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a b s t r a c t

In this paper, a few models for optical router nodes are considered. The stations (ports)
of such a node try to transmit packets. Successful transmission of a packet of type j at
station i gives a profit γij, but there is also a positive probability that such a packet is
dropped, causing a penalty θij. Consider one fixed cycle (frame), in which each station
is assigned some visit time. The goal is to choose the visit times in such a way that the
revenue is maximized. In our first model there is only one wavelength, and we take the
finiteness of buffers into account. The revenue maximization problem is shown to be
separable concave, thus allowing application of a very efficient algorithm.

In our second model we allow multiple wavelengths. We aim to maximize the
revenue by optimally assigning stations to wavelengths and, for each wavelength, by
optimally choosing the visit times of the allocated stations within the cycle. This gives
rise to a mixed integer linear programming problem (MILP) which is NP-hard. To
solve this problem fast and efficiently we provide a three-step heuristic. It consists of
(i) solving a separable concave optimization problem, then (ii) allocating the stations to
wavelengths using a simple bin packing algorithm, and finally (iii) solving another set of
separable concave optimization problems. We present numerical results to investigate
the effectiveness of the heuristic and the advantages of having multiple wavelengths.
Finally, some model variants are briefly discussed.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, optical fibers have emerged as the dominant transport medium in communication networks,
because they offer major advantages over copper cables: huge bandwidth, extremely low drop probabilities and an extra
dimension, viz., a choice of wavelengths (wavelength division multiplexing). Multiple wavelengths are to be used in order
to enable the packet routing at various planes in the network (each at a specific wavelength). By including wavelength
conversion, packets can be transferred between these planes, and thus congestion points can be circumvented. To handle
packets at the Internet Protocol (IP) layer would imply lots of packet conversions from optical to electronic, after which
the IP processing is done in the electrical domain, followed by a conversion back to optical. These Optical/Electrical/Optical
(OEO) conversions introduce relatively significant time delays. All-optical routing in the nodes, as proposed and studied in
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Fig. 1. Buffering packets in an optical FDL.

this paper, hence is valuable from the viewpoint of minimizing latency. In addition, avoiding this OEO conversion reduces
the energy consumption in the network.

Future optical networks will probably need Optical Burst Switching (OBS) or Optical Packet Switching (OPS). The most
used method to deal with contention in such optical networks is a combined use of wavelength converters and some type
of optical buffering. However, the above-mentioned switching techniques offer substantial challenges, in particular w.r.t.
buffering [1]; in fact, there have been proposals for optical routing and optical switching without the need for buffering
(cf. [2–5]). Photons cannot be stored easily, and hence buffering of optical packets is more complicated than buffering
in conventional communication systems. When photons need to be buffered, they are sent into a fiber delay line (FDL),
which thus provides a small delay to the photons without displacing or losing them [6]. Packets can be inserted into and
extracted from the FDLs by means of a cross/bar switch, cf. Fig. 1. If after the completion of such a loop the photon still
cannot be transmitted, then it could again be sent into the FDL, or be considered as dropped. Such optical nodes are to
be used in an all-optical packet-routing network, having multiple hops. See [7] for a discussion of stochastic modeling of
optical buffers, and [8] for recent work on scheduling algorithms for situations with both optical buffers and wavelength
converters.

The fact that photons/packets can be dropped naturally gives rise to an optimization problem. We allow several packet
types because there can be several types of data at each port. We may subsequently assume that successful transmission
of a packet of some type j at station (= port) i of the router node gives a profit γij, but that there is also a positive
probability that such a packet is dropped, causing a penalty θij. The packet drop probabilities depend on the amount of
time a server (wavelength) is available for transmission of packets from station i. Hence one would like to determine how
much time per cycle (= a predetermined frame time of fixed length) a station is allowed to transmit packets, using one
of the available wavelengths.

In [9] we studied such an optimization problem, for the case of a single wavelength. We modeled a single-wavelength
optical routing node as a queueing system with a single server (the wavelength) and N stations — the N ports of the
routing node. We assumed that each successful transmission of a packet brings a certain profit. Our aim in [9] was to
maximize the router performance by maximizing that profit. As a communication system typically works in frame time,
we demanded that the time it takes the server to complete one cycle of the N stations is a given constant C . We then
wanted to assign fixed amounts of time V1, . . . , VN to the visit periods (also called service windows) of the stations, such
that

∑N
i=1 Vi = C−

∑N
i=1 Si, where Si is the time to switch to station i ∈ {1, 2, . . . ,N}. We introduced the probability pi(Vi)

that a packet in a retrial loop of station i (representing an FDL) retries during visit period Vi, and the probability qi(Vi) that
a packet is dropped when it fails to retry during Vi. Under reasonable assumptions on those retry and drop probabilities,
the revenue optimization problem in [9] was shown to be a separable concave optimization problem — a well-studied
type of optimization problem that allows for an efficient and insightful algorithm (RANK; cf. [10]) that yields the optimal
solution. Those assumptions are that pi(·) are increasing and concave, and qi(·) are decreasing and convex, and that the
probability ri(·) := pi(·) + qi(·) − pi(·)qi(·), that a packet in a retrial loop of station i leaves the system, is increasing.

The present paper considers a number of variants and extensions of the model of [9]. Firstly, in Section 2, we add
the feature of finite buffers to the model of [9]. Optical buffering is one of the most severe bottlenecks in optical
routing/switching, so considering finite buffers is quite relevant. Recirculating buffers, such as fiber loops, are inherently
finite buffers; there cannot be more data buffered than the amount of data symbols which fits in the circumference of the
fiber loop. We suggest an approximation for the drop probabilities of packets at the various stations. This approximation
is not only very accurate, but also again gives rise to a separable concave revenue optimization problem, which can be
solved by the RANK algorithm in a straightforward way.

Secondly, in Section 3, see also [11], we extend the model of [9] to the case of multiple wavelengths, thus doing justice to
one of the key features offered by optical networking. Our goals in that section are (i) to formulate and solve the revenue
optimization problem for an optical routing node with multiple wavelengths, and (ii) to investigate the advantage offered
by having multiple wavelengths. It will turn out that the advantage, in terms of revenues, is very significant (in particular,
going from one to two wavelengths). Solving the revenue optimization problem for multiple wavelengths is an NP-hard
problem, and therefore we develop a heuristic; this heuristic is shown to work very well. Our numerical results give
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insight into the sensitivity of various parameters and modeling assumptions. We restrict ourselves in Section 3 to the
case of infinite buffers, because we prefer to focus on the aspect of multiple wavelengths without also having to add an
approximation that allows us to handle finite buffers.

