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Based on simplifications of previous numerical calculations [H. Graf and H. Löwen, Phys. Rev. E 59, 1932
(1999)], we propose algebraic free energy expressions for the smectic-A liquid crystal phase and the crystal
phases of hard spherocylinders. Quantitative agreement with simulations is found for the resulting equations of
state. The free energy expressions can be used to straightforwardly compute the full phase behavior for all aspect
ratios and to provide a suitable benchmark for exploring how attractive interrod interactions mediate the phase
stability through perturbation approaches such as free-volume or van der Waals theory.
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I. INTRODUCTION

Viruses often have rodlike shapes and can display a variety
of lyotropic liquid crystal phases, as found from studies on
dispersions of tobacco mosaic virus [1] or the bacteriophage
feline distemper [2]. Similar liquid crystal phases have been
studied in synthetic systems of rodlike boehmite or silica
colloidal dispersions [3,4]. To understand the role of particle
shape and configurational entropy on the stability of these
colloidal phases, it is useful to examine a system of hard-
core particles, where volume exclusion between the cores
prohibits particle overlap without the presence of additional
soft interactions.

For monodisperse hard spherocylinders Monte Carlo sim-
ulations have revealed the emergence of isotropic, nematic,
smectic-A and crystal phases as the concentration is increased
(see Fig. 1) [5–7]. In the isotropic and nematic phases the
particles can freely move in all directions, while there is a
preferred orientation of the particles in the nematic phase [8].
The smectic-A phase consists of particles that are roughly
confined in layers wherein the rods are aligned normal to
the layer and diffuse laterally thus displaying the behavior
of a crowded liquid. The crystal phases are characterized by
a similar lamellar organization but with the rods exhibiting
long-ranged hexagonal order across the layer. In the AAA
crystal phase rods are stacked directly on top of each other,
while for the ABC crystal they are stacked in between the
rods of the adjacent layers. The stacking in the ABC crys-
tal is therefore equivalent to that of an FCC crystal. For
relatively short rods the nematic, the smectic-A, and AAA
phases become metastable. Other liquid crystal phases such
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as the smectic-B and columnar phases have been reported
experimentally and their stability is attributed to additional
interactions, polydispersity or semiflexibility [2,4,9–13].

While significant progress has been made on developing
predictive theories for the isotropic and nematic fluid stability,
an accurate thermodynamic description of the smectic
and crystal phases remains a challenging problem. [14].
Density functional theory [15–19] has proven a powerful but
technically involved theoretical framework providing good
agreement with simulation results for the isotropic–nematic
and nematic–smectic-A phase transitions. As a much simpler
alternative to density functional theory, extended cell theory
provides reasonable agreement for the full phase behavior of
short rods involving crystal phases [20]. Nonetheless, both
theoretical methods rely heavily on nonanalytical expressions
of the excess free energy, which have to be evaluated
numerically.

For the columnar liquid crystal phase of colloidal platelets
an analytical scaling expression for the free energy was ob-
tained from an extended cell theory [21,22] and the predicted
phase behavior was found to agree well with computer sim-
ulation results. This expression also enabled the use of free
volume theory to determine the phase behavior of mixtures
of suspensions containing plates and nonadsorbing polymers
[23]. Inspired by this approach, we aim to seek analytical
free energy expressions for the smectic-A and crystal phases
of rods from an extended cell theory and map out the com-
plete phase diagram of rod suspensions. This approach, being
entirely algebraic, considerably reduces the complexity and
computational cost involved in determining the smectic-A,
AAA, and ABC equations of state and associated crystal
spacing. Our algebraic theory provides a suitable starting
point towards more extended approaches based on pertur-
bation or free volume theories, aimed at incorporating soft
rod interactions [24,25], depletion effects [26] and particle
semiflexibility [27].
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I N SmA AAA ABC

FIG. 1. Schematic images of the isotropic (I), nematic (N),
smectic-A (SmA), AAA crystal, and ABC crystal phase states of
hard spherocylinder suspensions.

II. THEORY

A. Formulation of the free energy of hard spherocylinders

Onsager’s treatment of the entropy of anisotropic (hard)
particle dispersions is the foundation of numerous theories
for liquid crystal phases [28]. Based on his definition, the
Helmholtz free energy F of a system of hard spherocylinders
with length L and diameter D can be written in terms of the
following entropic contributions [28]:

f = Fv0

V kBT
= fid + for + fpack. (1)

Here v0 = πD3/6 + πD2L/4 is the spherocylinder volume, V
the system volume, kB Boltzmann’s constant, and T tempera-
ture.

The ideal free energy fid is given by fid = η ln (η�3/v0) −
η, with � the de Broglie wavelength and η = v0ρ the rod
volume fraction with ρ the number density of rods. The
orientational free energy for is determined by the orientational
entropy, while the packing free energy fpack depends on the
translational entropy the rods experience. Both depend on the
probability of the particle to adopt a certain orientation, de-
scribed by the orientational distribution function ψ (�) with �

the solid angle. The function ψ (�) is normalized as follows:∫
ψ (�)d� = 1. (2)

Since for an isotropic phase all orientations are equally
probable, the orientational distribution function is a constant:
ψ = 1/(4π ). For ordered phases, the rods have a preferred
direction and ψ (�) can be found by a functional minimization
of the total free energy with respect to ψ (�) or algebraically
through the use of a trial function that depends on a single
variational parameter. The orientational free energy for per
particle is related to ψ (�) by the following expression [28]:

for

η
=

∫
ψ (�) ln [4πψ (�)]d�, (3)

which for an isotropic phase leads to for = 0. The approach
to obtain the packing free energy fpack depends on the phase
state, as detailed in the following sections.

