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Kohärenze�ekte in der Valenz-Photoionisation kleiner Moleküle

KURZFASSUNG

Die Untersuchung von Kohärenze�ekten in der Valenz-Photoionisation kleiner Moleküle

ermöglicht Einblicke in molekulare Strukturen und Dynamiken und gibt dadurch Auf-

schluss über einige fundamentale quantenmechanische Prozesse. Der Schwerpunkt dieser

Arbeit liegt auf derartigen Studien. Mittels Synchrotronstrahlung und der winkeldif-

ferenzierenden Flugzeitanalyse von hierbei emittierten Photoelektronen werden moleku-

lare Zwei-Zentren-Interferenzen für die Valenzelektronen der homonuklearen, diatomaren

Moleküle N2 und O2 untersucht. Es wird gezeigt, dass durch die Inversionssymmetrie

dieser Moleküle und die resultierende Unbestimmbarkeit des Emissionsortes der Pho-

toelektronen Interferenzen auftreten. Die winkelaufgelöste Photoelektronenstudie in

einem sehr groÿen Photonenenergiebereich von 20 bis 600 eV , die in dieser Arbeit

vorgestellt wird, zeigt erstmalig sogenannte 'Cohen-Fano Oszillationen' in der Win-

kelverteilungsanisotropie. Es werden zudem weitere relevante E�ekte der kohärenten

Photoelektronenemission vorgestellt und im Lichte der gewonnenen experimentellen

Daten analysiert. Eine energetisch hoch auflösende Studie von N2 und O2, besonders

im niederenergetischen Photonenenergiebereich von 20 bis 50 eV , zeigt des Weiteren

bisher unentdeckte Resonanzphänomene, die höchstwahrscheinlich verschiedenen Arten

der Doppelanregung zuzuschreiben sind. Ausblickend wird eine Analyse für das poly-

atomare heteronukleare Molekül CH4 von 20 bis 300 eV vorgestellt, um eine Diskussion

über molekulare Multi-Spalt-Systeme anzustoÿen.



Coherence E�ects in the Valence Photoionization of Small Molecules

ABSTRACT

Coherence e�ects in the valence photoionization of small molecules deliver insight into

molecular structures and dynamics which in turn allow to unravel details of fundamen-

tal quantum mechanical processes. The work presented in this dissertation primarily

deals with such investigations, using third generation synchrotron radiation. The ap-

plied technique is angle resolving photoelectron time-of-�ight spectroscopy. It is shown

that due to the inversion symmetry of homonuclear diatomic molecules like N2 and O2

an indistinguishability of the electrons and corresponding delocalization leads to inter-

ference pattern in the angular distribution anisotropy. Such two center interferences are

determined in a wide photon energy range from 20 to 600 eV in the valence photoion-

ization angular distribution anisotropy. The observed oscillations will be discussed in

the light of the Cohen-Fano formalism. The relevant photoionization dynamics of the

broad photon energy study will be discussed. In this context, a high energy resolution

study of N2 and O2 is presented for the low photon energy region from 20 to 50 eV ,

showing hitherto unexplored resonance phenomena most likely originated by di�erent

types of doubly excited states. In order to initialize a discussion about more complex

molecular multi-slit systems, an angle resolving study from 20 to 300 eV is presented

for the heteronuclear polyatomic molecule CH4.
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Chapter 1

Introduction

Phenomena like coherence and resulting interference e�ects of massive particles
like electrons highlight the quantum world in an impressive and comparably easy
accessible way [66]. The Young type double slit experiment with massive particles
and its analogon, the molecular double slit, are two of the most popular experi-
ments exploring the quantum world. It seems to be astounding that these e�ects
still comprise new insights in the dynamics of quantum particles, but as argued in
this work, angular distribution e�ects of electrons in such a molecular double slit
experiment are hitherto almost unexplored. As Richard Feynman stated referring
to the quantum double slit experiment in 1965 ([50] and references therein):

'. . . all of quantum mechanics can be gleaned from carefully think-

ing through the implications of this single experiment.'

One year later, Cohen and Fano [26] derived their famous formalism on molecular
interference e�ects for the photoionization of N2 and O2 valences. They initially
predicted oscillations in the photoionization cross sections caused by coherent
electron emission from indistinguishable two emitter sites as it is the case for
homonuclear diatomic molecules. Although their predictions were groundbreak-
ing in the light of the quantum mechanical understanding at that time, it took 35
years to prove these oscillations for H2 ([122] in [9]) and another 4 years until the
�rst prove of N2 ([107] in [9]). There is still no Cohen Fano proving data available
for O2 at all. The originally predicted interferences for the valence ionization of
N2 and O2 have not been proven experimentally since the former experimental
works are either located at low photon energies not in the expected period length
of the oscillations or mostly dedicated to inner shell ionizations. A �rst approach
on proving Cohen-Fano type oscillations for valence states of H2, N2 and CO was
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CHAPTER 1. INTRODUCTION

presented in an article of Canton et al. (2011) [21] by analyzing the branching
rations of several vibrational states. Two center interference signature in the va-
lence ionization of CO was unexpected and the results of Canton et al. (2011)
[21] will probably motivate further exploration on heteronuclear targets in the
near future. Some months later Becker [9] commented in 'Nature' on this very
fundamental experiment which gives insight in the matter-wave analogy and the
interference occurring in an molecular double slit experiment. However, no ex-
perimental prove as such is found for the electron angular distributions of these
targets and no prove at all is available for the valence ionization of O2. The
investigation of angular distribution e�ects turns out to be a well-suited method
for the exploration of such e�ects and is an essential complement to cross section
studies. As Amusia put it in 1990 [2]: 'Collective e�ects show up in angular distri-
butions just as in cross sections; in fact, investigation of the angular anisotropy
can give even more detailed information of the photoionization process than a
measurement of the total cross section'.

The presented work in this thesis shows precise experimental data in order to
answer the questions arising from the long-standing discussion about real Cohen-
Fano oscillations in the valence ionization of N2 and O2. The experimental chal-
lenge of this study lies in the very low valence ionization cross sections for high
photon energies which calls for a very e�cient spectroscopic setup. At the same
time this setup needs to have a su�cient energy resolution in order to resolve the
di�erent valence states accurately.
During the work on this thesis a highly e�cient angle resolving photoelectron
spectrometer setup has been developed. Using highly brilliant storage ring based
synchrotron radiation from BESSY II (Berliner Speicherring Gesellschaft für Syn-
chrotronstrahlung) and DORIS III ('Doppel-Ring-Speicher' at the 'Deutsches
Elektronen Synchrotron' (DESY), Hamburg) dense angular distribution data sets
for N2 and O2 with a high statistical accuracy for the relevant photon energy
range from threshold up to 600 eV were obtained. Since the development of this
spectrometer setup and �rst tests of its capabilities as an photon beam online
diagnosis tool were an essential experimental part during the work at DESY, the
presentation of the experimental chapter was extended in this regard.

In addition to the investigations on real two-center interferences in the electron
angular distributions, a general study of N2 and O2 covering the whole photon
energy range from near threshold up to several hundreds of eV resulted in further
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CHAPTER 1. INTRODUCTION

new phenomena observations. This study was motivated by the fact that the
available angular distribution data indicates persisting discrepancies in molecular
photoionization at low photon energies. In this range up to 50 eV phenomena like
shape resonances and interchannel coupling e�ects have to be discussed in order
to achieve a broad understanding of the underlying e�ects. These phenomena
also stimulated an interesting debate [20, 38, 120, 126] which will be presented
in detail in chapter 4 together with the new experimental data obtained by the
spectroscopic setup developed during this thesis.

The thesis is structured as follows: First, an overview on the relevant physical
basics is given before the experimental setup and the data analyzing process is
described. Since the spectrometer setup is also used as a versatile online photon
diagnosis tool for storage ring as well as free-electron-laser (FEL) based syn-
chrotron radiation sources, a section highlighting the usefulness of the device is
included. The scienti�c investigations on photoionization of the outer valence
shells of N2 just as data for the highest occupied molecular orbital (HOMO) of
O2 are presented in the light of existing theoretical and experimental �ndings.
As most of the existing literature for these targets is dealing with e�ects in a
low photon energy range from threshold up to ∼ 50 eV , a detailed analysis of
the inherent e�ects is presented. The results at higher photon energies in the
order of several hundreds of eV, exhibiting the interference e�ects due to electron
emission from indistinguishable two emitter sites, are discussed for these targets
within the Cohen-Fano formalism.
In a �rst examination, data for a more complex target, the heteronuclear poly-
atomic CH4, is presented in the light of available theoretical and experimental
data in the �nal experimental chapter prior the conclusion and the outlook.
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Chapter 2

Atomic and Molecular

Photoionization

In this chapter the relevant background for atomic and molecular photoionization
in terms of electronic structures and dynamics will be presented. As it is neces-
sary for the main part of the thesis, electron interference e�ects and coherence
phenomena will be discussed in more detail. To facilitate the reception of the
presented results and the discussion in chapter 4 for a broader group of recip-
ients, the fundamentals in this chapter are methodically structured, beginning
with the basics of atomic and molecular modeling. Subsequently, speci�c details
being relevant for the phenomena described in this thesis are presented.

2.1 The Photoe�ect

The classical concept of physics was enhanced to a new era of fundamental under-
standing when phenomena of quantum mechanical behavior were discovered. One
of the e�ects showing a clearly excessive demand to the classical physics was the
photoelectrical e�ect (or commonly 'photoe�ect') Einstein explained mathemat-
ically in 1905 [42]. This e�ect shows that an electromagnetic wave (or 'photon')
can only eject electrons out of a solid state when it overcomes a discrete elec-
tron binding energy. This implied quantization, found to be the 'Plank'sches
Wirkungsquantum h' [102], of the energy and the observed interaction of matter
and light is not explainable regarding the classical physical understanding of the
19th century.

Today's state of the art light sources like storage ring or free-electron-laser based
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

synchrotron radiation sources are able to tune the wavelength of the photons very
accurately in a broad energy range which will be described more detailed in chap-
ter 3. Concerning this work, the photon-electron interaction can be described in
the simplest way regarding a photon with the energy E = hν, where h is the fun-
damental 'Planck'-constant and ν is the frequency of the electromagnetic wave
hitting an atom or molecule which subsequently emits an electron if the photon
energy is larger than the electron binding energy. This so called photoionization
is described by the equation given by Einstein

Ekin = hν − Ebinding. (2.1)

In this equation the kinetic energy of the emitted electron is Ekin, hν is the en-
ergy of the photon and Ebinding is the discrete binding energy of the electron.
Beside photoionization the photoe�ect is categorized in the inner and the outer
photoe�ect. The latter is also commonly called 'Hallwachs-e�ect' since Wilhelm
Hallwachs discovered the electron emission from metal surfaces in 1886. The inner
photoe�ect describes e.g. electronic transitions within a semiconductor without
ionization or regarding the concern of this thesis, the Auger e�ect (see section
2.4).
The discovery and utilization of the photoe�ect is not only of fundamental quan-
tum mechanical interest, it is also the basis of extensive studies concerning re-
generative energy utilization and various other �elds of applications. An example
for a photoe�ect based device applied in the experiments presented in this thesis
is a diode for photon �ux determination (see section 3.1.1).

2.2 Photoionization of Atoms

The direct single ionization of an atom induced by photon interaction, as
pointed out in section 2.1, is the simplest showcase of the outer photoelectric
e�ect. Depending on the binding energy of the ejected electron and the location
of the created vacancy state in the target, there are several additional e�ects to
be taken into account beside the direct single electron emission.
In addition to the described ionization process of equation 2.1, it has to be con-
sidered that with a certain probability part of the electron kinetic energy excites
another electron (if present) due to electron correlation. Therefore, the kinetic
energy of the photoelectron is decreased by an also quantized amount creating so
called 'satellite lines'.
Secondary e�ects like �uorescence or Auger decay can take place as a reaction
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

to the created vacancies due to the ionization process and will be described later
on in this section.

If one of two excited electrons is emitted because of the relaxation of the other
excited electron in a lower orbital, this sequential process is called autoioniza-
tion.
The latter processes are based on electron correlation which is very essential for
the understanding of atomic and molecular dynamics, but also for many phenom-
ena in solid state physics.
In the following, the atomic structure will be discussed before highlighting the
mentioned processes to set the base for an analysis of the relevant electron spectra
discussed in chapter 4.

The genesis of atomic modeling is a complex historic development and will not be
presented in a continuous way. Even though early quantum mechanical models
like Bohr's atomic model [14] are not su�cient for a state-of-the-art description
of an atom, some basic assumptions still have the validity to realize an easy ac-
cess to this topic. Therefore, beside Schrödinger's description of the electrons as
principally standing electromagnetic waves located in orbitals [115], some nomen-
clatures like the 'shell'-concept are mentioned in this thesis being aware of the
very visualizing character. To give an overview on the electronic structure of an
atom, the following discussion widely refers to the literature of Amusia in 'Atomic
Photoe�ect' [2], where also further details can be read.

The electronic structure of an atom can be described by the basic assumption
that all electrons of an atom move in the coulombic �eld of the nucleus with the
charge Z. In the neutral case Z is equal to the number of electrons N. The time
independent Schrödinger equation neglecting all relativistic e�ects is given by

ĤΨE(x1, ..., xn) = EΨE(x1, ..., xn) (2.2)

where

Ĥ =
N∑

n=1

(
(−i∇n)2

2
− Z

rn

) +
1

2

N∑
n>q=1

1

|rn − rq|
(2.3)

Z is the charge of the nucleus, rn is the radius vector of the nth electron and
N = Z for the neutral case. The electronic states are given by quantum numbers
which are in contradiction to the classical physics unexceptional discrete values.
The quantum numbers characterize the eigenvalues of an electronic system. These
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

electronic states in the coulombic �eld are n, l,m and s as the principal quantum
number, the angular momentum quantum number, the magnetic quantum num-
ber and the spin projection quantum number [132].

The principal quantum number n characterizes the corresponding energy value
of the electrons and represents the 'shell' in terms of the Bohr atomic model. In
a very visual description one can point out n as the size of the orbital. Its values
range from 1 to n where n is the valence shell and therefore the outermost shell
containing electrons. An additional denotation for n = 1, 2, 3, 4, etc. are capital
letters beginning with K,L,M,N, . . . proceeding alphabetically [132].

To each value l of the angular momentum correspond 2l + 1 di�erent functions
Ψ(Θ,Φ) with −l ≤ m ≤ l. The total number of di�erent functions (total degen-
eracy of n) therefore is n2 [2]. The values of l range from 0 to n − 1 and are
also additionally denoted by the letters s, p, d, f, . . . proceeding alphabetically.
This corresponds to the fact that the occurrence of these subshells is always 1

behind the n shell, i.e. the deepest p state is located in the second main shell
(n = 2, l = 1 ⇒ n − l = 1). Visualized l gives the form of the orbital [132].
The angular momentum quantum number is essential for the discussion of angu-
lar distributions and will be extended in section 2.4 concerning the discussion of
partial waves.

The magnetic quantum number m can take 2l + 1 values for each l. Possible
values are −l,−l + 1, . . . ,+l. It characterizes the orientation of the electron an-
gular momentum. The spin projection quantum number s or also commonly ms

denotes the electron's internal angular momentum and may be either 1
2
or −1

2

[132].
According to the 'Pauli Principle' [98], each state may be occupied by only one
electron. Taking the information about quantum numbers and the fact of a
successive �lling of the orbitals, the electronic con�guration of an atom speci�es
the occupancy of the individual levels. For completely �lled levels in the Coulomb
�eld the con�gurations are

1s2 2s2, 2p6 3s2, 3p6, 3d10 4s2, 4p6, 4d10, 4f14 ... (2.4)

The next step is to determine the behavior of an atom interacting with an elec-
tromagnetic �eld or more speci�c with a photon. A general description and a the-
oretical background can be found in literature (e.g. Möller (2010) [92], Bransden
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

Figure 2.1: The �gure illustrates the electronic occupation of atomic shells

according to equation 2.4.

(1983) [16]). A basic assumption for the description of the electronic movement
in an atomic system is the Born-Oppenheimer approximation which is based on
the fact that the electrons move much faster than the nucleus (usually in the
order of 3 to 5 magnitudes) [15]. In this respect, one can assume the electronic
movement to be instantaneous and neglect the nuclear motion. According to the
stationary Schrödinger equation described above, one can put the time depen-
dent Schrödinger equation for the show case of a one-electron movement in an
(hydrogenlike) atom as follows [16]

ih̄
δ

δt
Ψ(r, t) = [− h̄2

2m
∇2 + V (r, t)]Ψ(r, t). (2.5)

The Hartree-Fock method is a common possibility to determine the orbital en-
ergies and the wave functions of many-body systems ab initio. It is the basis
of most advanced theoretical models to describe atomic and molecular electronic
systems and dynamics [3]. The method is based on the approximation that the
electrons are only a�ected by the Coulombic �eld of the nuclei. The Hartree-Fock
approximation has to be modi�ed with respect to a collective electron excitation
which can simplest be done in the frame of the 'Random Phase Approximation'
(RPA) [3]. For a more general view in this context, one has to consider the re-
arrangement of all electronic states of a system after ionization. Not only the
altered electronic states, but also the real secondary excitations or even further
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

Figure 2.2: The �gure illustrates a

�uorescence decay after an inner shell

ionization numbered as a sequential

process.

ionizations have to be taken into account (electron correlation). A theoretical
model for this is the 'Generalized Random Phase Approximation with Exchange'
(GRPAE) [3]. Furthermore, interchannel interaction, leading to autoionization,
decay processes and satellites shall be mentioned with regards to this. For a
more detailed insight and an overview of advanced theoretical models of atomic
interaction with photons the literature of Amusia in 'VUV and Soft X-ray Pho-
toionization'(1996) [8] shall be announced for further reading.

The following processes were shortly mentioned above and will now be speci-
�ed. They may occur after or simultaneous to photoionization of a target like
e.g. an atom or a molecule underlining the great relevance of e.g. electron corre-
lation e�ects not being implied in models like the basic Hartree-Fock model.

Fluorescence is a radiative decay of an excited electronic state. A �uorescence
decay can take place when the initial and the �nal state have equal spins so there
is no change in the spin projection quantum number. Usually the �uorescence
photons have a larger wavelength than the exciting photons which is illustrated
in �gure 2.2. The �uorescence photons have discrete energies as it is the case for
the electrons so �uorescence spectroscopy can be used for complementary insight
into ionization dynamics.

The basic Auger process can take place when a core hole in e.g. an atom
is created due to previous ionization or excitation. A less bound electron of a
higher shell (the L-shell in the example of �gure 2.3(a)) decays into the stronger
bound state (the K-shell in the example) and releases energy of the amount
EAuger = EK−shell−EL−shell. This energy is su�cient (depending on the selection
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

rules and the correlated electron) to eject another electron with a binding energy
Ebinding < EAuger. In the example shown in �gure 2.3 another electron from the
L-shell is ejected. This speci�c Auger process is therefore called 'KLL' Auger.

Figure 2.3: Figure (a) illustrates the Auger process for the example of a KLL

Auger. Figure (b) and (c) are resonant Auger or autoionization processes. (b)

shows the spectator case whereas (c) illustrates the participator case.

If the energy of the incident photon is not su�cient for a direct inner shell ioniza-
tion, nevertheless exciting the electron in a bound state above the �rst ionization
threshold, a resonant Auger electron can be emitted as it is shown in �gure 2.3(b)
[107]. In the resonant case the initially excited electron can be involved in this
process as a spectator (�gure 2.3(b)) or as a participator (�gure 2.3(c)). In the
latter case, the decay happens through the same channel as for the excitation.
These processes (�gure 2.3(b+c)) are called autoionization processes. Autoion-
ization can also be triggered by vibrationally induced excitations in molecules.
As discussed in section 4.1, also (doubly excited) Rydberg states can lead to au-
toionization.
The Auger decay is the competitive decay process to the �uorescence. According
to �gure 2.4 it is dominant for small atoms and molecules. The �uorescence cross
section rises with higher Z of the atoms while the Auger yield decreases.

Regarding the case that beside ionization of a target part of the absorbed energy
is exciting a second electron to a higher state due to electron correlation, the ki-
netic energy of the emitted electron is decreased by the amount of the secondary
excitation energy.
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

Figure 2.4: Illustration of the decreasing Auger yield with increasing Z in com-

parison to the also increasing �uorescence yield for selected orbitals according to

[97].

Ekin = Ehν − Ebinding − Eexcitation (2.6)

The possibility of this secondary process is again photon energy dependent and
the resulting also discrete kinetic energies of the emitted photoelectron are called
electron shake up satellites (see �gure 2.5(a)). If Eexcitation is high enough to
emit the second electron, the so called shake o� process (see �gure 2.5(b)) takes
place in the frame of direct double ionization. More detailed information on this
topic can be found e.g. in Hemmers (1993) [55].
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Figure 2.5: The left part of the �gure (a) shows the shake up process whereas

the right part (b) shows the shake o� (or direct double ionization) case.

Additional non-linear processes are to be taken into account especially for strong
�eld studies. Since their relevance is not essential for this work, I refer only to
the extensive literature as e.g. [90, 113].
All the described e�ects have major in�uence on the interaction probability of a
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

photon with an atom or a molecule. This probability of interaction is called cross
section and will be discussed in subsection 2.4.

2.3 Molecular Photoionization

Molecules and their electronic structures are much more complex in comparison
to atoms, even though many of the described e�ects in 2.2 are similar. The
simple sum of atoms is not equal to the molecule containing these atoms and its
electronic structure changes by the formation of molecular orbitals. Due to this
fact one has to exceed the given model qualitatively and quantitatively. Further
parameters, namely vibrational and rotational dynamics of a molecule, have to
be taken into account leading to the following adaptation of the photoe�ect in
2.1:

E = hν − Ebinding − Evibration − Erotation (2.7)

Regarding the case that the nuclear distance is R, the electron coordinates are r,
the kinetic energy of the nuclei is En, the kinetic energy of the electrons is Ee and
the Coulomb potential for all particles is V , the Hamiltonian (in atomic units)
can be written as [57]

Ĥ = En(R) + Ee(r) + V (r, R). (2.8)

In consequence the Schrödinger Equation can be written as [57]

[En(R) + Ee(r) + V (r, R)]Ψ(r, R) = EΨ(r, R). (2.9)

The assumption that the electrons move much faster than the nuclei (Born-
Oppenheimer approximation see section 2.2) is also a widely valid and important
approximation for molecular systems. The principal validity of the approxima-
tion leads in the molecular case to the simpli�cation that the vibration of the
molecule can be separately treated from the electronic motion as an electronic
potential variation due to a change of the internuclear distance R.
According to the Franck-Condon-Principle, the probabilities of an electronic
transition are therefore in�uenced by the compatibility of the vibrational wave
functions of the initial and the �nal electronic state [107]. Therefore, electronic
transitions have a higher statistical probability when the nuclei movement is ne-
glected. This can be written as
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CHAPTER 2. ATOMIC AND MOLECULAR PHOTOIONIZATION

Figure 2.6: The Franck-

Condon principle is illustrated

using the example of a di-

atomic molecule. The arrows

show transitions between dif-

ferent vibrational states. The

�gure is taken from [49].

P =
〈
ψ

′

v|ψv

〉
∗

〈
ψ

′

ε|µε|ψε

〉
(2.10)

where the left multiplier is the overlap integral or the so called 'Franck-Condon
Factor' and the right multiplier is the orbital selection rule [144]. The shown
principle is valid for low vibrational states where the molecule can approximately
be treated as a harmonic oscillator. It has to be modi�ed going to higher vibra-
tional excitations. This can be done by implementing the 'Morse Potential' which
compensates the lacking harmonic behavior at higher vibrational states [57].