In Section 3.4 we briefly consider a variant of the multiple wavelength model, in which we now allow a station to be
allocated to two adjacent wavelengths instead of assuming that each station must be allocated to exactly one wavelength.

Thirdly, in Section 4, we reflect upon one essential assumption made in [9,11] as well as in the first sections of the
present paper, viz., that service times are negligible. Given that the aggregated line rate in a fiber network is typically
amply exceeding the input data rates in the nodes, the assumption of negligible service times is quite realistic for line
loads which are not so high that the line operates near congestion. Still, we believe it is interesting to extend the approach
of [9,11] and the present paper to allow for nonnegligible service times. In Section 4 we suggest a simple approximation
for the case of a single wavelength and infinite buffers (the setting of [9]) which allows one to solve a separable (but not
necessarily concave) revenue maximization problem.

Section 5 contains conclusions and suggestions for further research.

2. Finite buffers

In this section we consider a single optical routing node with N stations which have finite buffers. We present a model
description in Section 2.1, propose an approximation for the packet drop probabilities at the various stations in Section 2.2,
consider the ensuing revenue maximization problem in Section 2.3, and present some numerical results in Section 2.4.

2.1. Model description

We model an optical routing node with N ports to route packets, and retrial loops to store packets. The representation
we propose in this section is a single server polling model, i.e., a queueing model with a single server which cyclically
visits all N queues. Customers, i.e., packets, arrive at queues 1, . . . ,N according to independent Poisson processes with
rates λ1, . . . , λN . The server visits queue i for a fixed time Vi, i = 1, . . . ,N , regardless of the numbers of customers present
at the queues. After a visit to queue i, it switches to queue i + 1 mod N , which requires a switchover time Si+1 mod N . A
cycle along all N queues hence takes

C := S1 + V1 + · · · + SN + VN .

Such a fixed cycle time corresponds to the fixed frame time in which these communication systems often operate.
The dynamics at queue i, i = 1, . . . ,N , are as follows. If a packet arrives at queue i during a visit period Vi, then it

is served instantaneously, with zero service time (see Section 4 for a relaxation of the latter assumption). Otherwise, the
packet is placed in a buffer which can hold Bi < ∞ packets. If the buffer is full upon arrival of a packet, that packet
is dropped (lost). Finally, when the server returns to queue i, all packets in the buffer independently retry (which here
amounts to instantaneously receiving service) with probability pi(Vi), which we for now allow to depend on Vi, and stay
in the buffer till the next visit to queue i with probability 1 − pi(Vi).

We assume that each successful transmission (service) at queue i yields a profit γi, whereas each dropped packet at
queue i results in a penalty/cost θi. Of course one could capture profits and costs in one parameter, but we prefer to make
the profits and penalties separately visible.

Let qi(Vi) denote the probability that an arbitrary packet arriving at queue i is dropped, i = 1, . . . ,N . Here, qi(Vi) is not
an exogenous quantity, but it is determined later on and depends on the choice of the visit period. The net mean revenue
per time unit at queue i then is given by

Ri(Vi) = γiλi(1 − qi(Vi)) − θiλiqi(Vi), i = 1, . . . ,N. (2.1)

Our goal is to maximize the net total mean revenue per time unit,

R(V1, . . . , VN ) :=

N∑
i=1

Ri(Vi), (2.2)

by suitably choosing the lengths V1, . . . , VN of the visit periods, under the constraints that all Vi ≥ 0 and
∑N

i=1 Vi =

C −
∑N

i=1 Si. In the next subsection we turn to the determination of those drop probabilities.

2.2. An approximation for the packet drop probabilities

For a given visit period length Vi, there is no interaction between queue i and the other queues, and hence the drop
probability qi(Vi) only depends on the parameters involving queue i. Therefore we can determine qi(Vi) by just analyzing
the queue behavior at queue i. The only feature that connects the queues is the choice of the Vi, with its constraint∑N

i=1 Vi = C −
∑N

i=1 Si.
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In the remainder of this subsection we omit the subscript i, focussing on some arbitrary queue with arrival rate λ, visit
period V , retry probability p at the start of each visit, and drop probability q(V ). Obviously,

q(V ) =
C − V

C
π, (2.3)

where

π = P(packet is dropped|arrival in non − serving period). (2.4)

π clearly is the fraction of arrivals in a non-serving period that finds the buffer full. Denoting the number of packets in
the buffer at the start of a non-serving period by X and the number of arrivals during that non-serving period by A, we
have, with (y)+ = max(0, y):

π =
E[(X + A − B)+]

E[A]
. (2.5)

A is Poisson distributed with mean (C − V )λ. It is also not very difficult to determine E[(X + A − B)+], by observing the
following. Let Xn denote the number of packets at the start of the nth non-serving period, An the number of arrivals
in that period and Yn the number of packets at the end of that period, n = 1, 2, . . .. Then {Xn, n = 1, 2, . . .} is an
irreducible, aperiodic, positive recurrent Markov chain, which is specified by the recursion (with Bin(n, p) denoting a
binomially distributed random variable with parameters n and p):

Xn = Bin(Yn−1, 1 − p), Yn = min(Xn + An, B). (2.6)

It is easy to determine the steady-state distribution P(X = j) for this Markov chain, and thus to determine π and q(V ).
However, for the purpose of performing revenue maximization, we would like to have a relatively simple explicit formula
for q(V ). Below we propose such a formula. In the next subsection we also show that it has the pleasing property of being
convex in V at least for the case p(V ) ≡ p; that will allow us to use the RANK algorithm in maximizing mean total revenue
as its expression becomes a separable, concave function of V1, . . . , VN .

Starting-point of our approximation is to remove the assumption that B is finite. When B is infinite, the steady-state
number of customers at the start of a visit period, now denoted by X̂ to indicate that B is no longer assumed to be finite,
satisfies the recursion, cf. (2.6),

X̂ d
= Bin(X̂ + A, 1 − p(V )). (2.7)

Remember that A is Poisson distributed with mean (C − V )λ. Taking generating functions, or using Poisson properties
regarding summation and thinning, it is easily seen that X̂ , too, is Poisson distributed, with E[X̂] = (C−V )λ 1−p(V )

p(V ) . It should
be noted that, when approximating π , cf. (2.5), we make π too large by replacing X by X̂ . We propose to compensate for
this by writing

π ≈ C0
E[(X̂ + A − B)+]

E[A]
. (2.8)

Here C0 is a multiplicative constant, which we want to choose such that π is exact for B = 0 (notice that π is also exact
for B = ∞, since then π = 0). Obviously, we then need to take C0 =

E[A]

E[X̂+A]
, resulting in

π ≈
E[(X̂ + A − B)+]

E[X̂ + A]
. (2.9)

From (2.3) and (2.9) we obtain the approximation

q(V ) ≈
C − V

C
E[(X̂ + A − B)+]

E[X̂ + A]
. (2.10)

We now provide an expression for E[(X̂+A−B)+]. Introducing Z := X̂+A, with X̂ and A being independent, it immediately
follows that Z is Poisson distributed with mean (C − V ) λ

p(V ) . Now

E[(Z − B)+] =

∞∑
j=B+1

(j − B)P(Z = j)

= −BP(Z > B) +

∞∑
j=B+1

je−(C−V )λ/p(V ) ((C − V )λ/p(V ))j

j!