B. Isotropic and nematic phase

The free energy of the fluid phases without long-ranged po-
sitional order, the isotropic and nematic phases, was described
by Onsager up to the second virial term, which is proportional
to the orientationally averaged excluded volume [28]. This

gives an exact solution for rod dispersions in the limit of
infinitely long and thin rods (L/D → ∞). At finite L/D rods
are commonly represented as spherocylinders, i.e., cylinders
equipped with a hemispherical endcap at either tip, for which
higher-order virial terms need to be somehow included. This
can be done using the approximate scaled particle theory
(SPT) or Parsons–Lee (PL) equations of state, which provide
reasonably accurate approximations of fpack [29–32]. The SPT
and PL expressions of fpack are, respectively, [29–32]:

fpack,SPT

η
= − ln (1 − η) + a

η

1 − η
+ 1

2
b

η2

(1 − η)2
, (4)

and

fpack,PL

η
= 4η − 3η2

4(1 − η)2

(
4 + z

3(� − 1)2

3� − 1

)
, (5)

with

a = 3 + z
3(� − 1)2

3� − 1
,

b = 12�(2� − 1)

(3� − 1)2
+ z

12�(� − 1)2

(3� − 1)2
,

z = 4

π

∫∫
ψ (�)ψ (�′)| sin γ |d�d�′.

Here � = L/D + 1 and γ is the angle between two sphero-
cylinders with solid angles � and �′.

For an isotropic phase z reduces to 1, while for the ne-
matic phase it is more complex and an expression for ψ (�)
is required. Minimization of the free energy can be done
numerically [33,34] or using a trial function which enables
an analytical solution. While an accurate trial function has
been proposed by Onsager in his original paper [24,28], we
will use the simpler Gaussian distribution introduced by Odijk
following from the limit of strongly aligned rods (large κ)
[35,36]:

ψ (θ ) ≈
{

(κ/4π ) exp [−(1/2)κθ2] 0 � θ � π/2,

(κ/4π ) exp [−(1/2)κ (π − θ )2] π/2 � θ � π,

(6)

where θ is the polar angle with respect to the director of the
nematic phase and the parameter κ , related to the width of
the distribution, is found from the leading order asymptotic
expressions for the orientational averages in for and fpack

and subsequent minimization ∂ f /∂κ = 0. This leads to the
following expressions:

for

η
≈ ln κ − 1, (7)

z ≈ 4√
πκ

, (8)

κSPT ≈ 9(� − 1)4

4π (3� − 1)2

(
4η

1 − η
+ 8�

3� − 1

η2

(1 − η)2

)2

, (9)

κPL ≈ 9(� − 1)4

4π (3� − 1)2

(4η − 3η2)2

(1 − η)4
. (10)

To partially correct for the approximate nature of the Gaus-
sian ψ (θ ) a value of −0.139 is added to f /η for the nematic
phase to improve the comparison with simulation results [37].
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This value is the free energy difference in the Onsager limit
(L/D → ∞) between the Gaussian approximation and the
exact numerical result [38]. The total free energy expression
of the isotropic and nematic phase thus becomes [37]:

fI = fid + fpack, (11)

fN = fid + for + fpack − 0.139η. (12)

Upon comparing the resulting osmotic pressure and phase
behavior with simulation results [6,7], we found that the SPT
approximation is the most accurate for long rods (Onsager
limit), while the PL approximation is the most accurate for
short rods (sphere limit). Therefore we have used the follow-
ing interpolation ansatz:

fI/N = gfI/N,SPT + (1 − g) fI/N,PL, (13)

with the sigmoidal function:

g = 1

1 + e�t−�
, (14)

where �t = 6 represents the typical transition value connect-
ing the Onsager limit (� → ∞) and the sphere limit (� → 1).

C. Smectic-A Phase

Graf and Löwen [20] numerically solved an extended
cell theory model for the smectic-A phase. In their model,
spherocylinders are assumed to be confined in discrete layers
with spacing �⊥ while the particles can freely move within
these layers. The free energy of the smectic-A phase is split
into the following terms:

fSmA = fid + for + fpack, (15)

= for + f‖ + f⊥, (16)

where f‖ is the free energy related to the fluid-like behavior
in the two dimensions parallel to the layers and f⊥ is the
free energy related to the positional order in the dimension
orthogonal to the layers. We first consider f‖ and f⊥ separately
after which we minimize the total free energy with respect to
ψ (�) and the layer spacing �⊥.

