. In addition, en-
hanced convergence speed with the modified extremum-seeking controller design
is evidenced experimentally.

The content of this chapter is based on: L. Hazeleger, J. van de Wijdeven, M. Haring,
N. van de Wouw, ”Extremum-seeking with enhanced convergence speed for optimization of
time-varying steady-state behavior of industrial motion stages”, Submitted for publication in

IEEE Transactions on Control Systems Technology
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3.1 Introduction

Extremum-seeking control (ESC) is a data-driven and model-free method for
optimizing the steady-state behavior of a stable or stabilized plant in real-time,
by automated adaptation of tunable plant parameters. Often in the ESC liter-
ature, the general requirement for optimizing a stable or stabilized plant is the
existence of a (unknown) time-invariant parameter-to-steady-state performance
map, i.e., a static input-output relation between tunable plant parameters and
the steady-state plant performance, see, e.g., Ariyur and Krstić (2003), Krstić
and Wang (2000), Teel and Popović (2001), and Nešić et al. (2010). In those ref-
erences, the steady-state performance map characterizes the performance of the
dynamical plant to-be optimized in an equilibria setting. Even in the presence
of (high-frequency) noise, convergence towards a neighborhood of the optimum
can be achieved, the size of which is often dependent on the noise level, see, e.g.,
Zhang and Ordónez (2009), Stanković and Stipanović (2010), Tan et al. (2010),
and Haring (2016). In cases where periodic steady-state behavior characterizes
system performance, often induced by periodic references and disturbances act-
ing on the system dynamics, ESC methods have been proposed in Wang and
Krstić (2000), Guay et al. (2007), Haring et al. (2013). To cope with a more
generic problem setting, in Chapter 2 an ESC method has been proposed to
optimize generically time-varying steady-state behavior of a class of nonlinear
systems, see also (Hazeleger et al., 2018).

Considering generically time-varying disturbances and the resulting to-be-
optimized performance in terms of generically time-varying steady-state re-
sponses an integral part of the problem formulation for performance optimization
of time-varying steady-state plant behavior is essential, especially in practice.
Namely, steady-state performance of many industrial applications is related to
generically time-varying system responses. For example, time-varying behavior
emerges in reference tracking or disturbance attenuation problems, which are
encountered, for example, in industrial positioning stages commonly found in
pick-and-place systems, robotics, electron microscopes, and wafer scanning sys-
tems. Given the fact that accurate knowledge on the disturbances is typically
not available and may vary from machine to machine or mode-of-use, ESC is a
candidate for data-based performance optimization. Namely, ESC only exploits
measured outputs of the system, and as such, can be used to automatically tune
system parameters in the presence of arbitrary reference trajectories, unknown
external disturbances, and possibly unknown system dynamics.

Other works, which have studied extremum-seeking control in the presence of
time-varying system behavior, are, e.g., Scheinker and Krstić (2014), Scheinker
and Scheinker (2016) and Scheinker and Krstić (2013). In these references,
extremum-seeking controllers are utilized directly as feedback controller, able
to, on the one hand, control unstable and time-varying input-affine systems,
and on the other hand, optimize steady-state equilibria in the presence of noise.
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The methods have been experimentally demonstrated in, e.g., the minimization
of reflected input radio frequency (RF) power in RF resonant cavities (Scheinker,
2017), and the minimization of so-called betatron oscillations in particle accel-
erators (Scheinker et al., 2018). We care to emphasize that, in this chapter,
we consider the problem of optimizing time-varying steady-state responses of
stable or stabilized plants, which is a different problem from the one considered
in Scheinker and Krstić (2014), Scheinker and Scheinker (2016) and Scheinker
and Krstić (2013). Moreover, we remark that the methods in Scheinker and
Krstić (2014), Scheinker and Scheinker (2016) and Scheinker and Krstić (2013)
typically rely on high dither frequencies relative to the time-varying system dy-
namics, while the ESC method proposed in this chapter can employ small dither
frequencies relative to the time-varying system dynamics, even in the presence
of high-frequency disturbances. Additionally, in the case of extremum-seeking
control for already stable or stabilized systems, the class of systems considered
in this chapter is more general.

ESC for slowly time-varying performance maps is considered in, e.g.,
Grushkovskaya et al. (2017), Sahneh et al. (2012), Cao et al. (2017), Fu and
Özgüner (2011), and Rušiti et al. (2019). Herein, optimal plant performance
is obtained by tracking optimal, slowly time-varying, plant parameters. We re-
mark that this problem setting is different from the one considered in this chap-
ter. Namely, we consider the problem of optimizing static performance maps
in the spirit of Hunnekens et al. (2015), Wang and Krstić (2000), and Haring
et al. (2013), although more general in terms of the time-varying nature of the
disturbances. We propose an ESC method that seeks constant plant parameter
settings that optimize steady-state plant performance in terms of time-varying
steady-state system responses.

To facilitate the use of extremum seeking in the more generic, time-varying
context, in Chapter 2 a generic filter structure was introduced, the so-called
dynamic cost function. However, to warrant sufficient time-scale separation in
the ESC scheme, the dynamic cost function must operate sufficiently slow com-
pared to the time-varying nature of the system responses, thereby compromising
convergence speed of the ESC scheme. The first contribution of this chapter
is the proposition of a modified extremum-seeking controller design which en-
ables enhanced convergence speed of the ESC scheme compared to the nominal
extremum-seeking controller design presented in Chapter 2. By exploiting a par-
ticular linear-time-invariant (LTI) filter structure for the user-defined dynamic
cost function design and incorporating the explicit knowledge in the extremum-
seeking controller design, enhanced convergence speed of the ESC scheme com-
pared to the nominal ESC design is achievable. The effectiveness of the modified
extremum-seeking controller design with respect to the nominal ESC approach
is shown by means of a simulation example. The second contribution of this
chapter is to provide a stability analysis of the closed-loop ESC scheme with the
modified extremum-seeking controller design.
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The third contribution is the experimental demonstration of both the nominal
extremum-seeking controller design as presented in Chapter 2, and the modified
extremum-seeking controller design presented in this chapter. In particular, the
impact of the tuning of a particular dynamic cost function design on the conver-
gence of the closed-loop ESC scheme will be shown, as well as the effectiveness
of the modified extremum-seeking controller design in terms of enhanced con-
vergence speed with respect to the nominal extremum-seeking controller design.

Both ESC approaches are utilized to achieve performance-optimal tuning of
a variable-gain control (VGC) strategy applied to an industrial motion stage set-
up which is subject to unknown and time-varying (external) disturbances. VGC
is a nonlinear control strategy that is able to enhance system performance by
balancing the typical tradeoff between the use of low-gain and high-gain feedback
control in linear motion control systems, and has been the topic of many studies
(Heertjes et al., 2009, 2011; Su et al., 2005; Zheng et al., 2005; van de Wouw
et al., 2008; Hespanha and Morse, 2002; Hunnekens et al., 2014). Due to the
well-known waterbed-effect, see, e.g., Freudenberg et al. (2000) and Seron et al.
(1997), increasing the bandwidth of linear motion control systems by applying
high-gain feedback control to improve the ability to suppress low-frequency dis-
turbances comes at the expense of an increased sensitivity to high-frequency
disturbances and noise. Instead, VGC enables a higher gain, and thus a higher
bandwidth, only when necessary. However, the ability to achieve optimal per-
formance ultimately relies on the tuning of the variable-gain controller, which
can be far from trivial as system performance highly depends on the unknown
disturbance situation at hand.

Automatic tuning of (nonlinear) control strategies for optimal performance
has been studied in many works, see, e.g., Hunnekens et al. (2014), Heertjes
et al. (2018), Hjalmarsson et al. (1998), Pavlov et al. (2013), Karimi et al.
(2004), Hjalmarsson et al. (1994), Campi et al. (2002), and Bazanella et al.
(2012). Here, we pursue the tuning of variable-gain controllers through ESC as
an alternative means to achieve optimal performance, which does not require
knowledge on the plant model as in, e.g., Hunnekens et al. (2014), Heertjes et al.
(2018), Karimi et al. (2004), specific (linear parameterized) controller structures
as in, e.g., Campi et al. (2002), specific experiments as in, e.g., Hjalmarsson
et al. (1998), Hjalmarsson et al. (1994), or disturbance knowledge as in Pavlov
et al. (2013). In Hunnekens et al. (2015), ESC has been applied in the scope of
periodic steady-state behavior for the adaptive design of a VGC strategy applied
to a magnetically levitated industrial motion platform.

The main contributions of this chapter can be summarized as follows. The
first contribution is a modified extremum-seeking controller design for the opti-
mization of time-varying steady-state responses of nonlinear systems that enables
enhanced convergence speed of the closed-loop ESC scheme. The second contri-
bution is a stability analysis of the closed-loop ESC scheme. The third contribu-
tion is the experimental demonstration of both the extremum-seeking controller
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design proposed in Chapter 2, and the modified extremum-seeking controller
design in this chapter, for the performance-optimal tuning of a variable-gain
control strategy employed on a high-accuracy industrial motion stage set-up.

This chapter is organized as follows. In the first part of Section 3.2, the
ESC approach for systems with time-varying steady-state responses as proposed
in Chapter 2 is briefly described. This will be helpful in the second part of
Section 3.2, in which we present the modified extremum-seeking controller design
and a closed-loop stability analysis. Section 3.3 presents the industrial motion
stage set-up under study. In Section 3.4, the experimental results of both ESC
strategies will be discussed for the performance-optimal tuning of variable-gain
controllers. Section 3.5 closes with conclusions.

3.2 Extremum-seeking for optimization of generically time-

varying steady-state system behavior

In this section, first, we will briefly recap the ESC problem formulation for
generically time-varying system responses and the extremum-seeking controller
design as studied in Chapter 2. Second, we propose a modified extremum-seeking
controller design that incorporates explicit knowledge about the dynamic cost
function to enhance convergence speed compared to the initial extremum-seeking
controller design. Third, we present a stability result of the closed-loop ESC
scheme with modified ESC approach.

3.2.1 Extremum-seeking control problem formulation for opti-

mization of time-varying system responses

Here we elaborate on the elements of the so-called extended plant Σ as depicted
in Fig. 3.1, i.e., the series connection of a to-be-optimized, nonlinear system Σp
that may exhibit generically time-varying behavior in steady-state conditions
and for which we can measure its output, and a so-called dynamic cost function,
consisting of a user-defined cost function Z and a user-defined filter Σf . This
dynamic cost function has proven instrumental to achieve extremum-seeking in
the time-varying steady-state setting.

Nonlinear systems

We consider the following generic description of a multiple-input-multiple-output
nonlinear system:

Σp :

{

ẋ(t) = f(x(t),u(t),w(t))

e(t) = g(x(t),u(t),w(t)),
(3.1)

where x ∈ Rnx denotes the state of the system, u ∈ Rnu denotes the input of the
system, e ∈ Rne denotes the output of the system, w ∈ Rnw are disturbances,
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dynamic cost function

ẋ = f(x,u,w)

e = g(x,u,w)
y = Z(e,u)

ż = αzh(z, y)

l = k(z)

u e y l

w

Figure 3.1: The extended plant Σ, i.e., series connection of the nonlinear system
Σp, the user-defined cost function Z, and the to-be-designed filter Σf .

and t ∈ R is time. In the context of ESC, Σp represents the system to be
optimized, where the input u can be regarded as a vector of tunable system
parameters, the output e can be regarded as a vector of measured performance
variables, and w are piecewise continuous (time-varying and typically unknown)
disturbances, defined and bounded on t ∈ R. We denote this class of disturbances
by PCw, and define the following set of disturbances:

W = {w ∈ PCw : ‖w(t)‖ ≤ ρw ∀ t ∈ R} (3.2)

with ρw > 0. We adopt the following assumption on the system in (3.1), see
Assumption 2.6 in Chapter 2.

Assumption 3.1. The nonlinear system Σp in (3.1) is globally uniformly expo-
nentially convergent1 for a class of disturbances w(·) ∈ W, and for all constant
input u ∈ Rnu , uniformly in u. In addition, given a disturbance w ∈ W, the
globally exponentially stable (GES) steady-state solution, which we denote by
x̄w(t,u), is twice continuously differentiable in u and satisfies

∥

∥

∥

∥

∂x̄w

∂u
(t,u)

∥

∥

∥

∥

≤ Lxu, (3.3)

for all t ∈ R, all u ∈ R
nu , and some constant Lxu ∈ R>0.

Given Assumption 3.1, for constant inputs u ∈ R
nu and a given w ∈ W ,

there exists a unique, time-varying steady-state output of the system Σp in
(3.1), denoted by ēw(t,u), which is given by

ēw(t,u) = g(x̄w(t,u),u,w(t)). (3.4)

The aim is to find constant inputs u that optimize the steady-state performance
of the system in (3.1). Common practice (in the ESC literature) is to define

1The notion of convergent systems has proven instrumental in the scope of the stability
analysis of the ESC scheme with time-varying steady-state responses in Chapter 2. For details
on convergent systems, see Pavlov et al. (2006) and Chapter 2.
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a cost function in terms of the system responses and inputs that quantifies the
performance of interest for the system under study. For example, consider the
following performance measure which is adopted from Haring et al. (2013) and
exploited in Hunnekens et al. (2015):

L2(t, e(t)) :=
1

T

t
∫

t−T

‖e(τ)‖2dτ ∀t ≥ T, (3.5)

where T ∈ R>0 typically indicates a known performance relevant time-interval.
In the case where, for constant inputs u, the steady-state plant outputs ēw in
(3.4) are constant for all time or periodic with period time T , the steady-state
output of the cost function in (3.5) is constant for all time as well. Having a con-
stant steady-state output of the cost function for constant inputs u is one of the
basic requirements in the ESC literature that study the data-based optimization
of stable (nonlinear) systems by means of extremum seeking control (Krstić and
Wang, 2000; Tan et al., 2006; Haring et al., 2013). However, in many (indus-
trial) applications this requirement is not met, as the steady-state plant outputs
ēw(t,u) that characterize system performance are generically time-varying in
nature (also for constant u). In addition, periodicity of the steady-state plant
outputs ēw is not evident due to the fact that system responses can be induced
by complex, time-varying, possibly non-periodic disturbances and reference tra-
jectories. In those cases, often the neighborhood to which the ESC scheme
converges can not be made arbitrarily small, thereby limiting the achievable
performance gain.

Dynamic cost function

To deal with the time-varying nature of the system responses, Chapter 2 proposes
the series connection of the system Σp as in (3.1), and a so-called dynamic cost
function, i.e., the series connection of a cost function Z of the form

y(t) = Z(e(t),u(t)), (3.6)

where y ∈ R, and a user-defined filter, denoted by Σf , which has the following
general form

Σf :

{

ż(t) = αzh(z(t), y(t))

l(t) = k(z(t)),
(3.7)

where αz ∈ R>0 is a tuning parameter, z ∈ Rnz is the state of the filter, y ∈ R is
the input of the filter defined by (3.6), and l ∈ R is the output of the filter. The
function Z : Rne × Rnu → R is designed to be twice continuously differentiable
with respect to both arguments. Moreover, we choose Z in such a way that there
exist constants LZe, LZu ∈ R>0 such that

∥

∥

∥

∥

∂2Z

∂e∂e⊤
(e,u)

∥

∥

∥

∥

≤ LZe,

∥

∥

∥

∥

∂2Z

∂e∂u⊤
(e,u)

∥

∥

∥

∥

≤ LZu, (3.8)
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for all e ∈ Rne , and all u ∈ Rnu . Given a disturbance w ∈ W , for all constant
inputs u ∈ R

nu , the steady-state output of Z is denoted by ȳw(t,u) and reads

ȳw(t,u) = Z(g(x̄w(t,u),u,w(t)),u). (3.9)

The functions h : Rnz × R → Rnz and k : Rnz → R in (2.12) are designed to
be twice continuously differentiable with respect to all arguments. Moreover, we
design Σf in such a way that there exist constants Lhz, Lhy, Lk ∈ R>0 such
that

∥

∥

∥

∥

∂h

∂z
(z, y)

∥

∥

∥

∥

≤ Lhz,

∥

∥

∥

∥

∂h

∂y
(z, y)

∥

∥

∥

∥

≤ Lhy,

∥

∥

∥

∥

dk

dz
(z)

∥

∥

∥

∥

≤ Lk, (3.10)

for all z ∈ Rnz , and all y ∈ R. The design of the dynamic cost function should
satisfy the following property.

Property 3.2. The dynamic cost function consisting of the cascade of Z and Σf ,
given by (3.6) and (3.7), respectively, is exponentially input-to-state convergent
(for the definition of (exponentially) input-to-state convergence, see, e.g., Pavlov
et al. (2006) or Definition 2.5 in Chapter 2) for all constant inputs u ∈ Rnu and
all αz ∈ R>0, uniformly in u.

Instead of defining system performance in a time-averaged sense as in (3.5)
with fixed period time T , the filter Σf is introduced to act as an averaging
operator on y(t) in (3.6), which quantifies system performance similar to the use
of exponentially weighting filters (Wang and Krstić, 2000; Antonello et al., 2009).
By tuning αz sufficiently small, the solution z(t) will vary ”slowly” in time, i.e.,
the output of the filter l(t) will be quasi-constant and determined predominantly
by the average of y(t). By properly designing cost function Z and tuning αz in
(3.7) small, the output of the dynamic cost function l(t) is quasi-constant and
reflects the performance of the system, while being characterized by the time-
varying system response e(t). Hence, by subsequently minimizing l(t) using
ESC, we optimize the time-varying system response e(t).

Extended plant dynamics

The series connection of the nonlinear plant Σp in (3.1) and the dynamic cost
function, consisting of the cost function Z in (3.6) and filter Σf in (3.7), is
referred to as the extended plant Σ and is schematically depicted in Fig. 3.1.
The dynamics of the extended plant is given by

Σ :











ẋ(t) = f(x(t),u(t),w(t))

ż(t) = αzh(z(t), Z(g(x(t),u(t),w(t)),u(t)))

l(t) = k(z(t)).

(3.11)

In Lemma 2.11 in Chapter 2, it has been shown that, given the nonlinear system
and the dynamic cost function described above, the extended plant Σ is globally
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uniformly exponentially convergent for a class of disturbances w(·) ∈ W , for all
constant inputs u ∈ R

nu , uniformly in u. This implies that there exists a unique
steady-state solution of Σf , denoted by z̄w(t,u, αz) and induced by the extended
plant, which is defined and bounded on t ∈ R and globally exponentially sta-
ble (GES). We denote this steady-state solution by z̄w(t,u, αz) to emphasize
the dependency on time-varying disturbances w(t), constant inputs u, and the
tunable parameter αz.

Parameter-to-steady-state performance map

Next, we define the objective function Fw in terms of the steady-state solution
z̄w of the extended plant Σ, for which we adopt part of Assumption 2.12 in
Chapter 2.

Assumption 3.3. Given a disturbance w(t) ∈ W, there exists a twice con-
tinuously differentiable function qw : Rnu → Rnz , referred to as the constant
performance cost, such that

qw(u) = lim
αz→0

z̄w(t,u, αz), (3.12)

for all t ∈ R, and all u ∈ Rnu . Moreover, there exist constants δz1, δz2 ∈ R≥0,
related to the disturbance w(t) and the extended plant Σ, such that the difference
between the steady-state solution z̄w(t,u, αz) and the function qw(u) satisfies

‖z̄w(t,u, αz)− qw(u)‖ ≤ αz

(

δz1 + δz2‖u− u∗
w‖2

)

, (3.13)

for all t ∈ R, all u ∈ Rnu , and all 0 < αz ≤ ǫz for some constant ǫz ∈ R>0,
where u∗

w denotes the optimal vector of tunable system parameters.

Hence, by Assumption 3.3, under steady-state conditions of the extended
plant dynamics in (3.11), in the limit αz → 0, and for constant inputs u, we
have that the parameter-to-steady-state performance map of the system can be
characterized as follows:

Fw(u) := k(qw(u)), ∀ u ∈ R
nu . (3.14)

The following assumption on Fw in (3.14) is adopted from Assumption 2.15 in
Chapter 2.

Assumption 3.4. Given a disturbance w ∈ W, the objective function Fw :
Rnu → R in (3.14) is twice continuously differentiable and exhibits a unique
minimum in R

nu . Let the corresponding optimal input u∗
w be defined as

u∗
w := argmin

u∈Rnu

Fw(u). (3.15)
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There exist constants LF1, LF2 ∈ R>0 such that

dFw

du
(u− u∗

w) ≥ LF1‖u− u∗
w‖2, (3.16)

and
∥

∥

∥

∥

d2Fw

dudu⊤

∥

∥

∥

∥

≤ LF2, (3.17)

for all u ∈ Rnu .

To optimize the time-varying system behavior ēw, we aim to find the system
parameter values u for which the objective function in (3.14) is minimal. Infor-
mation of the objective function can only be obtained through measured outputs
l of the extended plant in (3.11). On the basis of these measured outputs, we
aim to steer the inputs u to their performance optimizing values u∗

w by using
the measured extended plant output l(t) as feedback to an extremum-seeking
controller that is introduced next.

3.2.2 Extremum-seeking controller design

The extremum-seeking controller employed in this chapter is based on the one
in (Haring, 2016, Chapter 2). A novel ESC design extension will be presented
in Section 3.2.3. We will briefly elaborate on 1) the dither signal design, 2)
a model of the input-output behavior of the extended plant to be used as a
basis for gradient estimation, 3) a least-squares observer to estimate the state of
the model (and therewith the gradient of the objective function Fw), and 4) a
normalized optimizer to steer the system parameters u to the minimizer u∗

w.

Dither signal

In order to estimate the gradient of the objective function Fw and use this esti-
mated gradient to drive u towards u∗

w by an optimizer, we supply the following
dither signal:

u(t) = û(t) + αωω(t), (3.18)

where αωω is a vector of perturbation signals with amplitude αω ∈ R>0, and û

is referred to as the nominal system parameter to be generated by the extremum-
seeking controller. The vector ω is defined by ω(t) = [ω1(t), ω2(t), ..., ωnu

(t)]⊤,
with

ωi(t) =















sin

(

i + 1

2
ηωt

)

, if i is odd,

cos

(

i

2
ηωt

)

, if i is even,

(3.19)

for i = {1, 2, ..., nu}, where ηω ∈ R>0 is a tuning parameter.
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Model of input-output behavior of the extended plant

To obtain an estimate of the gradient of the objective function (3.14), the input-
to-output behavior of the extended plant in (3.11), that is, from input û to
measured output l, is modelled in a general form. We define the state vector of
the model as

m(t) =

[

Fw(û(t))

αω

dFw

du⊤
(û(t))

]

. (3.20)

The measured output of the extended plant l in (3.11) can be written as

l(t) = r(t) + Fw(u(t)) + d(t), (3.21)

with the signals r(t) and d(t) defined as

r(t) := k(z(t)) − k(z̄w(t,u(t), αz)),

d(t) := k(z̄w(t,u(t), αz))− k(qw(u(t))).
(3.22)

Using Taylor’s Theorem and (3.18), the objective function Fw can be written as

Fw(u(t)) = Fw(û(t) + αωω(t)),

= Fw(û(t)) + αω

dFw

du
(û(t))ω(t) +

1

2
α2
ω
ω

⊤(t)H(t, û(t))ω(t),
(3.23)

where H(t, û(t)) reads

H(t, û(t)) = 2

1
∫

0

(1 − σ) d
2Fw

dudu⊤
(û(t) + σαωω(t))dσ. (3.24)

The dynamics of the state vector in (3.20) is governed by

ṁ(t) = A(t)m(t) + α2
ω
Bs(t)

l(t) = C(t)m(t) + α2
ω
v(t) + r(t) + d(t),

(3.25)

with the matrices A, B and C defined as

A(t) =
1

αω

[

0 ˙̂u⊤(t)
0nu×1 0nu×nu

]

, B =

[

01×nu

Inu×nu

]

,

C(t) =
[

1 ω
⊤(t)

]

,

(3.26)

and the signals s(t) and v(t) defined as follows:

s(t) :=
d2Fw

dudu⊤
(û(t))

˙̂u(t)

αω

,

v(t) :=
1

2
ω

⊤(t)H(t, û(t))ω(t).

(3.27)
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The signals s, v, r, and d can be interpreted as unknown disturbances to the
model in (3.25). The influences of s, v, r, and d on the state and output of the
model in (3.25) are small if i) û is slowly time varying, if ii) αω is small, if iii)
the states x of the system in (3.1) and the states z of the filter in (3.7) are close
to their steady-state values, respectively x̄w and z̄w, and if iv) αz is sufficiently
small.

Extremum-seeking controller design

The state m in (3.20) contains the gradient of the objective function, scaled
by the perturbation amplitude αω. Hence, an estimate of the gradient of the
objective function Fw can be obtained from an estimate of the state m. Here
we present a least-squares observer to estimate the state m of the model in
(3.25) based on measured outputs of the extended plant l(t). The least-squares
observer, denoted by Σo, is given by

Σo :























˙̂m =
(

A− ηmσrQD⊤D
)

m̂+ α2
ω
Bŝ

+ ηmQC⊤(l −Cm̂− α2
ω
v̂)

Q̇ = ηmQ+AQ+QA⊤

− ηmQ(C⊤C+ σrD
⊤D)Q,

(3.28)

with initial conditions m̂(0) = m̂0 ∈ Rnu+1 and Q(0) = Q0 ∈ Rnu+1×nu+1,
where Q0 is a symmetric and positive definite matrix, D = [0nu×1 Inu×nu ],
ηm ∈ R>0 and σr ∈ R≥0 are tuning parameters related to the observer, referred
to as a forgetting factor and a regularization constant, respectively, and signals
ŝ and v̂ are defined as

ŝ(t) := Ĥ(t, û(t))
˙̂u(t)

αω

,

v̂(t) :=
1

2
ω

⊤(t)Ĥ(t, û(t))ω(t),

(3.29)

with a user-defined function Ĥ : R×Rnu → Rnu×nu satisfying ‖Ĥ(t, û)‖ ≤ LH,
for all t ∈ R, all û ∈ Rnu , and with LH ∈ R>0. Note that in order to arrive at
the observer design in (3.28), we have considered the signals r and d in (3.25) to
be zero. This is justified for steady-state conditions of the extended plant Σ, and
sufficiently small αz. The optimizer, denoted by Σr, uses the estimated gradient
to steer the nominal system inputs û to their performance-optimal values u∗

w.
The optimizer Σr is given by

Σr : ˙̂u(t) = −λu
ηuDm̂(t)

ηu + λu ‖Dm̂(t)‖ , (3.30)

with λu, ηu ∈ R>0 being tuning parameters related to the optimizer. The closed-
loop ESC scheme, composed of the extended plant Σ in (3.11), the observer Σo
in (3.28), and the optimizer Σr in (3.30), is depicted in Fig. 2.3.
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3.2.3 Extremum-seeking controller design for enhanced con-

vergence speed

The least-squares observer presented in Section 3.2.2, used to obtain a local
estimate of the gradient of the objective function Fw, is constructed based on
a general model of the input-output behavior of the extended plant in (3.11),
that is, from input û to measured output l. To be able to obtain an accurate
gradient estimate of Fw(û), on the one hand, the user-defined filter Σf must act
on a slow enough time scale to reduce the effect of time-varying behavior in the
steady-state output of the filter l, leading to a quasi-static approximation of the
objective function Fw(û). On the other hand, for this quasi-static approximation
of Fw(û) to hold in case of dithering, the perturbation of the input û must be
even slower. As a result, convergence of the ESC scheme is generally slow.

Convergence speed of the ESC scheme can be improved by increasing the
frequency of the perturbation. However, this can lead to a deterioration of the
gradient estimation because the quasi-static approximation of Fw(û(t)), in the
case of high-frequency perturbations, is distorted by the (transient) dynamics of
the filter Σf . Instead, by taking into account the dynamics of the user-defined
filter Σf in the observer design, this distortion of quasi-static approximation
can be taken into account, improving the convergence speed in cases where the
time-scales of the perturbation and filter are similar. We propose an alternative
least-squares observer design that incorporates user-defined filters Σf of the
linear time-invariant (LTI) type, which enables enhanced convergence speed of
the resulting ESC scheme. We 1) revisit the model of the input-output behavior
with knowledge on Σf , and 2) provide the modified ESC design. In Section 3.2.5,
the effectiveness of the modified extremum-seeking controller design is shown by
means of a simulation example.

Model of input-output behavior and knowledge on the dynamic cost function

The model presented here extends the model in Section 3.2.2. Let us focus on
LTI designs of the filter Σf in (3.7), given by the following form:

Σf :

{

ż(t) = αz

(

AΣf
z(t) +BΣf

y(t)
)

l(t) = CΣf
z(t),

(3.31)

with the matrices AΣf
∈ Rnz×nz , BΣf

∈ Rnz×1, CΣf
∈ R1×nz . Note that if

AΣf
is Hurwitz, then Σf is exponentially stable, and Property 3.2 is guaranteed.

Define a state mz governed by the following dynamics:

ṁz = αz

(

AΣf
mz(t) +BΣf

Fw(u(t))
)

, (3.32)

where mz ∈ Rnz . We can reformulate the output l in (3.31) as follows:

l(t) = CΣf
mz(t) +CΣf

m̃z(t), (3.33)
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where m̃z := z−mz, and generated by the following dynamics:

˙̃mz = αz

(

AΣf
m̃z(t) +BΣf

(y(t)− Fw(u(t)))
)

. (3.34)

We can define a new state vector which reads

mf (t) =

[

mz(t)
m(t)

]

∈ R
nmf , (3.35)

where nmf
= nz+nu+1 denotes the dimension of the state vector mf . By using

(3.32), (3.23), and the dynamics of the state vector m in (3.25), the dynamics
governing the state vector in (3.35) is given as follows:

ṁf (t) = Af (t)mf (t) + α2
ω
Bfs(t) + αzα

2
ω
Efv(t)

l(t) = Cfmf (t) +CΣf
m̃z(t),

(3.36)

with the matrices Af ∈ R
nmf

×nmf , Bf ∈ R
nmf

×nu , Cf ∈ R
1×nmf , and Ef ∈

R
nmf

×1, defined as follows:

Af (t) =









αzAΣf
αzBΣf

αzBΣf
ω

⊤(t)

01×nz 0
˙̂u⊤

αω

0nu×nz 0nu×1 0nu×nu









,

B⊤
f =

[

0nu×nz 0nu×1 Inu×nu
]

,

Cf =
[

CΣf
0 01×nu

]

,

E⊤
f =

[

B⊤
Σf

0 01×nu
]

.

