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Computational dentistry uses computerized methods and mathematical models for dental image analy-
sis. One of the fundamental problems in computational dentistry is accurate tooth instance segmentation
in high-resolution mesh data of intra-oral scans (IOS). This paper presents a new computational model
based on deep neural networks, called Mask-MCNet, for end-to-end learning of tooth instance segmenta-
tion in 3D point cloud data of IOS. The proposed Mask-MCNet localizes each tooth instance by predicting
its 3D bounding box and simultaneously segments the points that belong to each individual tooth
instance. The proposed model processes the input raw 3D point cloud in its original spatial resolution
without employing a voxelization or down-sampling technique. Such a characteristic preserves the finely
detailed context in data like fine curvatures in the border between adjacent teeth and leads to a highly
accurate segmentation as required for clinical practice (e.g. orthodontic planning). The experiments show
that the Mask-MCNet outperforms state-of-the-art models by achieving 98% Intersection over Union
(IoU) score on tooth instance segmentation which is very close to human expert performance.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dentistry has witnessed a rapid growth of technological innova-
tions in advanced imaging methods. Such advances in imaging sys-
tems are playing an important role in efficient diagnoses,
treatment, and surgeries. Computational dentistry involves com-
puterized methods for automated analysis of digital dental images.
It utilizes mathematical and/or data-driven models to facilitate
data analysis, e.g. for accurate treatment planning and diagnostic
purposes. Computational dentistry may incorporate multiple
sources of imaging data obtained by both extra-oral (e.g. X-ray
panoramic, cephalometric and cone-beam computed tomography)
and intra-oral optical imaging (e.g. laser or structured light projec-
tion scanners).

Intra-oral scanners are advanced imaging devices for optical
capture of the surface profiles of anatomical structures inside of
the patient’s mouth. Similar to other 3D scanners, intra-oral scan-
ners project a light source (laser, or structured light) on the surface
of objects to be scanned, in this case, the dental arches. Based on
the employed technique, the time-of-flight of the laser or the
deformation of the projected pattern on the subject’s surface is
measured by the imaging sensors and processed by the scanning
software, which generates a highly accurate 3D point cloud. The
obtained point cloud might be further processed and converted
to a 3D surface model (mesh) by using triangulation techniques.

The obtained 3D point cloud represents the 3D geometrical pro-
file of tooth crowns and gingiva (i.e. gum) in a very high spatial res-
olution, in the order of 30–80 points per mm2 [1] with a spatial
accuracy of less than 20 lm. Such a precise 3D model is widely
used for implant treatment and orthodontic planning. A scan of
one dental arch consists of a large set of points (e.g. hundreds of
thousands) in an arbitrary 3D Cartesian coordinate system. Here,
the term arbitrary refers to an unaligned coordinate system
between different scans or even for two acquisition trials from
the same subject. Each point in a point cloud is represented by
its 3D coordinates and, depending on the type of scanner, other
attributes such as color. Automated processing of such a large 3D
point cloud by a computational model that preserves highly
detailed information from anatomic structures of teeth crowns is
highly beneficial for many clinical dental applications.

In this study, we introduce a computational model for instance
tooth segmentation using such advanced imaging and point cloud
information. The segmentation of an individual tooth requires that
the imaging data of a point cloud is analyzed to the level of
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identifying an individual tooth. The purpose of our study is to pro-
pose a new methodology for the automation of the clinical work-
flow and to improve the quality thereof. Here, the instance tooth
segmentation of an intra-oral scan (IOS) refers to the assignment
of a unique label to all the points belonging to each instance (i.e.
an individual tooth), using a computational model. For clinical
practice, after segmentation of the tooth instances, a post-
processing stage may follow for the standardization of the labels.
This stage provides a look-up table for the conversion of the labels
assigned to each detected tooth into one final label prescribed by
the Federation Dentaire Internationale (FDI) dental notation for
adult dentition.

In the following, we briefly introduce the related work on IOS
segmentation, recent advances of deep learning in semantic
instance segmentation on point cloud data, and our contributions
to both. Afterwards, we explain our proposed method and the
obtained results in detail. Lastly, we provide discussions and
conclusions.
2. Related work

Related literature can be divided into two parts: conventional
IOS segmentation methods and available deep learning solutions
for instance segmentation in 3D point clouds.

2.1. Conventional IOS segmentation approaches

The existing literature on IOS segmentation covers mostly con-
ventional computer vision/graphics techniques, which are limited
to finding the best handcrafted features, manual tuning of several
parameters and lack of generalization and robustness [2]. Among
the proposed methods, one generic approach is first projecting
the 3D IOS mesh on one or multiple 2D plane(s) and then applying
standard computer vision algorithms. Afterwards, the processed
data is projected back into the 3D space. For example, Kondo
et al. [3] propose gradient orientation analysis and Wongwaen
et al. [4] apply a boundary analysis on a 2D projected panoramic
depth images for finding teeth boundaries. Most of the other stud-
ies are based on curvature analysis [5–9], fast marching watersheds
[10], morphological operations [9], 2D [11] and 3D [12] active con-
tour (snake) analysis and tooth-target harmonic fields [13] for seg-
menting the teeth and gingiva. Some other works follow a semi-
automatic approach by manually setting a threshold [6], picking
some representative points [8], or interactively involve a human
operator for the analysis [7,9]. As already mentioned, such a
method is always limited to finding the best handcrafted features
and their inherent constraints in applying them within
computer-aided design (CAD) systems.

