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S
ituation awareness is a crucial component for intel-
ligent assistance systems and autonomous cars. Pre-
dicting the evolution of a traffic situation allows for 
the judgement of a critical situation and is the key 

to taking actions that mitigate danger. An accurate pre-
diction requires assumptions about possible driving paths 
that can only be defined if surrounding cars are located 
and assigned to particular driving directions. A common 
approach is to generate a local dynamic map (LDM) that 
contains representations of both dynamic and static ele-
ments of the driving scene. However, one of the biggest 
challenges is achieving a localization accuracy sufficient 
to reliably assign vehicles to lanes stored in the map. Aside 
from being essential for situation awareness, tackling this 
challenge facilitates further technologies, such as lane-
level navigation, which is why accurate localization can be 
seen as a key enabler for future advanced driver assistance 
systems (ADASs).

With an accuracy on the order of meters [1], standard 
Global Navigation Satellite Systems (GNSSs) meet the re-
quirements for road-level navigation but are not suitable for 
localization within a lane. The requirements for lane-level 
navigation have been addressed within a prenormaliza-
tion project with the title Satellite Positioning Performance 
Assessment for Road Transport (SaPPART) [2]. There, the 
horizontal accuracy requirements for lane-level naviga-
tion are specified to lie between several decimeters and 
one meter (95th percentile), which aligns with the accura-
cy targeted in our research. Differential GNSS techniques, 
including real-time kinematic (RTK) positioning, allow for 
the improvement of absolute accuracy beyond that level, 
but under specific conditions of use (e.g., in the presence 
of multipath effects, which are typical for urban environ-

ments) none of the local effects can be mitigated by using 
differential techniques.

To improve the accuracy and availability of the GNSS, 
it can be combined with additional technology based on 
other sensors. A common approach is to fuse inertial mea-
surement units (IMUs) with the GNSS to obtain low-cost 
localization solutions. The IMU provides positioning when 
no GNSS signal is available and enables continuous local-
ization. However, the accuracy of such systems is limited 
by the precision of the GNSS receiver. IMUs provide rela-
tive measurements that are accurate for a short period but 
drift over longer periods of time. The achievable accuracy 
is on the order of meters to centimeters (for RTK) while the 
drifts during satellite outages mainly depend on the grade 
of the inertial components [3].

The best results in terms of localization accuracy have 
been reported using lidar or radar-based techniques in 
combination with GNSSs and IMU [4]. However, lidar sen-
sors are expensive and a single lidar can easily exceed the 
price of the vehicle itself.

Camera-based technology is more cost efficient and can 
be used in combination with the GNSS and IMUs to localize 
a vehicle in a map with lane-level accuracy [5], [6]. One com-
mon characteristic of such approaches is the requirement for 
suitable underlying map geometry data, which can be stored 
in an LDM [7]. The definition of what to store continuous-
ly progresses along with research investigations related to 
automated driving [8]. In terms of contents, vectors (points, 
polylines, splines, or clothoides) describe natural and arti-
ficial objects such as center lines, road markings, borders, 
landmarks, or traffic signs. Point clouds that aggregated into 
different vectors, allowing for detailed 3D representations of 
the environment, present an additional type of content [4].