The rotational energy of a molecule can stringently be considered regarding
the common angular momentum rules. If the rotational quantum number is N
and the momentum of inertia in the ground state is I0 = µR2

0 ' µ〈r〉2, the
rotational energy can be written as [57]

EN =
N2

2µR2
' h̄2

1µ〈r〉2
=
me

µ
Ee. (2.11)

The resulting energies of vibrational and rotational energy can therefore be cal-
culated to be in the order of 0.1 eV and 0.001 eV .

A common model for the formation of molecular orbitals according to Lennard-
Jones is the linear combination of atomic orbitals (LCAO) [79]. According to
Hund and Mulliken ([88] and references therein) molecular orbitals (MO) can
be formed by linear combination of independent atomic orbitals to a �nite ba-
sis. Every electron is then located in a newly de�ned molecular orbital which
is typically delocalized for the whole molecule. The limitation of this method is
the implied statistical independence of the electrons and therefore a neglect of
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electron correlation. Taking the simplest system as a showcase one can get an
intuitive idea of the linear combination of two hydrogen atoms: Each 1s electron
of a hydrogen atom has the wave function Ψ1s. Combining the two is possible in
two ways, namely in summation or subtraction of the wave functions. Summa-
tion Ψ1s +Ψ1s leads to a rotational symmetric MO which has a binding character
due to the increased charge density between the atoms. This combination has a
'gerade'-symmetry. Subtraction Ψ1s −Ψ1s leads to a repulsion of the atoms and
forms an anti-bonding orbital with a 'ungerade'-symmetry which has a decreased
charge density between the atoms.

Ψ Ψ

Ψ

Ψ
Ψ ΨΨ ΨΨΨ

Ψ

Figure 2.7: The �gure is showing the di�erent symmetric possibilities of MO

forming for the case of hydrogen taken from [107]. The charge density is Ψ2 and

the plot nicely illustrates that the 'ungerade' symmetry causes a density node

between the two atoms indicating the atomic repulsion.

For homonuclear diatomic molecules the electronic states are inversion symmet-
ric which leads to an indistinguishable atomic a�liation of the electrons. This
is a basic parameter for two center interference e�ects in the photoionization of
homonuclear diatomic molecules as this is the main topic of this thesis and is
valid for inner shell as well as valence electrons. Regarding the LCAO for the
example of helium having two electrons in the 1s state both a bonding as well as
an anti-bonding orbital would be formed. Therefore, no chemical bonding of the
two He atoms is possible, but due to Van-der-Waals interaction the formation
of a dimer with a very low binding energy is possible [125]. The bond length
is experimentally proven to be > 50 Ångstrom which corresponds to a binding
energy of ∼ 100 neV [16, 52]. In such systems recently explored e�ects like 'Inter
Coulombic Decay' (ICD) can be studied [72, 93].
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Another theory on the formation of molecular orbitals is the 'Valence Bond The-
ory' developed by Heitler and London. This method is not as common in state-
of-the-art theoretical calculations as e.g. the self consistent Hartree-Fock method
and shall only be mentioned at this point1. Homonuclear diatomic molecules like
N2 and O2 are much more complex in comparison to H2 but can still be de-
scribed in the MO theory. Figure 2.8 shows the LCAO MO for N2 as an example
of molecular orbital nomenclature and in order to depict the relevant orbital bind-
ing energies which is important for the discussion in chapter 4. In accordance to
�gure 2.7, this �gure illustrates e.g. for the inner shell orbitals that the ungerade
orbital formation leads to a decreased binding energy due to a lower probability
of charge density between the atoms.

u

g

Figure 2.8: LCAO MO diagram of molecular nitrogen. The �gure is taken from

[107] and references therein.

1Further details can be read in e.g. [16, 57].
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2.4 Partial and Di�erential Cross Sections

Regarding the interaction of a photon with matter and more speci�c the ionization
process according to 2.1, it is obvious that a determination of the interaction
probability, the so called cross section, is of high interest. This parameter includes
much information on the electronic structure, the quantum mechanical processes
in the ionized target and the general dynamics of a system. Classically it is
understood to be the ratio of absorbing area of a target divided by the total area
of the target. The most common unit in literature is [barn] for the cross section
or also commonly used as [Megabarn] which is not an SI unit. To point out the
formally correct description it shall be announced that according to e.g. [55]

1Mb = 10−22 m2. (2.12)

Quantum mechanically the cross section is given by the transition probabilities
between two electronic states [55]. This is shown in Fermi's Golden Rule [48]. It
determines the probability of a transition from an eigenstate to the continuum
due to the interaction with an electromagnetic �eld.

Ti→f =
2π

h̄
|X|2δ(Ef − Ei − hν) (2.13)

with the transition matrix element

X =< Ψf |Ĥpt|Ψi > (2.14)

Ti→f is the transition probability, Ψi the initial, Ψf the �nal wave functions with
given eigenvalues Ei,f and the perturbing Hamiltonian is Ĥpt [107].
If one of the states is located in the continuum, the process is called ionization
[55]. The total ionization (or absolute) cross section has been studied extensively
since decades giving the absolute probability of a photon-electron absorption for
a whole target (as e.g. relevant for this work [18, 53, 58, 147]). Methods like
e.g. electron-energy-loss-spectroscopy or photo-absorption-spectroscopy are able
to determine total ionization cross sections [8].
The spectrometer setup introduced in chapter 3 will intrinsically be able to de-
termine partial photoionization cross sections. For the determination of absolute
cross sections the voluminous variety of parameters like actual gas pressure in the
interaction region, quantum e�ciency dynamics of a photo-diode and absolute
photon �ux of the photon-source make such a determination very challenging.
Nevertheless, in principle it will become possible with the experimental setup.
Although absolute ionization cross sections are a powerful indicator for electronic
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structures and dynamics of atoms and molecules, it provides only information
about the whole system interacting with the photon. For a more selective under-
standing of the cross section development for single orbitals one has to analyze
the so called partial cross section given by

σif (hν) =
4π2αa2

0

3
hν|Mif |2 (2.15)

In this equation the matrix element M includes the dipole approximation and
gives the transition probability between the initial and the �nal state [8]. The
dipole approximation assumes the electromagnetic �eld of the photon beam where
e(ikr) expressed as a Taylor-series expansion 1+ikr+. . . can be truncated to unity
[13, 56].

|Mif |2 = |〈f |Σrµ|i〉|2 (2.16)

Partial cross sections have an excitation energy dependent behavior, as it is the
case for absolute cross sections, which is a�ected by many e�ects like delayed
onsets, shape resonances or Cooper minima [8]. Furthermore, many-electron
dynamics are re�ected in the partial cross section. In former times when �rst
investigations on this topic were performed, discrete photon sources were used.
This is a severe limitation for these studies [8]. Today's tunable light sources, such
as storage rings or free-electron-lasers, allow very highly resolved studies of partial
cross sections in a wide energy range (see section 3.2). These sources improved
the situation of such science in a remarkable way. Facing the circumstance that
the angular momentum quantum number, or more visual the shape of an orbital,
plays a major role in terms of the direction in which an electron is most probably
emitted one can implicitly understand the need of a di�erentiation of the spatial
emission distribution.
This so called di�erential cross section is the derivative of the partial cross section
with respect to the solid angle.

dσif (hν)

dΩ
(Θ) =

σif (hν)

4π
[1 + βif (hν)P2(cosΘ)] (2.17)

where σ is the total cross section, Ω is the solid angle, Θ is the photoelectron
emission polar angle measured between the electric vector ε and the photoelectron
momentum vector p, P2(cosΘ) the Legendre polynomial of second degree and β
is the dipolar angular distribution anisotropy parameter, ranging from 2 ( dσ

dΩ
∼

cos2(Θ)) to -1 ( dσ
dΩ
∼ sin2(Θ)) [8, 149].
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(a)

(b)

 Θ = 54.7°

Θ = 0°

Θ = 90°

Eβ = 0β = 1

β = 2
β = –1

2 31

hν

Figure 2.9: The �gures show the

di�erent possible angular distribution

anisotropies ranging from -1 to +2

according to equation 2.17. In the

two dimensional �gure (a) the angle

at 54.7� called magic angle is pro-

nounced since no angular distribution

anisotropy is in�uencing this angular

position. Figure (b) visualizes dif-

ferent angular distribution cases in a

three dimensional plot. Both are pro-

vided by [137].

The angular distribution possibilities and the given physical range are plotted
in �gure 2.9. It can be derived from the equation above or directly seen in
�gure 2.9(a) that at the angle Θ = 54, 7�, the di�erential partial cross section
becomes proportional to the integral partial cross section. All other angles yield
information about β for a known σ [8]. This angular distribution information
is sensitive to the phase of the quantum mechanically possible ionic states and
is therefore an essential addition to the cross section information. The more
generalized Cooper-Zare model for an LS coupled system can be written as [27]

β =
l(l − 1)R2

l−1 + (l + 1)(l + 2)R2
l+1 − 6(l + 1)Rl−1Rl+1cos(δl+1 − δl−1)

(2l + 1)[lR2
l−1(l + 1)R2

l+1]
(2.18)

where R are the radial integrals and δ the phase shifts of the respective partial
waves [8].

For the photoionization of diatomic molecules Chang et al. (1978) [24] predict
a classi�cation of the photoionization process according to their degree of parity
[59]. They point out that parity unfavored transitions like Σ± → Σ∓ lead to a
β of -1, whereas the parity favored transitions which are the vast majority lead
to higher β-values.

A striking fact arises from this formalism, since the quality of the β data scales
linearly with the quality of the σ data which is usually taken from literature as
further described in section 3.1.3. Therefore, the need for precise σ- as well as
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β-databases is crucial and an essential basis for this work in order to analyze very
small angular distribution e�ects .

The anisotropy parameter β is based on the dipole approximation which is be-
lieved to be a valid concept for low kinetic electron energies up to ∼ 1 keV in
several references (initial work from [29]). However, several recent articles are
dealing with a breakdown of this approximation also for kinetic electron ener-
gies in the order of few hundreds or even few tens of eV (e.g. [56, 81, 130] and
references therein). The threshold for the need of a multipole consideration in
order to describe the photoionization process properly is remaining a topic un-
der discussion in the extensive literature (e.g. Hemmers et al. (2004) [56] and
references therein). As Hemmers points out in that work, two arguments are
crucial for the assumption that the dipole approximation should be valid at least
for the UV photon energy range: (a) A neglect of relativistic e�ects, because
the photoelectron kinetic energies are very low compared to the speed of light.
(b) A mitigation of higher order e�ects due to photon wavelengths larger than
the electron orbitals. Nevertheless, experiments have observed non-dipole e�ects
even down to 13 eV [86]. Regarding these �ndings non-dipole e�ects also play an
interesting role concerning the results presented in chapter 4 where mainly the
dipole anisotropy parameter β is taken into account. The theoretical work of Tof-
foli et al. (2006) [130] also predicts strong signatures of two center interferences
in the photoionization of N2 for the non-dipole parameters γ and δ, however they
were not investigated in the frame of this thesis. Further consequence due to
these complementary insights into angular distributions will be discussed in the
outlook of this thesis.

The �rst order non-dipole formalism according to Cooper [28] can be written
as

dσ(hν)

dΩ
=
σ(hν)

4π
{1 + β(hν)P2(cosΘ) + [δ(hν) + γ(hν)cos2Θ]sinΘcosΦ} (2.19)

where δ and γ are the new �rst order non-dipole parameters [56] and Φ is the
azimuthal angle relative to the photon propagation axis (see �gure 2.10).
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Figure 2.10: The �gure and the

caption are taken from [56]. It shows

the relevant parameters for a non-

dipole consideration induced by lin-

early polarized light. ε is the photon

polarization vector, p the momentum

vector of the photoelectron. The an-

gle between the two is Θ. Φ is the

azimuthal angle between the propa-

gation vector k and the projection of

p in the x-z plane.

2.5 Molecular Interference and Scattering

In molecular photoionization the electrons have certain possibilities to interact
with the neighboring atom's states or with itself due the molecular orbital in terms
of scattering and delocalization of the electronic state. The underlying concept is
the wave-particle dualism being part of the interpretation of the photoelectrical
e�ect described in section 2.1. The double slit experiment with massive particles
gives insight in the most fundamental quantum mechanics and is topic of exten-
sive theoretical and experimental work (initial work by [26, 66]). As pointed out
in the introduction, one should be able to achieve a widespread understanding of
quantum mechanics just by the implications of this experiment.

In this section the mechanics of these phenomena are brie�y introduced, prefer-
ably referring to the literature of Rolles (2010) ([108] in [45]) showing a compre-
hensive overview on this topic.
A young type double slit [150] is based on the assumption that a coherent wave is
passing a double (or multi) slit with a slit width in the order of the wavelength.
Due to the wave nature of the light which can unambiguously be proven by this
experiment, intensity variations due to interference between the di�erent paths
can be observed behind the double slit. In a classical treatment this is only possi-
ble regarding waves, but since the discovery of the wave-particle dualism it is also
reasonable to be valid for particles. The basis for this e�ect is the indistinguisha-
bility of the paths leading to a �nal state. The original Young experiment can
stringently be adapted for particles having a deBroglie wavelength of λ = h

p
. In

case of an electron passing through a double slit with equal probability for both
slits, one has to sum up both possible wave functions as it was already introduced
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in section 2.3. The squared absolute value of this summation is giving the spatial
probabilities for a detection and therefore the occurring minima and maxima in
intensity.

|Ψ2| = |Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + Ψ∗
1Ψ2 + Ψ1Ψ

∗
2 (2.20)

One striking example for a particle interference is the molecular double slit (see
�gure 2.12(a)) which is in the simplest form given by a homonuclear diatomic
molecule. As described in section 2.3 the formation of molecular orbitals leads
to delocalized states of the electrons and in the special case of equal atoms to
inversion symmetry of the molecular constituents. The electron can therefore be
indistinguishably emitted from one or the other atomic site. Quantum mechan-
ically stringent the electron can be interpreted to do both so its wave functions
interfere showing an energy dependent intensity �uctuation given by the equa-
tion above. This molecular double slit was investigated in recent works of e.g.
[21, 107, 130, 151] and was already predicted to be seen in a modulation of total
photoionization cross sections by Cohen and Fano in the year 1966 [26]. Proof
for this oscillation can also be found in the angular distribution of the emitted
photoelectrons which is symmetric but di�erent for the two cases of the 'gerade'
or the 'ungerade' state (�gure 2.7). The Cohen-Fano oscillation will be discussed
in detail in chapter 4 and is the underlying phenomenon of the main part of this
work.

Regarding the case that the electron is emitted from a localized state, accord-
ing to Heisenberg, no interference should be seen. In this case only scattering
processes and orbital momenta are in�uencing the angular distribution of the
electrons. Scattering phenomena occur in various possible ways. Regarding the
case illustrated in �gure 2.12(b) for the example of nitrogen, the emitted electron
has equal probabilities to be ejected pointing away from the molecule or pointing
to the neighboring atom. In case the electron is ejected in the direction of the
neighboring atom it can be recoiled and afterwards taking the same path of the
opposite case (path (1) in �gure 2.12). These di�erent paths interfere, unless the
timing or the momentum changes can be determined [151]. This would be the
case when the deBroglie wavelength becomes shorter than the bond length of the
molecule, since the momentum change is big enough to induce localization and
therefore loss of coherence [151]. Although with small probability, double scat-
tering can also occur as it is illustrated in �gure 2.12(c). Comparing homonuclear
and heteronuclear molecules, the two center interference as illustrated in �gure
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Figure 2.11: The �gure is taken from [9] showing the principle of a molecular

double slit.

2.12(a) can be switched on and o� due to a corresponding on/o� condition of
electron localization [107]. Therefore, the scattering and non-scattering phenom-
ena can be separately studied e.g. comparing CO and N2 as it was done for the
inner shell ionization by Zimmermann et al. (2008) [151]. However, this thesis is
dedicated to the valence ionization of homonuclear diatomic molecules where the
described scattering phenomena are smaller than in the inner shell ionization due
to a stronger delocalization of the MOs. Further examples of coherent emission in
molecular photoionization are predictable whenever the ionization conditions are
chosen in a way that indistinguishability of probable paths leading to the same
�nal state is given. A more detailed discussion of such e�ects in the light of this
work will be presented in chapter 4.

A highly interesting and extensively debated phenomenon in molecular photoion-
ization is the shape resonance which is important for the presented discussion in
chapter 4. Shape resonances are above-threshold continuum resonant processes
often described as a resonant process of core electron emission [16, 100, 107].
Indeed, this is the most common type of a shape resonance even though every
orbital can be investigated separately in terms of a resonant feature depending
on the molecular orbital shape. A detailed overview on the historical develop-
ment and the di�erent approaches of explanation are given by Piancastelli (1999)
[100]. Shape resonances are mostly attributed to an enhanced cross section,
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Figure 2.12: The �gure is

showing the principles of co-

herent emission from indistin-

guishable two emitter sites for

the example of N2(a), the sin-

gle scattering case (b) and the

double scattering case (c) also

for N2. The illustration is cre-

ated in the style of [107, 151].

rapidly changing angular distribution anisotropy or non-Franck-Condon vibra-
tional branching ratios in the process of direct photoionization via a single elec-
tron emission into the continuum state [124]. There are di�erent understandings
of the nature of a shape resonant enhancement of the cross section. One states
the enhancement to occur due to a trapping of an outgoing electron by a po-
tential barrier through which the electron eventually tunnels and emerges in the
continuum [100]. The other one relates them to unoccupied molecular orbitals
embedded in the continuum [100]. The latter understanding will be adapted for
the discussion about shape resonances in the valence ionization of N2 and O2 (see
section 4.1).

25



Chapter 3

Experimental Setup

In this chapter a short overview on di�erent techniques for angle resolving pho-
toelectron spectroscopy (ARPES) is given followed by a detailed presentation of
the ARPES experimental setup developed during the work on this thesis. The
general experimental setup including the applied light sources and beamlines, the
data acquisition and processing as well as the relevant setup and data calibra-
tion procedures will be introduced. Since the presented spectrometer setup is
beside its scienti�c use dedicated to be an online photon beam diagnostic unit
and several beamtimes have been performed in this concern, a separate section
will highlight this capability. Furthermore, the applicability of the developed
spectrometer setup to (X)FEL photon sources for angle resolving electron studies
and beam diagnosis is discussed in a further section of this chapter.

Basically the investigation of atoms and molecules in terms of structural and dy-
namical properties of the electronic and also the nuclear motion can be performed
in various ways. The method applied in this work belongs to spectroscopy, espe-
cially to spectroscopy with soft X-ray photons in the range from ∼ 15− 1000 eV .
Electron emission and photon absorption phenomena due to the interaction of
photons with matter in this photon energy regime play a key role for a deeper
understanding of atomic and molecular properties. Chemical dynamics, struc-
tural insights and most fundamental mechanics of the quantum world like e.g.
the two center quantum interferences being main part of this work, can be in-
vestigated by photon-matter interaction. Since all constituents of residual gases
in an experimental setup using soft X-ray photons have high absorption cross
sections, it is basic for all presented experimental techniques below to ensure
ultra-high vacuum (UHV) conditions. This is not only crucial for the photon
transmission, but also for reducing additional signal of such residual gases to the
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signal of interest.
The spectroscopic variety also includes investigations with even lower energy pho-
tons. Radiofrequency (RF), microwave, infrared (IR) and ultraviolet (UV) spec-
troscopy are methods to determine e.g. rotational and vibrational energies of
molecules, electron spin properties and electronic excitation [57]. Such investiga-
tions are able to excite and resolve very low energy phenomena less important for
this thesis. The part of the UV spectroscopy sensitive to vibrational molecular
energy levels is an overlapping spectroscopic �eld, since vibrational excitations
will play an essential role in the interpretation of the low photon energy data
discussed in chapter 4.

3.1 Angle resolving photoelectron spectroscopy

Photoelectron spectroscopy (PES) is a widely established method used to de-
termine atomic and molecular electronic states and their dynamics. Apart from
atomic and molecular physics PES is also an important technique for studies of
clusters and solid states [35, 145].
It is particularly suited for the investigation of surfaces limited to few nanometers
depth of penetration (depending on the system, incidence angle etc.)(e.g. [71]).
The electron movement after the ionization of deeper lying surface atoms su�ers
from too many scattering processes with neighboring atoms rising a limitation of
PES in this respect. Furthermore, it is suitable for the investigation of liquids.
A more general description of state-of-the-art use of PES can be found in several
text books (e.g.[8, 57, 62, 94]). Parameters like electronic energy-, angular- and
spin distributions can be studied using PES [71]. Since its advent in the year
1957 and the Nobel prize for Kai Siegbahn in 1981 for this development [117],
the technique and the apparatus of PES studies have been widely established and
highly improved.

Investigating free atoms and molecules in the gas phase with PES has the advan-
tage to study the electronic structure that the interaction of electrons with the
neighboring atoms can be approximately disregarded for most cases. In this case,
electrons and ions can propagate freely in space. However, in�uencing parameters
like the surrounding magnetic �eld, e.g. the earth's magnetic �eld if not shielded
properly, as well as charged parts of the interaction volume have to be minimized
especially in the particular case of this work. One of the possible in�uences is the
space charge e�ect. When the density of ionized matter becomes so big that the
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charge of the ionized target cannot be ignored in terms of in�uencing electron
propagation, Coulomb interaction has to be taken into account. In recent PES
gas phase experiments these problems occur using extremely short and intense
photon pulses of (free-electron-) lasers. Space charge e�ects and can be neglected
for the presented experiments in this work as they are mainly performed at stor-
age ring based synchrotron radiation sources which usually do not create high
peak charge densities due to their orders of magnitude lower peak photon �ux.

There are various techniques allowing angle resolving studies on photoelectrons.
To mention some of the most common techniques, there are hemispherical an-
alyzers, reaction microscopes, velocity map imaging analyzers and time-of-�ight
(TOF) detectors like the spectrometer setup presented in the following section
or magnetic bottle type spectrometers. A brief introduction of these techniques
will follow later in this section. All of these analyzers typically use micro channel
plates as an initial ampli�cation of the incoming particles. Every angle resolving
photo electron spectroscopy technique has its own advantages and disadvantages
which shall brie�y be characterized. For time-of-�ight analyzers it is crucial to
work with a pulsed light source. In this concern, it is essential for time-of-�ight
spectrometer setups that a su�cient photon pulse spacing is ensured so that all
relevant kinetic energies can be covered within the individual spectra. Many stor-
age ring facilities o�er special 'few-bunch-mode beamtimes' in order to ensure the
required photon pulse spacing. Also (free-electron) lasers are intrinscically pulsed
light sources. For the special case of electron time-of-�ight spectroscopy the pulse
period whichs allows an appropriate acquisition time has to be commonly in the
order of some hundred ns.

Figure 3.1 shows a general design sketch of a hemispherical detector. The
advantages of such an electro-static analyzer are the good commercial availabil-
ity and its additional applicability to continuous wave light sources such as lab
based rare gase UV lamps or X-ray tubes. Usually, this method does not exploit
the timing structure of e.g. synchrotron radiation sources. They allow for very
high energy and angular resolution. However, size and budget constraints are
in turn limiting the detected solid angle which is a big concern especially in low
target density applications typical for atomic and molecular (AMO) experiments.

Reaction microscopes and velocity map imaging analyzers can be stated to be
a compromise of high transmission with moderate angular distribution capability
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Figure 3.1: The �gure shows a typical hemispherical electron spectrometer de-

sign as it is used in this showcase for surface PES. The �gure is taken from [110].

and they are limited to low kinetic energies of at maximum few hundreds of eV
depending on the electric and magnetic �eld properties. Detailed information on
these techniques can be found in Ullrich et al. (2003) [131] and Eppink et al.

(1997) [44] respectively.

