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Abstract

Fill-and-finish is among the most commonly outsourced operations in biopharmaceutical

manufacturing and involves several challenges. For example, fill-operations have a random pro-

duction yield, as biopharmaceutical drugs might lose their quality or stability during these

operations. In addition, biopharmaceuticals are fragile molecules that need specialized equip-

ment with limited capacity, and the associated production quantities are often strictly regulated.

The non-stationary nature of the biopharmaceutical demand and limitations in forecasts add

another layer of challenge in production planning. Furthermore, most companies tend to ‘freeze’

their production decisions for a limited period of time, in which they do not react to changes in

the manufacturing system. Using such freeze periods helps to improve stability in planning but

comes at a price of reduced flexibility. To address these challenges, we develop a finite-horizon,

discounted-cost Markov decision model, and optimize the production decisions in biopharma-

ceutical fill-and-finish operations. We characterize the structural properties of optimal cost and

policies, and propose a new, zone-based decision-making approach for these operations. More

specifically, we show that the state space can be partitioned into decision zones that provide

guidelines for optimal production policies. We illustrate the use of the model with an industry

case study.

Keywords: Random yield, biomanufacturing, dynamic programming, freeze period

Online supplement: Supplementary materials are available for this article.
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1 Introduction

Biopharmaceuticals are complex molecules that are extracted from or produced by living systems,

such as virus or bacteria. Typically, these drugs are proteins, antibodies or vaccines, and are

referred to as next generation drugs produced by biomanufacturing technologies. Production and

handling of biopharmaceuticals is often more challenging than chemically synthesized (traditional)

drugs because of their inherent biological complexity. For example, biopharmaceuticals consist of

large, fragile, and pressure sensitive molecules that need specialized equipment and handling to

preserve their biological activity.

Figure 1 provides a high-level overview of production steps in biomanufacturing. First, biophar-

maceuticals are manufactured through a series of fermentation and purification operations. This

often results in active pharmaceutical ingredients or antigens, depending on the specific application

context. During manufacturing, most of the large scale industry applications use big vessels such

as thousand liter bioreactors. Therefore, the resulting product is called bulk material, and is stored

in large quantities for further processing. Next, the bulk material is filled into smaller vials or other

forms of packaging during fill-operations. This step typically consists of filling the bulk material into

vials and capping them. However, most biopharmaceuticals contain live active ingredients (e.g.,

antigens), and hence vials often need to be freeze dried. Freeze-drying removes all the liquid from

the filled product, such that only a so called ‘cookie’ remains in the vial. Freeze-drying helps to

maintain product stability and quality, especially during storage and shipment. The resulting prod-

uct is called Finished Product Unpacked (FPU). Then, the process continues with finish-operations,

where FPUs are labelled and packaged along with a leaflet of medical information. The resulting

product is called Final Product Packed (FPP), as shown in Figure 1.

Model39

Filling
Freeze drying

FPU Labeling
Packaging

FPP Demand

Fill FinishManufacturing

Fermentation
Purification

Bulk

Figure 1: High-level process map of biomanufacturing operations
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The scope of this paper is fill-and-finish operations, which are among the most commonly outsourced

operations in biomanufacturing. As such, it is estimated that up to 74% of biomanufacturers out-

source their fill-and-finish operations (Langer 2016). This is mainly because biopharmaceutical

fill-and-finish operations require specialized handling and expertise to preserve drug quality. In ad-

dition, managing fill-and-finish operations can be often challenging in practice due to several factors:

(1) Yield uncertainty in fill-operations. Biopharmaceutical fill-operations involve yield uncertainty.

In particular, the freeze-drying process involves complex biological and chemical dynamics that

might interfere with the inherent stability of these molecules. For example, the biological activity

might not be preserved during freeze-drying, dirt or liquid could remain in the vial after freeze-

drying, vials might break during the process, etc. In contrast, finish-operations correspond to

labeling and packaging of vials, in which the state-of-the-art technologies often provide reliable

production yields. (2) Capacity limitations. As part of regulations, fill-and-finish operations need

to comply with predetermined restrictions on the number of vials that can be processed at a time.

(3) High holding and shortage costs. Storing and handling of biopharmaceuticals require expensive

resources in terms of labor, space and environmental conditions (e.g., cold storage). Furthermore,

failure in meeting the demand can have critical implications in terms of the cost of disappointing

clients and its impact on future orders. (4) Random and non-stationary demand. The demand is of-

ten random and non-stationary in the biopharmaceutical industry, i.e., the probability distribution

of the demand changes over time as a consequence of the complex dynamics of the biopharmaceutical

market. Subsequently, this leads to limitations in forecasts. For example, most biopharmaceutical

companies often consider a planning horizon of one or two years, and forecasting longer periods is

often challenging due to the dynamic and non-stationary nature of the market.

A possible approach to address these challenges is to adjust the production plans frequently. How-

ever, this might cause instability in planning. To assure stability, most biomanufacturers choose to

freeze their production decisions for a limited period of time (e.g., two months). This implies that

the production decisions are made upfront, and do not change in response to the system dynamics

during the freeze period. In practice, using freeze periods provides significant visibility in terms of

planning and manufacturing but comes at a price of reduced flexibility. For example, the bioman-

ufacturer cannot respond to yield and demand uncertainty during the freeze period. Therefore,
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using freeze periods leads to a complex trade-off between reduced flexibility and improved planning

stability, and hence adds another layer of challenge in practice.

To address these challenges, we develop a finite-horizon, discounted-cost Markov decision model,

and answer the following research questions: How can biomanufacturers manage challenges related

to yield uncertainty and freeze periods in biopharmaceutical fill-and-finish operations? What are

the optimal production and inventory decisions for fill-and-finish operations? Can we generate

guidelines that are easy to implement in practice and yet deliver optimal policies? How can we

model and analyze the impact of freeze periods on the expected total cost in this setting? What is

the additional cost of freezing production schedules, and how does this cost change with the length

of freeze periods? By answering these questions using an optimization framework, we believe that

biomanufacturers can significantly reduce costs in fill-and-finish operations.

This work provides several contributions to theory and practice: We analyze the structural charac-

teristics of optimal policies, and propose a zone-based decision-making approach for biopharmaceu-

tical fill-and-finish operations. More specifically, we show that the state space can be partitioned

into distinct decision zones that provide rule-of-thumbs for optimal production decisions. These

decision zones do not require any restrictive conditions on system parameters, and provide man-

agerial insights that are easy to implement in practice. To the best of our knowledge, this is one

of the first studies that builds a stochastic optimization model to address challenges related to

yield uncertainty, demand non-stationarity and freeze periods in biopharmaceutical fill-and-finish

operations. In addition, the model provides a rigorous basis for communicating mid-term planning

challenges within a company, and yields insights related to the cost of using freeze periods in pro-

duction planning. We also provide an industry case study to illustrate the use of the optimization

model.

This research has been conducted in close collaboration with Merck Sharp & Dohme Animal Health

(MSD AH) in Boxmeer, Netherlands. MSD AH is one of the top pharmaceutical companies in

animal health. Their facility in Boxmeer is a large biomanufacturing center that supplies a wide

range of vaccines, anti-infective and anti-parasitic drugs. The research outcomes have also been

shared with a larger biomanufacturing community through working group sessions (Nederlandse
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Biotechnologische Vereniging 2018). Industry feedback indicates that most biomanufacturers rely

on expert opinion and Material Resource Planning (MRP) calculations that have limited ability in

incorporating the manufacturing challenges into decision-making. Therefore, these is a strong need

for a rigorous decision-making framework in biopharmaceutical fill-and-finish operations.

The remainder of the paper is organized as follows. Relevant literature is reviewed in Section 2.

The model is presented in Section 3, and structural results are characterized in Section 4. Freeze

periods are modelled in Section 5. An industry case study is presented in Section 6, and concluding

remarks are provided in Section 7.

2 Relevant Literature

We categorize the relevant literature into two groups: (1) inventory optimization under random

yield, and (2) modelling and analysis of biopharmaceutical fill-and-finish operations.

The literature on random yield has a rich background. We focus on papers that are directly related

to our research, and refer the reader to Yano and Lee (1995) for a comprehensive review on random

yield models in inventory management. Relevant studies on random yield can be divided into

two subcategories: single-period and multi-period models. Karlin (1958) was the first to model a

single period inventory model with random yield and stochastic demand. Among many others, this

was followed by Noori and Keller (1986) and Ehrhardt and Taube (1987) who derived an analytical

expression for the optimal order quantity when demand was uniformly or exponentially distributed.

These results were generalized in Henig and Gerchak (1990) by showing that the optimal order

quantity was decreasing in the amount of inventory and was greater or equal to the difference

between the critical order point and the current inventory amount. These results have also been

extended to single-period, multi-station settings with yield uncertainty (Hwang and Singh (1998),

Kogan and Lou (2003), Papachristos and Katsaros (2008)). To improve computational challenges,

several heuristics have been developed to optimize inventory decisions (Bollopragada and Morton

(1999), Inderfurth (2004), Rekik et al. (2007), Käki et al. (2015)).

Existing literature on multi-period models with random yield often focuses on single station systems.

