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Abstract
Objective: Respiratory activity is an essential parameter to monitor healthy and disordered sleep,
and unobtrusive measurement methods have important clinical applications in diagnostics of
sleep-related breathing disorders. We propose a respiratory activity surrogate extracted from
wrist-worn reflective photoplethysmography validated on a heterogeneous dataset of 389 sleep
recordings. Approach: The surrogate was extracted by interpolating the amplitude of the PPG
pulses after evaluation of pulse morphological quality. Subsequent multistep post-processing was
applied to remove parts of the surrogate with low quality and high motion levels. In addition to
standard respiration rate performance, we evaluated the similarity between surrogate respiratory
activity and reference inductance plethysmography of the thorax, using Spearman’s correlations
and spectral coherence, and assessed the influence of PPG signal quality, motion levels, sleep stages
and obstructive sleep apnea.Main results: Prior to post-processing, the surrogate already had a
strong similarity with the reference (correlation= 0.54, coherence= 0.81), and reached respiration
rate estimation performance in line with the literature (estimation error= 0.76± 2.11
breaths/min). Detrimental effects of low PPG quality, high motion levels and sleep-dependent
physiological phenomena were significantly mitigated by the proposed post-processing steps
(correlation= 0.62, coherence= 0.88, estimation error= 0.53± 1.85 breaths/min). Significance:
Wrist-worn PPG can be used to extract respiratory activity, thus allowing respiration monitoring
in real-world sleep medicine applications using (consumer) wearable devices.

1. Introduction

The assessment of respiratory activity is an important aspect in monitoring healthy and disordered sleep. For
instance, it allows to distinguish central from obstructive apneas, i.e. respiratory events with and without
respiratory effort (Berry et al 2015, Vandenbussche et al 2015). The gold standard to measure changes in
respiratory effort during overnight polysomnography (PSG) is esophageal manometry. However, the
obtrusiveness and sensitivity to movement-generated noise of this technique, make thoracoabdominal
respiratory inductance plethysmography (RIP) the main respiratory effort indicator in daily practice. The
standard RIP set-up employs two belts that measure volume variations generated by respiratory movement
at the thorax and abdominal level.

Several studies showed that quantifying respiratory activity can improve unobtrusive sleep monitoring
approaches based on surrogate measures. Long et al reported that thoracic respiratory activity information
improved sleep/wake classification based on actigraphy, while Fonseca et al showed that including this
information improved sleep stage classification based on heart rate variability (HRV) (Fonseca et al 2015,
Long et al 2013). Bianchi et al reported that thoracic respiratory activity on its own can be used to estimate
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obstructive sleep apnea (OSA) severity (Bianchi et al 2014). Even when respiratory activity was extracted as a
surrogate, e.g. using ECG-derived respiration, it has been successfully used for automatic sleep staging and
obstructive sleep apnea monitoring (Li et al 2018, Varon et al 2015, Sadr de Chazal 2019).

With the advent of consumer wearable devices, such as smart-watches and fitness trackers, research on
their possible clinical use has increased as well, with a promise of reducing obtrusiveness as well as cost of
sleep monitoring (Penzel et al 2018, Bianchi 2018). Most of these wearables employ wrist-worn reflective
green light photoplethysmography (PPG). PPG assesses cardiovascular activity by optically measuring blood
volume variations in the microvascular bed. The morphological variations of the PPG pulses contain
information about the changes in the peripheral blood flow generated by various physiological processes,
including respiration. PPG signals recorded at the wrist have usually a lower quality than at other body
locations, such as earlobe or fingertip, however, they can be recorded via user-friendly devices that nowadays
are widely accepted by the population (Tamura et al 2014, De Zambotti et al 2016) Therefore, wrist-worn
reflective PPG is an attractive candidate for respiratory activity estimation during sleep in terms of
unobtrusiveness, acceptability, and richness of physiological information. However, the literature regarding
PPG respiration analysis mainly focuses on respiration rate estimation using transmissive PPG as part of
clinical SpO2 sensors. Moreover, these methods are mostly evaluated on small datasets (less than 100
participants, with recording duration lower than one hour) (Charlton et al 2016, Dehkordi et al 2018, Karlen
et al 2010). Charlton et al described most of these methods in a comprehensive review of respiration rate
estimation from transmissive PPG. These methods mainly consist of the following steps: (1) extracting
respiration signal surrogates based on distances between specific landmarks of the PPG pulses, (2) using
these surrogates to estimate the average respiration rate with an epoch-by-epoch time or frequency analysis,
and (3) post-processing the estimation (Charlton et al 2016). Even though respiration rate is a valuable
health indicator (Braun 1990), it is only a single aspect of respiration and only partially represents respiratory
activity during sleep and, especially, sleep-disordered breathing events.