The advantage of magnetic bottle type spectrometers, which is a special type
of time-of-�ight spectrometer, is the high solid angle they are able to acquire in
a relatively broad kinetic electron energy range depending on the magnetic �eld
properties of the implemented permanent magnet (see �gure 3.2). Angular resolu-
tion is typically not available. Also the timing resolution is slightly lower than in
the other TOF-techniques due to the inevitable �ight time di�erences of electrons
emitted in the direction of the detector and antipodal emitted electrons. A broad-
ening of the electronic peaks in the spectra is therefore observed. Reducing this
e�ect by using innovative magnet setups is part of another PhD thesis carried out
in the workgroup of Jens Viefhaus1. Nevertheless, this method has the advantage
of a very high e�ciency also at higher photon energies and therefore many ex-
periments representing high impact sciences, magnetic bottle spectrometers have
been enabled, for example Mucke et al. (2010) [93] and Eland et al. (2003) [43].
A combination of a magnetic bottle type spectrometer with an additional ion

1PhD thesis of Sascha Deinert at the P04 Variable Polarization XUV (eXtreme ultravi-

olet) Beamline at PETRA III (Positron-Elektron-Tandem-Ring-Anlage), DESY in Hamburg

(Germany). Beamline scientist in charge: Jens Viefhaus (jens.viefhaus@desy.de)
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Figure 3.2: The �gure shows the basic design of a magnetic bottle type electron

spectrometer. A strong permanent magnet in the very near of the interaction

region of projectile and target is pushing the ejected electrons in the direction

of the detector. A solenoid coil wrapped around the �ight tube forms the elec-

tron trajectories in order to achieve a maximum transmission and a homogeneous

exposure of the active detection area. The �gure is adapted from [106].

time-of-�ight spectrometer arises the possibility of photoelectron-photoion coin-
cidence spectroscopy (PEPICO). This technique turned out to be very powerful,
since it allows both the highly e�cient single determination of electrons and ions,
as well as coincident event recording of both (e.g. [47, 70] and references therein).

The spectrometer setup chosen to be best suited for this work enables a high
angular resolution with a still large solid acceptance angle being able to record
spectroscopic AMO data over wide photon energy ranges up to the hard X-ray
regime. Due to the exploitation of the synchrotron radiation timing structure in
terms of time-of-�ight spectroscopy it is possible to record spectra which intrin-
sically cover all occurring electron kinetic energies. The simultaneous sampling
of the whole electron kinetic energy spectrum implies reduced dark counts and
noise as well as reduced in�uence of �uctuations or drifts in the photon �ux [8].
As Becker (1996) points out, TOF-spectroscopy is well suited for near threshold
spectroscopy which is a basic requirement for several of the presented results in
chapter 4. The capability of high voltage retardation of the incoming electrons is
also essential for wide photon energy range studies. Figure 3.3 shows such a mi-
cro channel plate (MCP) based electron time-of-�ight spectrometer, as it is part
of the spectrometer setup used for the studies presented in this work. Further
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Figure 3.3: Schematic of a single spectrometer as it is applied to the setup intro-

duced below. All relevant parts of the spectrometer as well as the spectrometer

holding aluminum ring around the interaction region are labeled.

dedications to angular distribution non-dipole and electron-electron coincidence
studies will be discussed in the following chapter.

3.1.1 The newly developed ARPES Spectrometer

The main factors for the development of a new MCP based electron time-of-�ight
spectrometer setup during the last years were high e�ciency and a maximum ver-
satility in terms of beam diagnostics. This also enables the use as a tool for online
diagnosis (see chapter 3.1.6) bene�ting from the fast acquisition of electron time-
of-�ight spectra. The newly developed setup allows the recording of very dense
data sets of electron angular distributions in broad photon energy ranges even in
regions of very small target cross sections in the order of few kb. Due to the re-
dundancy of the spectrometers' angle positions in respect to the plane of incident
light polarization in combination with the high e�ciency of each spectrometer
a very accurate determination of electron angular distributions is possible. This
e�ciency also enables fast electron-electron coincidence measurements as it is
discussed later in this section.

High accuracy in combination with a fast data acquisition is not only essential
to tackle problems of interest in atomic and molecular photoionization, but also
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for improving the quality of existing literature values as they are e.g. important
for transmission and energy calibration of the spectrometers (see chapter 3.1.3).
They furthermore lay the basis for FEL based PES experiments which aim to
study non-linear e�ects and therefore rely on an accurate reference in order to be
able to discriminate the e�ects of interest.

One concern of AMO photoionization recently studied are Young type two center
interferences. Using our newly developed setup we were able to study these inter-
ference e�ects in the valence photoionization of homonuclear diatomic molecules
(see chapter 4). Since the partial photoionization cross sections of this work's
relevant orbitals decrease rapidly for photon energies hundreds of eV beyond the
individual ionization thresholds, it is an experimental challenge to record elec-
tron angular distribution data over such wide photon energy ranges with still
high statistical certainty. This highlights the fact that the e�ciency of the newly
developed spectrometer setup is an important basis of this work.

Setup details - The way from electron emission to its detection

In detail the spectrometer setup consists of 16 independently working electron
time-of-�ight spectrometers aligned perpendicular to the plane of light polariza-
tion. The acceptance angle for each spectrometer is about 0.2% of 4π which leads
to a total setup acceptance angle of 3.6% of 4π. This con�guration was chosen to
be the best compromise concerning the transmission in terms of the solid state ac-
ceptance angle, the need of a compact size for the beamline implementation as an
online diagnosis tool, the achievable energy resolution and recovery and the capa-
bility of fast electron-electron coincidence measurements. For the latter use it is
crucial to have a high number of spectrometer pairs at di�erent angular positions.

Each spectrometer is mounted in a gold coated aluminum ring which can ad-
ditionally be set to an independent potential (see �gure 3.3). The gold coating
was adapted during the development of the spectrometer setup making sure that
no arti�cial charge e�ects can a�ect the electronic trajectories. With the inde-
pendent potential on the inner ring a rejection of attracted ions can be achieved
being relevant especially for high voltage retarding.

In the actual status, a single spectrometer consists of a �ight tube divided in
four independent potential sections, a 'micro channel plate' (MCP) based de-
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Figure 3.4: Schematic of the ARPES setup including all 16 time-of-�ight spec-

trometers aligned around the dipole plane of the light polarization mounted on

the moveable base platform (see itemization below and �gure 3.3 for details).

tector and the relevant cabling for applying high voltages and decoupling the
electronic signal. The total length from the interaction region to the MCPs is
∼ 140 mm. The separate �ight tube potentials allow to shape the electron trajec-
tories while decelerating the electrons in order to improve the energy resolution
and transmission e�ciency for higher kinetic energies. Extensive simulations in
'Simion'2 have been performed in our workgroup and in collaboration with the
diagnostic group of the European XFEL GmbH3.
Figure 3.5 shows graphics created with Simion illustrating the di�erences of the
electron propagations through the �ight tube between a non-optimized and an
optimized set of potentials. This visualizes implicitly the great need of a sys-
tematic understanding of electron optics using such a spectrometer setup as the
presented. Experimental data on the topic of electron optical optimization has
been acquired during several beamtimes to validate the simulations and further
improve the spectrometers' resolution and e�ciency. Due to the multi-parameter
problem associated with the optimization, the development is still in progress
being also highly relevant for hard X-ray and free-electron-laser adaptability. As

2Simion - Charged particle optics simulation software www.simion.com. Used Version 8.0.1.
3WP 74 diagnostic group, Jan Grünert. (jan.gruenert@xfel.eu) Adress: Albert-Einstein-

Ring 19, 22761 Hamburg (Germany)
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Figure 3.5: Simulated electron trajec-

tories in the actual spectrometer design

with an empirically determined �ight

tube potential optimization for an elec-

tron kinetic energy of Ekin = 105 eV

and a retarding set of P1 = 50 V, P2 =
65 V, P3 = 88 V, P4 = 100 V (a) and

electron trajectories for Ekin = 105 eV

without any potentials applied to the

the �ight tube sections (b).

shown in �gure 3.5 one aim of a potential optimization is to form the electron
trajectories in a way that they expose the whole active area of the MCPs ac-
companying the lowest possible time-of-�ight di�erences. Such a widely spread
electron exposure of the MCP ensures a low probability for an incoming electron
to hit a single pore twice which would cause a lack of transmission. In addition,
the charge recovery time can be improved by utilizing 'Extended dynamic range'
MCPs. However, the bene�t and the need for these special MCPs has to be eval-
uated in the light of much higher costs especially relevant for multi-spectrometer
setups like the presented. This consideration is especially essential for an use of
a MCP based spectrometer setup at free-electron-lasers due to the much higher
amount of electrons exposing the MCPs within a very short time therefore in-
creasing the probability of such a described 'double hit' of a single pore within
the recovery time. Such e�ects can approximately be neglected for the use at a
storage ring based synchrotron radiation source. However, the setup in its use
as a diagnostic tool could bene�t from longer life times of such special MCPs in
comparison to the presently chosen detection quality MCPs.

Having passed the �ight tube, the electrons are transmitted through a bias mesh4

at the same potential as the last section of the �ight tube. This ensures that in

4Transmission rate typically > 85%
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every potential setup the incoming electrons have a certain kinetic energy when
they �nally hit a z-stack of micro channel plates. The applied detection-quality
MCPs have an opening ratio of 60% with a pore size of 12 µm. Detection quality
MCPs do not provide further spatial resolution, since this is not essential for the
spectrometer setup used here. Each MCP multiplies an incoming electron roughly
by a factor of 1000. The applied high voltages at the MCPs are optimized for
electronic saturation in the last plate which is depending on the actual charge
status and the resistance of the plate.
The electron avalanche created by the MCPs is decoupled by a foil capacitor on
a gold coated anode. The typical MCP pulses have a width smaller than 1ns

(full width at half maximum (FWHM)) with an amplitude ranging from few mV

up to 100 mV depending on the individual MCP charge status. Especially for
free-electron-laser application it is crucial that the MCP pulses are very sharp in
order to measure in analogous mode where the energy resolution is depending on
the MCP pulse width (see section 3.1.5).

All cabling for the �ight tube and the MCPs were equipped with additional
RC-elements to reduce noise and arti�cial pulse re�ections. All parts of each
detector were under continuous development during the last years to increase the
performance of the spectrometer setup. The peripherals of the setup as well as
the whole chamber are carefully selected to be non-magnetic.

The whole ARPES TOF setup includes the following elements:

• A base platform being able to align the chamber in all degrees of freedom
via step motors.

• A di�erential pumping section with an array of capillaries to ensure a pres-
sure decoupling of the chamber from the beamline in the order of one to
two pressure magnitudes.

• Two molecular turbo pumps with a pump capacity of 80 l each �ange-
mounted at the chamber. These pumps ensure the required basic pressure
in the UHV. Typically pressures in the order of 10−9hPa are reached.

• Three Helmholtz Coils for magnetic �eld compensation ensuring a homo-
geneous magnetic �eld of at least 10 ∗ 10 ∗ 10 cm3 around the interaction
region in the center of the chamber.
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• A negative length �ange ranging close to the interaction region. A mag-
netometer can be inserted for magnetic �eld measurements near the inter-
action region in order to monitor the e�ect of the Helmholtz correction
coils.

• A ∼ 45� horizontally rotated diode working as a beam dump which pre-
vents light re�ections at all photon energies and also allowing a chamber
alignment as well as photon intensity monitoring via current measurements
at this diode.

• A gas inlet system consisting of an x/y/z movable gas nozzle, a system of
pressure regulators and the gases of interest. For the presented data of N2

and O2 as well as for the calibration rare gases the gas purity was 99.999%

and for CH4 it was 99.9%.

Non-dipole parameter determination

As already described in the previous chapter, there is a high scienti�c interest
in electron angular distribution non-dipole e�ects [56, 60, 130]. The spectrom-
eter setup on purpose has no spectrometers aligned o� the dipole plane in the
presented status, because for its use as a diagnostic tool it is advantageous to
limit the required set of parameters to dipole contributions. Recalling equation
2.18 and �gure 2.10, this means that all spectrometers in the dipole plane have
an azimuthal angle Φ = 90�. There are small changes necessary to realize non-
dipole adaptability. One possibility is to add some additional spectrometers o�
the dipole plane at �ange angular positions containing non-dipole information.
The advantage of such a solution is the minimal impact on its present design,
whereas the disadvantage is the relatively low quantity of non-dipole angular
information since the presented setup only allows additional mounting of four
to six 'o�-dipole-plane-spectrometers'. Especially with the aim of high precision
non-dipole spectrometry this solution can only be regarded to be preliminary
(see also chapter 6). The other possibility is to rotate the whole chamber by 90�
perpendicular to the direction of light propagation, so the number of non-dipole
spectrometers is higher. Using this setup rotation for non-dipole investigations
includes the removal of the spectrometers at the former angle positions 90�and
270� (see �gure 3.4 for angle positions) so the synchrotron light can propagate
through these former detector �anges. Both solutions are planned for non-dipole
studies in the very near future as it can also be read in the outlook of this work.
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Electron-electron coincidence measurements

The spectrometer setup as well as the utilized acquisition software can also be
used for studies of electron-electron coincidences. In coincidence studies physical
information can be determined, if two detected electrons are originated from the
same physical process as it is the case for e.g. double ionization of the gas target.
The sum of the electron kinetic energies of one double ionization process is accord-
ing to the discrete binding energy of the doubly charged state �xed whereas the
kinetic energy of the two electrons emitted may be a continuous distribution.The
distribution limits are given by the fact that the sum of the two kinetic energies
is �xed by the di�erence of the photon energy minus the binding energy of the
doubly charged state. Access to this information provides great opportunities
e.g. in double photoionization studies and sub-natural line width investigations.
In the context of this work double ionization dynamics of homonuclear diatomic
molecules such as N2 or O2 should include higher di�erential information on in-
terference e�ects like the Cohen-Fano oscillations being main part of this thesis.

Coincidence spectroscopy is essentially dependent on a large solid acceptance
angle of the spectrometers in order to achieve reasonable recording times for co-
incidence spectra. The required high solid acceptance angle is in contrast to a
high angular resolution also essential for the use of the spectrometer setup. This
experimental issue is solved by the large number of spectrometers implemented
in the setup as it has been proposed by Viefhaus (1997) [135]. The large number
of individual analyzers as well as the high solid acceptance angle of the presented
spectrometer setup are outstandingly advantageous in this concern allowing very
fast coincidence data recording.

As the setup utilizes a pulsed photon source anyway, the only additionally needed
hardware is a 'time stamp generator' which numerates each acquisition cycle and
is triggered by the bunch marker signal. Identifying a coincident electron-electron
event can be done by software whenever two (or more) spectrometers detect an
event within a given acquisition cycle. This identi�cation is done via the unique
'time stamp'-number. The resulting data point contains the time-of-�ight infor-
mation of both detected electrons in a matrix illustration as it is shown in �gure
3.6.

The maps in �gure 3.6 show the electron-electron coincidence time-of-�ight
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Figure 3.6: Elecion raw data for electron-electron coincidences of helium, neon

and nitrogen at di�erent photon energies above the respective double ionization

thresholds.

spectra for two di�erent analyzers at certain angle positions and three di�erent
targets (He, Ne and N2). The designation of the resolved lines to the underlying
physical process is also given in the �gure. Since the helium atom contains only
two electrons, there is only one possible double ionization state and its corre-
sponding distribution. For neon the spectrum becomes more complex as it de-
scribed in detail in �gure 3.6 as a showcase. For nitrogen molecule fragmentation
has additionally to be considered. Therefore, many possible double ionization
channels are resolved in the spectrum. The horizontal and the vertical lines are
arti�cial coincidences at the respective time-of-�ights of the non-coincident elec-
tron lines due to random coincidences in the corresponding analyzer. The dots
all over the matrix are random coincidences due to noise or background signal.
The physically interesting signatures are the sickle shaped lines containing the
information about the respective double ionization processes. This sickle struc-
ture is caused by the kinetic energy distribution of the participating electrons
having a hyperbolic shape as the time-of-�ight is inversely proportional to the
square root of the kinetic energy for both electrons (see �gure 3.12 in section
3.1.4). After a time-to-energy conversion for both detectors this sickle shape ac-
cordingly becomes a diagonal linear shape. Further detail on this processing can
be read in e.g. Viefhaus (1997) [135]. This work only initializes electron-electron
coincidence studies with much higher e�ciency compared to previously utilized
setups and further engagement using the presented spectrometer setup will come
up in the near future.
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A complementary experiment of the Fritz-Haber-Institut, Berlin

A complementary experiment on the topic of two-center interference e�ects has
been carried out in collaboration with the Fritz-Haber-Institut (FHI) of the Max
Planck Society in Berlin at the BESSY II storage ring of the Helmholtz Zentrum
Berlin (HZB). The setup of the FHI consists of 22 working time-of-�ight detectors
also aligned perpendicular to the plane of light polarization. The �ight tubes of
the detectors are 309 mm long which corresponds to a better energy resolution
but also a lower solid acceptance angle in comparison to the above presented
spectrometer setup. The data acquisition is similar to the description in section
3.1.2. The most obvious bene�t for the work presented in this thesis is an inde-
pendent experiment with likewise independent analysis allowing a cross check of
the data sets' accuracy. Therefore, the FHI experiment serves as a benchmark for
this work. One has to bear in mind that the data presented in this thesis being
recorded with our setup at DORIS III at DESY in Hamburg are representing a
huge quantitative expansion of the acquired electron angular distribution data
taken in Berlin at BESSY II.

3.1.2 Data Acquisition

The data acquisition is shown in a �gure 3.7 visualizing the signal path beginning
from the electron avalanche pulse created in the MCPs to the event �le stored on
a PC. The data �le includes all relevant information namely the spectra recording
time, the photon energy and the respective number of counted electrons labeled
for each timing channel. In coincidence mode all electron-electron coincidences
can be derived from the created binary event �le.

Starting from the beginning, the MCP pulse is ampli�ed by a wide band pre-
ampli�er with a working range from 0.1 to 1000 MHz and an ampli�cation factor
of typically 20. The ampli�ed pulse is then discriminated by a constant frac-
tion discriminator (CFD). Threshold, outgoing NIM-type pulse5 width and a so
called zero-crossing parameter are optimized for a high signal-to-noise level. An
appropriate outgoing pulse width in the order of 50 ns is set and a proper edge
triggering of the original pulse is accounted for a common NIM pulse height of
∼ 800 mV . A typical dark count level ranges in the order from 1 to 10 Hz per
detector.

5The Nuclear Instrumentation Module standard is a standard for negative logic signals.
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Figure 3.7: The scheme illustrates the signal processing from the target ioniza-

tion via synchrotron radiation to the resulting photoelectron time-of-�ight spec-

tra. The time-to-digital converter (TDC) is triggered by a bunch marker provided

by the facility. Then the TDC is assorting the incoming discriminated detector

signals to 60 ps timing segments. Finally the acquisition software uses the TDC

information for generating histograms in the form event per timing channel.

The next step of processing is a time-to-digital converter (TDC) being in sim-
ple words the high precision stop watch responsible for the determination of the
time-of-�ight and the counting of the incoming pulses. In this case a device with
a time resolution of 60 ps is utilized [133]. The essential advantage in comparison
to other digitizing hardware like e.g. standard analog-to-digital converter (ADC)
is that a TDC has a very short 'dead time' usually limited by the pulse width
adjusted at the CFD. This pulse width was usually adjusted to be ∼ 50 ns for
all detected events during all relevant beamtimes. Compared to Flash ADC or
oscilloscopes however, the time resolution of the TDC is superior. It corresponds
to 16 GS

s
sampling speed which is at present only available for high-end oscillo-

scopes having - for this multi spectrometer setup utilization - a prohibitive price
tag. In non-coincidence mode the TDC measurement is started by a NIM pulse
provided by a phase stable timing signal having the same time period as the
charged particle bunch circulating in the storage ring (so called bunch marker).
Due to technical constraints within the TDC a minimum timing cycle of 1 µs is
required. Because of the revolution time at DORIS III (see section 3.2) of 964 ns

the TDC is operated using only every second bunch marker as a start signal. This
corresponds to a usual timing cycle of about 2 µs which is used for most of the
data presented in chapter 4. Therefore, in DORIS III 5 bunch operation mode
10 spectra with ∼ 32000 channels, each with the mentioned 60 ps, are plotted in
a live histogram while recording the data. The data of the TDC is transmitted
to a Linux computer via a parallel interface using SCSI-type connectors.
The acquisition software 'elecion' [143] displays the time-of-�ight spectra in real
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time where each event represents one count a a given time-of-�ight. The binary
mode of detection in terms of discrete counting for each event is common for a
use of such an gas phase experiment at a storage ring based light source where
typically only few or even less than one event is detected per acquisition cycle.
This di�ers from a use of such a spectrometer setup at an FEL since there the
amount of incoming electrons is so high that an analogous measurement of the
MCPs is necessary (see section 3.1.5).
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Figure 3.8: Screenshot of the data acquisition software 'elecion' showing time-

of-�ight spectra for all 16 spectrometers. In this example the histograms show

neon time-of-�ight spectra at a photon energy of 60 eV . The e�ect of the angular

distribution parameter for the Ne 2s line (β = 2) can nicely be seen by the virtual

absence of signals in the 90�and the 270�spectrometers and a progressively higher

signal towards 0�and 180�respectively.

3.1.3 Calibration Properties

Although all detectors are assembled in the same way and all parts are equally
manufactured, each of the spectrometers has a slightly di�erent behavior concern-
ing e�ciency, transmission and resolution. According to the Legendre polynomial
for di�erential cross sections (section 2.4 equation 2.17) a literature database of
a well investigated angular distribution of a calibration target is needed for all
determinations of unknown angular distribution parameters β. Having access to
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these known angular distributions an intensity normalization of the spectrom-
eters can be performed and then be used for the analysis of unknown angular
distributions. For this process it is common to use electrons of the helium 1s

([89] and references therein), the argon 3p [1, 37, 61, 119] or the neon 2p line
[68, 76, 119, 148] depending on the photon energy range of interest. For higher
photon energies further electron lines of deeper lying orbitals with higher bind-
ing energies and accordingly higher cross sections can be taken into account.
However, there is much less angular distribution data available for inner shell
photoionization over wide photon energy ranges. The establishment of a proper
data base is a necessary task which is an ongoing project of the P04 workgroup.

Figure 3.9: Figure (a) shows available partial cross section data (as cited in (b))

for several noble gas electron states in a log-log plot. Figure (b) shows the same

data over a broader photon energy range with an allocation of all symbols and

lines used for the literature values of Kennedy et al. [68], Marr and West [142],

Johnson et al. [64], Saito, Wuilleumier et al. [147, 148] , Schartner et al. [114]

and NIST [95].

Available cross section data for He 1s, Ne 2p, Ne 2s and Ar 3p is plotted in
�gure 3.9, since angular distribution as well as partial cross section data for these
states is relevant concerning calibration properties in the frame of this work. Fig-
ure 3.9(a) shows a log plot in both dimensions to increase the visibility of low
photon energy and low cross section regions. The plot on the right side (b) shows
the same data with a mapping of the applied literature values. It can be derived
from the �gure that for investigations over broad photon energy ranges up to
∼ 400 eV , neon is most suitable for calibration usage concerning the high cross
section.
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The basis for a highly precise determination of β is the validity of the calibration
data sets of a known angular distribution for gas target orbitals since their quality
directly scales to the accuracy of β-investigations. Due to its comparably high
cross section and an established theoretical and experimental β-data base over
a wide photon energy range, the neon 2p electron line is a preferred choice for
investigations in the soft X-ray photon energy regime usually better suited than
the helium 1s or the argon 3p lines. Beside this, Ne 2p data can intrinsically be
cross validated for photon energies > 49 eV by calibrating the Ne 2p line with
the Ne 2s electron line (β = 2) and furthermore with several well investigated
satellite lines [55, 74] of even higher binding energies.
Nevertheless, an advantage of a spectrometer calibration via helium 1s electron
angular distribution is the well de�ned β of +2 (in case of 100% horizontally
polarized photons, as there is neither theoretical nor experimental observations
available which deviates from this value [89]). Especially for He 1s the in�u-
ence of scattering on other electron orbitals can approximately be neglected. A
disadvantage is the vanishing signal of the He 1s line in spectrometers aligned
perpendicular to the plane of light polarization and a resulting loss of accuracy
in spectrometers close to this angle. Furthermore, helium has a rapidly decreas-
ing cross section (see �gure 3.9) causing a comparably une�cient calibration for
higher photon energies ≥ 200 eV .