= −BP(Z > B) + (C − V )
λ

p(V )
P(Z ≥ B). (2.11)
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Combining (2.10) and (2.11), and using E[X̂ + A] = (C − V ) λ
p(V ) , gives

q(V ) ≈
C − V

C
P(Z ≥ B) −

Bp(V )
λC

P(Z > B). (2.12)

Sijtsma in his bachelor thesis [12] has tested this approximation for a wide range of B values, concluding that the
approximation is accurate over the whole range, the largest errors occurring roughly when B equals E[Z].

2.3. Revenue maximization

As indicated at the end of Section 2.1, our goal in this section is to choose V1, . . . , VN such that the net mean revenue
is maximized while satisfying some constraints on the Vi, i = 1, . . . ,N . Hence, cf. (2.1) and (2.2), we are faced with the
following optimization problem:

Max
N∑
i=1

[γiλi(1 − qi(Vi)) − θiλiqi(Vi)], (2.13)

subject to

V1, . . . , VN ≥ 0,
N∑
i=1

Vi = C −

N∑
i=1

Si. (2.14)

Since Vi only appears in the Ri(Vi) part of the revenue function, this is a separable optimization problem. We now show
that in the case pi(Vi) ≡ pi it is a separable concave optimization problem; for this we need to show that Ri(Vi) is a
concave function of Vi, and hence that qi(Vi) is convex. Once we have established this, we have shown that our revenue
maximization problem falls in a class of optimization problems which are solved in a straightforward way by the RANK
algorithm, cf. [10]. Again suppressing the subscript i, and using (2.12), we can write:

dq(V )
dV

= −
1
C
P(Z ≥ B) +

C − V
C

d
dV

P(Z ≥ B) −
Bp
λC

d
dV

P(Z > B). (2.15)

The last two terms cancel, as can be seen in the following way: For B = 0, 1, . . .,

d
dV

P(Z > B) =

∞∑
j=B+1

d
dV

e−(C−V )λ/p ((C − V )λ/p)j

j!

= −
λ

p
e−(C−V )λ/p ((C − V )λ/p)B

B!
= −

λ

p
P(Z = B). (2.16)

Similarly for d
dV P(Z ≥ B); and finally use that P(Z = B) =

(C−V )λ
Bp P(Z = B − 1) for B = 1, 2, . . ..

Hence we conclude that the derivative of q(V ) w.r.t. V equals −
1
C P(Z ≥ B), which is negative. Furthermore, the

derivative is increasing in V as long as V is increasing towards C , as follows from (2.16). This shows that q(V ) is a convex
function of V , and hence that R(V ) is concave.

2.4. Numerical results

In this subsection we use the RANK algorithm to present some numerical results for the case of three queues/stations;
see Remark 1 below for a global description of RANK. Our baseline choice for the parameters is: C = 10, Si = 1/3, λi = 1,
Bi = 10, pi = 1/2, γi = 1 and θi = 1 for i = 1, 2, 3. In the three tables of this subsection we vary one parameter
(successively: λi, pi and Bi), while keeping all other parameters symmetric and as just specified.

The numerical results for the visit lengths V1, V2, V3 suggest that the fraction of time spent at a queue i decreases with
pi (see Table 2) and with Bi (see Table 3), and increases with λi (see Table 1). These results could have been expected.
Indeed, increasing pi would result in i’s buffer emptying more during a visit period Vi. The buffer then has more space
to fill during a non-serving period, so on average it takes longer to fill the buffer. Hence the number of dropped packets
decreases, so a shorter visit period Vi suffices. A similar argument holds when Bi is increased: the buffer again has more
space to fill, and a shorter visit period Vi suffices. The reverse is true when increasing λi. Now more packets arrive at
the buffer, and the time to fill it up decreases. Hence more packets are dropped, so a longer visit period Vi is required to
reduce the number of dropped packets. Also notice that in the numerical results of Table 1, the total revenue increases
when some of the λi’s decrease. This is due to the fact that in that case less packets are dropped and as a consequence
less penalty costs have to be paid.

Remark 1. We give a simple step-by-step guideline to follow the RANK procedure outlined in Section 2.2 of [10]. In
(2.13) we are maximizing

∑N
i=1 Ri(Vi), where the Ri(Vi) are concave increasing functions, and hence R′

i(Vi) are decreasing.
Let CS := C −

∑N
i=1 Si represent the total available time to be divided among the stations.
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Table 1
Results for varying λi .

λ1 λ2 λ3 V1 V2 V3
∑3

i=1 Ri(Vi)

1 1 1 3.000 3.000 3.000 1.732
1 1 0.9 3.564 3.564 1.872 1.769
1 0.9 0.8 4.315 3.214 1.471 1.825
1 0.8 0.7 4.949 2.923 1.127 1.873
1 0.8 0.6 5.347 3.628 0.025 1.919
1 0.8 0.5 5.356 3.644 0.000 1.951

Table 2
Results for varying pi .

p1 p2 p3 V1 V2 V3
∑3

i=1 Ri(Vi)

0.5 0.5 0.5 3.000 3.000 3.000 1.732
0.5 0.5 0.625 3.538 3.538 1.923 1.928
0.5 0.625 0.75 4.400 3.000 1.600 2.255
0.5 0.625 0.875 4.750 3.438 0.813 2.385
0.375 0.625 0.875 5.800 3.000 0.200 2.255
0.25 0.625 0.875 6.857 2.143 0.000 2.098
0.1 1.0 1.0 9.000 0.000 0.000 2.475

Table 3
Results for varying Bi .

B1 B2 B3 V1 V2 V3
∑3

i=1 Ri(Vi)

10 10 10 3.000 3.000 3.000 1.732
10 10 12 3.386 3.386 2.228 1.900
10 12 14 4.096 2.997 1.907 2.203
10 14 16 4.732 2.652 1.616 2.453
8 14 16 5.496 2.283 1.222 2.337
4 14 18 7.339 1.661 0.000 2.213
4 24 25 8.865 0.135 0.000 2.912

1. Calculate all R′

i(0) and sort them in decreasing order, say R′

1(0) ≥ R′

2(0) ≥ · · · ≥ R′

N (0).
2. Allocate CS to the station with largest slope R′

i(0); so here to station 1.
3. Compute R′

1(CS).