Abstract—The lane-level localization of vehicles with low-cost sensors is a challenging task. 
In situations in which Global Navigation Satellite Systems (GNSSs) suffer from weak obser-
vation geometry or from the influence of reflected signals, the fusion of heterogeneous in-
formation presents a suitable approach for improving the localization accuracy. We propose 
a solution based on a monocular front-facing camera, a low-cost inertial measurement unit 
(IMU), and a single-frequency GNSS receiver. The sensor data fusion is implemented as a 
tightly coupled Kalman filter that corrects the IMU-based trajectory with GNSS observations 
while employing European Geostationary Overlay Service correction data. Further, we con-
sider vision-based complementary data that serve as an additional source of information. In 
contrast to other approaches, the camera is not used to infer the motion of the vehicle, but 
rather for directly correcting the localization results under the usage of map information. 
More specifically, the so-called camera-to-map alignment is done by comparing virtual 3D 
views (candidates) created from projected map data with lane geometry features that are 
extracted from the camera image. One strength of the proposed solution is its compatibility 
with state-of-the-art map data, which are publicly available from different sources. We vali-
date the approach on real-world data recorded in The Netherlands and show that it presents 
a promising and cost-efficient means to support future advanced driver assistance systems.
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The positioning accuracy of these objects is twofold: lo-
cally, i.e., with respect to each other, and globally, i.e., with 
regard to a global reference system. Global accuracy is cru-
cial for any use of the GNSS positioning within map-based 
applications, especially in the case of cooperative entities 
that share information based on maps that come from dif-
ferent makers.

A wide range of research actors generated high-defi-
nition (HD) maps with local and global subdecimeter ac-
curacy. These maps, which used to be rare experimental 
products [5], [9]–[11], cover specific areas or kilometers of 
highways. Although map makers are extending the cover-
age of their HD map portfolio, their products focus on cer-
tain cities or major roads and are not globally available.

In mobile mapping, the key issue everyone is facing re-
mains the accuracy of vehicle positioning. To date, most of 
the prototypes of industrial products do not document their 
global accuracy. There still are spots in time and space, 
particularly in deep urban centers, where even sophisti-
cated GNSS approaches such as post-processing kinematic 
(PPK) combined with IMU are not sufficient, or worse, not 
reliable. High-resolution aerial images by national map-
ping agencies are another source of raw data, possibly used 
jointly [12], [13]. By exploiting such aerial images, it is pos-
sible to achieve submeter localization accuracy.

It is obvious that the localization of a vehicle in a map 
requires not only accurate absolute positioning with re-
spect to a global reference frame but also a method for ac-
curately localizing the vehicle relative to the map. In this 
context, map-relative localization can be divided into two 
classes: 1) lane assignment, which refers to the estimation 
of the current ego-lane index [14], and 2) map alignment, 
which estimates the map-relative ego-vehicle position, de-
scribed in Cartesian or ellipsoidal coordinates [15]–[17].

Rabe et al. investigate particle filter-based lane assign-
ments while approaching intersections [18]. Ballardini  
et al. use hidden Markov models and line-detection algo-
rithms to perform a lane assignment on highways [19].

Hu and Uchimura present an approach for map align-
ment in which they generate potential virtual views based 
on digital map data that are compared to features de-
tected in the camera image [20]. Candidate-based align-
ment approaches that employ lane-detection methods are 

presented in [21]. More recently, 
Caselitz et al. show how to employ 
a visual odometry-based system in 
combination with panoramic lidar 
maps [22]. In their 3D map align-
ment approach, they use a local 
bundle adjustment to reconstruct 
3D points from image features that 
are then matched to the map data. 
Similar to us, they use a monocular 
camera for localization, with the 

difference that our research is based on 2D open-source 
map data. An approach based on lane markings to improve 
low-cost GPS, using a camera and open-source map data, is 
introduced by Lu et al. in [23].

In this article, we present a novel localization method 
based on two steps (see Figure 1). The first step covers 
the fusion of the GNSS and IMU to obtain a preliminary 
 position estimation. We employ a multiconstellation GNSS 
approach (GPS and Galileo) augmented with the Euro-
pean Geostationary Overlay Service (EGNOS) corrections, 
which results in a meter accurate absolute position that is 
the starting point of the second step. In this second step, 
a camera-to-map alignment (C2MA) algorithm is used to 
realize map-relative localization.

What distinguishes our work from related research is 
the integration of a tightly coupled GNSS/IMU filter spe-
cifically tailored to the application using EGNOS and Gal-
ileo in combination with C2MA. The latter leverages the 
advantages of an LDM implementation while only requir-
ing enhanced OpenStreetMap (OSM) data. One strength of 
our novel combination of components is the usage of visual 
alignment in the perspective view, which can be the basis 
for further technologies, such as augmented-reality ADAS.