Argon 3p electrons have an angular distribution unequal to 2 and its cross section
is higher in comparison to helium 1s but still lower than the cross section for the
neon 2p photoionization which is shown in �gure 3.9. Beside a higher photoion-
ization cross section compared to helium 1s, an intrinsic cross check due to a more
complex spectrum with additional main quantum states can be performed as it
was the case for neon. The most important fact is that well established literature
values for the angular distribution of Ar 3p is available as it is the case for Ne 2p

([8] and references therein as e.g. [1, 37, 61, 119]).
An increase of accuracy for β-investigations can be a�orded by using these inde-
pendent calibration targets. The disadvantage of such a redundant calibration is
a much higher time e�ort being in contradiction to the short beamtime periods
available. Another apparent possibility of gaining accuracy in this respect is a
quality increase of the existing β-datasets in terms of the available photon energy
range, the data accuracy and a more dense photon energy step width. The latter
parameter is especially important, since many resonance features can a�ect the
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Figure 3.10: Figure (a) is adapted

from Langer et al. (1997) [76] showing

theoretical calculations for neon 2s →
2p autoionization resonances of the an-

gular distribution parameter β below

the Ne 2s threshold. The red dashed

line at the 2p4 3s 3p resonance shows

the experimental data of this thesis.

Figure (b) shows a zoom in this experi-

mental data of the 2p4 3s 3p resonance.

angular distribution sometimes even massively within very small photon energy
ranges in the order ofmeV . One example of such a resonance in�uence is shown in
�gure 3.10. This autoionization resonance is not included in the common calibra-
tion data and may a�ect β-investigations signi�cantly around the photon energy
range of its occurrence at 45 eV . As it can also be seen in �gure 3.10, much more
resonances are to be taken into account in that particular photon energy range
of neon. Resonance features are often occurring due to autoionization below the
threshold of main quantum states and other transition channel openings. The
situation is common to most gas phase targets as it is shown by similar features
are discussed in chapter 4 for the angular distribution of N2 and O2.

Beside such resonant signatures which are not taken into account in the common
calibration data for e.g. Ne 2p, the literature values still show persisting dis-
crepancies between experimental and theoretical data (see �gure 3.11). Precise
studies of small electron angular distribution e�ects requiring small errorbars
(< 0.05 β) as it is the case for this work therefore raise the need of remedying
these discrepancies in order to minimize the calibration induced uncertainties and
in turn open up the possibility to study such e�ects for the �rst time.

Therefore, highly accurate and more dense experimental β-datasets than available
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Figure 3.11: The �gure il-

lustrates the still persisting

discrepancy of common ex-

perimental (Southworth et

al. (1986) [119] and Wuilleu-

mier et al. (1979) [148] and

theoretical (Kennedy et al.

(1972) [68]) data available

for the angular distribution

anisotropy parameter β of

Ne 2p in the photon energy

range from ∼ 70 to 210 eV .

are necessary. In order to achieve this aim, highly precise β-data for the Ne 2p

line in the photon energy range from threshold up to 600 eV were recorded. The
theoretical data of Kennedy (1972) [68] is widely supported by these new results
not showing the depicted discrepancy as it is plotted in �gure 3.11.

3.1.4 Data Processing

The data processing includes a stacking of the multiple spectra recorded with
the TDC, a time to energy conversion of the spectra and an integration of the
counts for all relevant electronic states. It is crucial to disentangle the actual
photoelectron signal from the background. The background is not necessarily
only noise, but can also be real electronic signal from comparable fast electrons
like e.g. Auger or scattered electrons. For this reason, the resolution of the
detector as well as a precise data analysis is important to determine accurate
β-data.
As it can be derived from �gure 3.12 to each channel a corresponding kinetic
energy can be determined since the binding energy of the neon 2p electrons is
well known. This can be illustrated in the simple calculation for each time-of-
�ight channel

Ekin = Ehν − EBinding Ne2p (3.1)

Every electron signature (usually using the center of mass of this signature) in
a spectrum of interest after the calibration can then be determined to have a
binding energy of

EBinding (channel) = Ehν − Ekin (3.2)
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Figure 3.12: The false color plot (a) shows the variation of the time-of-�ight

of the electrons from 25 to 60 eV . The �t curve in �gure (b) shows the channel

position of the neon 2p electron line for certain electron kinetic energies.

This procedure is done prior and after every photon energy scan for a certain
target in order to ensure proper calibration data with no arti�cial position changes
or intensity �uctuations. As it can be seen in �gure 3.12, the development of the
channel position for an electron line over the photon energy is not linear. The
development and therefore the conversion �t is based on the proportionality

E ∼ 1

dt2
. (3.3)

and is applied to the spectrometric data to be converted.

Figure 3.13: The �gure shows (a) a raw electron time-of-�ight spectrum as it

was acquired by 'elecion' in DORIS III 5 bunch mode, (b) a stacked spectrum

including all 10 spectra of (a) and (c) the stacked spectrum with converted energy

information (time-to-energy-conversion) and background determination via linear

�t.

Since the measured data for the target under study and also the calibration
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targets is quantitatively very voluminous, the written code6 is automatized in
terms of calibration of the data, �nding the relevant peaks in the spectra and
analyzing them with the �nal output of a β-value. It can be chosen how many
�les should be analyzed, what kind of background �tting should be used and
what calibration literature values are to be taken. This automatized processing
raises the possibility of analyzing thousands of β-values in a broad energy range
within a moderate time (∼ 100 β-values per hour for 16 spectrometers and clearly
resolved electron lines). As a future application, it is possible to adapt the code
for an online processing of electron angular distribution data which allows to use
the spectrometer setup for online diagnostics (see section 3.1.6).

3.1.5 Free-Electron-Laser Adaptability

The introduced spectrometer setup is not only suitable for synchrotron radiation
experiments at storage rings, but also applicable to free-electron-lasers. Although
the injected gas targets are very dilute, FEL pulses are that intense that even
one single shot can be su�cient for the determination of an adequate electron
time-of-�ight spectrum. Integration over many shots is also possible and depend-
ing on the scienti�c topic expedient. The method allows e.g. the investigation of
non-linear processes in the photoionization of atoms and molecules. An overview
on this scienti�cally highly interesting topic can be found in e.g. Doumy et al.

(2011) [41], Berrah et al. (2010) [12], Sorokin et al. (2007) [118] and references
therein. As it will be pointed out in the following section, the scienti�cally rele-
vant studies on electron angular distributions are additionally complemented by
diagnostic scopes even for single shot analysis (see section 3.1.6). Beamtimes
at the vacuum ultraviolet (VUV) FEL FLASH (Freie-Elektronen-Laser in Ham-
burg) at DESY have been carried out on the topic of non-linear processes in
the photoionization of noble gases and small molecules in collaboration with the
Fritz-Haber-Institute, using the long spectrometer setup brie�y described in sec-
tion 3.1.1. The corresponding results are not part of this work, but they clearly
corroborate the fact that such a system is rather useful at FELs.

The use of MCP based time-of-�ight spectrometers at FELs is di�erent from the
use at a storage ring based synchrotron radiation source. To recall, at a storage
ring like DORIS III, roughly 5 million photon pulses are generated per second and
the individual spectrometers are only measuring few events per pulse or less (see

6Programming language: 'Python' Version 2.5
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Using PES to monitor
SASE-FEL spectra
M. Wellhöfer et al. (2008)

Plin>0.96(4)

βHe(1s) = 2

Figure 3.14: Single shot spectra for various spectrometer angle positions from

0� to 90� for neon and helium photoionization with free-electron-laser pulses of

FLASH according to [140]. The inset on the right side of the �gure shows the

expected and the real angular distribution for the He 1s line indicating a photon

polarization of ≥ 96%.
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section 3.1.2). Regarding an FEL like FLASH, one can assume that one single
pulse in the order of hundred femtoseconds or less contains the same amount of
photons generated in one second at DORIS III7. Due to the massive amount of
electrons created by the interaction of such an FEL pulse with the gaseous target,
it becomes feasible to measure the current through the MCPs analogous using
a fast digitizer with respect to the electron time-of-�ight8. Since a MCP has a
certain recovery time for their charge in the capillaries, one has to accurately tune
the applied high voltage in order to ensure linear response also for following pulses.

The peaks in the spectra of �gure 3.14 illustrate the angle dependent electron
intensities at hν = 47 eV recorded with an early prototype of the present setup
of this thesis. As it can be expected from literature, the helium 1s line shows a
strong angular distribution anisotropy close to β = 2, whereas the neon 2p line
indicates an electron angular distribution below β = 2. These spectra highlight
the applicability of the presented method to FEL research on various topics [140].

A further test of the spectrometer principle was done in combination with an
experiment at the Linac Coherent Light Source (LCLS) at SLAC in Stanford,
California. The aim of the particular beamtime 'L333' under supervision of the
'Advanced Study Group' of the 'Center for Free-Electron Laser Science' (CFEL)
in Hamburg was the investigation of surface dynamics of a CdTe crystal, using
a pump-probe experiment at the XPP beamline of the LCLS. One of the three
techniques applied for the investigations of the CdTe electron dynamics was a sin-
gle electron time-of-�ight spectrometer responsible for analyzing Auger electron
energy shifts induced by the optical pump laser. A preparatory measurement of a
CdTe crystal has been carried out at the P09 beamline of PETRA III in Hamburg
with the experimental setup presented in section 3.1.1. It was the �rst time this
spectrometer setup was used for solid state measurements. The principle bene�t
of a preparatory storage ring based investigation prior an FEL experiment is that
an estimate of the expected spectra can be generated under very stable conditions.

In summary, MCP based time-of-�ight detectors are applicable to FELs, being
able to collect integrated or single shot spectra. Further engagement on this topic
will follow in the near future.

7Due to the much lower pulse repetition rate the average amount of photons is similar.
8For our measurements we used 8 GS 'Acqiris' hardware (DC 282) from Agilent Technologies

[127].
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3.1.6 Online Diagnosis

Originally the described spectrometer was developed for beam diagnostics at the
P04 beamline at PETRA III at DESY in Hamburg. This is a coexisting use
beside the scienti�c assignment of high precision angle resolving photoelectron
spectroscopy. In this section an overview on the diagnostic relevancies will be
given to underline the versatility of the spectrometer and to motivate further
engagements in hard X-ray spectroscopy and FEL diagnosis.

The spectrometer is capable of determining several essential photon beam pa-
rameters online. That means due to the very dilute gas target in the order of
10−5 hPa− 10−7 hPa the photon beam is almost una�ected by passing through
this gas target. Despite the low target density the photoionization rate of the gas
target is su�cient for a very fast analysis of electron angular distributions.

The accessible photon beam parameters are

• Photon beam position (Accuracy ≤ 10µm),

• Photon energy (Calibration should be dE
E
≤ 1

10000
),

• Photon �ux (Accuracy ≤ 1% absolute, ≤ 0.1% relative),

• Degree of polarization (Accuracy ≤ 1%).

The beam position can be determined most accurately analyzing a low kinetic
energy electron peak. If the beam position changes e.g. in a horizontal direction,
the measured time-of-�ight of the electrons changes most signi�cantly in the hor-
izontally aligned detectors. One of them measures a shorter and the opposite
one a longer time-of-�ight. Explicitly, this means that the channel position of
the peak is changing respectively. Applying a sophisticated analysis for the cen-
ter of gravity of the relevant peak, it is possible to determine beam positioning
changes way below 10µm. The large number of independent spectrometers result
in a high accuracy due to redundantly collected data on di�erent angle positions.
First tests moving the chamber with respect to the beam position turned out to
be very promising (see �gure 3.15).

The photon energy can be determined in a quite similar way, again analyzing
the channel position of the relevant electron peak in the time-of-�ight spectra.
Varying the photon energy shifts the peak to lower or higher channel numbers

50



CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.15: The �gures provided by [136] show the relative time-of-�ight of

Ne 2p electrons at hν = 25 eV for the horizontally (0�and 180�) and the vertically
(90�and 270�) aligned spectrometers of the experimental setup. On the left side a

chamber movement of 2 mm with an outer step width of 50 µm is shown whereas

on the left side a zoom in the inner positioning range of 0.5 mm is shown with

a step width of 5 µm. The changes of the relative time-of-�ight in the vertically

aligned detectors are probably caused by a parasitic movement of the chamber.

respectively.

The photon �ux can be determined relatively, using the count rate of the spec-
trometers normalized by tabulated cross sections and afterwards generating an
absolute scale using a diode as well as a photoionization cell.

The photon polarization analysis is using the angle dependent intensities detected
by all of the spectrometers together with a tabulated angular distribution to de-
termine the degree of photon polarization. In photon energy ranges where a single
s-orbital signature can be used for such a determination, this procedure is straight
forward. At the vertical positions with respect to the plane of polarization no
signal would be measured for the case of 100% linearly polarized light. Changes
in the plane of polarization also shifts the maxima and the minima of the angular
distribution as it is illustrated in �gure 3.16. During the work on this thesis an
algorithm was written which enables to automatically �nd the relevant electron
lines, analyze their intensity and determine changes in the photon polarization.
An example of such an analyzis can be seen in the �gure 3.16. Although absolute
polarization values can only be determined for the case where the angular distri-
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bution is known, it is possible to determine relative changes for any electron line
including the information on the angular position of the polarization plane. This
is especially useful for photon energy regions where no literature data is available.

The P04 beamline at PETRA III at DESY in Hamburg uses an APPLE II un-
dulator (Advanced Planar Polarized Light Emitter) capable of producing linearly
polarized light in all planes around the photon beam direction as well as circu-
larly polarized light in the photon energy range from 200−3000 eV . The circular
polarization mode is realized by longitudinal shifts of parts of the undulator's
magnetic structure. Therefore, the diagnostic need of a polarization analysis to
monitor the actual state and degree of polarization is obvious. There is one other
beamline at PETRA III capable of polarization shifts namely the P09 beamline.
The P09 beamline was one of the �rst working beamlines at PETRA III and
already during the commissioning phase several beamtimes have been carried out
to validate the online diagnostic abilities of the experimental setup in terms of
polarization analysis. In the frame of a German-Russian collaboration a diagnos-
tic unit, equal to the one described, will be implemented in this beamline adapted
to the requirements of a higher photon energy range from 3−20 keV . The polar-
ization shift at the P09 beamline is realized by two diamond phase plates being
able to shift linearly as well as creating circularly polarized light. This setup was
commissioned using our online diagnostic unit and a high precision di�ractome-
ter. Cross checking these values allowed a 'proof-of-principle' showcase for our
spectrometer and also for the quarter wave plate setup at the P09 beamline9.

The showcase in �gure 3.16 illustrates the relative intensity development of
Xe 2s electron lines (Ebinding = 5453 eV ) for all spectrometer angle positions for
several shifted degrees of polarization 3.16. The relative intensity data for each
spectrometer was �tted by using a sine function. Since the intensity distribu-
tion changes with a changing degree of light polarization the phase shift of this
sine function directly indicates the angular position of the polarization plane. In
this particular case a single s-orbital line was used with an implicit knowledge of
the angular distribution. The agreement of the time-of-�ight data and the data
taken with a di�ractometer is remarkably good underlining the accuracy of such
an online diagnosis (See 'DESY Photon Science Highlights 2009' page 86.).
Regarding more complex cases and the polarization analysis for photon energy
ranges of several keV it is anyway necessary to have access to well established

9P09 beamline scientist in charge: Jörg Strempfer jörg.strempfer@desy.de
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Figure 3.16: The �gure shows relative Xe 2s intensities at hν = 5600 eV for all

working electron time-of-�ight spectrometers of the presented experimental setup

(crosses) and sine �ts through the associated data points. Each �t represents a

shifted degree of photon beam polarization. The full circles show data recorded

with a di�ractometer analyzing Bragg peaks of a crystal target over 140�provided
by the P09 workgroup.

databases for di�erent target's angular distributions in order to ensure the de-
terminability of absolute degrees of light polarization. The task of creating ap-
propriate β-databases including all relevant angular distribution informations for
several atomic and molecular gas targets in a photon energy range from 250 to
3000 eV will be realized during the next years at the P04 beamline. In order to
achieve these aimed databases the retarding potentials of the spectrometers have
to work properly up to 3000 V to ensure a su�cient energy resolution recovery
over the whole working range of the beamline. The �rst proof of principle exper-
iment employing retardation up to 3000 V was accomplished during a beamtime
at the P09 beamline in August 2011. This stimulated interest for an adaptation
of such a spectrometer setup, not only for the P09 beamline, but also for the
European XFEL GmbH (WP 74 see contact above).

During the beamtimes at the P09 beamline we were able to show the general
usefulness of the applied method to the hard X-ray regime up to ∼ 15 keV as it
is shown in �gure 3.17. This preliminary upper limit was caused by the beamline
performance at the time of the investigations so the method is promising for even
higher photon energies. These data and the data presented above were the very
�rst 'proves-of-principle' for an applicability of such a spectrometer setup in the
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Figure 3.17: Photoelectron time-of-�ight spectra for Krypton photoionization

at 14.4 keV for the 0�(blue line) and the 90�(red line) spectrometer. The spectra

include the �uorescence photons ('prompt'), L-shell electrons, several KLL-Auger

electrons and the Kr 1s electrons (Ebinding 1s = 14326 eV ). The inset illustrates

the corresponding electron angular distribution.

hard X-ray regime, being therefore essentially interesting also for synchrotron ra-
diation and free-electron-laser hard X-ray beamlines.

Apart from polarization analysis, the other capabilities of the online diagnosis
tool are also interesting for photon beam property analysis of free-electron-lasers
both in the soft- as well as in the hard X-ray regime. The accessible parameters
are the same as they have been presented above. The determination of photon
energy, beam position and intensity, but also - especially interesting for SASE
(self ampli�cation by stimulated emission) type FELs - its energy spectrum are
feasible. The diagnostics group of FLASH at DESY as well as the WP 74 di-
agnostic group of the European XFEL GmbH in Hamburg are collaborators on
the topic of online diagnosis via electron (and ion) time-of-�ight spectroscopy.
Outside the scope of this thesis, a paper on the topic of photon energy measure-
ments using ion time-of-�ight spectrometry was published in collaboration with
the workgroup of Kai Tiedke10 [67].

10FLASH diagnostic group kai.tiedke@desy.de
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3.2 The Light Sources and Beamlines

The radiation required for the investigations presented in this thesis needs to
include an appropriate accessible photon energy range, high photon �ux, a high
degree of horizontal photon polarization and a pulsed structure for the time-of-
�ight determination of the emitted electrons. Therefore and as a brief introduc-
tion to this section the functionality of undulators will be introduced, since these
insertion devices are best suited for such studies and all of the presented data in
this thesis is measured at undulator based beamlines.
Undulators are 'third generation' synchrotron radiation light emitters for freely
tunable photon energies within certain limits whereas bending magnets are the
�rst and wigglers are the second generation. Undulators for the use at free-
electron-lasers are based on the 'self ampli�cation by stimulated emission' (SASE)
principle commonly accounted to the fourth generation [73].
Basically synchrotron radiation is emitted by relativistic charged particles de-
�ected by a magnetic �eld [116] which can basically be written as

d~p

dt
= e~v × ~B. (3.4)

A de�ection of charged particles propagating almost at the speed of light through
periodic magnetic structures with changing polarity leads to a stacking of the
emitted light pulses. This principle is applied in a wiggler setup. If the magnetic
periodic length of such a device is a multiple of the emission photon wavelength,
constructive interference leads to distinct energy minima and maxima in the
emitted light spectrum. This circumstance is exploited for undulators. The so
called undulator parameter is given by

K =
eBλm

2πβumec
(3.5)

where e is the electron (or positron) charge, B the magnetic �eld, λ is the magnetic
�eld period, βu is the ratio of actual velocity and the speed of light (c) and me

is the electron mass. If K � 1 distinct minima and maxima are produced and
the device can be characterized to be an undulator, whereas K � 1 results in a
continuum emission spectrum as it is the case for a wiggler.
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The BW3 beamline at DORIS III

Most of the data discussed in this thesis were collected at the BW3 beamline11

at the DORIS III storage ring at DESY in Hamburg (Germany). The comple-
mentary experiment together with the FHI was carried out at the UE 56/2 PGM
1 beamline at BESSY II (HZB) in Berlin (Germany). As an outlook a short
overview on the P04 beamline at PETRA III, also located at DESY in Hamburg,
will be given.

The DORIS III storage ring was usually working in 5 bunch mode during most
of the numerous beamtimes. The initial particle beam current was 140 mA de-
creasing during the injection cycle of commonly 6-8 hours to ∼ 80 mA. The
positron beam energy of DORIS III is 4.45 GeV still allowing very low photon
energy studies down to few eV at certain beamlines. In order to increase the life-
time and the stability of the charged particles in the storage ring DORIS III uses
positrons instead of electrons. According to the circumference of close to 300 m

and the positrons moving approximately at the speed of light the bunch spacing
is roughly 200 ns in 5 bunch mode so the pulse repetition rate is ∼ 5 MHz.
These machine properties, especially an appropriate positron bunch spacing in
order to be able to record all electrons of one dedicated light pulse, were essential
for carrying out the experiments presented in this work.

Since the investigations presented in this work are mainly dealing with soft X-ray
studies covering wide photon energy ranges, the BW3 beamline at DORIS III was
most suitable for this intent. The BW3 beamline is a state-of-the-art beamline
covering the photon energy range from 15 to 1500 eV [34, 77, 91, 105]. Despite
the long time (∼ 20 years) it has already been working, the BW3 beamline is still
highly competitive providing high photon �ux over this comparably very broad
photon energy range. The relevant parameters for this work are:

• A revolver type undulator with two interchangeable magnetic structures
using di�erent periods (21 and 44 periods) providing high photon �ux in
the order of 1012 photons

s
over this wide photon energy range with the �rst

undulator harmonic.

• An SX 700 plane grating monochromator with two exchangeable gratings.

11BW=BypassWiggler. Note that despite this generic name the light source of this beamline

is an undulator.
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Grating 1 with 1200 lines
mm

, grating 2 with 366 lines
mm

. Both are gold coated.
The photon energy resolution is given by ∆E[eV ] = 2.16 ∗ 10−4 ∗E ∗ 1.5 ∗ s
where s is the slit width in mm [105].

• A photon beam spot size at the beamline focus of 100 ∗ 200 µm2 (with exit
slit settings < 100µm).

• An exit slit with an adjustable slit width ranging from few µm to 800 µm

and

• Horizontally and vertically adjustable ba�es for beam size and halo opti-
mization.

For low energy investigations below the accessible photon energy of ∼ 20 eV of
grating 1, grating 2 can be inserted manually. This has been done for the thresh-
old spectroscopy part of this work, since grating 2 allows to go down to a photon
energy of ∼ 15 eV with a reasonable photon �ux. However, this grating has a
comparably large contamination with higher orders of this grating.

An energy calibration of the undulator and the monochromator has been done
prior every beamtime using several noble gas resonances. Details on these reso-
nances are shown in table 3.1.

