

A Tree Adjoining Grammar representation for models of
stochastic dynamical systems
Citation for published version (APA):
Khandelwal, D., Schoukens, M., & Tóth, R. (2020). A Tree Adjoining Grammar representation for models of
stochastic dynamical systems. Automatica, 119, Article 109099.
https://doi.org/10.1016/j.automatica.2020.109099

Document license:
TAVERNE

DOI:
10.1016/j.automatica.2020.109099

Document status and date:
Published: 01/09/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.automatica.2020.109099
https://doi.org/10.1016/j.automatica.2020.109099
https://research.tue.nl/en/publications/31fb3f02-34ee-4691-8b8c-6d853cecf3a6

Automatica 119 (2020) 109099

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A Tree Adjoining Grammar representation formodels of stochastic
dynamical systems✩

Dhruv Khandelwal ∗, Maarten Schoukens, Roland Tóth
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

a r t i c l e i n f o

Article history:
Received 20 March 2019
Received in revised form 10 January 2020
Accepted 26 May 2020
Available online 30 June 2020

Keywords:
System identification
Tree Adjoining Grammar
Evolutionary algorithms

a b s t r a c t

Model structure and complexity selection remains a challenging problem in system identification,
especially for parametric non-linear models. Many Evolutionary Algorithm (EA) based methods have
been proposed in the literature for estimating model structure and complexity. In most cases, the
proposed methods are devised for estimating structure and complexity within a specified model class
and hence these methods do not extend to other model structures without significant changes. In this
paper, we propose a Tree Adjoining Grammar (TAG) for stochastic parametric models. TAGs can be
used to generate models in an EA framework while imposing desirable structural constraints and
incorporating prior knowledge. In this paper, we propose a TAG that can systematically generate
models ranging from FIRs to polynomial NARMAX models. Furthermore, we demonstrate that TAGs
can be easily extended to more general model classes, such as the non-linear Box–Jenkins model class,
enabling the realization of flexible and automatic model structure and complexity selection via EA.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been a resurgence in the use of
Evolutionary Algorithms (EAs) for data-driven modelling of dy-
namical systems. Undoubtedly, one of the main driving forces
for this is the steady growth of computation power. EAs are
being increasingly used in a multitude of engineering domains
and life science (Eiben et al., 2003; Arias-Montano et al., 2012).
Across several domains, EAs have generated results that are com-
petitive and, sometimes, even surprising (Eiben et al., 2003).
Another factor contributing to the growing popularity of EAs is
that these algorithms can be used to generate solutions for com-
plex problems for which no systematic solution approach exists
in general. In parametric system identification, the estimation of
model structure and model complexity is one such problem.

Model structure selection is a classical problem in system
identification. Over the years, a variety of methods for system
identification have been developed. Each of these methods adopt

✩ This research is supported by the Dutch Organization for Scientific Research
(NWO, domain TTW, grant: 13852) which is partly funded by the Ministry of
Economic Affairs of The Netherlands. The material in this paper was partially
presented at the 18th European Control Conference, June 25–28, 2019, Naples,
Italy. This paper was recommended for publication in revised form by Associate
Editor Antonio Vicino under the direction of Editor Torsten Söderström.
∗ Corresponding author.

E-mail addresses: D.Khandelwal@tue.nl (D. Khandelwal),
M.Schoukens@tue.nl (M. Schoukens), R.Toth@tue.nl (R. Tóth).

different approaches to solve the problem of model structure se-
lection. While methods like Prediction Error Minimization (PEM)
treat model structure selection as a user’s choice (Ljung, 1999),
other methods (for example, Pillonetto et al. (2011), Laurain et al.
(2020)) rely on a flexible model structure, and attempt to esti-
mate or control the complexity of the model-to-be-estimated via
regularization. Furthermore, the appropriate model complexity is
often chosen by ranking models based on an information metric,
such as AIC, BIC, or based on a user-defined complexity mea-
sure (Rojas et al., 2014). In cases where the number of candidate
models grows combinatorially with respect to the length (or
the complexity) of the model, a ranking-based complexity se-
lection strategy becomes intractable, restricting model structure
selection to regularization or shrinkage based methods.

As a consequence of the aforementioned challenges, heuristics-
based methods such as EAs have been used to estimate model
structure and complexity, with a fair amount of success. However,
the application of EAs have been, to some extent, superficial.
The premise of the biologically-inspired heuristics used in EAs
is that the solutions of a given problem can be constructed from
fundamental building blocks, and these fundamental components
can be interchanged between different solutions. In the system
identification literature, the proposed EA-based approaches to
model structure and complexity selection can be categorized as
follows:

(i) approaches that choose a fixed model structure and use
EAs to determine the appropriate model complexity (or
model terms), and

https://doi.org/10.1016/j.automatica.2020.109099
0005-1098/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2020.109099
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109099&domain=pdf
mailto:D.Khandelwal@tue.nl
mailto:M.Schoukens@tue.nl
mailto:R.Toth@tue.nl
https://doi.org/10.1016/j.automatica.2020.109099

2 D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099

(ii) approaches that use EAs to explore model structure and
model complexity.

In the first category of EA-based approaches, the basic building
blocks of an EA are chosen such that only models with a spe-
cific model structure can be generated. Hence, these approaches
cannot be typically extended to other model structures without
significant modifications. This approach can be found in Fon-
seca and Fleming (1996), Rodriguez-Vazquez et al. (2004) and
Rodríguez-Vázquez and Fleming (2000), where the authors use
EAs to perform term selection within a chosen model structure.
This approach is also used in Kristinsson and Dumont (1992),
where the authors use GAs to estimate pole-zero locations for
ARMAX models.