2.2. Deep learning approaches

The teeth segmentation problem can be formulated in two dif-
ferent ways. First, the teeth segmentation task can be formulated
as a multi-class semantic segmentation problem. Therefore, each
tooth instance is considered as a semantic class. The points in
the point cloud are assigned to one of those classes, i.e. a tooth
number or the gingiva. Considering gingiva and a maximum of
16 teeth on each dental arch, each point has a probability of
belonging to each of 17 semantic classes. This probability is
expected to be predicted at the output of the model. The work of
[2] is an example of employing a deep learning model for semantic
segmentation of teeth in the IOS data. As a second way, the tooth
segmentation problem is formulated in the context of a semantic
instance segmentation problem. To do so, only one semantic class
is defined that is the class of tooth. The points which do not belong
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to any tooth (e.g. to the gingiva), are considered as the undefined
class. In the semantic instance segmentation, apart from assigning
a semantic label to each point, indicating whether it belongs to a
tooth, the model should assign a secondary unique arbitrary label
to those points as an indication of individual tooth instance. It is
worth mentioning that in contrast to the first approach, the
assigned labels to the instances convey no semantic meaning
(i.e. they convey no information regarding whether the tooth is
an incisor or molar) and is used only to separate the teeth from
each other.

Although the former approach is straightforward, its perfor-
mance for teeth segmentation suffers from two main shortcom-
ings. The first shortcoming originates from the fact that there is
low inter-class variability between the crown shape of neighbour-
ing teeth, especially among the molar and premolar teeth. Hence,
an accurate prediction of the labels requires not only the local geo-
metrical information (i.e. crown shapes) but also the global context
of e.g. the relative position, teeth arrangement and possible
absence of other teeth. The second shortcoming is that because
of preserving the global context, employing patch-based analysis
and processing those individually is not feasible. Hence, due to
hardware limitation (e.g. GPU memory), training and inference
on the whole point cloud require down-sampling of the point
cloud. Such a down-sampling would be detrimental to a precise
teeth segmentation where preserving high-frequency information
such as curvature at the border of teeth is crucial. Employing ad-
versarial training and non-uniform resampling of the point cloud
are two proposed techniques for addressing these two shortcom-
ings in the work of Zanjani et al. [2].

Alternatively, formulating the problem as semantic instance
segmentation does not suffer from missing global context and
dependencies between the labels, since it localizes the teeth by
fitting a 3D bounding box and simultaneously assigns a unique
label to all points belonging to each instance inside the detected
bounding box. Accordingly, it locally processes the cropped 3D
patches from the point cloud. Later, by aggregating all detections
in the processed patches, the model performs the inference on
the whole point cloud. As a consequence, the point cloud data
is divided in local data processing actions in a natural way, so
that the later processing of patches is possible in full quality,
preserving the original spatial resolution of the data (without
down-sampling). This property greatly facilitates the machine
learning algorithms for performing automated instance
segmentation.

2.3. Deep learning models for instance segmentation in 3D point cloud

Among the proposed deep learning models for point cloud anal-
ysis, only a few researchers have addressed the challenging issue of
3D instance segmentation. To better compare and position our pro-
posed method, we briefly survey recent deep learning models, all
related to instance segmentation in a 3D point cloud.

FrustumNet [14] proposes a hybrid framework involving two
stages. The first stage detects the objects bounding boxes in a 2D
image. The second stage processes the 3D point cloud in a 3D
search space, partially bound by the initially set 2D bounding
boxes. The 3D-SIS model [15] also first processes the 2D images
rendered from the point cloud through a 2D convolutional network
(ConvNet). Afterwards, the learned features are back-projected on
the voxelized point cloud data, where the extracted 2D features
and the geometric information are combined to obtain the object
proposal and per-voxel mask prediction. The dependency on the
2D image(s) of both preceding models limits the application of
them for 3D point cloud analysis. In another approach, GSPN [16]
is a deep learning framework that follows an analysis-by-
synthesis strategy and instead of directly finding the object bound-
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ing boxes in a point cloud, it utilizes a conditional variational
auto-encoder (CVAE). However, GSPN training requires a separate
two-stage training of the CVAE part and the region-based networks
(which perform the detection, localization and mask generation on
the object proposals).

In an alternative approach to detect object proposals, SGPN
[17] and MASC [18] methods perform clustering on the processed
points for segmenting the object instances. SGPN [17] uses a sim-
ilarity matrix between the features of each pair of points in the
embedded feature space, to indicate whether the given pair of
points belong to the same object instance or not. Although com-
puting the pair-wise distance for the small point clouds is prac-
tical, it is crucial for large point clouds and especially for IOS
data, where down-sampling would significantly affect the detec-
tion/segmentation performance. MASC [18] voxelizes the point
cloud for processing the volumetric data by a 3D U-Net model.
Similar to SGPN, MASC uses a clustering mechanism to find sim-
ilarities between each pair of points by comparing their
extracted features in several hidden layers of a trained U-Net.
Unfortunately, as mentioned before, voxelization of a large
fine-detailed point cloud significantly limits the performance of
such approaches.

In another approach, VoxelNet [19] first divides a point cloud
into equally spaced 3D voxels and then transforms a group of
points within each voxel into a feature space. Subsequently, it
uses a RPN to generate 3D box detections. The preliminary divi-
sion of the 3D input space into voxels facilitates the processing
of sparse point clouds, such as those collected by LIDAR sensors,
since the 3D convolutions can be applied on the constructed vol-
umetric space. However, such voxelization techniques for dense
point clouds (like those obtained from a dental scan) may lead
to an inhomogenoues feature extraction for neighbouring points,
which have been assigned to two adjacent voxels. This can hap-
pen for a large number of points in a dense point cloud. To miti-
gate this effect, decreasing the number of bins would reduce the
relevant population of border points in each voxel, however at
the expense of the RPN losing spatial accuracy. VoteNet [20],
instead of converting a 3D point cloud to a regular grid, directly
votes for a virtual center of objects from the point clouds. It gen-
erates a group of high-quality 3D object proposals by aggregating
vote features and predicting offset vectors to the corresponding
object centers for seed points, followed by a clustering module
to generate object proposals. PointRCNN [21] directly segments a
3D point cloud to obtain the foreground points. Afterwards, a
bin-based 3D bounding-box generation is performed only around
the foreground points to produce high-quality 3D boxes. The
authors showed that such an approach achieves state-of-the-art
performance on the car detection task in the sparse LIDAR point
cloud. Our proposed model is similar to PointRCNN by using a
backbone network as a feature extractor and using bins as a
search space for the RPN. However, in contrast, we do not seg-
ment the input points into two classes of foreground and back-
ground. This is because the objects, teeth, are located closely on
the dental arch, so the foreground points are the vast majority,
and the technique would not be effective to reduce the search
space. Instead, we use larger bins to search the entire 3D space.
To compensate for such a coarse quantization step, the backbone
first encodes the dense point cloud to a high-dimensional feature
space and then uses an adaptive pooling operator to transfer the
information to the bins.