(3.37)

Modified extremum-seeking controller design

Inspired by the observer in (3.28), the least-squares observer to estimate mf of
the model in (3.36), denoted by Σfo, is given by

Σfo :























˙̂mf =
(

Af − ηmσrQfD
⊤
f Df

)

m̂f + α2
ω
Bf ŝ

+ αzα
2
ω
Ef v̂ + ηmQfC

⊤
f (l −Cfm̂f )

Q̇f = ηmQf +AfQf +QfA
⊤
f

− ηmQf (C
⊤
f Cf + σrD

⊤
f Df )Qf ,

(3.38)

with initial conditions m̂f (0) = m̂f0 ∈ R
nmf and Qf (0) = Qf0 ∈ R

nmf
×nmf ,

where Qf0 is a symmetric and positive definite matrix, and the matrix Df

defined as
Df = [0nu×nz 0nu×1 Inu×nu ]. (3.39)

The signals ŝ and v̂ are defined in (3.29). To arrive at the observer design in
(3.38) we have assumed m̃z to be zero, similar as for the signals r and d in the
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observer design in (3.28). Again, this is justified for steady-state conditions of
the extended plant Σ, and sufficiently small αz. The optimizer, denoted by Σfr,
reads as follows:

Σfr : ˙̂u(t) = −λu
ηuDfm̂f (t)

ηu + λu ‖Dfm̂f (t)‖
. (3.40)

3.2.4 Closed-loop stability analysis

Next we provide a stability result and supporting stability proof for the closed-
loop ESC scheme with the modified extremum-seeking controller proposed in
Section 3.2.3. The next result states conditions on tuning parameters under
which the ESC scheme with the modified extremum-seeking controller guarantees
that û converges to an arbitrarily small set around the optimum u∗

w.

Theorem 3.5. Consider a (time-varying) disturbance w ∈ W and Assump-
tions 2.2, 3.1, 3.3, 3.4. Moreover, consider arbitrary initial conditions x(0) ∈
Rnx , Qf (0) ∈ R

nmf
×nmf symmetric and positive-definite, z(0) ∈ Rnz , m̂f (0) ∈

R
nmf , and an arbitrary compact set U0 ⊂ R

nu of initial conditions for û(t).
Then, there exist (sufficiently small) constants ǫ0, ..., ǫ5 ∈ R>0, such that, for all
tunable parameters αz, αω, ηu, λu, ηm, ηω ∈ R>0 and σr ∈ R≥0 with αω ≤ ǫ0,
ηω ≤ αzǫ1, αz ≤ ηmǫ2, αωλu ≤ ηmǫ3, ηu ≤ αωηωǫ4, and σr ≤ ǫ5, the solu-
tions of the closed-loop system consisting of the extended plant in (3.11) and the
modified extremum-seeking controller (consisting of the dither signal in (3.18),
the observer Σfo in (3.38), and the optimizer Σfr in (3.40)) are bounded for all
t ≥ 0. In addition, there exist constants c1, . . . , c5 ∈ R>0 such that the solutions
û(t) with û(0) ∈ U0 satisfy

lim sup
t→∞

‖û(t)− u∗
w‖ ≤ max

{

αωη
2
ω
c1, αzαωδz2c2, ηωc3,

αz

αω

c4δz1, αωc5

}

(3.41)

Proof. The proof of Theorem 3.5 follows similar arguments as the proof of The-
orem 14 in Hazeleger et al. (2018) and the proof of Theorem 2.16 in Chapter 2.
Different from Theorem 2.16 in Chapter 2 and its proof are the bounds on the
solutions of the error dynamics of the novel least-squares observer in (3.38). Here
we will present these bounds. Introduce the following coordinate transformation:

m̃f(t) = m̂f(t)−mf (t),

Q̃f(t) = Q−1
f (t)− Ξ−1

f ,
(3.42)

with
Ξ−1
f = C⊤

f Cf + σrD
⊤
f Df . (3.43)

From the observer in (3.38), the coordinate transformation in (3.42), and the
model of the input-output behavior in (3.36), we have the following state equa-
tions for Q̃f and m̃f :

˙̃
Qf = −ηmQ̃f − Ξ−1

f Af −A⊤
f Ξ

−1
f − Q̃fAf −A⊤

f Q̃f (3.44)



88 Chapter 3. Extremum-seeking control and enhanced convergence speed

and
˙̃mf =

(

Af − ηmQf(C
⊤
f Cf + σrD

⊤
f Df )

)

m̃f

+ α2
ω
Bf (̂s− s)− ηmσrαωQfD

⊤
f

dFw

du⊤
(û)

+ αzα
2
ω
Ef (v̂ − v) + ηmQfC

⊤
f CΣf

m̃z.

(3.45)

Note that we have omitted most arguments of the variables in (3.44) and (3.45)
for notational clarity. Firstly, a bound on the solutions Q̃f(t) is presented in
Lemma 3.6.

Lemma 3.6. For any ǫ1, ǫ4 ∈ R>0, sufficiently small ǫ2, ǫ5 ∈ R>0, and all
tunable parameters αω, ηm ∈ R>0, there exist constants cQ, βQ ∈ R>0 such
that, for all ηω ≤ αzǫ1, αz ≤ ηmǫ2, all ηu ≤ αωηωǫ4, and all σr ≤ ǫ5, the
solutions Q̃f satisfy

‖Q̃f(t)‖ ≤ max

{

cQ‖Q̃f(0)‖e−ηmβQt,
1

8

}

, (3.46)

for all t ≥ 0, all Q̃f (0) ∈ R
nmf

×nmf for which Qf (0) is symmetric and positive
definite, and all time-varying u(t) ∈ Rnu .

Proof. See Appendix 3.A. �

Secondly, a bound on the solutions m̃f (t) for time-varying inputs u(t) is
presented in Lemma 3.7.

Lemma 3.7. For any ǫ0, ǫ1, ǫ2, ǫ4 ∈ R>0, sufficiently small ǫ5 ∈ R>0, any finite
time t1 ≥ 0, and any δz1, δz2 ∈ R≥0, the solutions m̃f are bounded for all
0 ≤ t ≤ t1, all ũ(0) ∈ R

nu , all m̃f (0) ∈ R
nmf , and all αω ≤ ǫ0, ηω ≤ αzǫ1, αz ≤

ηmǫ2, ηu ≤ αωηωǫ4, and all σr ≤ ǫ5. In addition, for sufficiently small ǫ3, ǫ5 ∈
R>0 and all αωλu ≤ ηmǫ3, there exist constants cm1, ..., cm8(ǫ0), ..., cm10(ǫ2) ∈
R>0 such that the solutions m̃f satisfy

sup
t≥t1

‖m̃f(t)‖ ≤ sup
t≥t1

max{cm1‖m̃f(t1)‖,
√
σrαωcm2 ‖ũ(t)‖ ,

αω

αωλu
ηm

cm3‖ũ(t)‖, αzcm4δz2‖ũ(t)‖2, αωηωcm5‖ũ(t)‖,

α2
ω
η2
ω
cm6, αzα

2
ω
cm7δz2, αωηωcm8, αzcm9δz1, α

2
ω
cm10}.

(3.47)

and

lim sup
t→∞

‖m̃f(t)‖ ≤ lim sup
t→∞

max{√σrαωcm2 ‖ũ(t)‖ ,

αω

αωλu
ηm

cm3‖ũ(t)‖, αzcm4δz2‖ũ(t)‖2, αωηωcm5‖ũ(t)‖,

α2
ω
η2
ω
cm6, αzα

2
ω
cm7δz2, αωηωcm8, αzcm9δz1, α

2
ω
cm10}.

(3.48)
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Proof. See Appendix 3.B. �

On the basis of the proofs of Theorem 2.16 in Chapter 2 and the bounds on
the solutions Q̃f (t) and m̃f (t) in Lemmas 3.6 and 3.7, respectively, we obtain
the bounds on the solutions û(t) − u∗

w in (3.41), which completes the proof of
Theorem 3.5. �

Remark 3.8. Tuning guidelines. Under the conditions of Theorem 3.5 it follows
that, if we are dealing with constant (or no) disturbances w, i.e., δz1, δz2 = 0
(see Assumption 3.3), the optimizer state û converges to an arbitrarily small
region of the performance-optimal value u∗

w if the dither parameters αω and ηω
are chosen sufficiently small for an arbitrary bounded αz. Choosing αz large in
general allows faster convergence towards the performance-optimal value u∗

w. In
the case of time-varying disturbances w(t), i.e., δz1, δz2 > 0, we subsequently
tune αω small to make the fifth term in the right-hand side of (3.41) arbitrarily
small, tune αz small to make the second and fourth term arbitrarily small, and
finally tune ηω small to make the first and third term arbitrarily small.

Remark 3.9. Compared to Theorem 2.16 in Chapter 2, Theorem 3.5 and the
associated conditions on the tunable parameters under which the ESC schemes
converges to a neighborhood of the extremum are different. Namely, the con-
ditions αz ≤ αωǫ1 and ηm ≤ ηωǫ3 ≤ αzǫ2ǫ3 in Theorem 2.16 are changed to
αz ≤ ηmǫ2 in Theorem 3.5. In the first place, the condition αz ≤ αωǫ1, which
introduces an upperbound on the tuning of αz, is taken care of by the condition
αz ≤ ηmǫ2. In the second place, ηm ≤ ηωǫ3 ≤ αzǫ2ǫ3 is ’the opposite’ of the
condition αz ≤ ηmǫ2. This can attributed to the fact that in Chapter 2 we require
the time-scale of the dynamic cost function, which can be influenced by αz, to
operate faster than the time-scale of the observer, which can be influenced by ηm.
In Chapter 3, this restriction is not needed due to the explicit knowledge about
the dynamic cost function embedded in the observer design.

3.2.5 Illustrative example: Enhanced convergence speed

To illustrate the enhanced convergence speed of the modified extremum-seeking
controller, we have adopted the following exemplary dynamical system from
Haring et al. (2013):

Σp :











ẋ1(t) = x2(t)

ẋ2(t) = −25x1(t)− b(u(t))x2(t) + w(t)

e(t) = x1(t),

(3.49)

where b(u) = 10 + 5(u − 10)2 is a nonlinear characteristic that depends on the
system input u ∈ R, and w(t) = 20 sin(2π10t) is an input disturbance. In
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optimal input u∗w = 10 (see top figure) can be achieved. The improved conver-
gence of the modified extremum-seeking controller is more significant in cases
where the value of αz is relatively small.
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this example, the aim is to find the input u that maximizes2 the amplitude of
the steady-state output of the system in (3.49) given the particular disturbance
w(t). Note that, for each constant input u, the system in (3.49) is a globally
exponentially stable linear system subject to external inputs w(t), which implies
that it is globally exponentially convergent, thereby satisfying Assumption 3.1.

We employ the following dynamic cost function, with cost function Z : y(t) =
e(t)2, and filter Σf given by a low-pass filter ż(t) = αz(y(t) − z(t)), l(t) = z(t),
with αz the cut-off frequency. Here we employ both ESC strategies given by
(3.28)-(3.30) and (3.38)-(3.40), respectively, to investigate the effect of including
information of the user-designed filter Σf in the observer on the convergence
speed. For both extremum-seeking controllers, we employ the following numer-
ical values: αω = 0.25, ηω = 4, ηm = 2, λu = 1.5 · 106, ηu = 0.75, σr = 1 · 10−3,
and Ĥ = −5 · 10−7. Moreover, we show results for both extremum-seeking
controllers with two filter settings: αz = 3 and αz = 10.

Fig. 3.2 presents simulation results that show the convergence of the initial
input u(0) = 3 to a small neighborhood of the optimal input u∗w = 10 for both
filter settings αz = 3 and αz = 10, and both the nominal extremum-seeking
controller design, and the modified extremum-seeking controller design. For all
settings, it can seen that the input u converges towards u∗w (top figure), and the
amplitude of the output e increases (third sub-figure).

In addition, Fig. 3.2 illustrates the improved convergence speed as a result
of incorporating knowledge about Σf . For αz = 3, the modified case ( ) shows
a significantly faster convergence towards u∗w than the nominal case ( ). In
case of αz = 10, the convergence speed in the nominal case (see ( ) in the first
and second sub-figures) is similar to the convergence speed in the modified case
( ) in the first and second sub-figures). Concluding, especially in cases where
the steady-state plant responses are dominated by time-varying behavior and a
relatively small value of αz is needed, the modified extremum-seeking controller
outperforms the nominal case in terms of convergence speed.

3.3 Industrial case study: Performance optimization of an in-

dustrial motion stage set-up

In this section, we will give a brief description of the industrial motion stage
set-up under study and its nonlinear feedback control design. The industrial
motion stage set-up under study, and depicted in Fig. 3.3, represents the short-
stroke motion of a wafer stage commonly found in, e.g., complex lithography
machinery used to manufacture integrated circuits (ICs); for more details, see
Butler (2011). Wafer stages are required to perform fast (re-)positioning in
three degrees-of-freedom with nm-accuracy to achieve the desired high machine

2The extremum-seeking controllers presented in this section are designed for minimization
problems. Without loss of generality, we can employ the same controllers for maximization
problems by changing the sign of the cost function.
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throughput. Achieving nm-accuracy and high speeds of the wafer stage are
in general realized by high-gain linear feedback controllers. However, due to
the well-known waterbed-effect, see, e.g., Freudenberg et al. (2000), increasing
the gain further to improve the ability to suppress low-frequency disturbances
comes at the expense of an increased sensitivity to high-frequency disturbances
and noise. Instead, variable-gain control is able to balance this trade-off in
a more desirable manner. The idea of variable-gain control is to schedule an
additional gain on the basis of the error signal. A dead-zone nonlinearity is used
to perform this scheduling; namely, if the error resides within the dead-zone
length the additional gain equals zero and prevents an increased amplification
of high frequency disturbances within this regime. If the error is larger than
the dead-zone length, which is typically induced by low-frequency disturbances,
additional gain will be applied to suppress these low-frequency disturbances.

Although VGC is intuitive in nature, performance-optimal tuning of a
variable-gain controller is far from trivial and heavily depends on the distur-
bance situation at hand. We will use the set-up to experimentally demonstrate
both the nominal ESC approach and the modified ESC approach for the op-
timization of time-varying steady-state responses in Section 3.4. Section 3.3.1
presents the industrial stage set-up. Section 3.3.2 discusses the nominal and
nonlinear feedback control designs of the industrial motion stage set-up. In Sec-
tion 3.3.3, we will discuss the (external) disturbances acting on the system and
the system performance measure.

3.3.1 Wafer stage system description

Fig. 3.3 depicts the industrial motion stage set-up under study, which repre-
sents the short-stroke motion of a wafer stage commonly found in, e.g., complex
lithography machinery used to manufacture integrated circuits (ICs); for more
details, see, e.g., Butler (2011). The industrial motion stage set-up, depicted in
Fig. 3.3, consist of a base frame 1© which is directly connected to the fixed world,
force actuators in x-, y-, and z-direction, respectively 6©, 7©, and 8©, which are
installed in a force frame 4© that rests on the base frame, encoders in x-, y-, and
z-direction 9© which are connected to a metrology frame 3© that is isolated from
the base frame by means of airmounts 2©, and a chuck 4©, supported by four
passive gravity compensators at the corners 8© to achieve a mid-air equilibrium
of the chuck. The chuck, being the main component of the set-up, can be con-
trolled in all six DOFs by means of force actuators. The origin of the reference
frame is located at the center of gravity of the chuck. Lorentz actuators are used
to actuate the chuck in x-, y-, and φz-direction, and voice coil actuators are used
to actuate the chuck in φx-, φy-, and z-direction.
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Figure 3.3: Industrial motion stage set-up: 1© Base frame, 2© Airmounts, 3©
Metrology frame, 4© Force frame, 5© Chuck, 6© x-direction actuators, 7© y-
direction actuators, 8© z-direction actuators, 9© sensors.

3.3.2 Nominal and nonlinear feedback control design

Here, we focus on controlling the chuck in the z-direction with the (nonlinear)
feedback control loop depicted in Fig. 3.4. Herein Pz(s) represents the (motion)
plant dynamics of the actuated chuck (in z-direction), with s ∈ C being the
Laplace variable. The nonlinear control loop consists of two parts, namely, a
nominal linear feedback control part and a VGC part. For the nominal linear
feedback control part, transfer function Cz(s) represents the nominal (low-gain)
linear controller. The signals rz , ez, and fd denote the setpoint and tracking error
in z-direction, and (external, time-varying) disturbances, respectively. Here we
consider rz = 0.
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Figure 3.4: The closed-loop variable-gain control scheme.

For the so-called VGC part, ϕ(·) denotes a nonlinear control element, and
transfer function Fz(s) is a shaping filter. The nonlinear control element ϕ(·)
studied here is given by a dead-zone characteristic:

ϕ(ez(t), u) =











α(ez(t) + u), if ez(t) < −u,
0, if |ez(t)| ≤ u,
α(ez(t)− u), if ez(t) > u,

(3.50)

where α, u ∈ R≥0 are tunable parameters, referred to as the additional gain
and the dead-zone length, respectively. From the nonlinearity in (3.50) we can
identify three distinct cases:

i) For u = ∞, the output of the nonlinear element ϕ(·) is always zero; the
VGC part is disabled and only the nominal, low-gain, linear controller
Cz(s) is active. This case is referred to as the low-gain case.

ii) For u = 0, the nonlinear element ϕ(·) acts as a gain α, and the VGC part
has the transfer αFz(s). Effectively, this case is referred to as the high-gain
case; the high-gain linear controller reads Cz(s)(1 + αFz(s)).

iii) For u ∈ (0,∞), we have nonlinear behavior, where the output of nonlinear
element ϕ(·) depends on the amplitude of the tracking error ez(t). This
case is referred to as the variable-gain case.

The closed-loop dynamics of the VGC scheme depicted in Fig. 3.4 can be writ-
ten as a so-called Lur’e-type system, i.e., the feedback connection of a linear
dynamical system and a nonlinear element (see, e.g., Khalil (2002, Chapter 7))
having the following state-space form:

Σp :











ẋ(t) = Apx(t) +Bpuz(t) +Bww(t)

ez(t) = Cpx(t) +Dww(t)

uz(t) = −ϕ(ez, u),
(3.51)

with state x ∈ Rnx , and where w(t) = [rz(t) fd(t)]
⊤ ∈ Rnw are all (external)

disturbances. To conclude on closed-loop stability of the system in (3.51), we
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Figure 3.5: Measured open-loop frequency response function with nominal, low-
gain linear controller Cz(s) (u = ∞, i.e. low-gain case), and the nominal high-
gain linear controller Cz(s)(1 + αFz(s)) (u = 0, i.e. high-gain case) with the
maximum allowable additional gain α = 6.48.

denote the transfer from uz to ez, i.e., from the output to the input of the
nonlinear element ϕ(·), by the following transfer function:

Geu(s) = Cp(sI−Ap)
−1Bp =

Pz(s)Cz(s)Fz(s)

1 + Pz(s)Cz(s)
. (3.52)

The following theorem states the conditions under which the dynamics in (3.51)
exhibit a unique, time-varying steady-state output that is globally uniformly
exponentially stable.

Theorem 3.10. (van de Wouw et al., 2008) Consider the dynamics in (3.51).
Suppose

• the matrix Ap is Hurwitz,
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α
for all ω ∈ R. With Fz(s) = 1, a maximum allowable

additional gain α = 1.17 can be achieved. With Fz(s) composed of a notch
filter and low-pass filter, a maximum allowable additional gain α = 6.48 can be
achieved.

• the nonlinear element ϕ(ez , u) satisfies the so-called incremental sector
condition, which reads as follows:

0 ≤ ϕ(e1, u)− ϕ(e2, u)
e1 − e2

≤ α, (3.53)

for all e1, e2 ∈ R, e1 6= e2, and all u ∈ R≥0,

• the transfer function Geu(s) in (3.52) satisfies the following frequency-
domain condition:

Re{Geu(jω)} > −
1

α
∀ ω ∈ R. (3.54)

Then, for any bounded input w(t), the system in (3.51) has a unique,
time-varying steady-state output which is globally exponentially stable.

Based on frequency response measurements of the motion stage set-up, first
a stabilizing linear controller Cz(s) is designed using loop-shaping techniques.
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The linear controller Cz(s), referred to as the nominal low-gain linear controller,
consists of a PID-type controller, low-pass filter, and notch filters, achieving a
bandwidth of 80 Hz (see ( ) in Fig. 3.5 for the open-loop frequency response
function Pz(jω)Cz(jω)).

Having a stabilizing (nominal low-gain) linear controller Cz(s) implies that
the first condition of Theorem 3.10 is satisfied. Moreover, from the definition of
the nonlinear element in (3.50) follows that the second condition of Theorem 3.10
is satisfied. The third condition of Theorem 3.10 is graphically shown in Fig. 3.6
and can be used to design the additional gain α of the nonlinear element in
(3.50) and shaping filter Fz(s). The shaping filter used here is given by Fz(s) =
Nnotch(s)Nlp(s) where Nnotch(s) denotes a notch filter and reads as follows:

Nnotch(s) =
ω2
pN

ω2
zN

s2 + 2βzNωzNs+ ω2
zN

s2 + 2βpNωpNs+ ω2
pN

, (3.55)

and Nlp denotes a second-order low-pass filter and reads as follows:

Nlp(s) =
ω2
lp

s2 + 2βlpωlps+ ω2
lp

, (3.56)

with ωpN = ωzN = 110 · 2π rad/s, βpN = 3.2, βzN = 0.4, βlp = 1
2

√
2, and

ωlp = 350 · 2π rad/s. If we omit the shaping filter, i.e., Fz(s) = 1, the maximum
allowable additional gain that guarantees closed-loop stability of VGC scheme
is α = 1.17. With the shaping filter Fz(s) given by (3.55) and (3.56), the
maximum allowable additional gain that guarantees closed-loop stability of the
VGC scheme is α = 6.48, which greatly increases the ability to suppress low-
frequency disturbances. In addition, the low-pass filter in (3.56) is employed to
attenuate high-frequency content of the large error signal such that the variable-
gain controller does not amplify this. Fig. 3.5 depicts the open-loop frequency
response functions Pz(jω)Cz(jω) for the low-gain case and high-gain case, i.e.,
Cz(s) and Cz(s)(1 + αFz(s)), respectively. In the remainder, we will consider
an additional gain α = 6 for robustness purposes, which renders the closed-loop
system in (3.51) exponentially convergent. Note that this implies the satisfaction
of Assumption 3.1, which is a key requirement for the utilization of the proposed
ESC.

3.3.3 External disturbances

Although we consider control in the z-direction only, in industrial motion stages
the x-, y-, and z-directions are not fully decoupled. For example, in wafer scan-
ning systems the motion of a typical wafer stage in x- and y-direction is usually
prescribed by third or fourth-order reference trajectories, denoted by rx(t) and
ry(t), respectively. Due to cross-coupling between x-, y-, and z-axes, setpoint
accelerations in x- and y-direction, denoted by ax(t) := r̈x(t) and ay(t) := r̈y(t),
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Figure 3.7: Top figure: reference trajectory in y-direction ( ), and a scaled
acceleration profile in y-direction ( ). Middle figure: tracking error ez(t) and
weighting function sw(t) ( ). Bottom figure: cumulative power spectral density
(PSD) of the weighted error sw(t)ez(t). Middle and bottom figure are for the
low-gain ( ), high-gain ( ), and variable-gain case ( ), with the additional
gain α = 6 and dead-zone length u = 3 nm.

respectively, induce low-frequency disturbances that affect the positioning accu-
racy in z-direction among others. The industrial motion stage set-up we consider
here has a limited stroke in x- and y-direction. In order to emulate the effect
of cross-talk of these setpoint-induced disturbances in x- and y-direction to the
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z-direction, we inject a scaled version of the acceleration reference profile in y-
direction as an input disturbance in the z-control loop at the location where
fd enters the loop in Fig. 3.4. A scaled version of this acceleration profile in
y-direction can be seen in Fig. 3.7 (top figure, ( )). The grey areas denote
regions where the velocity is constant, during which high-accuracy motion stage
positioning in the z-direction is desired.

In addition to low-frequency disturbances induced by setpoint accelerations
in y-direction, other (high-frequency) effects are disturbing the system as well.
These disturbances can be, e.g., vibrational or acoustic disturbances, measure-
ment noise, and amplifier disturbances. Fig. 3.7 (middle figure, ( )) shows a
measured tracking error in z-direction for the low-gain case, resulting from these
setpoint-induced low-frequency disturbances and other high-frequency effects.

3.3.4 Time-domain performance

In view of the stage disturbances as discussed in the previous section, VGC is
introduced to be able to improve the ability to suppress the setpoint-induced low-
frequency disturbances in z-direction while limiting the increased sensitivity to
high-frequency disturbances under high-gain feedback. This system performance
specification can be quantified by the power of a weighted tracking error signal
computed over a known performance relevant time-interval T = 0.5 seconds.
Similar to the one in (3.5), a typical performance measure used to quantify
system performance reads:

L2(t, swez(t)) :=
1

T

∫ t

t−T

(sw(τ)ez(τ))
2dτ, ∀ t ≥ T, (3.57)

where we have introduced a weighting function sw(t) which is defined as follows:

sw(t) =

{

0 if ay(t) 6= 0

1 if ay(t) = 0.
(3.58)

A scaled version of the specific weighting function used here is depicted in the
middle plot of Fig. 3.7 ( ); basically, during non-zero accelerations in y-direction
we do not penalize the tracking error, as we are only interested in achieving
improved system performance during the constant velocity phase, i.e., zero ac-
celeration in y-direction, see Fig. 3.7. Fig. 3.7 shows the tracking error for the
low-gain case (u = ∞), high-gain case (u = 0), and the variable-gain case with
α = 6 and u = 3 · 10−9 m. In addition, we have depicted a plot of the cumu-
lative power spectral density (cPSD) of the weighted tracking error, analyzed
over multiple time-intervals T , which shows the different frequency contributions
present in the tracking error. Both plots illustrate the benefit of the variable-
gain controller; we can see that, during sw 6= 0, the tracking error response ez
in the VGC case shows ”the best of both worlds” in terms of the error responses
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cost function l against time for different values of αz, and the system performance
measure in (3.57) for u = 25 nm and u = 3 nm.

in the low- and high-gain cases. That is, the variable-gain controller is able to
suppress low-frequency disturbances similar to the high-gain controller, while
the amplification of high-frequency disturbances, especially around 100-200 Hz,
is similar to the low-gain controller.

The results in Fig. 3.7 show that there exists a variable-gain controller setting
that outperforms the low-gain and high-gain cases in terms of the performance
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measure in (3.57). However, we do not know a-priori which value for the dead-
zone length u gives the best system performance, as the value of u that minimizes
the performance measure in (3.57) depends heavily on the disturbance situation
at hand. Since accurate models of the disturbance situation are difficult to
obtain, and the disturbance characteristic may slowly change over time, finding
the optimal dead-zone length u can be difficult in practice.

In the next section, we will show that, without explicitly using knowledge
on the plant and disturbance situation at hand, we can get arbitrarily close
to the optimally tuned dead-zone length u by employing the ESC approaches
introduced in Section 3.2.

3.4 Experimental results

Here, we will present the experimental results on the performance-optimal tun-
ing of the variable-gain controller applied to the industrial motion stage set-up
discussed in Section 3.3 using the ESC approaches discussed in Section 3.2. Sec-
tion 3.4.1 presents the dynamic cost function design, Section 3.4.2 shows the
measured objective function Fw of the industrial motion stage set-up given the
particular disturbance situation at hand to help verify the working principles
of the ESC approaches. In Sections 3.4.3 and 3.4.4, measurement results are
presented of the closed-loop ESC schemes with the nominal ESC design and the
modified ESC design, respectively, and Section 3.4.5 presents dedicated tuning
guidelines to achieve extremum-seeking for motion stages.

3.4.1 Dynamic cost function

In order to minimize the power of the tracking error, which ultimately leads to
a performance-optimal tracking error, the cost function Z in (3.6) is chosen as
follows:

Z : y(t) = (sw(t)ez(t))
2, (3.59)

with the weighting function sw defined in (3.58), and the filter Σf in (3.7) is
designed as a second-order low-pass filter with the following state-space formu-
lation:

Σf :











ż1(t) = αzz2(t)

ż2(t) = αz (y(t)− 2βzz2(t)− z1(t))
l(t) = z1(t),

(3.60)

with tunable parameters βz, αz ∈ R>0 representing the damping coefficient and
cut-off frequency of the second-order low-pass filter, respectively. The top figure
of Fig. 3.8 shows two 10 second measurements of the weighted tracking error
for two variable-gain cases, respectively u = 25 nm ( ) and u = 3 nm ( ).
The middle figure shows a zoomed plot for t ∈ [6, 6.5] seconds. The lower figure
shows the response of the dynamic cost function l for different values of αz,



102 Chapter 3. Extremum-seeking control and enhanced convergence speed

dead-zone length u [nm]

o
b
je
ct
iv
e
fu
n
ct
io
n
F
w
(u
)
[n
m

2
]

measurements
average

←−high-gain case

−→

−→

low-gain case

←−optimal dead-zone length u∗w

Fw(u
∗
w)

max |ez| ≤ u

Figure 3.9: Approximation of the objective function Fw(u), averaged over 3
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Fw(u). The grey area indicates an area in which l approximately lies. For
smaller values of αz, this area becomes smaller, however a longer measurement
time is needed for the transient response to have sufficiently decayed.

and the performance measure in (3.57) for both variable-gain cases. Clearly, the
performance measure in (3.57) is time-varying due to the time-varying nature
of the measured performnace output, i.e., the weighted tracking error. The
output l of the filter Σf approximates the performance measure in real time and
is also time-varying. However, by selecting a sufficiently small αz, the steady-
state output, defined as l̄w, can be made quasi-constant. That is, the filter Σf
with tunable parameter αz provides robustness for the ESC scheme against the
effect of time-varying system behavior on the performance measure, which can
be made arbitrarily small. Note that, for smaller values of αz, it takes a longer
time before transient effects are sufficiently decayed. For larger αz the opposite
can be concluded; the effect of time-varying system behavior on the performance
measure is larger, while the transients decay faster.