In the second category of EA-based approaches, more generic
set of building blocks are used in the EA, allowing the generation
of models with arbitrary model structures. In this case, EAs are
used to determine not just the appropriate complexity of the
model, but also the appropriate model structure (e.g., in terms
of the non-linear functions to be included in the model). How-
ever, unrestrained generation of arbitrary model structures using
EA may result in models that are not well-posed, e.g., models
with discontinuities, non-causality, or finite escape-time. Typi-
cally, these problems are avoided by using arbitrary ad-hoc so-
lutions, e.g, setting all discontinuities to 0. Another common
drawback of EA-based approaches that fall in the second category
is that prior knowledge of the dynamical system cannot be incor-
porated systematically in the identification procedure. In Madár
et al. (2005), the authors use GP to identify NARMAX models
that may contain arbitrary non-linearities. While the authors are
interested in models that are linear-in-the-parameters, GP may
return models that do not belong to that class. Consequently,
the authors use an ad-hoc solution to ensure that the candidate
model structures generated by GP are linearly parameterized. A
similar approach was used in Quade et al. (2016) with a larger set
of mathematical operations. Again, the proposed approach does
not allow for systematic inclusion of model structure constraints
or prior knowledge of the system. A slightly different approach is
used in Gray et al. (1998), where the authors use GP to construct
linear or non-linear models from basic elements like SIMULINK
blocks and static non-linearities. Again, the combination of vari-
ous SIMULINK blocks cannot be systematically structured to avoid
ill-posed models.

In this paper, we propose a generative grammar based repre-
sentation of stochastic parametric dynamical systems. The pro-
posed representation allows for the generation of complex, yet
well-posed dynamical models by combining a set of fundamental
building blocks in well-specified ways. The resulting generative
declaration of models defines a notion of model set that is more
generalized than that conventionally used, for example, in Ljung
(1999). The generative grammar used in this work is called Tree
Adjoining Grammar (TAG) (Joshi & Schabes, 1997). The use of
TAG in an EA-based approach makes it possible to develop a
system identification framework where EAs are used to auto-
matically determine the structure and complexity of a model
from a generic, well-posed class of dynamical models, while sys-
tematically incorporating model structure constraints and prior
knowledge. A preliminary concept of the proposed framework
(without proofs) was presented in Khandelwal et al. (2019b).
The proposed approach for grammar-based identification was
found to produce results that were comparable to state-of-the-
art non-linear system identification approaches, while using no
specialized knowledge of the benchmark system being identified.

The main contributions of this paper are the following. We
present a detailed discussion on the discrete-time input–output
representation of dynamical systems using TAG, and introduce a
new notion of a model set defined by the generative capacity of

a TAG. Subsequently, we develop a TAG for the polynomial NAR-
MAX model class. We prove that any model structure generated
by the proposed TAG belongs to the class of polynomial NARMAX
models, and conversely, any polynomial NARMAX model can be
represented using the proposed TAG (for which an algorithm
is also proposed). We demonstrate that the model set corre-
sponding to the proposed TAG includes, as special cases, other
commonly used model structures such as FIR, ARX and Truncated
Volterra series models. We also demonstrate that the proposed
representation can be easily extended to other model structures
(namely polynomial Non-linear Box–Jenkins, or NBJ). Note that,
while the TAG-based model set notion developed in this contribu-
tion is motivated by its applicability in an EA-based identification
methodology, the identification approach itself is not in the scope
of the present contribution. A preliminary version of such an
identification methodology can be found in Khandelwal et al.
(2019a, 2019b).

The contributions in this paper differ from Khandelwal et al.
(2019b) in the following respects:

• we formulate a TAG for a larger class of dynamical systems
(the polynomial NARMAX class), and prove their equiva-
lence,
• we provide an algorithm to compute an equivalent TAG

representation of a given polynomial NARMAX model,
• we illustrate, via examples, the restriction (and generaliza-

tion) of the proposed TAG in order to generate models with
more specific (or generic) structures.

The remainder of the paper is structured as follows. The con-
cept of TAG is introduced, both informally and formally, in Sec-
tion 2. In Section 3 we introduce the notion of model set as
defined by a given TAG, and propose a TAG that generates the
class of polynomial NARMAX models. Several examples are used
to illustrate the concept in Section 4, followed by concluding
statements in Section 5.

2. Tree Adjoining Grammar

To set the stage for the development of TAG for stochastic
non-linear systems, first we introduce the basic concepts of TAG.
Since TAG was initially developed from linguistic considerations,
a linguistic example will be used to illustrate the methodology.
This will be followed by formal definitions. To make the example
illustrative, we first specify an example string, and then infer a
TAG that would generate the given string. Conversely, for the
formal definitions, we will begin with the basic components of
a TAG and lead up to the definition of TAG and operations that
can be performed on TAGs.

2.1. An informal description

Informally, a formal grammar can be described as a set of rules
for generating strings. The resulting set of strings is called the
language generated by the grammar. In contrast, TAG describes a
set of rules for generating trees. The resulting set of trees is called
the tree language of the TAG. The yield of all the trees in the tree
set subsequently determines the corresponding language.