− If R′

1(CS) ≥ R′

2(0) then the procedure stops; the optimal strategy is V1 = CS and all other Vi = 0.
− If R′

1(CS) < R′

2(0) then solve for U1 and U2 such that R′

1(U1) = R′

2(U2) and U1 + U2 = CS , i.e., the total time is
divided between the two stations such that if there is any small additional time available it can be given to
either station 1 or station 2, giving the same revenue.

− Now either R′

1(U1) ≥ R′

3(0) or R′

1(U1) < R′

3(0). In the first case, the procedure stops. The optimal strategy
is V1 = U1, V2 = U2 and all other Vi = 0. In the second case, we solve for W1,W2,W3 such that
R′

1(W1) = R′

2(W2) = R′

3(W3) and W1 + W2 + W3 = CS , i.e., the total time is divided between the three
stations such that if there is any small additional time available it can be given to either of the three stations,
giving the same revenue.
And so on.

Remark 2. The choice p(V ) ≡ p may not always be that realistic. In a future study, one could either consider other choices
for p(V ) that still give rise to a separable concave optimization problem, or sacrifice the concavity, thus having to solve a
somewhat more complicated separable optimization problem.

Remark 3. It should be observed that allowing larger buffers amounts to having longer FDL. This implies a cost increase,
which could also be taken into account in the revenue maximization.

3. Multiple wavelengths

In this section we consider an optical routing node with N stations, under the assumption that multiple wavelengths
are available. We present a model description in Section 3.1, consider the revenue maximization problem in Section 3.2,
present some numerical results in Section 3.3, and briefly discuss a variant in which stations may be allocated to two
adjacent wavelengths in Section 3.4.
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Fig. 2. Optical node with multiple wavelengths.

3.1. Model description

Consider a K -wavelength optical routing node with N stations (ports) to route packets and with fiber delay lines (retrial
buffers) to store packets, cf. Fig. 2. We represent it by a queueing model with K servers which visit N queues. We shall
assume that there is a fixed assignment of stations to servers, in which each station is assigned to only one server (how
to do that assignment is part of our optimization problem).

The packets: Packets of type j, j = 1, . . . ,M , arrive at station i, i = 1, . . . ,N , according to independent Poisson
processes with rate λij, for all i, j. If at the time of packet arrival the station is being served (i.e., the station is being
visited by a server = wavelength) then the packet is instantaneously transmitted; else it enters a retrial loop (FDL). We
assume the retrial time to be random, because delay lines of various lengths may be used. If, at the time of retrial, the
station is not in service then the packet again goes into a retrial loop and this process continues.

The servers: The servers go through cycles of fixed length C (the frame time). In each cycle a server visits each of its
assigned stations once, for a fixed period of time Vi for station i. A visit to i is preceded by a deterministic switchover
(setup) time Si of the server. During Vi, there may be two types of arrivals: (i) newly arriving packets, and (ii) packets which
were in a retrial loop; we assume the latter retry during Vi with some probability pi(Vi). In view of the huge available
bandwidth, we assume the server serves all these packets (new arrivals + retrials) instantaneously, i.e., whenever a station
is being served, any packet which arrives at it or retries, is transmitted immediately. Hence for practical purposes the
service times are negligible (see Section 4 for a relaxation of the latter assumption). In this section, unlike the previous
section, we assume that buffers are infinite. However, to take into account that in reality packets may get lost, we assume
the following. At the end of each visit of station i each packet which still resides in a retrial loop of i is dropped with
probability qi(Vi). Hence the probability that a packet in a retrial loop of station i leaves the system, either served during
a visit at station i or dropped after a visit of station i, is ri(Vi) := pi(Vi) + qi(Vi) − pi(Vi)qi(Vi).

Revenue: Every served packet generates a profit and every dropped packet incurs a loss to the system. Our goal is to
assign stations to servers, and subsequently visit times within a frame time C to stations, such that the revenue of the
system is maximized. Assume that:

− a packet of type j served at station i gives a profit γij (depending both on the type of packet and the type of source).
− a packet of type j dropped at station i causes a penalty θij. Indeed, the server has an obligation to meet the contract

it has with each source. If the server fails to meet this contract it incurs a penalty: loss of packets/reputation/further
contracts. One could also view Θi :=

∑
j λijθij as contract costs of the service provider per time unit, and Γi :=∑

j λij(γij + θij) as the maximum revenue that can subsequently be earned back by successfully serving packets.

For K = 1 wavelength (cf. also [9] where that case was studied), the mean earnings per cycle are∑
j

λijγij

[
(C − Vi)

pi(Vi)
ri(Vi)

+ Vi

]
,

and the mean costs per cycle are∑
j

λijθij

[
(C − Vi)(1 −

pi(Vi)
ri(Vi)

)
]

,

yielding the following net revenue for station i per cycle:

Ri(Vi) = Mi(Vi) − CΘi,
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where for all i = 1, . . . ,N ,

Mi(Vi) := Γi

[
(C − Vi)

pi(Vi)
ri(Vi)

+ Vi

]
. (3.1)

Note that Γi is the maximum available revenue that can be gained from station i per time unit. Since the server only
serves a station during its visit period, all the arrivals during this period are served and hence we have the term Γi ∗ Vi.
But the packets which arrive during a non-visit period of a station are eventually served with probability pi(Vi)

ri(Vi)
, and hence

the revenue from this period is given as Γi ∗ (C − Vi) ∗
pi(Vi)
ri(Vi)

. Further, Θi is the cost incurred per time unit by the service

provider to run the service. Choices of Γi and Θi can be varied depending upon the traffic intensity, priorities, and available
resources. These help the service provider to run, expand and sell its services. More details regarding these terms depend
on the type of networks and nodes used, which is outside the scope of this paper. Finally, in [9] it was explained that
since Θi is the fixed cost incurred irrespective of how the resource is distributed, the maximization of

∑
i Mi(Vi) subject

to conditions on Vi is enough to maximize the revenue
∑

i Ri(Vi) of the system subject to conditions on Vi.
Even if there are no explicit profits and costs attached to packet transmissions, the concept of using a revenue function

for performance analysis of an optical switching node may provide us with various useful insights. Firstly, the revenue
function acts as a substitute for the normalized throughput of the system. Hence it provides system owners a methodology
for allocating optimal bandwidths to the various subscribers, and thus for optimizing their service (w.r.t. throughput).
Secondly, the concept of the reward function helps the system to prioritize subscribers; those with higher priorities (higher
time sensitivities) receive a higher reward and thus are assigned more bandwidth. Finally, the penalty function for the
dropped packets forces the system to provide service even to the lowest priority packets, thereby maintaining the fairness
of the system.