In the case of perfectly aligned rods, the equation of state
of a two-dimensional (2D) fluid of hard disks with diameter
D describes the pressure 2D in the dimensions parallel to the
layers. While there is no exact expression for this fluid phase,
there are accurate approximations for the entire concentration
range [39]. The following simple scaled particle theory result
is used [40]:

2D

ρ2DkBT
= 1

(1 − η2D)2 . (17)

where η2D = a0ρ2D is the area fraction of spherocylinders
with ρ2D the number of particles per unit area in a smectic
layer and a0 = πD2/4 the particle area. This expression is
accurate up to η2D ≈ 0.7, close to the fluid–solid transition of
hard disks, where the compressibility from SPT only deviates
less than 3% from simulation results [41]. The area fraction is
related to the volume fraction η in the following way:

η = v0

a0

η2D

�⊥
= 3� − 1

3�̄⊥
η2D, (18)

where �̄⊥ = �⊥/D and � = L/D + 1. This leads to the
following free energy f‖ for perfectly aligned spherocylinders:

f‖,al

η
= ln

(
η2D�2

a0

)
− 1 − ln (1 − η2D) + η2D

1 − η2D
. (19)

Upon accounting for rotations of the rods, the excluded
area projected by a single rod should increase. We define aeff

as the effective projected lateral area occupied by each sphero-
cylinder within the layer. The size Deff could be interpreted as
the orientationally averaged minimal (i.e., at particle contact)
center-of-mass distance between spherocylinders. Previously,
a definition based on the orientationally averaged width of a
spherocylinder in the plane of the layers was used [20]:

Deff

D
= D̄eff = 1 + (� − 1)

∫
ψ (�)|� · �θ=π/2|d�. (20)

Here |� · �θ=π/2| is the dot product of the solid angles �

and �θ=π/2, where θ is the polar angle with respect to the
director of the smectic-A phase. However, this definition does
not take into account configurations of other spherocylinders
and thus overestimates D̄eff . The resulting overestimated loss
of entropy and other discrepancies were corrected by adding
a (negative) free energy term based on comparisons with
simulation results [7].

A similar problem appears for the columnar phase of
plates upon quantifying an effective length L̄eff of the plates
confined in hexagonal tubes [21,22]. Likewise a single particle
integral was used, but to compensate for the other particles
and the averaging over the azimuthal angle a prefactor 1/2
was introduced in front of the integral. The benefit of adding
a correction in the definition of L̄eff or D̄eff opposed to the
addition of a free energy term is that it leads to more realistic
values for ψ (�) and for that are comparable to those for the
nematic phase.

Thus, we choose to rescale the integral from Eq. (20) by a
factor A leading to the following definition of the effective rod
diameter D̄eff :

D̄eff ≈ 1 + A(� − 1)
∫

ψ (�)| sin(θ )|d�, (21)

where A was chosen such as to fit the resulting equations
of state and nematic–smectic-A phase transitions to those
obtained from computer simulations [6,7]. This means the
factor A varies depending on whether the equations of state
for the nematic phase is based on SPT (A = 0.41η) or PL (A =
0.28η) and hence we have used the interpolation A = 0.41ηh
with h = g + (1 − g)0.28/0.41. As the smectic-A phase is
expected to be the preferred phase state near η ∼ 0.4 − 0.6,
A attains values near 0.1 − 0.2, which is significantly smaller
than the factor A = 1/2 proposed for plates. The difference
may be related to the additional degree of freedom within the
confined layers as opposed to the confined hexagonal tubes
leading to a relatively larger number of configurations of the
particles at shorter distances. Unrelated discrepancies in the
free energy from for instance the penetration of rods in other
layers would also influence the value of A. Additionally, it was
found that instead of taking A as a constant the inclusion of
linear η dependence led to an improvement especially when
comparing the resulting equations of state with computer
simulation results. The free energy of a system of effective

062707-3



PETERS, VIS, WENSINK, AND TUINIER PHYSICAL REVIEW E 101, 062707 (2020)

2D disks can be obtained from Eq. (19) by substituting a0 with
aeff and η2D with η2Daeff/a0 = η2DD̄2

eff [20]:

f‖
η

= ln

(
η2D�2

a0

)
− 1 − ln

(
1 − η2DD̄2

eff

)
+ η2DD̄2

eff

1 − η2DD̄2
eff

. (22)

For the dimension orthogonal to the layers, we consider a
1D lattice with a lattice spacing �⊥. From cell theory [42]
it follows that the free energy is related to the free space
available to the rod. As the rod is confined in a cell of length
�⊥, the free space is simply given by �⊥ − L − D. The free
energy in the dimension orthogonal to the layers thus becomes
[20]:

f⊥
η

= ln
�

D
− ln (�̄⊥ − �). (23)

The total free energy expression can now be obtained from
Eq. (16). Recalling the different entropic contributions in
Eq. (15) we write the packing free energy as follows:

fpack

η
= − ln

(
1 − η2DD̄2

eff

) + η2DD̄2
eff

1 − η2DD̄2
eff

− ln (1 − �/�̄⊥). (24)

Now for, D̄eff , and �̄⊥ can be determined by simultaneously
minimizing the total free energy with respect to ψ (�) and �̄⊥.

Free energy minimization

Given that the free energy only depends on single particle
orientational integrations, it is possible to carry out the mini-
mization with respect to ψ (�) analytically. The minimization
equation reads as follows:

A(� − 1)

[
4η2DD̄eff(

1 − η2DD̄2
eff

) + 2η2
2DD̄3

eff(
1 − η2DD̄2

eff

)2

]
| sin θ |

+ log [4πψ (θ )] − λ = 0, (25)

where λ is the Lagrange multiplier ensuring the normalization
of ψ (θ ) [cf. Eq. (2)]. This leads to the following expression
for the orientational distribution function ψ (θ ):

ψ (θ ) = Z−1 exp [−κ| sin θ |], (26)

with

κ = A(� − 1)

[
4η2DD̄eff(

1 − η2DD̄2
eff

) + 2η2
2DD̄3

eff(
1 − η2DD̄2

eff

)2

]
, (27)

and

Z =
∫

exp [−κ| sin θ |]d�. (28)

Similar to the nematic phase, the spherocylinders are
strongly aligned so that κ 
 1. Therefore, we again retain
only the leading order contribution for κ 
 1, which is an
exponential distribution:

ψ (θ ) ≈
{

(κ2/4π ) exp (−κθ ) 0 � θ � π/2,

(κ2/4π ) exp (−κ (π − θ )) π/2 � θ � π.
(29)

This leads to

D̄eff ≈ 1 + A(� − 1)
2

κ
= 1 + ξ, (30)

for

η
≈ 2 ln κ − 2, (31)

where ξ can be interpreted as the effective increase in diam-
eter. It should be noted that for a columnar phase of platelets
with an effective length L̄eff the same form of Eqs. (29)–(31)
was obtained [21,22].