The following example has been derived from Joshi and Sch-
abes (1997). Consider the sentence ‘‘A man saw Mary’’. Simple
grammatical constructs can be used to decompose the given sen-
tence into its basic components. For example, the sentence con-
sists of articles (‘‘A’’), nouns (‘‘man’’, ‘‘Mary’’) and verbs (‘‘saw’’).
Other underlining structures, such as subjects and predicates, can
also be observed in the sentence. The sentence, together with the
underlying grammatical structure can be represented in a single
tree structure as shown in Fig. 1. The tree depicted in Fig. 1 is

D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099 3

Fig. 1. A derived tree with the yield ‘‘A man saw Mary’’. The tree depicts the
grammatical constructs that are evident in the structure of the sentence — a
subject (sub) and a predicate (pred), an article (art), a verb (V) and nouns (N).

Fig. 2. The sets I and A serve as building blocks of the tree set of a TAG.

called a derived tree. The yield of a derived tree are the labels
associated with the leaves of the tree. Hence, the yield of the
derived tree in Fig. 1 is ‘‘A man saw Mary’’.

The given derived tree can be obtained by combining basic
building blocks that are constituents of the TAG. Fig. 2 depicts
the set of initial trees I and auxiliary trees A, collectively known as
elementary trees, that can be combined in specific ways to produce
the derived tree in Fig. 1. The set of initial trees I can be informally
described as a set of non-recursive replacement rules that can be
used to generate a set of trees. The set of auxiliary trees can be
described as a set of recursive replacement rules. Consequently,
each auxiliary tree has a terminal node with the same label as
that of its root node.

The downward arrow symbol ↓ and the star symbol ⋆ in Fig. 2
represent nodes in a tree that are available for a substitution and
adjunction operation respectively. A substitution operation can be
used to substitute an initial tree into, for instance, another initial
tree, if and only if the latter has a terminal node (leaf) with a
label that matches the label of the root node of the prior. On the
other hand, adjunction can be loosely described as the operation
of inserting an auxiliary tree into a syntactic tree. Adjunction of an
auxiliary tree can take place on a non-terminal node of a syntactic
tree if and only if the node has a label that matches the label of
the root node of the auxiliary tree to be adjoined.

Consider the following sequence of operations. The initial tree
α3 can be substituted in α1 at the location of the ‘‘sub’’ node. Let
us denote the resulting tree as γ1. The tree γ1 is an example of
a syntactic tree, a tree obtained by applying an arbitrary number
of substitution and adjunction operations to a given initial tree.
Again, the initial tree α4 can be substituted to the syntactic tree
γ1 at the location of the ‘‘pred’’ node. Let the result be denoted
as γ2. Note that γ2 has the same structure as the example in
Fig. 1, up to the last level of the derived tree, where specific
articles, nouns and verbs are substituted in the tree to obtain
the yield ‘‘a man saw Mary’’. Substitution can be performed on a
initial tree or syntactic tree as long as there exist nodes available
for substitution, marked by ↓. A derived tree is a syntactic tree
in which none of the terminal nodes (leaves) are available for
substitution. The initial and auxiliary trees provide an alternative

Fig. 3. Derivation tree representation — dashed lines represent substitutions,
solid lines represent adjunction, and labels on the edges represent the Gorn
addresses (a method to assign a label to a node in a tree structure, see Gorn
(1965)) of the nodes participating in substitution or adjunction.

representation, the derivation tree, as shown in Fig. 3a. Based on
the TAG in Fig. 2, more complex sentences can also be generated.
For example, the auxiliary tree β1 can be adjoined to the root
node of γ2 since both root nodes have the label ‘‘sentence’’.
This operation effectively adds an adverb before the sentence,
yielding the sentence ‘‘yesterday a man saw Mary’’. The resulting
derivation tree is depicted in Fig. 3b.

The set of all derived trees that can be obtained, by start-
ing from a given start symbol, say ‘‘sentence’’, and applying an
arbitrary number of adjunctions and/or substitutions using ele-
mentary trees is called the tree language of the corresponding
TAG. The string yield of all trees in the tree set is called the string
language of the corresponding TAG.

We can now introduce the formal definitions of the concepts
that were informally described in this example.

2.2. The formal definitions

The formal definitions of TAG and related concepts can be
found in Joshi and Schabes (1997) and Kallmeyer (2009). These
definitions are reproduced here for completeness.

Definition 1. A finite tree is a directed graph, denoted by γ =
⟨V , E, r⟩, where, V is the set of vertices, E is the set of edges, and
r ∈ V is the root node, such that

– γ contains no cycles,
– r ∈ V has in-degree (number of incoming edges) 0,
– All v ∈ V \ {r} have in-degree 1,
– Every v ∈ V is accessible from r ,
– A vertex with out-degree (i.e., number of outgoing edges) 0

is a leaf.

Definition 2. A labelling of a graph γ = ⟨V , E⟩ over a signature
⟨A1, A2⟩ is a pair of functions l : V → A1 and g : E → A2, with
A1, A2 being a set of disjoint alphabets.

For the next definitions, assume N and T to be disjoint sets of
non-terminals and terminals, respectively.

Definition 3. A syntactic tree is an ordered, labelled tree ⟨V , E, r⟩
such that the label l(v) ∈ N for each vertex v with out-degree at
least 1 and l(v) ∈ (N ∪ T ∪ ϵ) for each leaf v.

Definition 4. An auxiliary tree is a syntactic tree ⟨V , E, r⟩ such
that there is a unique leaf f , marked as foot node, with l(f) = l(r).
An auxiliary tree is denoted as ⟨V , E, r, f ⟩.

Definition 5. An initial tree is a non-auxiliary syntactic tree.

With the basic concepts defined, we can now define TAG, and
the related operations.