The purpose of our method is to enable low-cost local-
ization within a map that can be used, e.g., for situational 
awareness and decision making in driver assistance and 
autonomous driving applications. Our approach is low cost 
in two critical aspects: 1) the generation of the map, build-
ing upon available crowdsourced data instead of generat-
ing costly ad hoc 3D maps, and 2) the sensorization of the 
localization system, requiring only a GNSS receiver, an 
IMU, and a monocular camera. The advantage of this sen-
sor setup is its availability in a wide range of current pro-
duction vehicles that could be equipped with our system at 
almost no additional cost. There are no conceptual issues 
that hinder our approach to run on entry- and middle-class 
vehicles in the near future.

Methods
The location of an object can be defined with respect to an 
underlying map. In this case, the map serves as a refer-
ence frame, hereafter referred to as map frame (m-frame, 
superscript m), which can be accessed by using the map 

Global accuracy is crucial for any use of the GNSS positioning 
within map-based applications, especially in the case of 
cooperative entities that share information based on maps that 
come from different makers.
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coordinates of the mapped features. Thus, any localization 
technique that uses the coordinates of mapped features is 
sensitive to the position in the map frame. Assuming that a 
map is locally accurate while not guaranteeing global ac-
curacy, the coordinates of the objects in the m-frame may 
deviate from their corresponding coordinates determined 
by the GNSS-based methods. The GNSS provides positions 
in the terrestrial reference frame (e-frame, superscript e) 
that are accessible through satellite positions, which are 
given in the e-frame. Local map accuracy is characterized 
by transformations between the e-frame and the m-frame 
coordinate for neighboring features of the map.

Consider a GNSS-based position estimate in the e-frame 
pe  that will be transformed to a map-relative position esti-
mate .pm  Introducing a translation parameter ,de  we can 
express the relationship between pe  and pm  as

 .p p dm e e= +  (1)

This relation presents the basis for our map-relative lo-
calization procedure. The first step is the estimation of pe  
using the GNSS and the second step is aligning this posi-
tion with the map to find ,de  with which we obtain .pm

Note that using vision-based map alignment starting 
from a GNSS-based position estimate ,pe  we observe de  as 
the superposition of a bias in the GNSS-based estimate of  
pe  and of the map offset, which cannot be separated. Yet, 
when recognizing the possibility of a local shift between 
the m-frame and the e-frame, we can still estimate the 
map-relative positions using sensors that are sensitive to 
positions in at least one of the two frames, provided that de   
is observable with those sensors.

GNSS-Based Position Estimation
We obtain an estimate of pe  by exploiting a tightly coupled 
extended Kalman filter, which fuses the GNSS and IMU 
observations. The GNSS observations (pseudorange and 
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FIG 1 A pipeline of the localization approach. The first step is the fusion of GNSS, EGNOS, and IMU data. The second step is the camera-to-map alignment 
(C2MA) using publicly available road geometry information.
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 Doppler) are used to correct the predictions of the vehicle 
state x based on IMU measurements.

We choose the following state vector to describe the ve-
hicle kinematics and sensor-specific states:

 .x p v b b t t
.

e l
a
b

g
b

T

} d d= 8 B  (2)

The vehicle kinematics are described by their position 
in the e-frame pe  (expressed in Cartesian coordinates), 
the velocity vl  in the local-level frame (l-frame, north, 
east, down), and the Euler angles }  (roll, pitch, yaw) ex-
tracted from .Rb

l  Rb
l  is the rotation matrix describing the 

rotation between the axes of the body frame defined by the 
axes of the IMU (b-frame, superscript b) and the axes of 
the l-frame. 