In the next subsection we present an algorithm to allocate the stations to different wavelengths such that each
wavelength has a set of stations to serve; subsequently the visit periods are chosen such that the revenue for each
wavelength is maximized.

3.2. Resource allocation

In this subsection we propose a procedure for solving the revenue maximization problem that was globally described
in Section 3.1. For each wavelength k, we have C =

∑
i∈Pk (Si + Vi) where Pk represents the set of all stations served by

wavelength k. Note that if there is only one station being served by a wavelength, then there is no switchover involved.
In that case, Vi = C where i is the only element of Pk. Further we denote the set of stations which are each served by one
complete wavelength as P and the set of stations which are not served by any wavelength as Q.

We now define the optimization problem REVENUE which produces maximum revenue via an optimal allocation of
stations to wavelengths and visit periods to stations. With Mi(Vi) given in Eq. (3.1), and defining xik = 1 if station i is
served by wavelength k, but station i is not the only one being served by it, and 0 otherwise, yik = 1 if station i is the
only station being served by wavelength k, and 0 otherwise, we have:

REVENUE

max
N∑
i=1

Mi(Vi)

subject to
N∑
i=1

[(Si + Vi)xik + Viyik] = C, ∀ k = 1, 2, . . . , K , (3.2)

K∑
k=1

[xik + yik] ≤ 1, ∀ i = 1, 2, . . . ,N, (3.3)

N∑
i=1

xik + N
N∑
i=1

yik ≤ N, ∀ k, (3.4)

xik, yik ∈ {0, 1} and 0 ≤ Vi ≤ C, ∀ i, k. (3.5)

Conditions (3.2) and (3.5) are system properties, and they state that the allocation per wavelength should be equal to its
capacity C and the visit period cannot be negative or more than C . Condition (3.3) states that each station i can only be
served by at most one wavelength. Finally, condition (3.4) states that if for a wavelength k some yik = 1 then no other
station can be served on it.

This problem is a non-linear mixed integer programming problem. Under certain realistic assumptions regarding the
system parameters (see also [9]), we can reduce the objective function of this maximization problem to separable concave
terms; however, the occurrence of the integers xik, yik prevents us from using the RANK algorithm [10] that was used
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in [9]. The so-called PARTITION problem, which is NP-complete [13], is a special case of REVENUE, as will be elucidated
below; hence REVENUE is an NP-hard problem.

The PARTITION problem deals with a finite set of non-negative numbers {q1, q2, . . . , qN} and the question is whether
or not one can split the set into two subsets such that the sum of the numbers in each of the subsets equals 1

2

∑N
j=1 qj.

This problem is related to our problem REVENUE in the special case that K = 2, C =
1
2

∑N
j=1 qj and Si = 0 for all i. If

we choose pi(Vi)
ri(Vi)

= 1 − e−Vi , we have that Mi(Vi) = ΓiC + Γi(Vi − C)e−Vi and hence M ′

i (Vi) = Γie−Vi (1 + C − Vi). Now if

we choose Γi = eqi/(1 + C − qi) we see that M ′

i (qi) = 1, for all i, and hence choosing Vi = qi gives the optimal solution
for the optimization problem max

∑N
i=1 Mi(Vi) subject to

∑N
i=1 Vi ≤ 2C . So, if we solve our problem REVENUE and find

a solution such that
∑N

i=1 Mi(Vi) =
∑N

i=1 Mi(qi), then apparently the answer to the PARTITION problem is positive (and
the solution of REVENUE gives the split in the PARTITION problem). On the other hand, if we find a solution such that∑N

i=1 Mi(Vi) <
∑N

i=1 Mi(qi), then apparently the answer to the PARTITION problem is negative.
Below we propose a heuristic to solve REVENUE. We argue that this heuristic should produce results which are close

to optimal, and we provide numerical results in Section 3.3 to support that claim.
The idea behind our approach is the following. In Step 1 we act as if there is only one wavelength, but a frame time of

length KC instead of C . We use the RANK algorithm to get an optimal choice of the visit periods Ṽi for such a situation.
That should already give a quite good first estimate of the visit periods. In Step 2 we use those Ṽi values to assign stations
to wavelengths. This is done such that each of the K wavelengths gets roughly the same

∑
(Si + Ṽi) — which hence should

be close to C . Finally, in Step 3, with those K allocations we use RANK again, but now for K separate single-wavelength
problems. Below we provide the details of these three steps.

Step 1 We first define the following optimization problem.
ONE

max
∑

i

Mi(Ṽi)

subject to
∑

i

Ṽi = KC −

∑
i

Si,

and 0 ≤ Ṽi ≤ C − Si, ∀i.

The solution of this optimization problem gives us the values of Ṽi required by each station to give the maximum
revenue, subject to the condition that the maximum amount of resource available is KC . The upper bound on Ṽi is included
because a station cannot be served by more than one wavelength. Note that Mi(Ṽi) is the same as given in Eq. (3.1).

We solve the (separable, concave) optimization problem ONE using RANK, and we thus obtain values of Ṽi. Every
station i which has Si + Ṽi = C , is allocated to a single wavelength. These stations belong to the set P and as described
at the start of this section, all stations belonging to this set have their visit periods equal to C . Further, all the stations
with Ṽi = 0 belong to the set Q. These stations will not be allocated to any wavelength, and as mentioned earlier they
will have zero visit period. By renumbering, we may assume that the stations in Q are the highest numbered stations,
immediately preceded by the stations in P. Also assume that the latter N(P) stations (where N(P) denotes the number of
elements in P) are assigned to the N(P) highest numbered wavelengths.

We now turn to our procedure for assigning stations to wavelengths (Step 2) and subsequently determining the exact
visit periods (Step 3).

Step 2 Take the values of Si + Ṽi for the first N − N(P + Q) stations (i.e., those not in P or Q). Sort these values
in descending order, say S1 + Ṽ1 ≥ S2 + Ṽ2 ≥ · · · ≥ SN−N(P+Q) + ṼN−N(P+Q). Then allocate those stations to the first
K − N(P) wavelengths following the so-called Longest Processing Time first (LPT) rule. This amounts to first assigning
stations 1, . . . , K −N(P) to wavelengths 1, . . . , K −N(P); and subsequently assigning each of the remaining stations, one
by one in descending order of their values, to that wavelength for which the sum of the already assigned values is the
smallest. This procedure is continued until all stations have been assigned. For example, in the 4-station, 2-wavelength
case of Table 5, if the values for Ṽi would be as in the fourth row of the table, we would have P empty (no Ṽi = C) and Q
empty (no Ṽi = 0). We then would order the Si+Ṽi from large to small. According to LPT, station 2 (with the highest Si+Ṽi)
was first assigned to wavelength 1 and station 4 to wavelength 2; subsequently station 3 was assigned to wavelength 2
(which had a smaller total assigned value than wavelength 1), and finally station 1 was assigned to wavelength 1.