Definition 6. A Tree Adjoining Grammar is a tuple G = ⟨N, T , S,
I, A⟩, where

4 D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099

Fig. 4. Illustration of the TAG operations (Khandelwal et al., 2019b).

– N, T are disjoint alphabets of non-terminals and terminals,
– S ∈ N is a start symbol,
– I is a finite set of initial trees and A is a finite set of auxiliary

trees.

The set of trees I ∪ A is called elementary trees.

Definition 7 (Substitution). Let γ = ⟨V , E, r⟩ be a syntactic tree
and γ ′ = ⟨V ′, E ′, r ′⟩ be an initial tree and v ∈ V . The result of
substituting γ ′ into γ at node v, denoted as γ [v, γ ′], is defined
as follows

– If v is not a leaf or v is a foot node or l(v) ̸= l(r ′), then
γ [v, γ ′] is not defined,

– otherwise, γ [v, γ ′] = ⟨V ′′, E ′′, r⟩ with

V ′′ = V ∪ V ′ \ {v}, (1)

and

E ′′ = (E \ {⟨v1, v2⟩ | v2 = v and v1 ∈ V }) ∪
E ′ ∪ {⟨v1, r ′⟩ | v1, v ∈ E}. (2)

The substitution operation is illustrated in Fig. 4a.

Definition 8 (Adjunction). Let γ = ⟨V , E, r⟩ be a syntactic tree and
γ ′ = ⟨V ′, E ′, r ′, f ⟩ be an auxiliary tree and v ∈ V with out-degree
at least 1. The result of adjoining γ ′ into γ at node v, denoted as
γ [v, γ ′], is defined as follows

– if l(v) ̸= l(r ′) then γ [v, γ ′] is undefined,
– else γ [v, γ ′] = ⟨V ′′, E ′′, r ′′⟩ with

V ′′ = V ∪ V ′ \ v, (3)

and

E ′′ = (E \ {⟨v1, v2⟩ | v1 = v or v2 = v}) ∪

E ′ ∪
{
⟨v, r ′⟩ | ⟨v1, v⟩ ∈ E

}
∪

{⟨f , v2⟩ | ⟨v, v2⟩ ∈ E} . (4)

The adjunction operation is illustrated in Fig. 4b.
Recall that a tree obtained by performing an arbitrary number

of valid substitution and adjunction operations to an initial tree
γ = ⟨V , E, r⟩ with l(r) = S is called a derived tree (for example,
as in Fig. 1). Also recall that the substitution and adjunction
operations performed can be represented in a tree representation
called derivation tree (for example, as in Fig. 3b). A derived tree
is said to be saturated if all leaves of the derived tree belong to
the set T and cannot be further substituted. The corresponding
derivation tree is also said to be saturated.

Definition 9 (Tree Language and String Language). Let G = ⟨N, T , S,
I, A⟩ be a TAG. The tree language LT(G) of grammar G is defined
as the set of all saturated derived trees in G with root S.

The string language L(G) of G is the set of yields of the trees in
LT(G).

3. TAG description of dynamical systems

In this Section, we define a notion of model set based on TAG
and propose a TAG for a generic class of dynamical models — the
polynomial NARMAX class.

3.1. Model set

Consider the following discrete-time input–output represen-
tation of a non-linear dynamical model

yk = f (uk, . . . , uk−nu , yk−1, . . . , yk−ny , ξk−1, . . . ,

ξk−nξ
)+ ξk (5)

where uk, yk ∈ R are the input and output signals at time-
instant k, ξk ∼ N (0, σ 2

ξ) is a noise signal independent of input
u, constants nu, ny and nξ are the corresponding maximum time-
lags and the non-linear function f (·) belongs to an arbitrary set
of functions M. In PEM, the set of functions M, also known as
the model set, along with a specified choice for nu, ny and nξ ,
is determined by a user based on expert knowledge, prior in-
formation and informative experiments. It will be demonstrated
in Section 3.2 that TAG can be used to generate trees that yield
non-linear functions f (·) with desirable structural properties and
varying choices of arguments (time lags of the involved u, y and ξ
signals). This capability of TAG leads to a more generalized notion
of model set M. In order to formalize this concept, we introduce
a function Πf (u, y, ξ , k) that maps from function f to the right-
hand-side expression in (5) (in string form). We can now define
a new notion of model set, based on TAG, defined as follows.

Definition 10. For a given TAG G, the corresponding model set
M(G) is defined as the set of models in the form of (5) such that
Πf (u, y, ξ , k) ∈ LT(G).

Note that this is a more generalized notion of model set as
compared to that used in PEM. In PEM, a model set is typically
determined by choosing a fixed model structure along with a suit-
able parameterization (i.e. model complexity). On the other hand,
in this work, the choice of initial and auxiliary trees of a TAG
automatically determines the model set. The advantage of such
a declaration of a model set is that, when no prior information
is available, the model set can be chosen to span a number of
commonly used model classes without a prior specification of the
model complexity. On the other hand, when prior information
on the structure or complexity of the model is available, the
grammar can be suitably refined to restrict the model set. In the
subsequent sections, we propose a TAG for a generic model class,
and demonstrate that the resulting model set spans a number of
model structures commonly used in PEM.

3.2. The polynomial NARMAX model class

The NARMAX model class is a flexible class on non-
linear input–output dynamical models, see Leontaritis and Billings
(1985). The polynomial NARMAX model class is the set of all
NARMAX models where the non-linear relationships are of the
polynomial kind. Polynomial NARMAX is a convenient model
representation since any continuous function on a closed space
can be approximated arbitrary well using polynomial functions
(based on Weierstrass’ theorem, see Stone (1948)). Furthermore,

D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099 5

Fig. 5. Initial trees I of TAG GN .

the family of polynomial NARMAX models includes, as special
cases, other commonly used model classes such as FIR and AR-
MAX. It will be shown that these models can be generated by
suitably restricting the TAG presented here.