A few researchers investigated the potential of using PPG to estimate respiratory activity as respiratory
effort. They employed a limited amount of participants during a protocolized respiratory test or used
pre-selected segments of the PPG signal (Addison 2016, Addison 2017, Khandoker et al 2013). During sleep,
the PPG signal is influenced by various physiological conditions and events (such as different sleep stages, as
well as sleep disorders and associated events) due to their effect on the respiratory activity, autonomic
nervous system activity and arterial stiffness (Allen 2007, Hickey et al 2015). Datasets collected in real-world
(clinical) settings, which contain a high variability of physiological conditions and events, are needed to
validate the potential of respiratory activity extracted from PPG closer to its clinical application.

While clinical transmissive PPG and reflective PPG in wearables are based on the same physiological
principle, they differ regarding the measured physical signal and the likelihood of artifacts (Tamura et al
2014). Therefore, findings and algorithms based on transmissive PPG need to be confirmed and validated
also on reflective PPG. Hartmann et al investigated the infrared light reflective PPG sensor at several body
locations, including the wrist (Hartmann et al 2019). However, their analysis focused on respiration rate
estimation on short protocolized recordings and used a different PPG light than the more adequate green
light PPG for wrist placement (Hartmann et al 2019, Maeda et al 2011). Unlike standard clinical transmissive
PPG, wrist-worn PPG sensors are usually accompanied by an accelerometer. This additional sensor can help
to discard part of the estimations influenced by movements, thus enhancing reliability and accuracy.

Here, we propose and characterize a respiratory activity surrogate obtained from overnight wrist-worn
reflective PPG recordings (PPG-RAS). The PPG-RAS was obtained by interpolating the amplitude of the
PPG pulses pre-selected using a previously published morphology-based pulse quality index (Papini et al
2018). The PPG-RAS was compared with the reference thorax RIP signal, i.e. the standard measurement of
respiratory activity during sleep used in clinical practice. This signal was chosen as a reference because it is
directly related to the intrathoracic pressure changes which generate the PPG respiratory component. In
order to compare the morphology of PPG-RAS and reference respiratory activity signal, we quantified their
similarity in the time and in the frequency domain, in addition to the standardly reported respiration rate
performance. We analysed the effect of the motion level and the quality of the PPG signal on the similarity
between the reference and the surrogate. Based on this analysis, we propose a post-processing methodology
for the PPG-RAS to further enhance its reliability and similarity with the reference. We enriched our analyses
by investigating the effect of different sleep stages and OSA severity on the measure, in a heterogeneous
sleep-disordered population close to the envisioned unobtrusive sleep monitoring application. This
population provides data with a wide spectrum of possible artifacts and confounding factors, in order to
provide a well-rounded picture of the PPG-RAS for wearable sleep monitoring applications.
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Table 1. Demographics of the participants expressed as average± standard deviation [range]. The OSA severity classes are none with
AHI< 5, mild with 5≤ AHI< 15, moderate with 15≤ AHI< 30, and severe with AHI> 30.