Summarizing the mentioned research work of the literature
indicates that instance segmentation is more suitable for our seg-
mentation problem, but the available studies do not reveal a suit-
able computational model for processing of the large dense 3D
point cloud data, containing fine-detailed information. This results
in the following contributions.
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2.4. Novelty of the approach

In this paper, we propose an end-to-end deep learning model
for instance segmentation in 3D point cloud data. Our contribution
is threefold.

1. We present a new instance segmentation model, called Mask-
MCNet. Our proposed model is applied directly to an irregular
3D point cloud on its original spatial resolution and predicts
the 3D bounding boxes of object instances along with their
masks, indicating the segmented points of each instance.

2. To the best of our knowledge, this is the first study which both
detects and segments tooth instances in IOS data by a deep
learning model.

3. We conduct an extensive experimental evaluation and show
that the proposed model significantly outperforms state-of-
the-art in IOS segmentation.

The remainder of this paper starts with a detailed description of
the individual processing modules of our proposed model in Sec-
tion 3. Afterwards, the performed experiments and results are pre-
sented in Section 4. Section 5 provides discussions and conclusions.
3. Proposed method

Deep learning models for 3D point cloud analysis computation-
ally differ from the ConvNet-based models, since they are applied
on non-grid data (unstructured samples). However, at a high level,
our proposed Mask-MCNet model is similar to ConvNet-based
Mask R-CNN [22] as it includes three main parts: the backbone
network, Region Proposal Network (RPN), and three branches of
predictor networks for detection, localization by fine-tuning, and
mask generation (see Fig. 1). Each part is explained in detail below.

3.1. Backbone network

The backbone is a deep network based on the Multi-layer Per-
ceptron (MLP) architecture, which is applied on the entire or
cropped (depending on hardware limitations) point cloud and acts
as a feature extractor. Every input patch includes n points (varying
across patches), where each point is represented by its ðx; y; zÞ 3D
coordinates and might have other attributes such as color or a nor-
mal vector. A point cloud does not explicitly convey the informa-
tion from neighbouring points. Therefore, in order to aggregate
over local neighborhoods, most existing methods augment the
input point cloud with the surface normal vectors or resort to a
neighbor searching mechanism (e.g., KNN [23] or ball query
[24]). In Section 4, we evaluate the impact of augmenting the input
with the normal vectors. Hence, in case of using normal vectors,
the input to the backbone model is an n� 6 matrix. The output
of the backbone model is a high-dimensional feature vector per
given input point (e.g. a matrix of n� 256) which contains rich
geometrical information around each point. In this study, we
choose to employ a PointCNN [24] for its fine-detail processing
capacity and its small model size [24,2]. To demonstrate the gener-
ality of our approach, we instantiate the proposed Mask-MCNet
with two different backbone architectures. In an ablation study,
we also report using PointNet [25] as an alternative choice for a
backbone network.

3.2. Region Proposal Network (RPN)

Since the points in the point cloud are distributed solely on the
surface of objects, the computed features from the backbone net-
work only contain local geometrical representations on a manifold



Fig. 1. Block diagram of the Mask-MCNet (training mode).
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in 3D space. However, for accurate localization of a 3D bounding
box, encompassing an object, the network is required to be aware
of several parts (or sides) of each object. Such awareness leads to a
reliable learning and consequently an accurate prediction of the
center and size of each bounding box. Hence, voxelization of the
data and employing a 3D ConvNet on the obtained volumetric data
is a common approach. However, the shortcomings of such an
approach have been mentioned already. Therefore, as an alterna-
tive method, for distributing and transferring the computed geo-
metrical information from the surface of objects to the entire 3D
space (e.g. into void space inside of the objects as well as the cen-
troid of a 3D bounding box), we employ a Monte Carlo ConvNet
(MCCNet) [26]. The MCCNet is a multi-layer network of which each
layer consists of several MLP-based sub-networks. Each sub-
network consists of a two hidden layers MLP whose functions
resemble a set of convolution kernels. Each sub-network (called
kernel) receives a set of features at the location of points in its
spherical receptive field and computes an output feature vector at
the center of its receptive field. Similar to standard convolution
kernel, by positioning the kernel on any points in the point cloud
the kernel maps the input feature set into that point. However,
in contrast to a standard convolution, such a mapping is performed
by applying the transfer function of an MLP-based kernel. In order
elaborate in the motivation behind employing the MCCNet in the
framework of our proposed Mask-MCNet, in the following, we will
briefly explain the principle of Monte Carlo convolution in the
work of Hermosilla et al. [26].
Fig. 2. (left) Mapping the backbone features from the location of setS (point cloud)
into point x from a 3D grid domain G by a learning kernel g; (right) estimating the
PDF at each point yi by kernel density estimation h (see Eq. (3)). The spherical
receptive field of g is shown in a green color. In an ablation test, the Monte Carlo
convolution is replaced with a max-pooling operator (i.e. the mapped feature vector
on point x is f x ¼ maxðyiÞ where. i 2 NðxÞ).
3.2.1. Monte Carlo Convolution Network (MCCNet)
Let’s assume that the feature function f defined on the surface of

an object which we have a set S of discrete samples yi 2 S (our
data points). The f represents a mapping between the 3D position
of each point and its representation in the embedded feature space
(f : R3 # RN). In our particular case, N ¼ 256 which is the dimen-
sion of the backbone features. By defining a convolution kernel g
with a spherical receptive field (centered at 0 with radius equal
to 1), the discreet convolution operator can be written as:

