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Motivation
A wide range of techniques can be used to obtain in-
formation about the rheological properties of polymers.
Here, the �lament stretching rheometer is studied, which
is used to characterizemolten polymers in a pure uniaxial
extensional �ow. Although the �ow at the mid-�lament
region is controlled to be pure uniaxial extension, shear
contributions near the plates can a�ect the measured
force signal. So, it is essential to correct for these shear
contributions in order to measure the pure uniaxial vis-
cosity. Such correction factors are presented in literature
by Nielsen et al. [1] and Huang et al. [2], but these are
only valid in the linear viscoelastic regime. This project
aims at developing a ’nonlinear shear correction factor’
by means of �nite element simulations.

Methods
A �nite element model is presented to describe the �ow
and resulting stresses in a �lament stretching rheome-
ter. The presented model consists of a non-isothermal,
nonlinear viscoelastic �ow solver, implemented in an in-
house �nite element package.

In Figure 1, the geometry of a polymer sample con�ned
between two plates is shown. Both plates move in oppo-
site directions with the same velocity.

Figure 1: Initial geometry after pre-stretch

In this paper, the nonlinear shear correction factor is de-
�ned as:

fshear =
η̄+XPP
η̄+R

. (1)

Here, η̄+R is the real extensional viscosity determined from
the simulated force on the bottom plate and η̄+XPP is the
extensional viscosity in a pure uniaxial �ow (determined
by solving the nonlinear XPP model).

Results
Numerical simulations have been run for di�erent strain
rates, aspect ratios andmaterials. For this, the shear cor-
rection factors are determined (see Figure 2).

Figure 2: Simulated shear correction factors versus the
Hencky strain ε(t) (markers). Multiple initial geometries
are simulated with di�erent (compressed) aspect ratios
Λc (pre-strains is εpre = 0.81). This is done for an iPP and
LLDPE which have distinctive nonlinear viscoelastic prop-
erties. The solid lines represent the proposed nonlinear
shear correction factor in Eq. (2).

An empirical function for the nonlinear shear correction
factor is proposed for polymer melts:

fshear =

�

1+
exp[−4(ε(t) + εpre)/3− exp(−Λc)]

3Λ2
c

�−1

. (2)

Conclusions
The proposed empirical function for the shear correction
factors shows excellent agreement with the simulated
shear correction factors. This function is strain rate inde-
pendent and can be used to correct for shear contribu-
tions for a wide range of (nonlinear) polymer melts.
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