The IMU accelerometer and gyroscope are known for 
showing a bias that needs to be estimated during opera-
tion: ba

b  is the accelerometer bias and bg
b  is the gyroscope 

bias, and both are expressed in the b-frame. td  and t
.
d  are 

the clock biases and the clock drift of the GNSS receiver. 
For each GNSS s in use, a separate receiver clock error tsd  
has to be estimated due to different time system realiza-
tions. The following subsequent differential equations de-
scribe the state kinematics:
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(3)

f b  presents the specific force and ib
b~  is the turn rate in 

the b-frame. ( )plc  stands for the gravity at pe  expressed 
in the l-frame. wa  and wg  are the random noises affecting 
the sensor biases and wt  is the random noise of the GNSS 
receiver clock drift. Note that this is a simplified model, as 
we neglect the effect of the Earth’s rotation.

An IMU is used to measure f b  and .ib
b~  We model the 

measurements as

 
f f b w

b w, ,

b
m
b

a
b

f

ib ib m
b

g
b~ ~

= - +

= - + ~
 (4)

where fm
b  is the measured specific force, ,ib m

b~  is the mea-
sured turn rate, ba

b  and bg
b  are the accelerometer and 

gyroscope biases, and w f  and w~  are the random mea-
surement noises.

A GNSS receiver provides pseudorange, phase, and 
Doppler observations. Here, we consider low-cost receiv-
ers that provide single-frequency multi-GNSS observa-
tions. All necessary information for computing a position 
(satellite orbits, satellite clock corrections, and ionospher-

ic model) is contained in the satellite signal. However, the 
quality of the broadcast data limits the achievable accu-
racy. A satellite-based augmentation system (SBAS) pro-
vides corrections to the broadcast data and an accurate 
ionosphere model, which enables meter-level accuracy for 
single-frequency users. EGNOS is the European SBAS. Its 
data can be received via either satellite or the Internet-
based EGNOS Data Access Service (EDAS) [24].

The observations are influenced by the receiver–satel-
lite geometry as well as by several other effects that need 
to be modeled. Thus, the following corrections are applied 
to the measured pseudoranges .t

 ■ The satellite clock offset is computed from the broad-
cast data.

 ■ The ionospheric delay for the L1 and E1 signals are 
computed from the EGNOS ionosphere model.

 ■ The tropospheric delay is computed from the SBAS 
Minimum Operational Performance Standard tropo-
sphere model.

For the GPS pseudoranges, we also apply the long-term 
clock correction and the fast corrections provided by EG-
NOS. The satellite positions pe

sat  and velocities ve
sat  are 

computed from the broadcast ephemeris. For GPS satel-
lites, we apply the EGNOS long-term orbit corrections. The 
Doppler observations to  are corrected for the satellite clock 
drift .tsatd

The observation models for the corrected pseudoranges 
corr, satt  and the corrected Doppler observations corr, satto  are

 p p t n ,
e e

scorr, sat sat sat< <t d= - + + t  (5)

 ( ) ,v R v
p p
p p

t n
.

,
e

l
e l T

e e

e e

corr, sat sat
sat

sat
sat

< <
t d= -

-

-
+ + to o  (6)

where n , satt  and n , satto  are the measurement noises of the 
pseudorange and Doppler.

We use (3) to derive our dynamic system model for the Kal-
man filter. The system model uses the IMU  measurements 
in (4) to predict the state. The measurement model is 
given by (5) and (6) and is used for correcting the predic-
tion whenever a set of the GNSS observations arrives. An 
important aspect of the correction step is measurement 
selection and weighting. We determine the weights of the 
observations based on the carrier-to-noise ratio reported 
by the receiver. Furthermore, we exclude erroneous mea-
surements using innovation gating.