3.4.2 Identifying the objective function

The static parameter-to-steady-state performance map Fw(u) (formalized by
(3.14)) of the industrial motion stage set-up and the dynamic cost function is
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performance-optimal tuning of the variable-gain controller using the nominal
extremum-seeking controller and 3 different values of αz.

experimentally identified through multiple measurements and shown in Fig. 3.9.
The objective function clearly shows that there exists an optimal dead-zone
length (uw ≈ 3 nm) for this particular disturbance situation. Furthermore,
the objective function shows the performance corresponding to the low-gain
case (u > 25 nm), and high-gain case (u = 0 nm). The variation between
the different measurements for the same dead-zone length can be attributed to
multiple causes. The objective function in (3.14) is defined on the limit αz → 0,
however we have used αz = 0.25π to obtain the result in Fig. 3.9. As a result,
the steady-state output l̄w of Σf is still time-varying. In addition, the external
disturbances and measurement noise present during one experiment can slightly
deviate from the disturbance situation during another experiment. We would like
to emphasize that the objective function Fw(u) in Fig. 3.9 is typically unknown
in practice, and use ESC only to find the optimum of Fw(u). In the remainder,
we will only use Fw(u) for verification purposes.
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Figure 3.11: The closed-loop ESC scheme composed of the closed-loop motion
stage with VGC, the dynamic cost function Z + Σf , the observer Σo (or Σfo),
the optimizer Σr (or Σfr), and the dither signal αω sin(ηωt).

3.4.3 Performance optimization using extremum-seeking con-

trol

Here we analyze the experimental results obtained using the ESC approaches dis-
cussed in Section 3.2. The closed-loop ESC scheme is schematically depicted in
Fig. 3.11. The nominal settings and initial conditions of the extremum-seeking
controller are displayed in Table 3.1. Fig. 3.12 and Fig. 3.10 show the con-
vergence of the VGC parameter u starting at u = 20 nm towards the optimal
setting u∗w ≈ 3 nm, and thus the optimal system performance Fw(u∗w), in the
presence of time-varying system behavior. Moreover, the figures illustrate the
convergence and the effect on the convergence speed for different values for the
filter parameter αz. The following observations can be made:

• Choosing a larger value for the cut-off frequency αz results in faster de-
cay of the transient response of the filter Σf , which ultimately leads to
faster convergence of u towards u∗w, see, e.g., the cases αz = 1/2 · 2π and
αz = 1 · 2π, depicted by ( ) and ( ), respectively. Choosing αz too
high deteriorates the convergence of u towards u∗w. For example, see the
’unexpected’ slower convergence with αz = 4 · 2π rad/s ( ) compared to
the case αz = 1 · 2π rad/s ( ) in the top figure of Fig. 3.12. From ( ) in
the bottom figure we can see that the time-varying steady-state response
of the extended plant Σ is not quasi-constant, which can lead to poor es-
timation of the gradient of the objective function by the observer Σo, and
hence, a deterioration of the convergence of u towards u∗w.

• Choosing αz too small (much smaller than the dither frequency parame-
terized by ηω) may lead to a deterioration of the convergence of u towards



3.4 Experimental results 105

time [s]

time [s]

d
ea
d
-z
o
n
e
u
[n
m
]

p
er
f.

co
st
l
[n
m

2
]

αz = 4 · 2π rad/s

αz = 1 · 2π rad/s

αz = 1/2 · 2π rad/s

αz = 1/8 · 2π rad/s

u∗w

Fw(u∗w)

Figure 3.12: Experimental results using the nominal extremum-seeking con-
troller to illustrate the influence of αz on the convergence of the dead-zone
length u towards the optimal input u∗w, and the corresponding performance cost
l as a function of time. ( ) indicate the optimal dead-zone length setting u∗w
(top figure) and the corresponding steady-state performance Fw(u∗w) (bottom
figure).

u∗w as well. For example, see the ’convergence’ with αz = 1/8 · 2π rad/s in
Fig. 3.12 ( ). If we choose αz too low, separation between the time-scales
of the filter dynamics and the extremum-seeking controller is insufficient.
Re-tuning of the extremum-seeking controller parameters, e.g., decreasing
the dither frequency ηω, can be necessary to preserve time-scale separation.
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Figure 3.13: Experimental results using the modified extremum-seeking con-
troller to illustrate the influence of the tunable parameter αz on the convergence
of the dead-zone length u towards the optimal input u∗w, and the corresponding
performance cost l as a function of time. ( ) indicate the optimal dead-zone
length setting u∗w (top figure) and the corresponding steady-state performance
Fw(u

∗
w) (bottom figure).

3.4.4 Improved convergence speed with modified extremum-

seeking controller design

Fig. 3.13 shows the convergence of the VGC parameter u towards the optimal
setting u∗w ≈ 3 nm for the modified extremum-seeking controller. Moreover, the
figure illustrates the convergence and the effect on the convergence speed for
different values for the filter parameter αz. The following observations can be
made:

• Similar as for the nominal extremum-seeking controller, choosing a larger
value for the cut-off frequency αz results in faster decay of the transient
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Table 3.1: Nominal extremum-seeking controller settings

parameter value unit
dither amplitude αω 0.5 [nm]
filter parameter αz 1 · 2π [rad/s]
dither frequency ηω 1/4 · 2π [rad/s]

damping coefficient βz (1/2)
√
2 [-]

forgetting factor ηm 0.5 [-]
regularization constant σr 1 · 10−6 [-]

observer parameter Ĥ 0.25 [-]
optimizer parameter ηu 1 · 10−3 [-]
optimizer parameter λu 2 · 109 [-]
initial condition optimizer û(0) 20 [nm]
initial condition observer state m̂(0) [0 0]⊤ [-]

initial condition observer state Q(0)
[ 1 0
0 2

1+2σr

]

[-]

The nominal ESC settings. Any variations on one of these parameters is indicated in that
particular figure.

response of the filter Σf , which ultimately leads to faster convergence of
u towards u∗w as well. Moreover, choosing αz too high deteriorates the
convergence of u towards u∗w (compare again the case αz = 4 · 2π rad/s
( ) to the case αz = 1 · 2π rad/s ( ) in the top figure of Fig. 3.13).

• The advantage of the modified extremum-seeking controller over the nomi-
nal one is particularly evident in case of small values of αz. Where the case
αz = 1/8 · 2π rad/s led to a deterioration of the convergence of u towards
u∗w in the nominal case (see ( ) in Fig. 3.12), the modified extremum-
seeking controller still achieves convergence to the optimal input (see ( )
in Fig. 3.13). In general, the improvement of the modified ESC design in
terms of convergence speed is more significant in the case of smaller values
of αz.

The resulting optimal time-varying steady-state response can be seen in Fig. 3.7
( ).

3.4.5 A note on dedicated tuning guidelines

For the extremum-seeking controller parameters αω, αz, and ηω, we propose
dedicated tuning guidelines when optimizing time-varying system behavior of
industrial positioning stages.

• The dither amplitude αω should be chosen close to the desired accuracy
of u to the optimal VGC parameter settings u∗w when converged, e.g.,
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Figure 3.14: Experimental results using the modified extremum-seeking con-
troller to illustrate the influence of the dither amplitude αω on the convergence
of the dead-zone length u towards the optimal input u∗w, and the corresponding
performance cost l as a function of time. ( ) indicate the optimal dead-zone
length setting u∗w (top figure) and the corresponding steady-state performance
Fw(u

∗
w) (bottom figure).

αω = 0.5 nm. Choosing αω small may deteriorate the convergence speed
of u towards u∗w, see, e.g., Fig 3.14. Choosing αω large may result in faster
convergence, but the neighborhood of u∗w to which u converges is in general
larger.

• The cut-off frequency αz of a low-pass filter design for Σf should typically
be chosen smaller than the lowest significant frequency contribution ωlow
in the to-be-optimized tracking error, e.g., αz = 1

2ωlow. Small values of
αz motivates the use of the modified extremum-seeking controller over the
nominal one to prevent slow convergence. In motion stages, the frequency
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Figure 3.15: Experimental results using the modified extremum-seeking con-
troller to illustrate the influence of the dither frequency ηω on the convergence
of the dead-zone length u towards the optimal input u∗w, and the corresponding
performance cost l as a function of time. ( ) indicate the optimal dead-zone
length setting u∗w (top figure) and the corresponding steady-state performance
Fw(u∗w) (bottom figure).

ωlow is usually dictated by the setpoint and the performance-relevant time
interval T , i.e., ωlow = 2π

T
.

• The dither frequency ηω should be chosen close to or less than αz to have
sufficient excitation and sufficient time-scale separation. Choosing ηω large
may deteriorate the convergence speed of u towards u∗w, see, e.g., Fig 3.15.
Also, the convergence may be more susceptible to ’unexpected’ external
disturbances which can be seen around t = 50 seconds and t = 70 seconds
in the case ηω = 2 ·2π rad/s ( ) (with cut-off frequency αz = 1 ·2π rad/s).
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3.5 Conclusions

In this chapter, we have experimentally demonstrated the working principle of a
recently developed ESC approach for the optimization of time-varying responses.
The (industrial) experimental case study involves optimally tuning parameters of
a particular nonlinear control strategy employed on an industrial motion stage
set-up, to achieve optimal system performance. The experimental results il-
lustrate the practical applicability of the ESC methodology for the optimiza-
tion of time-varying steady-state responses of nonlinear systems. Moreover, we
have proposed a modified extremum-seeking controller design that incorporates
knowledge about the filter Σf , and presented a stability analysis of the closed-
loop ESC scheme with the modified controller. We have shown via simulations
and experiments that the use of the modified extremum-seeking controller leads
to an increased convergence speed towards the extremum, especially for small
values of the dynamic cost function parameter.
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3.A Proof of Lemma 3.6

The proof of Lemma 3.6 follows similar arguments as the proof of Haring (2016,
Lemma 2.11). We define the following Lyapunov function candidate for the
Q̃f -dynamics:

VQf
(Q̃f (t)) = tr(Q̃2

f (t)). (3.61)

For notational clarity, from this point on we omit the time argument. Note that
Q̃f is symmetric because Qf and Ξ−1

f are symmetric. From (3.44) we can write
the time-derivative of VQ as follows:

V̇Qf
(Q̃f ) =

d

dt
tr(Q̃2

f ) = tr( ˙̃QfQ̃f + Q̃f
˙̃
Qf),

= −2ηmtr(Q̃2
f )− tr(A⊤

f Ξ
−1
f Q̃f + Q̃fΞ

−1
f Af )

− tr(Ξ−1
f AfQ̃f + Q̃fA

⊤
f Ξ

−1
f )− 4tr(Q̃2

fAf )

(3.62)

where we have used that tr(X + Y) = tr(X) + tr(Y), tr(XY) = tr(YX), and
tr(X) = tr(X⊤). Also, from these, and the fact that tr(X⊤X) ≥ 0, we obtain
the following inequality:

V̇Qf
(Q̃f ) ≤ −ηmtr(Q̃2

f )− 4tr(Q̃2
fAf ) +

4

ηm
tr(A⊤

f Ξ
−2
f Af ) (3.63)

From the definition of the trace we have the following inequalities:

‖Q̃f‖2 ≤ VQf
(Q̃f ) ≤ nmf

‖Q̃f‖2,
tr(Q̃2

fAf ) ≤ nmf
‖Q̃f‖2‖Af‖,

tr(A⊤
f Ξ

−2
f Af ) ≤ nmf

‖Ξ−1
f ‖2‖Af‖2,

(3.64)

where nmf
denotes the dimension of the state mf . From these inequalities and

(3.63) we obtain the following inequality:

V̇Qf
(Q̃f ) ≤ −ηmVQf

(Q̃f ) + 4nmf
VQf

(Q̃f )‖Af‖+
4

ηm
nmf
‖Ξ−1

f ‖2‖Af‖2.
(3.65)

The definition of ω in (3.19) implies that there exists a constant Lω2 ∈ R>0 such
that ‖ω‖ ≤ Lω2. Moreover, there exist LAΣf

, LBΣf
∈ R>0 such that ‖AΣf

‖ ≤
LAΣf

, ‖BΣf
‖ ≤ LBΣf

, respectively. From (3.37) we obtain the following bound

on ‖Af‖:
‖Af‖ ≤ αz‖AΣf

‖+ αz‖BΣf
‖‖ω‖+ ηu

αω

≤ αz(LAΣf
+ LBΣf

Lω2) +
ηu
αω

≤ αz(LΣf
+ ǫ1ǫ4),

(3.66)
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for all ηω ≤ αzǫ1, and all ηu ≤ αωηωǫ4, and with LΣf
:= LAΣf

+ LBΣf
Lω2.

Moreover, without loss of generality, for sufficiently small ǫ5 and a particular
design of CΣf

(e.g., observable canonical form for Σf , such that ‖CΣf
‖ = 1), we

have ‖Ξ−1
f ‖ ≤ 2 for all σr ≤ ǫ5. Using this, and without loss of generality, for

sufficiently small ǫ2 and ǫ5, we obtain the following inequality:

V̇Qf
(Q̃f ) ≤ −

ηm
2
VQf

(Q̃f ) +
ηm
256

, (3.67)

for all ηω ≤ αzǫ1, all αz ≤ ηmǫ2, all ηu ≤ αωηωǫ4, and all σr ≤ ǫ5. Applying
the comparison lemma and using the inequalities in (3.64), we obtain the bound
on Q̃f as follows:

‖Q̃f (t)‖ ≤ max

{

e−
ηm
4
t
√

2nmf
‖Q̃f(0)‖,

1

8

}

, (3.68)

for all t ≥ 0, all Q̃f (0) ∈ R
nmf

×nmf , and all time-varying u(t) ∈ Rnu , which
completes the proof of Lemma 3.6. �

3.B Proof of Lemma 3.7

We define the following Lyapunov function candidate for the m̃f -dynamics in
(3.45):

Vmf
(m̃f ,Qf ) = m̃⊤

f Q
−1
f m̃f . (3.69)

For notational clarity, from this point on we omit the time argument. We note
that

λmin(Q
−1
f )‖m̃f‖2 ≤ Vmf

(m̃f ,Qf ) ≤ λmax(Q−1
f )‖m̃f‖2, (3.70)

where λmin(Q
−1
f ) and λmax(Q

−1
f ) are the smallest and largest eigenvalue of

Q−1
f , respectively. From the observer in (3.38) and (3.45) we obtain the time

derivative of Vmf
as follows:

V̇mf
= 2m̃⊤

f Q
−1
f

˙̃mf − m̃⊤
f Q

−1
f Q̇fQ

−1
f m̃f ,

= −ηmm̃⊤
f Q

−1
f m̃f − ηmm̃⊤

f (C
⊤
f Cf + σrD

⊤
f Df )m̃f

+ 2α2
ω
m̃⊤
f Q

−1
f Bf (̂s − s)− 2ηmσrαωm̃

⊤
f D

⊤
f

dFw

du⊤
(û)

+ 2αzα
2
ω
m̃⊤
f Q

−1
f Ef (v̂ − v) + 2ηmm̃⊤

f C
⊤
f CΣf

m̃z,

(3.71)

where we have used the fact that Q−1
f is real and symmetric, i.e., Q−1

f = Q−⊤
f ,

and, given Af in (3.37), that m̃⊤
f

(

Q−1
f Af −A⊤

f Q
−1
f

)

m̃f = 0. Furthermore,

given Cf and Df , using the fact that −m̃⊤
f C

⊤
f Cfm̃f = −‖Cfm̃f‖2 ≤ 0,
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−m̃⊤
f D

⊤
f Dfm̃f = −‖Dfm̃f‖2, and

∥

∥

∥
m̃⊤
f D

⊤
f

∥

∥

∥
= ‖Dfm̃f‖, (3.69), and Young’s

inequality, we obtain

V̇mf
≤ −ηm

2
Vmf

(m̃f ,Qf ) + ηmσrα
2
ω

∥

∥

∥

∥

dFw

du
(û)

∥

∥

∥

∥

2

+
4α4

ω

ηm
‖Q−1

f ‖‖Bf‖2‖ŝ− s‖2 + ηm
4
‖CΣf

m̃z‖2

+
4α2

zα
4
ω

ηm
‖Q−1

f ‖‖Ef‖2|v̂ − v|2.

(3.72)

From (3.27), (3.29), the bound ‖Ĥ(t, û(t))‖ ≤ LH, and the definition of ω in
(3.19), which implies that there exists a constant Lω2 ∈ R>0 such that ‖ω‖ ≤
Lω2, we obtain

‖ŝ− s‖ ≤ 1

αω

(LH + LF2) ‖ ˙̂u‖,

|v̂ − v| ≤ 1

2
(LH + LF2)L

2
ω2.

(3.73)

From Assumption 3.4 we obtain

∥

∥

∥

∥

dFw

du
(û)

∥

∥

∥

∥

≤
1
∫

0

∥

∥

∥

∥

d2Fw

dudu⊤
(σũ+ u∗

w)

∥

∥

∥

∥

dσ ‖ũ‖ = LF2 ‖ũ‖ . (3.74)

Moreover, from the filter design in (3.31) there exist LBΣf
, LCΣf

∈ R>0 such

that ‖BΣf
‖ ≤ LBΣf

and ‖CΣf
‖ ≤ LCΣf

, respectively. Then from (3.37) it

follows that ‖Ef‖ = ‖BΣf
‖ = LBΣf

, and ‖Bf‖ = 1. Substitution of all these

inequalities in (3.72) yields the following inequality:

V̇mf
≤ −ηm

2
Vmf

(m̃f ,Qf ) + ηmσrα
2
ω
L2
F2 ‖ũ‖2

+
4α2

ω

ηm
(LH + LF2)

2 ‖Q−1
f ‖‖ ˙̂u‖2 +

ηm
4
L2
CΣf
‖m̃z‖2

+
α2
zα

4
ω

ηm
L2
BΣf

(LH + LF2)
2
L4
ω2‖Q−1

f ‖.

(3.75)

Let us define ỹ := y − ȳw(t,u). From Property 2.9 we can derive the general
solution for (3.34) as follows:

m̃z(t) = eαzAΣf
t
m̃z(0) + αz

∫ t

0

eαzAΣf
(t−τ)

BΣf
ỹ(τ)dτ

+ αz

∫ t

0

eαzAΣf
(t−τ)

BΣf

(

ȳw(τ,u(τ)) − Fw(u(τ))
)

dτ,

(3.76)
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for all t ∈ R≥0. The filter Σf is designed such that αzAΣf
is Hurwitz, i.e., there

exist k, λ ∈ R>0 such that ‖eαzAΣf
(t−τ)‖ ≤ ke−αzλ(t−τ) for all t ≥ τ . From

this fact, we can bound the second term in (3.76) by k
λ
‖BΣf

‖ sup
s∈[0,t]

|ỹ(s)|. For

a bound on the third term in (3.76) we exploit Assumption 3.3. By defining
ẽ := e− ēw(t,u), using (3.6), (3.9), and the bounds in (3.8), it follows that

|ỹ| ≤ LZe‖ēw(t,u)− ēw(t,u
∗
w)‖‖ẽ‖+ LZ∗‖ẽ‖

+
LZe

2
‖ẽ‖2 + LZu‖u− u∗

w‖‖ẽ‖,
(3.77)

with LZ∗ =
∥

∥

∂Z
∂e

(ēw(t,u∗
w),u

∗
w)
∥

∥ ∈ R>0. Moreover, from Assumption 2.2 we
have that

‖ẽ‖ = ‖g(x,u,w)− g(x̄w(t,u),u,w)‖ ≤ Lgx‖x̃‖, (3.78)

and subsequently, from (3.3) in Assumption 2.6 we have that

‖ēw(t,u)− ēw(t,u
∗
w)‖ ≤ (Lgu + LgxLxu)‖u− u∗

w‖. (3.79)

From (3.18), it follows that ‖u−u∗
w‖ ≤ ‖ũ‖+αωLω2. Using Young’s inequality

it follows that ‖u−u∗
w‖2 ≤ 2‖ũ‖2+2α2

ω
L2
ω2. Combining (3.76)-(3.79), we obtain

the following bound on ‖m̃z‖:

‖m̃z‖ ≤ max
{

2eαzAΣf
t‖m̃z(0)‖, cmz1‖x̃‖2

+ 4αzδz2‖ũ‖2 + (αωcmz2 + cmz3) ‖x̃‖
+ cmz4‖ũ‖‖x̃‖+ 2αzδz1 + 4αzα

2
ω
L2
ω2δz2

}

,

(3.80)

with cmz1, . . . , cmz4 ∈ R>0 defined as

cmz1 = 2
LZe

2

k

λ
LBΣf

L2
gx,

cmz2 = 2
k

λ
LBΣf

(LZe(Lgu + LgxLxu) + LZu)LgxLω2

cmz3 = 2
k

λ
LBΣf

LZ∗Lgx

cmz4 = 2
k

λ
LBΣf

(LZe(Lgu + LgxLxu)Lgx + LZuLgx)

(3.81)

From Lemmas 2.19 and 2.21 in Chapter 2 we have that, for any finite time t1 ≥ 0,
the solutions x̃ and ũ are bounded for all 0 ≤ t ≤ t1. Moreover, from Lemma 3.6
we have that Q−1

f is positive definite and bounded for all 0 ≤ t ≤ t1. From

these facts and ‖ ˙̂u‖ ≤ ηu, which follows from (3.40), we obtain that the right-
hand side of (3.75) is bounded for all 0 ≤ t ≤ t1. Therefore, since Vmf

(m̃f ,Qf)

will be bounded for all 0 ≤ t ≤ t1 and Q−1
f is positive definite and bounded

for all 0 ≤ t ≤ t1 as well, it follows from (3.70) that the solutions m̃f are
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bounded for all 0 ≤ t ≤ t1. Let us define t1 ≥ 0 such that, from Lemma 2.19,
Lemma 3.6, and (3.80), we have that ‖x̃(t)‖ ≤ αωηωcx2, ‖Q̃f‖ ≤ 1

8 , for all

t ≥ t1, respectively. Also, 2eαzAΣf
t1‖m̃z(0)‖ in (3.80) is sufficiently decayed

for all t ≥ t1. In addition, from (3.42) and sufficiently small ǫ5, we have that
1
4I � Q−1

f � 5
4I for all t ≥ t1, and all σr ≤ ǫ5. From (3.70), it follows that

1
4‖m̃f‖2 ≤ Vmf

(m̃f ,Qf ) ≤ 5
4‖m̃f‖2, for all t ≥ t1, and ‖Q−1

f ‖ ≤ 5
4 for all

t ≥ t1. From (3.35), (3.30), (3.42), ‖Df‖ = 1, and the bound in (3.17), it follows

that ‖ ˙̂u‖2 ≤ 8λ2uVmf
(m̃f ,Qf ) + 2α2

ω
λ2uL

2
F2‖ũ‖2, for all t1 ≥ 0. From this fact,

and taking ǫ3 in Theorem 2.16 sufficiently small, we obtain

V̇mf
≤ −ηm

4
Vmf

(m̃f ,Qf ) + ηmσrα
2
ω
L2
F2 ‖ũ‖2

+ 10ηmα
2
ω

α2
ω
λ2u

η2m
L2
F2 (LH + LF2)

2 ‖ũ‖2 + 6

4
ηmα

4
ω
η4
ω
L2
CΣf

c2mz1c
4
x2

+ 24ηmα
2
zL

2
CΣf

δ2z2‖ũ‖4 +
6

4
ηmα

2
ω
η2
ω
L2
CΣf

(ǫ0cmz2 + cmz3)
2
c2x2

+
6

4
ηmα

2
ω
η2
ω
L2
CΣf

c2mz4c
2
x2‖ũ‖2 + 24ηmα

2
zα

4
ω
L2
CΣf

L4
ω2δ

2
z2

+ 6ηmα
2
zL

2
CΣf

δ2z1 +
5

4
ηm

α2
zα

4
ω

η2m
L2
BΣf

(LH + LF2)
2
L4
ω2.

(3.82)

for all t ≥ t1, αz ≤ ηmǫ2, and all αωλu ≤ ηmǫ3. From the comparison lemma
and (3.70) we obtain

sup
t≥t1

‖m̃f(t)‖ ≤ 2
√
10 sup

t≥t1

max{
√

5

4
‖m̃f(t1)‖, 2

√
σrαωLF2 ‖ũ(t)‖ ,

√
40αω

αωλu
ηm

LF2 (LH + LF2) ‖ũ(t)‖, 4
√
6αzLCΣf

δz2‖ũ(t)‖2,
√
6αωηωLCΣf

cmz4cx2‖ũ(t)‖,
√
6α2

ω
η2
ω
LCΣf

cmz1c
2
x2,

4
√
6αzα

2
ω
LCΣf

L2
ω2δz2,

√
6αωηωLCΣf

(ǫ0cmz2 + cmz3) cx2,

2
√
6αzLCΣf

δz1,
√
5α2

ω
ǫ2LBΣf

(LH + LF2)L
2
ω2},

(3.83)

and

lim sup
t→∞

‖m̃f (t)‖ ≤ 2
√
10 lim sup

t→∞
max{2√σrαωLF2 ‖ũ(t)‖ ,

√
40αω

αωλu
ηm
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for all t ≥ t1, all αω ≤ ǫ0, all ηω ≤ αzǫ1, all αz ≤ ηmǫ2, all αωλu ≤ ηmǫ3, all
ηu ≤ αωηωǫ4, and all σr ≤ ǫ5. This completes the proof of Lemma 3.7. �







Chapter 4

Sampled-data extremum-seeking control

framework for constrained optimization of

nonlinear dynamical systems

Abstract - Most extremum-seeking control (ESC) approaches focus solely on
the problem of finding the extremum of some unknown, steady-state input-output
map, providing parameter settings that lead to optimal steady-state system per-
formance. However, many industrial applications also have to deal with con-
straints on operating conditions due to, e.g., actuator limitations, limitations on
tunable system parameters, or constraints on measurable variables. In particu-
lar, constraints on measurable variables are typically unknown in terms of their
relationship with the tunable system parameters. In addition, the constraints on
system inputs as a result of the constraints on measurable variables may con-
flict with the otherwise optimal operational condition, and hence should be taken
into account in the data-based optimization approach. In this work, we propose
a sampled-data extremum-seeking framework for the constrained optimization of
a class of nonlinear dynamical systems with measurable constrained variables.
In this framework, barrier function methods are exploited, where both the objec-
tive function and constraint functions are available through measurement only.
We show, under the assumption that the parametric initialization yield operating
conditions that do not violate the constraints, that 1) the resulting closed-loop
dynamics is stable, 2) constraint satisfaction of the inputs is guaranteed for all it-
erations of the optimization process, and 3) constrained optimization is achieved.
We illustrate the working principle of the proposed framework by means of an
industrial case study of the constrained optimization of extreme ultraviolet light
generation in a laser-produced plasma source within a state-of-the-art lithography
system.

The content of this chapter is based on: L. Hazeleger, D. Nešić, N. van deWouw, ”Sampled-
data extremum-seeking framework for constrained optimization of nonlinear dynamical sys-
tems”, Submitted for publication in Automatica
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4.1 Introduction

Performance optimization of complex nonlinear dynamical systems is a chal-
lenging task. Namely, most (numerical) optimization techniques such as, e.g.,
gradient-descent methods, Newton and quasi-Newton methods, interior-point
methods, and Sequential Quadratic Programming (SQP), usually rely on an ac-
curate model of the process to be optimized ((Boyd and Vandenberghe, 2004)),
while such a model can be hard or impossible to obtain for complex nonlin-
ear systems. Nevertheless, the steady-state input-output behavior of many of
such systems possesses optimal performance under particular operating condi-
tions and we often desire to find such optimal operating conditions. Based solely
on output measurements and without using any model knowledge, extremum-
seeking control (ESC) is able to optimize the performance of such complex sys-
tems in real-time by adjusting these operating conditions and driving the system
into a neighborhood of its optimal steady-state input-output behavior (Krstić
and Wang, 2000; Teel and Popović, 2001).

Along with the pioneering work done in Krstić and Wang (2000) on conver-
gence proofs for continuous-time extremum-seeking schemes based on sinusoidal
perturbations, a notable contribution to the field of extremum-seeking control
was made in Teel and Popović (2001). In Teel and Popović (2001), it was
shown that under assumptions on the asymptotic stability of both the system
and on a discrete-time nonlinear programming method used for optimization,
extremum seeking can be achieved within a periodic sampled-data framework.
This framework allows the use of a wide class of smooth and nonsmooth op-
timization algorithms for achieving optimization of general nonlinear systems.
In Kvaternik and Pavel (2011), closed-loop stability of the sampled-data ESC
scheme has been studied from an interconnected systems’ theory point-of-view,
in which stability results are obtained by imposing stronger conditions on the
nonlinear programming methods than done in Teel and Popović (2001).

Extensions of the framework in Teel and Popović (2001) are provided in
Khong et al. (2013) and Khong et al. (2013b). The work in Khong et al. (2013)
utilizes a trajectory-based approach to prove semi-global practical asymptotic
stability of the proposed sampled-data extremum-seeking schemes as opposed
to the Lyapunov-type arguments used in Teel and Popović (2001). The for-
mer exploits the notion of multi-step consistency (see, e.g., Nešić et al. (1999))
while the latter exploits closeness of solutions of a differential inclusion over a
single time step. As such, the framework in Khong et al. (2013) allows to use
a broader class of optimization algorithms, including algorithms which do not
admit a state-update realization or for which its convergence properties are not
encapsulated by a Lyapunov function. Subsequently in Khong et al. (2013b), the
framework in Khong et al. (2013) was extended to a more generic framework,
which in addition to gradient-based optimization algorithms, also encompasses
sampling-based (global) optimization methods capable of non-convex optimiza-
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tion, enabling extremum seeking for an even wider class of problems. For ex-
ample, in Khong et al. (2013a) and Nešić et al. (2013), two sampling-based
algorithms are presented that are able to achieve (a weaker type of) convergence
to a global optimum.