The value of ξ can be found by inserting Eq. (30) into
Eq. (27):

2

ξ
= κ

A(� − 1)
= 4η2D(1 + ξ )

1 − η2D(1 + ξ )2
+ 2η2

2D(1 + ξ )3

[1 − η2D(1 + ξ )2]2
.

(32)

It follows that ξ and thus D̄eff are only a function of η2D, so
fpack does not depend on A. Instead, the parameter A is only
important for for/η through the term 2 ln A. Thus adjusting A
to correct the free energy is essentially equivalent to adding
an extra free energy term as in previous work [20].

To solve Eq. (32) we multiply both sides with [1 − η2D(1 +
ξ )2]2 and take the leading order expression for ξ � 1:

κ ≈ 2A(� − 1)
6η2D − 5η2

2D

(1 − η2D)2
. (33)

Interestingly, it hardly matters whether one takes Eq. (29) or
the same trial function as for the nematic phase [Eq. (6)]; D̄eff

and fpack have equal results and for/η is only increased by the
additional term 1 − ln (8/π ), which is a few percent at most
for small L/D. Similarly, minimizing the free energy of the
nematic phase using Eq. (29) results in a similar expression
for fpack and increases for/η with a similar magnitude by the
additional term 2 ln (15

√
π/16) − 1. The difference between

the use of a Gaussian or exponential distribution for the ori-
entational distribution function ψ (θ ) for these liquid crystal
phases is therefore almost negligible.

Since η2D is a function of �̄⊥, a minimization of the
free energy with respect to �̄⊥ also requires simplifications
in order to maintain tractable analytical expressions. It is
convenient to first use η2D = ζ �̄⊥/�, with ζ defined by

ζ = 3�

3� − 1
η. (34)

Minimizing the free energy with respect to �̄⊥/� and taking
the leading order contribution in the limit �̄⊥/� → 1 gives

�̄⊥
�

= 1 + (6 − 5ζ )(1 − ζ )2(1 − 27ζ + 41ζ 2 − 16ζ 3)2∑9
i=0 kiζ i

,

(35)
where the values of the constants ki are listed in Table I and a
full derivation is given in Appendix A.

D. AAA crystal phase

The free energy of the AAA crystal phase can also be
described by a cell theory model similar to the numerical
solution of Graf and Löwen [20]. Here each spherocylinder is
confined in a discrete hexagonal prism with a cross-sectional
area of

√
3�2

‖/2 and height �⊥. The height of these prisms
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TABLE I. Values for ki in Eqs. (35) and (C3).

k0 12 k4 −288 904 k8 −105 024
k1 −385 k5 534 956 k9 14 080
k2 −4 980 k6 −553 098
k3 75 048 k7 328 296

�⊥ is similar to the lattice spacing used for the smectic-A
phase. The hexagonal prism is the Wigner–Seitz cell [43] of
perfectly aligned spherocylinders in an AAA crystal. It fol-
lows that the volume of this cell equals the available volume
per particle 1/ρ:

1

ρ
=

√
3�2

‖�⊥
2

. (36)

The close-packed volume fraction of an AAA crystal, where
�‖ → D and �⊥ → L + D is thus

ηcp,AAA = π (3� − 1)

6
√

3�
, (37)

and it follows that

�̄⊥ = x�

�̄2
‖
, (38)

where x = ηcp,AAA/η and �̄i = �i/D. For aligned sphero-
cylinders the free volume in this cell is given by

Vfree,al =
√

3(�‖ − D)2(�⊥ − L − D)

2
. (39)

This leads to the following free energy for aligned sphero-
cylinders:

fAAA,al

η
= ln

�3

v0
− ln

6
√

3

π (3� − 1)

− ln (�̄‖ − 1)2 − ln (�̄⊥ − �), (40)

or using Eqs. (37) and (38):

fAAA,al

η
= ln

�3

v0
+ ln ηcp,AAA − ln (�̄‖ − 1)2

− ln

(
x

�̄2
‖

− 1

)
. (41)

This free energy represents the free energy of a 2D lattice
of disks combined with that of a 1D lattice, representing
the projections perpendicular and parallel respectively to the
(fixed) direction of each rod. To remain consistent with the
treatment of the smectic-A phase, the effect of weak orienta-
tional fluctuations of the rods is estimated by substituting the
free energy of the lattice of 2D disks with that of effective 2D
disks with diameter Deff as described in Eq. (21):

fAAA

η
= for + ln

�3

v0
+ ln ηcp,AAA

− ln (�̄‖ − D̄eff )2 − ln

(
x

�̄2
‖

− 1

)
, (42)

where the parameter A = 0.225ηh in the definition of Deff

was chosen based on comparison with simulation results for

FIG. 2. Two types of free area in a 2D hexagonal crystal are
indicated for the central particle. The yellow area denotes the free
area the particle has when confined within the Wigner–Seitz cell,
which is indicated by the solid lines. The red and yellow area
combined denote the free area the particle has within the confinement
of the neigboring particles.

the equations of state and the AAA–ABC phase transition
[6,7]. The dependence of the parameter A on the volume
fraction η again leads to an improvement in the comparison
with the equations of state from the simulations. This value
of A is however significantly lower than for the smectic-A
phase and this is most likely due to an underestimation of
the free volume from neglecting the penetration of rods into
neighboring cells.