Vision-Based C2MA 
While the previous section focused on localization in a 
global frame, we now present the C2MA approach, which 
allows for localization with regard to a local frame, i.e., 
with respect to the map. To estimate such map-relative ve-
hicle positions, the basic idea is to exploit visual cues de-
tected within the camera image, such as lane markings, 
curbs, or road texture, which are then compared to road 
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geometry information derived from the map. The lower 
box of Figure 1 briefly summarizes the steps of the pipe-
line, as follows:
1) retrieval of visible map data around the GNSS estimate
2) generation of virtual candidates based on map data
3) processing of visual data from the camera
4) calculating orientation-based feature vectors for candi-

dates and processed camera images
5) a best-match search based on a feature comparison 

between processed real-world data and virtual candi-
dates.
The following sections offer brief insight into our world 

model, the image processing pipeline, and the candidate 
comparison. More detailed descriptions can be found in 
[25]–[28].

Environment Representation
One major component for our approach is map data. With 
regard to ADASs, the main demands on map data are con-
sistency with the real world, frequent updates, high cover-
age, and easy editability. The three latter points are where 
crowdsourced and collaborative mapping projects excel. 
In our research, we choose map data from the communi-
ty-developed OSM project [29]. However, the drawbacks of 
OSM are its low level of detail and its varying accuracy. The 
geometry data provided by the OSM project is mostly re-
stricted to polylines that describe the center of a road [see  
Figure 2(a)]. Lane-level information, e.g., the number of 
lanes, is mostly added as a tag, but the geometric data of 
each individual lane or topological data on how lanes are 
connected is missing.

To use OSM for lane-level self-localization tasks, we 
need to enhance the geometry data. Knowing the number 
of lanes, we infer lane segment center lines based on the 
corresponding road center line [Figure 2(b)]. Then we con-
nect the lane segments on the topological level and inter-
polate the junctions between two related lane segments on 
geometric level [Figure 2(c) and (d)]. As a final step, the 
right and left boundary polylines are added, which leads to 
full lane-level geometry [Figure 2(e)].

With ADAS moving from an ego-centered perspective 
toward systems that additionally consider the environment 

around the vehicle, a coherent world model must be im-
plemented. In this context, we use our relational LDM 
(R-LDM) presented, e.g., in [27], which allows for receiv-
ing, integrating, storing, fusing, updating, and predicting 
ADAS-related data.

Similar to the LDM of the SAFESPOT integrated proj-
ect [7], our LDM consists of four layers that group entities 
based on their level of dynamics, with road geometry infor-
mation on its lowest layer. We want to emphasize that the 
static layer of our concept is not limited to enhanced OSM 
data, but can be used with any other forms of polyline-
based map data.

Lane Detection–Based Feature Extraction
To align map and camera data, we need to extract visual 
cues from the camera image. Lane markings are useful 
 visual cues since they are present and visible on most roads. 
Instead of explicitly mapping and storing each marking, we 
exploit the lane boundaries that have been generated in the 
map enhancement process. In early research, we applied 
common edge-detection algorithms, e.g., Canny edge de-
tection, to the camera image [30]. However, such approach-
es tend to overestimate image features, which can lead to a 
large number of false positives. Therefore, we propose the 
use of an explicit method to detect lane markings that was 
initially presented in [26], which is based on an evolution of 
the classic top-hat filter.

In the camera image, road patches close to the camera 
cover more image pixels than equally sized patches further 
away. To counteract this, we construct a bird’s-eye image 
using image-to-road homography, a technique also known 
as inverse perspective mapping (IPM) [31].

In the next step of lane-marking detection, the pairs of 
points that define the candidate lane marking pieces are 
transformed into the IPM domain, applying the image-to-
plane homography to each of its points. Then, a connected-
component analysis (CCA) is applied to group pairs into 
stripes. At this stage, stripes that do not correspond to lane 
markings are filtered out.