Remark 4. The idea to use LPT comes from multiprocessor scheduling. Consider a set of N tasks which have to be served
on K parallel servers. The service of a task on a server, once started, cannot be interrupted. In multiprocessor scheduling
the goal often is to minimize the makespan, i.e., the time until all tasks are completed. This is an NP-hard problem. The
makespan minimization problem can be reformulated in the terminology of bin-packing, where it amounts to finding the
smallest common capacity of the bins, sufficient to pack all N pieces. Many heuristics have been developed for solving
the bin-packing or makespan minimization problem; see, e.g., [14]. LPT is a simple and accurate heuristic procedure. It is
intuitively clear that assigning tasks in decreasing order of size should work well when K and N are not too small: because
the smallest tasks are assigned last, it is likely that all makespans are close to each other. See [15] for a probabilistic
analysis of various bin-packing heuristics, and [16] for a probabilistic analysis of LPT list scheduling.
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Table 4
3 station system.
Allocation Visit period Revenue

[1 1 2] [0.48 1.12 2.00] 10.11
[1 2 1] [0.28 2.00 1.32] 9.81
[2 1 1] [2.00 0.61 0.99] 8.65

Table 5
4 station system.
Allocation Visit period Revenue

[0 1 1 2] [0.00 0.61 0.99 2.00] 14.65
[1 2 2 1] [0.14 0.61 0.99 1.46] 14.25
[1 2 1 2] [0.28 0.48 1.32 1.12] 14.03
[1 1 2 2] [0.48 1.12 0.67 0.93] 13.34
[1 1 1 2] [0.00 0.61 0.99 2.00] 14.65
[1 1 2 1] [0.00 0.48 2.00 1.12] 14.22
[1 2 1 1] [0.00 2.00 0.67 0.93] 13.23
[2 1 1 1] [2.00 0.00 0.67 0.93] 11.23

Step 3 Now that we have assigned all stations to a wavelength, we still need to determine the visit periods for those
stations that use wavelengths 1, . . . , K−N(P), because the extended visit periods Si+Ṽi of the stations that are assigned to
a particular wavelength do not exactly sum up to C . For this we solve optimization problem TWO, for k = 1, . . . , K−N(P):

TWO

max
∑
i∈Pk

Mi(Vi)

subject to
∑
i∈Pk

Vi = C −

∑
i∈Pk

Si,

and Vi ≥ 0, ∀i ∈ Pk.

The solution of this optimization problem gives us the values of Vi required by each station allocated to wavelength k,
subject to the maximum amount of resource available at that wavelength. We thus obtain new extended visit periods
Si + Vi for stations 1, . . . ,N − N(P + Q).

Remark 5. If, in Step 2, a station i∗ is the only one being assigned to a wavelength, then we do not run TWO for it but
take Vi∗ = C .

This concludes the description of the heuristic procedure. In the next section we shall investigate its accuracy. Its
computational complexity is low. The optimization problems ONE and TWO are concave separable with linear constraints
and can be solved in polynomial time; and we use ONE once, TWO at most K times. We also use LPT once. Further, we
need to sort the extended visit periods in Step 2 once.

3.3. Numerical examples

In this subsection we present a few numerical examples to illustrate various properties of our system. For all the
examples in this section we assume that the probability of retrial and drop probability for a station i are given by
pi(Vi) = 1 − e−νiVi (corresponding to exponentially distributed retrial times) and qi(Vi) = e−µiVi . Further, the revenue
of a station i is equal to Mi(Vi) as given in Eq. (3.1) (and not Ri(Vi), see above (3.1); hence we have nonnegative revenues).
It should be noticed that these pi(·) and qi(·) are, respectively, increasing concave and decreasing convex functions, while
ri(·) are increasing. Problem ONE featuring in Step 1 now is a separable concave optimization problem.

Example 1. We first consider a toy example with K = 2 wavelengths and either N = 3 or N = 4 stations, for which
all possible assignments allocating all stations to a wavelength are listed. For each station i, the parameters νi and µi are
equal to 0.5. The switchover times Si = 0.2 for each station i and frame time C = 2. Finally, Γi = i, for each station i.
The allocation of stations to different wavelengths is shown, along with the corresponding visit period (obtained by using
TWO) and the revenue obtained by the system. Note that an allocation 0 implies that the station was not allocated to any
wavelength.

In Tables 4 and 5 the values given by our procedure described in the previous section are printed boldface. We observe
that in both cases our procedure gives the best allocation. In Table 4, the allocation [1 1 2] indicates that stations 1 and
2 are assigned to wavelength 1 and station 3 to wavelength 2. The [0.48 1.12 2.00] in this table implies that a frame
for wavelength 1 consists of a visit period 0.48 for station 1, followed by an 0.2 switchover time, an 1.12 visit period for
station 2 and an 0.2 switchover time, while a frame for wavelength 2 is fully occupied by a 2.00 visit period of station 3.
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Table 6
Varying Γi .

Maximum Average Minimum Percent

(i) 475.72 468.89 454.24 1.46
(ii) 475.50 441.36 300.33 0.24

Algorithm 474.51

Γi = 0.5 ∗ i, νi = 0.5, µi = 0.5 and S = 0.2.

Table 7
Varying νi .

Maximum Average Minimum Percent

(i) 387.29 384.58 381.94 9.89
(ii) 387.14 358.36 224.93 0.87

Algorithm 385.65

Γi = 4, νi = 0.05 ∗ i, µi = 0.5 and S = 0.2.

Table 8
Varying µi .

Maximum Average Minimum Percent

(i) 413.19 413.15 412.98 0.00
(ii) 413.19 377.54 231.52 0.00

Algorithm 413.19

Γi = 4, νi = 0.5, µi = 0.05 ∗ i and S = 0.2.

Table 9
Varying Si .

Maximum Average Minimum Percent

(i) 398.81 398.06 395.60 0.00
(ii) 398.79 351.53 181.94 0.00

Algorithm 398.81

Γi = 4, νi = 0.5, µi = 0.5 and S = 0.05 ∗ i.

Table 10
Completely random.