We should note that the expressions for the free energy of
disks in a 2D fluid or lattice lead to a significant deviation on
the fluid–solid phase transition observed in computer simu-
lations [44,45]. Better agreement is obtained by using a free
energy for the 2D lattice based on the free area of a particle
confined by their neighboring particles which are fixed on
their average position [45,46]. To illustrate the difference in
free area with confining the particle into a Wigner–Seitz cell,
an example is given in Fig. 2. The shape of the free area
resembles a hexagon in both cases, but the length scale of this
hexagon differs by a factor 2 and thus the area by a factor ∼4.
This leads to an extra constant term − ln 4 to the free energy
per particle f /η. Using a similar approach for the free length
of a 1D lattice f /η would decrease by − ln 2. In the case of the
smectic-A and AAA phase this would lead to an extra constant
term − ln k with k = 2 and k = 8 respectively. This extra term
was absorbed in the correction by the parameter A, but when
we decouple A and k for the smectic-A and AAA phase, we
would obtain A = 0.58ηh and A = 0.64ηh, respectively. The
difference in the parameter A is thus much smaller when the
factor k is considered. For simplicity we have, however, only
included parameter A in our expressions as the free energy is
equivalent and the factor k can only be approximated.

Free energy minimization

The free energy of Eq. (42) is minimized with respect to
ψ (�) under the normalization constraint and leads to

2A(� − 1)

�̄‖ − D̄eff
| sin θ | + log [4πψ (θ )] − λ = 0. (43)
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By defining a parameter κ as

κ = 2A(� − 1)

�̄‖ − D̄eff
, (44)

the resulting ψ (θ ), D̄eff , and for can be approximated for
κ 
 1 similar to Eqs. (29), (30), and (31). This means that
also for the AAA phase the parameter A is only affecting
the contribution 2 ln A but not D̄eff . The parameter κ is found
analytically from solving Eq. (44) using Eq. (30):

κ = 4A(� − 1)

�̄‖ − 1
. (45)

Minimizing the free energy of Eq. (42) with respect to �̄‖
provides the following analytical solution for �̄‖:

�̄‖ = 61/3x + (9x + x
√

3(27 − 2x))2/3

62/3(9x + x
√

3(27 − 2x))1/3
. (46)

In the close-packed limit (x = 1) this expression reduces to
�̄‖ = 1 as expected. From Eq. (38) the value of �̄⊥ can
also be obtained. Note that for aligned spherocylinders the
expressions �̄‖ = x1/3 and �̄⊥ = �x1/3 are obtained. This
result was used by Graf and Löwen [20] instead of the free
energy minimization with respect to the lattice constants.

E. ABC crystal phase

To describe the free energy of the ABC crystal Graf and
Löwen also used cell theory [20]. Here, the free volume is
assumed to be shaped as a rhombic dodecahedron analogous
to the corresponding fcc crystal of hard spheres. In making
this assumption the distances between the particles are fixed in
a position that does not necessarily correspond to the free en-
ergy minimum. Thus we base our approach on the cell theory
result of Taylor et al. for aligned spherocylinders [47]. In this
theory each spherocylinder is confined to a discrete hexagonal
tube with a cross-sectional area of

√
3�2

‖/2 and height �⊥.
The ends of the tube are capped with hemi-dodecahedrons of
total volume

√
2�3

‖/2. The shape of these caps is based on the
shape of the Wigner–Seitz cell of an fcc crystal for spheres,
which is a rhombic dodecahedron. The cell is similar to that
of the AAA crystal except at the ends. The height �⊥ of the
hexagonal tube is therefore smaller than �⊥ for the AAA or
smectic-A phase. As these cells should be close-packed and
space-filling, the total volume of the cell is equal to 1/ρ :

1

ρ
= �2

‖,al

√
3�⊥,al + √

2�‖,al

2
. (47)

In the limit of �‖,al → D and �⊥,al → L this leads to
close-packing of hard spherocylinders:

ηcp = π (3� − 1)

6(
√

3(� − 1) + √
2)

. (48)

The expression for �̄⊥,al can be written as

�̄⊥,al = xal

�̄2
‖,al

(
(� − 1) +

√
2√
3

)
−

√
2�̄‖,al√

3
, (49)

where xal = ηcp/η. The free volume of the aligned sphero-
cylinders inside this cell is given by

Vfree,al = (�‖,al − D)2

√
3(�⊥,al − L) + √

2(�‖,al − D)

2
.

(50)

The free energy then becomes

fABC,al

η
= ln

�3

v0
− ln

6
√

3

π (3� − 1)
− ln (�̄‖,al − 1)2

− ln

(
(�̄⊥,al − (� − 1)) +

√
2√
3

(
�̄‖,al − 1

))
.