For example, Mazzola et al. (1987) studied a multi-period problem where demand is deterministic
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and yield rate follows a discrete distribution. The authors used dynamic programming to optimally

solve the problem when the yield rate is assumed to follow a binomial distribution. In Henig and

Gerchak (1990), a multi-period setting is also modeled as a dynamic programming problem under

stochastic proportional yields. The authors showed that it is optimal to order when the inventory

amout is below a certain critical order point. From this finding, Yano and Lee (1995) derived that it

can be beneficial to produce further ahead in the random yield case compared to problems without

random yield. Note that aforementioned studies focus on single-station systems. However, our

problem context involves a multi-period, multi-station setting with random yield. Relatively less

research has been carried out for such systems since their analysis is acknowledged as a complex

problem (Schmitt and Snyder (2012)). According to Hwang and Singh (1998), such settings are

unlikely to produce structurally simple policies. This is also underlined in Tang (1990) where the

author approximated the production quantities with a simple rule. A robust optimization model

has been developed by Zanjani et al. (2010a) to manage a real world multi-period, multi-station

problem facing yield uncertainty. The authors investigated service levels, and compared the results

obtained from the robust optimization model with a stochastic programming model. Similarly,

Zanjani et al. (2010b) develop a multi-stage stochastic programming problem, and combine the

information on yield and demand uncertainty into a hybrid decision tree used in the stochastic

program.

Our work is closely related to studies on multi-period, multi-echelon inventory systems. When

there is no capacity restrictions, it is well known that the optimal policy is an echelon order-up-to

policy (Clark and Scarf 1960). However, when capacity constraints are present, then the structure

of the optimal policy is not known in general. Parker and Kapuscinski (2004) and Janakiraman

and Muckstadt (2009) derive the optimal policy structure for such systems but under the assump-

tion that the capacity limits at all stages are identical. Huh and Janakiraman (2010) relax this

assumption and show the monotonicity of the optimal policy. However, none of the studies above

consider uncertainty in inventory supply. We contribute to this stream of research by analyzing a

capacitated system with random production yield. More specifically, our structural analysis of the

optimal policy in the fill-and-finish operations extends the work of Huh and Janakiraman (2010)

when the most upstream station (namely, the fill station in our setting) also has a capacity re-
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striction and random production yield. In the context of multi-period production planning with

random yield, Han et al. (2012) develop a stochastic dynamic program to optimize the finite-horizon

expected profit in a two-stage make-to-stock system. Different from Han et al. (2012), we focus on

a system with production capacity and provide a structural analysis of the optimal policy.

A vast majority of studies on fill-and-finish operations focus on analyzing the manufacturing and

planning challenges encountered in practice. For example, Patro et al. (2002) provide a detailed dis-

cussion on factors that lead to random yield in fill-finish, and review the critical process parameters

and configurations to maintain drug safety and efficacy during fill-finish. Several studies overview

the current trends and challenges in biopharmaceutical fill-finish, especially in freeze-drying pro-

cess (McLeod et al. (2011), Rios (2012), Scott and Rios (2015), Gutka and Prasad (2015)). On the

other hand, there are only a few studies that model the risks and uncertainties in fill-and-finish

operations. In this context, we observe that existing studies largely focus on simulation modeling

and statistical analysis of biomanufacturing operations. For example, Petrides et al. (2011) develop

a simulation model for fill-finish facilities, and use a scheduling tool to reduce cycle times and costs.

Khairuddin et al. (2016) develop a simulation model to evaluate layout design options at a fill-finish

facility. Jiang et al. (2011) use statistical regression to help decision makers with estimating and

optimizing viscosity and filter capacity during fill-finish. A case study on quality risk management

during fill-finish is described at Miller (2009). Simulation models have also been used to assess

capacity in biomanufacturing (Robinson et al. (2017)). However, existing simulation studies are

not equipped to answer the research questions defined in Section 1, especially to those related to

determining optimal policies.

3 Model Formulation

We develop a discrete-time, finite-horizon, discounted-cost Markov decision model to optimize

production decisions in biopharmaceutical fill-and-finish operations. First, we describe the notation

used to build the model.

Decision epochs: We consider a discrete-time problem where the planning horizon is equally

divided into T decision epochs, such that T = {t : 0, 1, ..., T − 1} represents the set of all decision
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epochs. Time between two decision epochs is referred as a period; i.e., the tth decision epoch

represents the beginning of period t + 1. In our problem setting in practice, each period typically

corresponds to one month, and the planning horizon is often one to two years.

States: Let i = 1, 2 represent the production station for fill- and finish-operations, respectively.

The state space is defined as S ≡ S1×S2 where S1 ∈ R+ and S2 ∈ R. The state si,t ∈ Si represents

the inventory level at production station i ∈ {1, 2} and decision epoch t ∈ T . We let s1,t ≥ 0 as a

system requirement to generate feasible production plans. Note that s2,t can be negative to indicate

the amount of backlog in the finish-operations at decision epoch t. Raw materials for fill-operations

is assumed to be ample. This aligns with current practice where raw materials are available in large

vessels at bulk quantities.

Actions: The action space is defined as U ≡ U1 × U2. The action ui,t ∈ Ui represents the

number of vials to be produced in production station i ∈ {1, 2} at decision epoch t ∈ T . Due

to regulatory requirements, the biomanufacturer needs to comply with a predetermined batch size

bi at production station i. In addition, each production station has a limited capacity during a

period. Therefore, the inclusion of limited capacity and fixed batch size truncates the action space

to Ui = {ui,t : 0, bi, 2bi, 3bi, ...,mibi} for i = 1, 2 at t ∈ T , where the parameter mibi denotes the

maximum number of vials that can be processed at production station i during a period. For

convenience, structural analysis in Section 4 assumes continuous batch sizing with ui,t ∈ [0,mibi].

Note that the amount of work-in-progress inventory in the fill-operations constrains the production

quantity at the finish-operations, i.e., s1,t ≥ u2,t at t ∈ T .

State Transitions: To determine the state transition probabilities, we first focus on the random

and often non-stationary demand for biopharmaceutical drugs. Let the non-negative random vari-

able Dt represent the demand in period t with probability density function gt(·) and realization

dt, t ∈ {1, . . . , T}. Note that gt(·) is a function of t due to demand non-stationarity. Next, we

focus on modeling the yield uncertainty in fill-operations. The amount obtained at fill is a random

fraction R of the planned production quantity u1,t at t ∈ T . The random fraction R has probability

distribution f(·) with realization r on the interval [0, 1]. Therefore, the future state (s1,t+1, s2,t+1)

at t+ 1 ∈ T is determined by the current state (s1,t, s2,t), action (u1,t, u2,t), realization of the yield
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fraction (r), and demand realization dt at t ∈ T , i.e.,

si,t+1 =


s1,t − u2,t + (u1,t × r) for i = 1,

s2,t − dt + u2,t for i = 2.

(1)

It follows from Equation (1) that the demand dt is observed at finish-operations (i = 2), and work-

in-progress inventory is pulled from fill-operations (i = 1) based on the production amount u2,t at

the finish-operations. Equation (1) indicates that the production amount ui,t is available at the

beginning of decision epoch t + 1. In addition, we note that Equation (1) assumes a proportional

random yield model, which was validated using two years of production data (i.e., the data provided

a normalized ratio of the total amount of yield obtained from the freeze-drying process to the total

amount of input that goes into the freeze-drying process). In compliance with standard industry

practice, we focus on the modeling and analysis of yield uncertainty in fill-operations. Nevertheless,

our model formulation is flexible to capture yield uncertainty in finish-operations, and would result

in similar insights.

Costs: Costs depend on the state (s1,t, s2,t) at decision epoch t ∈ T . When inventory is held, cost

hi is incurred per unit of inventory at production station i. A penalty cost of shortage, p2, has to

be paid for each unit short in finish-operations. This leads to incurring the cost

c(s1,t, s2,t) =
(
h1 × s1,t

)
+
(
h2 × [s2,t]

+ + p2 × [−s2,t]
+
)
. (2)

in period t, where [z]+ = max{0, z}.

The Value Function: At the end of the planning horizon t = T , the terminal value is

VT (s1,T , s2,T ) = c(s1,T , s2,T ), (3)

and the value function Vt(s1,t, s2,t) for all t ∈ {0, 1, ..., T − 1} is

Vt(s1,t, s2,t) = min
(u1,t,u2,t)∈U

{
c(s1,t, s2,t) + γ · E

[
Vt+1

(
S1,t+1, S2,t+1)|s1,t, s2,t, u1,t, u2,t

]}
, (4)
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where the expected value E
[
Vt+1

(
S1,t+1, S2,t+1)|s1,t, s2,t, u1,t, u2,t

]
is given by

E
[
Vt+1

(
S1,t+1, S2,t+1

)
|s1,t, s2,t, u1,t, u2,t

]
=

∫ 1

r=0

∫ ∞
dt=0

Vt+1

(
s1,t − u2,t + u1,t × r1, s2,t − dt + u2,t

)
× f(r)× gt(dt) ddt dr.

(5)

The parameter γ indicates the discount factor such that 0 ≤ γ ≤ 1. In Equations (3) and (4),

the objective is to minimize the total discounted cost by optimizing the production decisions

(u1,t, u2,t) ∈ U . Then, Vt(s1,t, s2,t) expresses the minimum total discounted cost over the periods

t, t+1, . . . , T given that the state at time t is (s1,t, s2,t). Note that the expectation in Equation (5) is

taken with respect to the probability distribution of the uncertain yield f(·) and the time-dependent

demand gt(·). We let u∗i,t(s1,t, s2,t) denote an optimal production amount at production station i

when the system state is (s1,t, s2,t) at time t ∈ T , and π∗t denote an optimal policy (i.e., function

that maps a system state into an optimal action) at time t until the end of planning horizon T .