Target Resonance Resonance Energy (eV) Reference

Helium 1s→ (n = 2)2 60.147 Domke et al. 1996

Xenon 4d5
2
→ 6p 65.11 King et al. 1977

Krypton 3d5
2
→ 5p 91.2 King et al. 1977

Argon 2p3
2
→ 4s 244.39 King et al. 1977

Neon 1s→ 3p 867.12 Coreno et al. 1999

Table 3.1: Resonances for beamline energy calibration [30, 40, 69].

Usually this calibration cross check is showing only very small discrepancies in
the order of < 100 meV for almost the whole energy range. But in the discussion
of the results on near threshold phenomena of N2, O2 and CH4 this calibration
is crucial, since some of the observed features have a FWHM in the order of this
discrepancy. The beamline is operating very stable and despite its long scienti�c
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use for about 20 years it is still highly competitive for soft X-ray research.

The polarization determination of the provided light was done prior and redun-
dantly during every beamtime by analyzing several s-orbital electrons preferably
of helium since their β is strictly 2 and every signature indication in the vertically
aligned detectors would imply a lack of full horizontal linear polarization.

The beamline control for the undulator and monochromator setting and align-
ment can be done directly at the beamline computer or via remote commands
of an external computer system. The data acquisition software utilizes remote
commands in order to record data in automated photon energy scans.

The P04 beamline at PETRA III

A new beamline for soft X-ray science, namely the P04 Variable Polarization

XUV Beamline, came up to work very recently at the PETRA III storage ring
also located at DESY in Hamburg. Since this beamline was built in parallel
to this thesis its opportunities for science will be brie�y summarized. The low
emittance storage ring PETRA III was inaugurated in November 2009 and is in
the present status one of the most brilliant storage ring based synchrotron ra-
diation light sources in the world [5]. The outstanding performance of PETRA
III as di�raction limited synchrotron radiation source in the XUV photon energy
regime raises the possibility of setting up an exceptional beamline in terms of
photon �ux, energy resolution and small focal spot size.

The P04 Variable Polarization XUV Beamline provides high photon �ux >

1012 photons
s

at an energy resolution > 10000 over the full accessible photon energy
range from 250 to 3000 eV . Two similar beamline branches are set up in order to
ensure an e�cient use. At the present status (01/2012) a preliminary 'dummy'
mirror of low optical quality is implemented in the plane grating monochromator.
Therefore, this setup can only be used to allow and verify a proper alignment of
the beamline but the energy resolution is presently just in the order of ∼ 1000.
Once the designed premirror is available the energy resolution will be improved
to the speci�ed performance. The �ve meter long APPLE II undulator provides
linearly polarized light with a variable polarization plane as well as circularly
polarized light by longitudinally adjustable magnetic structures. The schematic
layout is shown in �gure 3.18.

58



CHAPTER 3. EXPERIMENTAL SETUP

The properties of the P04 beamline will extend the possibilities of experiments
such as the presented in this thesis in an essential way. Although the near thresh-
old photon energy region for valence states of small molecules as they were part
of this work is not accessible, the high photon �ux and the high energy resolution
will allow investigations on processes with even lower cross sections than those
accessible with e.g. the BW3 beamline. This means that detailed studies of subtle
e�ects like e.g. the two center interferences in the photoionization of homonuclear
diatomic molecules could be expanded to even larger photon energies with high
statistical accuracy. The presented ARPES spectrometer setup (see section 3.1.1)
is implemented in both branches of the P04 beamline as an online diagnosis tool
providing all relevant beam parameters for the users (see section 3.1.6).

Summarizing this chapter, the newly developed highly e�cient angle resolving
photoelectron spectrometer setup was introduced as the basis of the studies pre-
sented the following chapter. Furthermore, the beam diagnostic capabilities of
the spectrometer were highlighted to be an essential improvement of diagnostics
for storage ring as well as free-electron-laser based synchrotron radiation sources.
Embedded in these sections were �rst hard X-ray as well as free-electron-laser in-
vestigations showing the versatile adaptability of the setup. Closing this chapter
with a short presentation of the upcoming P04 beamline at PETRA III in turn
opens the view on wide spread new opportunities for soft X-ray science.

Figure 3.18: Conceptual design of the P04 Variable Polarization XUV Beamline

at PETRA III at DESY in Hamburg.
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Chapter 4

Molecular Photoionization E�ects

In this chapter, the angle resolving photoelectron investigations on small molecules
will be presented and discussed. The �rst section highlights near threshold phe-
nomena in the angular distribution of outer valence electrons of N2 and O2. Shape
resonant behavior as well as interchannel coupling and vibrational states are cru-
cial for discussing the near threshold data up to 50 eV .
The next section represents the main work of this thesis, namely the �rst ob-
servations of molecular two center interference e�ects in the angular distribution
parameter of valence electrons from N2 and O2 in a broad photon energy range
from threshold up to 600 eV . The theoretical work of To�oli et al. (2006) [130] on
two center interference based electron angular distribution e�ects in the valence
ionization of N2 was initially predicting β-data in the frame of the Cohen-Fano
formalism on interference e�ects in the molecular photoionization [26]. Proving
these theoretical �ndings and highlighting the relation to the originally discussed
interference in the paper of Cohen and Fano in 1966 [26] for N2 and O2 were the
task of several beamtimes. These Cohen-Fano type oscillations will be discussed
in comparison to additionally observed dynamical photoionization e�ects as well
as prior performed experiments on inner shell electron orbitals of homonuclear
diatomic molecules [151]. As a step toward more complex systems, angular distri-
bution dynamics will then be discussed for the polyatomic heteronuclear molecule
CH4 in order to initialize �rst considerations of a molecular multi-slit experiment.
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4.1 Near Threshold Phenomena of N2 and O2

As extensively discussed in the previous chapters, angle resolving photoelectron
spectroscopy is a well-established method to get insight into the electronic struc-
ture of atoms and molecules. In order to obtain fundamental understanding and
to test an extrapolation of basic models to more complex systems the most promi-
nent targets are small molecules like e.g. N2 and O2.

During the investigations of homonuclear diatomic molecules in a broad energy
range it was essential to compare the experimental data to existing literature
values for angular distributions on these targets. One obvious reason is the clas-
si�cation and validation of the experimental accuracy in comparison to other
experiments, but the investigation was especially triggered by the fact that a
large scatter for the literature β-values in the photon energy range from thresh-
old to 50 eV was found to be well beyond the stated accuracy of the literature
data.

Almost all available β-data for N2 and O2 deal with investigations in this low
photon energy regime however, a study of the electron angular distribution has
never been done with a su�ciently small photon energy step width in order to
resolve e.g. Rydberg enhanced doubly excited resonance features. In the follow-
ing section the angular distribution of the outer valence electrons of N2 namely
3σg, 1πu, 2σu are discussed, continuing with the 1πg HOMO of O2.
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4.1.1 Near Threshold Phenomena of N2

N2 is principally one of the most simple molecular systems leading to an exten-
sive e�ort in both experimental and theoretical studies of this target's angular
distribution properties since decades. Even though experiment and theory are
agreeing on several basic e�ects in the photoionization of N2 outer valence shells,
persisting discrepancies are to be solved in the photon energy region close to
threshold.
Angle resolved photoelectron data for the ionization of all N2 outer valence shells,
namely the 3σg, 1πu and 2σu states, in the photon energy region from 19 to 50 eV

with an energy step width of 20 meV is presented in this section. Hitherto ex-
perimentally unresolved Rydberg states exhibiting Fano-like pro�les of down to
∼ 100 meV (Full Width at Half Maximum - FWHM) in the angular distribu-
tion anisotropy parameter β of electrons emitted from the 3σg state are observed.
They are discussed in the light of recent calculations. A further broader feature
in the β-parameter of the 3σ−1

g state at 29 eV is unambiguously determined. Ex-
perimental evidence for theoretically predicted narrow resonance signatures [126]
due to interchannel coupling in the electron angular distribution of 1π−1

u is found.

To get an overview of the photoionization processes expected to in�uence the
electron angular distribution in the near threshold photon energy range it is very
useful to refer to existing cross section studies. Since absolute cross section data
is usually available in much denser data sets as it is the case for higher di�erential
angle resolved data, initial insight in several underlying processes can be derived
and compared to the new angle resolved experimental results presented below.
Experimental �ndings on the cross sectional behavior of N2 valence electrons con-
cerning Rydberg enhanced �uctuations (Gürtler et al. (1977) [53], Peatman et

al. (1978) [99], Berg et al. (1991) [10]) have never been studied in comparable
accuracy for the photoelectron angular distribution. Figure 4.1(a) shows the dif-
ferent photoionization cross sections for the outer valence states of N2 allowing to
derive the expectable intensity distributions for the recorded photoelectron spec-
tra. The cross section data in �gure 4.1 was chosen for this illustration giving a
very basic and still valid picture on the relative intensity to be expected in the
respective photoelectron spectra. The integral intensities of the respective pho-
toelectron lines show a very nice agreement with these predicted Hartree-Fock
calculations (solid line) of Lucchese et al. (1982) [82]. Recalling �gure 2.8, the
binding energies for the shown orbitals are E3σg = 15.56 eV , E1πu = 17.16 eV

and E2σu = 18.75 eV . These values are di�ering within several hundreds of meV

62



CHAPTER 4. MOLECULAR PHOTOIONIZATION EFFECTS

Figure 4.1: Figure (a) shows several theoretical cross section data for all outer

valence orbitals of N2 according to Lucchese et al. (1982) and references therein

[82]. The blue ellipses mark this 30 eV photon energy position for an easy compar-

ison. Figure (b) shows a typical electron photoelectron spectrum at hν = 30 eV .

The data is averaged over all spectrometers around the magic angle so it re�ects

approximately the cross section without angular distribution anisotropy in�uence.

between the di�erent literature sources as it is e.g. shown in [124].

Comparing highly energetically resolved cross section data for N2 (Gürtler et al.
(1977) [53], Peatman et al. (1978) [99], Berg et al. (1991) [10]) in the relevant
energy range as well as �uorescence data (Wu et al. (1984) [146]) even more in-
formation on photoionization e�ects in this photon energy range can be derived.
To give an example in this concern, �gure 4.2 shows highly resolved partial ion
yield data of N2 according to Berg et al. (1991) [10] designating many resonance
features in the relevant photon energy region from ∼ 22.5 to ∼ 26.5 eV .

Berg et al. (1991) [10] argue that these data undoubtedly originates from
autoionization of the doubly excited N2 states [10]. In detail the two depicted
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Figure 4.2: The �gure shows highly

resolved partial ion yield data for N2 ac-

cording to Berg et al. (1991) [10] label-

ing two predicted Rydberg series yield-

ing two vibrational progressions for n =
4 and n = 5.

Rydberg states converging for higher n to the N+
2 C2Σ+

u promote one electron
from the 1πu and one from the 3σg to the orbitals 1πg and nsσg [10]. Although
this data is integrating over all involved electron states, a comparison to the elec-
tron angular distribution data suggests that most of this resonance structure is
related to the 3σg ionization.

Coming to the available angle resolved data for the outer valences of N2, experi-
mental studies have been performed by e.g. Marr et al. (1979) [85], Southworth
et al. (1986) [120] and Iga et al. (1989) [63].
Theory on this topic is available from Stratmann et al. (1995) [124], Tashiro
(2010) [126] and further authors ranging from Hartree-Fock approaches (Lucch-
ese et al. (1982,1991) [82, 83]) over random phase approximation (RPA) (Cacelli
et al. (1998) [20]) to density functional theory (DFT) (To�oli et al. (2006) [130])
and time dependent density functional theory (TDDFT) (Decleva (2011) [36]).
Detailed references and comprehensive introduction to the available theoretical
models on this topic can be found in Cacelli et al. (1998) [20].

Based on the experimental and theoretical results available for the cross section
as well as for the angular distribution, it can be concluded that many interesting
e�ects are expected to occur for N2 in the threshold photon energy region. The
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e�ects discussed in the energy range from 19 to 50 eV are on the one hand the
predicted shape resonances (Piancastelli (1999) for a general overview on shape
resonances [100]) for the 3σ−1

g and the 2σ−1
u (Southworth (1986) [120]) and on the

other hand Rydberg enhanced resonances and interchannel coupling (IC) for all
outer valence ionization channels. This ensemble of e�ects will be fully covered by
the presented data. Therefore, the new measurements made in the frame of this
thesis comprise highly dense data sets of the angular distribution anisotropy pa-
rameter β for all outer valence shells of N2. All β-data is vibrationally averaged,
not taking vibrationally induced energy splitting of the corresponding orbitals
into account.

Angular Distribution E�ects in N2 3σ−1
g

Figure 4.3 shows the available data for the electron angular distribution pa-
rameter β of N2 3σg ionization. The theoretical curves are taken from Decleva
(2011) [36] and Tashiro (2010) [126]. In the experimental data (citations in the
caption of �gure 4.3) one can clearly see a dip in the energy region from 20 to
23 eV . The reason is under discussion to be originated either by Rydberg en-
hanced coupling to the C 2Σ+

u state (Codling (1966) [25]) or by doubly excited
valence-like states (Wendin (1979) [141]). Following the arguments of Southworth
et al. (1986) [120] the latter interpretation of Wendin (1979) [141] is reasonable,
because of the short lifetimes of doubly excited valence-like states explaining the
broad width of the discussed dip in β. Compared to doubly excited valence-like
states, Rydberg enhanced coupling should lead to narrower features due to their
longer lifetime. Cross section or partial ion yield data of e.g. Berg et al. (1991)
([10] and references therein) however indicate Rydberg enhanced resonances in
the photon energy region around 23 eV . According to �gure 4.2, these resonances
are observed as a superimposed signature on a broader feature. Comparing the
relevant literature for β-data in this photon energy region with ion yield data of
Berg et al. (1991), the observed broad feature at ∼ 22 eV could be originated
by doubly excited valence-like states, whereas the Rydberg resonances predicted
by the ion yield data have no observed correspondence in the available electron
angular distribution data.

Signatures of the shape resonance in the β of the 3σ−1
g electrons should be spread

over more than 5 eV and give rise to small changes observable mainly in vibra-
tionally resolved data [120]. Therefore, even smaller in�uence on the vibrationally
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Figure 4.3: Photoelectron anisotropy parameter β of the 3σ−1
g state of N2. A

large scatter of the available data is the energy region from threshold to 50 eV is

observed. Theoretical data of Tashiro (2010) [126] and Decleva (2011) [36] and

experimental data of Hemmers (1993) [55], Iga et al. (1989) [63], Southworth et

al. (1986) [120], Carlson et al. (1980) [23] and Marr et al. (1979) [85] is shown.

Error bars are only partially included for a clearer overview.
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Figure 4.4: β-data of this work up to 50 eV in comparison to previous experi-

mental and theoretical data as they are cited in �gure 4.3. The uncertainties of

this work's data are discussed in the text.

averaged β-parameter (Carlson et al. (1980) [23], Dehmer et al. (1979) [38]) is
expected.

Figure 4.4 shows the development of the angular distribution data of this work
over the photon energy. The dip at hν = 22 eV already discussed earlier is clearly
veri�ed with the new experimental data. It is in principal agreement with former
experiments, but more structures can be seen. These resonance structures shown
in �gure 4.4 are occurring in the same photon energy range as it is the case for
the absorption cross section data. The intensity progression is also in qualita-
tive agreement. Regarding the cross section and ion yield data of Gürtler et al.
(1977) [53] and Berg et al. (1991) [10], the sharp structures observed in their
work are superimposed on a broad bump as it can accordingly be derived from
the β-data shown in �gure 4.5. Despite the fact that the angle resolved theory
of Stratmann et al. (1995) [124] and Tashiro (2010) [126] is only in qualitative
agreement with the new β-data, it is the only data indicating the deep dip around

67



CHAPTER 4. MOLECULAR PHOTOIONIZATION EFFECTS

A
ni

so
tr

op
y 

P
ar

am
et

er
 β

 

0.6

0.7

0.8

0.9

1.0

Photon Energy (eV)
21 23 25 2622

3σgN2

Decleva (TDDFT)	 2010
Tashiro (R-Matrix) 	 2010
Iga 	 	 1989
Southworth (v'=0) 	 1986
Marr 	 	 1979

This Work

24

(C²Σu
+ nsσg)

n=4

n=5

v'
5 10

5

n=35 10
v'

Gürtler Daten...Inkonsistent mit Berg

Figure 4.5: Enlarged view on the resonance features between 22 - 26 eV in-

cluding all relevant experimental and theoretical data as they are cited in �gure

4.3. The scale above the �gure depicts the Rydberg series according to Berg et

al. (1991) [10] (see �gure 4.2).

22 eV with additional sharp features superimposed at energies > 22 eV in line
with the presented observations. Since the data of Tashiro (2010) [126] indicates
similar features in comparison to Stratmann et al. (1995) [124] and furthermore
expands the predicted resonance structures by far, the calculations of Stratmann
et al. (1995) [124] are not implemented in the �gures of this section to ensure a
clearer view on the voluminous data.

A zoom in the region of the rising edge of the structure at around 22 eV is
shown in �gure 4.5. It unravels clearly de�ned resonances showing close simi-
larities to Fano pro�les within ∼ 200 meV down to less than 100 meV . These
features start directly at the bottom of the rising edge of the dip at 22 eV and
fade out to 26 eV . Due to its narrow and decreasing width this structure could
be a signature of the widely discussed Rydberg enhanced autoionization states
converging to the C 2Σ+

u state (e.g. Berg et al. (1991) [10] and Codling (1966)
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[25]), also present in respective �uorescence data of Wu et al. (1984) [146]. The
positions of the di�erent v′ states in both n-series according to the ion yield data
of Berg et al. (1991) [10] as they are depicted in �gure 4.5 are in good agreement
with the observed features in the β-data of this work. Especially the resonance
structures in the β-data between 23 and 24 eV show very small and narrow ad-
ditional peaks at the bottom of the respective falling edge. These additional
structures might be originated by the n = 5 series as it is also depicted in �gure
4.5. However, they are close to the relative uncertainty of the β-data of this work
in that photon energy region.

Additional hitherto unobserved features can be seen in �gure 4.4 at 26.5 and
29 eV . The latter is placed on the center of the shape resonance according to
theory (e.g. Stephens et al. (1985)). Bearing in mind the interpretations of
Dehmer et al. (1979) [38] and Carlson et al. (1980) [23] pointing to a width of
the shape resonance of larger than 5 eV a direct correspondence in these features
with the shape resonant origin is unlikely because of their smaller width of ∼
1 eV . More likely these features are originated by doubly excited valence like
states as it was probably the case for the dip at 22 eV .

Two �ndings are hitherto unobserved for the electron angular distribution of the
N2 3σg state in this photon energy region: (a) Sharp Rydberg enhanced Fano-
like pro�les superimposed on the well discussed dip at 22 eV and (b) clearly
pronounced features at 26.5 and 29 eV whose origin has to be revealed in future
theoretical work.

Angular Distribution E�ects in N2 1π−1
u

For the angular distribution of the electrons emitted from the 1πu state less
theories and experimental data are available. Calculations of Stratmann et al.

(1995) [124] and Tashiro (2010) [126] gave rise to a search for sharp �uctuation
features in this ionization channel. The electron angular distribution of 1πu ion-
ization leading to the A 2Π+

u state is shown in �gure 4.6. The experimental data
of Hemmers (1993) [55] and Marr et al. (1979) [85] are in agreement with the
gross shape of the new β-data over the photon energy. A formerly discussed peak
in the experimental data of Marr et al. (1979) [85] at around 38 eV interpreted
to be originated by Rydberg series converging to the 2σg state (Lucchese et al.

(1991) [83], Cacelli et al. (1998) [20]) cannot be approved by the results of this
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Figure 4.6: Photoelectron anisotropy parameter β of the 1π−1
u state of N2 in-

cluding the data of this thesis. Theoretical data of Tashiro (2010) [126], Decleva

(2011) [36] and Cacelli et al. (1998) [20] as well as experimental data of Hemmers

(1993) [55] and Marr et al. (1979) [85] is shown. The uncertainties of this work's

data are discussed in the text.
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thesis. The general agreement of the new data with the theoretical β-data of the
1π−1

u of Cacelli et al. (1998) [20], Decleva (2011) [36] and Tashiro (2010) [126] is
remarkable. The results of Cacelli et al. (1998) [20] suggest that inter channel
coupling is not very important here, except for the near threshold photon energy
region. However, their single channel results (SC) (as they are implemented in
�gure 4.6) seem to be even closer to the new data in that photon energy range.
Major discrepancies are found in a predicted resonance feature between 20 and
21 eV by Stratmann et al. (1995) [124] and Tashiro (2010) [126] which is not
evident in the new data. The calculated narrow �uctuations in the β-parameter
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Figure 4.7: Enlarged view on the resonance features between 23 - 25 eV in-

cluding all relevant experimental and theoretical data as they are cited in �gure

4.6.

between 25 and 35 eV predicted by Tashiro (2010) [126] are not in full agreement
with the new data, but resonance structures of comparable width have been
measured in the range between 22 and 26 eV (�gure 4.7). These structures are
damped in comparison to the discussed resonance structures occurring in the β
of the 3σ−1

g state but most likely originated by Rydberg enhanced coupling. Fur-
ther theoretical progress is needed to acccurately describe this experimental data.
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Angular Distribution E�ects in N2 2σ−1
u

Coming to the third orbital, the N2 2σ−1
u , it can be expected from theory of

Tashiro (2010) [126] that sharp resonance structures are evident in β-data. Fur-
thermore and in principal agreement with the calculations of Cacelli et al. (1998)
[20] a plateau from 25 to 35 eV with two superimposed broad peaks is predicted
(see �gure 4.8).

According to Southworth et al. (1986) [120], not only a plateau is observed
at that photon energy position, but a very pronounced broad dip (see �gure 4.8).
They interpret this deep dip to be of shape resonance origin due to a coupling
of (2σ−1

u )(εσg)
1Σ+

u and (3σ−1
g )(εσu)

1Σ+
u in line with the theoretical interpreta-

tions of Stephens et al. (1985) [121]. The theory of Stephens et al. (1985) [121],
including the relevant coupling of the X 2Σ+

g and B 2Σ+
u channels, predicts a

similar feature however, only in very qualitative agreement. This β-feature in
the energy range from 27 eV to 32 eV is discussed controversial e.g. by Tashiro
(2010) [126] because it is not reproduced by the several other authors (cited in
�gure 4.8). As Southworth et al. (1986) [120] suggest, this discrepancy between
the existing β-data could be originated by a high in�uence of resonances to the
angular distribution of electrons from the individual vibrational states. The data
of Southworth et al. (1986) [120] is exclusively analyzed for the v′ = 0 states of
the respective orbitals, whereas the other data sets are vibrationally averaged.
The di�erence between vibrationally averaged and v′ = 0 β-data is usually very
low since the Franck-Condon factor is very high for v′ = 0. Nevertheless, non
Franck-Condon behavior might be evident especially for resonance energies pos-
sibly explaining the discrepancy in β-data.

The electron angular distribution of the 2σu ionization leading to the B 2Σ+
u

state is shown up to photon energies of 50 eV in �gure 4.8. The statistical un-
certainty in this data is higher than for the 1πu and for the 3σg but still in the
order of ±0.05 β-units.

Experimental data of Southworth et al. (1986) [120] and of Marr et al. (1979)
[85] are in disagreement with the new data up to 25 eV . The data of this work
indicate a narrow peak at 23 eV which is in qualitative agreement with the data
of Tashiro (2010) [126]. It is the only data predicting a similar feature at that
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Figure 4.8: Photoelectron anisotropy parameter β of the 2σu ionization of N2.

Theoretical data of Tashiro (2010) [126], Decleva (2011) [36] and Cacelli et al.

