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Abstract—A key step in control of precision mechatronic
systems is Frequency Response Function (FRF) identification.
The aim of this paper is to illustrate relevant developments and
solutions for FRF identification for advanced motion control.
Specifically dealing with transient and/or closed-loop conditions
that can normally lead to inaccurate estimation results. This
yields essential insights for FRF identification for advanced
motion control that are illustrated through a simulation study
and validated on an experimental setup.

Index Terms—Frequency Response Function, Identification,
Transient, Closed-loop

I. INTRODUCTION

Many mechatronic systems in the manufacturing industry
are considered as Multiple-Input Multiple-Output (MIMO)
systems in view of control. These systems often have multiple
Degrees of Freedom (DOF) that must be controlled using
feedback control for various reasons, e.g., safety margins
or constraints on movement range. Furthermore, there is an
increasing need for the control of systems-of-systems (Evers
et al., 2019) where multiple subsystems jointly contribute to
the overall system performance.

Due to the increasing complexity of these MIMO systems-
of-systems appropriate modeling techniques are required. For
this, acquiring the frequency response function (FRF) of the
system is an important first step. FRF identification is often
fast and inexpensive and provides an accurate representation
of the system. The FRFs can be used for many applications,
e.g., direct controller tuning (Karimi and Zhu, 2014) or as a
basis for parametric modeling (Voorhoeve et al., 2016).

The identification of FRFs has made significant progress
in recent years, particularly by explicitly addressing transients
errors (Schoukens et al., 2009; McKelvey and Gurin, 2012).
Indeed, one of the underlying assumptions is that the system
is in steady state, which is often not valid for experimental
systems. Furthermore, these approaches have been extended
to MIMO systems (Voorhoeve et al., 2018), but in MIMO
identification for control, it is often ambiguous which closed-
loop transfer functions have to be identified.

This work is supported by the Advanced Thermal Control consortium
(ATC), and is part of the research programme VIDI with project number
15698, which is (partly) financed by the Netherlands Organization for Scien-
tific Research (NWO).

Although important progress is made in FRF identifica-
tion, application of these advanced methods, especially for
multivariable systems, is strikingly limited. The aim of this
paper is to provide a clear and concise overview of the steps
and decisions that are taken during the identification process.
Specifically, two items are investigated in more detail: 1)
the elimination of transients and 2) closed-loop aspects for
single and multivariable systems. The elimination of transients,
i.e. aspect 1), is key when identifying complex systems with
many inputs and outputs, commonly, an individual experiment
is required for each separate input channel. An approach is
presented that can explicitly estimate and remove transient
components from FRF estimation that otherwise would cause
a biased estimate. Traditionally, these transient effects are
mitigated by increasing the experiment length and removal
of the initial transient data. By applying the proposed method,
a significant reduction in measurement time is achieved.

Moreover, closed-loop aspects, i.e., aspect 2), are highly im-
portant since these increasingly complex systems often operate
in closed-loop conditions.Identification under these conditions
is increasingly challenging since the additional feed-back loop
can cause an estimation bias when not appropriately addressed.
Furthermore, a distinction in view of system modeling for
control must be made between full MIMO modeling or
appropriate selection of a closed-loop Single-Input Single-
Output (SISO) transfer function that includes the effect of the
interaction between different DOFs.

II. PROBLEM FORMULATION

Consider the discrete time signal u(nTs), n = 0, . . . , N −
1, where N is the total amount of samples, and its frequency
domain representation U(k) obtained by application of the
Discrete Fourier Transform (DFT) defined as (Pintelon and
Schoukens, 2012):

X(k) =
1√
N

N−1∑
n=0

x(nTs)e
−j2πnk/N . (1)

When the signal u(nTs) is applied as input to a linear time
invariant system G0 with additive output noise v(nTs), as in
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Fig. 1. LTI discrete time system in an open-loop setup.

Fig. 1, the resulting output in the frequency domain equals

Y (k) = G0(Ωk)U(k) + T (Ωk) + V (k) , (2)

where T (Ωk) represents the transient contribution and V (k)
represents the noise contribution. The argument Ωk denotes
the generalized frequency variable evaluated at DFT-bin k,
which, when formulated in, e.g., the Laplace domain, becomes
Ωk = jωk and in the Z-domain Ωk = ejωkTs .

A. Problem formulation

In this paper focus is placed on two aspects in particular,
1) transient contributions and 2) closed-loop aspects.