Hereinafter, we call the model presented in this section the base model.

The base model is developed as a finite-horizon model for multiple reasons. First, in practice,

biopharmaceutical companies often optimize their operations by considering foreseeable future,

and set their business strategies for a fixed planning horizon accordingly. For example, at MSD

AH, production planners consider a planning window of typically one year but no longer than two

years. This is mainly because of the uncertainties in the market (e.g., more effective drugs can enter

the market, and product lines as well as production processes evolve over time). Second, products

that we consider at MSD AH have nonstationary demand for which forecasts are available only

for the next 12 to 24 months. At MSD AH, sales organizations generate such forecasts to serve as

direct input to our finite-horizon model (in Section 5, we present an approach that relies on solving

the long-run business problem by using our base model through a rolling-horizon mechanism over

time). Furthermore, at MSD AH, the material resource planning (MRP) activities are conducted

every month based on a finite planning horizon of one or two years. The decisions considered in this

paper are mid-term planning decisions that are part of such MRP activities. Finally, in principle, a

finite-horizon model can approximate an infinite-horizon model given that the number of decision

epochs is sufficiently large.
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4 Structural Analysis

We start our analysis by summarizing and developing some preliminary technical results in Sec-

tion 4.1. Then, we analyze the structural properties of optimal policies for the fill-operations and

finish-operations in Sections 4.2 and 4.3, respectively. All proofs are available in the Appendix.

4.1 Preliminaries

Our analysis relies on the notion of L\-convexity (see, e.g., Simchi-Levi et al. 2014). To be able to

define L\-convexity, we first introduce the concept of submodularity. Let V ⊆ Rn be a polyhedron

that forms a lattice (i.e., for any x, x′ ∈ V, it is known that x ∧ x′,x ∨ x′ ∈ V, where ∧ and ∨

are component-wise minimum and component-wise maximum operators, respectively). A function

f : V −→ R is submodular on the set V if, for any x, x′ ∈ V, the inequality f(x) + f(x′) ≥

f(x∧x′) + f(x∨x′) holds. For a twice-differentiable f , it follows that f is submodular if and only

if ∂2f(x)/∂xi∂xj ≤ 0 for any distinct indexes i and j and for any x ∈ V.

Following Zipkin (2008), we say that the function f : V −→ R is L\-convex if the function ψ(v, ξ) =

f (v − ξe) is submodular on V × R− where v ∈ V, e is the n-dimensional all-ones vector, and

ξ ≤ 0. L\-convexity of a function implies that the function has the convexity, submodularity,

and diagonal-dominance properties (Gong and Chao 2013), which are desirable properties for the

analysis of optimal policy structures.

Next, we extend Lemma 1 in Zipkin (2008) and introduce a property of L\-convexity that will be

useful for our analysis under random yield in fill-operations.

Lemma 1. Suppose that f : V −→ R is an L\-convex function and r ≥ 0. In this case, the function

g : V × R− −→ R, which is defined as g(v, ξ) = f (v − ξre), is also L\-convex.

Similar to Zipkin (2008) and Huh and Janakiraman (2010), the core of our analysis includes a

transformation of the state variables of the Markov decision process model. To be specific, our

objective is to obtain L\-convex value functions after transformation and exploit the properties

of L\-convexity in our analysis, whereas the value functions (i.e., Equations (3) and (4)) are not

L\-convex in the original state variables. Intuitively, the role of state transformation is to assure

that the state variables have complementary relationships, and hence, the L\-convexity of the value
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functions is preserved under minimization (see Topkis (1998) for details on complementarity and

Li and Yu (2014) for its role in the structural analysis of dynamic inventory problems).

4.2 Fill Operations

For notational convenience, we drop the subscript t from the state and action variables when possible

in the remainder of the analysis. Let w1 = s1 and w2 = s1 + s2. Notice that the transformed state

variables (w1, w2) ∈ R × R, and the corresponding state space is a lattice. Let uj ≥ 0 denote

the production decision of production station j ∈ {1, 2}; i.e., u1 and u2 are the number of vials

produced in the fill-operations and finish-operations, respectively. Let w̄1 = w1 − u2 and ξ = −u1.

For t ∈ T , the value functions for the transformed problem can be written as

Jt(w1, w2) = c(w1, w2 − w1) + γ ft+1(w1, w2) (6)

where

ft+1(w1, w2) = min
ξ,w̄1

E [Jt+1(w̄1 − ξR,w2 − ξR−Dt)] (7)

s.t. −m1b1 ≤ ξ ≤ 0

−m2b2 ≤ w̄1 − w1 ≤ 0

0 ≤ w̄1

with the terminal value function given by JT (w1, w2) = c(w1, w2 − w1).

In Theorem 1(i), we show that the value function in each period is an L\-convex function after

the transformation of the state variables. This will enable us to show in Theorem 1(ii) that the

optimal policy in the fill-operations is a monotone function of the inventory levels in the fill and

finish operations.

Theorem 1. (i) The value functions Jt(w1, w2) are L\-convex in w1 and w2 for t = 1, 2, . . . , T .

(ii) The optimal number of vials produced in the fill-operations u∗1,t(s1, s2) is nonincreasing in s1

and s2 for t ∈ T .

It immediately follows from Theorem 1(ii) that the state space can be partitioned into decision

12



F
il
l

S
ta

te
s

(s
1
)

Finish States (s2)

I

II

III

(a) Fill-operations

F
il
l

S
ta

te
s

(s
1
)

Finish States (s2)

I II III

IV

(b) Finish-operations

Figure 2: An illustration of possible decision zones for fill and finish operations

zones for fill-operations, as summarized in Corollary 1.

Corollary 1 (Decision zones for Fill). At time t ∈ T , optimal policy for fill-operations has the

following characteristics:

(i) If u∗1,t(ŝ1, ŝ2) = m1b1 for (ŝ1, ŝ2) ∈ S, then u∗1,t(s1, s2) = m1b1 for any (s1, s2) with s1 ≤ ŝ1 and

s2 ≤ ŝ2.

(ii) If u∗1,t(š1, š2) = 0 for (š1, š2) ∈ S, then u∗1,t(s1, s2) = 0 for any (s1, s2) with s1 ≥ š1 and s2 ≥ š2.

Consequently, it follows that optimal decisions for fill-operations can be divided into Zone I, II,

III, where Zone I includes all states (s1, s2) ∈ S in which u∗1,t(s1, s2) = m1b1, Zone II in which

0 < u∗1,t(s1, s2) < m1b1, and Zone III in which u∗1,t(s1, s2) = 0. For practitioners, these decision

zones provide important managerial insights on optimal policies, and are easy to implement in

practice. For example, if the state of the system is an element of Zone I at time t, then optimal

policy at fill-operations requires to produce at maximum capacity. In contrast, when the system

state belongs to Zone III, then it is optimal to not produce anything at fill-operations. In case

the system state is within Zone II, then optimal policy for fill-operations has a control-limit type

structure, and these control-limits are nonincreasing in the inventory levels in each production

station. A visual representation of the decision zones is provided in Figure 2. For simplicity, zones

in Figure 2 are separated with straight lines, however, we note that these lines can be curvy (in

the form of a more general switching curves) and the zones may have a variety of forms in theory.
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4.3 Finish Operations

In this section, the objective is to study the monotonicity of optimal production decisions in the

finish-operations. Recall that the intuition behind the state transformation in Section 4.2 was to

make sure that the state in the next decision epoch has a special form, where a term proportional

to ξ (i.e., the decision of fill station) is subtracted from each state component; see the objective

function in Equation (7). In this way, L\-convexity is preserved after the minimization. However,

the same state transformation does not lead to the preservation of L\-convexity when the finish

decision is considered. Therefore, in this section, we adopt an alternative transformation of the

state variables based on Huh and Janakiraman (2010). Different from Section 4.2, we now let

w1 = −s1 and w2 = s2. Notice that (w1, w2) ∈ R− × R, and the corresponding state space is a

lattice. Furthermore, we now let w̄1 = w1− u1 and ξ = −u2. For t ∈ T , the value functions for the

transformed problem can be written as

Jt(w1, w2) = c(−w1, w2) + γ ft+1(w1, w2) (8)

where

ft+1(w1, w2) = min
ξ,w̄1

E [Jt+1(Rw̄1 + (1−R)w1 − ξ, w2 − ξ −Dt)] (9)

s.t. −m2b2 ≤ ξ ≤ 0

w1 − ξ ≤ 0

w1 − w̄1 ≤ m1b1

with the terminal value function given by JT (w1, w2) = c(−w1, w2). For a general distribution

for the yield random variable R, the value function Jt(w1, w2) in Equation (8) is not necessarily

L\-convex in w1 and w2. This is because the L\-convexity of the function Jt+1(w1, w2) in w1 and w2

does not guarantee the L\-convexity of the function Jt+1(rw̄1 +(1−r)w1−ξ, w2−ξ−dt) in w1, w̄1,

w2 and ξ for r ∈ (0, 1), where r and dt denote the realizations of the random variables R and Dt,

respectively. Therefore, the objective function in Equation (9) is not necessarily L\-convex in w̄1,

w1, w2 and ξ. Thus, different from Section 4.2, the L\-convexity of the function ft+1(w1, w2) and

subsequently the L\-convexity of the value function Jt(w1, w2) in Equation (8) do not necessarily
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hold for a general distribution for the yield random variable R. In Theorem 2(i), we show that the

value function Jt(w1, w2) is L\-convex for the following special types of production yield in the fill-

operations: (1) Deterministic yield: R = r with probability 1. (2) All-or-nothing yield: R = 1 with

probability r and R = 0 with probability 1 − r. All-or-nothing type of yield is especially relevant

in biomanufacturing due to random shocks that can affect the entire production (see, e.g., Tomlin

(2009), Martagan et al. (2016)). For example, during the freeze-drying process, physico-chemical

process parameters (i.e., temperature, moisture, pH, etc.) might deviate from their pre-specified

control ranges because of bacterial contamination, human errors or equipment failure. In such

cases, the whole batch needs to be scrapped to comply with regulatory requirements.