The output of the algorithm is a set of polylines in the 
camera image domain that define the detected lane mark-
ings and can be used as visual cues for the alignment 

(a) (b) (c) (d) (e)

FIG 2 An enhancement of map data: (a) center of the road, (b) center of lanes, (c) topological connections, (d) geometric connections, and (e) full geometry.
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 algorithm. Since most information value is contained in 
the lower part of the image, we define an area of interest 
by cutting the upper part of the camera image at position u 
(Figure 3). As long as the cut area contains no lane mark-
ing, this does not influence the results but improves the 
computation time.

Candidate Generation
The idea is to create a set of map geometry-based images, 
hereafter called candidates c, which are then compared to 
the real-world visual data obtained from a camera. Each can-
didate is a virtual perspective view of the map data, which all 
differ in their pose .ct  Here, we generally define the pose

 ( , )pc c
m

c}t =  (7)

as being a subset of the state or, more specifically, the 
composition of the candidate’s lateral, longitudinal, and 
vertical position pc

m  in the map frame as well as its Euler 
angles c}  (roll, pitch, and yaw), resulting in six degrees 
of freedom.

Each candidate c can be described by its pose difference 

 ,c c 0Tt t t= -  (8)

with 0t  acting as the so-called candidate zero that rep-
resents the presumed pose. This presumed pose is con-
structed on the GNSS-based position inputs and serves as 
an initial guess and to restrict the localization error.

The distribution of the candidates can be uniform, 
Gaussian, or chosen according to more sophisticated opti-
mization strategies while its search range highly depends 
on the expected accuracy of the presumed pose. In other 
words, the worse the expectation, the larger the required 
search range. To reduce the potential search range, we 
need information on the current lane, such as the lane 
number, as far as this information is available. This is re-
alized by tracking lane detections in consecutive frames.

Assuming that a vehicle is neither driving off the road 
nor on a lane that points to the opposite direction, we can 
set reasonable limits for the search range. However, the 
assumptions of being located on the road as well as the 
assumption of driving in the correct direction can be in-
correct in certain situations.

Candidate Comparison and Parameter Estimation
Keeping in mind that the map data are based on enhanced 
open-source information, we target a robust alignment so-
lution that does not necessarily require exact lane marking 
positions on the pixel level. Therefore, we choose to compare 
the virtual views and the preprocessed camera image based 
on the orientation of its features. This is done by applying 
the histogram of oriented gradients. Here, dominant orien-
tations are detected in local spatial regions to capture edge 
structures while being invariant toward local geometric and 
photometric transformations. The result is a flattened fea-
ture vector v that is determined for each candidate, as well 
as for the camera image that describes the locally dominant 
orientation. To compare candidates with the camera image, 
we choose the cosine angle related similarity score

 ,
v v
v vmc

c

c
rwv vv

rwv vv

$
$

< < < <
=  (9)

with vrwv  acting as the feature vector of the real-world 
view and vc

vv  as the feature vector of the c th virtual 
view candidate.

Using the parameters of the best match, the initially as-
sumed pose can be updated to obtain a map aligned pose. 
We want to stress that the pipeline allows for an alignment 
of up to six degrees of freedom. However, when assuming 
a flat environment, the vertical position as well as roll and 
pitch angles can be neglected.

Combining GNSS and C2MA 
The final step is the combination of the GNSS-based ab-
solute localization and the C2MA. The starting point of 

u

(a) (c)(b)

FIG 3 The highway situation (a) with its corresponding processed Canny edge (b) and lane-detection (c) images. The area of interest that is considered 
for the alignment is defined by u.
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the alignment is the output of the 
Kalman filter (the top box of Fig-
ure 1). Leveraging the alignment, 
the translation parameter de  can 
be interpreted as being the pose 
difference c3t  that belongs to the 
candidate with the best similar-
ity score.

de  is applied to every output of 
the absolute localization module to 
determine a map-relative position 
using (1). The C2MA can be triggered either by every output 
of the Kalman filter or at a lower rate. If the rate of the filter 
output is higher than the update rate of the alignment, de  
is maintained until a newer c3t  becomes available. The 
same strategy is applied if the alignment is not available, 
e.g., if the map situation or the image (obstruction of the 
relevant features) does not permit proper alignment.