Maximum Average Minimum Percent

(i) 360.85 355.23 338.07 4.56
(ii) 360.83 338.14 231.45 0.62

Algorithm 359.93

Γi ∼ U(0, 8), νi ∼ U(0, 1), µi ∼ U(0, 1), and Si ∼ U(0, 0.4).

Example 2. In this example we compare the results obtained using our procedure with the results obtained by randomly
allocating wavelengths to different stations and then optimizing the visit periods at each wavelength. We show numerical
results for five different cases for a system with N = 16 stations, K = 4 wavelengths and frame time C = 8. In each
of the first four cases, we vary one parameter while keeping all the other constant and in the last case we use random
system parameters; the Γi are uniformly distributed on (0, 8); the νi and µi on (0, 1), and the Si on (0, 0.4).

We take 10000 independent allocations of wavelengths in two different ways, (i) and (ii). In (i) we allocate stations in
such a way that each wavelength gets at most 4 stations, whereas in (ii) there is no restriction on the number of stations
allocated to a wavelength. In both cases we subsequently use TWO. For both (i) and (ii) we show the maximum, the
average and the minimum obtained revenue among the 10 000 cases and the percentage of allocations which generated
a revenue above the value generated using our algorithm.

Tables 6–10 suggest that a random assignment of stations to wavelengths, but still using TWO to subsequently choose
Vi, is much worse than the assignment of our algorithm. However, the symmetric assignment, in which each of the four
wavelengths serves (at most) four out of the 16 stations, and for which the visit times are calculated using TWO, yields
results that are typically quite close to the values obtained using our algorithm (and in a few cases even better).

Example 3. In this example we study which effect increasing the number K of wavelengths has on the revenue of
the system. We take the allocation obtained using the procedure of Section 3.2. For each K we take N = 16 stations,
Si = µi = νi = 0.05 ∗ i, Γi = 0.5 ∗ i and C = 8 (see Table 11).
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Table 11
Varying the number of wavelengths.
K Revenue # of stations served

1 170.54 3
2 322.62 8
3 400.97 11
4 452.88 13
5 480.40 14
6 499.60 14
7 517.23 15
8 525.21 15
16 544.00 16

Table 12
Γi = 0.5 ∗ i, νi = 0.5 and µi = 0.5.
Station Allocation Visit Revenue

1 0 0.00 0.00
2 0 0.00 0.00
3 3 0.93 6.54
4 4 1.22 10.68
5 4 1.45 14.89
6 3 1.67 19.27
7 2 2.16 24.96
8 1 2.25 28.90
9 1 2.34 32.89
10 2 2.46 37.00
11 3 2.20 39.45
12 4 2.23 43.23
13 4 2.30 47.24
14 3 2.40 51.49
15 2 2.78 57.03
16 1 2.81 60.94

Total 29.20 474.51

We observe that increasing the number of wavelengths increases the revenue obtained and also the number of stations
served. However, the marginal increment decreases with an addition of each wavelength. In this example the change from
K = 1 to K = 2 almost doubles the revenue and more than doubles the number of stations served, whereas the change
from K = 7 to K = 8 increases the revenue by less than two percent (and the number of stations served does not change).
In the case of K = 16, the revenue equals C ∗

∑16
i=1 Γi = 544. The system operator can choose an optimal number of

wavelengths so as to maximize its utility. This observation may be of interest in networks where traffic is highly variable
and the cost of running extra resources is high.

Example 4. In this example we consider a system with N = 16 stations, K = 4 wavelengths, frame time C = 8 and
switchover period from each station Si = 0.2, for all i = 1, . . . ,N . We show three different cases, each of which has
one of Γi, νi, and µi different for all stations, the other two parameters being equal for all stations. In these numerical
experiments we study how the procedure described in Section 3.2 allocates resources depending on each factor, and
develop insight into the influence of these factors on the system performance. In Table 12, we mention the wavelength
to which each station is assigned, the visit period each station receives and the revenue each station gives, for the three
cases.

From Table 12 we see that in general Γi > Γj does not imply Vi > Vj, but when i and j are allocated to the same
wavelength this implication appears to be true. Also, if the value of Γi is very low, then – even though our procedure
allocates that station to a wavelength – it may not receive any service (equivalent to not being allocated).

In Table 13 we see that in general, within a wavelength, stations with lower νi receive higher Vi. This happens because
the system tries to allocate longer visit periods to stations with low retrial rates so as to maximize the number of packets
it can serve. However, if νi is very low (see station 1), then the system, subject to limited resources, might not allocate
any resource to that station.

From Table 14 one can generally observe that the stations with higher drop probability, i.e., lower µi, receive longer
visit periods to have fewer losses. Also, like in the previous case the difference in revenue generated from each station is
not big.

Three final observations: 1. The spread in visit periods is small in Table 14 compared to those in Tables 12 and 13. This
suggests that the factor µi is less important than the factors νi and Γi in the solution of this problem. 2. Our procedure often
results in a more or less even spread of revenues among stations if Γi are equal. This suggests that the procedure makes
the system reasonably fair, i.e., tries to provide the best service to each station. 3. Even though the revenues obtained
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Table 13
Γi = 4, νi = 0.05 ∗ i and µi = 0.5.
Station Allocation Visit Revenue

1 0 0.00 0.00
2 1 3.35 26.05
3 2 2.33 22.33
4 3 2.18 23.09
5 4 2.07 23.83
6 4 1.97 24.37
7 3 1.88 24.80
8 2 1.83 25.30
9 1 2.16 28.02
10 4 1.69 25.85
11 3 1.64 26.09
12 2 1.60 26.42
13 1 1.89 28.59
14 3 1.50 26.76
15 4 1.47 26.96
16 2 1.44 27.19

Total 29.00 385.65

Table 14
Γi = 4, νi = 0.5 and µi = 0.05 ∗ i.
Stations Allocation Visit Revenue

1 3 1.85 22.76
2 4 1.86 23.36
3 2 1.87 23.94
4 1 1.87 24.48
5 3 1.86 24.90
6 4 1.85 25.29
7 2 1.84 25.66
8 1 1.83 26.01
9 1 1.82 26.32
10 3 1.80 26.56
11 2 1.78 26.81
12 4 1.76 27.03
13 4 1.73 27.23
14 2 1.71 27.43
15 3 1.69 27.62
16 1 1.68 27.79

Total 28.80 413.19

from stations with different retrial rates and drop probabilities are similar, the resources required by these stations are
different. For a lower retrial rate and/or higher drop probability, a longer visit period is required to give similar revenue.
This is a techno-economic trade-off to consider while designing the router.