1) Transient contribution: The transient contribution con-
sists of the additional signal that results from past inputs,
minus the missed signal in the future response that results
from final conditions in the current window. Provided that G0

is proper, this yields the following state-space representation
of the transient contribution

T (z−1) = C(I − z−1A)−1 (x(0)− x(N)) . (3)

where the initial state x(0) and final state x(N) capture the
past and final conditions respectively. The additional term
T (Ωk) in (2) poses difficulties when identifying the system in
transient conditions, i.e., when x(0) 6= x(N). It is generally
not possible to separate the forced and transient contribution
in the obtained mixed output signal. In Sec. III-C a method is
provided to alleviate these difficulties.

2) Closed-loop aspects: Consider again the setup in Fig. 1,
here u is assumed to be independent of y and noise free.
Clearly, in a closed-loop setting, where u = K(r− y), where
K is the controller and r and y the reference and output
respectively, this no longer holds since u and y are correlated
In view of identification, additional care has to be taken, as is
shown in Sec. V.

B. Experimental Setup

The challenges for FRF identification presented in this paper
are demonstrated on an experimental setup or a representative
simulation model. The experimental setup is shown in Fig.
2 and it consists out of two DC motors interconnected by a
flexible connection. The system is operated in closed-loop and
is multivariable with high interaction terms, i.e., with strong
cross-coupling between the two inputs and outputs.

A representative simulation model is constructed by consid-
ering the setup as two masses connected to each other and the
fixed world by spring-damper elements, as shown in Fig. 2b.
The state-space model of the system is then given by

(a)

k3

d3

m1
m2

k1

d1

k2

d2

(b)

Fig. 2. The experimental setup (a) and it’s schematic counterpart (b). The
system consists of two DC motors coupled by an elastic connection, often
representative for a conveyor belt type system. Due to the direct connection
between the motors, the system is highly multivariable.

ẋ =

 0 1 0 0
−173 −8 166 1.33
0 0 0 1

166 1.33 −173 −8


︸ ︷︷ ︸

A

x1

x2

x3

x4

+

 0 0
53 0
0 0
0 53


︸ ︷︷ ︸

B

[
u1

u2

]
(4)

y =

[
1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

C

x1

x2

x3

x4

 (5)

where y [rad] is the angular position measured by optical
encoders and u [v] is the input voltage to the linear amplifiers
that control the motors. The transfer function matrix (TFM)
can then by obtained by G(s) = C(sI −A)−1B.

III. ESTIMATORS

In this section, various estimators for Frequency Response
Functions (FRFs are presented. Throughout, the SISO open-
loop case is considered. The extension to closed-loop and
MIMO is considered in Sec. V and Sec. V-B respectively.

A. Empirical Transfer Function Estimate
One of the most straightforward transfer function estimates

can be obtained by simply dividing the frequency domain
output signal with the input signal. This is known as the
Empirical Transfer Function Estimate or ETFE, i.e.,

ĜETFE(k) = Y (k)/U(k) . (6)

To average out the noise contribution, the input and output
signals are divided into windows of equal length and subse-
quently the ETFE is obtained for each window m to yield,

ĜETFE(k) =
1

M

∑
m

Ym(k)/Um(k) . (7)



When periodic excitation signals are used and the window
length matches the periodicity of the excitation, this is an
effective approach. However when arbitrary excitation signals
are used such as noise excitation, averaging as performed in
the ETFE can lead to poor results. This is due to the fact
that when the excitation signal u(nTs) is a Gaussian (pseudo)
random signal, the amplitude of U(k) is also stochastic and
can therefore be arbitrarily close to zero. When Um(k) is
close to singular in some window m and at frequency bin
k, the ETFE at that frequency will be dominated by the noise
contribution yielding a very poor FRF estimate. This poor FRF
estimate is subsequently averaged with the estimates in the
other windows without accounting for the difference in the
quality of the individual estimates.

The main guideline to follow is to always average out the
noise before division. When this principle is directly applied
for arbitrary signals by first averaging the inputs and outputs
over all windows and then performing the division, i.e.,

Ĝavg = Yavg(k)/Uavg(k), (8)

with

Yavg(k) =
1

M

∑
m

Ym(k), Uavg(k) =
1

M

∑
m

Um(k), (9)

another problem occurs due to the randomness of the phases
of Um(k) for each m. As these phases are random the mean
value, i.e., Uavg(k), will tend to zero for large M .