Experiments and Evaluation
To illustrate the concept and potential of the described 
approach, we use real-world recordings that allow us to 
evaluate the GNSS/IMU localization as well as the C2MA 
with a globally accurate map. To record the data sets, we 
use a vehicle equipped with a stereo camera composed of 
two PointGrey Firefly MV RGB cameras, a u-blox EVK-M8T 
GNSS receiver with a patch antenna, an Xsens MTi-1 IMU, 
and a 3G/4G Wi-Fi router to have Internet connectivity for 
receiving the EGNOS corrections via EDAS. Aligned with 
our low-cost claim, we only use one of the two installed 
cameras for the following experiments.

The data have been recorded using the middleware RT-
maps to assure time synchronization of the data stream. 
We use RTMaps not only for record-and-replay testing, but 
also for online testing in the automobile, which allows us 
to reproduce similar algorithm behavior in the car and in 
the laboratory. We record raw GNSS observations with a 
rate of 2 Hz, turn rate and accelerations observed by the 
IMU at 100 Hz, and video at 60 fps. Those observation rates 
of the GNSS and IMU are chosen to capture the vehicle 
dynamics appropriately while keeping the computational 
load at a reasonable level. The GNSS/IMU filter processes 
the observations upon arrival and is operating at 100 Hz 
while the C2MA provides one position correction per sec-
ond (1 Hz) during real-time execution.

Localization Accuracy in a Globally Accurate Map
For the following evaluation, we selected a data set of a 
10-km drive recorded in the city of Eindhoven, The Neth-
erlands. In this experiment, the C2MA is done frame by 
frame, i.e., every output from the GNSS/IMU fusion is 
aligned. A reference trajectory was obtained by using the 
high-performance GNSS/IMU system OXTS RT3000 in 
PPK processing.

Evaluating map-relative localization algorithms proves 
to be difficult, since there is no general method for find-
ing ground truth for this task. Reference trajectories de-
termined by the GNSS are not suitable as the ground truth 
for map-relative localization if the map is inaccurate with 
respect to the e-frame. Therefore, we expended effort on 
geometrically correcting the map (shifting lane centers 
and correcting lane widths) based on high-resolution sat-
ellite images.

As a baseline, we evaluate the accuracy of the tightly 
coupled GNSS/IMU fusion descriabed in the “GNSS-Based 
Position Estimation” section. The cumulative density func-
tion of the lateral errors along the trajectory is shown in 
Figure 4, where it is compared to the lateral errors of the 
positions computed by the GNSS receiver. It can be seen 
that the fusion approach leads to a significant improve-
ment in the lateral accuracy. The plot of lateral errors (Fig-
ure 5) along the driven path shows several passages with 
degraded accuracy. In this exemplary evaluation, those 
passages are where the direct signal is blocked, e.g., due to 
trees, and only a reflected signal is received.

Figures 4 and 5 further show the reduced lateral er-
rors when adding the C2MA step to the localization system. 
Overall, the 95th percentile of the lateral errors of the full 
system is 0.95 m with a maximum error of 1.53 m while the 
nonaligned system results in a 95th percentile of 1.05 m 
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FIG 4 The cumulative density function of the lateral errors of the GNSS-
only, GNSS/IMU/EDAS, and GNSS/IMU/EDAS/C2MA localization modules 
with reference to the PPK–GNSS trajectory.

To illustrate the concept and potential of the described 
approach, we use real-world recordings that allow us to 
evaluate the GNSS/IMU localization as well as the C2MA  
with a globally accurate map.
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with a maximum error of 3.07 m. Most crucial are the im-
provements in situations in which the nonaligned position 
estimate shows significant errors (e.g., at longitudinal po-
sitions of 1,000 and 2,000 m). Here, the alignment allows 
for significant improvement of the position estimate.