3.4. Multiple wavelengths — a variant

So far in this section we assumed that each station can be allocated to at most one wavelength. We now briefly discuss
a variant in which stations can be allocated to two adjacent wavelengths. This is technically possible and offers additional
flexibility, but at the expense of requiring some additional switchover times. We mention two options for studying this
trade-off. A very simple approach would be the following. After optimal visit periods Ṽi are determined for the case
of a frame time of length KC in Step 1 of the heuristic procedure, just divide these visit periods over the K different
wavelengths by cutting the frame of length KC into K pieces each of length C . In that way, some stations are allocated
to two adjacent wavelengths because they are in one of the cuts. In this approach, we do not have to go through Steps 2
and 3 of the procedure. However, a disadvantage of allocating a station, say station i, to two different wavelengths is that
on both wavelengths also a switchover time has to be scheduled (and as a consequence some visit periods have to be
shortened and some revenue is lost). Hence one preferably only allocates station i to two wavelengths if the corresponding
switchover time Si is small. This brings us to the following, somewhat more refined, heuristic.

For ℓ = 0, 1, . . . , K − 1 select the set of stations Jℓ with the ℓ smallest switchover times Si. The stations in Jℓ
are the stations that will be allocated to two neighboring wavelengths. For ℓ = 0, the set Jℓ is empty and we assign
stations to wavelengths and visit periods to stations according to the three-step approach sketched in Section 3.2. For
ℓ > 0, we adapt the three-step approach in the following way. In Step 1 we apply ONE with modified constraint∑

i Ṽi = KC −
∑

i Si −
∑

i∈Jℓ
Si. In Step 2, we then consider a K -machine scheduling problem with jobs of length 2Si + Ṽi,
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for i ∈ Jℓ, and jobs of length Si + Ṽi, for i /∈ Jℓ. Modify the first set of jobs by sorting the jobs from large to small and
cutting each job in two halves, of lengths Si + 1

2 Ṽi. Assign these 2∗ℓ half jobs over the K machines, by putting the jth half
job on machine j, for j < K , and by putting half jobs j = K , . . . , 2ℓ on machine 2K − j, respectively. Remark that in this
way two corresponding half jobs are scheduled on neighboring machines (as wanted) and furthermore for large ℓ, when
many machines will get two half jobs, these machines either get one large and one small half job or two middle-sized
half jobs. After that we assign the remaining jobs of length Si+ Ṽi, for i /∈ Jℓ, to the different machines according to the LPT
rule. In Step 3 we adapt the sizes of the jobs (i.e. the visit periods of the stations) in order to achieve that each machine
obtains a total amount of work equal to C . This can be done by either shifting part of the work of half jobs on a machine
to the corresponding half jobs on neighboring machines or alternatively by solving TWO again for each of the machines
separately. In this way we get different heuristic solutions for different choices of ℓ, and at the end we choose the ℓ and
the corresponding solution for which the revenue is maximal.

4. Nonnegligible service times

So far, we have assumed that service times are negligibly small, arguing (cf. the end of Section 1) that this is quite
realistic in most settings under consideration. In the present section we briefly consider the case that we cannot assume
that the service times are zero, sketching a possible approach that basically allows one to follow the analysis in [9]. Apart
from the nonzero service times we also follow their setting, i.e., the buffers are infinite, and there is only one wavelength
available. Below we focus on one arbitrary queue i, again suppressing the subscript i. Assume that service times have a
mean E[T ] > 0. Also assume that service times are typically considerably shorter than V .

Let ζ denote the probability that a new arrival during a V period can immediately receive service. We propose to
approximate ζ by the fraction of time that there is no service in V . Assume that, when a new arrival cannot immediately
receive service, it is a candidate for a retrial. Assume that such arrivals, as well as arrivals during a non-visit period, have
a probability p(V )/r(V ) of still being served. Then the counterpart of Mi(Vi) as studied in (3.1) is given by

M(V ) = γ λ[ζV + (1 − ζ )V
p(V )
r(V )

+ (C − V )
p(V )
r(V )

]. (4.1)

Hence the mean total service time during one V period equals

λE(T )[ζV + (1 − ζ )V
p(V )
r(V )

+ (C − V )
p(V )
r(V )

], (4.2)

implying that ζ satisfies the following equation:

1 − ζ = λE(T )[ζ + (1 − ζ )
p(V )
r(V )

+ (
C
V

− 1)
p(V )
r(V )

], (4.3)

so, with ρ := λE(T ):

ζ =
1 − ρ C

V
p(V )
r(V )

1 + ρ − ρ
p(V )
r(V )

. (4.4)

Finally, we need to maximize
∑N

i=1 Mi(Vi) under the usual constraints V1, . . . , VN ≥ 0 and
∑N

i=1 Vi = C −
∑N

i=1 Si, with
(now no longer suppressing subscripts)

Mi(Vi) = γiλiC
pi(Vi)
ri(Vi)

+ γiλiVi(1 −
pi(Vi)
ri(Vi)

)
1 − ρi

C
Vi

pi(Vi)
ri(Vi)

1 + ρi − ρi
pi(Vi)
ri(Vi)

. (4.5)

Mi(Vi) is not necessarily concave. Hence one cannot use RANK, and the numerical evaluation of the maximization problem
is more involved.

5. Conclusions and suggestions for further research

To understand the behavior and study the performance of future optical networks, we have considered a few
revenue optimization problems for single- and multiple-wavelength optical routing nodes. The two main models under
consideration were (i) a single-wavelength model in which we focussed on the issue of finite buffers, and arrived at
a separable concave optimization problem; and (ii) a model in which we explored the advantages of having multiple
wavelengths, and arrived at a mixed integer non-linear programming problem. The latter problem is extremely time-
consuming to solve even for a small number of wavelengths. Since one would like to solve this revenue optimization
problem quite frequently, we have developed an efficient and near-optimal heuristic procedure for (i) assigning stations
to wavelengths and subsequently (ii) assigning visit times to stations within a fixed frame time.

Several topics for further research suggest themselves. Firstly, one might make adaptations to the proposed heuristic
procedure for the multiple-wavelength model. For example, the extended visit periods Si + Ṽi from Step 2 in Section 3.2,
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of the stations that are assigned to a particular wavelength, do not exactly sum up to C; we therefore used TWO in Step
3 to make final choices for the visit periods Vi. Instead, one could simply scale all Vi, that belong to one and the same
wavelength, by the same factor α such that

∑
(Si +αVi) = C . Also the approach sketched in Section 3.4 could be explored

further. Secondly, one might work out the approach sketched in Section 4 to handle the case that service times are not
negligibly small. Finally, it would be worthwhile to study the trade-off between investing in a higher number of fiber
delay lines – which should result in a lower drop probability – and using more wavelengths.
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