Most extremum-seeking approaches, whether it is of the continuous-time type
as in Krstić and Wang (2000) or the sampled-data type as in Teel and Popović
(2001) and Khong et al. (2013), focus solely on the problem of finding the ex-
tremum of some unknown steady-state input-output map, providing parameter
settings that lead to optimal steady-state system performance. However, many
industrial applications also have to deal with constraints on operating condi-
tions due to, e.g., actuator limitations, limitations on design or tunable system
parameters, or constraints on measurable signals. The constraints on system
inputs as a result of the constraints on measurable variables may conflict with
the otherwise optimal operational condition, and hence should be taken into
account in the data-based optimization approach.

In terms of dealing with constraints in extremum-seeking schemes, existing
approaches can be divided into two main categories: i) approaches that assume
a-priori knowledge on constrained operating conditions in the form of explicit
constraint functions, and ii) approaches that deal with unknown but measurable
constraint functions. Extremum-seeking approaches that explicitly deal with
known constraint functions are considered in, e.g., Tan et al. (2013), DeHaan
and Guay (2005), andMills and Krstić (2014). In Tan et al. (2013) and De-
Haan and Guay (2005), penalty/barrier functions are employed to adapt the
search space so as not to violate the constraints. Another approach proposed
in Tan et al. (2013) employs an anti-windup scheme to prevent the optimizer
from leaving the known admissible search space. Anti-windup schemes have
been applied in, e.g., handling actuator saturation in the optimization of energy
efficiency in heating, ventilating, and air conditioning systems (Mu et al., 2016;
Li et al., 2010). In Mills and Krstić (2014), constraint satisfaction is achieved
by employing a projection operator in the extremum-seeking scheme. Although
not aimed at constrained optimization, the sampling-based algorithms in Khong
et al. (2013a) and Nešić et al. (2013) operate in an a-priori defined compact
(input) set, i.e., these allow incorporation of known (input) constraints to adjust
the search space.

Extremum-seeking approaches for (strictly) convex optimization problems
with unknown but measurable constraint functions are considered in, e.g., Srini-
vasan et al. (2008), Guay et al. (2015), Labar et al. (2019), Atta et al. (2019),
Dürr et al. (2013), van der Weijst et al. (2019), Ramos et al. (2017) and Liao
et al. (2019), albeit in the continuous-time extremum-seeking setting. In Srini-
vasan et al. (2008), Labar et al. (2019), and Guay et al. (2015), a combined
barrier/penalty function approach is employed to transform the constrained op-
timization problem into an unconstrained problem using an augmented cost. The
methods allow small violations of the constraints (during transients) to avoid dif-
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ficulties in practical applications, e.g., due to the presence of uncertainty and
disturbances, or to relax the choice of initial, possibly inadmissible, inputs. Op-
timization is accomplished by estimation of the gradient of the augmented cost
and a gradient-based optimization algorithm. In Dürr et al. (2013), a combina-
tion of the classical extremum-seeking approach as in Krstić and Wang (2000)
and so-called saddle point algorithms as in Dürr and Ebenbauer (2011) are used
to find the constrained minimizer. In van der Weijst et al. (2019), Atta et al.
(2019), Ramos et al. (2017) and Liao et al. (2019), gradient-based extremum-
seeking approaches are employed that combines the gradients of the objective
function and the constraint functions to deal with measurable constraints. In
van der Weijst et al. (2019), Ramos et al. (2017) and Liao et al. (2019), a so-
called transition function is designed that enables a gradient-based optimizer to
switch smoothly between the gradient of the to-be-optimized objective function,
typically when constraints are not violated, and the gradient of the constraint
functions when the constraints are violated. In van der Weijst et al. (2019), this
method has been experimentally validated for optimization of fuel efficiency in
combustion engines with constraints on emission of NOx particles. In Atta et al.
(2019), a projection operator is employed that finds a feasible direction without
constraint violation.

In this chapter, we focus on sampled-data extremum-seeking schemes as
in Teel and Popović (2001), as opposed to continuous-time extremum-seeking
schemes as in Krstić and Wang (2000). Namely, sampled-data schemes are
compelling given the potential of including diverse types of optimization algo-
rithms, see, e.g., Teel and Popović (2001), Teel (2000), Khong et al. (2013b)
and Teel (2000). In particular, the main focus of this chapter is the extension
we provide to the class of smooth and nonsmooth optimization algorithms in
Teel and Popović (2001) to achieve extremum-seeking in the presence of un-
known but measurable constraints by employing barrier function methods as
presented. Moreover, we solve the problem of finding optimal system inputs for
which (steady-state) constraint satisfaction can only be assessed on the basis of
measurable constraint functions.

The main contributions of this chapter can be summarized as follows. The
first contribution is the extension of the class of optimization problems as stud-
ied in Teel and Popović (2001) to a class of constrained optimization problems,
for which we consider a class of dynamical systems where both a to-be-optimized
objective function and constraint functions are available through measurement
only. The second contribution is the extension of the class of smooth and non-
smooth optimization algorithms as studied in Teel and Popović (2001) to facil-
itate extremum-seeking in the presence of unknown but measurable constraints
by employing barrier function methods. The third contribution is to 1) provide a
closed-loop stability analysis of the interconnection between the class of dynam-
ical systems and the proposed class of constrained optimization algorithms. 2)
show strict constraint satisfaction for all iterations of the optimization process,
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and 3) show that constrained optimization is achieved. The fourth contribu-
tion is an illustration of the working principle of the proposed framework by
means of a representative industrial case study of the constrained optimization
of extreme ultraviolet (EUV) light generation in a laser produced plasma (LPP)
source within a state-of-the-art lithography system.

The chapter is organized as follows. Section 4.2 presents the class of dynam-
ical systems and the constrained optimization problem formulation. Section 4.3
presents the class of extremum seeking algorithms to facilitate constrained opti-
mization. In Section 4.4, a closed-loop stability analysis is provided. Section 4.5
presents the industrial case study. Section 4.6 closes with conclusions.

We use the following notations:

• A function γ : R≥0 → R≥0 is of class K (denoted as γ ∈ K) if it is
continuous, strictly increasing, and γ(0) = 0. If γ is also unbounded, then
γ ∈ K∞.

• A continuous function β : R≥0 × R≥0 → R≥0 is of class KL, if, for each
fixed t, β(·, t) ∈ K and, for each s, β(s, ·) is decreasing to zero.

• Let X be a Banach space whose norm is denoted by ‖ ·‖. Given any subset
Y of X , i.e. Y ⊂ X , and a point x ∈ X , the distance of x from Y is defined
as ‖x‖Y := infa∈Y ‖x− a‖.
• A+ ǫB̄ is an ǫ-neighborhood of A, and B̄ can be identified with the closed
unit ball.

• We use the following simplified notation for discrete systems, e.g., uk+1 ∈
F (uk)→ u+ ∈ F (u).
• Let ⌊·⌋ denote the floor operator.

• The function id(·) denotes the identity function.

4.2 Class of dynamical systems and constrained optimization

problem formulation

In this section, we introduce the class of nonlinear, possibly infinite-dimensional,
systems having multiple measurable outputs. In particular, we consider system
outputs that are related to 1) a measurable (to-be-optimized) cost and 2) measur-
able constraints. Depending on the output constraints at hand, parameter set-
tings that optimize the measurable cost may not satisfy the output constraints.
Therefore, this section introduces the constrained optimization problem for that
class of systems.

4.2.1 Class of dynamical systems

The following definition of the class of systems is based on the ones from Teel
and Popović (2001) and Khong et al. (2013b).
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Definition 4.1. The dynamical system Σp is time-invariant, with state x ∈ X ,
where X is a Banach space with norm ‖·‖. The input to the system is denoted by
u ∈ Rnu . We consider the system to have nz + 1 measurable outputs, separated
into two channels, denoted by y ∈ R, and z ∈ Rnz , and referred to as the
cost output and the constraint outputs, respectively. Given any constant input
u ∈ Rnu and initial state x0 ∈ X , let x(·, x0, u) be the state trajectory of the
dynamical system starting at x0 with input u. Let S(x0, u) be the set of all
possible trajectories starting at x0 and with constant input u.

In the context of ESC, Σp in Definition 4.1 represents the dynamical system
to-be optimized, where the input u can be regarded as a vector of tunable system
parameters, and the outputs y and z can be regarded as a measurable perfor-
mance variable and a vector of measurable constrained variables, respectively.
The following assumption states properties that the class of systems described
in Definition 4.1 must possess, and is largely aligned with the assumptions in
Teel and Popović (2001, Assumption 1) and Khong et al. (2013b, Assumption
2).

Assumption 4.2. Given a system Σp described by Definition 4.1, we assume
that the following properties hold:

• For each constant input u the system’s trajectory converges to a uniquely
defined attractor, i.e., for each constant input u ∈ T ⊆ Rnu , with T a
nonempty (and possibly unknown) set, there exists only one, closed and
nonempty set A(u) ⊂ X , such that

lim
t→∞

‖x(t, x0, u)‖A(u) = 0. (4.1)

This defines a set-valued mapping A(·) from T to subsets of X .

• There exist (unknown) continuous functions h : X → R and g : X → R
nz

that map the state evolution x(·, x0, u) of the system, starting at x0 ∈ X
with constant input u ∈ T , to the evolution of output channels y and z of
the system, as follows:

y(t) := h(x(t, x0, u)) ∀ t ≥ 0, (4.2)

and
z(t) := g(x(t, x0, u)) ∀ t ≥ 0, (4.3)

which are defined for any input u ∈ T and x0 ∈ X . Moreover, for any
x1, x2 ∈ A(u), it is assumed that h(x1) = h(x2) and g(x1) = g(x2). Since
the set-valued mapping A(u) is a uniquely defined attractor for any x ∈
S(x0, u), and both h and g are continuous, for any constant u ∈ T and
x0 ∈ X , we have that

Q(u) := lim
t→∞

h(x(t, x0, u)) (4.4)
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and
G(u) := lim

t→∞
g(x(t, x0, u)) (4.5)

for some xl ∈ A(u), which are well-defined (unknown) steady-state input-
output maps on T .

• We assume the (unknown) steady-state input-output mappings Q and G to
be locally Lipschitz on T .

• For any ǫ1, ǫ2,∆X0
∈ R>0, there exists a so-called waiting time T > 0 such

that

‖x(t, x0, u)‖A(u) ≤ ǫ1‖x0‖A(u) + ǫ2, (4.6)

for all t ≥ T , all constant u ∈ T , and all ‖x0‖A(u) ≤ ∆X0
.

4.2.2 Constrained optimization problem formulation

The steady-state input-output mappings Q and G as defined in Assumption 4.2
represent the (unknown) steady-state cost function and the steady-state con-
straint functions of the plant Σp, respectively. Based on these steady-state
input-output mappings, we can formulate the steady-state constrained optimiza-
tion problem as follows:

min
u∈T

Q(u)

subject to G(u) ≤ 0.
(4.7)

For the existence of a solution to the constrained optimization problem in (4.7)
and the ability to find this solution, we adopt the following assumption.

Assumption 4.3. The nonempty (and possibly unknown) set T in Assump-
tion 4.2 is defined as T := {u ∈ Rnu | G(u) ≤ 0}. We call the set T the
admissible set. The steady-state input-output mapping Q takes its (global) con-
strained minimum value in a nonempty, compact set CT ⊂ T , i.e., there exist
system inputs u∗ ∈ CT ⊂ T such that for all u ∈ T , Q(u) ≥ Q(u∗). In addi-
tion, there exists an admissible initialization set V, which is a nonempty, known
compact subset of T .

Remark 4.4. First, Assumption 4.3 states that there exist some system input
that solves the constrained optimization problem in (4.7). This assumption re-
quires that the optimization problem is well-defined. Second, Assumption 4.3
states that we have some limited knowledge about the admissible set T , namely,
the known admissible initialization set V, such that we can initialize well within
this admissible set. This is a reasonable assumption in practice since we usually
have some knowledge about where we can initialize our system without violating
the constraints immediately. For example, this assumption is satisfied in our
industrial case study in Section 4.5.
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In this work, we will solve the steady-state constrained optimization prob-
lem in (4.7) by finding a near-optimal system input u∗ for the class of dynamical
systems as in Definition 4.1, which satisfies Assumptions 4.2, and 4.3, i.e., we
will solve the problem by finding a near-optimal system input for which con-
straint satisfaction (G(u) ≤ 0) is achieved in steady-state, and which can only
be assessed on the basis of measurable constraint functions. Thereto, in the
next section we will present a class of algorithms that exploits barrier function
methods and that provides an arbitrarily close solution to the constrained opti-
mization problem in (4.7), based on output measurements y and z, and generated
by the system in Definition 4.1.

Remark 4.5. Examples of often studied dynamical systems in the extremum-
seeking literature are, for example, dynamical systems with steady-state equilib-
ria, see, e.g., Krstić and Wang (2000), Tan et al. (2006), and dynamical sys-
tems with periodically time-varying steady-state responses, see, e.g., Haring et al.
(2013). The presented class of systems covers these examples in the presence of
multiple measurable outputs, in which one output is related to a to-be-optimized
measurable cost and all other outputs are related to measurable constraint func-
tions.

4.3 Class of extremum-seeking algorithms for constrained op-

timization problems using barrier function methods

In this section, firstly, we discuss classical barrier function methods to address
constrained optimization problems of the form in (4.7), see, e.g., Fiacco and
McCormick (1968). Secondly, in the spirit of the class of algorithms for un-
constrained optimization problems presented in Teel and Popović (2001), we
introduce a mathematical description of a class of algorithms that enables con-
strained optimization by means of barrier function methods.

4.3.1 Constrained optimization using barrier function methods

The barrier function method is a well-known approach to address constrained
optimization problems. Namely, it allows to approximate constrained optimiza-
tion problems of the form in (4.7) by an unconstrained modified optimization
problem. The approximation of the actual constrained optimization problem can
be attributed to the nature of the barrier function method. In particular, barrier
functions establish a barrier on the boundary of the admissible set T , thereby
preventing any optimization algorithm that starts well within the admissible set
to reach the boundary of the admissible set. We adopt the following definition.

Definition 4.6. Let T be the admissible set as defined in Assumption 4.3. Let
T o and ∂T denote the interior and the boundary of the admissible set T , re-
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spectively. For each µ ∈ R>0, called the barrier parameter, a barrier function
B : T o × R>0 → R, is defined on T o such that

• B(u, µ) is continuous for u ∈ T o and µ ∈ R>0,

• B(u, µ)→ 0 for u ∈ T o and µ→ 0,

• B(u, µ)→∞ for ‖u‖∂T → 0 and µ ∈ R>0.

Barrier functions that satisfy Definition 4.6 are, for example, the so-called
logarithmic barrier function, given by

B(u, µ) = −µ
nz
∑

i=1

log(−Gi(u)), (4.8)

and the so-called inverse barrier function, given by

B(u, µ) = −µ
nz
∑

i=1

1

Gi(u)
, (4.9)

where the barrier parameter µ is usually taken sufficiently small, and Gi denotes
the ith element of the constraint functions G.

By exploiting barrier functions as defined in Definition 4.6, we can approx-
imate the constrained optimization problem in (4.7) by the following uncon-
strained modified optimization problem:

min
u∈T o

Q̃(u, µ), (4.10)

with Q̃(u, µ) := Q(u) + B(u, µ) the so-called modified objective function. We
call the solution to (4.10) an approximate minimizer, where C̃T denotes the
set of approximate minimizers, i.e., for any µ ∈ R>0 there exist system inputs
u∗ ∈ C̃T ⊂ T o such that for all u ∈ T o, Q̃(u, µ) ≥ Q̃(u∗, µ). The fact that, for
constrained optimization problems, a barrier function method only provides ap-
proximate solutions is particulary evident in cases where solutions to the actual
constrained optimization problem in (4.7) are located on the boundary of the ad-
missible set ∂T , i.e., when the intersection of the boundary of the admissible set
and the set of exact minimizers is nonempty, i.e., ∂T ∩CT is nonempty. Namely,
in cases where optimization algorithms employ barrier functions, we have that
the boundary of the admissible set and the set of approximate minimizers do
not intersect, i.e., ∂T ∩ C̃T = ∅. Nevertheless, we would like to stress that, in
practice, the set of approximate minimizers C̃T can be made arbitrarily close to
the actual set of minimizers CT by having a sufficiently small barrier parameter
µ. Namely, for a sufficiently small µ ∈ R>0 and u ∈ T o, from Definition 4.6 it
follows that B(u, µ) ≈ 0, and thus Q̃(u, µ) ≈ Q(u). Next, we will mathemati-
cally describe the class of algorithms that enables constrained optimization by
means of barrier function methods.



128 Chapter 4. Sampled-data extremum seeking and constrained optimization

4.3.2 Characterization of constrained optimization algorithms

In this section, we introduce a class of algorithms, inspired by barrier function
methods, and designed to induce convergence to the set of approximate min-
imizers C̃T . The class of algorithms that is described here is based on exact
evaluation of the steady-state input-output mappings Q and G in (4.4) and
(4.5), respectively, that is, the outputs y and z are not affected by system dy-
namics, leading to exact evaluation of the steady-state system performance Q
and steady-state constraint functions G, respectively. Moreover, we consider the
evaluation of Q and G for a particular input u to be readily available. Later in
Section 4.4, we will show how to exploit the introduced class of algorithms in an
extremum-seeking control context, in which 1) the evaluation of the steady-state
input-output mappings Q and G is obtained sequentially, and 2) the output mea-
surements are affected by (transient) dynamical behavior of the system. Therein,
we consider the steady-state system performance Q and steady-state constraint
functions G to be available approximately only through measurable outputs y
and z.

Let us consider optimization algorithms described by the following difference
inclusion (see also, e.g., Teel and Popović (2001)):

Σ : u+ ∈ F (u, Y (u), Z(u)), (4.11)

where F : Rnu ×Rnv ×Rnv×nz → Rnu is a set-valued map for which the update
u+ can be any element of the set, the function Y ∈ R

nv contains all information
regarding (the gradient of) the cost near u, and the function Z ∈ Rnv×nz car-
ries all information about (the gradient of) the constraint functions near u. In
particular, Y and Z are respectively defined as follows:

Y (u) :=







Q(u+ v1(u))
...

Q(u+ vnv
(u))






, (4.12)

and

Z(u) :=







G1(u+ v1(u)) . . . Gnz
(u+ v1(u))

...
. . .

...
G1(u+ vnv

(u)) . . . Gnz
(u + vnv

(u))






, (4.13)

where vj , with j = 1, . . . , nv, are dither functions, Q(·) and G(·) are the steady-
state input-output maps from Assumption 4.2, and Gi denotes the ith element
of G. We will adopt the following assumption on optimization algorithms as in
(4.11)-(4.13), which can be seen as a generalization of the assumptions on the
class of algorithms used in Teel and Popović (2001).
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Assumption 4.7. Let T be the admissible set as defined in Assumption 4.3,
with T o and ∂T the interior and the boundary of the admissible set T , respec-
tively. Let C̃T be the set of approximate constrained minimizers. Let us adopt
the following assumption:

• For each input u ∈ T o, the set F (u, Y (u), Z(u)) in (4.11) is nonempty and
compact. Moreover, the set F is an upper semi-continuous function of u.

• We assume that there exist a locally Lipschitz function VΣ : Rnu → R≥0,
which is radially unbounded on the admissible set T , a nonnegative con-
stant δ ∈ R≥0, and K∞-functions α(·) and ρ(·), such that

VΣ(u) = 0 ∀ u ∈ C̃T ,
α(‖u‖C̃T

) ≤ VΣ(u) ∀ u ∈ T o,
VΣ(u) →∞ for ‖u‖∂T → 0,

(4.14)

and

max
w∈F (u,Y (u),Z(u))

VΣ(w)− VΣ(u) ≤ −ρ(VΣ(u)) + δ ∀ u ∈ T o. (4.15)

• We assume that the constant δ ∈ R≥0 can be made arbitrarily small by
tuning the parameters of the optimization algorithm F in (4.11).

Remark 4.8. The existence of a function VΣ satisfying the associated condi-
tions stated in Assumption 4.7 are motivated by converse Lyapunov theorems
for stability of discrete-time systems on arbitrary sets, see, e.g., Teel, A.R. and
Praly, L. (2000), Kellett and Teel (2004), Kellett (2015). Moreover, radial un-
boundedness of VΣ on the admissible set T is motivated by the use of barrier
functions in the constrained optimization problem. Also note that the first and
third condition in (4.14) imply that the set of approximate minimizers C̃T and
the boundary of the admissible set ∂T do not intersect.

Remark 4.9. In Assumption 4.7, the size of the nonnegative constant δ in
(4.15) can typically be influenced by tunable parameters of the optimization al-
gorithm F described by the class of algorithms in (4.11)-(4.13). To motivate
this further, consider, for example, the minimization of a convex and differen-
tiable function Q̃(u) on T o, with Q̃(u)→∞ for ‖u‖∂T → 0. Moreover, for any
u ∈ T̄ , with T̄ a strict subset of T o, suppose there exists an M > 0 such that
‖∇2Q̃(u)‖ ≤ M for all u ∈ T̄ . Let us employ, a gradient descent optimization
algorithm F for which the gradient is estimated based on a central difference
scheme and exact evaluation of the function Q̃ as follows:

F (u, Y (u), Z(u)) := u− λ
(

Q̃(u+ cv)− Q̃(u− cv)
2cv

)

, (4.16)
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with cv, λ ∈ R>0. Let us take function VΣ(u) := Q̃(u) − Q̃(u∗), with u∗ the
extremum for which it holds that ∇Q̃(u∗) = 0. This VΣ(u) satisfies the conditions
in (4.14). With this VΣ(u), we obtain the following for the condition in (4.15):

VΣ(u
+)− VΣ(u) = Q̃(u+)− Q̃(u)

≤ ∇Q̃(u)(u+ − u) + M

2
‖u+ − u‖2

≤ −λ(∇VΣ(u))2 + δ,

(4.17)

with δ :=M3λ2c2v, λ ∈ (0, 1
M
). The constant δ can be made arbitrarily small by

selecting sufficiently small λ and cv.

In the next section, we will analyze the dynamic behavior of the intercon-
nection of a dynamical system described in Definition 4.1, and an optimization
algorithm of the form in (4.11)-(4.13) in an online extremum-seeking control
implementation.

4.4 Stability of the interconnected class of dynamical systems

and a class of constrained extremum seeking algorithms

In this section, we aim to investigate the dynamic behavior of a discrete-time
system that describes the closed-loop feedback interconnection of the class of
dynamical systems from Section 4.2, denoted by Σp, and the class of algorithms
discussed in Section 4.3, denoted by Σ, in an extremum-seeking context. In
particular, we consider the interconnection of a dynamical system Σp and an
optimization algorithm Σ through a T -periodic sampler, and a zero-order-hold
(ZOH) element, see Fig. 4.1.

We analyze the dynamic behavior of the closed-loop feedback interconnection
in the case where the elements of the functions Y and Z in (4.12) and (4.13),
respectively, 1) can only be obtained sequentially by performing nv experiments
and evaluating the steady-state input-output mappings Q and G after each ex-
periment, and 2) can only be based on (periodically) sampling the outputs y and
z, providing mere approximations of the steady-state input-output mappings Q
and G, respectively.

Next, we describe the extremum-seeking algorithm performing nv experi-
ments to realize one update of the system input u, based on a so-called waiting
time T that prescribes the duration of each experiment, and on approximations
of the steady-state input-output mappings Q and G obtained via the collection
of the corresponding output measurements each T seconds.

Algorithm 4.10. Suppose that the waiting time T , the number of experiments
nv to realize one iteration of the optimization algorithm, and the initial algorithm
state u0 are specified. Let us define the ideal periodic sampling operation xi :=
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sampled-data extremum-seeking algorithm

dynamical
plant Σp

Sampler
yi = y(iT )

zi = z(iT )

Estimation +
Optimization
algorithm Σ

ZOH
u(t) = ūi

t ∈ [iT, (i+ 1)T )

y

z

yi

zi

ūi−1

u

Figure 4.1: Sampled-data extremum-seeking control framework with multiple
output channels.

x(iT ):
yi := y(iT ) ∀ i = 0, 1, ..., (4.18)

and
zi := z(iT ) ∀ i = 0, 1, ...., (4.19)

where yi and zi are the collected measurements as used by the optimization al-
gorithm, where i ∈ N denotes the sampling index. Define the zero-order-hold
(ZOH) operation as follows:

u(t) := ūi ∀ t ∈ [iT, (i+ 1)T ), (4.20)

with sampling index i = 0, 1, ...,, waiting time T > 0, and step input parameter
ūi. For sampling index i, the step input parameter ūi is determined by the state
of the optimization algorithm uk as follows:

ūi := uk + vj(i)(uk), ∀ i = 0, 1, ..., (4.21)

with k ∈ N the optimization algorithm index, u0 the initial algorithm state, and
dither functions vj(i) with j(i) := (i mod nv) + 1.

The optimization algorithm index k is related to the sampling index i and

number of experiments nv through k =
⌊

i
nv

⌋

. The optimization algorithm is

characterized by the mapping F given in (4.11), which exploits the collected
measurements yi and zi:

uk+1 ∈ F (uk, Ỹ (uk), Z̃(uk)), ∀ k = 0, 1, ..., (4.22)

with functions Ỹ (uk) and Z̃(uk) defined as follows:

Ỹ (uk) :=







h(xknv+1)
...

h(x(k+1)nv
)






=







yknv+1

...
y(k+1)nv






, (4.23)
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and

Z̃(uk) :=







g1(xknv+1) . . . gnz
(xknv+1)

...
. . .

...
g1(x(k+1)nv

) . . . gnz
(x(k+1)nv

)






=







z⊤knv+1
...

z⊤(k+1)nv






, (4.24)

which are approximations of the functions Y (uk) and Z(uk) in (4.12) and (4.13),
respectively.

Remark 4.11. To illustrate the sequence of inputs generated by Algorithm 4.10
for the case nv = 3, consider the initial algorithm state u0, and the number
of experiments nv = 3 to perform one update of the state of the optimization
algorithm. The sequence of inputs, the corresponding output measurements, and
the algorithm state are provided in Table 4.1.

Table 4.1: Illustration of a sequence of parameter inputs ūi for t ∈ [iT, (i+1)T )
and generated by Algorithm 4.10 for the case nv = 3, the corresponding collected

measurements yi and zi at t = iT , the algorithm state uk, with k =
⌊

i
nv

⌋

and

functions Ỹ (uk) and Z̃(uk) defined in (4.23) and (4.24), respectively.

sampling outputs parameter algorithm state
index i yi, zi input ūi uk, k :=

⌊

i
nv

⌋

0 - ū0 = u0 + v1(u0) u0 is user-defined
1 y1, z1 ū1 = u0 + v2(u0) u0
2 y2, z2 ū2 = u0 + v3(u0) u0
3 y3, z3 ū3 = u1 + v1(u1) u1 ∈ F (u0, Ỹ (u0), Z̃(u0))
4 y4, z4 ū4 = u1 + v2(u1) u1
5 y5, z5 ū5 = u1 + v3(u1) u1
6 y6, z6 ū6 = u2 + v1(u2) u2 ∈ F (u1, Ỹ (u1), Z̃(u1))
...

...
...

...

To account for the discrepancy between the steady-state input-output map-
pingsQ(u) and G(u) and the actual measurements y and z, we need the following
additional assumption, partially adopted from Teel and Popović (2001).

Assumption 4.12. For the plant Σp described in Definition 4.1, it holds that

• for each ∆U ,∆X ∈ R>0 there exist LH , LG ∈ R>0 such that, for any input
u ∈ T with ‖u‖C̃T

≤ ∆U , and any ‖x‖A(u) ≤ ∆X , we have the following
inequalities:

‖h(x)−Q(u)‖ ≤ LH‖x‖A(u), (4.25)

and
‖g(x)−G(u)‖ ≤ LG‖x‖A(u). (4.26)
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• the set-valued map A(·) is locally Lipschitz; in particular, for each ∆U > 0,
there exists an LA > 0 such that

max{‖u1‖C̃T
, ‖u2‖C̃T

} ≤ ∆U ⇒ A(u1) ⊆ A(u2) + LA‖u1 − u2‖B̄, (4.27)

with u1, u2 ∈ T .

For the optimization algorithm F as described in (4.11) which satisfies the prop-
erties stated in Assumption 4.7, the following assumptions hold:

• Take any uF̃ generated by F (u, Ỹ (u), Z̃(u)), and let uF be its closest point
in the set F (u, Y (u), Z(u)). Then, for each ∆U ,∆ ∈ R>0, there exist
LY , LZ ∈ R>0 such that for any input u ∈ T o with ‖u‖C̃T

≤ ∆U , and

‖Ỹ ‖, ‖Z̃‖ ≤ ∆, we have

‖uF̃ − uF‖ ≤ LY ‖Ỹ (u)− Y (u)‖+ LZ‖Z̃(u)− Z(u)‖. (4.28)

• For the perturbation functions vj(·) we assume that, for each ∆U ∈ R>0

and for any u ∈ T̄ , with T̄ an arbitrary (large) strict subset of T o and
‖u‖C̃T

≤ ∆U , there exist (sufficiently small) constants Mv, cv ∈ R≥0 such
that, for each j = 1, . . . , nv, we have that

‖vj(u)‖ ≤Mv‖u‖C̃T
+ cv. (4.29)

The next lemma states the outcome of the interconnected discrete-time sys-
tem after one update of the optimization algorithm, i.e., one sequence of inputs
generated by Algorithm 4.10. In particular, define a state x̄k := xknv

denoting
the state of Σp at the beginning of the (k + 1)th sequence of inputs, where k
denotes the optimization algorithm index. The outcome of one sequence of in-
puts as considered in Lemma 4.13 is an important stepping stone in the proof
of Theorem 2.16 to show 1) convergence of the algorithm state uk to a neigh-
borhood of the set of approximate minimizers C̃T and 2) steady-state constraint
satisfaction for all system inputs, over multiple input sequences.