(1998) [20] as well as experimental data of Hemmers (1993) [55], Southworth et

al. (1986) [120] and Marr et al. (1979) [85] is shown. The uncertainties of this

work's data are discussed in the text.

photon energy and its origin has to be revealed in future interpretation. The data
of Hemmers (1993) [55] is consistently too low in this energy range most likely
due to a systematic calibration error as he suggests in his work.

Interchannel coupling including calculations of Cacelli et al. (1998) [20] show
a plateau between 26 and 35 eV in the β-parameter absent in the calculations
of Stratmann et al. (1995) [124] but consistent with the new data, even though
the absolute β-value is di�ering. This plateau is located in the same photon en-
ergy range as the observed shape resonance feature in the data of Southworth et

al. (1986) [120]. Regarding the discussion about resonance induced non Franck-
Condon behavior above, it is reasonable that the plateau has the same origin
as the dip in the data of Southworth et al. (1986) [120], namely the σu shape
resonance. If this is the case, the comparison of the vibrationally averaged data
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of this work with the v′ = 0 data of Southworth et al. (1986) [120] can initially
provide insight in shape resonance induced non-Franck-Condon behavior for the
electron angular distribution.

Cacelli's (1998) [20] calculations show a substructure of two broad peaks su-
perimposed on the mentioned plateau. Both are indicated by the experimental
data of this thesis, even though the second peak to a lesser extend. According to
the interpretation of similar structures for the N2 3σ−1

g as described earlier, these
peaks might be originated by valence-like doubly excited autoionization states.
The strong β-increase in the calculations of Cacelli et al. (1998) [20] after the
plateau is not in agreement with the new data but the absolute β values do con-
verge above 45 eV .

In the 2σ−1
u the situation for the theoretical description is similar to the other

two outer valence states. There is some general agreement however, a descrip-
tion of the details observed by the presented experiment (see section 3.1.1) is
still lacking. On the experimental side in particular, the threshold region of the
2σ−1

u state should be covered with emphasis on much better statistical accuracy.
This would probably better be studied at a dedicated low photon energy source
equipped with a normal incidence monochromator, providing much higher photon
�ux in the photon energy range below 30 eV compared to the grazing incidence
monochromator used for this work.

Summarizing the results for the low photon energy studies of the N2 outer valence
shells, resonance structures have been observed in the electron angular distribu-
tion in accordance to available cross section data. Also completely unexplored
features are indicated by the experimental data of this thesis. The hitherto un-
seen e�ects in the electron angular distribution can now be discussed on the basis
of a much denser and more accurate bulk of angle resolved data. E.g. for the
3σg state sharp �uctuations on the rising edge of the dip at 22 eV with a FWHM
in the order of 200 meV are clearly shown. Furthermore, previously unobserved
features at hν = 26.5 eV hν = 29 eV are clearly evident in the ionization of this
orbital. Their relation to the shape resonance ofN2 is not clear yet and theoretical
e�ort in this concern is desirable. For the 1π−1

u electron angular distribution the
new data show also very sharp β-�uctuations being initially predicted by Tashiro
(2010) [126], but shifted in energy compared to the recent measurements. For
the 2σ−1

u broad peaks, probably due to doubly excited valence-like states, were
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observed in agreement with recent theory. The 2σ−1
u shape resonance relation of

this work's data with v′ = 0 resolved data has also to be interpreted in future
theoretical work.
These e�ects in particular but also the new highly accurate β-data sets for all
outer valence shells of N2 should encourage theoreticians to improve their cal-
culation accuracy to be able to better describe photoionization dynamics of N2

valence states close to the ionization thresholds.
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4.1.2 Near Threshold Phenomena of O2

The experimental investigations presented in this work on the O2 photoionization
are limited to the outermost valence shell, namely the 1πg, in order to compare
general e�ects with the ionization of the N2 valences. Angle resolved photo-
electron data for the ionization of this HOMO of O2 is presented in an photon
energy range from 20 to 50 eV . In order to resolve the theoretically predicted
Rydberg type autoionization states in the electron angular distribution, a photon
energy step width of 5 meV is applied for the energy regions where these res-
onance features are observed. Two separated photon energy regions from 19 to
21 eV and from 22.5 to 24.5 eV are determined to show such resonantly enhanced
�uctuations of the electron angular distribution. In comparison to the N2 angu-
lar distribution data these spikes are found to be even sharper with comparably
larger changes of up to 0.5 β-values.

In contradiction to the closed shell molecule N2, O2 is a more complex open
shell molecule. The ground state con�guration is

(1σg)
2 (1σu)

2 (2σg)
2 (2σu)

2 (1πu)
4 (3σg)

2 (1πg)
2 (4.1)

and the ground state symmetry is 3Σ−1
g having 2 unpaired electrons. Photoion-

ization of the valence states of O2 is leading to several possible ionic states with
partly very similar ionization energies. Further complexity is induced by Rydberg
enhanced autoionization states [80] as it was the case for N2. An overview of the
vertical and adiabatic ionization potentials can be found in an article of Lin et al.

(2002) [80] comparing theoretical results with experimental �ndings of Baltzer et
al. (1992) [6].

Figure 4.9 shows the manifold possible �nal ionic states for the photoioniza-
tion of O2 valence states. Various literature values for the respective binding
energies of the valence electron states can be derived from the table. Some of the
electron �nal states are overlapping in the measured photoelectron spectra which
is shown in �gure 4.10(b). This �gure shows a typical electron time-of-�ight spec-
trum of O2 at a photon energy of 30 eV . It is averaged, as it was done for N2,
over all angles around the magic angle so angular distribution anisotropy can be
neglected and a comparison to the partial cross sections shown in �gure 4.10(a)
becomes feasible.

As it is the case for N2, high resolution absolute cross section data is avail-
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Figure 4.9: Table taken from [80] and references therein, comparing theoret-

ical results of ionization potentials with experimental data [6, 65]. The data

is underlining the widespread possible transition channels with similar principal

con�gurations and di�erent ionic states.

Figure 4.10: Figure (a) shows partial cross sections of the outer valence states

O2 according to Demekhin et al. (2007) [39] and references therein. (b) shows

the corresponding photoelectron spectrum of O2 at hν = 30 eV .

able for the relevant photon energy region including an identi�cation of several
autoionization states. This data is shown in �gure 4.11. Beside the designated
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ionization features in the

photon energy range from
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features, Holland et al. (1993) [58] point out the weak structures superimposed
on the broad feature ranging from 21 to 22.7 eV . Since the absolute photoion-
ization cross section does not di�erentiate the various open ionization channels,
overlapping e�ects could partly 'wash out' the resonance structures.

According to the available literature the general e�ects expected in the photoion-
ization of the O2 1πg state leading to the X 2Πg ionic state are autoionization
states from threshold to 20 eV according to Stratmann et al. (1995) [123]. As
presented in the theoretical work of Lin et al. (2002) [80] including up to 10 dif-
ferent transition channels in the calculations, Rydberg enhanced autoionization
states are predicted to occur up to 26 eV . Furthermore, a shape resonance related
feature is stated to occur for ionization of the O2 1πg in the kσu channel very
close to threshold at around 13 eV [80]. The comparability to closed shell linear
molecules like e.g. N2 in terms of the typical shape resonance due to a σ∗ coupling
is lacking (Braunstein et al. (1989) [17]). This is caused by the fact that this
antibonding σ∗ resonance is below the ionization threshold for O2 for equilibrium
bond length [123]. Lin et al. (2002) [80] argue that this shape resonance should
be hardly measurable because of its weak intensity and an overlap with several
strong autoionization states. However, due to the limits of the monochromator
the photon energy of ∼ 12 eV was inaccessible for our studies.

Furthermore, a broad cross section feature attributed to the l = 3 partial wave
component leading to an enhancement in the 1πu → kπu component at ∼ 28 eV

[80] is observed between 20 and 40 eV . This feature should also in�uence the
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angular distribution gross shape in an essential extent in the same broad pho-
ton energy region. It is not predicted to lead to superimposed narrow resonance
structures.

Experimental angular distribution studies on O2 have been performed by e.g.
McCoy et al. (1978) [87] and Holmes et al. (1980) [59]. Further β-data points
at few photon energies can be found in Carlson et al. (1971) [22] and Hancock
et al. (1976) [54]. Figure 4.12 shows the relevant experimental data in com-
parison to selected theoretical calculations. Several of the predicted Rydberg
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Figure 4.12: Available experimental and theoretical data for the ionization of

O2 1πg leading to the X 2Πg ionic state. The theoretical data is calculated by

Lin et al. (2002) [80], whereas the experimental data is taken from McCoy et al.

(1978) [87] and Holmes et al. (1980) [59].

enhanced autoionization states can be derived from theoretical literature values
(e.g. [80, 128]), whereas the experimental data is showing only little indication for
resonance structures [59, 87]. In the photon energy region around 21 eV McCoy
et al. (1978) [87] argue that a negative β-parameter in that photon energy region
should occur due to a domination by parity unfavored transitions but as already
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Figure 4.13: Photoelectron angular distribution data as a function of photon

energy. The blue line is our data and the theoretical calculations as well as the

experimental data included are the same as in �gure 4.12.

mentioned no resonance features are discussed in their work.

Figure 4.13 shows our experimental data for the ionization of the O2 1πu HOMO.
Two regions of strong β-spikes can be seen from 19 to 21 eV and from 22.5 to
24.5 eV which is zoomed in in �gure 4.14. The theory of Lin (2002) [80] is also
included in the �gure in order to provide a comparison. The data set is in good
principal agreement with former experimental data and with recent theory. The
sharp structures observed in our data are the very �rst indication of these reso-
nances in angle resolved photoelectron spectroscopy.

Regarding the �ndings in the experimental data of this thesis and the correspond-
ing signatures in the absolute cross section data of Holland et al. (1993) [58], the
β-resonances are even better observable than the cross section data indicates,
showing nicely the increased insight into these dynamics by higher di�erential
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Figure 4.14: Photon energy region where both sets of sharp β-resonances are

observed. The inset is enlarged in �gure 4.15. The included literature is the

same as cited above. All Rydberg series of this photon energy region are depicted

according to Holland (1993) [58].

measurements. As it was the case for the N2 3σg, the observed sharp features
can most likely be attributed to the di�erent Rydberg enhanced resonances. The
sharp features' photon energy positions are in good agreement in comparison to
the cross section data of Holland (1993) [58] (see data of �gure 4.11 included
in �gure 4.14) and therefore it is reasonable to assume a common origin. The
depicted series are the nsσg

3Σ−
u and the ndσg

3Σ−
u , as it is shown in detail in

�gure 4.14. A clear attribution of the individual vibrational progressions to the
observed sharp features in the β-data cannot be done as clear as it was possi-
ble for the N2 3σg, since much more features are included in this work's data.
Nevertheless, the situation for O2 must be similar to N2 in this concern, so the
principal attribution of the observed features to the Rydberg resonances at this
photon energy seems to be unambiguous.
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Figure 4.15: Enlarged view on the inset region of �gure 4.15. The included

literature is the same as cited above.

Summarizing the results for the electron angular distribution of the O2 1π−1
g , the

experimental data of this thesis found evidence for narrow structures in two sep-
arated photon energy regions probably due to Rydberg enhanced autoionization.
The presented experimental data �nd no evidence for broader features, e.g. due
to doubly excited valence-like states, as it was the case for N2 3σg and N2 2σu.
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4.2 Coherence E�ects in Photoionization Processes

Coherence e�ects of quantum particles like electrons in photoionization processes
play a key role in the understanding of quantum mechanical principles. It is not
only important to understand the behavior of quantum particles in order to lay
the foundation for studies of more complex targets, but it is also essential for the
establishment of new experimental techniques like time-resolved measurements
with e.g. free-electron-lasers.

Since the variety of coherence e�ects of quantum particles is far too voluminous
to give an absolute overview, some basic examples for coherence in the photoion-
ization of atoms and molecules will be presented here.
In general terms it can be stated that coherent electron emission is evident when
two or more indistinguishable transition channels lead to the same �nal state.
Autoionization due to doubly excited states as it was crucial for the discussion
in the previous section is one striking example of coherent electron emission in
atomic as well as in molecular photoionization. In that particular case one of
the electrons is emitted due to the relaxation of the other excited electron in a
lower orbital. The resulting �nal state is the same as it would be for the di-
rect single ionization resulting in the same kinetic energy of the emitted electron.
Accordingly, the indistinguishability of both paths leads to a coherent electron
emission. The signature of this coherence is indicated by Fano pro�les in the
intensity distribution of the emitted electrons [46]. At present time (02/2012)
this article of Fano (1961) is cited almost 6200 times1, underlining the immense
relevance of this interference interpretation. As shown in the previous section,
Fano-like pro�les are also observed for the β-parameter implying evidence for
similar interference e�ects. However, the interpretation for angular distribution
pattern is more complex than for cross section data.

Another example for coherent electron emission and resulting interference ob-
servance is the atomic ionization with ultrashort laser pulses. Pabst et al. (2011)
[96] presented calculations on interchannel coupling leading to a coherence per-
turbation in the superposition of created hole states. An ultrashort laser pulse
with a spectral bandwidth covering two electronic hole states is usually predicted
to lead to a coherent electron emission within this bandwidth. The implied co-
herence assumption should be true as the uncertainty concerning the ionized

1According to Web of Knowledge [134].
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orbital is evident. However, Pabst stated the interchannel 'communication' via
Coulomb interaction to be that strong that a 'which-way-information' considera-
tion becomes essential. This is especially the case for low kinetic electron energies
allowing a longer interaction time with the created hole state fading out to higher
kinetic electron energies. Pabst et al. (2011) assumes this enhanced entanglement
between emitted electron and parent ion to a�ect future attosecond experiments
essentially. These calculations shall be expanded to molecular targets in the near
future, since it is interesting to check their relevance for more complex systems.
This is one example of a fundamental coherence process which is essential to un-
derstand for ultrafast time resolved investigations.

In molecular photoionization additional coherence e�ects can occur due to persist-
ing partial delocalization of electrons in the molecular orbitals, shape resonances
and electron scattering on neighboring atoms. The latter case is also a widely
studied �eld in surface science since these e�ects are essentially in�uencing pho-
toelectron spectroscopy studies on solid states (e.g. [145]).

One of the most fundamental coherence e�ects is the molecular double slit exper-
iment which will be discussed in detail in the following section. Here, coherent
emission of photoelectrons due to an indistinguishability of the two (or more)
emitter sites is possible [26]. A superposition of the two center interference with
one center interference signature is e.g. discussed by Zimmermann et al. (2008)
[151]. The one center self interference is based on scattering of an electron at the
neighboring atom wherefore it can interfere with the non-scattered electron. This
scattering process induces a slight momentum change for the ejected electron and
therefore induces partial decoherence.

4.2.1 Two Center Interferences

In this section interferences due to a coherent electron emission from two emitter
sites will be examined. Recalling the basic explanations of chapter 2, Young type
interference is expected to occur due to the indistinguishability and therefore
non-locality of these sites as it is the case for homonuclear diatomic molecules
[26]. As it was illustrated in a 'Nature News' article by Becker in 2011 [9], the
matter-wave interference is strictly based on the Heisenberg uncertainty princi-
ple. For the observation of an interference pattern the momentum has to be
de�ned precisely in order to 'generate' a su�cient uncertainty for the locality of
the electron. 'Su�cient' in this concern is the coherence assumption meaning
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Figure 4.16: The �gure adapted

from [11] and provided by M.

Braune shows a general Young type

double slit experiment as it was

done by Jönsson in 1961 [66].

that the uncertainty has to be larger than the slit width or the bond length of the
molecule respectively. If this coherence is evident, non-locality leads to a coherent
superposition of both possible outgoing electron wave functions and interference
between these two can be observed. The electron emission can be 'in' or 'out' of
phase concerning the gerade and ungerade MO states. Electrons emitted from
a gerade state are 'in' phase corresponding to a simple Young type double slit
with coherent wave fronts. If the electrons are emitted from an ungerade state,
a phase shift of π between both possible wave functions is observed [151]. In
the latter case the analogon for a Young type double slit is a tilted wave or as
Zimmermann et al. (2008) argue it can be interpreted to be an entanglement of
the slits through the polarization of the photons.

To highlight the principle of a Young type double slit experiment with quantum
particles �gure 4.16 is illustrating the formation of corresponding interference
pattern. This experiment initially proved the particle-wave dualism which was
predicted by de Broglie already in 1924 [33], using an electron source which ex-
poses a double slit setup with electrons. The detection on a screen behind the
double slit shows up interference fringes as it is the case for the original exper-
iment of Young and therefore strikingly proving the quantum nature of matter.

85



CHAPTER 4. MOLECULAR PHOTOIONIZATION EFFECTS

In an article of 'Physics World' in 2002 by Robert P. Crease [31], referring to a
poll of readers, this experiment of double slit electron di�raction was voted to be

'the most beautiful physical experiment of all times'.

As mentioned earlier, the analogon to this experiment in the molecular case is
the electron emission from a gerade state of a homonuclear diatomic molecule
since the wave functions of the emitted electrons are 'in phase' or recalling the
MO formation Ψ = Ψ1 + Ψ2. This case is shown in �gure 4.16 as the green line
in the resulting interference pattern. The maximum here is in the middle of the
screen in correspondence to the �ndings of Jönsson (1961) [66].

Concerning the projection of an ungerade electron emission with Ψ = Ψ1 − Ψ2

to this basic double slit experiment, one would see antifringes in the interference
pattern having a minimum in the middle of the screen. This is, as stated above,
by reason of the π phase shift of the electron wave functions.

The Cohen-Fano Formalism from 1966

Cohen and Fano [26] derived their idea of interference e�ects in molecular pho-
toionization in the light of a molecular double slit for homonuclear diatomic
molecules referring to experimental data on N2 and O2 photoabsorption cross
sections. The presented theoretical approach is, however, calculated for the show-
case of H2. These �ndings are based on the Born approximation leading to the
famous equation for the total absorption cross section [26]

σ = Σσl = σH(Z∗)
1+S

[1 + sin(kR)] (4.2)

where σl are the possible partial ionization cross sections for di�erent angular
momentum quantum numbers, σH is the total photoionization cross section, Z∗

is the atomic number (for hydrogen-like atoms), S is the overlap integral arising
from the normalization of the initial wave function [101] and R is the internuclear
distance between the two atoms. [1 + sin(kR)] indicates the oscillatory intensity
behavior which can be expected to occur in the total photoionization cross sec-
tion. As already pointed out, this oscillatory behavior is also predicted for the
electron angular distribution anisotropy of homonuclear diatomic molecules [130].

Although Cohen and Fano compare their calculations to the experimental data
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of Samson et al. (1965) [111], they stress the experimental evidence of the pre-
dicted oscillations in the photoabsorption cross sections to be 'little'. Further
experimental e�ort done to prove such oscillations at the actual status at 2011 is
mainly dedicated to inner shell ionization and the original assumption of Cohen
and Fano has not been studied with regard to their chosen examples so far.
Quantum mechanics was omnipresent in physical debate at that time (as it still is)
and huge e�ort was done to develop satisfying explanations on this new physical
world's view. It seems to be interesting that the real impact of the Cohen-Fano
paper from 1966 was delayed by more than 30 years. Regarding the close relation
of this molecular double slit interpretation with the initial quantum particle dou-
ble slit experiment by Jönsson et al. (1961) [66] described above, it is even more
astounding that the idea of Cohen and Fano gained its reputation quite recently.
Just as a short side note to the development of the paper's relevance, �gure 4.17
is illustrating that during the �rst 10 years the paper was cited frequently, but
it did not receive a huge impact as it could be expected. This situation changed
dramatically in recent years, the paper's citations increased massively2, because
�rst experiments proving Cohen-Fano oscillations in inner shells were technically
made possible.

It is of fundamental importance for this work to compare the originally pre-
dicted data of Cohen and Fano with recent experiments and principal prove of
their formalism. As shown for the inner shell ionization of N2 [151] or as indicated
in the vibrational branching ratio data for the N2 outer valences [21], the studied
two center interference pattern have a period length in the order of > 100 eV .
Looking at the �rst �gure of the 1966 Cohen-Fano paper, one can see that the
presented energy range is way not su�cient to cover even a single period of real
two center interferences. Figure 4.18 according to Cohen and Fano (1966) should
show oscillations in the total absorption cross section with increasing photon en-
ergy due to two center interferences. The 'shoulders' in the data of Samson et

al. (1965) are thought as experimental evidence, even though Cohen and Fano
redundantly state their formalism to be a preliminary construct and not a proved
factum. Plotting now recent theoretical cross section data of To�oli et al. (2006)
[129] over the experimental data of Samson et al. (1965), as it is done in �gure
4.19, it is obvious that this experimental data is no indication for a molecular
double slit behavior of homonuclear diatomic molecules at all. Such oscillations in
the total, as well as in the partial cross sections shown in �gure 4.19, should range

2According to Web of Knowledge [134].
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Figure 4.17: The �gure shows the quantity of citations of the paper of Cohen

and Fano on 'Interference in the Photo-Ionization of Molecules' from 1966 [26]

according to 'Web of Knowledge' underlining the actual relevance in scienti�c

interest on related topics.

Figure 4.18: Original �gure from Cohen and Fano in 1966 [26] showing the cross

section data of Samson and Cairns [111].

over several hundreds of eV or referring to the �gure over several k (R−1). The
wave number k in this respect gives more intuitive insight on the oscillation pat-
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Figure 4.19: Theoretical cross section data of To�oli et al. (2006) [129] and

experimental data as it is cited in the Cohen-Fano paper (1966) [111] subtracted

from the decreasing cross section trend. Inset: Cross section data of N2 3σg

without correction. The �gure is provided by [75].

tern since the bond length dependence is a sine function according to equation 4.4.

In the �gure 4.19 edited by Langer [75], the general shape of the rapidly de-
creasing cross section (�gure's inset upper right) is subtracted to highlight the
oscillations. The dotted line is an extrapolation �t of the higher photon energy
oscillations to lower energies therefore ignoring shape resonance in�uences. As
already stressed in section 4.1, the experimental data of Samson et al. (1965)
can accordingly be accounted to the shape resonance of N2 instead of a real two
center interference due to indistinguishable two emitter sites.

Two Center Interference E�ects in Inner Shell Ionization Processes

First investigations proving Cohen-Fano oscillations for N2 have been carried
out on the inner shell ionization by Zimmermann et al. [151]. Using an electron-
ion coincidence spectrometer capable of resolving the g/u splitting of the LCAO
of the N 1s shells, it was initially shown that the photoionization of gerade and
ungerade states shows interference pattern in the measured electron intensities
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and that both orbital ionizations do have the predicted phase shift of π. Beside
these �ndings, it is argued that not only two center interference due to undis-
turbed electron emission, but also one center self interferences are evident. These
one center interferences are dominantly in�uencing the electron angular distribu-
tion in the photon energy range below the corresponding de Broglie wavelength.
Zimmermann et al. (2008) [151] are also presenting such investigations for the
heteronuclear CO molecule in correspondence to a double slit including a 'which
way information'. A two center interference according to the Cohen-Fano model
cannot occur in this case because of a strong localization of the electrons to the
C 1s and O 1s states. This illustrates the gain of delocalization from inner to
outer molecular orbitals comparing the results of Canton et al. (2011) for the
valence ionization of CO.

g+u sum

ungerade

gerade

Figure 4.20: The �gure is taken from [151] showing the photoelectron di�raction

intensities versus electron kinetic energy for electron emission along the direction

of the molecular axis of N2.