A discrete-time SISO polynomial NARMAX model can be rep-
resented as (see Billings (2013))

yk = θ0 +

n∑
i1=1

θi1xi1,k +

n∑
i1=1

n∑
i2=i1

θi1 i2xi1,kxi2,k + · · ·

n∑
i1=1

. . .

n∑
il=il−1

θi1i2...ilxi1,kxi2,k . . . xil,k + ξk, (6)

where l is the order of the polynomial non-linearity, θi1 i2...im are
the model parameters, and xk = (x1,k · · · xny+nu+nξ ,k)⊤ is a vector
consisting of the past input, output and noise values building up
the regressors

xm,k =

⎧⎪⎪⎨⎪⎪⎩
yk−m 1 ≤ m ≤ ny

uk−(m−ny−1) ny + 1 ≤ m ≤ ny + nu + 1

ξk−(m−ny−nu−1)
ny + nu + 2 ≤ m ≤ ny + nu +

nξ + 1.

(7)

We will also use the following alternative and equivalent repre-
sentation for polynomial NARMAX models:

yk =
p∑

i=1

ci
nu∏
j=0

u
bi,j
k−j

nξ∏
l=1

ξ
di,l
k−l

ny∏
m=1

yai,mk−m + ξk, (8)

where p is the number of model terms, ci are the model param-
eters, ai,m, bi,j, di,l ∈ N are the exponents for output, input and
noise terms.

3.3. Proposed TAG representation

In this section we propose a TAG for the polynomial NAR-
MAX model class. The proposed TAG captures the structural re-
lationships in (8). In the sequel, the time index will be dropped
in the context of the proposed TAG, as q−1 will be used to
denote a backward time shift. For convenience, introduce the
following notation. For a given model in the form of (8), define
Ji :=

{
j ∈ N≥0 | bi,j ̸= 0

}
, Li :=

{
l ∈ N>0 | di,l ̸= 0

}
and Mi :={

m ∈ N>0 | ai,m ̸= 0
}
. For the ith model term, the sequence of

delays in the input, noise and output factors are denoted by(
j̄(i)n

)
n∈Ji

,
(
l̄(i)n

)
n∈Li

,
(
m̄(i)

n

)
n∈Mi

respectively.

Theorem 1. Consider the TAG GN = ⟨N, T , S, I, A⟩ with

– N = {expr0, expr1, expr2, op, par},
– T = {u, y, ξ ,+, c,×, q−1},
– S = expr0,
– I = {α1}, where initial tree α1 is depicted in Fig. 5,
– A = {β1, β2, β3, β4, β5, β6, β7}, where the auxiliary trees βi’s

are depicted in Fig. 6.

The model set M(GN) is equivalent to the set of all models that can
be expressed as (8) with finite values of p, nu, ny and nξ .

Fig. 6. Auxiliary trees A of TAG GN .

Proof. For the first part of the proof, we show that for any
polynomial NARMAX model in the form of (8), there exists a
derivation tree such that the resulting derived tree has a yield
that is equal to the RHS of (8). Algorithm 1 constructs such a
derivation tree for a given polynomial NARMAX model. The pro-
cedure Delays(γ , v, n) adjoins n auxiliary tree β7 to the deriva-
tion tree γ at vertex v. The algorithm constructs the derivation
tree by introducing the first factor (u, y or ξ) of each of the p
model terms, and subsequently building each of the branches by
introducing the remaining factors with the corresponding delays
and exponents.

For the second part of the proof, it needs to be shown that
all expressions in L(GN), i.e., yields of all possible trees gener-
ated by GN, are RHS expressions of polynomial NARMAX models.
This is proven by structural induction. We first observe that the
simplest tree in L(GN) is the initial tree α1 with the yield ξ . This
corresponds to the model

yk = ξk, (9)

which belongs to the polynomial NARMAX class. Now, consider
an arbitrary saturated derived tree γ ∈ LT(GN) whose yield is
the RHS of a polynomial NARMAX model. This implies that the
yield is a polynomial expression in terms of the factors u, y and
ξ . To complete the principle of induction, it must be shown that
any possible adjunction to γ results in a new tree in LT(GN)
whose yield is also a polynomial expression in terms of the
aforementioned factors.

For convenience, the auxiliary trees are grouped based on the
operators involved - β1, β2, β3 are called additive-type auxiliary
trees, β4, β5, β6 are called multiplicative-type, and β7 is called
delay-type auxiliary tree. The following adjunctions be made on
γ :

• adjunction of an additive-type tree. Such an adjuction in-
troduces an input, output or noise term additively in the
expression while respecting the causality of the expression.
Hence the resulting expression is also a polynomial;

6 D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099

Algorithm 1 Parse NARMAX model (8) to derivation tree.