Lemma 4.13. Suppose that the system Σp and the algorithm Σ satisfy Assump-
tions 4.2, 4.3. 4.7 and 4.12. Let the system Σp and algorithm Σ be connected as
described in Algorithm 4.10. Then, for any ǫ1 ∈ (0, 1], any ǫ2,∆X ,∆U ∈ R>0,
and an arbitrary (large) strict subset T̄ ⊂ T o, there exists a waiting time T ∗ ≥ T ,
with T as in Assumption 4.2, such that, for any x̄ ∈ X with ‖x̄‖A(u+vnv (u))

≤ ∆X

and u ∈ T̄ with and ‖u‖C̃T
≤ ∆U , respectively being the states of the plant and

the algorithm at the beginning of the current input sequence, the states of the
system and algorithm at the beginning of the next input sequence are given as
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follows:
u+ ∈ F (u, Ỹ (u), Z̃(u))

ψ+ = u

x̄+ ∈ A(u + vnv
(u)) +

(

ǫ1

(

‖x̄‖A(u+vnv (u))

+ LA

nv
∑

j=1

‖vj(u)− vj−1(u)‖
)

+ nvǫ2

)

B.

(4.30)

where ψ is a memory state, Ỹ (u) and Z̃(u) are given in (4.23), and v0(u) :=
vnv

(u).

Proof. The proof of Lemma 4.13 can be found in Appendix 4.A. �

For the purpose of the stability analysis let us now define the following func-
tion:

W (ψ, x̄, u) := VΣp
(ψ, x̄) + 2VΣ(u), (4.31)

where VΣp
(ψ, x̄) := σ‖ψ‖C̃T

+ ‖x̄‖A(ψ+vnv (ψ))
with some constant σ ∈ R>0. Let

us define the following increments:

∆W (ψ, x̄, u) :=W (ψ+, x̄+, u+)−W (ψ, x̄, u),

∆VΣp
(ψ, x̄) := VΣp

(ψ+, x̄+)− VΣp
(ψ, x̄),

∆VΣ(u) := VΣ(u
+)− VΣ(u).

(4.32)

The next result states conditions on the initial conditions and parameters of the
ESC algorithm (such as the waiting time), such that the system input u converges
to an arbitrarily small neighborhood of the set of approximate minimizers C̃T ,
while steady-state constraint satisfaction is guaranteed all along the evolution
of the optimization iterations.

Theorem 4.14. Suppose that the system Σp and the algorithm Σ satisfy As-
sumptions 4.2, 4.3. 4.7 and 4.12. Let the system Σp and algorithm Σ be inter-
connected as described in Algorithm 4.10. For any u0, ψ0 ∈ V ⊂ T̄ with T̄ an ar-
bitrary (large) strict subset of T o and x̄0 ∈ X , with ‖u0‖C̃T

≤ ∆U ,‖ψ0‖C̃T
≤ ∆U ,

and ‖x̄0‖A(ψ+vnv (ψ0)) ≤ ∆X with some ∆U ,∆X ∈ R>0, there exists a sufficiently
large waiting time T ∗ ≥ T , with T as in Assumption 4.2, and K∞-function γ̃(·)
such that we obtain the following increment:

∆W (ψ, x̄, u) ≤ −γ̃(W (ψ, x̄, u)) + 2δ + γ + δV , (4.33)

for arbitrarily small δ, γ ∈ R>0, and any small δV ∈ R>0. Moreover, there exists
∆W ∈ R≥0, K∞-function ρ̂(·), and KL-function β̂(·, ·), such that

W (ψk, x̄k, uk) ≤ max{β̂(W (ψ0, x̄0, u0), k), γ̃
−1 ◦ ρ̂−1(2δ + γ + δV )}, (4.34)
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holds for all k ∈ N, with W (ψ0, x̄0, u0) ≤ ∆W , and for arbitrarily small δ, γ ∈
R>0.

As a consequence:

• VΣ(uk) is bounded for all k ∈ N, which implies that uk ∈ T o for all k ∈ N,
i.e., steady-state constraint satisfaction is guaranteed and

• the solutions of the closed-loop system converge to a set Yu := {u ∈
T o | ‖u‖C̃T

≤ 1
2α

−1
(

1
2 γ̃

−1 ◦ ρ̂−1(2δ + γ + δV )
)

}, with α ∈ K∞ defined
in Assumption 4.7, where this set can be made arbitrarily small.

Proof. The proof of Theorem 4.14 can be found in Appendix 4.B. �

Remark 4.15. The set Yu can be made arbitrarily small. Namely, 1) δV ∈ R>0

can be any arbitrarily small constant, 2) we can make γ arbitrarily small by
choosing a sufficiently large waiting time T ∈ R>0, and 3) δ, which is defined in
Assumption 4.7, can typically be tuned sufficiently small by tuning the parameters
of the optimization algorithm F (see also Assumption 4.7 and Remark 4.9).

Remark 4.16. Inequality (4.34) also expresses a decaying bound on the tran-
sient solutions of the closed-loop system. Since W expresses both the distance
of the plant response to the steady state and the distance of the input u to the
minimizer in a combined fashion we do not provide a transient bound on these
effects individually.

Remark 4.17. The result presented in Theorem 4.14 is focused on achieving
the optimal input that satisfies the output constraints in steady-state. We em-
phasize that, under the conditions of Theorem 4.14, constraint satisfaction is
also guaranteed during the transients of the extremum seeker if the plant output
would be on its steady-state response. Constraint satisfaction on the output re-
sponses during the transient of the plant itself is, however, not guaranteed. To
accomplish this, additional assumptions on the class of plants would be required.
In particular, system properties would need to be defined on compact subsets,
and additional assumptions on initial data and on the transient behavior of the
plant are required. This extended problem setting is not considered in this work.

4.5 Industrial case study: Constrained optimization of extreme

ultraviolet light generation in a Laser Produced Plasma

source system

The semiconductor industry continues to develop lithographic technologies which
are able to realize ever-smaller integrated circuit dimensions. Extreme ultravi-
olet lithography, a next-generation lithography technology, is able to produce
sub-nanometer features by exposing substrates, such as silicon wafers, to ex-
treme ultraviolet (EUV) light. The necessary EUV light is typically produced



136 Chapter 4. Sampled-data extremum seeking and constrained optimization

by a so-called Laser Produced Plasma (LPP) source, which is the most promis-
ing approach for providing power output that is scalable to meet the needs of
high volume production exposure tools. However, achieving and maintaining
optimal EUV light generation is a challenging task. In this section, we provide
a description of a typical LPP source and discuss the constrained optimization
problem associated to its performance. Moreover, we present a representative
LPP source model, and employ the constrained sampled-data extremum-seeking
approach proposed in this chapter to achieve optimal EUV light generation.

4.5.1 Laser Produced Plasma source system description

LPP sources produce EUV light by converting a material that has emission lines
in the EUV spectrum, e.g., lithium or tin, into a plasma state that ultimately
emits the desired EUV photons. Fig. 4.2 schematically depicts a typical LPP
source system and its most crucial components: 1) a CO2 laser generator, 2) a
laser beam delivery system, 3) a vacuum chamber, 4) a droplet generator, 5) a
spherical mirror, the so-called collector, and 6) an intermediate focus (IF). In-
side the vacuum chamber, the EUV-emitting plasma is generated by irradiating
droplets of material with a high-energy pulsating CO2 laser beam. The droplet
generator fires small droplets at a rate of 50 kHz into the vacuum chamber.
The beam delivery system orients and focusses the high-energy pulsating CO2

laser beam in such a way that it hits the traveling droplets inside the vacuum
chamber. If the droplets are hit correctly, EUV photons are generated by the
irradiated material, reflected by the collector, and transmitted towards the IF.
Here, the transmitted EUV photons enter the EUV lithography scanner and
enable the patterning of sub-nanometer features on a silicon wafer.

To cope with the various losses of EUV intensity within the lithography
scanner, and still enable patterning of sub-nanometer features on a silicon wafer
using the lithography scanner, the EUV light generated by the light source needs
to be maximized. The intensity of the generated EUV light highly depends on
the position of the laser beam with respect to the droplet. Due to the complex
(plasma) physics involved, the complex interactions between the droplets, laser
and plasma, and the difficulty of accurately measuring the position of the laser
beam relative to the droplet (amongst other challenges), models of the LPP
system based on first-principles tend to be inaccurate in describing the actual
system behavior. As such, employing the optimal laser position obtained from
such a first principle model on the actual system is likely to yield sub-optimal
EUV intensity. Instead, data-based methods such as ESC can be employed
to adjust the laser position in y- and z-direction (see Fig. 4.2) in real-time
to optimize the EUV intensity, based on real-time measurements of the EUV
intensity.

1The image is acquired from https://www.asml.com/en/investors/financial-calendar/past-
events-and-presentations, June 24th 2019 UBS Investor Forum presentation
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the laser-to-droplet (L2D) relative coordinate frame

Figure 4.2: EUV light source system within ASML’s lithography system.

Optimizing average EUV light generation using classical (continuous-time,
unconstrained) ESC was proposed in Frihauf et al. (2013). That approach,
however, does not take into account any (unknown) disturbances, which can
lead to undesirably high peak-to-peak variations in the generated EUV inten-
sity for certain laser orientations. In addition, laser light that is being reflected
back to the CO2 laser generator itself, referred to as the back-reflection and
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Figure 4.3: Model of the LPP source system.

which is continuously being monitored, can damage the LPP source if it ex-
ceeds some threshold value. The conventional approach would be to shut down
the machine to prevent excessive damage, and perform a time-consuming and
costly re-calibration procedure. Therefore, we employ the developed constrained
sampled-data extremum-seeking control strategy to maximize the average EUV
intensity while avoiding 1) large variations of EUV intensity, and 2) excessive
back-reflection.

4.5.2 Laser Produced Plasma source model

The LPP system under study is modelled1 by a linear-time-invariant (LTI) dy-
namical system, representing a closed-loop mirror control system (modelling the
beam delivery system in Fig 4.2), followed by an experimentally obtained static
nonlinear model for the effect of the laser positioning on the EUV intensity and
the laser back reflection (capturing the complex plasma physics of the source).
We emphasize that especially the latter part of the model is typically hard (and
time-consuming) to obtain in practice, which motivates the use of a data-based
approach such as ESC for performance optimization. Here, we employ such ex-
perimentally obtained model in support of the simulation study. Finally, and
user-defined filters are included to obtain as measured outputs the average EUV
intensity, the peak-to-peak EUV intensity, and the laser back reflection signal to
be used as input for the extremum-seeking controller, see Fig. 4.3 for a schematic
overview of the model.

Closed-loop mirror control system

The closed-loop mirror control system basically comprises the laser orientation
part of the beam delivery system of the LPP source. The laser orientation part
of the beam delivery system consists of (a set of) adjustable mirrors, able to
adjust the laser-to-droplet (L2D) positioning in the y- and z-direction on the

1to protect the company’s interests, a more detailed description of the LPP model than the
one presented here, and units of certain variables, are omitted. Moreover, values of variables
are normalized or scaled.
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basis of a stable feedback control design. The feedback controller uses the L2D-
positions, measured indirectly using data obtained through various sensors, and
user-defined L2D-setpoints to minimize the L2D-setpoint errors. The closed-loop
mirror control system model takes into account laser-droplet interactions, various
external (high- and low-frequency) disturbances ranging from 1 · 10−3 − 300 Hz
such as, e.g., CO2-laser variations, interaction with pulsating laser beam and
droplets, plasma oscillations in the vacuum chamber, and white noise, that affect
the L2D-position measurements. The disturbances are modelled as Tw-periodic
external disturbances w which are supplied to the closed-loop mirror control
system, with Tw = 2 seconds.

Static nonlinearities

The static nonlinearities in the LPP source model provide mappings from the
L2D-position to 1) the EUV intensity, denoted by yp, and 2) the back-reflection,
denoted by zp. These output nonlinearities are experimentally obtained from
an industrial LPP source system for the purpose of modelling. Fig. 4.4 depicts
the EUV intensity yp and the back-reflection signal zp as a function of time
for two particular L2D-setpoints, obtained using the simulation model. Due to
the Tw-periodic nature of the external disturbances, the measured outputs are
Tw-periodic as well.

User-defined filtering

On the basis of the measurable EUV intensity yp and back-reflection zp, and
the Tw-periodic nature of these outputs, the following filters are defined that
determine the average EUV intensity y, the maximum back-reflection signal z̃1,
and the peak-to-peak EUV variation z̃2 as follows:

y(t) :=
1

Tw

t
∫

t−Tw

yp(τ)dτ,

z̃1(t) := max
τ∈[t−Tw,t)

zp(τ),

z̃2(t) := max
τ∈[t−Tw,t)

yp(τ)− min
τ∈[t−Tw,t)

yp(τ),

(4.35)

for all t ≥ Tw.

4.5.3 Constrained optimization problem formulation

From simulation, steady-state input-output relations between the L2D-setpoints
with

u :=

[

L2Dy-setpoint
L2Dz-setpoint

]

, (4.36)
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Figure 4.4: The EUV intensity (top) and the back-reflection signal (bottom) as
a function of time for two L2D-setpoints; 1) L2Dy = −0.225 [normalized] and
L2Dz = 0.4 [normalized] during t ∈ [0, 2] s, and 2) L2Dy = −0.275 [normalized]
and L2Dz = 0.4 [normalized] during t ∈ (2, 4] s.

and 1) the average EUV intensity y, 2) the maximum back-reflection z̃1, and
3) the peak-to-peak variations in EUV intensity z̃2, denoted by Q(u), G̃1(u),
and G̃2(u), can be obtained, and are shown in Figures 4.5, 4.6, 4.7, respectively.
Knowledge of these mappings is not exploited in the remainder of this section,
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Figure 4.5: Steady-state input-output map from L2D-setpoints to average EUV
intensity.

and is presented merely for verification purposes.
From Figures 4.5 to 4.7, it can be that a maximum average EUV intensity

is achievable when the L2D-setpoints in y- and z-direction are around zero. In
the case when the L2D-setpoints are zero, the maximum back-reflection signal
exceeds 0.8, causing excessive damage to the LPP source. This excessive damage
can be prevented by keeping the back-reflection signal below a value of γback =
0.8. In addition, the peak-to-peak EUV intensity variation is required to remain
below γpp = 0.28 which guarantees stable EUV light generation for usage in the
lithography scanner. To achieve this goal, we formulate the following constrained
optimization problem for the LPP source system:

max
u∈T

Q(u),

subject to G(u) :=

[

G̃1(u)− γback
G̃2(u)− γpp

]

≤ 0,
(4.37)

with T := {u ∈ Ω : G(u) ≤ 0}, and Ω denoting the physical range of the laser-
to-droplet position. We assume no knowledge of Q(u) and G(u), and we obtain
information on performance and constraint satisfaction only through periodically
sampling the outputs y(t) and z(t), where the output z(t) is defined as follows:

z(t) :=

[

z̃1(t)− γback
z̃2(t)− γpp

]

. (4.38)
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Figure 4.6: Steady-state input-output map from L2D-setpoints to maximum
back-reflection.

4.5.4 Gradient-based sampled-data extremum-seeking algo-

rithm with barrier functions

To solve the constrained optimization problem in (4.37), we transform the prob-
lem to an unconstrained optimization problem by using logarithmic barrier func-
tions B(u, µ). The resulting unconstrained optimization problem reads

max
u∈T o

Q̃(u, µ) := Q(u)−B(u, µ), (4.39)

with Q̃ the modified objective function, and T o denoting the interior of the
admissible set T = {u ∈ Ω | G(u) ≤ 0}. We employ an extremum-seeking
algorithm such as described in Algorithm 4.10, in which we utilize a gradient-
based optimization algorithm. The algorithm exploits an estimate of the gradient
of the to-be-optimized modified objective function, determined through a central
difference computation, and for which we need to perform nv = 4 experiments
for each update of the optimization algorithm. A waiting time T = 2 seconds is
chosen, and Tw = 2 seconds is chosen in (4.35).

The gradient-based optimization algorithm F in (4.22) is given as follows:

F (u, Ỹ (u), Z̃(u)) := u+ λ∇Q̃(u, µ), (4.40)

with so-called optimizer gain λ, and where ∇Q̃(u, µ) denotes the gradient
of the modified objective function Q̃(u, µ). The actual gradient is unknown
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Figure 4.7: Steady-state input-output map from L2D-setpoints to peak-to-peak
EUV variation.

since the modified objective function is not analytically known. The gradient is
estimated based on the functions Ỹ (u) and Z̃(u), containing the collected output
measurements, and through a central difference computation as follows:

∇Q̃(u, µ) :=
1

2τ

[

1 −1 0 0
0 0 1 −1

]

ˆ̃Q(u, µ), (4.41)

with so-called step size τ , and the measured modified objective function
ˆ̃Q(u, µ) := Ỹ (u) − B(u, µ), with Ỹ (u) as in (4.23), and the barrier function
B(u, µ) defined as follows:

B(u, µ) := −µ















2
∑

j=1

log(−Z̃1j(u))

...
2
∑

j=1

log(−Z̃4j(u))















, (4.42)

with µ ∈ R>0 the so-called barrier parameter, and where Z̃ij denotes the ith

element from the jth column of the function Z̃(u) in (4.24). To facilitate the
estimation of the gradient through measurements, the dither functions are chosen
as follows: v⊤1 := [τ 0], v⊤2 := [−τ 0], v⊤3 := [0 τ ], and v⊤4 = [0 − τ ].
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Figure 4.8: The modified objective function Q̃. The white areas indicate regions
where Q̃ is undefined (i.e., outside the set of constraint satisfaction).

For illustration purposes only, the modified objective function Q̃(u, µ) using
barrier functions is visualized in Fig. 4.8, with µ = 0.03.

4.5.5 Simulation results

To obtain the results presented here, we have used the following numerical val-
ues for the algorithm: step-size τ = 0.005 [normalized], optimizer gain λ =
[

2 · 10−12 0
0 2 · 10−10

]

, and two initial L2D-setpoints, u
(1)
0 = [−0.25 0.5]⊤

[normalized] and u
(2)
0 = [−0.25 0.5]⊤ [normalized]. Fig. 4.9 shows the evolu-

tion of the laser-to-droplet setpoint position in y- and z-direction as a function

of the sampling index starting from the two initial L2D-setpoints u
(1)
0 and u

(2)
0 ,

and the corresponding outputs that reflect 1) the average EUV intensity, 2) the
maximum back-reflection, and 3) the peak-to-peak EUV intensity. In particular,
Fig. 4.9 shows iteration-domain results in the unconstrained optimization case

(µ = 0.0) starting from L2D-setpoints u
(1)
0 ( ) and u

(2)
0 ( ), and the con-

strained optimization case (µ = 0.03) starting from L2D-setpoints u
(1)
0 ( ) and

u
(2)
0 ( ), and Fig. 4.8 shows the corresponding trajectories in the input space.
In the case when µ = 0.0, constraint violation occurs. In particular, the

optimal operating conditions obtained with the extremum-seeking algorithm
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initialized at u
(1)
0 and µ = 0.0 ( ), leading to an average EUV intensity of

approximately 1, violate the constraint on the maximum back-reflection signal
γback. This can be seen by ( ) in Fig. 4.8 and the fourth sub-figure in Fig 4.9.

When the extremum-seeking algorithm is initialized at u
(2)
0 and µ = 0.0 ( ),

leading to an average EUV intensity of approximately 1, violation of the con-
straint on the peak-to-peak EUV variation γpp occurs. This can be seen by ( )
in Fig. 4.8 and the fifth sub-figure in Fig 4.9.

In the case when µ = 0.03, i.e., when the proposed constrained extremum-

seeking is in operation and initialized at u
(1)
0 ( ), the average EUV intensity

achieved is approximately 1 as well, and the constraint on the maximum back-
reflection signal is satisfied. When the extremum-seeking algorithm is initialized

at u
(2)
0 and µ = 0.03 ( ), the average EUV intensity is approximately 0.93,

while the constraint on the peak-to-peak EUV variation is satisfied.
Fig 4.10 shows the optimization of the EUV intensity yp and the monitored

back-reflection signal zp as a function of time while using an unconstrained
gradient-based extremum-seeking method ( ), and the constrained gradient-
based extremum-seeking method ( ).

Remark 4.18. Note that, given the non-convexity of the modified cost func-
tion Q̃(u, µ), see Fig 4.8, and given the fact that we employ a gradient-based
extremum-seeking algorithm, convergence to the global optimum is not guaran-
teed. For example, this occurs in the case when the extremum-seeking algorithm

is initialized at u
(2)
0 and µ = 0.03 ( ), as it converges towards a local mini-

mum. Nevertheless, the proposed constrained optimization procedure leads to the
satisfaction of the steady-state constraints, and in practice the gradient-based
extremum-seeking algorithm can be combined with a multi-start routine as part
of a calibration procedure.

4.6 Conclusions

We have proposed a sampled-data extremum-seeking framework for constrained
optimization of dynamical systems using barrier function methods, where both
the to-be-optimized objective function and the constraint functions are available
through output measurements only. We have shown that for the interconnection
of a class of dynamical systems and a class of optimization algorithms, given
a sufficiently long waiting time and parameter initialization well within the ad-
missible set, 1) steady-state constraint satisfaction is achieved, and 2) the closed
loop is practically asymptotically stable. Finally, we have demonstrated the pro-
posed approach by means of a representative industrial simulation study of the
constrained optimization of EUV light generation in an LPP source.
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as a function of time using an unconstrained gradient-based extremum-seeking
method ( ), and the constrained gradient-based extremum-seeking method
( ).

4.A Proof of Lemma 4.13

The proof of Lemma 4.13 exploits the line of reasoning of the proof of Theorem
1 in Teel and Popović (2001). From Assumption 4.2 we have that, for any
ǫ1, ǫ2,∆X0

∈ R>0, there exist a waiting time T > 0 such that

‖x(t, x0, u)‖A(u) ≤ ǫ1‖x0‖A(u) + ǫ2, (4.43)

for all t ≥ T , all u ∈ T , and all ‖x0‖A(u) ≤ ∆X0
. Consider an arbitrary system

state xi with sampling index i during some sequence of inputs k, with algorithm
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state uk. Without loss of generality, take k = 0. For any i = 1, ..., nv, with nv
the number of experiments for one algorithm index update, and waiting time
T ∗ > T , we have

‖xi‖A(u0+vi(u0)) ≤ ǫ1‖xi−1‖A(u0+vi(u0)) + ǫ2, (4.44)

for ‖xi−1‖A(u0+vi(u0)) ≤ ∆X0
, with the state xi := x(T ∗, xi−1, u0+vi(u0)). From

item 2 of Assumption 4.12 it follows that for any ∆U > 0 there exists a constant
LA ∈ R>0 such that we have the following inequality:

A(u0 + vi(u0)) ⊆ A(u0 + vi−1(u0)) + LA‖vi(u0)− vi−1(u0)‖B, (4.45)

with max{‖u0 + vi(u0)‖C̃T
, ‖u0 + vi−1(u0)‖C̃T

} ≤ ∆U for i = 1, ..., nv, and with
v0(·) := vnv

(·) (as defined in Lemma 4.13). Let us now employ the following
lemma from Teel and Popović (2001).

Lemma 4.19. Let x ∈ X , let A1 and A2 be closed subsets of X and suppose
c ≥ 0 is such that A1 ⊆ A2 + cB. Under these conditions, ‖x‖A1

≤ ‖x‖A2
+ c.

From Lemma 4.19 and (4.45), we obtain the following inequality:

‖xi−1‖A(u0+vi(u0)) ≤ ‖xi−1‖A(u0+vi−1(u0)) + LA‖vi(u0)− vi−1(u0)‖. (4.46)

Combining (4.46) and (4.44), and by using item 4 of Assumption 4.12, for any
input u ∈ T̄ with T̄ an arbitrary (large) strict subset of T o and ‖u‖C̃T

≤ ∆U ,
and any i = 1, ..., nv, we obtain the following inequality:

‖xi‖A(u0+vi(u0)) ≤ ǫ1
(

‖xi−1‖A(u0+vi−1(u0))

+ LA‖vi(u0)− vi−1(u0)‖
)

+ ǫ2,
(4.47)

for ‖xi−1‖A(u0+vi−1(u0)) ≤ ∆X0
−2LA(Mv∆U+cv), such that ‖xi−1‖A(u+vi(u)) ≤

∆X0
, and with v0(·) := vnv

(·). Now, let us determine the distance of the system
state xnv

to the attractor A(u0 + vnv
(u0)) at the end of the current sequence of

inputs, as a function of the distance of the state x0 to A(u0 + vnv
(u0)) at the

beginning of the current sequence of inputs (i.e., end of the previous sequence
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of inputs), with ‖x0‖A(u0+vnv (u0)) ≤ ∆X :

‖xi‖A(u0+vi(u0)) ≤ ǫ1
(

‖xi−1‖A(u0+vi−1(u0))

+ LA‖vi(u0)− vi−1(u0)‖
)

+ ǫ2,

≤ ǫ1
(

ǫ1‖xi−2‖A(u0+vi−2(u0))

+ ǫ1LA‖vi−1(u0)− vi−2(u0)‖

+ LA‖vi(u0)− vi−1(u0)‖
)

+ ǫ1ǫ2 + ǫ2,

...

≤ ǫ1
(

ǫi−1
1 ‖x0‖A(u0+vnv (u0))

+ LA

i
∑

j=1

(ǫi−j1 ‖vj(u0)− vj−1(u0)‖)
)

+ ǫ2

i
∑

j=1

ǫi−j1 ,

(4.48)

for all i = 1, . . . , nv and with v0(·) := vnv
(·). By considering ǫ1 ∈ (0, 1], which

can be accomplished by having a sufficiently long waiting time T , see, e.g.,
Assumption 4.2, we obtain the following inequality:

‖xi‖A(u0+vi(u0)) ≤ ǫ1
(

‖x0‖A(u0+vnv (u0))

+ LA

i
∑

j=1

(‖vj(u0)− vj−1(u0)‖)
)

+ nvǫ2,

(4.49)

for all i = 1, . . . , nv, and with v0(·) := vnv
(·). Define x̄ := x0 the state of the

plant at the beginning of the current sequence of inputs, and x̄+ := xnv
the new

state of the plant at the end of the current sequence of inputs. Moreover, let
u := u0 be the current state of the algorithm. From (4.49) and for i = nv, for
any ∆X ,∆U , ǫ2 ∈ R>0 and ǫ1 ∈ (0, 1], there exists a sufficiently long waiting
time T ∗ ≥ T such that for any x̄ ∈ X with ‖x̄‖A(u+vnv (u))

≤ ∆X and any u ∈ T̄
with T̄ an arbitrary (large) strict subset of T o and with ‖u‖C̃T

≤ ∆U , we can
write the following inequality:

‖x̄+‖A(u+vnv (u))
≤ ǫ1

(

‖x̄‖A(u+vnv (u))

+ LA

nv
∑

j=1

‖vj(u)− vj−1(u)‖
)

+ nvǫ2,

(4.50)
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or

x̄+ ∈ A(u + vnv
(u)) +

(

ǫ1

(

‖x̄‖A(u+vnv (u))

+ LA

nv
∑

j=1

‖vj(u)− vj−1(u)‖
)

+ nvǫ2

)

B,
(4.51)

with v0(·) := vnv
(·). This concludes the proof of Lemma 4.13. �

4.B Proof of Theorem 4.14

The structure of the proof is as follows. First, a bound on ∆VΣ(u) is derived.
Second, a bound on ∆VΣp

(ψ, x̄) is derived. Third, a bound on ∆W (ψ, x̄, u) is
derived. Fourth, we show 1) constraint satisfaction and 2) the convergence of u
to a region around the set of approximate minimizers C̃T .

Step 1: Let us derive a bound on ∆VΣ(u) := VΣ(u
+) − VΣ(u), where

u+ is generated by (4.30) in Lemma 4.13, i.e., u+ ∈ F (u, Ỹ (u), Z̃(u)). Let
ũ ∈ F (u, Y (u), Z(u)) be the closest point to u+ ∈ F (u, Ỹ (u), Z̃(u)). From As-
sumption 4.7, it follows that for any u ∈ T̄ with T̄ an arbitrary (large) strict
subset of T o, there exist constants LV ∈ R>0 and δ ∈ R≥0, and a K∞-function
ρ(·), such that we can write

∆VΣ(u) = VΣ(u
+)− VΣ(u)

= VΣ(u
+)− VΣ(ũ) + VΣ(ũ)− VΣ(u)

≤ VΣ(u+)− VΣ(ũ)− ρ(VΣ(u)) + δ

≤ LV ‖u+ − ũ‖ − ρ(VΣ(u)) + δ.

(4.52)

From Assumption 4.12, it follows that

‖u+ − ũ‖ = ‖u+‖F (u,Y (u),Z(u))

≤ LY ‖Ỹ (u)− Y (u)‖ + LZ‖Z̃(u)− Z(u)‖,
(4.53)

which, together with (4.52), leads to the following inequality:

∆VΣ(u) ≤ LV LY ‖Ỹ (u)− Y (u)‖
+ LV LZ‖Z̃(u)− Z(u)‖ − ρ(VΣ(u)) + δ.

(4.54)

From Assumption 4.12 and after one sequence of inputs it also follows that

‖Ỹ (u)− Y (u)‖ ≤ LH







‖x1‖A(u+v1(u))

...
‖xnv

‖A(u+vnv (u))







≤ nvLH‖x̄+‖A(u+vnv (u))
,

(4.55)
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and similarly

‖Z̃(u)− Z(u)‖ ≤ LG







‖x1‖A(u+v1(u))

...
‖xnv

‖A(u+vnv (u))







≤ nvLG‖x̄+‖A(u+vnv (u))
.

(4.56)

Let us define L̃ := nvLV (LY LH+LZLG). As such, from (4.54)-(4.56) we obtain
the following inequality:

∆VΣ(u) ≤ L̃‖x̄+‖A(u+vnv (u))
− ρ(VΣ(u)) + δ. (4.57)

Step 2: Let us derive a bound on ∆VΣp
(ψ, x̄) := VΣp

(ψ+, x̄+) − VΣp
(ψ, x̄).