Theorem 2. Suppose that the production yield in fill-operations is deterministic or has all-or-

nothing type of yield uncertainty. (i) The value functions Jt(w1, w2) is L\-convex in w1 and w2

for t = 1, 2, . . . , T . (ii) The optimal number of vials produced in the finish-operations u∗2,t(s1, s2) is

nondecreasing in s1 and nonincreasing in s2 for t = 1, 2, . . . , T − 1.

The monotonicity of optimal policies in finish-operations, as described in Theorem 2, leads to spe-

cific decision zones for the finish station (when the production yield in fill-operations is deterministic

or has all-or-nothing type of uncertainty). This is summarized in Corollary 2.

Corollary 2 (Decision zones for Finish). At time t ∈ T , optimal policy for finish-operations has

the following characteristics:

(i) If u∗2,t(ŝ1, ŝ2) = m2b2 for (ŝ1, ŝ2) ∈ S, then u∗2,t(s1, s2) = m2b2 for any (s1, s2) with s1 ≥ ŝ1 and

s2 ≤ ŝ2.

(ii) If u∗2,t(š1, š2) = 0 for (š1, š2) ∈ S, then u∗2,t(s1, s2) = 0 for any (s1, s2) with s1 ≤ š1 and s2 ≥ š2.

(iii) If u∗2,t(s̄1, s̄2) = s̄1 for (s̄1, s̄2) ∈ S, then u∗2,t(s̄1, s2) = s̄1 for any (s̄1, s2) with s2 ≤ s̄2.

It is important to note that we prove the monotonicity of the optimal policy in fill-operations

(Theorem 1) under any general probability distribution for the yield in the fill station. On the

other hand, we are able to analytically prove the monotonicity of the optimal policy in finish-

operations only when the yield in the fill station is deterministic or has all-or-nothing type of

uncertainty. Nevertheless, in our case study with industry data in Section 6, we observe that the
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monotonicity of optimal policies in the finish station continues to hold (under uniformly distributed

yield random variable and a finite action space). In our additional numerical experiments with right-

skewed, left-skewed and symmetric density functions for the yield random variable, we continue to

observe that the optimal production quantity at the finish station still shows monotonicity. In such

cases, the decisions for finish-operations can be divided into four zones, where Zone I includes all

states (s1, s2) ∈ S in which u∗2,t(s1, s2) = m2b2 (i.e., produce at maximum finish capacity), Zone

III in which u∗2,t(s1, s2) = 0 (i.e., do nothing), Zone IV in which u∗2,t(s1, s2) = s1 (i.e., produce at

maximum fill inventory capacity), and Zone II as the remaining states. Figure 2 (b) illustrates a

possible layout of the decision zones in finish-operations.

The zone-based decision-making presented in our work provides a new, rigorous approach for

decision-making in biopharmaceutical fill-and-finish operations. From practical point of view, these

decision zones are easy to adopt and implement in current practice. The case study presented in

Section 6 uses industry data from MSD AH to illustrate how these decision zones can be generated

and used in practice.

5 Planning with Freeze Periods

We expand the base model presented in Section 3 to incorporate freeze periods into production

plans. First, we describe how MSD AH works with freeze periods in practice, and then introduce

a formal description of the model to incorporate freeze periods into decision-making.

5.1 Current Practice

There are several different ways of freezing the production plans in practice. In this paper, we focus

on the current practice at MSD AH, where production planners conduct a planning activity at the

beginning of every period in order to generate a production plan for the next T periods. The length

T of a planning horizon is often one or two years owing to the highly dynamic and non-stationary

nature of the biopharmaceutical market. The length of a period is typically one month, because the

periodic planning activities are part of monthly aggregate planning activities (i.e., in compliance

with material resource planning activities).
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Figure 3: Freeze periods over a rolling horizon

Every time a planning activity is conducted, it generates a production plan for the upcoming T

periods. Once a production plan is generated, the plan for the first L periods is communicated to the

manufacturing team, and cannot be changed anymore. Thus, this is referred as a freeze period. In

Figure 3, we illustrate this mechanism for a planning horizon of T = 12 months and a freeze period

of length L = 2 months. In this example, the first planning activity is conducted at the beginning

of January 2019, and generates a monthly production plan until the end of December 2019. In

this production plan, the first two months (January and February) are frozen, as represented with

dashed boxes in Figure 3. The next planning activity is conducted at the beginning of February 2019

and generates a monthly production plan until the end of January 2020. However, this production

plan assumes that the production decisions of February 2019 are fixed (because it was part of the

freeze period at the previous planning activity). That is, the frozen decisions are carried forward

to the next planning activities. At each planning activity, the company works with the most recent

demand forecasts for the next T periods to determine the production plans that minimize the total

expected cost in a planning window of T periods. In this sense, the company adopts a rolling-

horizon approach, in which the base model is repeatedly solved every period with updated demand

forecasts. These forecasts are generated by a separate department in the company, referred as Sales

Organizations, specialized on market analysis.

In practice, MSD AH typically uses a freeze period of length L = 2 months, as illustrated in

Figure 3. The motivation of the company for using freeze periods is to ensure that, at all times,

they have full visibility on their production activities in the next L periods. An alternative policy

could be to generate a new production plan for the next T periods at every L periods. While such

a policy might potentially perform better, it is not preferred in practice because it does not always
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provide full visibility on the production activities of the next L periods.

5.2 Modeling of Freeze Periods

The objective of this section is to formally describe how we model the dynamics of the freeze periods

explained in Section 5.1. We let ω ∈ {1, 2, . . .} denote the index of the planning activity, where

each planning activity ω generates a production plan for the upcoming T periods. Let L denote the

length of the freeze period (also note that L ≤ T ). Each planning activity uses the latest available

demand forecasts (for the next T periods). We model this by assuming that a collection of the

probability distribution functions ĝω , {ĝt,ω(·) : t = ω, ω + 1, ω + T − 1} is available at the time

of the planning activity ω, where ĝt,ω(·) denotes an estimate of the demand density function gt(·)

available at planning activity w. We consider that demand forecasts are provided exogenously as

an input to the model and assume that there is no demand learning mechanism in the model. The

pseudo-code in Algorithm 1 outlines how the base model is used in practice in a rolling horizon

basis in the presence freeze periods.

Let πω denote the T -period production plan generated by the planning activity ω (πω is defined

as an arbitrary policy for ω = 1). Algorithm 1 takes πω−1, the production plan generated in

planning activity ω − 1, as input for the planning activity ω. We let π∗ = (π0, . . . , πT−1) denote

the optimal policy obtained by solving the base model in Section 3 via backward induction for all

t ∈ {0, ..., T − 1}; i.e., πt = (u∗1,t(s1, s2), u∗2,t(s1, s2)) for all (s1, s2) ∈ S. In Step 3 of Algorithm 1,

notice that the collection of the demand distributions (for the next T periods) available at planning

activity ω is used as input in the base model. We note that both πω and π∗ consist of T elements,

where each element is a pair of vectors representing a production policy (i.e., a function that maps

a system state into a production decision) for the fill and finish operations. Let πω(i) denote the ith

element of πω, and π∗(i) denote the ith element of π∗. For the first planning activity (i.e., ω = 1),

clearly, the solution from the base model is the output (step 6). Otherwise, we note that the output

of the ωth planning activity is a T -period production plan, where the first L− 1 elements are the

2nd to Lth elements of the previous production plan πω−1 and the remaining T − L + 1 elements

are the ones coming from the solution of the base model under new demand distributions (step 8).
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Algorithm 1 Procedure for the planning activity ω with freeze periods

1: Inputs: L, h1, h2, p2, f(·), ĝω, and πω−1

2: Output: πω
Require: L ≥ 2 . L = 1 implies having no freeze period
3: Set gt−ω+1(·) = ĝt,ω(·) for t = ω, ω + 1, . . . , ω + T − 1.
4: Let π∗ = (π0, . . . , πT−1) where πt = (u∗1,t(s1, s2), u∗2,t(s1, s2)) for all (s1, s2) ∈ S.
5: if ω = 1 then
6: πω = π∗,
7: else
8: πω = (πω−1(2), . . . , πω−1(L), π∗(L), . . . π∗(T ).
9: end if

6 Numerical Analysis: An Industry Case Study

We present a case study from MSD AH in Boxmeer, Netherlands. The case study involves fill-

and-finish operations of a specific type of antigen filled and sold in form of vials. Name and

characteristics of this antigen are not disclosed to protect confidentiality. First, we introduce the

problem setting (Section 6.1), and then analyze the financial implications of yield uncertainty

(Section 6.2) and freeze periods (Section 6.3).