The accuracy obtained from the GNSS/IMU/EDAS/
C2MA fusion meets the requirements for lane-level navi-
gation discussed at the beginning of this article. The 95th 
percentile of the lateral errors has been improved to the 
submeter level. The maximum error (100th percentile) can 
be reduced to 1.5 m, which is on the order of half the width 
of a lane [32] and can be seen as the minimum requirement 
for correct lane assignment [33].

Aligned Virtual View
In addition to position estimation, our approach natively 
enables further applications, such as augmented reality or 

similar human–machine interfaces. Since the C2MA ap-
proach visually aligns road geometry data with features 
in the camera image, any other map-related object can be 
projected onto the camera image as well.

Figure 6 shows two examples of augmented real-world 
views. In both images, the best virtual candidate of the 
C2MA is depicted with additional information overlaid. 
On the left, the output of the alignment is used to deliver 
navigation-related information such as the so-called path 
horizon, which is a set of possible paths. Further, we can 
provide driver assistance by displaying a virtual wall that 
serves as a visual separation between two lanes, which 
are shown on the right. The color or transparency of the 
virtual wall can convey additional information, e.g., by 
correlating with the distance of the ego-vehicle to the 
lane boundary.

Conclusion and Outlook
This article presents a novel two-step localization method 
based on the fusion of GNSS and IMU observations and the 
alignment of images from a monocular camera with open-
source map geometry. The real-world capabilities of the 
GNSS/IMU/EDAS subsystem have already been proven 
during end-user lane-level navigation tests in Barcelona, 
Spain, within the frame of the EU INLANE project [34]. 
The C2MA can be understood as an add-on that was tested 
on real-world recordings while currently reaching a per-
formance level of 1 Hz. Since it is implemented in Python 
and runs completely on the CPU, there is substantial room 
for optimization.

However, our first tests already reveal the potential of 
the alignment step to support localization, especially in 
situations in which satellite-based solutions struggle. We 
conclude that the accuracy of our map, as well as the 
quality of the C2MA, is suitable for improving the accu-
racy of the localization result with respect to the refer-
ence trajectory. The results of the evaluation lie within 
the range of the targeted accuracy requirements for lane-
related applications.

Since the improvement is already visible in a favorable 
GNSS environment, we expect the improvements for more 
difficult conditions to be even better. However, such envi-
ronments pose additional challenges. One weakness of our 
two-step approach is a situation in which GNSS/IMU errors 
cannot be corrected since the camera-to-map alignment is 
not available, e.g., when map geometry (complicated inter-
sections) or the vision (occlusion of the relevant features) 
do not permit proper alignment. Another challenge is giv-
en in situations in which degraded GNSS accuracy leads to 
ambiguous alignment results.

These challenges point to future research directions. 
Temporal filtering of the alignment results can help to 
solve or avoid ambiguous situations. Using the align-
ment result directly as an observation in the Kalman 

(a) (b)

FIG 6 The application examples for the C2MA: (a) path horizon and  
(b) virtual wall.
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filter can enable an estimation of errors in the GNSS 
observations, as shown in [5], which leads to improved 
localization accuracy. What also remains to be evalu-
ated is the inf luence of nonf lat road surface on the 
alignment result. Currently, we are neither considering 
road bumps nor any other kind of hilly environment. 
Neglecting height information in the map data also af-
fects special road structures, such as bridges, since lane 
markings of upper or lower roads cannot be separated 
in such cases.

Despite those remaining challenges, we believe that 
we have designed an innovative solution that enables lo-
calization on the lane level. This is achieved with low-cost 
sensors and without the restraint of requiring proprietary 
or HD map data. The full potential of our system is re-
vealed when considering how this lane-accurate localiza-
tion, a consistent LDM, and the set of map-aligned images 
can be used in combination. While lane-accurate local-
ization within the LDM is crucial for situational aware-
ness of the vehicle, the generated augmented real-world 
view can be used to support the driver in the current driv-
ing situation.
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