N [#] (male) 389 (245)
Age [years] 51± 15 [18 to−86]
BMI [kg/m−12] 28± 5 [17 to−86]
Average heartrate [bpm] 62± 9 [44 to−92]
Average respiration rate [breaths/min] 15± 2 [10 to−24]
Total sleep time [min] 396± 80 [36 to−580]
Wake [min] 106± 73 [10 to−436]
REM [min] 66± 28 [0 to−157]
N1 [min] 54± 28 [4 to−201]
N2 [min] 210± 54 [19 to−408]
N3 [min] 65± 36 [0 to−236]
Apnea hypopnea index (AHI) [events/h] 15± 17 [0 to−108]
Obstructive apnea index [events/h] 1± 4 [0 to−56]
Hypopnea index [events/h] 12± 12 [0 to−71]
None/mild/moderate/severe OSA cases[#] 125/123/87/54
Participants with > 1 central apnea per hour [#] 69
Participants with > 1 mixed apnea per hour [#] 28

2. Materials andmethods

2.1. Dataset
Recordings were selected from the SOMNIA database, a dataset from an ongoing data collection project at
Sleep Medicine Centre Kempenhaeghe (Heeze, The Netherlands). The SOMNIA database includes
unselected patients scheduled for a routine diagnostic PSG and is aimed to facilitate future research in sleep
medicine (van Gilst et al 2019). The SOMNIA study was reviewed by the medical ethical committee of the
Maxima Medical Center (Eindhoven, the Netherlands. File no: N16.074). All participants gave written
informed consent.

For this study, we planned to have a cohort of patients at least 50% of whom were diagnosed with
obstructive sleep apnea syndrome (with an approximately uniform severity distribution). Patients with a
primary diagnosis of central sleep apnea and Cheyne–Stokes breathing were excluded, as well as recordings
made during CPAP use. The final dataset consisted of 389 recordings, with the following primary diagnoses:
obstructive sleep apnea syndrome (226 cases), insomnia (108 cases) and sleep movement disorders (45
cases). Most of the participants had additional sleep comorbidities. The demographic data of the dataset are
reported in table 1.

The wrist-worn device employed in this research embedded a three-axial accelerometer and a reflective
PPG sensor with a light source consisting of two green light LEDs. This device was developed by Philips for
research purposes and it has been used in several other biomedical research efforts, e.g. on blood pressure,
sleep and atrial fibrillation monitoring (Radha et al 2019, Fonseca et al 2017, Eerikäinen et al 2018)
Measurement data included the following signals: wrist-worn green light reflective PPG (sampling frequency
32 Hz), wrist-worn accelerometry (128 Hz, dynamic range± 8 g), and the thorax RIP signal (128 Hz). The
RIP signal and the wrist-worn device signals were synchronized by aligning the IBIs extracted from PPG and
ECG (included in the PSG recording with the reference respiratory activity). Although this type of
synchronization is not ideal, it guarantees a synchronization error lower than one second (i.e. lower than the
average IBI in our dataset). In addition to the physiological signals, we used the sleep and respiratory
annotations made by expert sleep technicians from the Sleep Medicine Centre Kempenhaeghe (according to
the AASM 2015 guidelines (Berry et al 2015)). The signals were trimmed based on the scored PSG. When
present, the part of the signal before the lights were switched off in the test room was excluded. The thorax
RIP signal was filtered with a 3rd order zero-phase band-pass Butterworth filter with cut-off frequencies of
0.05 Hz and 0.6 Hz (breathing range of 3 to 36 breaths/min) and downsampled to 10 Hz in order to match
the respiratory activity surrogate described in the next section.

2.2. Extraction of the wrist-worn PPG respiratory activity surrogate
Our method is composed of four main parts: pulse segmentation, extraction of landmarks on the PPG
pulses, pulse-by-pulse quality evaluation and calculation of surrogate respiratory activity from the reliable
landmarks.

The PPG pulse segmentation was accomplished by adapting the technique described in our previous
papers (Papini et al 2017, Papini et al 2018). In summary, the technique consisted of filtering the PPG signal
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Figure 1. Flowchart of the proposed method. Each color identifies one of the steps described in the manuscript’s sections.

in order to remove all the non-heart-rate components, finding the local minima of the filtered signal and
using those to define the search area in which to find the start and the end of each PPG pulse. Finally, these
points are used to segment a differently filtered version of the original PPG signal in order to include more
cardiovascular information. Differently from our previous work, the second filtered PPG signal for this
research was obtained using a 3rd order zero-phase band-pass Butterworth filter with cut-off frequencies of
0.05 Hz and 10 Hz in order to include also the respiratory frequency (0.05 Hz corresponds to 3 breaths/min).