Require: p, Ji, Li,Mi,

(
j̄(i)n

)
n∈Ji

,

(
l̄(i)n

)
n∈Li

,
(
m̄(i)

n

)
n∈Mi

1: V ← {v0}; l(v0)← α1 ▷ initialize with start tree
2: r ← v0
3: V ←

⋃p
i=1{vi,1} ∪ V ▷ Insert p vertices to begin the p summation

branches
4: E ←

⋃p
i=2{⟨vi−1,1, vi,1⟩} ∪ {⟨v0, v1,1⟩}

5: for i← 1, p do
6: if Ji ̸= φ then ▷ If there is an input factor in the ith term
7: l(vi,1)← β1 ▷ For each summation branch, assign the

appropriate label to the first vertex
8: ⟨V , E, r⟩ ← Delays(⟨V , E, r⟩, vi,1, j̄

(i)
1) ▷ Adjoin delay trees

9: bi,j̄(i)1
← bi,j̄(i)1

− 1 ▷ Reduce the corresponding exponent by 1
10: else if Li ̸= φ then
11: l(vi,1)← β3

12: ⟨V , E, r⟩ ← Delays(⟨V , E, r⟩, vi,1, l̄
(i)
1)

13: di,l̄(i)1
← di,l̄(i)1

− 1
14: else if Mi ̸= φ then
15: l(vi,1)← β2

16: ⟨V , E, r⟩ ← Delays(⟨V , E, r⟩, vi,1, m̄
(i)
1)

17: ai,m̄(i)
1
← ai,m̄(i)

1
− 1

18: si ← 1 ▷ Counter for multiplying remaining factors
19: for all j ∈ Ji do
20: V ←

⋃bi,j
n=1{vi,si+n,1 ∪ V }; l(vi,si+n,1)← β4

21: E ←
⋃bi,j

n=1{⟨vi,si+n−1,1, vi,si+n,1⟩} ∪ E
22: for n← 1, b̄(i)j do ▷ Adjoin delays for multiple factors
23: ⟨V , E, r⟩ ← Delays(⟨V , E, r⟩, vi,si+n,1, j)
24: si ← si + b̄(i)j
25: for all l ∈ Li do
26: V ←

⋃di,l
n=1{vi,si+n,1 ∪ V }; l(vi,si+n,1)← β6

27: E ←
⋃di,l

n=1{⟨vi,si+n−1,1, vi,si+n,1⟩} ∪ E
28: for n← 1, d̄(i)l do
29: ⟨V , E, r⟩ ← Delays(⟨V , E, r⟩, vi,si+n,1, l)
30: si ← si + d̄(i)l
31: for all m ∈ Mi do
32: V ←

⋃ai,m
n=1{vi,si+n,1 ∪ V }; l(vi,si+n,1)← β5

33: E ←
⋃ai,m

n=1{⟨vi,si+n−1,1, vi,si+n,1⟩} ∪ E
34: for n← 1, ā(i)m do
35: ⟨V , E, r⟩ ← Delays(⟨V , E, r⟩, vi,si+n,1,m)
36: si ← si + ā(i)m

return ⟨V , E, r⟩

• adjunction of a multiplicative-type tree. This simply intro-
duces multiplicative factors to an existing model term, and
hence, the resulting expression is also a polynomial;
• adjunction of a delay-type tree. This operation simply adds

delays to an existing monomial, and hence preserves the
polynomial structure of the expression.

Since all possible operations yield a causal polynomial expres-
sion, it can be concluded that L(GN) consists of only dynamical
polynomial expressions in terms of the factors u, y and ξ which
corresponds to a polynomial NARMAX model. This concludes the
proof. □

Theorem 1 demonstrates that structural properties of a rich
class of dynamical models can be captured within a compact
set of trees of a TAG. The expansive representational capabil-
ity of TAG can be exploited using EAs such as GP to identify
models without prior specification of structure and complexity,
as demonstrated in Khandelwal et al. (2019b). Furthermore, Al-
gorithm 1 provides a method to compute the derivation tree
representation of a given polynomial NARMAX model in terms of

grammar GN. Consequently, available prior information about the
model of the system can be translated to TAG representation (or
incorporated in tree sets I, A), thereby making the evolutionary
search more efficient. Hence, the use of TAG enables identification
within a larger class of dynamical models without requiring user-
interaction, while simultaneously allowing the user to restrict the
evolutionary search effectively.

4. Illustrations

In this section we discuss aspects of TAG useful for EA-based
SI. We demonstrate the use of TAG GN to generate polynomial
NARMAX models. It is also shown that models belonging to
simpler model classes can be generated by scaling down the set of
elementary trees of GN appropriately. Furthermore, more flexible
model classes can be represented by scaling up the set of elemen-
tary trees. This is demonstrated by extending the proposed TAG
to generate Non-linear Box–Jenkins (NBJ) models.

4.1. Model generation using GN

Three illustrative examples are used to demonstrate the gen-
eration of models using GN. The models generated belong to the
ARX, polynomial NARX and polynomial NARMAX model classes.
It will be demonstrated that by restricting the elementary trees I
and A to subsets of the elementary trees in the proposed TAG GN,
we can generate models that only belong to model sub-classes
that are properly included in the set of polynomial NARMAX
models, such as FIR and truncated Volterra series.