B. Spectral Analysis

For arbitrary signals the spectral analysis approach is com-
monly applied. In this approach the cross-power spectrum of
the input and output signals and auto-power spectrum of the
input signal are first calculated, involving an averaging step
over all considered excitation windows, and subsequently the
transfer function estimate is obtained by dividing these spectra

ĜSA(k) = Φ̂yu(k)/Φ̂uu(k) (10)

where GSA denotes the spectral analysis approach and

Φ̂yu(k) =
1

M

∑
m

Ym(k)Um(k)H (11)

Φ̂uu(k) =
1

M

∑
m

Um(k)Um(k)H . (12)

In this approach, transient suppression is achieved by using so
called windowing functions, such as the Hanning window. For
additional details, see Pintelon and Schoukens (2012, sections
2.2.3 & 2.6.5). An estimate for the noise covariance and the
covariance on the transfer function estimate are obtained in
spectral analysis through (Pintelon and Schoukens, 2012, eq.
(7-33) & (7-42)).

σ2
v(k) =

M

M − nu

(
Φ̂Y Y (k)− Φ̂Y U (k)/Φ̂UU (k)Φ̂HY U (k)

)
(13)

σ2
GSA

(k) =
1

M

(
1/Φ̂UU (k) · Cv(k)

)
(14)

Remark 1: It is of key importance to quantify the uncertainty
on any Frequency Response Function estimate that is obtained.
When no such quality measure is provided it is impossible to
adequately interpret the obtained estimate seriously impacting
the usefulness of the obtained estimate. A quality measure that
is often used in spectral analysis is the coherence functions.
While this measure is certainly useful, it is used in a rather
qualitative way, where a coherence which is close to unity is
indicative of a high quality measurement while a coherence
value closer to zero is indicative of a poor estimate. To facil-
itate the presentation, in this work some results purposefully
exclude the variance of the estimate.

C. Local Modeling Approach

The main idea of the local modeling approach, e.g., as
in Schoukens et al. (2009), is to identify a model, with
validity over only a small frequency range, which can be
used to provide a non-parametric estimate of the FRF and
the transient at the central point k. Consequently, errors due
to the transient can be effectively eliminated. To achieve this,
a small frequency window r around DFT-bin k is considered,
i.e., r = [−nw, . . . , nw] ∈ Z, to yield

Y (k+ r) = G(Ωk+r)U(k+ r) +T (Ωk+r) +V (k+ r) . (15)

Next, both the plant, G(Ωk+r), and the transient contribution,
T (Ωk+r), which are assumed to be smooth functions of the
frequency, are parametrized. For instance, using the polyno-
mial parametrization

G(Ωk+r) = G(Ωk) +

R∑
s=1

gs(k)rs , (16)

T (Ωk+r) = T (Ωk) +

R∑
s=1

ts(k)rs . (17)

Using this parametrization (15) is rewritten as

Y (k + r) = Θ(k)K(k + r) + V (k + r), (18)

with

Θ(k) =
[
ΘG(k) ΘT (k)

]
,

ΘG(k) =
[
G(Ωk) g1(k) g2(k) . . . gR(k)

]
,

ΘT (k) =
[
T (Ωk) t1(k) t2(k) . . . tR(k)

]
, (19)

K(k + r) =

[
K1(r)⊗ U(k + r)

K1(r)

]
(20)

where
K1(r) =

[
1 r · · · rR

]T
. (21)

Finally, the parameters of the local model are determined by
solving the linear least squares problem

Θ̂(k) = arg min
Θ(k)

nW∑
r=−nW

‖Y (k + r)−Θ(k)K(k + r)‖22 (22)

= Yn(k)Kn(k)+ (23)
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Fig. 3. Identification result under transient conditions, the left figure shows the magnitude of the identified frequency response function and the right figure
shows its estimation error when compared to the model. The results show that the LPM ( ), described in Sec. III-C, outperforms the spectral analysis
method using both a rectangular ( ) and a Hann ( ) window. The LPM is invariant to the transient contribution ( ) that dominates the response at lower
frequencies when compared to the plant ( ).

with Xn(k) =
[
X(k − nW ) · · · X(k + nW )

]
, and with

A+ = AH(AAH)−1 the right Moore-Penrose pseudo-inverse
Performing this least squares estimation for each DFT-bin, k,
and evaluating the local models at the center frequency r = 0,
yields a non-parametric estimate, G(Ωk), for the FRF. For the
parametrization described here this evaluation is trivial, since
for r = 0 only the zeroth order polynomial term remains,
which is why G(Ωk) directly appears in this parametrization,
see (16).

An estimate for the covariance on the transfer function
estimate can be obtained as provided in Schoukens et al. (2012,
section 7.2.2.2).

IV. TRANSIENTS IN SYSTEM IDENTIFICATION

Estimating the true plant G0(Ωk) in (2) using classical
estimators is challenging since the measurement of Y (k) is
contaminated with an additional component T (k). In Sec.
III-C it is shown that an explicit estimation of T (k) can be
made by constructing a local parametric model in a frequency
window of width n around DFT bin k. The underlying
assumption facilitating this approach is the smoothness of
the transient component T (k) in (3) since the transient is a
decaying response, assuming that the system is stable.