Once the pulses were segmented, the time and amplitude location of four landmarks were obtained for
each pulse (figure 2):

• foot: the starting point of the PPG pulse;
• end: the endpoint of the PPG pulse; normally corresponds to the foot of the next pulse;
• systolic peak: the maximum of the PPG pulse; and
• diastolic peak (also known as dicrotic wave peak): second inflection point after the systolic peak and before
the end of the PPG pulse (first inflection point is the dicrotic notch).

Pulses, and their associated landmarks, were morphologically rated using the PPG quality index
described in our previous research (Papini et al 2018): the quality index of each pulse was calculated by
evaluating its similarity to a pulse template extracted from 15-minutes segment of the PPG signal itself. The
template was obtained by using all the detected pulses in the segment, prior to estimating the pulse quality
index. The template was considered valid only when the average of the non-null pulse quality indexes was
above 0.9. In case the template was found to be invalid, the template was re-calculated by excluding the
pulses with the 20% lowest pulse quality index, and the quality of all pulses in the PPG portions was
re-assessed. If the template was still not valid, the algorithm used the template calculated in the previous
segment of the PPG signal or, if there was no previous template available, a null pulse quality index was
assigned to all pulses in the PPG signal portion. This quality index allows accounting for changes in the pulse
morphology while at the same time allowing abnormal pulses to be identified, such as those generated by
arrhythmic heartbeats. The PPG quality index calculation employed the same filters described in our
previous work. For this research, a quality threshold of 0.6 (quality index from 0, low quality, to 1, high
quality) was chosen based on the result of our previously published research in order to balance abnormal
pulse rejection and sensitivity to sinus rhythm pulses (Papini et al 2018).

The landmarks can be used to calculate respiratory activity surrogates by interpolating either their
amplitude, or the distance between consecutive landmarks (Charlton et al 2016). Each PPG pulse always had
four associated landmarks and we relied on the pulse quality index to reject the landmarks wrongly assigned
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Figure 2.Wrist-Worn PPG showing the detected landmarks. The ‘foot’ and the ‘end’ are usually overlapping, however each of
them can be missing because of the rejection of the pulse they belong to due, for instance, to artifacts.

to a corrupted PPG morphology. No procedure was applied to recover the rejected landmarks. We calculated
surrogates by linearly interpolating at 10 Hz the amplitude of each landmark and all possible distances that
can be obtained by pairing different landmarks. For instance, the surrogates related to the foot landmark
were obtained by interpolating the foot amplitude values and distance in terms of amplitude and time
between foot and end, foot and systolic peak, and foot and diastolic peak. In addition, we obtained surrogates
by combining the surrogates of the same nature (i.e. interpolation of the amplitude values, of the amplitude
distance and of the time distance) using principal component analysis and selecting the component with the
largest eigenvalue. Finally, each surrogate was filtered with a 3rd order zero-phase bandpass Butterworth
filter with cut-off frequencies of 0.05 Hz and 0.6 Hz (breathing rate of 3 to 36 breaths/min) (Charlton et al
2016). We opted for a 10 Hz sampling frequency in order to be consistent with the method of Long et al
(2014) used in this research to process the respiratory activity signals (reported in section 2.4).

The best candidate for respiratory activity surrogate was selected based on the respiration rate estimation
limits of agreement and bias (Charlton et al 2016), with the respiration rate calculated as described in section
2.4.

2.3. Post-processing of the wrist-worn PPG respiratory activity surrogate
The similarity between the PPG-RAS and the reference can be affected by the quality of the PPG signal and
by motion levels (Papini et al 2018). These factors can be easily calculated in an epoch-by-epoch manner
from our wrist-worn PPG device.

We derived an indicator of the PPG signal quality by calculating the median pulse quality index (mPQI)
over 30-seconds epochs. The median was chosen instead of the average because the quality index distribution
is not normal (bounded between 0 and 1 and tendentially skewed towards 1) (Papini et al 2018). Epochs with
less than ten pulse quality estimations were considered invalid and excluded from further analysis. A second
quality indicator was derived by calculating the ratio between the sum of the interbeat intervals (IBIs)
divided by the duration of the epoch (IBI coverage), i.e. 30 seconds. The IBIs were calculated from the foot
landmarks belonging to each normal sinus pulses (pulse quality index above 0.6). IBIs were excluded if
longer than 2 seconds or shorter than 0.5 seconds because they are physiologically very unlikely during
sleep (Mason et al 2007, Penzel et al 2003), or if the ratio of an IBI and its preceding value was larger than 1.5
because it was influenced by the presence of an ectopic beat (Papini et al 2019).