ðf � gÞðxÞ ¼
X

i2NðxÞ
f ðyiÞ � gðx� yiÞ; ð1Þ

where NðxÞ is the set of neighborhood indices in the receptive field
of g which is centered around point x. The convolution kernel g was
suggested to be implemented by a 2-hidden layer MLP network
[26]. Since the defined discrete convolution in Eq. (1) assumes that
the sampled points are distributed uniformly on f, Hermosilla et al.
[26] suggested to estimate and incorporate the probability density
function (PDF) in the field of view of g to address a valid approxima-
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tion of the convolution operator when the points are distributed
non-uniformly on f. Therefore, Eq. (1) is modified to be written as:

ðf � gÞðxÞ � 1
jNðxÞj

X
i2NðxÞ

f ðyiÞ � gðx�yi
r Þ

pðyijxÞ
; ð2Þ

where r is the distance of each point yi in the receptive field of g
from its center x. Here, pðyijxÞ is the PDF at point yi. Since the PDF
is unknown, the author proposed using a kernel density estimation
h for estimating the PDF at the location of yi as below:

pðyijxÞ �
1

jNðxÞj � r3

X
k2NðxÞ

Y3
d¼1

h
yi;d � yk;d

r

� �( )
; ð3Þ

where h is the density estimation kernel, a non-negative function of
which the integral equals 1 (e.g. a Gaussian) and r is its bandwidth
which determining the smoothness of estimation (e.g. r ¼ :25r). It
is worth mentioning that the derivatives of Eq. 2 with respect to
the parameters of network g and employing the back-propagation
technique for training the MCCNet are straightforward. For more
information regarding the mechanism of MCCNet, we refer to the
original paper [26].

As mentioned earlier, we aim to transfer (i.e. map) and then dis-
tribute the extracted backbone features at the location of samples
in the setS into the entire 3D space at the location of nodes of a 3D
grid (G). The domain G spans the whole 3D space and is bounded
by the bounding box of the input scan. Fig. 2 illustrates such a
mapping between S and G. For performing such a mapping, we
proposed using a set of Monte Carlo convolution kernels because
of two important properties: (1) its capability of computing the
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convolution on an arbitrary output point (x) within the kernel’s
receptive field, regardless of its presence within the set of input
points (S); (2) its capability of handling the non-uniform distribu-
tion of points when computing the mapping. The first property
makes it possible to transfer the computed backbone features on
an arbitrary new domain such as the node of the regular 3D grid
G, while the second property facilitates processing of a non-
uniform distribution of points on the surface of object.

By aggregating the features of surface points on a regular 3D
grid, only the nodes close to the surface will have a valid feature
vector. The nodes near the object center are likely to have no fea-
ture vector at all (empty space). As a result, aggregating the shape
context in the vicinity of object centers creates difficulties. Simply
increasing the receptive field does not solve the problem because
as the network captures a larger context, it also causes more inclu-
sion of nearby objects and clutter. Hence,after mapping the fea-
tures into domain G through the set of convolutional kernels (g’s)
in the first layer of MCCNet, the geometrical information is passed
on and further processed in the deeper layer of MCCNet and is dis-
tributed to the neighbour nodes in domain G based on the prede-
fined field of view of kernels in the hidden layers of MCCNet.
Applying the MCCNet on the output of the backbone (e.g. n� 256
matrix), a high-dimensional feature vector (e.g. 256-dimensional
vector) at the location of each node of the 3D grid domain is com-
puted. By assuming m nodes for domain G, the network returns in
total a feature matrix of size m� 256.
3.2.2. Object proposal (anchor) and Triangular Interpolation
To generate object proposals (i.e. 3D cubes encompassing

teeth), we follow the idea of using anchors which is adopted from
Faster-RCNN [27], but modified to a 3D space. Here, each 3D anchor
is indicated by a cube, which is represented with its central posi-
tion ½xc; yc; zc� and its size ½w; d;h�. The orientation of 3D boxes is
ignored in our modeling approach. This is because some of the
tooth crowns (e.g. premolars teeth) have a symmetric and semi-
cylindrical shape. Considering the orientation for fitting a 3D box
imposes a high degree of uncertainty to the learning module and
contributes little towards point segmentation, which is the main
goal of processing an intra-oral scan. Fig. 3 visualizes examples
of such anchors with different sizes and aspect ratios that are local-
ized at different positions in 3D space. Making no assumptions
regarding the possible positions of objects (which leads to a more
generic approach), the centers of the anchors should be located on
the nodes of a regular 3D grid which is domain G of which the
MCCNet computes the geometrical information at its node. We will
discuss the spatial resolution of grid G in a later section.

Since the 3D tooth size varies along the dental arch and
between different subjects, we use multi-sized (k > 1) anchors
which are centered around each node of G. Since each node on G
Fig. 3. Example of typical 3D anchors that are used for tooth localization. The
ground truth (colored in blue) has 3D IoU scores equal to 0.35, 0.42 and 0.60 with
red, yellow and green anchors, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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indicates the center of one (k ¼ 1) or multi-sized (k > 1) anchor
(s), the total amount of anchors is k�m. For the teeth segmenta-
tion problem, by considering various sizes of teeth (incisor and
molar teeth), we position 4 different anchors (2 different sizes
and 2 different aspect ratios).