Since VΣp
(ψ, x̄) := σ‖ψ‖C̃T

+ ‖x̄‖A(ψ+vnv (ψ))
with σ ∈ R>0, we obtain the fol-

lowing equation:

∆VΣp
(ψ, x̄) = ‖x̄+‖A(u+vnv (u))

− ‖x̄‖A(ψ+vnv (ψ))
+ σ‖u‖C̃T

− σ‖ψ‖C̃T
,
(4.58)

where we used that ψ+ = u.
Step 3: From (4.57) and (4.58) and W (ψ, x̄, u) in (4.31), it follows that

∆W (ψ, x̄, u) = ∆VΣp
(ψ, x̄) + 2∆VΣ(u)

≤ L̄‖x̄+‖A(u+vnv (u))
− ‖x̄‖A(ψ+vnv (ψ))

+ σ‖u‖C̃T
− σ‖ψ‖C̃T

− 2ρ(VΣ(u)) + 2δ,

(4.59)

with L̄ := 1 + 2L̃. By using Lemma 4.13 and (4.29) in Assumption 4.12, we
obtain the following inequality:

∆W (ψ, x̄, u) ≤ L̄ǫ1‖x̄‖A(u+vnv (u))
− ‖x̄‖A(ψ+vnv (ψ))

+ L̄ǫ1LA

nv
∑

j=1

‖vj(u)− vj−1(u)‖ + L̄nvǫ2

+ σ‖u‖C̃T
− σ‖ψ‖C̃T

− 2ρ(VΣ(u)) + 2δ

≤ L̄ǫ1
(

‖x̄‖A(u+vnv (u))
− ‖x̄‖A(ψ+vnv (ψ))

)

+ (σ + 2L̄ǫ1LAnvMv)‖u‖C̃T
+ 2L̄ǫ1LAnvcv

+ L̄nvǫ2 − (1− L̄ǫ1)‖x̄‖A(ψ+vnv (ψ))

− σ‖ψ‖C̃T
− 2ρ(VΣ(u)) + 2δ,

(4.60)

The following lemma is adopted from Teel and Popović (2001) and will be used
below.

Lemma 4.20. Under Assumptions 4.2 and 4.12, the value

κ := inf{κ̂ ∈ R≥0 : A(u1) ⊆ A(u2) + κ̂B, ∀ u1, u2 ∈ C̃T }, (4.61)
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is well-defined, and for all ∆U > 0, there exists LA ∈ R>0 such that

max{‖u1‖C̃T
, ‖u2‖C̃T

} ≤ ∆U ⇒
A(u1) ⊆ A(u2) + LA(‖u1‖C̃T

+ ‖u2‖C̃T
+ κ)B.

(4.62)

From Lemmas 4.20 and 4.19, there exists a κ ∈ R≥0 such that we obtain the
following inequality:

‖x̄‖A(u+vnv (u))
− ‖x̄‖A(ψ+vnv (ψ))

≤

LA

(

‖u‖C̃T
+ ‖ψ‖C̃T

+ ‖vnv
(u)‖+ ‖vnv

(ψ)‖ + κ

)

≤ LA

(

(1 +Mv)‖u‖C̃T
+ (1 +Mv)‖ψ‖C̃T

+ 2cv + κ

)

.

(4.63)

From substitution of (4.63) into (4.60), and using Assumption 4.7, we obtain
the following inequality:

∆W (ψ, x̄, u) ≤ −(σ − L̄ǫ1LA(1 +Mv))‖ψ‖C̃T

+ 2L̄ǫ1LAcv + L̄ǫ1LAκ+ 2L̄ǫ1LAnvcv + L̄nvǫ2

+ (σ + L̄ǫ1LA(2nvMv + 1 +Mv))‖u‖C̃T

− (1 − L̄ǫ1)‖x̄‖A(ψ+vnv (ψ))
− 2ρ(VΣ(u)) + 2δ,

(4.64)

For any (arbitrarily small) γ ∈ R>0, we ensure that 2L̄ǫ1LAcv + L̄ǫ1LAκ ≤ 1
2γ

and 2L̄ǫ1LAnvcv+ L̄nvǫ2 ≤ 1
2γ by designing ǫ1 ∈ (0, 1] and ǫ2 ∈ R>0 sufficiently

small, which can be achieved by selecting a sufficiently long waiting time T , see
the last item of Assumption 4.2. As such, we obtain the following inequality:

∆W (ψ, x̄, u) ≤ −(σ − L̄ǫ1LA(1 +Mv))‖ψ‖C̃T

+ (σ + L̄ǫ1LA(2nvMv + 1 +Mv))‖u‖C̃T

− (1− L̄ǫ1)‖x̄‖A(ψ+vnv (ψ))
− 2ρ(VΣ(u)) + 2δ + γ,

(4.65)

Moreover, for any σ ∈ R>0, we ensure that L̄ǫ1 ≤ 1
2 , L̄ǫ1LA(1 +Mv) ≤ 1

2σ,
and 2L̄ǫ1LAnvMv ≤ 1

2σ by designing ǫ1 ∈ (0, 1] sufficiently small. This can
be achieved by selecting a sufficiently long waiting time T , see the last item of
Assumption 4.2. This leads to the following inequality:

∆W (ψ, x̄, u) ≤ −1

2
‖x̄‖A(ψ+vnv (ψ))

− 1

2
σ‖ψ‖C̃T

+ 2σ‖u‖C̃T
− 2ρ(VΣ(u)) + 2δ + γ,

(4.66)

With VΣp
(ψ, x̄) := σ‖ψ‖C̃T

+ ‖x̄‖A(ψ+vnv (ψ))
, we obtain the following inequality

from (4.66):

∆W (ψ, x̄, u) ≤ −1

2
VΣp

(ψ, x̄)− ρ(VΣ(u))
+ 2σ‖u‖C̃T

− ρ(VΣ(u)) + 2δ + γ,
(4.67)
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Let us define a K∞-function γ̄(·) := min{ρ(·), (·)}. This implies that γ̄(·) ≤ ρ(·),
and γ̄(·) ≤ (·). As such, − 1

2VΣp
(ψ, x̄) ≤ −γ̄(12VΣp

(ψ, x̄)), and −ρ(VΣ(u)) ≤
−γ̄(VΣ(u)). This yields the following inequality:

∆W (ψ, x̄, u) ≤ −γ̄
(

1

2
VΣp

(ψ, x̄)

)

− γ̄(VΣ(u))

+ 2σ‖u‖C̃T
− ρ(VΣ(u)) + 2δ + γ,

(4.68)

Moreover, given the fact that γ̄(·) ∈ K∞, it follows that

γ̄

(

1

2
(
1

2
VΣp

(ψ, x̄) + VΣ(u))

)

≤ γ̄
(

1

2
VΣp

(ψ, x̄)

)

+ γ̄ (VΣ(u)) ,

see, e.g., Kellett (2014), resulting in the following inequality:

∆W (ψ, x̄, u) ≤ −γ̄
(

1

4
(VΣp

(ψ, x̄) + 2VΣ(u))

)

+ 2σ‖u‖C̃T
− ρ(VΣ(u)) + 2δ + γ.

(4.69)

Let us define a function γ̃(·) ∈ K∞ such that

γ̃
(

VΣp
(ψ, x̄) + 2VΣ(u)

)

:= γ̄

(

1

4

(

VΣp
(ψ, x̄) + 2VΣ(u)

)

)

. (4.70)

From this definition and (4.31), it follows that

∆W (ψ, x̄, u) ≤ −γ̃ (W (ψ, x̄, u)) + 2δ + γ + 2σ‖u‖C̃T
− ρ(VΣ(u)). (4.71)

From item 2 in Assumption 4.7, we have that there exists a function α ∈ K∞

such that α(‖u‖C̃T
) ≤ VΣ(u). From this fact and ρ ∈ K∞, we obtain that

−ρ(VΣ(u)) ≤ −ρ(α(‖u‖C̃T
)). For any α, ρ ∈ K∞, we have that ρ̃(·) := ρ(α(·)) ∈

K∞, which implies that −ρ(VΣ(u)) ≤ −ρ̃(‖u‖C̃T
). For any ∆U ∈ R>0 and any

small δV ∈ R>0, there exists a c ∈ R>0 such that −ρ̃(‖u‖C̃T
) ≤ −c‖u‖C̃T

+δV for

u ∈ T̄ and with ‖u‖C̃T
≤ ∆U . From (4.71) we obtain the following inequality:

∆W (ψ, x̄, u) ≤ −γ̃ (W (ψ, x̄, u)) + 2δ + γ + δV − (c− 2σ)‖u‖C̃T
, (4.72)

with any small δV ∈ R>0. Let σ := c
2 . From (4.72) we obtain the following

inequality:

∆W (ψ, x̄, u) ≤ −γ̃(W (ψ, x̄, u)) + 2δ + γ + δV . (4.73)

Step 4: Next, we will use the inequality in (4.73) to 1) show constraint
satisfaction and 2) the convergence of u to a neighborhood of the set of ap-
proximate minimizers C̃T . Let ρ̂ ∈ K∞ such that (id − ρ̂) ∈ K∞. For any
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ρ̂ ◦ γ̃(W (ψ, x̄, u)) ≥ 2δ + γ + δV we obtain that

∆W (ψ, x̄, u) ≤ −γ̃(W (ψ, x̄, u)) + 2δ + γ + δV

≤ −(id− ρ̂) ◦ γ̃(W (ψ, x̄, u))

− ρ̂ ◦ γ̃(W (ψ, x̄, u)) + 2δ + γ + δV

≤ −(id− ρ̂) ◦ γ̃(W (ψ, x̄, u)).

(4.74)

From (4.74) and the comparison lemma, see, e.g., Lemma 4.3 in Jiang and Wang

(2002), we have that there exists some KL-function β̂ such that

W (ψk, x̄k, uk) ≤ max{β̂(W (ψ0, x̄0, u0), k), γ̃
−1 ◦ ρ̂−1(2δ + γ + δV )}, (4.75)

for all k ∈ N. This shows the validity of inequality (4.34) in the theorem. Based
on this inequality we can now validate the two statements in the theorem on
constraint satisfaction and the convergence to a neighborhood of the approximate
constrained minimizer set:

• For any u0, ψ0 ∈ V ⊂ T̄ with T̄ an arbitrary (large) strict subset of T o and
x̄0 ∈ X with ‖u0‖C̃T

≤ ∆U , ‖ψ0‖C̃T
≤ ∆U , and ‖x̄0‖A(ψ0+vnv (ψ0)) ≤ ∆X

with some ∆U ,∆X ∈ R≥0, we have that W (ψ0, x̄0, u0) is bounded, i.e.,
W (ψ0, x̄0, u0) ≤ ∆W for some ∆W ∈ R≥0. From (4.75) we obtain
that W (ψk, x̄k, uk) is bounded for all k ≥ 0. Next, boundedness of
W (ψk, x̄k, uk) for all k ≥ 0 implies that VΣ(uk) is bounded for all k ≥ 0.
As such, from Assumption 4.7 and boundedness of VΣ(uk) it follows that
uk ∈ T o for all k ≥ 0, i.e., steady-state constraints satisfaction is guaran-
teed for all k ≥ 0.

• From the inequality in (4.75), we have the following ultimate bound for
W :

lim
k→∞

W (ψk, x̄k, uk) = γ̃−1 ◦ ρ̂−1(2δ + γ + δV ). (4.76)

Given the fact that 2VΣ(u) ≤ W (ψ, x̄, u), and α(‖u‖C̃T
) ≤ VΣ(u) which

follows from item 2 in Assumption 4.7, we have that the solutions converge
to the following set:

Yu := {u ∈ T o | ‖u‖C̃T
≤ α−1

(1

2
γ̃−1 ◦ ρ̂−1(2δ + γ + δV )

)

}. (4.77)

The set Yu can be made arbitrarily small. Namely, 1) δV ∈ R>0 can be any
arbitrarily small constant, 2) we can make γ arbitrarily small by choosing a
sufficiently large waiting time T ∈ R>0, and 3) δ, which is defined in Assump-
tion 4.7, can be made sufficiently small by tuning the parameters of the particular
optimization algorithm F , as discussed in Assumption 4.7 and Remark 4.9. This
completes the proof of Theorem 4.14. �



Chapter 5

Sampled-data extremum-seeking control for

high-accuracy repetitive positioning of

frictional motion systems

Abstract - Classical proportional-integral-derivative (PID) control is exploited
widely in industrial motion systems with dry friction, motivated by the intuitive,
and easy-to-use design and tuning tools available. However, classical PID control
suffers from severe performance limitations. In particular, friction-induced limit
cycling (i.e., hunting) is observed when integral control is employed on frictional
systems that suffer from the Stribeck effect, thereby compromising setpoint sta-
bility. In addition, the resulting time-domain behavior, such as, e.g., rise-time,
overshoot, settling time, and positioning accuracy, highly depends on the partic-
ular frictional characteristic, which is typically unknown or uncertain. On the
other hand, omitting integral control can lead to constant non-zero setpoint errors
(i.e., stick). To achieve superior setpoint performance for frictional motion sys-
tems in a repetitive motion setting, we propose a PID-based feedback controller
with a time-varying integrator gain design. To ensure optimal setpoint posi-
tioning accuracy and enable transient performance optimization, a data-based
sampled-data extremum-seeking architecture is employed to obtain an optimal
time-varying integrator gain design on the basis of a user-defined basis function
parametrization. The proposed approach does not rely on knowledge on the sys-
tem, and in particular, its friction characteristic. Finally, the effectiveness of
the proposed approach is evidenced experimentally by application to an industrial
nano-positioning motion stage set-up of a high-end electron microscope.

The content of this chapter is based on: L. Hazeleger, R. Beerens, N. van de Wouw,
”Proportional-Integral-Derivative-based learning control for high-accuracy repetitive position-
ing of frictional motion systems”, Provisionally accepted for publication in IEEE Transactions

on Control Systems Technology
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5.1 Introduction

Many industrial motion systems perform repetitive tasks, e.g., repetitive motion
profiles in pick-and-place machines (van Loon et al., 2016, Sec. 5), large-scale
transferring of circuit topology to silicon wafers in lithography systems (Butler,
2011), and automated scanning procedures in electron microscopes. Due to de-
mands on hardware cost reduction in the design phase or wear in the operational
phase, friction is commonly present in such high-precision positioning systems,
thereby limiting the achievable positioning accuracy.

Various control solutions have been presented throughout the literature to
cope with frictional effects in motion systems. Model-based compensation tech-
niques (see, e.g., Makkar et al. (2007) and Freidovich et al. (2010)), exploit
parametric models in the control loop to compensate for friction. However, as
friction characteristics are commonly unknown, uncertain, and (slowly) time-
varying, model-based methods are prone to modeling errors, ultimately com-
promising positioning accuracy. Non-model-based methods, e.g., impulsive con-
trol (van de Wouw and Leine, 2012), dithering-based techniques (Iannelli et al.,
2006), and sliding-mode control (Bartolini et al., 2003), may result in stability of
the setpoint. In general, these non-model-based control techniques have a com-
mon disadvantage. Namely, the persistent injection of high-frequency control
signals may excite unmodeled high-frequency system dynamics, which is highly
undesirable in motion systems. Moreover, tuning and implementation of such
controllers is not straightforward. Therefore, these techniques are not appealing
for industrial applications.

Despite the existence of the above control techniques, the vast majority of the
high-precision industry still employs classical proportional-integral-derivative
(PID) control, since control practitioners are often well-trained in linear con-
trol design (loop-shaping). Moreover, it is well-known that integral action in
PID control is capable of compensating for unknown static friction in motion
systems, see, e.g., Bisoffi et al. (2018), Beerens et al. (2019) and Putra et al.
(2007). However, PID control is prone to performance limitations as well. For
example, solutions settle on a persistent oscillation around the setpoint when in-
tegral control is employed on systems where the friction characteristic includes
the velocity-weakening (Stribeck) effect, so that stability of the setpoint is not
achieved (this phenomenon is also called friction-induced limit cycling or hunt-
ing, see Hensen et al. (2003) and Section 5.2). Even if stability can be warranted,
rise-time, overshoot, settling time (Beerens et al., 2019), and positioning accu-
racy depend on the particular friction characteristic, which is highly uncertain
in practice. Hence, despite the popularity of the PID controller in industry, fric-
tion is a performance- and reliability-limiting factor in PID-controlled motion
systems. This motivates the development of a more advanced control strat-
egy, while preserving the benefits and intuition of classical PID feedback control
design.
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In this chapter, a PID-based learning controller is proposed in order to
achieve a high setpoint accuracy for motion systems subject to unknown static
and velocity-dependent friction, including the Stribeck effect, and tailored for
repetitive motion tasks within a finite time interval. The PID-based learning
controller consists of two elements. First, a PID control architecture with a
time-varying integrator gain design is proposed, facilitating a tailored design
for the repetitive motion and friction characteristic at hand. In this manner,
friction-induced limit cycles can be avoided, and high accuracy repetitive set-
point positioning and improved transient behavior can be achieved instead. In
addition, similar robustness properties as classical PD control at the desired
setpoint can be achieved. Second, we propose a data-driven, model-free opti-
mization strategy, in order to iteratively find the optimal time-varying integrator
gain, in the presence of unknown friction. Such a data-driven tuning procedure
yields optimal setpoint accuracy and improved transient behavior.

In this chapter, the finite-horizon optimization problem of finding the op-
timal time-varying integrator gain for repetitive motion tasks is formulated in
terms of a model-free sampled-data extremum-seeking control (ESC) problem
(see, e.g., Teel and Popović (2001), Kvaternik and Pavel (2011), and Khong
et al. (2013b)). This is achieved by exploiting a linear spline basis function
parametrization of the time-varying integrator gain. The extremum seeking
mechanism is then designed to iteratively improve system performance by adap-
tive tuning of the parameters of this basis function parametrization. This learn-
ing mechanism has resemblance with iterative feedback tuning (see, e.g., Lequin
et al. (2003), Heertjes et al. (2016), and Hjalmarsson et al. (1998)) and iter-
ative learning control (ILC, see, e.g., Bristow et al. (2006) and Wang et al.
(2009)). These iterative methods have proven merit in a linear motion con-
trol setting. However, for the nonlinear setting in this chapter, employing an
extremum-seeking approach instead is beneficial. Namely, ESC is able to deal
with unknown, uncertain, time-varying, and general nonlinear systems, and is
therefore suitable to be used in the presence of unknown nonlinear frictional ef-
fects.Moreover, the potential of ESC in the context of iterative learning control
and optimizing transient behavior has been shown in, e.g., Khong et al. (2016);
Benosman (2016); Killingsworth and Krstic (2006), and Ren et al. (2012). How-
ever, it must be noted that the extremum-seeking strategy to iteratively improve
the system’s transient behavior proposed in this work is different. Namely, we
iteratively learn time-varying feedback controller gains using ESC, where, e.g.,
in Killingsworth and Krstic (2006) and Benosman (2016), ESC is used for itera-
tive tuning of PID controllers having constant gains, and in, e.g., in Khong et al.
(2016) and Ren et al. (2012), (sampled-data) ESC is employed to iteratively tune
a system input signal.

The main contributions of this chapter can be summarized as follows. The
first contribution is a time-varying integrator gain design for PID-based feedback
control of motion systems with unknown static and velocity dependent friction,
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m

uc

x1

Ff

g

Figure 5.1: Schematic representation of the motion system subject to a friction
force Ff .

the latter possibly including the Stribeck effect. The second contribution is
an automatic controller tuning procedure based on a sampled-data extremum-
seeking framework, facilitated by a basis function parametrization of the time-
varying integrator gain. The third contribution is an experimental case study
on an industrial high-precision motion stage of an electron microscope.

The chapter is organized as follows. We formalize the control problem in
Section 5.2, and we present the PID-based controller with time-varying integra-
tor gain in Section 5.3. In Section 5.4, we present the extremum-seeking-based
iterative learning mechanism. Section 5.5 provides an implementation summary.
In Section 5.6, we experimentally show the working principles of the proposed
PID-based learning controller, applied to an industrial nano-positioning motion
stage. Conclusions are presented in Section 5.7.
Notation: Sign(·) (with an upper-case S) denotes the set-valued sign function,
i.e., Sign(y) := 1 for y > 0, Sign(y) := −1 for y < 0, and Sign(y) := [−1, 1] for
y = 0. B denotes the closed unit ball of appropriate dimensions, in the Euclidean
norm.

5.2 Control problem formulation for frictional motion systems

In this section, we first present a PID-controlled motion system with (Stribeck)
friction, to illustrate the shortcomings of P(I)D control for frictional motion sys-
tems. Second, we state the control problem formulation for repetitive positioning
of frictional motion systems.

5.2.1 PID-controlled single mass system with Stribeck friction

Consider a single-degree-of-freedom motion system, consisting of a mass m slid-
ing on a horizontal plane, with measurable position x1, velocity x2, control input
uc (i.e., the actuation force as determined by a motion control algorithm). The
mass is subject to a friction force Ff (as schematically depicted in Fig. 5.1) be-
longing to a friction set Φ(x2) for a velocity x2, where x2 ⇒ Φ(x2) is a set-valued
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mapping. The set-valued friction characteristic Φ consists of a Coulomb friction
component with (unknown) static friction Fs, a viscous contribution γx2 (where
γ ≥ 0 is the viscous friction coefficient), and a nonlinear velocity-dependent
friction component f , encompassing the Stribeck effect, i.e.,

Ff ∈ Φ(x2) := −FsSign(x2)− γx2 + f(x2), (5.1)

We pose the following assumption on the velocity-dependent friction component
f .

Assumption 5.1. The function f : R → R is continuously differentiable and
satisfies

(i) |f(v)| ≤ Fs for all v;

(ii) vf(v) ≥ 0 for all v;

(iii) f is globally Lipschitz with Lipschitz constant L > 0.

The dynamics of the motion system with friction are governed by the follow-
ing differential inclusion:

ẋ1 = x2,

mẋ2 ∈ Φ(x2) + uc.
(5.2)

Consider a classical PID controller for input uc in (5.2), i.e.,

uc = kpe+ kdė+ kix3,

ẋ3 = e,
(5.3)

where e := r − x1 denotes the setpoint error with r the reference signal, x3 the
integrator state, and kp, kd, and ki the proportional, derivative, and integral
controller gains, respectively. For frictional motion systems, the presence of an
integrator action in (5.3) is motivated by the fact that it is able to compensate
for unknown static friction, due to the build-up of control force by integrating
the position error. In general motion control systems, integrator action is widely
used to improve low-frequency disturbance rejection properties and shorten rise-
times, the latter being beneficial for machine throughput. As an illustration,
consider a constant reference r, i.e., a point-to-point motion, so that the resulting
set of equilibria of closed-loop system (5.1)-(5.3) is given by

Epid = {(e, ė, x3) ∈ R
3 : e = 0, ė = 0, |x3| ≤ Fs/ki}, (5.4)

which is globally asymptotically stable for closed-loop system dynamics (5.1)-
(5.3) only when f(·) = 0, i.e., in the absence of the velocity-weakening (Stribeck)
effect, see, Bisoffi et al. (2018). In the presence of the Stribeck effect, however,
Epid is not stable and limit cycling (hunting) occurs. Although static friction
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Figure 5.2: Measured error responses of an industrial nano-positioning motion
stage set-up subject to a third-order reference trajectory ( ), (for details about
the set-up, see Section 5.6) and the corresponding control forces of a PD con-
troller ( ), and a PID controller with fixed integrator gain ki = 1 ·108 ( ) and
( ). The PD controller yields a non-zero steady-state positioning error, and
the PID controller induces hunting.

is eventually compensated by the integrator action, friction is overcompensated
in the slip phase that follows due to the velocity-weakening effect, resulting in
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overshoot of the setpoint. This process repeats and results in stick-slip limit
cycling, compromising setpoint stability. This phenomenon is illustrated exper-
imentally in the third subplot in Fig. 5.2. In particular, Fig. 5.2 presents the
reference trajectory employed (subplot 1), the measured error response when
using solely PD control (subplot 2), two measured error responses using PID
control (subplot 3), and the corresponding control forces generated by the PD
and PID controllers (subplot 4) of an industrial nano-positioning motion stage
setup (the motion stage setup will be discussed in more detail in Section 5.6). A
relatively large positioning error of about 200 nm is obtained when using linear
PID control. Omission of the integrator action (i.e., PD control for input uc
in (5.2)) results in the set of equilibria for (5.1)-(5.3) given by

Epd = {(e, ė) ∈ R
2 : |e| ≤ Fs/kp, ė = 0}, (5.5)

which is stable (see Putra et al. (2007)), but does not guarantee zero steady-
state error, as also illustrated in Fig. 5.2. In particular, the size of the achievable
steady-state error depends inversely on the proportional gain kp, which cannot be
chosen arbitrarily large for stability purposes. The drawbacks of P(I)D control
for frictional motion systems motivate the design of a more suitable control
architecture. Respecting the popularity of PID control in industry, we propose
a time-varying PID-based controller in Section 5.3 after formalizing the control
problem in the next section.

5.2.2 Control problem formulation

In this chapter, we focus on achieving high-accuracy positioning for frictional
motion systems that perform a user-defined T -repetitive motion. We consider,
for the position x1, a desired repetitive reference r, defined on the time interval
[0, T ], where the system starts and ends at rest. Specifically, we separate the
time interval [0, T ] into two particular parts, specified as follows:

i) t ∈ [0, TB); the so-called transient time window, during which the system
is allowed to move from 0 to r;

ii) t ∈ [TB, T ]; the so-called standstill time window, during which standstill
at r is required. The time interval [TB, T ] is typically used by the indus-
trial machine, of which the motion system is part, to perform a certain
machining operation, for which accurate positioning is required.

Respecting the popularity of PID control in industry, and taking into account
the advantages of classical P(I)D control, in this chapter we address the following
setpoint control problem.

Problem 5.2. Design a PID-based control strategy for motion systems of the
form (5.1), (5.2), that perform a repetitive motion profile and are subject to un-
known static and velocity-dependent friction, such that 1) high-accuracy setpoint



162 Chapter 5. Sampled-data extremum seeking and repetitive positioning

positioning during the standstill time window, and 2) optimal transient behavior
during the transient time window is achieved.

The desired performance, i.e., an optimal transient response on [0, TB), and
optimal setpoint accuracy on [TB, T ], can be captured by the following cost
function J to be minimized:

J(e) :=

∫ T

0

|w(t)e(t)|2dt, (5.6)

where we have introduced a weighting function w(t) which is defined as follows:

w(t) :=

{

w1 if t ∈ [0, TB)
w2 if t ∈ [TB, T ]

, (5.7)

with w1, w2 ∈ R suitable weighting factors, trading off the emphasis on transient
performance versus setpoint accuracy. Other (transient) performance relevant
variables, such as the control effort uc, or the velocity x2 of the mass can be taken
into account in (5.6) as well, if accurate velocity measurements are available.

5.3 A time-varying integrator gain design for PID-based con-

trol of frictional motion systems

In this section, first the time-varying integrator design is presented, and subse-
quently the achievable performance benefits are shown in a numerical example.

5.3.1 Time-varying integrator gain design

The limit-cycle present in the case of PID control with constant integrator gain,
see, e.g., Fig 5.2, is caused by the build-up of integrator action (during transients
and the stick phase) in interplay with the friction characteristic. This observation
motivates the design of a novel time-varying integrator gain ki(t) for point-to-
point motion for the following reasons:

1. the presence of integrator action still allows the system to escape undesired
stick phases,

2. overcompensation of friction due to, e.g., a severe Stribeck effect, can be
avoided, by altering ki(t) during the slip phase,

3. zero integral action can be enforced at the setpoint when standstill of the
system is required, such that robustness against other force disturbances
is provided by the static friction.

The resulting controller is then given by

uc = kpe + kdė+ ki(t)x3, (5.8a)

ẋ3 = ς(t)e, (5.8b)
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with ς(t) ∈ {0, 1} a to-be-designed switching function that prevents uncontrolled
growth of x3. Furthermore, the to-be-designed time-varying integral gain ki(t)
should be bounded, i.e., |ki(t)| < +∞ for all t ∈ [0, T ]. Here, we opt to employ a
time-varying integrator gain ki(t), instead of an appropriate feedforward control
signal in combination with a constant integrator gain ki as commonly done in
iterative learning control to, e.g., counteract recurring disturbances (Bristow
et al., 2006; Wang et al., 2009). This choice is motivated by the fact that,
with the proposed controller, we are able to 1) escape undesired stick phases
by enabling ki(t) 6= 0 during the transient time window t ∈ [0, TB), and 2)
create robustness to other force disturbances close to the setpoint, by enforcing
ki(t) = 0 during the standstill time window t ∈ [TB, T ]. Integrator action is
then disabled, so that the system remains in standstill since build up of control
force is prevented. Indeed, robustness to force disturbances is obtained as the
proportional action is low, compared to the static friction, due to the anticipated
small position error close to the setpoint and achieved by the PID control with
time-varying integrator gain during the transient.

Remark 5.3. Note that the presented engineering intuition here only applies
when the integrator gain ki is placed at the right-hand side in (5.8a), instead of
at the right-hand side in (5.8b). Indeed, in the latter case, ki = 0 would still
yield a constant integral control force in uc.

We now propose a parametric design for ki(t), parameterized by a finite set
of basis functions ϕ(j), j ∈ {1, 2, . . . , b}, as follows:

ki(t) :=

b
∑

j=1

ϕ(j)(p, t), (5.9)

where b denotes the number of basis functions, and p ∈ Rnp is a to-be-designed
parameter vector. Next, we give two examples of basis function parametrizations
that can be employed to facilitate solving Problem 5.2.

Example 5.4. Step-like basis functions, i.e., ϕ(j)(p, t) := p(j)Ψ(j)(t) with
Ψ(j)(t) defined as follows:

Ψ(j)(t) :=

{

1, t ∈ [(j − 1)ts, jts)
0, t /∈ [(j − 1)ts, jts)

for j = 1, . . . , b, (5.10)

where ts satisfies T = bts, and the to-be-designed parameter vector p ∈ Rnp , with
np = b.