Movement levels were estimated using the signal measured with the accelerometer in the wrist-worn
device. Motion was quantified in so-called activity counts, consisting of a sum of the three accelerometer
signals, one for each axis, over a certain amount of time (30 seconds in our case) after the removal of the
gravity acceleration component. They are commonly used in physical activity monitoring and, especially
relevant for our case, for sleep and wake classification (Bonomi and Westerterp 2012, Long et al 2013).

The two PPG signal quality indicators and the activity counts can be thresholded to remove 30-seconds
segments of respiratory activity surrogate considered less reliable or likely having been influenced by
non-respiratory phenomena. Post-processed versions of the PPG-RAS were calculated by cumulatively
excluding the 30-seconds epoch signal with an mPQI lower than 0.8 (step Q), an IBI coverage lower than
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66% (step Q+C), and activity counts higher than 21 (step Q+C+A). The order of these three steps was
decided based on the drop in coverage they caused, i.e. from the one reducing least to the one reducing most
coverage (respectively, median coverage drops of 5%, 6%, and 17%). The mPQI threshold was chosen in
order to guarantee that fewer than 50% of the pulses had a high probability to be non-normal sinus
pulses (Papini et al 2018). The IBI coverage threshold allowed having most of the 30-seconds epochs covered
to extract the respiratory activity surrogate. The activity counts threshold was chosen based on the 90th
percentile of the activity counts during the N2, N3 and REM sleep stages, i.e. the stages with less movement
in our dataset and according to literature (Allena et al 2009).

2.4. Respiration rate estimation
To extract breathing rate, respiratory activity signals were pre-processed and each breath landmark (i.e.
beginning, peak, and end) located in order to calculate the required features. The pre-processing, described
by Long et al (2014), consisted of a series of filters to remove the baseline of the signal via median filtering
based on the distance between the beginning of the respiratory movement and its peak. The breath
landmarks were detected using the changes in sign of the signal derivative. Landmarks were excluded if the
sum of the time distance between the previous and successive landmarks was lower than the median time
distance between landmarks across the entire recording. In addition, landmarks were excluded when their
amplitude distance was lower than 15% of the median amplitude distance across the entire recording.

The respiration rate was calculated in breaths/min as the inverse of average time distance between the
beginning and the end breath landmarks, i.e. breath lengths, on 30-seconds epochs. A respiration rate
estimation was considered valid if a minimum of three breath cycles were present and rejected otherwise.
The respiration rate was derived in the same manner for the reference respiratory activity signal and the
PPG-RAS.

2.5. Data Analysis
2.5.1. Comparison of the respiratory activity signals
The reference respiratory activity signal and the PPG-RAS can have different morphology, depending for
example on the presence of respiratory events, changes in limb position during long recordings and different
baseline conditions differently affecting the amplitude of the two signals. For instance, a change in body
position would change the range of motion of thoracic movement while influencing the PPG because of
changes in local blood pressure, local variations in amount of venous blood and force with which the sensor
is pressed on the skin (Reisner et al 2008). In addition, different participants might have different vascular
mechanical properties that would influence the PPG signal relationship with breathing (Allen 2007, Tamura
et al 2014, Addison 2017, Nilsson 2013). Therefore, we evaluated the morphological similarity between the
reference respiratory activity signal and the PPG-RAS in the time and frequency domain using a windowed
approach. We calculated the Spearman’s correlation (ρs) and the average magnitude-squared coherence (Cxy)
epoch-by-epoch – with an epoch size of 30 seconds – on windows of the signals centered on the current
epoch. A window size of 30 seconds was chosen for ρs in order to reduce the influence of artifacts, while a
window of 90 seconds was chosen for Cxy to be able to estimate the spectral properties of the signal using
Welch’s method. The short calculation windows minimize the effect of local changes on the similarity metric,
making it more robust to, e.g. changes in body position or temporary loss of contact between the PPG sensor
and the skin. Spearman’s correlation was chosen instead of Pearson because the relationship between the two
respiratory activity signals is monotonic and non-linear. Both windowed metrics were used in a similar
evaluation approach as in literature by Widjaja et al (2012). The Cxy for a specific frequency f is calculated as