4.1.1. ARX example
ARX models can be described by the equation

yk =
nu∑
i=0

biuk−i +

ny∑
j=1

ajyk−j + ξk, (10)

where aj, bi ∈ R are coefficients. The grammar GN can be used to
generate ARX models by restricting the auxiliary tree set A as

A′ = {β1, β2, β7} ⊂ A. (11)

Consider the example depicted in Fig. 7a. Tree (A) is a derivation
tree with initial tree α1 at the root node, and auxiliary trees β1
and β2 in subsequent vertices. The edges are labelled with Gorn
addresses of vertices in the auxiliary trees at which adjunctions
take place. Performing the adjunctions results in derived tree (B)
in Fig. 7a. The RHS of the resulting model appears at the leaves
of the derived tree, and the corresponding model is

yk = c1yk−1 + c2uk + ξk. (12)

4.1.2. NARX example
Polynomial NARX models can be described by the equation

yk =
p∑

i=1

ci
nu∏
j=0

u
bi,j
k−j

ny∏
m=1

yai,mk−m + ξk. (13)

By restricting auxiliary trees to the set

A′′ = {β1, β2, β4, β5, β7} ⊂ A (14)

we can restrict the proposed grammar to generate polynomial
NARX models only. Consider the example derivation tree (A)
in Fig. 7b, which is an extension of the previous example. The
derivation tree consists of the initial tree α1, and auxiliary trees
β2, β3 and β4. Performing the adjunctions described by the deriva-
tion tree results in the derived tree (B) in Fig. 7b. The correspond-
ing symbolic model is

yk = c1y2k−1 + c2uk + ξk. (15)

D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099 7

Fig. 7. Illustrative examples.

4.1.3. NARMAX example
This example builds on the previous example by using the

complete auxiliary tree set A and adjoining trees β3, β6 and β7 to
the tree β2. The new derivation tree and derived tree are depicted
in Fig. 7c. The corresponding model,

yk = c1y2k−1 + c2uk + c3ξk−1ξk−2ξk + ξk, (16)

is a polynomial NARMAX model.

4.2. Non-linear Box-Jenkins extension

Just like the proposed grammar can be scaled down to gen-
erate specific dynamic sub-classes, it can also be extended to
generate models that belong to a more generalized class of mod-
els. We illustrate this by extending the proposed grammar to
a more generalized models structure — Non-linear Box–Jenkins
(NBJ).

In the case of linear systems, a Box–Jenkins model structure is
an extension of the Output Error (OE) model structure, where the
error is modelled as an ARMA process (Ljung, 1999). The BJ class
also includes, as special cases, other linear model structures such
as ARMAX and OE. In the same spirit, NBJ model structure can
be expressed as a Non-linear Output Error (NOE) model where
the error is subsequently modelled as a NARMA process. The NBJ
model structure is given by the following equations

ŷk = f (ŷk−1, . . . , ŷk−ny , uk, . . . , uk−nu),
vk = g(vk−1, . . . , vk−nv , uk, . . . , uk−nu , ξk−1, . . . , ξk−nξ

)+ ξk,

yk = ŷk + vk, (17)

where f (·) and g(·) are polynomial functions in terms of their
arguments. Notice that the RHS expressions of the equations de-
scribing the process and noise dynamics have the same structure

that was studied in Section 3.2 for NARMAX models (see (8)).
Hence, the proposed TAG can be extended to generate NBJ mod-
els. Fig. 8 depicts the initial and auxiliary trees of the grammar
for NBJ model structures GNBJ. The structure of the initial tree
α1 ensures that all elements in L(GNBJ) contain two expressions,
separated by a comma, that represent the functions f (·) and g(·)
respectively. Each of these expressions can be expanded by ad-
joining auxiliary trees that ensure that the polynomial structure
is maintained.

5. Conclusions

We presented a TAG based concept of a model set, that is more
general than that commonly used in the system identification
literature. A TAG GN was proposed that captures the dynamical
structure of polynomial NARMAX models. It was demonstrated
that sub-classes of the polynomial NARMAX class can be rep-
resented by choosing an appropriate subset of the elementary
trees of GN. Similarly, more flexible model classes like Non-
linear Box–Jenkins can be represented by extending the set of
elementary trees. This illustrates that a compact set of elementary
trees can be used to express the dynamical relationships across
a variety of model classes, thereby enabling the design of TAG-
based EA approaches for SI that require minimal user-interaction.
The practical soundness of this concept has been demonstrated
in Khandelwal et al. (2019b), where a TAG-based EA approach
was used to identify a non-linear benchmark dataset with mini-
mal user-interaction, and also in Khandelwal et al. (2019a), where
the same TAG-based EA approach is used to identify multiple real
physical systems and benchmark data set with minimal changes
in the methodology itself.

8 D. Khandelwal, M. Schoukens and R. Tóth / Automatica 119 (2020) 109099

Fig. 8. Initial and auxiliary trees (I and A) of TAG GNBJ .

References

Arias-Montano, A., Coello, C. A. C., & Mezura-Montes, E. (2012). Multiobjective
evolutionary algorithms in aeronautical and aerospace engineering. IEEE
Transactions on Evolutionary Computation, 16(5), 662–694.

Billings, S. A. (2013). Nonlinear system identification: NARMAX methods in the time,
frequency, and spatio-temporal domains. John Wiley & Sons.

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing, Vol. 53.
Springer.

Fonseca, C. M., & Fleming, P. J. (1996). Non-linear system identification with
multiobjective genetic algorithms. In Proc. of 13th IFAC World Congress (pp.
1169–1174). San Francisco, USA.

Gorn, S. (1965). Explicit definitions and linguistic dominoes. In Conference on
systems and computer science (pp. 77–115). Univ. of Western Ontario.

Gray, G. J., Murray-Smith, D. J., Li, Y., Sharman, K. C., & Weinbrenner, T. (1998).
Nonlinear model structure identification using genetic programming. Control
Engineering Practice, 6(11), 1341–1352.

Joshi, A. K., & Schabes, Y. (1997). Tree-adjoining grammars. In Handbook of formal
languages (pp. 69–123). Springer.

Kallmeyer, L. (2009). A declarative characterization of different types of multi-
component tree adjoining grammars. Research on Language and Computation,
7(1), 55–99.