Example 5.5. Linear spline basis functions, i.e., ϕ(j)(p, t) := [p(j) p(j+1)]Ψ(j)(t)
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with Ψ(j)(t) defined as follows:

Ψ(j)(t) :=











[

1− t−(j−1)ts
ts

t−(j−1)ts
ts

]

, t ∈ [(j − 1)ts, jts)

[

0 0
]⊤
, t /∈ [(j − 1)ts, jts)

for j = 1, . . . , b,

(5.11)

where ts satisfies T = bts, and the parameter vector p ∈ Rnp , with np = b + 1.

Remark 5.6. Other types of basis function designs can be adopted from the
iterative learning control literature. For example, polynomial bases (see, e.g.,
van de Wijdeven and Bosgra (2010) and van der Meulen et al. (2008)) and
rational bases (see, e.g., Bolder and Oomen (2015)) can similarly be exploited.

In the remainder of this chapter, we opt for a linear spline basis function
parametrization of ki(t), as illustrated in Example 5.5, as it yields a continuous
control signal. In contrast, the step-like basis function parametrization, as illus-
trated in Example 5.4 (see also Hazeleger et al. (2019)), results in discontinuities
in the control signal, risking excitation of high-frequency system dynamics, which
is also a well-known drawback in reset control and impulsive control strategies
developed for the control of frictional systems.

The switching function ς(t) in (5.8) is analogously designed as

ς(t) :=

{

1, t ∈ [0, TB),

0, t ∈ [TB, T ],
(5.12)

so that the evolution of the integrator state is disabled on the interval [TB, T ].
Summarizing, the resulting closed-loop system with the proposed design for the
time-varying integrator gain is given by (5.1), (5.2), (5.8), (5.9), (5.11), and
(5.12).

The next proposition presents some properties of the resulting closed-loop
system, which will be instrumental in the data-based sampled-data extremum
seeking architecture presented in Section 5.4. In particular, the following propo-
sition asserts that each bounded realization of ki(t) results in a unique solution
x = (x1, x2, x3)

⊤ of the closed-loop system, which is bounded on the interval
[0, T ].

Proposition 5.7. Under Assumption 5.1, for any constant r, each bounded
realization of ki(t) in (5.8) satisfying ki(t) = 0 for t ∈ [TB, T ], each initial
condition satisfying x(0) ∈ K1B̄ with K1 ≥ 0, and ς(t) as in (5.12), solutions
x(t) to closed-loop system (5.1), (5.2), (5.8), (5.9), (5.11), (5.12) are unique,
and satisfy x(t) ∈ K2B̄ for some bounded K2 > 0, for all t ∈ [0, T ].

Proof. See Appendix 5.A.
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5.3.2 Illustrative example

We illustrate the potential of the proposed time-varying integrator gain by means
of a numerical example. Consider closed-loop system (5.1), (5.2), (5.8), (5.9),
(5.11), (5.12), where we adopt the following numerical values: m = 1, kp = 18
N/m, kd = 2 Ns/m, Fs = 0.981 N, and γ = 0.5. The Stribeck contribution of
the friction f is given by

f(x2) = ((Fs − Fc)ηx2) (1 + η|x2|)−1
, (5.13)

where Fc the Coulomb friction force, and η the Stribeck shape parameter. The
motion profile interval is characterized by T = 1.5 s, and TB = 0.75 s. For the
time-varying integrator gain design, we take b = 6, and the parameter vector p
is given by p = [p(1) p(2) p(3) 0 0 0 0]⊤. Moreover, p(1) is kept fixed to p(1) = 25
N/(ms), which enables integral action at least for t ∈ [0, ts) to escape a potential
initial stick phase. The parameters p(2) and p(3) are tunable, and affect the error
response of the closed-loop system, as illustrated next.

We illustrate the potential performance benefits of the controller by consid-
ering two cases with different friction characteristics, i.e., 1) Fc = Fs/2, η = 20,
γ = 0, and, 2) Fc = Fs/3, η = 60, γ = 1. Consider Fig. 5.3, where, for each
column, the top subplot depicts the friction characteristic, the middle subplot
depicts four different position error evolutions, and the bottom subplot depicts
the four corresponding designs for the time-varying integrator gain ki(t). For
both friction cases, the error response with a classical PID controller (i.e., with
a fixed integrator gain ki = 25 N/(ms) and depicted by ( )), leads to significant
overshoot, and eventually limit cycling (the latter explicitly visible for case 2,
see also Fig. 5.2 for such limit-cycling effect). We now perform three different
simulations for both cases by selecting different pairs of values for the parame-
ters p(2) and p(3), which yield different error responses. The first simulation in
friction case 1 ( ) results in significant overshoot, and the second simulation in
friction case 1 ( ) in undershoot. The optimal choice for p(2) and p(3) instead
results in zero error in friction case 1, see the third simulation ( ). The friction
characteristic in case 2 has a more severe Stribeck effect compared to the charac-
teristic in case 1 (see the top subplot), whereby the optimal settings for p(2) and
p(3) become negative, but zero steady-state error is still achieved, see ( ) in the
second and lower subplot. The proposed time-varying PID controller is hence
capable of achieving optimal positioning performance, despite the presence of
friction, by proper tuning of the parameters in v.

Since the friction characteristic Φ in (5.2) is generally unknown, uncertain,
and can change (slowly) in time, the optimal design for the tunable parameters in
v is challenging, or even impossible using a model-based approach only. There-
fore, we propose a data-based extremum-seeking-based (learning) algorithm in
the next section, to learn the optimal ki(t) by adaptive tuning of the parameter
vector p, on the basis of measured error responses.



166 Chapter 5. Sampled-data extremum seeking and repetitive positioning

fr
ic
ti
o
n
fo
rc
e
F
f
[N

]
er
ro
r
e
[m

]
k
i
(t
)
[N

/
(m

s)
]

case 1 case 2

velocity x2 [m/s]velocity x2 [m/s]

time t [s]time t [s]

time t [s]time t [s]

0

0

0

0

0

0

0

0

0

0

0

0

0.50.5

0.50.5

0.50.5

11

11

11

-0.5-0.5
-1-1

0.10.1

-0.1-0.1

-10-10

1010

2020

3030

1.51.5

1.51.5

Figure 5.3: Simulation results, where each column presents from top to bottom
the friction characteristic, error response, and time-varying integrator gain for
case 1 and 2, respectively. The different error responses in the middle subplots
correspond to simulations with different realizations of the time-varying integra-
tor gain as in the lower subplots, and the classical PID responses with constant
ki are indicated by ( ).

5.4 Sampled-data extremum-seeking for iterative learning in

repetitive setpoint positioning

In this section, we propose a sampled-data extremum seeking strategy, akin to
iterative learning control and extensively treated in Chapter 4, to optimize the
time-varying integrator gain design presented in Section 5.3 to achieve high-
accuracy setpoint positioning. Specifically, given the cost function in (5.6)
and (linear spline) basis function parametrization of the time-varying integra-
tor gain in (5.9), we can formulate the finite horizon optimization problem
as a model-free sampled-data extremum seeking problem (see, e.g., Teel and
Popović (2001), Khong et al. (2013b), and Khong et al. (2016)). Namely,
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sampled-data extremum-seeking algorithm

Basis
function

(5.9),(5.11)

Frictional system
with PI(t)D control
(5.1),(5.2),(5.8),(5.12)

Cost
function
(5.6)

Sampler
yi = y(iT )

Estimation +
optimization
algorithm Σ

ZOH
u(t) = ūi

t ∈ [iT, (i+ 1)T )

ki e y

yi
ūi−1

u

Figure 5.4: The sampled-data extremum-seeking framework based on sampled-
data control law with periodic sampling time T , and sampler and zero-order
hold elements.

consider the cascade connection of the PID-controlled motion system given
by (5.1), (5.2), (5.8), (5.9), (5.11), (5.12), and the cost function J in (5.6).
In addition, we consider the to-be-designed parameter vector to be decomposed
as follows: p = p0 + Cu, where p0 ∈ R

np is a user-defined parameter vector,
C ∈ Rnp×nu is a user-defined selection matrix, and u ∈ Rnu is the vector of
to-be-optimized parameters by the extremum-seeking algorithm. This cascade
connection yields the following unknown static input-output map Q : Rnu → R

for the cascaded system (5.1), (5.2), (5.8), (5.9), (5.11), (5.12), and (5.6):

Q(u) :=

∫ T

0

|w(t)e(t)|2dt, (5.14)

where the weighting function w(t) is defined in (5.7). It must be noted that pe-
riodic re-initialization of the states to fixed values, in combination with Proposi-
tion 5.7, is needed for extremum seeking control to be applicable in an iterative
learning context, i.e., x(iT ) = x0 for all i = 1, 2, . . .. Only under these condi-
tions (re-initialization and uniqueness provided by Proposition 5.7), Q in (5.14)
is uniquely defined, see also Remark 5.10 below. In addition, the fact that solu-
tions to the closed-loop system remain bounded by Proposition 5.7 guarantees
that Q(u) is bounded.

Based solely on output measurements, which we use to compute Q in (5.14),
extremum-seeking control is exploited to adaptively find parameters u that
minimize Q. Here we focus on a periodically sampled-data extremum-seeking
framework, similar as exploited in Chapter 4. Fig. 5.4 schematically depicts
the sampled-data extremum-seeking framework, i.e., the interconnection of the
PID-based controlled frictional motion system with a basis function parametriza-
tion (5.1), (5.2), (5.8), (5.9), (5.11), (5.12), and the cost function J in (5.6)
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implemented as follows:

y(t) := J(e(t)) =

∫ t

t−T

|w(s)e(s)|2ds, (5.15)

where e(s) = 0 for s ∈ [−T, 0), and with the weighting function implemented as
follows:

w(t) :=

{

w1 if mod(t, T ) ∈ [0, TB)
w2 if mod(t, T ) ∈ [TB, T ]

, (5.16)

with a T -periodic sampler, an optimization algorithm Σ, and a zero-order hold
(ZOH) element. Next, we describe an extremum-seeking algorithm performing
nv experiments to realize one update of the system input u, similar to Algo-
rithm 4.10 in Chapter 4. Different from Algorithm 4.10 in Chapter 4 is how the
sampling period T of the sampled-data extremum-seeking algorithm, i.e., the
waiting time T , is utilized. Namely, in the iterative learning context, by choos-
ing the waiting time T conform the period time of the repetitive motion profile
and satisfaction of the re-initialization condition, the output y(t), as determined
by (5.15), and sampled on the sampling instances y(iT ) for i = 1, 2, ..., coincide
with the static input-output map in (5.14).

Algorithm 5.8. Suppose that the waiting time T , the number of experiments nv
to realize one iteration of the optimization algorithm, and the initial algorithm
state u0 are specified. Let us define the ideal periodic sampling operation xi :=
x(iT ):

yi := y(iT ) ∀ i = 0, 1, ..., (5.17)

where yi is the collected measurement as used by the optimization algorithm, and
where i ∈ N denotes the sampling index. We assume re-initialization of the states
to fixed values, i.e., x(iT ) = x0 for all i = 1, 2, .... Define the zero-order-hold
(ZOH) operation as follows:

u(t) := ūi ∀ t ∈ [iT, (i+ 1)T ), (5.18)

with sampling index i = 0, 1, ...,, waiting time T > 0, and step input parameter
ūi. For sampling index i, the step input parameter ūi is determined by the state
of the optimization algorithm uk as follows:

ūi := uk + vj(i)(uk), ∀ i = 0, 1, ..., (5.19)

with k ∈ N the optimization algorithm index, u0 the initial algorithm state, and
dither functions vj(i) with j(i) := (i mod nv) + 1.

The optimization algorithm index k is related to the sampling index i and

number of experiments nv through k =
⌊

i
nv

⌋

. The optimization algorithm is

characterized by the mapping F given in (4.11), which exploits the collected
measurements yi and zi:

uk+1 ∈ F (uk, Y (uk)), ∀ k = 0, 1, ..., (5.20)
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with function Ỹ (uk) defined as follows:

Y (uk) :=







yknv+1

...
y(k+1)nv






=







Q(ūknv
)

...
Q(ū(k+1)nv−1)






, (5.21)

which is a collection of the objective function Q in (5.14) in terms of T -
periodically sampled outputs in (5.15).

Remark 5.9. In most (sampled-data) extremum-seeking literature, Q reflects
the steady-state behavior of the dynamical system. In those cases, the sampling
period T , or so-called waiting time T , needs to be chosen sufficiently large by
the user such that the closed-loop extremum-seeking scheme is robust against
inexact measurements of the cost Q due to the transient behavior of the system,
see, e.g., Teel and Popović (2001), Khong et al. (2013b), and Kvaternik and
Pavel (2011). Here, Q in (5.14) actually incorporates the transient behavior of
the system, which ultimately determines positioning accuracy. As such, the role
of the waiting time T is different here, and is conveniently chosen equal to the
period time T of the repetitive motion profile.

Remark 5.10. A common requirement in the extremum-seeking literature is that
the input-output mapping Q is independent of initial conditions. Here, the tran-
sient behavior is partly determined by the initial conditions, and re-initialization
after each setpoint operation is theoretically required for an input-output map-
ping Q as in (5.14) to be uniquely defined. Re-initialization for transient perfor-
mance optimization is also a well-known and commonly accepted requirement in
the iterative learning control literature, see, e.g., Norrlöf and Gunnarsson (2002)
and Bristow et al. (2006).

In Algorithm 5.8, we consider optimization algorithms that can be described
by a difference inclusion, similar to the class of algorithms in Chapter 4 and Teel
and Popović (2001) for which its convergence properties are encapsulated by
Lyapunov function. In the periodic sampled-data extremum seeking framework
in Khong et al. (2013b), other sampling-based algorithms from the optimization
literature can be employed as well to achieve (a weaker type of) convergence to
the extremum of Q. In particular, the so-called DIRECT and Shubert algorithms
(see Jones et al. (1993) and Shubert (1972), respectively) can be employed to
find the global extremum of Q, which are not described by a difference inclusion.
Nevertheless, if finding a local optima suffices or if Q possesses only a single
(global) extremum, gradient-based optimization methods such as the classical
gradient descent or Newton method can be used (see, e.g., Boyd and Vanden-
berghe (2004)). In Section 5.6, we employ such a gradient-based optimization
algorithm for F within Algorithm 5.8, to optimally tune the time-varying in-
tegrator gain to achieve high-accuracy repetitive positioning of an industrial
nano-positioning stage.
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5.5 Implementation summary

In this section, a brief summary of the design procedure for achieving high-
accuracy repetitive setpoint positioning of frictional motion systems is provided.
We would like to emphasize that, in this chapter, we have mainly focussed on
frictional motion systems, stabilized by a linear PID feedback controller, that
suffer from the Stribeck effect. However, the following design procedure can also
prove useful to improve transient behavior of motion control systems performing
repetitive positioning tasks in the absence of (severe) frictional effects, and by
iteratively adapting (other) performance relevant tunable parameters.

A priori, we assume that a (stabilizing) linear PID controller has been de-
signed for the (unknown) frictional motion system at hand is, and its settings are
assumed to be known. Typically, such a linear PID controller has been designed
on the basis of measured frequency response functions which do not take into
account the Stribeck effect. The (Stribeck) friction characteristic at hand is con-
sidered to be unknown. The system is required to perform a known T -repetitive
motion with a desired (step) reference from the initial position 0 to position r.
Moreover, the standstill time instance TB and the period time T are provided,
which define the transient time window [0, TB) during which the system is al-
lowed to move from 0 to r, and the standstill time window [TB, T ], during which
standstill at r is required. To achieve high-accuracy setpoint positioning in this
motion setting, the following design procedure can be employed:

1) Design a cost function (see, e.g., (5.6) and implemented through (5.15))
that captures the desired performance, and define appropriate weights or
penalties w1 and w2, associated with the transient time window [0, TB),
and the standstill time window [TB, T ], respectively.

2) Replace the linear PID feedback controller in (5.3) by the time-varying
PID feedback controller in (5.8) with switching function ς(t) in (5.12):

a) use the same values for the parameters kp and kd.

b) Parameterize the time-varying integrator gain ki(t) by a set of basis
functions, see (5.9), and choose the type of basis functions, see, e.g.,
Examples 5.4 or 5.5.

c) Given the choice of basis functions, choose the number of basis func-
tions b. This determines the size of the to-be-designed parameter
vector p ∈ Rnp , with np the number of elements. A large amount
of basis functions allows a more flexible design for ki(t), however it
requires more parameters to be tuned later on. This may yield a more
complex objective function with many local minima which is not de-
sired when using gradient-based optimization methods. Moreover,
visualization of the objective function becomes increasingly difficult
or impossible with nu3, and more parameters to-be-designed typically
leads to slower convergence which can be undesired.
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3) Decompose the to-be-designed parameter vector p as p = p0 + Cu:

a) design the initial parameter vector p0 ∈ Rnp , having np components.
A good choice for the first element of p0 would be to use the value
for ki used in the linear case. A value of 0 for the elements that
correspond to the standstill time window is a good choice as well.

b) select the specific parameters to-be-optimized through the user-
defined selection matrix C ∈ Rnp×nu , with nu the amount of parame-
ters to-be-optimized, and u the vector of to-be-optimized parameters
by the extremum-seeking algorithm.

4) Implement the extremum-seeking controller, i.e., a ZOH element in (5.18),
a periodic sampler in (5.17), and an extremum-seeking algorithm to opti-
mize the input vector u. The extremum-seeking algorithm can be of the
gradient-descent type.

In the next section, this design procedure has been employed to demonstrate
the working principle and the effectiveness of the proposed PID-based learning
controller on an industrial nano-positioning stage.

5.6 Industrial case study: PID-based learning control for high-

accuracy positioning of an industrial motion stage system

In this section, we demonstrate the working principle and the effectiveness of the
proposed PID-based learning controller on an industrial nano-positioning stage.
The considered stage represents a sample manipulation stage of an electron
microscope, exhibiting significant and unknown frictional effects.

5.6.1 Motion stage system description

The experimental setup is presented in Fig. 5.5. The setup consists of a Maxon
RE25 DC servo motor 1© connected to a spindle 2© via a coupling 3© that is stiff
in the rotational direction while being flexible in the translational direction. The
spindle drives a nut 4©, transforming the rotary motion of the spindle to a trans-
lational motion of the attached carriage 5©, with a ratio of 7.96 · 10−5 m/rad. A
coiled spring 8© connects the carriage to the fixed world to eliminate any back-
lash between the spindle and the nut. The position of the carriage is measured
by a linear Renishaw encoder 6© with a resolution of 1 nm (and peak noise level
of 4 nm).

For frequencies up to 200 Hz, the system dynamics can be well described
by the model in (5.2). The mass m = 172.6 kg consists of the transformed
(rotational) inertia of the motor and the spindle (with an equivalent mass of
171 kg), and of the mass of the carriage (1.6 kg).
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Figure 5.5: Industrial nano-positioning motion stage set-up: 1© Maxon RE25
DC servo motor, 2© spindle, 3© coupling, 4© nut, 5© carriage, 6© linear Renishaw
encoder, 7© bearings, 8© coiled spring.

The friction characteristic for Φ in (5.2) is dominated by the bearings sup-
porting the motor axis and the spindle (see 7© in Fig. 5.5), and by the contact
between the spindle and the nut 4©. The latter contact is lubricated, which
induces a Stribeck effect. Since the system is rigid and behaves as a single mass
for frequencies up to 200 Hz, these friction forces can be summed up to provide
a single net friction characteristic as Φ in (5.2).

Remark 5.11. The experimental setup is the same as the setup in (Beerens
et al., 2019, Sec. 5), where dominantly Coulomb and viscous friction was present.
For the experimental study in this chapter, a different carriage position and
spindle orientation, and different lubrication conditions result in a significant
Stribeck effect instead, as illustrated in Fig. 5.2 and the experimental results
below.

According to standard operation of the nano-positioning stage in an electron
microscope, we can only use a higher-order reference trajectory. Therefore, the
step reference r = 1 mm is mimicked by a fast third-order reference trajectory.
We require the carriage to be in standstill at r = 1 mm at TB = 1.5 s, and the
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setpoint operation ends at T = 3 s. After each setpoint operation, the system
is re-initialized to its starting position x1 = 0 mm using an internal homing
procedure.

5.6.2 Controller settings and ESC-based optimal tuning

The design of the PID-based controller with time-varying integrator gain used
in the experiments is discussed in Section 5.3. First, the PID-controller gains
are tuned using linear loop-shaping techniques (Franklin et al., 2001), result-
ing in kp = 107 N/m, and kd = 2 · 103 Ns/m. The time-varying integra-
tor gain is parameterized by (5.9) with b = 6 linear spline basis functions
as in Example 5.5, from which follows that ts = T

b
= 0.5 seconds. We se-

lect 2 parameters to-be-optimized. The parameter vector p = p0 + Cu, with
initial parameter vector p0 = [1 · 108 0 0 0 0 0 0]⊤, and a selection matrix

C =

[

0 1 0 0 0 0 0
0 0 1 0 0 0 0

]⊤

. The first element of vector p0 is equal to

the constant integrator gain of a classical PID controller, as obtained by the
loop-shaping procedure (Fig. 5.2 shows the measured responses with these set-
tings). The vector u ∈ R2×1 will be determined by Algorithm 5.8, and the
performance of the control system in the sense of (5.14) depends on the value of
these parameters.

For the current case study, we focus on setpoint accuracy rather than tran-
sient performance. Therefore, we define the system’s performance by the objec-
tive function Q in (5.14) and implemented by (5.15), where we have taken w1 = 0
and w2 = 1 · 108 in (5.16). Moreover, we augment Q with a logarithmic barrier
function in order to restrict the values of the parameter values found by the
extremum-seeking controller, such that ki(t) remains bounded for all t ∈ [0, T ].
In particular, ki(t) then satisfies ki ≥ ki(t) ≤ ki, with ki = −0.2 · 108, and
ki = 1.2 · 108. The augmented objective function is then given by

Q̃(u, µ) := Q(u) + µB(u), (5.22)

with Q(u, µ) as in (5.14), µ = 1 ·10−4 the barrier parameter, and the logarithmic
barrier function B given by

B(u) := −
4
∑

i=1

log(−Gi(u)), (5.23)

with G1(u) = u(1)− ki, G2(u) = ki − u(1), G3(u) = u(2)− ki, G4(u) = ki − u(2).

Remark 5.12. Different from the discussion on constrained optimization in
Chapter 4, in this case study the constraints on the inputs are explicitly known,
while in Chapter 4 explicit constraints on inputs are considered unknown and we
can only measure the constraint outputs. Nevertheless, we can use the barrier
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function approach in a similar way as done in Chapter 4, and consider the
functions G1(u), ..., G4(u) as the ’measurable’ constraint functions.

To minimize Q̃, we employ Algorithm 5.8 with the following gradient descent
algorithm for F :

F (u, Y (u)) := u+ λ∇Q̃(u, µ), (5.24)

with so-called optimizer gain λ, and where ∇Q̃(u, µ) denotes the gradient of
the modified objective function Q̃(u, µ). The gradient is estimated based on the
function Y (u), containing the collected output measurements taken after each
repetition, and through a finite difference computation as follows:

∇Q̃(u, µ) :=
1

τ

[

1 −1 0
1 0 −1

]

Y (u), (5.25)

with

Y (uk) :=







Q̃(ūknv
, µ)

...
Q(ū(k+1)nv−1, µ)






, (5.26)

and with so-called step size τ . To facilitate the estimation of the gradient through
measurements, the dither functions are chosen as follows: v⊤1 := [0 0], v⊤2 :=
[τ 0], and v⊤3 := [0 τ ]. We use the following numerical values; step size τ =
0.25 · 107, and gain λ = 2 · 1016, unless stated otherwise.

5.6.3 Experimental results

Identifying the objective function

The dependence of the achievable setpoint accuracy, captured by the perfor-
mance metric Q̃ in (5.22) to be minimized, on the vector u is depicted by means
of an measured input-output mapping Q̃ in Fig. 5.6. We use this mapping to
verify the time-domain results presented later on. Two regions are observed
where Q̃ is small, indicating integrator gain settings that can lead to a high
setpoint accuracy. Such a static input-output mapping, however, is in general
time-consuming to obtain, can vary (slowly) over time, and can vary from ma-
chine to machine. Hence, such an offline, brute-force approach to determine
performance-optimal settings is not feasible in practice. Therefore, the optimal
parameter settings are iteratively obtained by the online ESC algorithm, solely
based on real-time output measurements.

Time-domain results obtained by extremum seeking

Consider Fig. 5.7, which shows the measured augmented performance cost Q̃(uk)
as in (5.22) and the corresponding vector of parameters uk as determined by the
extremum-seeking controller, as a function of the controller updates, starting
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Figure 5.6: Experimentally obtained input-output mapping Q̃(u, µ), which
shows two regions where Q̃(u, µ) is small, indicating integrator gain settings
that yield accurate setpoint positioning.

with initial parameter vector u0 = [0.85, 0.175]⊤ ·108. Moreover, Fig. 5.8 depicts
the setpoint error e(t), the corresponding time-varying integrator gain design
ki(t), and the resulting control force uc for four different controller updates
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Figure 5.7: Experimental results of the PID-based learning controller applied
to the industrial nano-positioning motion stage, illustrating the minimization of
the augmented performance cost Q̃ (bottom) and the corresponding parameter
vector uk (top) (’×’ and ’◦’ denote the first and second parameter of the vector
uk, respectively), as a function of the controller updates. Fig. 5.8 depict the
setpoint error, and the corresponding time-varying integrator gain ki(t), and
control force uc, corresponding to the initial parameter setting u0 = [0.85 0.175]⊤

( ), the 2nd ( ), 4th ( ), and 7th ( ) extremum seeking controller update.

(final and three intermediate). Additionally, Table 5.1 shows the root-mean-
square (rms) value of the setpoint error during the standstill window t ∈ [TB, T ]
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Figure 5.8: Experimental results of the PID-based learning controller applied to
the industrial nano-positioning motion stage, illustrating the optimization of the
setpoint error (for t > 1.5) by adaptation of ki(t). The error and corresponding
ki(t) and uc are shown after the initial parameter setting u0 = [0.85, 0.175]⊤ ·108
( ), the 2nd ( ), 4th ( ), and 7th ( ) extremum seeking controller update.
The achieved accuracy for t > 1.5 after the 7th update is about 5 nm.

for all controller updates, and is computed as follows:

erms :=

√

√

√

√

√

1

T − TB

T
∫

TB

|e(t)|2dt. (5.27)
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Table 5.1: The root-mean-square (rms) values of the setpoint error during the
standstill window t ∈ [TB, T ] for all controller updates in the case of initial
parameter setting u0 = [0.85, 0.175]⊤ · 108 (left) and u0 = [0.9, 0.4]⊤ · 108
(right).

updates rms value [nm]

0 6.42 · 102
1 4.23 · 102
2 2.93 · 102
3 66.3
4 20.5
5 7.75
6 7.49
7 7.50

updates rms value [nm]

0 4.39 · 102
1 2.85 · 102
2 2.52 · 102
3 1.93 · 102
4 1.29 · 102
5 65.0
6 41.9
7 27.0
8 21.2

It can be observed that limit cycling is indeed prevented since ki(t) = 0 for all
t ∈ [TB, T ], and we only observe one interval of stick (during the standstill time
window, as desired). Moreover, the extremum-seeking controller iteratively finds
controller parameters uk that result in a relatively small time-varying integrator
gain design ki(t) on t ∈ [0, 1.5), yielding a position error in the range of 4 − 6
nm, depicted by ( ). In contrast, the classical PID controller for this partic-
ular measurement yields an absolute error of about 100 nm on the same time
interval (see Fig. 5.2), and does not provide robustness during the standstill time
window. This clearly illustrates the performance benefits of the proposed PID-
based learning controller in terms of the ability to cope with Stribeck friction
and achieving superior setpoint positioning accuracy. The parameter evolution
of this experiment is visualized by ( ) in the input-output mapping in Fig. 5.11.

Another interesting optimization experiment and resulting time-domain re-
sponse is depicted in Fig. 5.9, which shows the measured augmented performance
cost Q̃(uk) as in (5.22) and the corresponding vector of parameters uk as de-
termined by the extremum-seeking controller, as a function of the controller
updates, starting with initial parameter vector u0 = [0.9, 0.4]⊤ · 108. More-
over, Fig. 5.10 depicts the setpoint error e(t), the corresponding time-varying
integrator gain design ki(t), and the resulting control force uc for four different
controller updates (final and three intermediate). Additionally, Table 5.1 shows
the root-mean-square (rms) value of the setpoint error during the standstill win-
dow t ∈ [TB, T ] for all controller updates. Again, the parameter evolution of
this experiment is visualized by ( ) in the input-output mapping in Fig. 5.11.
The parameters now converge towards the local minimum in the upper right
corner of the input-output mapping in Fig. 5.11. The existence of this partic-
ular (local) minimum can be explained by considering the upper two subplots
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Figure 5.9: Experimental results of the PID-based learning controller applied
to the industrial nano-positioning motion stage, illustrating the minimization of
the augmented performance cost Q̃ (bottom) and the corresponding parameter
vector uk (top) (’×’ and ’◦’ denote the first and second parameter of the vector
uk, respectively), as a function of the controller updates. Fig. 5.8 depict the
setpoint error, and the corresponding time-varying integrator gain ki(t), and
control force uc, corresponding to the initial parameter setting u0 = [0.9 0.4]⊤

( ), the 2nd ( ), 4th ( ), and 7th ( ) extremum seeking controller update.

of Fig. 5.10, depicting the position error and time-varying integrator gain de-
sign ki(t), respectively. Due to the relatively large time-varying integrator gain
ki(t) for t ∈ [0, 1.5) obtained by the extremum-seeking controller and depicted
by ( ), the associated integral action during the transient results in significant
overshoot of the setpoint. The significant overshoot can be attributed to the
weight w1 = 0, chosen during the transient time window, which implies that
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Figure 5.10: Experimental results of the PID-based learning controller applied to
the industrial nano-positioning motion stage, illustrating the optimization of the
setpoint error (for t > 1.5) by adaptation of ki(t). The error and corresponding
ki(t) and uc are shown after the initial parameter setting u0 = [0.9, 0.4]⊤ · 108
( ), the 2nd ( ), 4th ( ), and 7th ( ) extremum seeking controller update.
The achieved accuracy for t > 1.5 after the 7th update is about 25 nm.

large transients are not penalized. The system then arrives in a stick phase,
where control force is built up by the integrator action. Eventually the system
slips and, due to the Stribeck effect in combination with the particular decreasing
integrator gain, the system arrives in a stick phase again close to the setpoint,
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Figure 5.11: Input-output mapping Q̃(u). The figure shows the convergence to
optimal integrator gain settings starting from two different initial conditions u0,
namely u0 = [0.85 0.175]⊤ · 108 ( ) and u0 = [0.9 0.4]⊤ · 108 ( ). The starting
point of both trajectories is denoted by the solid dot.

yielding a position error in the range of 25 nm.