Cxy( f) =
PSDxy( f)2

PSDxx( f) ∗PSDyy( f)
(1)

where PSDxx and PSDyy are the power spectral densities of, respectively, the reference respiratory activity
signals and the PPG-RAS, and PSDxy is the cross power spectral density between the two. The parameter ρs

ranges from -1 to 1 and gives an indication of the strength and direction of the monotonic relationship
between the two variables. For each epoch, several ρs values were calculated by applying a maximum of 10
samples lag (i.e. 1 s) between the two respiratory activity signals; then the maximum value was taken as the
final ρs value (Widjaja et al 2012). This was done to account for possible time-shift between the respiratory
activity signals due to physiological or technical reasons, e.g. pulse arrival time and not perfect
synchronization between sensors. On average, the pulse arrival time (when calculated as the time difference
between the R-peak of an ECG heartbeat and the first derivative maxima of the PPG pulse rising slope at the
wrist) is approximately 270 ms (Rajala et al 2018) but it may vary due to, for instance, body movements,
arousals and the blood pressure dip occurring during sleep (Foo et al 2005, Katz et al 2003, Zheng et al 2016).
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Figure 3. Example of a reference respiratory activity signal and a PPG-RAS with a strong similarity (ρs = 0.86, Cxy = 0.96). (a)
The two respiratory activity signals in the Cxy calculation window (90 seconds), (b) scatter plot of the amplitude of the signals to
show their correlation, (c) power spectrum of the signal highlighting the region used to calculate the average Cxy, (d) the spectral
coherence between the two signals.

Although we could quantify and correct the lag between the respiratory activity signals, we cannot draw any
physiological conclusion from it because, with our experimental setup, it not possible to disentangle its
multiple physiological components and the misalignment due to signal synchronization technique used. The
risk of overlapping the nth breath of a 30-sec window of the reference respiratory activity with the (n± 1)th
breath of the corresponding 30-sec window of the PPG-RAS is minimal nevertheless, as the average breath
length during sleep is approximately 3.75 seconds (respiration rate of 16 breaths/min) (Gutierrez et al 2016).

The parameter Cxy ranges from 0 to 1 corresponding to the range between absent to complete spectral
coherence between the signals for a specific frequency. Widjaja et al calculated the average Cxy among the
frequencies surrounding the respiratory frequency with at least half of the maximum power. Instead, we
selected the frequencies to be averaged from those that had, in the reference respiratory activity signal, a
power higher than 20% of the maximum spectral power component. The calculation of the maximum and
the selection of the other frequencies were within the physical limits of the breathing range (0.05 to 0.6 Hz
corresponding to 3 to 36 breaths/min). This approach guaranteed that all the potentially relevant respiratory
information in the frequency domain was included and not only the frequencies close to the respiratory
frequency peak. The spectrum and Cxy were calculated with Welch’s method with fast Fourier transform
using a periodic Hann window on segments of 40 seconds, zero-padded to 1024 points and a 50% overlap.
Windows with less than three segments were excluded from the analysis, i.e. the corresponding epoch was
considered not valid. To give an idea of similarity metrics used, two examples taken from our data indicating
strong and weak similarity between the reference respiratory activity signal and the PPG-RAS are shown in
figures 3 and 4.

We evaluated the effect of the quality of the PPG signal and of the motion level on the similarity between
reference and surrogate respiratory activity. For Cxy, these parameters were computed on the central 30
seconds of the 90 seconds window used for the parameter calculation. We grouped the epochs in intervals
with a width of 0.1 (left-closed and right-open intervals) with respect to the mPQI and of the IBI coverage,
e.g. mPQI∈[0.6–0.7) and mPQI∈[0.7–0.8). This way, we were able to visualize the trend of ρs and Cxy with
boxplots of the created subgroups. We opted for a similar plot to describe the influence of the motion level;
the epochs were separated using 0, 21, 70 and 387 activity counts as boundaries for the groups (also in this
case left-closed and right-open intervals). The motion thresholds above 0 activity counts were based on the
90th percentile of the activity counts during the sleep stages N2+N3+REM, during N1, and during Wake,
i.e. from the most to the least ‘motionless’ stages of sleep (Wilde-Frenz and Schulz 1983, Gori et al 2004).