Khandelwal, D., Schoukens, M., & Tóth, R. (2019a). Data-driven modelling of
dynamical systems using tree adjoining grammar and genetic programming.
In Proc. of the IEEE congress on evolutionary computation (pp. 2673–2680).
Wellington, New Zealand.

Khandelwal, D., Schoukens, M., & Tóth, R. (2019b). Grammar-based representa-
tion and identification of dynamical systems. In Proc. of the 18th European
Control Conference (ECC) (pp. 1318–1323). Naples, Italy.

Kristinsson, K., & Dumont, G. A. (1992). System identification and control using
genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 22(5),
1033–1046.

Laurain, V., Tóth, R., Piga, D., & Darwish, M. A. H. (2020). Sparse rkhs estimation
via globally convex optimization and its application in lpv-io identification.
Automatica, 115, 108914.

Leontaritis, I., & Billings, S. A. (1985). Input-output parametric models for non-
linear systems part i: deterministic non-linear systems. International Journal
of Control, 41(2), 303–328.

Ljung, L. (Ed.), (1999). System identification (2nd Ed.): Theory for the user. Prentice
Hall PTR.

Madár, J., Abonyi, J., & Szeifert, F. (2005). Genetic programming for the identifi-
cation of nonlinear input- output models. Industrial & Engineering Chemistry
Research, 44(9), 3178–3186.

Pillonetto, G., Chiuso, A., & De Nicolao, G. (2011). Prediction error identification
of linear systems: a nonparametric gaussian regression approach. Automatica,
47(2), 291–305.

Quade, M., Abel, M., Shafi, K., Niven, R. K., & Noack, B. R. (2016). Prediction of
dynamical systems by symbolic regression. Physical Review E, 94(1), 012214.

Rodríguez-Vázquez, K., & Fleming, P. J. (2000). Use of genetic programming in the
identification of rational model structures. In Proc. of the European conference
on genetic programming (pp. 181–192). Berlin, Heidelberg.

Rodriguez-Vazquez, K., Fonseca, C. M., & Fleming, P. J. (2004). Identifying
the structure of nonlinear dynamic systems using multiobjective genetic
programming. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 34(4), 531–545.

Rojas, C. R., Tóth, R., & Hjalmarsson, H. (2014). Sparse estimation of polynomial
and rational dynamical models.. IEEE Transactions on Automatic Control,
59(11), 2962–2977.

Stone, M. H. (1948). The generalized weierstrass approximation theorem.
Mathematics Magazine, 21(5), 237–254.

Dhruv Khandelwal was born in 1991 in Kolkata, India.
He received his Bachelors degree in Electrical and
Electronic Engineering from VIT University in Vellore,
India in 2013. He received his MSc. degree and PhD.
degree from the Department of Electrical Engineering
at Eindhoven University of Technology in 2015 and
2020, respectively. His research interests are in sys-
tem identification and in the use of machine learning
techniques in modelling of control.

Maarten Schoukens is an Assistant Professor in the
Control Systems group of the Department of Electrical
Engineering at the Eindhoven University of Technology.
He received the master’s degree in electrical engineer-
ing and the Ph.D. degree in engineering from the Vrije
Universiteit Brussel (VUB), Brussels, Belgium, in 2010
and 2015 respectively. From 2015 to 2017, he has been
a Post-Doctoral Researcher with the ELEC Department,
VUB. In October 2017 he joined the Control Systems
research group, TU/e, Eindhoven, The Netherlands as
a Post-Doctoral Researcher, in 2018 he became an

Assistant Professor in the same group. Maarten was awarded an FWO Ph.D.
Fellowship in 2011, and a Marie Skodowska-Curie Individual Fellowship in 2018.
His main research interests include the measurement and data-driven modelling
and control of linear parameter-varying and nonlinear dynamical systems using
system identification and machine learning techniques.

Roland Tóth was born in 1979 in Miskolc, Hungary.
He received the B.Sc. degree in Electrical Engineering
and the M.Sc. degree in Information Technology in
parallel with distinction at the University of Pannonia,
Veszprém, Hungary, in 2004, and the Ph.D. degree (cum
laude) from the Delft Center for Systems and Control
(DCSC), Delft University of Technology (TUDelft), Delft,
The Netherlands, in 2008. He was a Post-Doctoral
Research Fellow at DCSC, TUDelft, in 2009 and at the
Berkeley Center for Control and Identification, Univer-
sity of California, Berkeley, in 2010. He held a position

at DCSC, TUDelft, in 2011–2012. Currently, he is an associate Professor at the
Control Systems Group, Eindhoven University of Technology (TU/e). He is an
associate Editor of the IEEE Transactions on Control Systems Technology.

His research interests are in linear parameter-varying (LPV) and nonlinear
system identification and control, machine learning for modelling and control,
model predictive control and behavioural system theory.

Dr. Tóth received the TUDelft Young Researcher Fellowship Award in 2010,
the VENI award of The Netherlands Organisation for Scientific Research in 2011
and the Starting Grant of the European Research Council in 2016.

http://refhub.elsevier.com/S0005-1098(20)30297-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb14
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb14
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb14
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30297-1/sb21

	A Tree Adjoining Grammar representation for models of stochastic dynamical systems
	Introduction
	Tree Adjoining Grammar
	An informal description
	The formal definitions

	TAG description of dynamical systems
	Model set
	The polynomial NARMAX model class
	Proposed TAG representation

	Illustrations
	Model generation using GN
	ARX example
	NARX example
	NARMAX example

	Non-linear Box-Jenkins extension

	Conclusions
	References