(51)

Using Eqs. (48) and (49) this can be rewritten as

fABC,al

η
= ln

�3

v0
+ ln ηcp − ln (�̄‖,al − 1)2

− ln

(
xal

�̄2
‖,al

− 1

)
. (52)

Notice the strong similarity with Eq. (41), where the only
difference is in the close-packed volume fraction.

To include orientational fluctuations a similar approach can
again be used by replacing the free energy of a 2D disk hexag-
onal crystal with that of an effective 2D disk with diameter
Deff . The subsequent free energy minimization is the same as
for the AAA crystal with the only difference being the filling
fraction at close-packing. While this suffices to reproduce the
equation of state and the phase coexistence curves obtained
from computer simulations [6,7], the agreement could be
improved even further. For the previously discussed phases
discrepancies in the free volume were corrected by the pa-
rameter A (or k), but for the ABC phase the discrepancy in the
tube free volume and the end caps is not necessarily the same
and thus a single parameter might be insufficient. Instead we
assume the free volume to take the following form:

Vfree = (�‖ − Deff )2

√
3(�⊥ − L) + √

2B(�‖ − D)

2
, (53)

where we have introduced a second correction parameter B,
which is assumed constant. The relation between �⊥ and �‖
is now approximated as:

�̄⊥ ≈ x

�̄2
‖

(
(� − 1) +

√
2B√
3

)
−

√
2B�̄‖√

3
, (54)

where x = ηref/η and

ηref = π (3� − 1)

6(
√

3(� − 1) + √
2B)

. (55)
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The free energy of the ABC crystal is then given by

fABC

η
= for + ln

�3

v0
+ ln ηref − ln (�̄‖ − D̄eff )2

− ln

(
x

�̄2
‖

− 1

)
, (56)

with parameters A = 0.239ηh and B = 1.16. Here the pa-
rameter B was chosen primarily to match with the osmotic
pressure data from the simulations of McGrother et al. [6]
which is unaffected by the interpolations. The parameter A
was chosen to match the ABC–smectic-A phase coexistence
simulation results [7], while retaining the same η dependence
as in the other phases. Notice that the value of A is quite
similar to that of the AAA crystal. After minimizing the free
energy Deff , for, and �̄‖ are given by Eqs. (30), (31), and (46)
with x = ηref/η and κ follows from Eq. (45). The expressions,
however, break down near the close-packing since the paral-
lel spacing becomes smaller than the spherocylinder length,
which is unphysical.

F. Phase behavior; binodals

The free energy expressions can be applied to predict
the phase behavior of hard spherocylinders. We calculate
the concentrations at the binodal by solving the coexistence
equations for the phases I and II:

μ̃I = μ̃II, (57)

̃I = ̃II. (58)

Here the normalized chemical potential μ̃ = μ/(kBT ) fol-
lows from μ̃ = ∂ f /∂η and the normalized pressure ̃ =
v0/(kBT ) follows from ̃ = ημ̃ − f . Using Eqs. (13), (15),
(42), and (56) the expressions for μ̃ and ̃ of the isotropic,
nematic, smectic-A, AAA and ABC phase are given in Ap-
pendixes B, C, and D. By solving Eqs. (57) and (58) for two
of these phases, the concentrations at the binodal of these two
phases is obtained. At a specific L/D and η the single phase
or phase coexistence with the lowest f is the most stable. For
certain L/D it is also possible to have coexistence with a third
phase, where μ̃I = μ̃III and ̃I = ̃III holds in addition to
Eqs. (57) and (58).

III. RESULTS AND DISCUSSION

Here we will study the accuracy of the analytical free
energy expressions for the smectic-A, AAA crystal, and ABC
crystal phases in predicting the phase behavior of hard sphe-
rocylinders. We put less emphasis on the isotropic–nematic
phase transition as this has already been examined more in
depth using both PL and SPT theory [24,37]. First we focus
on verifying the analytical free energy of the smectic-A phase
by comparing it to numerical results. The predicted excess
free energy, for + fpack, of the smectic-A phase for aspect
ratios L/D = 5, 50, and 500 is plotted in Fig. 3 for both
numerical minimization of Eq. (15) (data points) and the
simplified analytical minimization of Sec. II C (solid curves).
It is clear that the difference between the simplified analytical
and numerical minimization is negligible for η � 0.25 in all

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

Volume fraction

f ro
t+
f p
ac
k

L/D=500
50

L/D=5

FIG. 3. Volume fraction dependence of the excess free energy of
the smectic-A phase of Eq. (15), for + fpack. Free energy obtained
using numerical minimization (data points) is compared to approxi-
mate analytical results (solid curves) for aspect ratios L/D = 5, 50,
and 500, where both use the correction parameter A = 0.41ηh based
on fits to the simulation data [6,7].

cases. At lower volume fractions the assumption of κ 
 1 and
the analytical expression break down due to relatively large
orientational freedom for dilute rods. The smectic-A phase is
however metastable at those rod concentrations [6,7], so this
deviation is irrelevant for our purpose. The same arguments
hold for the crystal phases.

Next we show in Fig. 4(a) comparison of our analytical
equations of state with simulation results for various L/D
values [6,7] [see Eqs. (B6), (C2), and (D2) for the explicit
equations for the osmotic pressure]. For the smectic-A and
ABC phase we find good agreement for all studied L/D values
in comparison to the simulation results of McGrother et al.
[6] The simulation results of Bolhuis and Frenkel [7] show a
slightly lower osmotic pressure for the smectic-A and crystal
phases. The inclusion of η in A leads to an additional term in
̃ of 2η, which is the approximate difference between the un-
corrected pressure of the smectic-A phase and the simulation
results for all L/D values. The agreement with simulations is
a strong improvement with respect to the reported equations
of state from density functional theory [18].