6.1 Problem Setting

Fill-and-finish operations have a fixed batch size of 0.25 million vials (mln VL). Fill-operations have

a maximum production capacity of 6 mln VL per month, and hence this leads to the action space

U1 = {0, 0.25, 0.5, . . . , 6} mln VL. Finish-operations have a maximum production capacity of 8 mln

VL per month with the action space U2 = {0, 0.25, 0.5, . . . , 8} mln VL. As an operational policy,

the company does not store more than 15 mln VL, which sets an upper bound on the state space.

To protect confidentiality, we use representative values for model inputs. Holding cost is h1 = $0.5

per vial in fill-operations, and h2 = $0.8 per vial in finish-operations. Penalty cost of shortage

is p2 = $6.2 per vial, and includes the cost of internal planning and scheduling efforts to meet

backorders, cost of disappointing clients and its impact on future orders, etc. Statistical analysis

of monthly sales data over the last two years and forecast information for the upcoming two years

indicate that monthly demand can be modelled with a normal distribution (see the electronic

companion for the parameters of demand distribution used in the numerical analysis).

19



Analysis of two years of production data showed that the random yield fraction was uniformly

distributed for fill-operations in the interval [0.70, 0.90]. Therefore, we obtain the mean E[R] = 0.80

and coefficient of variation CV [R] = 0.07. In compliance with industry standards, data analysis

showed that no significant yield losses were encountered in finish-operations.

In alignment with the current production planning strategy of MSD AH, we consider a planning

horizon of T = 24 months, where each decision epoch corresponds to the beginning of a month.

In practice, MSD AH’s planning horizon is often one or two years. This is mainly because the

biopharmaceutical market is highly dynamic and non-stationary, and hence it is often challenging

to generate reliable policies for a period longer than one or two years (see Section 3 and 5.1 for

further details). To check the robustness of optimal actions to different lengths of planning horizon,

we conducted additional numerical experiments. We concluded that the effect of the length of the

planning horizon on optimal production decisions at the beginning of the planning horizon decreases

as T approaches 24 months. Nevertheless, the rolling horizon approach presented in Section 5.2

(and numerically evaluated in Section 6.3) enables to plan for the foreseeable future in practice.

All numerical experiments use a discount factor of γ = 0.99. This problem setting is referred as

base case in our numerical analysis. We solve the problem with backward induction, and use a

discretization scheme of the state space based on the minimum allowed batch size. We also tested

the sensitivity to finer discretization schemes, and concluded that optimal cost and policies were

robust to finer discretization levels.

6.2 Insights on Yield Uncertainty

The main aim of this section is to help operations managers understand the impact of yield uncer-

tainty on optimal costs and decision zones. For this purpose, we focus on the following character-

istics of the yield random variable R: (i) average yield, and (ii) variability in yield. In compliance

with industry data, we use uniform distribution for the fraction R, and define the following sce-

narios: Base case (E[R] = 0.80 and CV [R] = 0.07), no yield loss (deterministic R = 1), lower

yield loss (E[R] = 0.90 and CV [R] = 0.07), higher yield loss (E[R] = 0.70 and CV [R] = 0.07),

no variability (deterministic R = 0.8), higher variability (E[R] = 0.80 and CV [R] = 0.14), and

all-or-nothing yield (E[R] = 0.80 and CV [R] = 0.50; i.e., R = 1 with probability 0.8 and R = 0
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Table 1: Sensitivity of V0(s1,0, s2,0) to the average yield in fill-operations

s1,0 s2,0 Base Case Zone No %∆ Lower %∆ Higher %∆
yield losses yield losses yield losses

0 -2 314 I 140 55% 173 45% 781 -149%
3 -2 173 I 99 43% 119 31% 648 -274%
6 -2 128 II 80 37% 96 25% 508 -296%
9 -2 129 II 82 37% 97 25% 420 -224%
0 0 196 I 97 50% 120 39% 691 -252%
3 0 121 I 70 42% 86 29% 531 -341%
6 0 116 II 68 41% 83 28% 437 -278%
9 0 117 III 70 41% 85 27% 345 -195%
0 2 136 I 77 43% 95 30% 580 -327%
3 2 116 II 68 41% 84 28% 466 -303%
6 2 117 II 69 41% 85 27% 376 -221%
9 2 119 III 72 40% 88 27% 295 -147%
0 4 116 II 68 41% 84 28% 495 -327%
3 4 117 II 70 41% 85 27% 407 -247%
6 4 119 III 72 40% 87 27% 319 -168%
9 4 122 III 75 38% 91 26% 259 -112%

with probability 0.2). These scenarios are defined based on input from practitioners to represent

a variety of cases from the industry. The scenarios no yield loss, lower yield loss and higher yield

loss enable us to study the impact of average yield, while the scenarios no variability, higher vari-

ability, and all-or-nothing yield enable us to study the impact of yield variability on operational

performance.

6.2.1 Financial Implications of Yield Uncertainty in Fill-Operations

Our objective is to assess the financial implications of yield uncertainty. For this purpose, Table 1

and Table 2 report the optimal value function V0(s1,0, s2,0) under different scenarios defined above.

For brevity, we report the optimal value function at representative states (s1,0, s2,0) in the first

planning activity (i.e., at the 0-th decision epoch). For completeness, the optimal value function

associated with other states are reported in the electronic companion. The zone to which a selected

state belongs to may be different in each scenario. For brevity, Table 1 and Table 2 show the

specific decision zones associated with selected states under the base case setting (at t = 0). For

each state, the column labelled “%∆” denotes the percentage difference in the value function of a

given scenario compared to that of the base case (i.e., a positive value represents a cost reduction

with respect to the base case, whereas a negative value denotes an increase in costs).
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Table 2: Sensitivity of V0(s1,0, s2,0) to yield variability in fill-operations

s1,0 s2,0 Base Case Zone No %∆ Higher %∆ All-or-Nothing %∆
variability variability

0 -2 314 I 198 37% 352 -12% 414 -32%
3 -2 173 I 127 27% 211 -22% 322 -86%
6 -2 128 II 102 20% 147 -14% 257 -100%
9 -2 129 II 104 20% 144 -11% 231 -78%
0 0 196 I 130 34% 240 -22% 338 -72%
3 0 121 I 92 24% 145 -20% 260 -116%
6 0 116 II 90 22% 130 -13% 224 -94%
9 0 117 III 91 22% 131 -12% 209 -79%
0 2 136 I 102 25% 167 -23% 283 -108%
3 2 116 II 90 22% 131 -13% 233 -102%
6 2 117 II 91 22% 132 -12% 213 -82%
9 2 119 III 94 21% 133 -11% 207 -73%
0 4 116 II 90 22% 134 -16% 245 -111%
3 4 117 II 91 22% 132 -12% 218 -86%
6 4 119 III 94 21% 133 -12% 209 -75%
9 4 122 III 97 20% 135 -11% 207 -69%

First, we compare the performance of the base case against the scenario with no yield losses in

Table 1. This comparison helps quantify the maximum cost reduction that could be achieved in

practice by eliminating the production loss in fill-operations (i.e., it provides a benchmark for the

maximum room for improvement). Comparing the optimal value functions of these two scenarios

in Table 1, we observe that 38% to 55% improvement in cost could be achieved in practice (i.e.,

the room for improvement ranges between 20% and 60% including all other states that are not

presented in Table 1). Nevertheless, analysis of the scenario with a lower yield loss continues to

show a large room for improvement (i.e., 25% to 45% improvement) in practice, by increasing the

average yield E[R] from 0.80 to 0.90. In addition, we see that the percentage differences between

the value functions of the base case and the case with higher yield losses are higher than those of

the base case and the case with lower yield losses. For practitioners, this can be interpreted as a

diminishing improvement in expected costs, as the average yield increases (while the coefficient of

variation remains the same). For practitioners, understanding this behavior might have important

implications, as completely eliminating the yield losses could be challenging (or infeasible) because

of the complex biological dynamics and limitations in the underlying freeze-drying technologies.

To gain further insights, we analyze the impact of yield variability in fill-operations. First, we

compare the performance of the base case against the scenario with no variability in Table 2.
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Note that both of these scenario assume the same average yield, E[R] = 0.80. Therefore, this

comparison allows us to assess the financial implications of having no yield variability in practice.

In Table 2, we observe that the percentage difference between the optimal value functions of these

two scenarios ranges between 20% and 37% (a range of 10% to 40% improvement is observed based

on all states on the state space). For operations managers, this indicates that controlling the

yield variability can lead to a large room for improvement in current practice. This observation

is further substantiated by comparing the base case against the scenario with higher variability.