Generally the idea of using anchors is to change the problem of
object localization into the anchor classification. To do so, the
anchor which has a high overlap with an object should be classified
as positive class, otherwise the anchor should be classified as neg-
ative class. Anchor classification and, later on, fine-tuning the posi-
tion and size of positive anchors to precisely fit the 3D bounding
box of the object, requires a fix-length feature vector to be
extracted from variable-sized anchors. Here, we use an idea similar
to ROI alignment, which was introduced in Mask R-CNN [22] but in
a 3D space of point cloud data. We re-sample a fixed number of
points inside each anchor by applying Triangular interpolation by
finding a set of three nearest neighbour nodes of the G and weight-
ing their feature vectors based on their distance to the new node in
3D space. Fig. 4 shows an example of performing ROI alignment for
an anchor and the triangular interpolation. In our experiment, we
use a 3D grid of s� s� s nodes (e.g. s ¼ 5) for interpolating the fea-
tures inside each anchor.
3.3. Predictor networks

The predictor networks consist of three parallel branches for de-
tection, localization by fine-tuning, and mask generation. The detec-
tion and localization branches both consist of a fully-connected
MLP network that receives the interpolated feature set inside each
anchor and performs a regression task. The detection branch aims
to predict the IoU score of each anchor (in the unity interval),
which indicates their maximum overlap with any object. Later,
by applying a threshold on the predicted IoU scores, the anchors
are classified into positive and negative classes. The assigned class
indicates if an anchor acceptably encompasses an object instance
or not (in total, k�m anchors). Fig. 5 shows two examples of input
3D patches and their overlaid positive detected anchors.

The localization branch aims to predict the adjustment values of
the location and size of each positive anchor to fit tightly to the
true bounding box of the corresponding object. Since the 3D posi-
tion of each anchor has been encoded by its centroid and size, the
localization branch aims to predict 6 values for each positive
anchor at its output. Instead of estimating the absolute values of
such parameters directly, the network only predicts the difference
(i.e. residual vectors) between the center and size of the anchor
with the center and size of the corresponding object. Learning such
Fig. 4. Example of 3D ROI alignment. By applying the triangular interpolation in
domain G (gray nodes), a set of features is computed at the locations of red nodes
(with 53 nodes) on a grid inside the red anchor. Hence, a fix-length feature set is
assigned to the anchor. Here, the blue box is the ground truth and the orange nodes
are examples of using three nearest neighbor nodes of G to the green node for
interpolating the feature vector on the green node. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)



Fig. 5. Examples of positive detections for two 3D patches.
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residual vectors in the form of difference values is easier and
imposes less complexity to the learning model because its compu-
tation is performed locally in a canonical coordinate system. Since
the detection and localization branches work in parallel, the fea-
ture matrix which is supplied to these two branches has a size of
k�m� s3 elements. As mentioned earlier, in the training phase,
an anchor is labeled positive if it has a high IoU score with any sin-
gle tooth instance above a threshold (e.g. 0.4) and it is labeled neg-
ative if the IoU to be lower than a certain threshold (e.g. 0.2). Since
the number of positive and negative anchors are highly imced,
about 50% of each training batch is selected from the positive
and 50% from the negative anchors. The marginal anchors
(0:2 < IoU < 0:4) are not utilized when training the model.

The mask-generation branch aims to segment the points that
are located inside the 3D bounding box of each positive anchor.
The outcome of the mask generator has the form of a binary mask
that indicates whether each point inside the bounding box belongs
to the corresponding tooth instance or not. To perform such a bin-
ary classification, the points inside a positive anchor along with
their features from the backbone network are supplied to the
mask-generation branch. Since the number of points in such a clas-
sification is highly imbalanced, we trained the mask generation
branch on points sampled equally from both classes. In our archi-
tecture, the mask generator has similar computational layers to the
backbone architecture, but it consists of only three layers. Fig. 6
shows the details of Mask-MCNet architecture.

3.4. Loss function

Mask-MCNet performs a multi-task learning, including the esti-
mation of 3D bounding-box overlap (i.e. IoU score), center and size
offset estimation, and mask generation. To perform these, the loss
function of the model consists of an equal contribution of three
terms. The first term (Ldet) is a mean-squared error for estimating
the IoU scores of each anchor at the output of the detection branch.
The second term (Lloc) is also a mean-squared error at the linear
output layer of the localization branch. Finally, the third term
(Lmask) is a binary cross-entropy loss for classification of all points
in each positive anchor at the output softmax layer of the mask
branch. The localization and mask losses are involved only if the
examined anchor is labeled positive. Thus, the total loss function
can be written as:

Ltotal ¼ L
fp;ng
det þL

fpg
loc þL

fpg
mask; ð4Þ

where the superscript fp;ng indicates that the term is calculated for
both positive and negative anchors in the training batch.

3.5. Implementation details

3.5.1. Training
of the entire Mask-MCNet model is done end-to-end by using

gradient descent optimization and the Adam learning adaptation
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technique for 1,000 epochs with a batch size of 32 (equally bal-
anced between positive and negative anchors). The pre-
processing of the input intra-oral scan only consists of normalizing
the whole point cloud to have zero mean and unit variance. The
input to the Mask-MCNet is a randomly cropped patch of the point
cloud, which usually contains 2–4 tooth instances. As explained,
the centers of the anchors are positioned on a regular 3D grid with
spatial resolution of 0.03 in a normalized coordinate system. As to
impose sufficient overlap between anchors and both small and
large objects (e.g. incisor and molar teeth, respectively), two types
(k ¼ 2) of anchors are employed (with a size of [0.3, 0.3, 0.2] and
[0.15, 0.15, 0.2]). For computational efficiency, reducing the num-
ber of anchors is desirable. Such a reduction can be considered in
two ways. Firstly, by choosing a minimal number of types of 3D
anchors that differ by their aspect ratios. This minimal number of
types depends on the variation of object (tooth) sizes. Hence, the
box sizes are adapted to the tooth instance sizes. Secondly, by
reducing the number of nodes which are the central position of
the anchors, the total number of anchors required to be examined
by the model for the presence of a tooth, are reduced.