The phase coexistences resulting the analytical equations
of state are as plotted (curves) in Fig. 5 as a function of the
inverse aspect ratio D/L. The phase behavior is compared to
Monte Carlo simulation results (data points) for hard sphe-
rocylinders [7]. A particular region of interest in this work
is the nematic–smectic-A coexistence, which is in reason-
able agreement with the simulations. The coexistence drops
slightly to lower volume fractions as D/L is decreased. For
this coexistence the best agreement with the simulations was
achieved for short rods using PL for the nematic phase and
A = 0.28η as correction parameter for the smectic-A phase.
Due to inconsistencies between the two theories however, the
transition drops to volume fractions below 0.3 for D/L � 0.1.
Using SPT for the nematic phase the best agreement for
short rods was achieved with A = 0.41η, which still retains
a similar concentration range for the phase transition of long
rods. The main issue with SPT, however, is that it leads to
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FIG. 4. Predicted equations of state (curves) for hard spherocylinders of aspect ratio L/D = (a) 3.4, (b) 4, (c) 5, and (d) 40 as indicated.
The symbols are simulation results from McGrother et al. [6] (filled) and from Bolhuis and Frenkel [7] (open).

different triple points for short rods: the nematic phase is
predicted to become stable at higher D/L than the smectic-A
phase. Thus while the SPT free energy expressions provides a
better general description, it is more appropriate to use the
Parsons–Lee description for the short rod region. This has
led to our use of the aforementioned sigmoidal interpolation
between the two equations of state. Note that a higher value of

FIG. 5. Phase diagram of hard spherocylinders in terms of the
volume fraction η and inverse aspect ratio D/L. Curves are our
predictions based on algebraic expressions for all phase states. The
data points are simulation results from Bolhuis and Frenkel [7].

A would shift the phase coexistence to higher volume fractions
for all L/D. Without any correction, the volume fraction
of the nematic–smectic-A coexistence curves would increase
by about 0.1–0.2. The choice of parameter A for the ABC
and AAA phase gives excellent agreement with simulations
for the smectic-A–ABC and AAA–ABC phase coexistence.
Additionally, the smectic-A–AAA, isotropic–smectic-A and
isotropic–ABC phase coexistence conforms to computer sim-
ulations, while these did not directly influence the choices
for A.

Comparing the results in Fig. 5 to the previous numerical
results by Graf and Löwen [20], the agreement with simula-
tions of all coexistence curves is improved. The main reason
for the improvement of the nematic–smectic-A coexistence
curve comes from a more accurate choice for the nematic
free energy and the inclusion of η in the correction term.
For both crystal phases the improvement comes from the
free energy minimization over the lattice constants and the
different corrections in A and B. The most recent density
functional theories on the nematic–smectic-A phase transition
[17–19] have shown improved or comparable agreement for
short rods with simulations. The main deviation between our
results and density functional theory results is in the order
of the nematic–smectic-A transition at small D/L. While the
order of the transition could not be determined conclusively in
simulations [7], it is implied in our method that all phase tran-
sitions represent discontinuous first-order phase transitions.
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Density functional theory however predicts for long rods that
the nematic–smectic-A phase transition becomes a continuous
second order phase transition after a certain tricritical point
[15,16,18,19], but the location of this point is unclear. Similar
to our results in the Onsager limit (D/L → 0) the bifurcation
point of this second-order phase transition is predicted to be
near η ∼ 0.4 [16,19,48], which is slightly below the value
found in the simulations. Interestingly, simulations performed
for semiflexible hard spherocylinders revealed this phase tran-
sition to be first order [13].

In addition density functional theory, and in particular
fundamental measure theory, has been extended to include
arbitrary convex particle shapes, though it remains numeri-
cally involved [49,50]. As our focus has been on deriving
algebraic free energy expressions for hard spherocylinders
in particular, the presented expressions are not applicable
for different particle shapes. For similar uniaxial and convex
shaped particles as regular hard cylinders [22] or hexagonal
plates it should however be possible to use our methodology
to derive algebraic free energy expressions by adjusting the
geometrical considerations behind the excluded volume (fluid
phases) and cell free volume (crystalline phases).

IV. CONCLUDING REMARKS

We have presented a comprehensive algebraic description
for the free energies of the principal thermodynamic phases
(including the smectic-A, AAA, and ABC phase) of hard rod-
like particles providing expressions for the equations of state.
Based on previous numerical calculations, these expressions
provide a computationally straightforward method to predict
phase coexistences, while providing additional structural in-
formation for the smectic-A and crystal phases in terms of the
equilibrium lattice spacings. Using empirical corrections for
the nematic, smectic-A, AAA, and ABC free energies, we find
that the predicted phase behavior is in quantitative agreement
with results from computer simulations and density functional
theory. An important advantage of the algebraic free energy
expressions is that they pave the way towards more realistic
descriptions of colloidal liquid crystals based on perturbation
or free volume theories in which the effects of soft rod-rod
interactions (generated by, e.g., van der Waals, depletion or
electrostatic forces) can be incorporated. This is particularly
relevant for understanding the role of rod flexibility and soft
interactions in driving the competitive stability of smectic,
columnar and crystal order in suspensions of rod-shaped
colloids, which remains an outstanding issue.
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APPENDIX A: MINIMIZATION OF LATTICE SPACING