Note that both of these scenarios have the same mean but the coefficient of variation is twice

larger in the higher variability case. In this setting, yield variability continues to exert a high

impact on costs (i.e., the expected cost increases by 11% to 23% as the coefficient of variation

doubles in Table 2. The room for improvement remains the same for other states that are not

presented in Table 2). Nevertheless, the case with all-or-nothing exerts the highest increase in

costs, as it involves the highest variability among scenarios considered in this analysis. These

results indicate that controlling the yield variability can be a critical aspect for biopharmaceutical

process improvement projects.

In addition, we compare the scenario with no yield losses (Table 1) against the one with no vari-

ability (Table 2). Note that both of these scenarios assume zero variability but vary in terms of

their yield losses (i.e., R = 1 for no yield losses case and R = 0.8 for no variability case). This

comparison indicates that 11% to 34% improvement in the optimal value function can be achieved

(including states that are not covered in the tables) by eliminating the yield losses. This indicates

that controlling the average yield losses can be critical for practitioners.

From a practical perspective, controlling the mean and variability of yield uncertainty could be

challenging because of the complex biological and chemical dynamics of the underlying freeze-drying

processes. However, these processes can be partly controlled and improved using the guidelines for

Quality-by-Design and Process Analytical Technology (Rathore and Mhatre 2011). These guidelines

help to standardize and optimize some of the controllable input parameters of bio-processes, and

are especially known to help control batch-to-batch variability. In Tables 1 and 2, the corresponding

financial figures from real-world data are not disclosed for confidentiality. However, in a typical

large-scale biopharmaceutical production setting, such a room for improvement might indicate a
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Figure 4: Decision zones and optimal actions under the base case (color online)

six-figure reduction in the expected costs. Overall, our analysis provides a quantitative approach

for evaluating the financial implications of yield uncertainty in fill-operations, and indicates a large

room for improvement in current practice.

6.2.2 Analysis of Decision Zones

A visual representation of the decision zones obtained under the base case is provided in Figure 4.

To gain further insights, our main objective in this section is to understand how the decision zones

expand or shrink as a response to yield uncertainty in fill-operations. For this purpose, we define

the measure fraction of state space (Θ) in the truncated state space of numerical experiments (i.e.,

s1,0 ∈ [0, 15] mln VL and s2,0 ∈ [−8, 8] mln VL). This measure denotes the ratio of the number

of states belonging to a specific decision-zone to the total number of states in the state space.

Therefore, the measure Θ helps to quantify the relative size of a decision zone. Table 3 summarizes

the results.

In Table 3, we observe that Zone I expands and Zone III shrink as the yield uncertainty becomes

higher in the system (i.e., as the average yield losses or process variability increase). This indicates

that the fill-operation tends to buffer against uncertainty by increasing its production amounts. In

contrast, finish zones exert a different response to yield uncertainty. For example, Zone I of finish-

operations tends to shrink while Zone III expands as the average yield losses or yield variability

increases. This implies that finish-operation responds to the yield uncertainty of fill-operations by
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Table 3: Size of decision zones in response to yield uncertainty in fill-operations (in Θ)

Base Case No Lower Higher No Higher All-or-Nothing
yield losses yield losses yield losses variability variability

Fill zones
Zone I 0.35 0.28 0.30 0.91 0.33 0.46 0.78
Zone II 0.27 0.31 0.30 0.08 0.26 0.26 0.16
Zone III 0.38 0.41 0.41 0.01 0.41 0.28 0.06

Finish zones
Zone I 0.18 0.18 0.18 0.15 0.18 0.17 0.18
Zone II 0.25 0.24 0.24 0.29 0.27 0.25 0.25
Zone III 0.37 0.29 0.30 0.39 0.31 0.38 0.34
Zone IV 0.21 0.28 0.28 0.17 0.24 0.20 0.23

reducing its production amounts. The underlying intuition can be associated with several factors.

For example, the cost of holding inventory in the finish station is more expensive than the cost of

holding inventory in the fill station. In addition, note that the system already buffers against yield

uncertainty of fill-operations by increasing the production amounts of fill-operations (i.e., Zone I of

fill expands in Table 3 as the yield uncertainly increases).

6.3 Insights on Freeze Periods

To understand the impact of freeze period on costs and policies, the base case is solved with a

freeze period of length L ∈ {2, 3, 4, 5}. Note that freeze periods with L ≥ 6 are not considered in

the numerical analysis, as they are not practical in our specific production setting. Currently, MSD

AH uses a freeze period of L = 2. We consider planning activities for one year, i.e., ω ∈ {1, ..., 12}.

However, we also tested the sensitivity of optimal costs to longer planning activities and concluded

that our insights are similar for a longer horizon of planning activities. At each planning activity,

the biomanufacturer uses the most recent forecasts and generates a production plan for a planning

horizon of two years, T = 24 (i.e., in alignment with Section 6.1 and 6.2). To assess the impact of

freeze periods at MSD AH, we used historical sales data and their corresponding forecast files (see

the electronic companion for further details on the demand distribution). For example, the forecast

file of January 2016 is used in the first planning activity ω = 1, while the forecast file of December

2016 is used in the last planning activity ω = 12. Our main objective is to quantify the financial

impact of freezing the production decisions, and help practitioners to have a better understanding

on the trade-off between planning stability and flexibility.

To quantify the impact of freeze periods, we use the percentage change in the (T -period) expected
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Table 4: Percentage increase in the value function under different lengths L of freeze period

s1 s2 L = 2 L = 3 L = 4 L = 5

0 -2 0.0% 1.4% 4.0% 5.6%
3 -2 1.0% 10.6% 12.2% 19.6%
6 -2 6.1% 11.9% 18.2% 27.0%
9 -2 7.3% 12.9% 21.0% 30.0%
0 0 0.7% 6.8% 9.7% 15.3%
3 0 4.6% 8.2% 12.6% 19.5%
6 0 7.8% 18.5% 29.5% 42.0%
9 0 1.8% 18.6% 26.7% 36.3%
0 2 5.9% 11.9% 18.5% 29.9%
3 2 11.3% 18.7% 29.0% 39.7%
6 2 4.4% 34.8% 31.2% 45.2%
9 2 2.2% 19.0% 27.3% 34.8%
0 4 8.2% 16.0% 24.6% 36.4%
3 4 9.8% 17.2% 28.1% 40.2%
6 4 2.0% 16.8% 30.6% 43.9%
9 4 1.8% 14.4% 22.1% 25.8%

cost in a particular planning activity as a key performance metric. More specifically, for a given

freeze period of length L, Table 4 shows the percentage increase in the (24-period) expected cost

compared to the base case with no freeze periods at state (s1, s2) in the first decision epoch of the

planning activity ω = 6 (we consider this particular planning activity as an example that reflects a

situation halfway in the series of monthly re-planning activities considered in the case study). First,

we focus on the current practice, and assess the financial implications of using a freeze period of

length L = 2. Table 4 shows that the percentage increase in the optimal cost (compared to the base

case) can be up to 11.3% under a freeze period of length L = 2. Further analysis shows that this

increase can be up to 20% considering all other states that are not covered in Table 4. In addition,

we see that the percentage increases under L = 3 are at least 1.5 times higher compared to those

under L = 2. Therefore, financial implications of the freeze period become more pronounced as the

freeze period increases from two to three months.

Table 4 indicates that the percentage increase in costs gets higher in L for a fixed system state,

however, no specific trends were observed regarding the behavior of the percentage increase as a

function of the system state under a fixed L. On the other hand, at L = 2, we see that the highest

percentage increase is often attained in a system state where the net inventory is around 5 to 7

million vials – which often corresponds to states within Zone II. This behavior indicates that the
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demand information plays a more critical role in adjusting the production amounts in Zone II.

When the production schedule is frozen in advance, decisions are made based on older demand

information and can not be adjusted.

Results in Table 4 help operations managers understand the financial implications of the flexibility

loss due to freeze periods. In practice, biomanufacturers often deal with a complex trade-off between

planning flexibility and planning stability, and our analysis indicates that the current strategy of

adopting a two months of freeze period can lead up to 20% increase in the expected cost of fill-

and-finish operations considered in our specific case study. For practitioners, these results provide

a rigorous and quantitative approach for assessing the impact of freezing production schedules, and

enables an easier communication of planning strategies within the company.

7 Conclusions

Fill-and-finish operations include activities related to formulation, freeze-drying, filling, and sealing

an active ingredient into its final form. State-of-the-art technologies can deliver consistent produc-

tion yields in finish-operations. However, fill-operations remain to be a critical challenge in practice,

as it relies on complex and unpredictable biological processes, such as freeze-dry. This leads to yield

uncertainty in fill-operations. In addition, fill-and-finish operations are labor- and cost-intensive,

and require specialized handling with strict limitations on batch sizes and capacity. As a response

to these challenges, most biopharmaceutical companies tend to freeze their production decisions

for a predefined period of time. This allows companies to improve their visibility and stability in

manufacturing processes. However, using such freeze periods adds another level of challenge as it

reduces planning flexibility.

To address these problems, we develop a finite-horizon, discounted-cost Markov decision model

that optimizes the production decisions at biopharmaceutical fill-and-finish operations. The model

is then extended to optimize decision-making under freeze periods. We analyze the structural

properties of the optimal costs and policies, and show that the state space can be partitioned into

decision zones. More specifically, we show that optimal production decisions can be classified into

three decision zones for fill-operations, and four decision zones for finish-operations. These decision
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zones provide guidelines on optimal policies, and are easy to implement in practice.