For the sake of obtaining a high recall in tooth detection, the
resolution of grid G cannot be reduced too much. Instead, we can
remove the nodes that are very unlikely to be close to the center
of a tooth. To do so, we remove nodes of the grid, based on their
distance to the closest point in the point cloud. Hence, the nodes
and consequently the anchors that have a distance higher than a
certain threshold are suppressed. Such a suppression mainly
removes the points in void space, close to the center of the dental
arch and decreases the total computational time of the model.

3.5.2. Inference
When applying the model on all patches (about 5 patches per

jaw) that are extracted from the input point cloud and aggregating
the result, we can perform inference on the whole point cloud in its
original resolution. Since for each tooth, several overlapping detec-
tions are obtained, we need to aggregate the detections to generate
exactly one detection per tooth. Furthermore, handling the over-
lapping patches also requires using such a aggregation step. Since
each detection has a predicted IoU score, we can use a non-
maximum suppression algorithm, which is a common practice in
object detector models. However, to compensate for the effect of
false positive detection, instead of using a simple non-maximum
suppression, we employ the DBSCAN clustering algorithm to group
the detected 3D bounding boxes, based on their centroid position
and their size. Such a clustering is preferred because it is able to
detect outliers (i.e. false positive detections). Fig. 7 shows an exam-
ple of a clustering result for a test intra-oral scan.

Recursive regression: As explained earlier, the regression branch
aims to predict the offset values of centroid and size of each posi-
tive anchor. Since such an inference is based on given interpolated
features inside each anchor, the predicted values for the anchors
that are not highly overlapping with a tooth are more prone to
errors. For compensating the source of such an error and improving



Fig. 6. Mask-MCNet architecture (PointCNN as backbone).

Fig. 7. Clustering of all positive anchors (detections) for assigning only one 3D bounding box to each tooth instance.
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the predicted offset values, in inference mode, we employ a simple
recursive scheme that applies multiple executions of the regressor
on the relocated anchor, according to the last predicted values.
Such a recursive scheme works as a negative feedback in the model.
Applying this mechanism, the predicted offset values are used for
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relocating the bounding box of the anchor and then by re-
applying the triangular interpolation and re-estimating the feature
set at the location of the updated point set (with s3 points), the
model predicts the offset values again. Since in the following iter-
ation, the updated bounding box is more likely closer to the
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bounding box of a tooth, the predicted values will become more
precise. Fig. 8 visualizes the predicted offset values for the positive
anchors for two iterations. As can be observed, in the second iter-
ation, the replacement vectors are more concentrated on the cen-
troid of each tooth instance in the input patch. Fig. 9 shows the
changes of average estimation error (Euclidean distance) of anchor
centroids across several iterations at inference time. The values are
measured for the scans, normalized with zero mean and unit stan-
dard deviation. In our experiments, the regression branch was exe-
cuted for two iterations that slightly improved the 3D box
detection.
Fig. 9. Changes of average estimation error (Euclidean distance) of the anchor
centroids using an iterative regression.
4. Experiments and results

4.1. Data

In this study, we used two datasets which have been collected
from two different types of scanners. The first dataset called Data-
set I, is used for both training and testing the models by using the
cross-validation technique. The second dataset called Dataset II, is
only used for evaluating the robustness of Mask-MCNet across dif-
ferent scanner types.
4.1.1. Dataset I
This dataset consists of 120 optical scans of dentitions from 60

adult subjects, each containing one upper and one lower jaw scan.
The optical scans were recorded from dental impressions by a
3Shape D500 optical desktop scanner (3Shape AS, Copenhagen,
Denmark), which uses stereo-vision cameras and three free-axes
motion system for 3D reconstruction. The scanner has high spatial
accuracy with a tolerance smaller than 20 lm and obtains about
180 k points per scanned jaw on average (varying in a range inter-
val of [100 k, 310 k]). The dataset includes both healthy dentitions
and a variety of abnormalities in dentition among subjects.
4.1.2. Dataset II
This dataset consists of 48 optical scans of 24 adult subjects. The

scans are captured by a 3Shape Trios Move intra-oral scanner that
uses confocal laser scanning microscopy and structured light pro-
jection. As mentioned earlier, this dataset is only used for evaluat-
ing the trained model across different scanner types.

All optical scans were manually annotated by using Meshmixer
3.4 (Autodesk Inc, San Rafael CA, USA) and their respective points
were categorized, according to the FDI standard into one of the
32 classes by a dental professional and reviewed and adjusted by
one dental expert. Annotation of each optical scan took 45 min
on average, which shows that it forms an intensive laborious task
for a human.
Fig. 8. Iterative regression of anchors centroids; (a) input 3D patch; (b) 3D grid domain
anchors; (d) predicted displacement after 2nd iteration.
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4.2. Experimental setup

The performance of the Mask-MCNet in comparison with state-
of-the-art systems is evaluated by fivefold cross-validation. The
average Jaccard Index (also known as mIoU) of all teeth instances
is measured. On top of the measured mIoU, by treating each class
individually as a binary (one-versus-all) segmentation problem
and then by averaging on all measured precision and recall scores,
we report the mean average precision (mAP) and mean average
recall (mAR) for evaluating the multi-class teeth segmentation
performance.