Simulation study: To illustrate the benefit of the local
modeling approach, a simulation study is performed using
the simulation model presented in Sec. II-B. The system
G0 is considered in closed-loop, see Fig. 4, with excitation
input d(nTs) and identification output u(nTs). Therefore, the
identification setting essentially is an open-loop one as in
Fig. 1, since the transfer function that is identified is the
sensitivity function S(Ωk) =

u

d
, and d is noise free.

Simulation results: The excitation signal is 2 periods of
a 5 [s] random phase multisine with a sampling frequency
Fs = 1000 [Hz], resulting in a total of 10000 samples. The
FRF of G0 is then estimated using both the spectral analysis
and local modeling approach, presented in Sec. III, yielding
results as shown in Fig. 3. The spectral analysis method is
applied using both a rectangular window and a Hann window.

K G0++ +
−

u(nTs) y0(nTs)

v(nTs)

y(nTs)

d(nTs)

e(nTs)

Fig. 4. LTI discrete time system in a closed-loop setup.

While the latter appears to achieve improved performance,
the results are misleading, with increasing amount of periods,
mitigating the effect of transients, the rectangular window
will outperform the Hann window. Indeed, with a periodic
excitation no window should be used since this will introduce
additional leakage errors. The local modeling approach clearly
outperforms the spectral analysis approach, since it explicitly
estimates and removes the transient component T (Ωk).

V. CLOSED-LOOP ASPECTS

The techniques presented in the previous sections are de-
scribed for an open-loop output error setup, see, e.g., Fig.
1. Many precision motion systems have safety constraints,
requiring closed-loop operations. In this section, the transition
to a closed-loop identification setting is made as shown in Fig.
4. It is shown that the techniques presented in Sec. III can
be straightforwardly extended to a closed-loop setting when
taking into account some important differences.

A. Indirect approach to Closed-loop identification

A common approach for the control of motion systems is to
neglect possible cross-coupling between the DOFs or perform-
ing a decoupling procedure. This allows the simplification to
a Single-Input Single-Output (SISO) control setting. Consider
again an LTI discrete time system, now operating in closed-
loop as shown in Fig. 4. A transfer function estimation can be
performed using excitation input d(nTs), identification input
u(nTs) and identification output y(nTs), as described in Sec.
III-B, yielding (Sderstrm and Stoica, 1989, Chap. 10)



Ĝ(k) =
Φ̂yu(k)

Φ̂uu(k)
=
G0Φdd −KΦvv
Φdd + |K|2Φvv

. (24)

This clearly yields a biased estimate of G0 since y and v are
not independent in the closed-loop setting. This shows that
taking a direct approach and identifying the system G0 using
y and u in a closed-loop setting can lead to an estimation bias.

Indirect approach: To mitigate the estimation bias result-
ing from a direct approach in Eq. 24, an indirect approach is
considered that identifies two transfer functions in a Single
Input Multiple Output (SIMO) procedure to yield

ĜS(k) =
Φ̂yd

Φ̂dd
, Ŝ(k) =

Φ̂ud

Φ̂dd
(25)

that are the estimate of the process sensitivity and sensitivity
respectively. The system estimate Ĝ0 is then obtained by

Ĝ(k) =
ĜS(k)

Ŝ(k)
. (26)

Alternatively Ĝ(k) is obtained by Ĝ(k) = 1
K(k) ( 1

S(k) −1) but
this requires the controller K(k) to be known exactly, which
is often not possible. The estimate (26) is unbiased in the
closed-loop setting since d and v are independent. Note that
(26) recovers (10) in the open-loop setting since then S(k) = 1
and GS(k) = G(k). Similarly, the local approach proposed in
Sec. III-C can be used to identify GS(k) and S(k) in (26) to
yield an unbiased estimate of Ĝ(k) under transient conditions.
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Fig. 5. Comparison of the estimated FRF of the true system ( ) using the
direct method ( ) and the indirect method ( ) . It is shown that applying
the direct method in a closed-loop setting yields a significantly biased result.

B. Closed-loop identification of multivariable systems

In this section the indirect method to closed-loop identifi-
cation is extended to encompass MIMO systems. Depending
on the control objective, a different plant model is desired. A
distinction is made between the true multivariable plant and
an equivalent plant.