We present an industry case study, and focus on evaluating the impact of yield uncertainty on

optimal costs and policies. In our specific case study, numerical experiments indicate that fully

eliminating the yield uncertainty in fill-operations can provide 20% to 60% improvement (depend-

ing on the current inventory levels) in the expected cost of fill-and-finish operations. In a typical

large scale biopharmaceutical setting, such a room for improvement could often lead to a six figure

reduction in costs. We note that companies can adopt new technologies to reduce yield uncertainty,

but fully eliminating the yield uncertainty might not necessarily be feasible because of technolog-

ical limitations. Nevertheless, our results provide a quantified business case to encourage further

development in this field. We also conclude that the financial implications of controlling the yield

variability can be as critical as controlling the mean yield losses themselves. In addition, numerical

experiments reveal insights related to the cost of freezing the production decisions. In our specific

case study, we observe that the current practice of adopting a two-month freeze period could lead

up to 20% increase in the expected costs of fill-and-finish operations.

This research has been conducted in close collaboration with MSD AH in the Netherlands. How-

ever, the true impact of this work extends beyond their operations, as it addresses common industry

challenges and trade-offs. Insights obtained from this research have also been shared with a larger

biotech community through working group sessions. Industry feedback indicates that most bioman-

ufacturers rely on expert opinion and MRP calculations that have limited ability in incorporating

the manufacturing challenges (e.g., yield and demand uncertainty) into decision-making. There-

fore, we believe that the optimization framework presented in this paper will help to improve

decision-making in practice.

The application of operations research (OR) methodologies to the biomanufacturing industry is still

in its infancy. However, biomanufacturers are realizing that they need to undergo a data-driven,

OR-based transformation to fully realize the benefits of bioscience research. Future work could con-

sider production and scheduling decisions for multiple products and/or multiple biomanufacturing

activities (i.e., fermentation, chromatography, filtration, and fill-finish). In addition, the model

can be extended to incorporate inventory spoilage into decision-making. We note that freeze-dried
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products (such as those considered in this paper) have long self lives. However, several biophar-

maceuticals, especially those in human health, might have limited shelf lives. Another potential

research stream could combine demand learning mechanisms with production planning decisions

for fill-and-finish operations.

References

Bach, Francis. 2019. Submodular functions: from discrete to continuous domains. Mathematical Programming

175(1-2) 419–459.

Bollopragada, S., Thomas E Morton. 1999. Myopic Heuristics for the Random Yield Problem. Operations

Research 47 713–722.

Chen, Xin. 2017. L\-convexity and its applications in operations. Frontiers of Engineering Management 2.

Clark, Andrew J, Herbert Scarf. 1960. Optimal policies for a multi-echelon inventory problem. Management

Science 6(4) 475–490.

Ehrhardt, R., L. Taube. 1987. An inventory model with random replenishment quantities. International

Journal of Production Research 25(12) 1795–1803.

Gong, Xiting, Xiuli Chao. 2013. Optimal control policy for capacitated inventory systems with remanufac-

turing. Operations Research 61(3) 603–611.

Gutka, Hiten, Krishna Prasad. 2015. Current Trends and Advances in Bulk Crystallization and Freeze-Drying

of Biopharmaceuticals. Springer New York, New York, NY, 299–317.

Han, Guanghua, Ming Dong, Xiaofeng Shao. 2012. Yield management with downward substitution and

uncertainty demand in semiconductor manufacturing. International Journal of Production Research

50(3) 743–756.

Henig, M., Y. Gerchak. 1990. The Structure of Periodic Review Policies in the Presence of Random Yield.

Operations Research 38(4) 634–643.

Huh, Woonghee Tim, Ganesh Janakiraman. 2010. On the optimal policy structure in serial inventory systems

with lost sales. Operations Research 58(2) 486–491.

Hwang, Juhwen, Medini R Singh. 1998. Optimal Production Policies for Multi-Stage Systems with Setup

Costs and Uncertain Capacities. Management Science 44(9) 1279–1294.

Inderfurth, Karl. 2004. Analytical Solution for a Single-period Production-Inventory Problem with Uniformly

Distributed Yield and Demand. Central European Journal of Operations Research 12(2) 117–127.

29



Janakiraman, Ganesh, John A Muckstadt. 2009. A decomposition approach for a class of capacitated serial

systems. Operations Research 57(6) 1384–1393.

Jiang, Ge, Abhinaya Thummala, Manpreet-Vick S Wadhwa. 2011. Applications of statistical regression and

modeling in fill–finish process development of structurally related proteins. Journal of pharmaceutical

sciences 100(2) 464–481.

Käki, Anssi, Juuso Liesiö, Ahti Salo, Srinivas Talluri. 2015. Newsvendor decisions under supply uncertainty.

International Journal of Production Research 53(3) 1544–1560. URL http://dx.doi.org/10.1080/

00207543.2014.952798.

Karlin, Samuel. 1958. One stage inventory models with uncertainty. Studies in the mathematical theory of

inventory and production 109–134.

Khairuddin, Nuur Laila, Norliza Abd Rahman, Nur Syafiqah Kamarudin. 2016. Design of fill and finish

facility for active pharmaceutical ingredients (api). Journal of Engineering Science and Technology

11(8) 1135–1154.

Kogan, Konstantin, Sheldon Lou. 2003. Multi-stage newsboy problem: A dynamic model. European Journal

of Operational Research 149(2) 448–458.

Langer, Eric. 2016. Fill/Finish Outsourcing. Pharmaceutical Technology 40(10) 74–77.

Li, Qing, Peiwen Yu. 2014. Multimodularity and its applications in three stochastic dynamic inventory

problems. Manufacturing & Service Operations Management 16(3) 455–463.

Martagan, Tugce, Ananth Krishnamurthy, Christos T. Maravelias. 2016. Optimal condition-based harvesting

policies for biomanufacturing operations with failure risks. IIE Transactions 48(5) 440–461.

Mazzola, J.B., W.F. McCroy, H.M. Wagner. 1987. Algorithms and Heuristics for Variable-Yield Lot Sizing.

Naval Research Logistics 34 67–86.

McLeod, Lorna D., S Anne Montgomery, Cheryl Scott. 2011. Fill and finish for biologics. BioProcess

International June. URL http://www.bioprocessintl.com/manufacturing/fill-finish/fill-

and-finish-for-biologics-316516/?pageNum=2.

Miller, Michael J. 2009. Quality risk management and the economics of implementing rapid microbiological

methods. European pharmaceutical review 2 66–73.

Nederlandse Biotechnologische Vereniging. 2018. Computers and bioprocess development.

https://nbv.kncv.nl/en/activities/nbv-detail-page/411/computers-bioprocess-development/about.

Date accessed March 28, 2018.

Noori, Hamid, Gerald Keller. 1986. One-period order quantity strategy with uncertain match between the

30



amount received and quantity requisitioned. INFOR: Information Systems and Operational Research

24(1) 1–11.

Papachristos, S., a. Katsaros. 2008. A periodic-review inventory model in a fluctuating environment. IIE

Transactions 40(3) 356–366.

Parker, Rodney P, Roman Kapuscinski. 2004. Optimal policies for a capacitated two-echelon inventory

system. Operations Research 52(5) 739–755.

Patro, Sugunakar Y, Erwin Freund, Byeong S Chang. 2002. Protein formulation and fill-finish operations.

Biotechnology Annual Review 8 55–84.
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Appendix: Proofs

Proof of Lemma 1. Notice that the L\-convexity of the function g(v, ξ) is equivalent to the L\-

convexity of the function ψ(v, ξr) in v and ξ. It follows from the definition of L\-convexity that

the latter is the case if

ψ





v1 − ε

. . .

vn − ε

ξr − ε




= f



v1 − ε− (ξr − ε)

. . .

vn − ε− (ξr − ε)


 = f



v1 − ξr

. . .

vn − ξr


 (10)

is submodular in v = (v1, . . . , vn) and ξ. Let h(v1, . . . , vn, ξ) denote the function f(v1−ξ, . . . , vn−ξ).

It is known that submodularity is invariant by separable strictly increasing reparameterizations,

that is, if ϕ(·) is a strictly increasing bijection, the function h(v1, . . . , vn, ξ) is submodular, if and

only if, the function h(v1, . . . , vn, ϕ(ξ)) is submodular (Bach 2019). It follows from Lemma 1 of

Zipkin (2008) that the function h(v1, . . . , vn, ξ) is submodular, and hence the result follows.

Proof of Theorem 1. (i) Notice that the terminal value function JT (w1, w2) is the sum of linear

functions and hence is L\-convex. We assume, as induction hypothesis, that the function Jt+1 is

L\-convex. From Lemma 1, we know that Jt+1(w̄1 − ξr, w2 − ξr) is L\-convex in w̄1, w2, and ξ for

r ≥ 0. Therefore, the function Jt+1(w̄1 − ξr − y, w2 − ξr − y) is submodular in w̄1, w2, ξ and y.