Figure 4.20 shows the overlapping e�ects of electron scattering and two center
interference for the inner shell photoionization of N2 (experimental data points
and respective �ts). The dashed lines represent the undisturbed two center in-
terference oscillation for the gerade (green), the ungerade (yellow) states. The
phase shift of the oscillation between the gerade and ungerade state is π as it is
expected from the previously introduced LCAO and double slit considerations.
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For the following discussion on such e�ects for the valence ionization of N2 and
O2, it is essential that the observed exact phase shift of π of Zimmermann et

al. (2008) [151]3 can only be expected for inner shell ionization due to the more
clearly de�ned molecular potential. For the valence ionization molecular potential
deviations between the respective states are much higher, leading to overlapping
phase shifts. The inset of �gure 4.20 shows a scheme of the two center electron
emission and the resulting superposition of the electron wave functions. It is
clearly indicated that electron de Broglie wavelengths below the molecular bond
length lead to a domination of the single scattering process. This process in-
cludes an electron momentum change larger than the inverse bond length of the
N2 molecule and therefore localization at one atomic site [151]. This process of
one center single scattering and the resulting decoherence can be seen in �gure
4.20 in the electron kinetic energy region below 100 eV . The two center inter-
ference related parts in the intensity distribution are shown by the green and
the yellow dashed line for gerade and ungerade states respectively. Regarding
higher kinetic energies, the single scattering process decreases in relevance and
two center interference gains importance what can be seen by the converging de-
velopment of the scattered lines and the data points in �gure 4.20.

The strong in�uence of one center single scattering interference is in particu-
lar relevant for an inner shell ionization. As it is indicated by our data presented
for the photon energy range from 19 to 50 eV for the targets N2 and O2, no such
strong in�uence can be observed. The general β-development in the low photon
energy range is therefore mainly dominated by Rydberg enhanced resonances and
doubly excited valence like states, not by molecular scattering (see also the dis-
cussion in the previous section). This di�erence to the presented inner shell data
in �gure 4.20 is an interesting fact in order to compare Cohen-Fano oscillations
with and without the overlapping signature of induced partial decoherence pat-
tern by the 'extended X-ray absorption �ne structure' (EXAFS) scattering.

As �gure 4.21 is illustrating, an electron emitted from a homonuclear diatomic
molecule like N2 cannot be said to be localized at a particular atom. This is also
true for an inner-shell ionization as e.g. Rolles et al. have shown in 2005 [107].
Although an inner shell is not forming a molecular orbital in a comparable way
to the valence orbitals, a coherent electron emission from a highly localized inner

3As it is also predicted by plane wave approximation calculations.
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shell orbital is taking place due to inversion symmetry of the N2 molecule, i.e. it
is not possible to say from which 1s orbital the electron is emitted.

The showcase of a comparison of N2 and CO to clarify the di�erences of lo-
cality is discussed very recently by Canton et al. (2011) [21]. As �gure 4.21
shows, a localization of an observed electron after emission from the molecule
could be attributed to the C-atom or the O-atom due to the di�ering binding
energies of the individual atomic states. This localization of the electron is weak
for the molecular valence shells and becomes stronger with increasing binding
energies. Partial localization has to be considered. The very unexpected fact
of Canton's results was the prove of real two center interference e�ects, namely
Cohen-Fano oscillations for the valence ionization of CO [9]. This means implic-
itly that the delocalization of the CO valence orbital with respect to the de�nition
of the momentum was su�cient for a coherent electron emission. Therefore, CO
as a heteronuclear diatomic molecule was not predicted to show real two center
interferences according to the Cohen-Fano formalism before. This observation for
a heteronuclear molecule encourages a new view on localization properties and
the underlying quantum limitations to interference e�ects.

Another interesting comparison to the results of Zimmermann et al. (2008) [151]

u

g

Figure 4.21: Formation of molecular orbitals using LCAO with a notation of

the corresponding MOs for N2 and CO. The �gure is taken from [107].
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and the very recent data of Canton et al. (2011) [21] can be done regarding the
di�erences of CO (inner and valence shell ionization respectively) with the data
presented in this chapter on two center interferences of O2, since only one con-
stituent is changed. Cohen-Fano type interference processes of CO and O2 can
therefore be compared with respect to an 'on/o�' delocalization especially in the
inner shell photoionization.

In the last sections on low photon energy investigations mainly interchannel cou-
pling and shape resonance e�ects for the homonuclear diatomic molecules N2 and
O2 were discussed, presenting highly dense β-data sets. In the photon energy
region up to 50 eV , the cross section for the valences of N2 and O2 were relatively
high. Short acquisition times in the order of less than a minute per data point
allowed the realization of such an approach. Analyzing the same valence states
for photon energies up to 600 eV is an experimental issue due to both the rapidly
decreasing cross section as well as a challenging energy resolution which must
still allow to resolve the relevant electron lines. It was therefore not possible to
acquire data covering the whole photon energy range presented by To�oli et al.
(2006), but it was achievable to record data over more than one full period of
the predicted Cohen-Fano oscillation. This initial experimental prove was task
of several beamtimes with the two independent experimental setups at DESY in
Hamburg and HZB (BESSY II) in Berlin together with the work group of Uwe
Becker (Fritz-Haber-Institute of the Max-Planck-Society, Berlin).
The basics of data acquisition and analysis were also presented in chapter 3 and
in the �rst sections of this chapter respectively. The low cross section, the energy
resolution recovery with retarding voltages > 500 V and a rising arti�cial back-
ground caused by ions attracted by the negative retarding potentials are inherent
di�culties to face for performing such measurements.
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4.2.2 Photoelectron angular distributions of N2 3σ−1
g

Figure 4.22: (a) Photoelectron angular distribution data for the N2 3σg ion-

ization as it is presented in [130]. Figure (b) shows the same DFT-data over the

wave number k (R−1) to allow an easy comparison to the sine dependence of the

Cohen-Fano oscillation given by equation 4.4.

The photoelectron angular distribution data plotted in �gure 4.22(a) shows the
calculated β-development over the photon energy. RPA based theoretical data
of Cacelli et al. (1998) [20] and the experimental data sets of Marr et al. (1979)
[85] and Grimm et al. (1983) [51] cited by To�oli et al. (2006) [130] are included.
As discussed before in section 4.1, several interchannel coupling and Rydberg
enhanced resonance e�ects as well as a shape resonance in�uence lead to discrep-
ancies of To�oli's (2006) data in comparison to other authors for the low energy
range up to ∼ 100 eV . The �rst DFT-calculated maximum of the two center
interference pattern lies at ∼ 150 eV , the �rst minimum at ∼ 300 eV and the
second maximum at ∼ 500 eV . The period length of this oscillation increases to
higher photon energies in eV, since it is a bond length dependent oscillation. A
conversion of this data from photon energy in eV to the wave number k (inverse
bond length of N2) shows that the oscillation pattern indeed is a sine function
in this regard as it is predicted by the Cohen-Fano formalism. The amplitude of
the shown Cohen-Fano oscillation is in the order of 0.1 β-units for the �rst period
decreasing to higher photon energies.

Bearing in mind that the experimental data acquisition is increasingly di�cult for
higher photon energies it should again be pointed out that some available exper-
imental β-data even in the low energy regime < 50 eV have larger uncertainties
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than the whole e�ect of Cohen-Fano oscillations in the photoelectron angular dis-
tribution of N2 3σ−1

g . Acquiring data with high accuracy over such a large photon
energy range is therefore a challenge.

FHI Data
Decleva (TDDFT)	 2011
Tashiro (R-Matrix) 	 2010
Toffoli (DFT) 	 2006
Hemmers 	 1993
Iga 	 	 1989
Southworth 	 1986
Carlson 	             	1980
Marr 	 	 1979
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Figure 4.23: Photoelectron angular distribution data for the N2 3σg ionization.

The experimental and theoretical data in the low energy regime is the same as

presented in section 4.1 [23, 36, 55, 63, 85, 120, 126]. The data of this work is

plotted as a lineplot in this photon energy region. In the photon energy regime

> 50 eV experimental data of Hemmers (1993) [55] as well as new experimental

data from this work (including FHI data) is shown (blue full circles and gray

full squares). The theoretical data (dashed blue line) are DFT calculations from

To�oli et al. (2006) [130].

The already discussed experimental data available from other authors (cited in
the caption of �gure 4.23) is plotted in �gure 4.23, but they do not substantially
contribute to a two center interference discussion. However, a principal compari-
son of data agreement can be derived which is argued in section 4.1. The data of
Hemmers (1993) [55] includes β-data from 20 up to 120 eV which is the broadest
photon energy range measured up to now. This dataset is in very good agreement

95



CHAPTER 4. MOLECULAR PHOTOIONIZATION EFFECTS

for higher photon energies > 40 eV which is reasonable regarding the fact that
Hemmers (1993) discusses a consistent β-discrepancy for all the results presented
in his work possibly due to a systematic calibration error [55].

The general trend of the experimental data of this thesis, including the data
recorded with the complementary experiment of the FHI4 (see section 3.1.1),
agrees well with the calculations of To�oli et al. (2006) [130]. The maxima and
minima are in remarkable agreement with respect to their calculated photon en-
ergy position, even though the absolute values di�er. The data of this thesis as
well as data from Hemmers (1993) [55] agrees with the DFT data of To�oli et al.
(2006) [130] from ∼ 40 to 70 eV . Above 70 eV Hemmers' as well as the data from
the FHI experiment supports the increase of β overcoming the predicted calcula-
tions of To�oli et al. (2006) also indicated by the results of this thesis. The �rst
maximum of the Cohen-Fano oscillation is found at ∼ 150 eV . According to the
experimental results of this work, the absolute β-value for the �rst maximum is
1.45 which is a large deviation from the calculated results of To�oli et al. (2006)
[130] indicating a maximum to be β = 1.26. This is also in full agreement with the
additional FHI data. With respect to the estimated uncertainty in this photon
energy region of about ±0.02 β-units and the relatively broad maximum feature,
one can estimate the photon energy position of the �rst maximum to be located
between 144 and 147 eV in the experimental data. The calculated position is lo-
cated at 145.6 eV [130] which is in excellent agreement with the data of this thesis.

The absolute o�set of ∼ 0.2 β-units is consistent up to ∼ 300 eV . Furthermore,
the experimental data indicates the �rst minimum to be at ∼ 300 eV not compa-
rably clear in the FHI data. According to the calculations [130], this minimum is
located at 289.6 eV . Taking into account that the photon energy step width in
that energy regime around 300 eV is increased to 1 eV due to the reduced cross
section of N2 and with respect to the larger uncertainties this agreement is still
very good. Concerning the absolute β-values, the di�erence between experiment
and theory further decreases to less than 0.1 β-units going up to hν ∼ 500 eV .
At 486 eV and β = 1.37 the calculations of To�oli et al. (2006) [130] predict the
second maximum of the Cohen-Fano oscillation which again is in good agreement
with the experimental �ndings of all analyzed data sets. Since the photon energy

4All depicted data points of the complementary FHI experiment also for the following or-

bitals were analyzed by M. Braune (FHI member at that time) and are provided via private

communication.
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step width had to be further increased at that high energies, the measurement for
this thesis was done at the predicted maximum (hνexperiment = 490 eV ) supporting
this to be the right position. The position uncertainty of this second maximum
is about ±20 eV due to a step width of 20 eV and an again increased statistical
uncertainty. The experimental absolute β at that maximum is found to be 1.45.
The additional FHI data points at 490 and 510 eV are observed at β = 1.53.
They exhibit an even larger discrepancy to the theoretical data. Regarding the
averaged experimental �ndings of both experiments at that position, the DFT
calculation is giving an absolute β-value unambiguously below the experimental
data. Taking into account that the recording of one single β-point at photon
energies around 500 eV takes about ten hours of beamtime, despite the fact that
the presented experimental setup is highly e�cient, an in�uence of systematical
errors might be larger than predicted. To improve the statistical, as well as the
systematic reliability, the high photon energy points were measured redundantly
at di�erent beamtimes. The results shown in �gure 4.23 can therefore be stated to
unambiguously prove a larger β-value in comparison to the calculations of To�oli
et al. (2006) [130] also for the second maximum of the Cohen-Fano oscillation in
the N2 3σg ionization.
To clearly prove that the β-values around 500 eV are a distinct maximum, one
further point at hν = 600 eV was recorded which should show a β well below that
at ∼ 500 eV . Indeed this is the case, since the β-value is found to be decreased to
1.3 clearly indicating the beginning of the next oscillation period. Both utilized
beamlines ('BW3' at DORIS III and 'UE 56/2 PGM 1' at BESSY II) do not
allow reasonable access to valence state electron angular distributions for pho-
ton energies far above 600 eV , because the respective cross sections become too
small. The upcoming P04 beamline at PETRA III (DESY) will highly increase
the available performance and therefore allowing angular distribution studies at
even higher photon energies.

In brief conclusion for the data interpretation of the N2 3σ−1
g it can be stated

that real two center interference pattern in the photoelectron angular distribu-
tion were unambiguously determined in good principal agreement with theory of
To�oli et al. (2006) [130] and in very good agreement concerning the extreme
positions.
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4.2.3 Photoelectron angular distributions of N2 1π−1
u

Figure 4.24: (a) Photoelectron angular distribution data for the N2 1πu ioniza-

tion taken from [130]. Figure (b) shows the same DFT data as in (a) over k[R−1]
again to alleviate the comparison to the underlying sine function.

Figure 4.24(a) shows the original �gure taken from To�oli et al. (2006) [130].
The included reference theoretical data from Cacelli et al. (1998) [20] is in good
agreement with the DFT data, even though DFT neglects interchannel coupling
causing a smoother curve without reproducing the features discussed in section
4.1. As it was the case for the 3σ−1

g state, no additional β-data is available
for the 1π−1

u state above a photon energy of 70 eV with the single exception of
Hemmers (1993) [55] where experimental β-data up to 120 eV can be found also
for the ionization of this valence orbital (see �gure 4.25). In accordance to �gure
4.24(a), the experimental data of Marr et al. (1979) [85] and Grimm et al. (1983)
[51], as well as the theoretical data of Cacelli et al. (1998) [20] do not show any
indication of a two center interference pattern. The decreasing general β-trend
beyond ∼ 100 eV approaching isotropic angular distribution for very high photon
energies can be accounted to the orbital's π shape in the N2 HOMO-1 regime and
the corresponding momentum and scattering properties after photoionization.
The superimposed oscillation due to a two center interference is predicted to be
even less pronounced than in the 3σg ionization. A measurement of the Cohen-
Fano oscillation for the 1πu state is therefore even more challenging.
The DFT data predicts the �rst Cohen-Fano oscillation maximum at hν ∼ 90 eV ,
being also the maximum of the general trend of the curve. The second maximum
is stated to be at hν ∼ 450 eV and the third at hν ∼ 1100 eV . The �rst minimum
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is stated to be at hν ∼ 250 eV and the second at hν ∼ 800 eV which is also o�
the experimental access of this work. The maximum amplitude of the oscillation
pattern is ∼ 0.03 β-units and therefore within our error bars at the relevant high
photon energies.

FHI Data
Decleva (TDDFT)	 2011
Tashiro (R-Matrix) 	 2010
Toffoli (DFT)	 2006
Hemmers 	 1993
Marr 	 	 1979
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Figure 4.25: Photoelectron angular distribution data for the N2 1πu ionization.

The available experimental and theoretical data in the low photon energy regime

is similar to section 4.1 [36, 55, 85, 126]. In the photon energy regime > 50 eV

experimental data of Hemmers (1993) [55] as well as new experimental data from

this work (including FHI data) is shown (blue full circles and gray full squares).

The theoretical data (dashed blue line) are DFT calculations from To�oli et al.

(2006) [130].

Figure 4.25 shows the experimental data of this thesis including the analyzed
FHI data for the N2 1π−1

u electrons in comparison to the �ndings of To�oli et
al. (2006) [130], including the relevant experimental data as it is discussed in
section 4.1. The additional experimental data of Hemmers (1993) [55] is in good
agreement for photon energies between 50 and 120 eV also indicating a slight
β-decrease starting at hν ∼ 90 eV . Even though Hemmers' data is the very �rst
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indication of a distinct maximum in the angular distribution of N2 1π−1
u electrons

Hemmers does not discuss this circumstance in his work [55].
As it was the case for the 3σg investigation the �rst Cohen-Fano oscillation max-
imum of the 1π−1

u can be clearly resolved with a high certainty and in remarkable
agreement with the theoretical data of To�oli et al. (2006) [130]. With respect to
the uncertainty at that photon energy being ±0.02 β-units, the experimental data
of this work �nds this maximum between 89 and 91 eV , whereas the calculated
position is at hν ∼ 91 eV . Hemmers data (1993) [55] supports this observation,
whereas the FHI data shows a small deviation to a lower β-value at 90 eV . In
contrast to the large absolute β-o�set discussed for the �rst maximum of the
3σ−1

g interference pattern, the deviation between theoretical and experimental
data at hν = 90 eV is much smaller for the angular distribution of 1π−1

u electrons
close to the experimental uncertainty of this work. As it was the case for 3σg, a
β-o�set becomes evident, but in the case of the 1πu ionization it already starts
above ∼ 30 eV , persisting up to high photon energies. However, the maximum
discrepancy for the 1πu electrons is observed to be in the order of 0.1 β-unit.
The �rst minimum of the predicted Cohen-Fano oscillation for the ionization of
the 1πu state is di�cult to derive accurately from our data. A slightly decreased
slope is visible in the experimental data at a reasonable photon energy position
(hν ∼ 200 eV ). Although the experimental prove of real two center interference
pattern for the 1π−1

u state is less pronounced than in the 3σ−1
g case, it is visible.

This is furthermore corroborated by the fact that the relative intensity ratios of
the 3σg and the 1π−1

u electron line intensities show a distinct oscillation with a
signi�cant gerade/ungerade phase shift of the emitted electron wave functions as
it will be discussed later in this section.
In conclusion it can be stated that the general agreement of the DFT data [130]
and the experimental data of this work (including the FHI data) is very good and
even better than for the 3σg angular distribution. However, a prove of Cohen-
Fano oscillations in the 1πu ionization can be assumed, being not as strong as
for the 3σg β due to the very narrow oscillation amplitude superimposed on a
strongly changing general trend.
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4.2.4 Photoelectron angular distributions of N2 2σ−1
u

Figure 4.26: (a) Photoelectron angular distribution data for the N2 2σu ion-

ization taken from [130]. According to the previous plots �gure (b) shows the

sine-correspondence of the Cohen-Fano oscillation over k[R−1].

Coming to the third valence state of N2, namely the 2σu, �gure 4.26 shows the
DFT calculations of To�oli et al. (2006) [130] for the N2 2σ−1

u photoelectrons in
comparison to previously available experimental data of [51, 85] and the theoret-
ical data [20] as it was the case for the formerly presented orbitals. A very steep
increase of the angular distribution anisotropy parameter β is predicted by both
theories and part of the experimental data. The RPA calculations of Cacelli et al.
(1998) [20] are again essentially di�ering from the DFT calculations. A remark-
able disagreement of the theories and the experimental data cited by To�oli et al.
(2006) is evident below hν = 40 eV as it it is discussed in detail in section 4.1.
Brie�y recalling this section, these discrepancies occur due to a strong impact of
interchannel couplings in this photon energy region with a strong in�uence on
the angular distribution of 2σu ionization not included in the DFT calculations.
However, the cited data in �gure 4.26 can again not contribute to the prove of two
center interference pattern in the electron angular distribution. They indicate an
even more essential disagreement in the low photon energy range with respect
to the theoretical �ndings of To�oli et al. (2006) than it was the case for the
previously discussed orbitals.

As �gure 4.26 shows, the �rst maximum of the predicted Cohen-Fano oscilla-
tion is located at hν ∼ 49 eV which is in a photon energy range also covered by
the calculations of Cacelli et al. (1998) [20]. However, these RPA calculations
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FHI Data
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Figure 4.27: Photoelectron angular distribution data for the N2 2σu ionization.

The available experimental and theoretical data in the low photon energy regime

is similar to section 4.1 [36, 55, 85, 120, 126]. In the photon energy regime > 50 eV

experimental data of Hemmers (1993) [55] as well as new experimental data from

this work (including FHI data) is shown (blue full circles and gray full squares).

The theoretical data (dashed blue line) are DFT calculations from To�oli et al.

(2006) [130].

do not indicate a broad maximum as it is the case for the DFT data. The sec-
ond maximum according to the results of To�oli et al. (2006) [130] is located at
hν ∼ 178 eV , the third at hν ∼ 670 eV and a fourth maximum occurring within
a photon energy range up to 2 keV for the 2σ−1

u electrons at hν ∼ 1440 eV . The
respective mimima are located at hν ∼ 96 eV , hν ∼ 370 eV and hν ∼ 970 eV .

Figure 4.27 shows the experimental data of this work for the angular distri-
bution of 2σ−1

u electrons in comparison to available experimental and theoretical
data according to the discussion in section 4.1. Experimental data of Hemmers
(1993) [55] as well as FHI data is additionally included for higher photon energies
than 50 eV . Regarding already existing data especially the experimental data of
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Hemmers (1993) is very interesting concerning the fact that it contains an undis-
cussed β-minimum at hν = 90 eV which in the light of the Cohen-Fano formalism
and the predictions of To�oli et al. (2006) [130] is very likely to be originated
by two center interference. The absolute β-values of this work are lower than
the referenced data up to hν ∼ 80 eV then converging to the very high absolute
β-values of the DFT calculation. Regarding the discussion of To�oli et al. (2006)
[130] this is reasonable, since they argue that the used density functional Kohn-
Sham Hamiltonian5 overestimates the cross section for the 2σ−1

u and neglects
electron correlation as it is also the case for the other N2 valence orbitals. This is
most likely also a�ecting the low photon energy photoionization dynamics of the
2σ−1

u . A better agreement of the experimental data of this work in that photon
energy region is observed with the time dependent DFT calculations provided by
Decleva (2011) [36] also implemented in �gure 4.27 and discussed in section 4.1.
These calculations as well as the calculations of Cacelli et al. (1998) [20] predict
an additional oscillation feature in the β-data between 40 and 70 eV which was
neither discussed in the last section nor is it relevant for the topic on two center
interferences of this section. It shall anyway be announced that this feature is
qualitatively corroborated by our data but not further discussed in literature.
Clarifying the origin of this feature will be a task for future interpretation.

As it is the case for the angular distribution of 1π−1
u electrons, the superimposed

Cohen-Fano oscillation on the general β-development of the 2σu ionization is very
narrow with an maximum amplitude of ∼ 0.03 β-units. Especially for the 2σu

this is critical because of the higher statistical uncertainty being ±0.05 β-units at
the photon energy of the �rst minimum at hν = 90 eV . Hemmer's data (1993)
[55] as well as the data of this work (including FHI data) supports the theoretical
results of To�oli et al. (2006) [130] in terms of extreme positions and absolute
β-values but the scatter between the individual data sets indicates a higher un-
certainty than it was the case for the previous orbitals. The FHI data shows a
very pronounced maximum at around 175 eV being in principle agreement with
the theory, whereas the 'BW3'-data shows a more �at, but very consistent de-
velopment. Regarding the fact that a β-minimum at 200 eV is observed in the
FHI data which is absent in the calculations and the complementary experimen-
tal data of this work, a larger uncertainty of this data than predicted might be
possible. Higher energetic extreme positions predicted by the calculations of Tof-
foli et al. (2006) [130] cannot unambiguously be determined by the experimental

5Further details can be read in [109].

103



CHAPTER 4. MOLECULAR PHOTOIONIZATION EFFECTS

data of this work, even though the general agreement with the absolute β-values
is good.