Consider a MIMO system in the closed-loop setting as
shown in Fig. 7. The system in Fig. 7 is multivariable and the
control solution is decentralized, i.e., diagonal. Consider now
the proposed indirect method from Sec. V-A using excitation

−100

−50

0

50

y 1

u1

10−1 100 101 102
−100

−50

0

50

Frequency [Hz]

y 2

u2

10−1 100 101 102

Frequency [Hz]

Fig. 6. Experimental estimation of the MIMO transfer function matrix, shown
as a magnitude [dB] plot, using both matrix wise ( ), with corresponding
variance ( ), or element wise division ( ), shown without variance,
yielding significantly different models. Depending on the desired model, a
specific operator should be used.

K1 G11++ +

−
u1(nTs) y10(nTs) y1(nTs)

d1(nTs)

e1(nTs)

K2 G22++ +
− u2(nTs) y20(nTs) y2(nTs)

d2(nTs)

e2(nTs)

G21

G12Geq
11

Fig. 7. LTI discrete time system in a MIMO closed-loop setup. Here Geq
11

indicates the equivalent plant that includes the interaction in the secondary
loop as a SISO transfer function.

input d1 and identification output u1, y1 and u2, y2 to identify
the first column of Ĝ to obtain G11, G21. Applying the indirect
method to individual entries of GS and S yields for G11

G̃eq11 = GS11/S11 = G11 −
G12K2G21

1 +K2P22︸ ︷︷ ︸
interaction

. (27)

Here, the estimated G̃eq11 is clearly different from the “true”
MIMO entry G11, as indicated in Fig. 7. This is caused by
the interaction terms G12, G21 and the secondary closed-loop
controller K22. Indeed, the plant G̃eq11 is also known as the
“equivalent plant”, since it represents the fully coupled system
as a single SISO transfer function. This approach is often
applied in sequential loop closing, where a full MIMO system
is modeled as a sequence of equivalent plants for which a
SISO controller is designed (Maciejowski, 1989).

To obtain the full multivariable plant G a slightly different
formulation to (27) is required. The plant G can straightfor-
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Fig. 8. Estimating the FRF of the sensitivity function S = u
d

using 2 periods
of a 5 [s] multisine, compared to using 6 periods as a baseline reference
( ). Results show that the estimation error using spectral analysis ( ) is
significantly higher than when using the LPM method ( ), this is caused by
the transient contribution ( ).

wardly be identified using 2 independent excitations, exciting
d1 and d2 to identify the first and second column respectively
of GS and S. Then G is obtained by performing

G(Ωk) = GS(Ωk)S(Ωk)−1 (28)

for each frequency Ωk. Here, the Frequency Response Ma-
trix (FRM) of the closed-loop sensitivity function S(Ωk)
is inverted using a matrix inverse and not element wise
inversion. While this difference is subtle, the obtained plant is
significantly different for systems with interaction.

VI. EXPERIMENTS

In this section, the techniques presented in this paper
are applied to the experimental setup as shown in Fig. 2.
Specifically, the transient elimination by employing the local
modeling technique, as shown in Sec. III-C, and the closed-
loop MIMO estimation, as shown in Sec. V-B, are highlighted.

A. Transient elimination

To illustrate the effects of transient conditions on the
estimation accuracy, an FRF is estimated on two different
dataset. The first dataset contains 6 periods of the system
response to a multisine signal with a length of 5 [s], yielding
N = 30Fs = 30·103 samples, this dataset serves as a baseline
reference. The second dataset contains only the first 2 periods
of the first dataset, reducing the number of available samples to
N = 10 · Fs = 10 · 103. Moreover, the initial periods contain
significantly more transients than the latter. The results are
shown in Fig. 8. It is demonstrated that the LPM described in
Sec. III-C is able to significantly reduce the estimation error
caused by the transient contributions, when compared to the
more classical spectral analysis approach. Moreover, since the
LPM can cope with transient data, a significant savings in the
required experimental time is achieved.

B. MIMO identification in a closed-loop setting

In Sec. V-B it is shown that by applying the indirect
method in multivariable setting, two different FRM can be

obtained. By applying the matrix inverse, e.g., Ĝ = PSS−1

the multivariable plant model is obtained. Conversely, if an

element wise inversion is employed, e.g., PS � 1

S
where �

is the Hadamard product, then the equivalent plant model is
obtained. This is illustrated on the experimental setup as shown
in Fig. 6. The results show that depending on the desired
model, a different matrix operation should be employed.

VII. CONCLUSION

In this paper, an overview of important aspects in FRF
identification for advanced motion control, specifically tran-
sient and closed-loop conditions, is presented. It is shown
that if these aspects are not appropriately addressed the FRF
estimate can be biased or of poor quality. By applying the
techniques presented in this paper a high quality unbiased
FRF is obtained, facilitating parametric modeling or direct
controller design for advanced motion control.
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