Since submodularity is invariant by separable strictly increasing reparameterizations, it is known

that the function Jt+1(w̄1 − ξr − y, w2 − ξr − d− y) is also submodular in w̄1, w2, ξ and y. Thus,

it follows from Proposition 3 of Chen (2017) that the function Jt+1(w̄1− ξr, w2− ξr− d) continues

to be L\-convex in w̄1, w2, and ξ for a constant d. Because the expectation operator preserves

L\-convexity, it follows that the objective function in the optimization problem

J̃t+1(w1, w2, ξ) = min
w̄1

E [Jt+1(w̄1 − ξR,w2 − ξR−Dt)] (11)

s.t. −m2b2 ≤ w̄1 − w1 ≤ 0

0 ≤ w̄1
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is also L\-convex in w1, w̄1, w2 and ξ. Consequently, it follows from Lemma 2(b) of Huh and

Janakiraman (2010) that the function J̃t+1(w1, w2, ξ) is L\-convex in w1, w2 and ξ. Furthermore,

consider the optimization problem

ft+1(w1, w2) = min
ξ

J̃t+1(w1, w2, ξ) (12)

s.t. −m1b1 ≤ ξ ≤ 0

It again follows from Lemma 2(b) of Huh and Janakiraman (2010) that the function ft+1(w1, w2) is

L\-convex in w1 and w2. Consequently, the value function Jt(w1, w2) in (6) is the sum of L\-convex

functions, and therefore, it is L\-convex, completing the induction.

(ii) Let ξ∗t (w1, w2) denote the largest minimizer of the objective function in (12) for some t.

Since the objective function in (12) is submodular (due to its L\-convexity) and the feasible

region forms a lattice, Topkis’ monotonicity theorem (Theorem 2.8.2, Topkis 1998) implies that

ξ∗t (w1, w2) is nondecreasing in w1 for a fixed w2, and it is nondecreasing in w2 for a fixed w1. Let

u∗1,t(s1, s2) = −ξ∗t (w1, w2), where the relations between w1, w2, s1 and s2 are already defined by

the state transformation. Since ξ∗t is nondecreasing in w1, and w1 is equal to s1, u∗1,t(s1, s2) is

nonincreasing in s1. Furthermore, since ξ∗t is nondecreasing in w2, and w2 is nondecreasing in s2,

u∗1,t(s1, s2) is nonincreasing in s2.

Proof of Theorem 2. We prove the result first for all-or-nothing type of yield uncertainty and

then for deterministic yield.

All-or-nothing yield. (i) The terminal value function JT (w1, w2) is the sum of linear functions and

hence is L\-convex. We assume, as induction hypothesis, that the function Jt+1 is L\-convex. From

Lemma 1 (with r = 1), we know that Jt+1(w̄1 − ξ, w2 − ξ) is L\-convex in w̄1, w2, and ξ and that

Jt+1(w1 − ξ, w2 − ξ) is L\-convex in w1, w2, and ξ. As shown in the proof of Theorem 1, for a

constant d, the function Jt+1(w̄1 − ξ, w2 − ξ − d) is L\-convex in w̄1, w2, and ξ, and the function

Jt+1(w1 − ξ, w2 − ξ − d) is L\-convex in w1, w2, and ξ. Thus, the function

q(w̄1, w1, w2, ξ; d) , P(R = 1)Jt+1(w̄1 − ξ, w2 − ξ − d) + P(R = 0)Jt+1(w1 − ξ, w2 − ξ − d)
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is L\-convex in w̄1, w1, w2, and ξ for a constant d. Because the expectation operator preserves

L\-convexity, it follows that the objective function in the optimization problem

J̃t+1(w1, w2, ξ) = min
w̄1

E [q(w̄1, w1, w2, ξ;Dt)] (13)

s.t. w1 − w̄1 ≤ m1b1

is also L\-convex in w1, w̄1, w2 and ξ. Consequently, it follows from Lemma 2(b) of Huh and

Janakiraman (2010) that the function J̃t+1(w1, w2, ξ) is L\-convex in w1, w2 and ξ. Furthermore,

consider the optimization problem

ft+1(w1, w2) = min
ξ

J̃t+1(w1, w2, ξ) (14)

s.t. −m2b2 ≤ ξ ≤ 0

w1 − ξ ≤ 0

It again follows from Lemma 2(b) of Huh and Janakiraman (2010) that the function ft+1(w1, w2) is

L\-convex in w1 and w2. Consequently, the value function Jt(w1, w2) in (8) is the sum of L\-convex

functions, and therefore, it is L\-convex, completing the induction.

(ii) Let ξ∗t (w1, w2) denote the largest minimizer of the objective function in (14) for some t.

Since the objective function in (14) is submodular (due to its L\-convexity) and the feasible

region forms a lattice, Topkis’ monotonicity theorem (Theorem 2.8.2, Topkis 1998) implies that

ξ∗t (w1, w2) is nondecreasing in w1 for a fixed w2, and it is nondecreasing in w2 for a fixed w1. Let

u∗2,t(s1, s2) = −ξ∗t (w1, w2), where the relations between w1, w2, s1 and s2 are already defined by

the state transformation. Since ξ∗t is nondecreasing in w1, and w1 is equal to −s1, u∗2,t(s1, s2) is

nondecreasing in s1. Furthermore, since ξ∗t is nondecreasing in w2, and w2 is equal to s2, u∗2,t(s1, s2)

is nonincreasing in s2. Thus, the result follows.

Deterministic yield. The result immediately follows from the analysis of the full-yield case (i.e.,

P(R = 1) = 1 under all-or-nothing yield uncertainty). In deterministic case, the yield is known

upfront, suppose its value is r. The optimal finish policy in the full-yield case, which is solved under

the finish capacity m2b2r, can be transformed (by multiplying with 1/r) to obtain the optimal finish
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policy of the case with yield r. Since this transformation keeps the monotonicity of the finish policy,

and the monotonicity of the finish for the full-yield case is already shown above, the result follows.
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Input Data

To protect confidentiality, we use representative values for the demand distribution. All numerical

experiments assume that monthly demand is normally distributed with a mean as shown in Table 5

and a variance of 380.000 vials. Columns in Table 5 represent different planning activities, ω ∈

{1, 2, 3, . . . , 12}. The base case scenario corresponds to ω = 1.

Table 5: Forecast information on monthly demand (in VL) in the planning activity ω for a planning
horizon of T = 24 months.

Planning Activity ω
Month (t) 1 2 3 4 5 6 7 8 9 10 11 12

1 3847716
2 4248145 4182300
3 3479217 4617549 3764070
4 3829893 3781757 5541059 4600530
5 4003045 4162927 3403581 4155794 5018760
6 4425974 4351136 3330342 4916284 4155794 4600530
7 4891326 4810841 5221363 4162927 4916284 4617549 3764070
8 4904895 5316659 6254094 3045795 4579220 3025406 5079304 5018760
9 4848854 5331407 5316659 6254094 5656477 3746634 3781757 5079304 2927610

10 5470426 5270494 5864548 6911656 3848673 3480909 3330342 2647230 4617549 2927610
11 5722559 5946115 4216395 4798267 6911656 5773010 5221363 4579220 4159933 3694039 4182300
12 5231710 6220172 7135338 5797543 5331407 5848325 3848673 5656477 3330342 4538109 5541059 2927610

13 4767716 5686641 5598155 7135338 3689346 6930830 3721661 3367589 4351136 4579220 4538109 4617549
14 5168145 5182300 5686641 7464207 5946115 5270494 5864548 4253327 5773010 5656477 4579220 4916284
15 4399217 5617549 6218760 4549313 4976138 4162280 5797543 4798267 5848325 5291925 4351136 5411805
16 4749893 4781757 6741059 4145840 6255305 6842190 4756892 5270494 5331407 4784993 4810841 4351136
17 4923045 5162927 3825406 5617549 4664070 3980649 5598155 4756892 6851642 5864548 4784993 4329757
18 5345974 5351136 4130342 4781757 4494039 6218760 5686641 4976138 6540726 3689346 6397689 6911656
19 5811326 5810841 4280909 5679220 6216284 6179304 4664070 6255305 4354121 5946115 4216395 3731985
20 5824895 6316659 5229757 6956477 6195513 5738109 6741059 6736990 6255305 7464207 6540726 3689346
21 5768854 6331407 6948325 5810841 5886250 6711805 4303581 3932284 5700530 3980649 8086224 6540726
22 6390426 6270494 6964548 5684993 6973010 4816022 5162927 6216284 6179304 4664070 3980649 8086224
23 6642559 6946115 6897543 7597689 5053327 7554094 5886250 6711805 5738109 4494039 5182300 6823969
24 6151710 7220172 5556892 5016395 5065126 7579990 6391925 4280909 4130342 5738109 4494039 4664070

25 6686641 6498155 6251503 8151642 7597689 8211656 5810841 4280909 4646634 6216284 7302814
26 7355305 7942190 9029949 7524592 5065126 6316659 5229757 5351136 5679220 5738109
27 6686641 9386224 5556892 4389346 5698267 6948325 7554094 6956477 4130342
28 6017977 7942190 6251503 7524592 4431985 6316659 6973010 5886250
29 8692633 5776138 6251503 7524592 6331407 5684993 4067589
30 8692633 7220172 8335338 7524592 8230830 5053327
31 4680649 5054121 4862280 4389346 6331407
32 4680649 8664207 6251503 5016395
33 5349313 7942190 6946115
34 5349313 6498155
35 5349313
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Supplementary Results

Optimal value function (Base Case)
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Figure 5: Plot of the optimal value function at t = 0 (Base Case)
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