Although the instance segmentation performance is coupled
with the result of 3D bounding box detection in the proposed
Mask-MCNet model, for evaluating the intermediate steps, we also
report the performance of 3D bounding box detection. To do so, as
is common in object detection problems, we measure the average
precision value for recall value of 0 and 1 when the predicted
bounding box overlaps with the ground truth by applying a thresh-
old of 0.25 (which was proposed in [14]) and 0.5 on 3D IoU.
4.3. Main results

We evaluated the proposed Mask-MCNet in comparison with
the competitive models for 3D point cloud semantic segmentation
on Dataset I. The performance of each method was tested by five-
fold cross validation. The obtained results for instance tooth seg-
mentation are shown in Table 1. The results show that the Mask-
MCNet outperforms state-of-the-art models by achieving 0.98
mIoU on the instance tooth segmentation. Fig. 10 visualizes the
(G) and positive detected centroids; (c) predicted displacement vector of positive



Table 1
Results of tooth segmentation on Dataset I by the proposed Mask-MCNet in comparison with state-of-the-art deep learning models. The mean IoU (mIoU), mean average precision
(mAP), mean average recall (mAR), and the execution time are reported.

Method Defined task Metric Exec.time (sec.)*

Semantic Seg. Instance Seg. mIoU mAP mAR

PointNet [25] U – 0.76 0.73 0.65 0.19
PointGrid [28] U – 0.80 0.75 0.70 0.88
MCCNet [26] U – 0.89 0.88 0.84 1.01
PointCNN [24] U – 0.88 0.87 0.83 0.66
PointCNN++ [2] U – 0.94 0.93 0.90 6.86
MASC [18] – U 0.93 0.92 0.89 1.31
VoxelNet [19] – U 0.94 0.94 .91 0.54
PointRCNN [21] – U 0.97 0.96 0.97 0.23
Mask-MCNet (ours) - U 0.98 0.98 0.97 14.6

* NVIDIA Titan-X GPU

Fig. 10. Examples of tooth instance segmentation on test data by Mask-MCNet; (a–c) normal dentition (d–f) subjects with different abnormality in dentition; (g) artifacts in
scanning (h–i) typical missing data; (j–l) failure cases.
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segmentation result for a number of test scans with variable abnor-
mality in dentition and in the scanning artifacts.

The execution time of Mask-MCNet is relatively high because of
two reasons. Firstly, in contrast with compared semantic segmen-
tation models, the Mask-MCNet is able to process the input scans
at their original spatial resolution by using a patch processing tech-
nique. This results in a dense prediction without employing a
down-sampling at the expense of a longer computational time.
Secondly, in our implementation, executing the triangular interpo-
lation on a multi-threading CPU slows the inference. However, the
computation time of Mask-MCNet is still a small fraction of the
time needed by a human expert for annotating of an intra-oral
scan.
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For evaluating the robustness of Mask-MCNet across different
scanner types, the trained model on Dataset I is tested on Dataset
II. The results in Table 2 show only a 1% drop in the mIoU score
which indicates acceptable robustness of the proposed model
across different scanner types.

4.4. Ablation experiments

In ablation experiments, we evaluate multiple basic instantia-
tions, which allow us to demonstrate the robustness of the model
and analyze the effects of core factors in the proposed Mask-
MCNet. We have examined the performance of Mask-MCNet across
different backbone architectures, different surface normal-vector



Table 2
Results of tooth instance detection and segmentation on the Dataset II, in comparison to state-of-the-art.

Model Mask Bounding Box

mIoU mAP mAR mIoU mAP:25 mAP:5

MASC [18] 0.90 0.89 0.88 0.48 0.92 0.78
VoxelNet [19] 0.92 0.92 0.88 0.50 0.90 0.80
PointRCNN [21] 0.95 0.95 0.92 0.52 0.97 0.83
Mask-MCNet 0.97 0.96 0.94 0.53 0.99 0.84
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estimation, coupling mechanisms between backbone and Monte
Carlo network, and the granularity (i.e. spatial resolution) of the
grid domain, where the anchors are distributed.

4.4.1. Backbone architecture
As mentioned earlier, we have chosen PointCNN as the back-

bone network in the framework of the proposed Mask-MCNet
because of its lower number of training parameters, compared
with other deep networks for point cloud analysis. Here, by replac-
ing the PointCNN with PointNet [25] as an alternative choice for
the backbone, the performance of Mask-MCNet in both tooth
instance segmentation and 3D bounding-box detection are mea-
sured. Table 3 shows the performance of Mask-MCNet by employ-
ing each of these two backbones. The results show that the
extracted features from the PointCNN lead to a slightly higher
accuracy in both segmentation and detection tasks. This observa-
tion is in agreement with what we expected because the PointCNN
extracts a richer set of geometrical features by incorporating KNN
points in its representation at v� Conv layers [24].

4.4.2. Data augmentation with local surface geometry
A point cloud does not explicitly convey the information from

neighbouring points. Therefore, in order to aggregate over local
neighborhoods, most existing methods augment the input point
cloud with the surface normal-vectors or resort to a neighbor
searching mechanism [23] or ball query [24]. Since some scanner’s
software additionally exports the surface mesh data, computing
the normal vectors per point (mesh vertices) is trivial. In this case,
a normal vector per query point can be simply computed by aver-
aging over all normal vectors of faces connecting to the point.
However, this approach is prone to noise. An alternative approach,
is to use an approximation method such as an analysis of the local
covariance matrix, which is computed from the neighbors of the
query point. To compute the local covariance matrix, we used all
points within a fixed distance from the center of a sphere on the
query point in the 3D space. This approach is less vulnerable to
the number of points (resolution) than using KNN. The computed
Table 3
Ablation test results on choice of backbone architecture. Mask-level and box-level AP for

Backbone Arch. Mask

mIoU mAP m

PointCNN [24] 0.98 0.98 0
PointNet [25] 0.97 0.97 0

Table 4
Ablation test with/without data augmentation by using local surface geometry. The normal
covariance matrix can be vectorized and used as an attribute for each input point.

Data augmentation Mask

by local surface geometry mIoU mAP

— 0.97 0.97
Mesh surface normal 0.98 0.98
PlanePCA normal [30] 0.98 0.97
Local covariance [29] 0.98 0.98
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local covariance matrix of size 3-by-3 can be either vectorized to
a size of 1-by-9 and directly used as an attribute per point [29]
or can be analyzed by eigenvector analysis (e.g. PCA) [30]. Table 4
shows the impact of using the local surface geometry on teeth
instance detection and segmentation. The results show that adding
neighbour point information can slightly improve the results. Since
the employed PointCNN as the backbone, internally computes the
features on K nearest neighbour points, it may make such an aug-
mentation less effective.