For the minimization of the free energy with respect to
�̄⊥/� it is convenient to first express the derivative of f /η
with respect to η2D:

η2D
∂ f /η

∂η2D
= 2(6 − 4η2D)

(6 − 5η2D)(1 − η2D)
+

(
1(

1 − η2DD̄2
eff

)2 − 1

)

×
(

1 − 4
(1 − η2D)(3 − 2η2D)

(6 − 5η2D)2η2DD̄eff

)
. (A1)

This allows us to write the minimization condition as

∂ f /η

∂�̄⊥/�
=

(
η2D

df /η

dη2D
+ 1

1 − �̄⊥/�

)
�

�̄⊥
= 0. (A2)

The left-hand side of Eq. (A2) can be rewritten as a polyno-
mial of �̄⊥/� by multiplying with a factor

�̄2
⊥

�2

(
1 − �̄⊥

�

)
(6 − 5η2D)(1 − η2D)2

× (
1 − 27η2D + 41η2

2D − 16η3
2D

)2
. (A3)

Taking the limit �̄⊥/� → 1 of the resulting polynomial leads
to a linear relation of �̄⊥/�, which is used to find the
approximate solution given by Eq. (35).

APPENDIX B: CHEMICAL POTENTIAL AND OSMOTIC
PRESSURE OF THE ISOTROPIC AND NEMATIC PHASE

The normalized chemical potential μ̃ and the normalized
pressure ̃ are given by μ̃ = ∂ f /∂η and ̃ = ημ̃ − f . Using
the free energy expressions of Eqs. (11) and (12), which fol-
low ∂ f /∂κ = 0, this gives for both the isotropic and nematic
phase [37]:

μ̃SPT = fSPT

η
+ 1

1 − η
+ a

η

(1 − η)2 + b
η2

(1 − η)3 , (B1)

μ̃PL = fPL

η
+ 1 + 2n − n2

2(1 − n)3

(
4 + 3(� − 1)2

3� − 1

)
, (B2)

μ̃ = g̃μSPT + (1 − g)μ̃PL, (B3)

̃SPT

η
= 1

1 − η
+ a

η

(1 − η)2 + b
η2

(1 − η)3 , (B4)

̃PL

η
= 1 + 2n − n2

2(1 − n)3

(
4 + 3(� − 1)2

3� − 1

)
, (B5)

̃ = g̃SPT + (1 − g)̃PL. (B6)

APPENDIX C: CHEMICAL POTENTIAL AND OSMOTIC
PRESSURE OF THE SMECTIC-A PHASE

The normalized chemical potential μ̃ and the normalized
pressure ̃ were calculated by μ̃ = ∂ f /∂η and ̃ = ημ̃ − f
using Eqs. (15) and (A1):

μ̃ = f

η
+ 1 + 2ηA′

A
+ η2D

df /η

dη2D

(
1 + ζ �̄′

⊥
�̄⊥

)

+ 1

1 − �̄⊥/�

ζ�̄′
⊥

�̄⊥
, (C1)
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TABLE II. Values for li in Eq. (C3).

l0 891 l5 −101 462 282 l10 27 625 680
l1 −74 532 l6 173 571 605 l11 −5 499 680
l2 999 914 l7 −198 678 876 l12 487 680
l3 −8 373 233 l8 154 739 944
l4 37 933 935 l9 −81 271 047

̃

η
= 1 + 2ηA′

A
+ η2D

df /η

dη2D

(
1 + ζ �̄′

⊥
�̄⊥

)
+ 1

1 − �̄⊥/�

ζ�̄′
⊥

�̄⊥
, (C2)

where �̄′
⊥ is given by

�̄′
⊥

�
= −2(1 − ζ )(1 − 27ζ + 41ζ 2 − 16ζ 3)( ∑9

i=0 kiζ i
)2

12∑
i=0

liζ
i. (C3)

Here the values of the constants ki and li is given in Tables I
and II. While these equations were used for our results, it is
insightful to also give the leading order expressions, which are
exact for ∂ f /∂κ = 0 and ∂ f /∂�⊥ = 0:

μ̃ = f

η
+ 2ηA′

A
+ 1(

1 − η2DD̄2
eff

)2 , (C4)

̃

η
= 2ηA′

A
+ 1(

1 − η2DD̄2
eff

)2 . (C5)

These leading order equations have a maximum deviation of
around 6% for η � 0.4 and L/D � 3 with Eqs. (C1) and (C2).

APPENDIX D: CHEMICAL POTENTIAL AND OSMOTIC
PRESSURE OF THE CRYSTAL PHASES

The normalized chemical potential μ̃ and the normalized
pressure ̃ is given by μ̃ = ∂ f /∂η and ̃ = ημ̃ − f . Using
the minimized free energy expressions of Eqs. (42) and (56),
which follow from ∂ f /∂κ = 0 and ∂ f /∂�‖ = 0, this gives

μ̃ = f

η
+ 2ηA′

A
+ 1

1 − �̄2
‖/x

, (D1)

̃

η
= 2ηA′

A
+ 1

1 − �̄2
‖/x

, (D2)

where x = ηcp,AAA/η for the AAA crystal and x = ηref/η for
the ABC crystal.
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