Summarizing the results for the N2 2σ−1
u a good absolute agreement of this work's

data with the calculations of To�oli et al. (2006) [130] is observed, but due to
the very narrow oscillation signature for this orbital, the Cohen-Fano oscillation
pattern can only be assumed in the experimental data of this thesis.
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4.2.5 Relative cross section ratios between N2 3σg and N2 1πu

Although our experimental data does not include total cross section analysis, as it
might be interesting in regard of the original prediction of Cohen and Fano (1966)
[26] an intensity ratio between corresponding electron lines can be derived from
the TOF-spectra and therefore relative partial cross section information can be
extracted. The underlying two center interference phenomenon must be the same
as it was presented for the angular distribution data above, but the relative cross
section ratios are a further way to prove the observed oscillations. The ratios
are also including information of a preserved phase shift between the individual
orbital's interference pattern.
This ratio calculation has to be done with respect to the electron angular dis-
tribution in order to disentangle the respective informations. Since the used
experimental setup has no spectrometer at the position of the 'magic angle' at
54.7�, a correction has to be done with respect to the angular position and the
corresponding β-parameter. The theoretical (absolute) partial cross section data
provided in private communication by Decleva et al. (2010) [129] can be used for
creating corresponding relative cross sections.
Regarding now the partial cross section ratios between the 3σg and the 1πu, it
is expected that due to the g/u induced partial electron wave phase shift of π
and further valence state speci�c shifts a persisting oscillation is evident. This
phase shift for the respective parities was introduced earlier in this section and
was strikingly analyzed for the inner shell photoionization of N2 by Zimmermann
et al. (2008) [151]. Recalling the �ndings for the inner shell ionization and the
principles of this parity related phase phenomenon, the e�ective molecular bond
length for an inner shell MO is well de�ned, since the binding energy di�erence
between the N2 1σg and the N2 1σu is only 100 meV . In that case, the phase
dependence is approximately only dominated by the di�erent parities.

To project these �ndings on the presented valence ionization properties implies a
hitherto unseen phase shift evidence between a gerade and an ungerade state of
di�erent con�guration associations, namely the 3σg and the 1πu. A conservation
of the π phase shift cannot necessarily be expected, because of large deviations
of the e�ective bond lengths between the respective valence orbitals and the ran-
domly aligned targets. Additional phase shifts due to the di�ering molecular
potentials have to be considered.

The DFT data of Decleva et al. (2010) [129] shows a nice agreement with our
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Figure 4.28: Relative partial cross section created by a deviation of the inten-

sities of 3σg and 1πu electron lines for the respective photon energy. Theoretical

data is provided by Decleva (2010) [129] being calculated in the framework of

To�oli et al. [130].

experimental �ndings for the relative cross section data, especially in the low
photon energy range, being an indication for an appropriate use of such an the-
oretical model (see �gure 4.28). Comparing e.g. the theoretical approach of the
plane wave approximation, the phase shift would be exactly π between N2 3σg

and N2 1πu disregarding the additional in�uences, obviously highly relevant. The
same must be true for the original Cohen-Fano formalism since it is also based on
a plane wave approximation. Regarding the real phase shifts of the angular dis-
tribution data shown in �gure 4.29 the DFT calculations of To�oli et al. (2006)
[130] turn out to be an outstanding expansion of the Cohen-Fano formalism sup-
ported by the experimental work of this thesis.

Summarizing the results of the angle resolved broad photon energy study of the
N2 outer valence states, two center interferences due to electron emission from
indistinguishable two emitter sites were unambiguously determined and discussed
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Figure 4.29: The �gure includes all theoretical N2 outer valence angular dis-

tribution data plotted over k (R−1). The respective phase shifts between the

included sine functions for the 3 orbitals are additionally written in the �gure.

in the light of the Cohen-Fano formalism. The experimental data is in good
agreement with the theoretical �ndings of To�oli et al. (2006) [130] concerning
the individual orbital's oscillation pattern. Furthermore, the relative cross section
ratio data disentangling angular anisotropy and relative electron intensities show
nice agreement. The work presented in this thesis is the �rst experimental prove
of Cohen-Fano oscillations in the electron angular distribution of the N2 outer
valence states.
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4.2.6 Photoelectron angular distribution of O2 1π−1
g

As is predicted in the original paper of Cohen and Fano (1966) [26], two center
interferences are also expected to occur in the photoionization of O2. In this part
of the work very �rst data on the angular distributions for the O2 HOMO 1πg are
presented. Since the predicted oscillatory behavior should depend on the ratio of
the internuclear distance being larger for O2 than for N2, a longer period length
in the cross section �uctuations as well as for the electron angular distributions
can be expected.
Until now, there is neither theoretical nor experimental data available in this con-
cern which would be highly desirable in order to solve part of the long standing
debate on the originally predicted two center interferences for N2 and O2 valence
ionization. One probable reason for the missing theoretical data concerning O2

electron angular distribution data is a much more complex electron con�guration
(see equation 4.2). The presented data of this work on O2 angular distribution
data creates a highly accurate experimental data basis which should encourage an
advent of theoretical calculations on this topic. One probable reason for the miss-
ing theoretical data concerning O2 electron angular distribution data is a much
more complex electron con�guration (see equation 4.2). The presented data of
this work on O2 angular distribution data creates a highly accurate experimental
data basis which should encourage an advent of theoretical calculations on this
topic.

In comparison to N2 having an equilibrium bond length of 1.09 Å the O2 molecule
has a larger bond length of 1.21 Å [139]. Since the two center interference based
pattern are bond length dependent regarding equation 4.4 it is, as already stated
above, expected that the corresponding Cohen-Fano oscillation for the O2 1π−1

g

electrons show a larger period length. As discussed in section 4.1, a relatively
steep increase of the angular distribution anisotropy parameter β can be expected
regarding theory from e.g. [80] for the low photon energy range which is in good
agreement with the experimental data of this work.

Figure 4.30 shows the available experimental and theoretical data for the angular
distribution of the 1πg ionization of O2. A clearly de�ned β-maximum is located
at 120 eV . Since the �rst observed minimum is located at ∼ 400 eV , the initial
period length is larger than it was the case for all outer valence orbitals of N2.
However, it is remarkable that the �rst maximum of the Cohen-Fano oscillation
for the O2 1π−1

g is observed at a lower photon energy than for all outer valences
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Figure 4.30: Photoelectron angular distribution data for the O2 1πg ionization.

The experimental data in the low energy regime is the same as presented in section

4.1. Theoretical data is taken from Lin et al. (2002) [80]. Experimental data is

taken from McCoy et al. (1978) and Holmes et al. (1980) [59, 87]. For a better

comparability the DFT β-results of To�oli et al. (2006) [130] for the N2 3σg

HOMO are included.

of N2. This suggests that the real Cohen-Fano signature is still in�uenced by
overlapping e�ects in the photon energy region of ∼ 100 eV afterward evolving
increasingly undisturbed. The highest analyzed β-value lies at a photon energy of
500 eV , unambiguously indicating the data points around 400 eV to be a distinct
minimum of two center interference. The data point at 500 eV depicts both the
error bar for the β-uncertainty as well as the average of three data points at the
photon energies 495, 500 and 505 eV . The analysis of this high photon energy
angular distribution is very challenging, because of a small valence electron signal
in the photoelectron spectra superimposed on huge non-symmetric Auger elec-
tron pattern. Therefore, the background determination for this special case was
done using di�erent �t algorithms and exploiting the shifting valence signal with
changing photon energy on the �xed Auger electron signal, in order to disentangle
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both. Using these procedures and averaging the three independent β-values at
closely related photon energies, the certainty was su�ciently increased to indicate
the �rst minimum of a Cohen-Fano oscillation pattern for O2.

The �rst maximum of the two center interference pattern of O2 1π−1
u at around

120 eV shows a larger absolute β-value at β = 1.55 in contrast to the HOMO of
N2. Regarding the �rst observed maximum and the �rst minimum of this work's
data the Cohen-Fano oscillation amplitude is also larger for this O2 state as it
can nicely be seen in �gure 4.30. It can be determined to be 0.45 β-values peak
to peak, whereas the maximum amplitude for N2 3σ−1

g is 0.2 β-values. Assuming
a similar relative β development for O2 and N2, the Cohen-Fano oscillation e�ect
on the electron angular distribution can be extrapolated to be even stronger in
O2 valence ionization than it was the case for N2.

Brie�y concluding the experimental results of this thesis for the O2 HOMO, it
is unambiguously shown that the original assumption of Cohen and Fano of ex-
ceeding their formalism based on H2 to N2 and O2 is valid for the valence state
electron angular distribution. The two center interference in the O2 HOMO has
been shown for the �rst time in the framework of this thesis. It is observed
to be even stronger than for the corresponding N2 state also showing the ex-
pected longer period length of the two center interference pattern due to a larger
internuclear distance. Theoretical calculations for high photon energy angular
distributions of O2 are highly desirable to further interpret and validate the new
benchmark data.
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4.2.7 Photoelectron angular distribution of CH4

As a further step to more complex targets CH4 is investigated in the light of
both the near threshold ionization behavior of the electron angular distribution
as well as coherent emission from multiple centers. Since there is neither theo-
retical interpretation nor experimental data available on the topic of high photon
energy interferences for CH4, this work presents initial discussion in this regard.
The experimental data of this thesis will be compared to very recent calculations
of Decleva (2011) [36] showing �rst indication of β-oscillations at high photon
energies for the CH4 1t−1

2 .

CH4 is a heteronuclear polyatomic molecule and will be presented in this sec-
tion as a showcase for more complex systems compared to N2 and O2. It is
investigated to emphasize similarities and di�erences to homonuclear diatomic
molecules. It can be expected that due to the large mass di�erence and the high
symmetry of the CH4 molecule that vibrational signatures are less pronounced
than for homonuclear diatomic molecules. Since the hydrogen atoms are highly
symmetrically aligned around the carbon atom with only single bonds (each C-
H bond length is lBond = 1.09 Å), this tetrahedral saturated alkane molecule
is still a very simple and therefore theoretically accessible target. Due to the
symmetric alignment of the hydrogen atoms the H-H bond length is accordingly
lBond = 1.54 Å. Buckingham et al. (1941) initially proposed to regard the four
protons around the carbon nucleus as a spherically symmetrical potential �eld
[19, 84] which principally allows an atom-like theoretical treatment of the CH4

molecule. Its electron con�guration of the ground state is [18]

1a2
1 2a2

1 1t22x 1t22y 1t22z. (4.3)

According to e.g. Braunstein et al. (1988) [18] this ground state con�guration of
CH4 suggests a comparison of the valence states of methane to neon regarding
their similar electronic properties. The ground state con�guration for neon is
(1s)2 (2s)2 (2p)6.
Figure 4.31 shows the evolving electron lines of CH4 up to a photon energy of
195 eV . The single photoelectron spectrum (�gure 4.31(b)) does not resolve the
splitting of the HOMO 1t2 state into three degenerated energy levels being evi-
dent according to e.g. Wang et al. (2004) [138]. The literature values for binding
energies of the CH4 valences are ranging within several hundreds ofmeV between
di�erent experiments and theoretical calculations. The binding energies cited in
the caption of �gure 4.31 are chosen, since they are supported by the experimen-
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Figure 4.31: (a) False color plot of the photoelectron time-of-�ight development

of CH4 from 20 to 195 eV . Figure (b) shows a single spectrum at hν = 30 eV .

The respective binding energies of the 1t2 is Ebind ∼ 14.5 eV and for the 2a1

is Ebind ∼ 23.05 eV according to experimental data of Banna et al. (1975) and

references therein [7].

tal data of this work.

The partial cross section of CH4 1t2 shows strong changes especially in the pho-
ton energy region up to 30 eV . In contradiction to the predicted similarity to the
Ne valence due to the comparable electron con�guration [18, 32, 84] the partial
cross sections di�er essentially (see �gure 4.32). The data shown in �gure 4.32
suggests that no sharp �uctuation features in the photoionization cross section
occur as it was the case for N2 and O2. Further data of Lee et al. (1973) ([78]
and references therein) supports this absence of prominent features also for the
absolute cross section.

In �gure 4.33 photoelectron angular distribution data is presented from 19 to
300 eV . Good qualitative agreement to the available experimental data and the
selected theoretical data is achieved. Nevertheless, a signi�cant o�set of our data
to the data of Holmes et al. (1980) [59] in the order of 0.2 β-values is determined
which is possibly the case due to a lower photon polarization of < 80% in their
experiments. The β-�uctuation in the photon energy region around ∼ 25 eV

is according to the given errorbars of Holmes et al. (1980) [59] unambiguously
evident. No available theoretical or experimental data supports this and also the
data presented in this thesis shows very little -if any- comparable structure.
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Figure 4.32: Partial cross section of CH4 1t2 and Ne 2p from threshold up to

55 eV taken from Braunstein et al. (1988) [18]. The included experimental data

is taken from Backx et al. (1975) [4] (CH4 1t2) and West et al. (1976) [142]

(Ne 2p).

The theoretical data shown in �gure 4.33 is based on di�erent approaches. Rabal-
ais et al. (1977) [103] use a orthogonalized plane wave approximation, indicating
a steep increase of β from 0 to 1.5 within less than 10 eV . As it was important
for the discussion of two center interferences for N2 and O2 a plane wave approx-
imation does not take deviations of the molecular potential, especially at short
distances, into account. Therefore, its parameters are not su�cient for a precise
β calculation.
The calculated data of Braunstein et al. (1988) is using a �xed-nuclei approx-
imation at a single nuclear geometry [18]. This data �ts much better in the
β-development of the experimental data of this thesis although a plateau feature
predicted by Braunstein et al. (1988) around 30 eV is not in agreement with our
data. Good qualitative agreement is observed in comparison to the theoretical
data using the time dependent density functional theory approach, provided by
Decleva (2011) [36]. Beside a qualitative agreement of the general β-trend this
TDDFT data of Decleva (2011) shows a broad superimposed oscillation for higher
photon energies. This oscillation is comparable (in period length and amplitude)
to the two center interference pattern of N2 and O2 as they were presented in the
previous section. Initial discussions and considerations suggest that two processes
might be the reason for these oscillations. One interpretation is to account these
pattern to a scattering of the photoelectrons by the hydrogen atoms. The other
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Figure 4.33: Photoelectron angular distribution data for the CH4 HOMO 1t2.

Theoretical data of [18, 36, 104] and experimental data of [59] is included in the

�gure.

possible explanation is that a coherent electron emission due to indistinguishable
multiple emitter sites takes place in the photoionization process since the di�erent
hybrid orbitals are equal [138] and therefore principally ful�lling the coherence
condition in accordance to the Cohen-Fano formalism. This interpretation could
then be considered in the light of a molecular multi-slit experiment which has
never been done so far.
Although the experimental data of this work do not cover the relevant photon en-
ergy range in order to resolve one full period of the predicted oscillation, an initial
indication of the �rst maximum is observed. Since the amplitude of the theoret-
ically predicted oscillation is very small, it is highly challenging to resolve with
the new ARPES setup introduced in this work (compare discussion for N2 1πu in
the previous section).
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Regarding the general development of the electron angular distribution for the
CH4 1t2 HOMO, it is remarkable that no comparable sharp features were ob-
served in the presented photon energy range as it was the case for N2 and O2.

Summarizing the results for the angular distribution data of the CH4 1t−1
2 HOMO,

an essential extension of existing data sets supporting the predicted β increase in
the low photon energy region as well as the convergence to an absolute β-value
of ∼ 1.5 are observed. Furthermore, the data of this thesis includes the �rst
indication for the very recent theoretical �ndings of Decleva (2011) [36] concern-
ing narrow β-oscillations at high photon energies for CH4. The underlying e�ect
is under discussion to be originated by scattering at the H-atoms or by multi-
slit interference in the light of the Cohen-Fano formalism. These calculations
all together with the presented experimental results, should encourage further
measurements at even higher photon energies as well as a deeper theoretical un-
derstanding in order to be able to interpret the predicted β-oscillations for the
CH4 1t−1

2 properly.
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Conclusion

The angle resolving electron time-of-�ight experiments presented in this thesis
are an experimental realization of the molecular double slit experiment proposed
by Cohen and Fano in 1966 to angle resolved electron studies of valence states
of the homonuclear diatomic molecules N2 and O2. In the original assumption of
Cohen and Fano a versatile formalism on interference e�ects in the molecular pho-
toionization has been presented. This formalism has many times been proven to
be of far-reaching validity for the description of molecular interference processes
due to electron emission from two indistinguishable emitter sites. However, this
formalism had to be adapted for an appropriate description of angular distribu-
tion e�ects as it was done by To�oli et al. in 2006. The presented work in this
thesis experimentally supports these recent calculations in order to extend the
debate on molecular double slit experiments to electron angular distributions. In
the light of the originally predicted showcases of the Cohen Fano work of 1966,
a comparison between two center interferences from inner shell and valence shell
ionization of N2 shows interesting di�erences concerning the phase shifts of the
Cohen-Fano oscillation pattern in the angular distribution between gerade and
ungerade parities. It has been shown that the simple model of a pure parity re-
lated electron wave function phase dependence is only valid for the parity splitting
of the same orbitals and cannot be extrapolated to di�erent molecular orbitals
as it is indicated by the presented showcase of the valence electron lines N2 3σg

and N2 1πu.

Summarizing the relevance of this thesis's main topic, it shall be pointed out
that molecular double slit experiments contain extensive information on pho-
toionization processes, molecular properties and quantum dynamics which can
be exploited for a better understanding of more complex systems. Photoelectron
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angular distributions of valence electrons for the targets N2, O2 and CH4 were
studied in the frame of the Cohen-Fano formalism for the �rst time, expanding
the related debate to higher di�erential insights experimentally.
A deep understanding of such basic processes is not only essential for the funda-
mentals of molecular photoemission and quantum dynamics but it is also provid-
ing essential information for future experiments e.g. at FEL based light sources
where time resolved measurements in a challenging experimental environment
will result in observations of completely new photoionization phenomena. But it
also complicates the data analysis and interpretation. To face these challenges, it
is essential that the relevant e�ects are well understood and characterized. The
results of this thesis contribute in this concern, as they can serve as a solid base
and benchmark for future theoretical and experimental work on molecular pho-
toionization dynamics.

Not only the investigations on two center interferences, but additionally the study
of near threshold phenomena in the valence photoionization of N2 and O2 lead
to new considerations of fundamental photoionization dynamics showing hitherto
unexplored angular distribution e�ects for these targets. All topics addressed in
this thesis essentially bene�t from the highly e�cient spectrometer setup devel-
oped during the work on this thesis. This experimental development is the basis
of these studies in order to face low photoionization cross sections on the one
hand and the need for highly dense data sets on the other hand.
The spectrometer setup is also dedicated to online photon beam diagnosis which
was tested in several proof-of-principle experiments, highlighting the achieved
technical advance leading to more sophisticated diagnostics for storage ring and
free-electron-laser based synchrotron radiation sources. Both, in science as well
as for diagnostic purposes several new experimental investigations have been re-
alized.
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Outlook

The work presented in this thesis is dedicated to investigations of angular distri-
butions in the frame of the dipole approximation. In future work it would be very
interesting to go beyond this approximation and to study Cohen-Fano oscillations
from even higher di�erential perspectives than the β-parameter allows. The theo-

Figure 6.1: The �gure shows theoretical calculations of β as well as the non-

dipole parameters for the N2 3σg ionization as they are plotted in To�oli et al.

(2006) [130].
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retical data of To�oli et al. (2006) [130] discussed in this thesis also include results
for the non-dipole parameters δ, γ and ζ, as well predicting strong Cohen-Fano
oscillations for these parameters (see �gure 6.1). It is planned to extend the ca-
pabilities of the experimental setup for the study of these predicted oscillations in
the non-dipole parameters in order to allow additional insight in the fundamental
process of such quantum interference e�ects and their relevance for future studies.

Another complementary approach on studying two center interferences shall be
realized, using the electron-electron coincidence technique introduced in chapter
3 of this work. The analysis of such coincidences above the double ionization
threshold of the respective targets should show distinct evidence for two center
interferences. These even higher di�erential measurements could be a further step
toward a more complex understanding of the underlying phenomenon presented
in this thesis. Figure 6.2 shows electron-electron coincidences for nitrogen at a
photon energy of 80 eV as a showcase of initial coincidence recording with the new
experimental setup. The signatures of the di�erent double ionization processes
are angle dependent and the high quantity and e�ciency of the spectrometers of
the present setup therefore already allow a systematic angle resolving investiga-
tion of electron-electron coincidences. It is reasonable to expect a resulting deeper
insight into the details of the relevant partial wave compositions in�uencing the
double ionization process in the frame of the Cohen-Fano formalism.

The new P04 beamline at PETRA III will be highly bene�cial for such studies
with its exceptional high photon �ux and energy resolution. As mentioned in
chapter 4, the β points taken at high photon energies above 500 eV at the BW3
beamline at DORIS III had acquisition times in the order of 10 hours per data
point. This was the main reason why the presented studies in this thesis 'only'
cover one full period of Cohen-Fano oscillations. Future experiments at the P04
beamline should reduce the required acquisition times for β data at photon en-
ergies even far above 500 eV from hours to minutes. Together with the newly
developed highly e�cient spectrometer setup this will allow manifold studies of
photoionization dynamics.

As already mentioned in the concluding chapter, a distinct understanding of phe-
nomena such as e.g. Cohen-Fano oscillations could be bene�cial for future free-
electron-laser studies not only by providing benchmark data. Especially when
new �elds of science are to be explored, as it is still the case for free-electron-laser
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Figure 6.2: The �gure shows electron-electron coincidences after N2 double

ionization as they were shown in chapter 3.

experiments, the understanding of all relevant photoionization e�ects has to be
assured to allow for an appropriate data interpretation. Furthermore, it is highly
interesting to extend experiments to time-resolved measurements e.g. for prob-
ing e�ects like the two center interferences in the light of molecular dissociation
dynamics. Such experiments, investigating the coherence behavior of electron
emission evolving during molecular dissociation, have been proposed by Rolles
(2005) [107] and recently been realized by Sanov et al. (2008) [112].
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Abbreviations

ADC Analog to Digital Converter

AMO Atomic and Molecular (Physics)

APPLE II Advanced Planar Polarized Light Emitter II

BESSY Berliner Speicherring Gesellschaft für Synchrotronstrahlung

BW3 Bypass Wiggler 3 am DORIS III Speicherring

CFD Constant Fraction Discriminator

CFEL Center for Free-Electron Laser Science

DESY Deutsches Elektronen Synchrotron

DFT Density Functional Theory

DORIS III Doppel-Ring-Speicher III

EXAFS Extended X-ray-Absorption Fine Structure

FEL Free Electron Laser

FHI Fritz-Haber-Institut der Max Planck Gesellschaft

FLASH Freie-Elektronen-Laser in Hamburg

FWHM Full Width at Half Maximum

GRPAE Generalized Random Phase Approximation with Exchange

HASYLAB Hamburger Synchrotronstrahlungslabor

HF Hartree-Fock

HOMO Highest Occupied Molecular Orbital

HV High Voltage

HZB Helmholtz Zentrum Berlin

IC Interchannel Coupling
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IR Infrared

LCAO Linear Combination of Atomic Orbitals

LCLS Linac Coherent Light Source

LS Angular Momentum Coupling

MCP Micro (or Multi) Channel Plate

MO Molecular Orbital

NIM Nuclear Instrumentation Module Standard

PC Personal Computer

PEPICO Photo-Electron Photo-Ion Coincidence Spectroscopy

PES Photoelectron Spectroscopy

PETRA III Positron-Elektron-Tandem-Ring-Anlage III

PGM Plane Grating Monochromator

RC Resistor and Capacitor

RF Radiofrequency

RPA Random Phase Approximation

RCHF Relaxed Core Hartree-Fock

SC Single Channel

SCSI Small Computer System Interface

SCF Self Consistent Field

SLAC Stanford Linear Accelerator

TAC Time to Amplitude Converter

TDC Time to Digital Converter

TDDFT Time Dependent Density Functional Theory

TOF Time-of-Flight

UHV Ultra High Vacuum

UV Ultraviolet

VUV Vacuum Ultraviolet (radiation)

WP 73 Work Package 73 of the European XFEL GmbH

XFEL X-ray Free-Electron-Laser

XPP X-ray Pump Probe

XUV eXtreme Ultraviolet (radiation)
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