Fig. 5.12 shows the time-domain results after the final extremum seeking con-
troller update for both cases, illustrating the achieved position error. Moreover,
for comparison, Fig. 5.12 contains the experimental results of the linear PID
feedback controller as well, which shows a significant setpoint error of 100 nm
at t = 3 seconds. From the zoom plots in Fig. 5.12 it follows that the system is
not completely at rest during t ∈ [1.5, 3]. This can be attributed to other micro-
scopic frictional effects that play a role, which are not treated here as they are
beyond the scope of this chapter. Nevertheless, the experimental results show
that the proposed time-varying PID controller results in superior positioning
accuracy (compared to classical PID control), and that the extremum-seeking
controller successfully finds the optimal tuning of the time-varying integrator
gain, regardless of the initial values of u, for the unknown frictional situation at
hand.
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5.7 Conclusions

We have presented a novel time-varying integrator gain design for motion systems
with unknown Coulomb and velocity-dependent friction (including the Stribeck
effect), performing a repetitive motion profile. The proposed controller is capa-
ble of achieving a high positioning accuracy, in contrast to classical PID control,
which often leads to limit cycling, i.e., loss of setpoint stability. The time-varying
integrator gain is parameterized by linear basis functions, resulting in a continu-
ous control signal. The specific tuning of the time-varying integrator gain, that
results in a high setpoint accuracy in the presence of unknown friction, is it-
eratively obtained by employing a sampled-data extremum-seeking framework.
The performance benefits of the proposed control architecture are experimentally
demonstrated on a nano-positioning stage in an electron microscope, illustrating
its superior performance over classical PID control.
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Figure 5.12: Experimental results of the PID-based learning controller applied to
the industrial nano-positioning motion stage. The figure illustrates the resulting
setpoint errors e(t) and corresponding ki(t) and uc(t) after the final extremum
seeking controller update, for 2 different experiments and depicted by ( ) and
( ). The experimental results for a fixed integrator gain are depicted by ( ).
The initial parameter settings u0 and the corresponding trajectories are depicted
in Fig 5.11 by the corresponding colored plots ( ) and ( ).

5.A Proof of Proposition 5.7

Without loss of generality, consider r = 0 (which implies e = −x1 in (5.8)), and
we consider the intervals [0, TB) and [TB, T ] separately.
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By design, we have ς = 1 on the interval [0, TB). Then, with state vec-
tor x := [x1, x2, x3]

⊤, for all t ∈ [0, TB), we rewrite the closed-loop sys-
tem (5.1), (5.2), (5.8) as

ẋ ∈ A(t)x − e2(FsSign(x2)− f(x2)) (5.28)

with

A(t) =





0 1 0
−kp −kd − γ −ki(t)
1 0 0



 , e2 =





0
1
0



 . (5.29)

Define fL(x2) := Lx2−f(x2), which satisfies fL(x2,a) ≤ fL(x2,b) for each x2,a <
x2,b and L > 0 by Assumption 5.1(iii), i.e., fL(x2) is nondecreasing. Next, define
ΦL(x2) := FsSign(x2) + fL(x2), and rewrite (5.28) as

ẋ ∈





0 1 0
−kp L− kd − γ ki(t)
−1 0 0



x− e2ΦL(x2)

=: AL(t)x− e2ΦL(x2).

(5.30)

Existence of solutions1 to (5.30) follows from Filippov (1988, Sec. 7, Thm. 1)
because the set-valued mapping in (5.30) is outer semicontinuous and locally
bounded with nonempty compact convex values. Consider then two solutions
xa and xb to (5.30) with xa(0) = xb(0), and define δ := xa − xb. For almost all
t ∈ [0, TB),

δ̇ ∈ AL(t)δ − e2(ΦL(x2,a)− ΦL(x2,b)).

Since ki(t) is bounded by design, there exists M1 > 0 such that |A(t)| ≤M1 for
all t ∈ [0, TB), with |A(t)| the (induced) 2-norm of matrix A(t). Then, we have

1

2

d

dt
|δ|2 ∈ δ⊤AL(t)δ + δ⊤2 (ΦL(x2,b)− ΦL(x2,a))

≤M1|δ|2 + max
fb∈ΦL(x2,a(t)−δ2(t))

fa∈ΦL(x2,a(t))

δ2(fb − fa)

=:M1|δ|2 +N(t).

(5.31)

Whether x2,a(t) and x2,a(t)− δ2(t) are positive, zero, or negative, inspection of
all cases reveals that N(t) ≤ 0 for all t ∈ [0, TB) because fL is nondecreasing,
which implies that ΦL is nondecreasing. As a result, (5.31) satisfies

1

2

d

dt
|δ|2 ≤M1|δ(t)|2, (5.32)

1A solution to (5.30) is any locally absolutely continuous function x that satisfies (5.28) for
almost all t ∈ [0, TB).
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for almost all t ∈ [0, TB). Then, δ(0) = 0 implies δ(t) = 0 for all t ∈ [0, TB) by
standard comparison theorems (e.g., Khalil (2002, Lemma 3.4)).

On [TB, T ], we have ẋ3 = ςx1 = 0 because, by design, the switching function
ς = 0 on the considered interval, so that x3(t) = x3(TB) for all t ∈ [TB, T ].
Moreover, ki(t) = 0 for t ∈ [TB, T ]. With

ẋ ∈





0 1 0
−kp L− kd − γ 0
0 0 0



x− e2ΦL(x2)

=: AL2
(t)x− e2ΦL(x2).

(5.33)

we obtain analogously to the previous case

1

2

d

dt
|δ|2 ≤M2|δ(t)|2, (5.34)

for almost all t ∈ [TB, T ], with M2 := λ(AL2
) the largest singular value of

AL2
. Using absolute continuity of solutions, and the fact that δ(t) = 0 for all

t ∈ [0, TB) (as established above), we have that δ(TB) = 0, and (5.34) implies
that δ(t) = 0 for all t ∈ [TB, T ]. Uniqueness of solutions on [0, T ] is then proven.

We now turn to proving that solutions to the closed-loop system remain
bounded on [0, T ]. Let xa be a generic solution to the closed-loop system, with
xa(0) ∈ K1B̄ and K1 ≥ 0, and take xb(0) = (0, 0, 0), so that xb(t) = 0 for all
t ∈ [0, T ], and δ(0) ∈ K1B̄. The solutions xa and xb satisfy (5.32) and (5.34)
on [0, TB) and [TB, T ], respectively. In both inequalities, the right-hand side
is bounded for all t in its domain, which excludes finite escape times for δ on
[0, T ]. Hence, there exists K2 > 0 such that δ(t) ∈ K2B̄ for all t ∈ [0, T ]. Since
xb(t) = 0 for all t ∈ [0, T ], we have xa(t) ∈ K2B̄ for all t ∈ [0, T ], which completes
the proof.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Achieving top-level system performance by means of automatic control in the
high-tech industry is still largely realized by skillful control engineers on the basis
of accurate system models and expert knowledge. However, the increasing com-
plexity in terms of uncertainty, non-stationary nature of system dynamic prop-
erties and disturbances, and mode-of-use dependent performance specifications
in current high-tech systems and future engineering developments will progres-
sively challenge the sole usage of purely model-based approaches in achieving
optimal system performance. To account for changing, uncertain, or unknown
dynamics and disturbance characteristics, and to enable the satisfaction of in-
creasing accuracy and robustness demands, a lot can be gained by combining or
supporting model-based control engineering in future complex high-tech systems
with data-based, automated and adaptive performance optimization techniques.

In this dissertation, data-based automated performance optimization of high-
tech systems is addressed by an adaptive control technique known as extremum-
seeking control. For data-based performance optimization in the context of high-
tech systems, the state-of-practice extremum-seeking control methods face a
number of challenges. To this end, the following objectives have been addressed
in this dissertation.

Objective 1. Develop an extremum-seeking control method for the data-based
optimization of time-varying steady-state responses of general nonlinear systems,
which is applicable for the optimization of time-varying behavior in industrial
high-tech systems.

Objective 2. Develop a sampled-data extremum-seeking control framework for
data-based constrained optimization of nonlinear dynamical systems, in which
information on system performance and constraints on system inputs is solely
obtainable through output measurements.

Objective 3. Develop a sampled-data extremum-seeking control method for op-
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timization of transient system behavior, inspired by and applicable to optimiza-
tion of time-varying, repetitive tasks in high-tech positioning systems.

Objective 4. Implementation and validation of the developed extremum-seeking
control methods in industrially-relevant case studies.

The five main contributions of this dissertation are directly related to the
four objectives mentioned above. In particular, the following two contributions
are devoted to addressing Objective 1.

• Chapter 2 presents a novel extremum-seeking control approach for op-
timization of generically time-varying steady-state behavior of nonlinear
dynamical systems. This chapter provides an extension of the class of
extremum-seeking problems from those involving equilibria solutions or
periodic time-varying steady-state responses, to those involving systems
exhibiting generically time-varying steady-state responses. In particular,
generically time-varying disturbances and the resulting to-be-optimized
performance, characterized in terms of generically time-varying steady-
state system responses, are considered an integral part in the extremum-
seeking control problem formulation. The convergent systems property,
being the time-varying analogue of the common global exponential sta-
bility property for systems with equilibria solutions, has been essential
in this time-varying extremum-seeking context and the extremum-seeking
problem formulation. To facilitate the use of extremum seeking control in
this more generic and time-varying context, a user-defined, generic filter
structure, the so-called dynamic cost function, is introduced. By adopting
an observer-based extremum-seeking control strategy, semi-global practical
asymptotic stability of the closed-loop extremum-seeking control scheme
is proven in the presence of bounded and time-varying external distur-
bances. The neighborhood of convergence can be made arbitrarily small by
selecting sufficiently small values for tunable parameters for the extremum-
seeking controller and the dynamic cost function. The working principle
of the extremum-seeking control method is illustrated by means of the
real-time performance optimal tuning of a nonlinear control strategy for a
motion control application.

• Chapter 3 presents a novel extension of the observer-based extremum-
seeking control strategy as exploited in Chapter 2. In particular, the
extension involves the incorporation of explicit knowledge about the user-
defined dynamic cost function into the observer-based extremum-seeking
controller design, which facilitates enhance convergence speed of the re-
sulting extremum-seeking control scheme. On the basis of Chapter 2,
semi-global practical asymptotic stability of the closed-loop extremum-
seeking control scheme with the extended approach is proven in the pres-
ence of bounded and time-varying external disturbances. The effectiveness



6.1 Conclusions 191

of both the nominal extremum-seeking control design in Chapter 2 and the
extended design in Chapter 3 are evidenced experimentally by an applica-
tion to an industrial motion stage set-up which represents the short-stroke
motion of a wafer stage system commonly found within lithography sys-
tems.

The following contribution is devoted to addressing Objective 2.

• Chapter 4 presents a sampled-data extremum-seeking control framework
for the constrained optimization of a class of nonlinear dynamical sys-
tems. In particular, this chapter provides an extension of the sampled-
data extremum-seeking framework in Teel and Popović (2001) in two ways.
Namely, the proposed framework considers 1) a class of nonlinear, possibly
infinite-dimensional, dynamical systems for which the relations between
tunable system parameters and to-be-optimized objective function and
the constraint functions are unknown and available through measurement
only, and 2) a class of smooth and nonsmooth optimization algorithms
to facilitate extremum-seeking in the presence of unknown but measur-
able objective function and constraints functions, inspired by the use of
barrier function methods. Under the assumption that the system initial-
ization yields satisfactory operating conditions that satisfy the constraints
in steady-state, the resulting closed-loop dynamics is proven to be sta-
ble, steady-state constraint satisfaction is guaranteed for all iterations of
the optimization process, and constrained optimization is achieved. The
working principle of the proposed framework is illustrated by means of a
representative industrial case study of constrained optimization of extreme
ultraviolet light generation in a laser produced plasma source within a
state-of-the-art lithography system.

The following contribution is devoted to addressing Objective 3.

• Chapter 5 presents an iterative learning control strategy based on
extremum-seeking control for high-accuracy repetitive setpoint control of
frictional motion systems. In particular, a novel proportional-integral-
derivative-based controller with a time-varying integrator gain design is
proposed that facilitates improved time-domain behavior in terms of over-
shoot and setpoint accuracy over classical proportional-integral-derivative
control for repetitive motion in frictional motion systems with unknown
friction. On the basis of a suitable basis function parametrization, the op-
timal time-varying integrator gain design is obtained through an automatic
iterative controller tuning procedure based on a sampled-data extremum-
seeking algorithm, ensuring optimal setpoint positioning accuracy despite
the unknown friction characteristics and unknown disturbances. The ef-
fectiveness of the proposed approach is evidenced experimentally by appli-
cation to an industrial nano-positioning motion stage set-up of a high-end
electron microscope.
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The following contribution is devoted to addressing Objective 4.

• The working principle of the developed extremum-seeking method for op-
timization of time-varying steady-state system behavior in Chapter 2, and
described in Contribution 1, is illustrated in simulation by means of the
real-time performance optimal tuning of a nonlinear control strategy for a
motion control application. The effectiveness of the extremum-seeking con-
trol methods for optimization of time-varying steady-state system behavior
in Chapters 2 and 3, and described in Contributions 1 and 2, respectively,
are both evidenced experimentally in Chapter 3 by application to an in-
dustrial motion stage set-up which represents the short-stroke motion of
a wafer stage system commonly found within lithography systems. The
working principle of the proposed sampled-data extremum-seeking frame-
work for constrained optimization in Chapter 4, and described in Contri-
bution 3, is illustrated by means of a representative industrial case study of
constrained optimization of extreme ultraviolet light generation in a laser
produced plasma source system within a state-of-the-art lithography sys-
tem. The effectiveness of the proposed approach for transient performance
optimization in Chapter 5, and described in Contribution 4, is evidenced
experimentally by application to an industrial nano-positioning motion
stage set-up of a high-end electron microscope.

Summarizing, this dissertation presents novel extremum-seeking control meth-
ods that enable data-based performance optimization for a richer class of op-
timization problems, such as i) the data-based optimization of generic time-
varying system behavior, ii) data-based, constrained optimization on the basis of
measurable to-be-optimized objective function and constraint functions, and iii)
data-based, transient performance optimization for repetitive system operations
on fixed-time intervals. The developments in data-based optimization through
extremum-seeking control are inspired by a large variety of industrially relevant
optimization problems, and are experimentally and numerically demonstrated
to illustrate their value to industrial high-tech systems.

6.2 Recommendations for future research

In this section, recommendations for future research in extremum-seeking control
for data-based optimization of high-tech systems are provided.

• In most extremum-seeking control methods, perturbations are added to the
extremum-seeking control scheme such that, on the basis of these known
perturbations and the resulting (steady-state) output measurements, in-
formation can be obtained to optimize the performance of the system
(Krstić and Wang, 2000; Tan et al., 2006; Nešić et al., 2010; Teel and
Popović, 2001; Khong et al., 2013b). Supplying perturbations to the sys-
tem is not always desired, or necessary. For example, in the industrial
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case study discussed in Chapter 4 on the (constrained) optimization of ex-
treme ultraviolet (EUV) light generation in a laser-produced-plasma (LPP)
source within a next-generation lithography system, many (periodic) dis-
turbances affect the measurable laser-to-droplet position (which we have
not exploited in Chapter 4) and measurable EUV light intensity generated
by the LPP source. Instead of supplying a perturbation to the nominal
laser-to-droplet setpoint and correlating these perturbations with the re-
sulting EUV light intensity measurements, an interesting industrial case
study would be to exploit the measurable laser-to-droplet position with-
out additional perturbations to the laser-to-droplet setpoint (which is a
sufficiently rich signal due to many disturbances) in optimizing the EUV
light generation in the LPP source system using extremum-seeking control.
From an extremum-seeking control perspective, this case study may pro-
vide interest in self-driving extremum-seeking schemes such as in Carnevale
et al. (2009), Hunnekens et al. (2014), and Haring (2016, Chapter 4), or
perturbation-based extremum-seeking control without externally applied
perturbations.

• The sampled-data extremum-seeking framework for constrained optimiza-
tion presented in Chapter 4 is useful in industrial applications in which we
can monitor various signals, and use optimization methods that solely op-
erate in the admissible set of operating conditions, e.g., optimization algo-
rithms in combination with barrier function methods, to prevent damage to
the system during steady-state operation. However, in other cases in which
the requirement to operate strictly in the admissible set is not needed, other
constrained optimization methods can be explored, for example, sequential
quadratic programming (SQP) or other numerical constrained optimiza-
tion algorithms in the literature. Therefore, an interesting extension to
the framework presented in Chapter 4 can be to consider a class of con-
strained extremum-seeking algorithms in which we are allowed to sample in
the infeasible region and expand upon the sampled-data extremum-seeking
control framework in Khong et al. (2013b). Namely, their framework relies
on the notion of attractivity as opposed to asymptotic stability for the
extremum-seeking algorithms, which may allow to include a broader class
of constrained optimization problems.

• In Chapter 2, we have employed an observer-based extremum-seeking con-
trol method with a so-called dynamic cost function to optimize system
performance in the presence of time-varying system behavior. The pres-
ence of the dynamic cost function enables the use of extremum-seeking
control, however, in the case of small values of the tunable parameters
of the dynamic cost function to cope with time-varying system behavior,
a deterioration of the convergence speed due to the additional time-scale
can occur. In Chapter 3, we provided an extended approach in which we
embed linear-time invariant (LTI) structures for the dynamic cost function
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in the observer-based extremum-seeking controller to enhance convergence
speed of the resulting extremum-seeking control scheme. In cases where
accurate knowledge about the system is available, for example, accurate
models for linear motion systems, it would be interesting if these models
can be exploited in a similar fashion as the dynamic cost function, and
achieve even better convergence speed in those cases.

• Investigate combining contributions of Chapter 2 and Chapter 4, i.e., ex-
pand the class of nonlinear, possibly infinite-dimensional, systems in the
sampled-data extremum-seeking control context to a class which i) allows
for time-varying steady-state system behavior in the spirit of Chapter 2,
and ii) includes a dynamical cost function in its description to cope with
said time-varying steady-state system behavior.

• In Chapter 5, we have experimentally evidenced the effectiveness of em-
ploying a proportional-integral-derivative based controller with an iterative
learning mechanism based on a sampled-data extremum-seeking control
architecture to achieve high positioning accuracy for a frictional motion
system. However, depending on, e.g., the choice of the basis function
parametrization, the number of basis functions, and the friction character-
istic at hand, there exist multiple local minima of the resulting objective
function. In order for the extremum-seeking controller to arrive at the
global optimum, thereby achieving optimally tuning of the time-varying
integrator gain, global optimization methods can be explored instead, such
as the so-called DIRECT and Shubert algorithms (see Jones et al. (1993)
and Shubert (1972), respectively) for non-convex optimization problems as
studied in Khong et al. (2013a) and Nešić et al. (2013). Additionally, a dif-
ferent basis function parametrization for the time-varying integrator gain
design, as well as a different number of basis functions to-be optimized,
can be more suitable in terms of robustness and sensitivity against varying
friction characteristics, which has not been studied in detail. Finally, it
may be useful to study the robustness to variations in the re-initialization
of the system, which is theoretically required for iterative learning control
and can be a stringent condition in complex high-tech systems.
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Dinçmen, E., Güvenç, B. A., and Acarman, T. (2014). Extremum-seeking con-
trol of abs braking in road vehicles with lateral force improvement. IEEE
Transactions on Control Systems Technology, 22(1):230–237.
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Dürr, H.-B., Krstić, M., Scheinker, A., and Ebenbauer, C. (2017). Extremum
seeking for dynamic maps using Lie brackets and singular perturbations. Au-
tomatica, 83:91 – 99.
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Krstić, M. (2009). Hcci engine combustion-timing control: Optimizing gains
and fuel consumption via extremum seeking. IEEE Trans. Control Syst. Tech-
nol, 17(6):1350–1361.

Killingsworth, N. J. and Krstic, M. (2006). PID tuning using extremum seeking:
online, model-free performance optimization. IEEE Control Systems Maga-
zine, 26(1):70–79.
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Scheinker, A. and Krstić, M. (2013). Minimum-seeking for clfs: Universal
semiglobally stabilizing feedback under unknown control directions. IEEE
Trans. Autom. control, 58(5):1107–1122.

Scheinker, A. and Krstić, M. (2014). Extremum seeking with bounded update
rates. Systems & Control Letters, 63:25 – 31.

Scheinker, A. and Scheinker, D. (2016). Bounded extremum seeking with dis-
continuous dithers. Automatica, 69:250–257.

Seron, M., Braslavsky, J., and Goodwin, G. (1997). Fundamental limitations in
filtering and control. Springer-Verlag, London.

Shubert, B. (1972). A sequential method seeking the global maximum of a
function. SIAM Journal on Numerical Analysis, 9(3):379–388.

Srinivasan, B., Biegler, L., and Bonvin, D. (2008). Tracking the necessary con-
ditions of optimality with changing set of active constraints using a barrier-
penalty function. Computers & Chemical Engineering, 32(3):572 – 579.
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Teel, A. and Popović, D. (2001). Solving smooth and nonsmooth multivariable
extremum seeking problems by the methods of nonlinear programming. In
Proc. Am. Control Conf., volume 3, pages 2394–2399.

Teel, A.R. and Praly, L. (2000). A smooth lyapunov function from a class-
KL estimate involving two positive semidefinite functions. ESAIM: COCV,
5:313–367.

van de Wijdeven, J. and Bosgra, O. (2010). Using basis functions in iterative
learning control: analysis and design theory. International Journal of Control,
83(4):661–675.

van de Wouw, N. and Leine, R. I. (2012). Robust impulsive control of motion
systems with uncertain friction. International Journal of Robust and Nonlinear
Control, 22(4):369–397.

van de Wouw, N., Pastink, H., Heertjes, M., Pavlov, A., and Nijmeijer, H.
(2008). Performance of convergence-based variable-gain control of optical stor-
age drives. Automatica, 44(1):15 – 27.

van der Meulen, S., de Jager, B., Veldpaus, F., and Steinbuch, M. (2014). Com-
bining extremum seeking control and tracking control for high-performance
cvt operation. Control Engineering Practice, 29:86 – 102.

van der Meulen, S., de Jager, B., Veldpaus, F., van der Noll, E., van der Sluis, F.,
and Steinbuch, M. (2012). Improving continuously variable transmission effi-
ciency with extremum seeking control. IEEE Transactions on Control Systems
Technology, 20(5):1376–1383.

van der Meulen, S., Tousain, R., and Bosgra, O. (2008). Fixed Structure Feed-
forward Controller Design Exploiting Iterative Trials: Application to a Wafer
Stage and a Desktop Printer. Journal of Dynamic Systems, Measurement,
and Control, 130(5). 051006.

van der Weijst, R., van Keulen, T., and Willems, F. (2019). Constrained mul-
tivariable extremum-seeking for online fuel-efficiency optimization of diesel
engines. Control Engineering Practice, 87:133 – 144.



Bibliography 207

van Loon, S., Gruntjens, K., Heertjes, M., van de Wouw, N., and Heemels, W.
(2017). Frequency-domain tools for stability analysis of reset control systems.
Automatica, 82:101 – 108.

van Loon, S., Hunnekens, B., Heemels, W., van de Wouw, N., and Nijmeijer,
H. (2016). Split-path nonlinear integral control for transient performance
improvement. Automatica, 66:262–270.

Wagner, C. and Harned, N. (2010). Euv lithography: Lithography gets extreme.
Nat Photon, 4(1):24–26.
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Summary

Extremum-Seeking Control for

Data-Based Performance Optimization

of High-Tech Systems

Automatic control of dynamic processes is a key enabling methodology in
a substantial variety of technological innovations in many branches of our soci-
ety, and has proven indispensable in realizing the social welfare and economic
prosperity that we benefit today. This becomes particularly evident from the
broad range of high-tech industrial applications in which control plays a piv-
otal role, ranging from photolithography systems, electron microscope systems,
pick-and-place machinery, to industrial printing and copying systems, robotics
to medical imaging systems. Mechatronic system designs for high-tech applica-
tions in these areas of technology often rely on high-cost mechatronic solutions
to achieve highly predictable and understandable system dynamics on the basis
of accurate system models. These models have enabled skillful control engineers
in the high-tech industry to use conventional and well-understood control solu-
tions to meet stringent performance requirements in terms of machine accuracy,
operating speed, stability, and reliability.

However, major economic, social and technological trends push performance,
cost, and reliability requirements for current and future high-tech systems to un-
paralleled levels, and will progressively challenge purely model-based approaches
to automatic control and optimization. In particular, the increasing complexity
in terms of uncertainty, non-stationary nature of system dynamic properties and
disturbances, and mode-of-use dependent performance specifications, constitute
real challenges in achieving optimal performance in current and future high-tech
systems using model-based approaches. To account for changing, uncertain, or
unknown dynamics and disturbance characteristics, and enable the satisfaction
of accuracy and robustness demands, a lot can be gained by combining or sup-
porting model-based control engineering in future complex high-tech systems
with data-based, automated and adaptive performance optimization techniques.

In this dissertation, data-based automated performance optimization of high-
tech systems is addressed by a technique known as extremum-seeking control.
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Extremum-seeking control is a data-driven and model-free method for optimizing
system performance in real-time, by continuously or iteratively adapting system
parameters. Due to its model-free nature, the method is especially valuable in
cases where the dynamical behavior of the system at hand can not be represented
by an accurate or comprehensible model, or cases where the disturbances are
unknown, changing, or mode-of-use dependent.

However, in order to benefit from the full potential of extremum-seeking
control to achieve optimal performance in the context of high-tech systems,
the state-of-the-art faces three major challenges. In the first place, extremum-
seeking control methods are tailored primarily towards the steady-state perfor-
mance optimization of systems that admit equilibria solutions, or periodic system
responses with a known period time. Performance of high-tech systems, how-
ever, is generally related to generically time-varying steady-state behavior, and is
heavily dependent on the (time-varying) disturbances and operating condition
at hand. In the second place, extremum-seeking control methods are gener-
ally focussed on finding tunable system parameters that optimize steady-state
system performance. However, many high-tech systems also have to deal with
constraints on operating conditions, originating from constraints on unknown
but measurable variables. These constraints may conflict with the otherwise per-
formance optimal operational condition of these high-tech systems. In the third
place, extremum-seeking control is aimed at finding constant input parameters
that optimize the steady-state behavior of dynamical systems, while transient
behavior in many high-tech systems that perform repetitive tasks may impair
the achievable performance.

The main contributions of this dissertation are directly related to the above
mentioned challenges. The first contribution is the development of a novel
extremum-seeking control approach for optimization of generically time-varying
steady-state behavior of nonlinear dynamical systems. In particular, an exten-
sion of the class of extremum-seeking problems from those involving equilib-
ria solutions or periodic time-varying steady-state responses, to those involving
systems exhibiting generically time-varying steady-state responses is provided.
The convergent systems property is exploited, and is essential in this generic,
time-varying context. To facilitate the use of extremum seeking in this more
generic, time-varying context, a user-defined, generic filter structure, the so-
called dynamic cost function, is introduced. In addition, a novel extension of an
observer-based extremum-seeking control strategy is provided. This extended
approach exploits model knowledge about the user-defined dynamic cost func-
tion to facilitate enhanced convergence speed of the resulting extremum-seeking
control scheme. The effectiveness of both the nominal extremum-seeking control
design and the extended approach are evidenced experimentally by application
to an industrial motion stage set-up of a high-end lithography system.

The second contribution is the development of a sampled-data extremum-
seeking control framework for constrained optimization of nonlinear dynamical
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systems. In particular, an extension of the classical sampled-data extremum-
seeking framework is provided that encompasses 1) a class of dynamical systems
in which both the to-be-optimized objective function and the constraint func-
tions are available through measurement only, and 2) a class of smooth and non-
smooth optimization algorithms to facilitate extremum-seeking in the presence
of unknown but measurable constraints, inspired by the use of barrier function
methods. The working principle of the proposed framework is illustrated by
means of a representative industrial case study of constrained optimization of
extreme ultraviolet light generation in a laser produced plasma source within a
state-of-the-art lithography system.

The third contribution is the development of an iterative learning con-
trol strategy based on extremum-seeking control for high-accuracy repetitive set-
point control of frictional motion systems. First, a novel proportional-integral-
derivative-based controller with a time-varying integrator gain design is proposed
that facilitates improved time-domain behavior in terms of overshoot and set-
point accuracy for repetitive motion in frictional motion systems. Second, the
optimal time-varying integrator gain design is obtained through an automatic
iterative controller tuning procedure based on a sampled-data extremum-seeking
algorithm, ensuring optimal setpoint positioning accuracy despite unknown fric-
tion characteristics and unknown disturbances. Third, the effectiveness of the
proposed approach is evidenced experimentally by application to an industrial
nano-positioning motion stage set-up of a high-end electron microscope.

This dissertation presents newly developed extremum-seeking control meth-
ods that enable data-based performance optimization for a richer class of opti-
mization problems. The developments are inspired by a large variety of indus-
trially relevant optimization problems, and are experimentally demonstrated to
illustrate the value it may provide in supporting control engineers to get the
most out of their high-tech systems.
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