4.4.3. Coupling mechanism
The mechanism of coupling the backbone with the Monte Carlo

network indicates the way that the extracted backbone features at
the location of points in the input point cloud are transferred to the
nodes of the grid domain G. Here, we assume two different cou-
pling mechanisms. In the first approach, as explained earlier, each
MLP-based kernel in the first layer of the MCCNet, maps the back-
bone feature vectors of all points within its receptive field into its
center, where the node of G has been located. Thus, transferring the
geometrical information between these two domains is performed
by a set of learning convolutional kernels. In an alternative
approach, simply a max-pooling operator can aggregate (i.e. pool)
the backbone feature vectors in a predefined spherical receptive
field and assign a single feature vector to a node of G, where it
has been located at the center of its receptive field. For comparing
the performance of these two mechanisms, we kept the radii of
their receptive fields identical. Table 5 shows the performance of
Mask-MCNet in tooth instance segmentation and detection with
these two coupling mechanisms. The results show that employing
the learning kernel has slightly higher performance than max-
pooling for transferring the information between these two spatial
domains.

4.4.4. Granularity of anchor domain
As mentioned earlier, the nodes of grid domain G indicate the

central position of one (k ¼ 1) or multiple anchors (k > 1). The spa-
tial resolution of G affects the performance of tooth detection and
two models are reported.

Bounding Box

AR mIoU mAP:25 mAP:5

.97 0.64 1.0 0.94

.94 0.65 1.0 0.72

vectors are computed based on mesh data or PlanePCA method. Alternatively, the local

Bounding Box

mAR mIoU mAP:25 mAP:5

0.96 0.62 1.0 0.93
0.97 0.64 1.0 0.94
0.97 0.64 1.0 0.94
0.97 0.65 1.0 0.95



Table 5
Ablation test results on type of coupling backbone and Monte Carlo networks. The backbone is PointCNN.

Coupling Mask Bounding Box

mIoU mAP mAR mIoU mAP:25 mAP:5

Max-pooling 0.97 0.96 0.96 0.64 0.99 0.94
MLP Conv. filter 0.98 0.98 0.97 0.71 1.0 0.95

Fig. 11. Impact of granularity of grid domain G on the tooth instance detection and segmentation tasks. The Y-axis denotes the spatial resolution of G in the normalized 3D
space (where the data has a mean of zero and a standard deviation equal to unity); (left) Performance of Mask-MCNet on 3D bounding box detection at 3D IoU thresholds
equal to 0.25 (mAP@.25) and 0.5 (mAP@.25); (right) performance of the model for tooth instance segmentation (blue) and localization (red).
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localization. On one hand, employing a dense high-resolution grid
helps for posing a sufficient number of anchors around each tooth
(especially around small teeth such as incisors). This increases the
chance of positioning a set of highly overlapped anchors with each
tooth and consequently detecting several positive anchors for each
tooth instance. On the other hand, employing a low-resolution
hence sparser grid is more likely to miss some of the teeth, because
the number of detected positive anchors may not be sufficient
enough to form a cluster at a later stage. However, employing a
very high-resolution grid requires the processing of more anchors
and hence a higher computation time. Fig. 11 shows the perfor-
mance of the model, both in detection and segmentation of tooth
instances against changing the granularity of the G domain. The
left plot in Fig. 11 illustrates that the rate of tooth instance detec-
tion (vertical axis) drops when decreasing the spatial resolution of
G (horizontal axis). Since the 3D coordinates of points in the input
point cloud are normalized to have a standard deviation equal to
unity, the unit of spatial resolution is reported here by its normal-
ized value. Fig. 11 (right) plots the mIoU scores as a measure of
tooth instance segmentation performance (i.e. mask generation).
It also plots the mIoU scores between the 3D bounding boxes of
the ground truth and the prediction. Because of a trade-off
between the granularity of G and the computational cost of the
model, in all our experiments, we adjust the grid resolution to be
equal to 0.03 (normalized value).

5. Discussions and conclusions

In this study, we have presented a new end-to-end learning
framework, called Mask-MCNet, for tooth instance segmentation
in a 3D point cloud of intra-oral scan data. Accurate tooth instance
segmentation is an important step towards automated computa-
tional dentistry with many clinical applications in implantology
and orthodontics.

In contrast to alternative deep learning models, the proposed
Mask-MCNet does not employ a voxelization or down-sampling
step for processing the input 3D point cloud. Instead, by first local-
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izing the 3D bounding box of teeth in extracted patches and then
segmenting the points that belong to each tooth instance, the
model is able to process a large point cloud in patches. Hence, a
large point cloud is processed at its native high resolution, thereby
preserving the finely detailed geometrical information, which is
crucial for accurate teeth segmentation.

In the architecture of Mask-MCNet, the Monte Carlo ConvNet
transfers the information from the point cloud where it is spread
over the surface of objects into the entire 3D space (e.g. the void
space inside of objects). This property facilitates the inference on
the center and size of objects (i.e. teeth). Furthermore, the
employed Monte Carlo ConvNet in the Mask-MCNet can handle
processing of non-uniformly distributed samples. This feature
leads to an efficient search of object proposals which is important
for scalability of the method, such that it is applicable for process-
ing intra-oral scan data with large point clouds (more than 180 k
points).

Our experiments have shown that the proposed model achieves
a 98% mIoU on the test data, thereby outperforming the state-of-
the-art networks in tooth instance segmentation. This level of per-
formance is close to the human level and obtained in only a few
seconds of processing time, whereas for a human it would form a
lengthy and labour intensive task.
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