Finally, we calculated the per-participant median values of ρs and Cxy, and 30-seconds epoch coverage
when each step of our post-processing was applied and reported as median and interquartile range. The
effect of sleep stages and OSA severity on the similarity was analysed by separating the pooled 30-seconds
epochs according to the canonical sleep stages (i.e. Wake, REM, N1, N2, and N3) and OSA severity classes
(i.e. normal with AHI< 5, mild with 5≤ AHI< 15, moderate with 15≤ AHI< 30, and severe with AHI> 30.
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Figure 4. Example of a reference respiratory activity signal and a PPG-RAS with a weak similarity (ρs = -0.1, Cxy = 0.49). (a) The
two respiratory activity signals in the Cxy calculation window (90 seconds), (b) scatter plot of the amplitude of the signals to show
their correlation, (c) power spectrum of the signal highlighting the region used to calculate the average Cxy, (d) the spectral
coherence between the two signals.

When analysing the effect of OSA, we excluded the Wake epochs since they do not contribute to the OSA
severity estimation and they likely have low similarity. This analysis was done with and without our final
post-processing step (step Q+C+A) in order to highlight its effect on the performance.

2.5.2. Respiration rate evaluation
Breathing rate estimation performance was evaluated similarly to the algorithms described by Charlton et al
(2016). We calculated the per-participant average and standard deviation of the estimation error, and the
coverage probability for 2 breaths/min (CP2) with respect to the respiration rate estimated from the reference
thorax belt (using the same breath detections methods). The CP2 is defined as the percentage of estimations
with an absolute error lower than 2 breaths/min (Barnhart et al 2007). The performance was calculated with
and without each proposed post-processing step and median and inter-quartile range were reported.

2.5.3. Statistical analysis
The change in performance generated by each post-processing step was statistically tested against the
performance of the original PPG-RAS signal using a Mann–Whitney rank test (Mann and Whitney 1947).
Differences between the sleep stages and OSA severities were evaluated with a Kruskal–Wallis H test (Kruskal
and Wallis 1952), followed by a post-hoc Conover’s test with a Bonferroni correction to determine which
group was statistically different (Conover and Iman 1979). The performance changes for each sleep stage and
OSA severity generated by applying all three post-processing steps were evaluated with a Mann–Whitney
rank test (Mann and Whitney 1947). Analyses were done with a 0.05 p-value threshold to establish
statistically significant differences. We opted for non-parametric tests because the data were statistically
different from a normal distribution using the Shapiro-Wilk test (Shapiro Wilk 1965).

3. Results

The respiratory activity surrogate with the best breathing rate estimation performance was obtained by
interpolating and filtering the amplitude distance between the foot and the systolic peaks landmarks (table 2)
We restrict further analysis of similarity with the reference respiratory activity measures only to this
surrogate.

3.1. Comparison between reference and surrogate respiratory activity signals
The median and interquartile range per-participant of ρs and Cxy before post-processing are reported in the
first row of table 3 (post-processing ‘None’). For most participants, the value of ρs was on average above fair
(ρs > 0.4 for more than 75% of the participants), while Cxy indicated a strong coherence between the
spectrum of the reference and the PPG-RAS in the relevant frequencies of the reference signal.
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Table 2. Overall respiration rate estimation bias, standard deviation and limits of agreement (bias± 1.96*standard deviation) for the
three best performing respiratory activity surrogate candidates.

Pulse landmarks Bias Standard deviation Limits of agreement
candidates [breaths/min] [breaths/min] [breaths/min]

Amplitude distance foot-systolic peak 0.99 2.57 −4.05 — 6.03
Time distance foot-end 0.41 2.85 −5.18 — 6.00
Time distance foot-systolic peak 0.61 2.95 −5.17 — 6.39

Table 3. Per-participant coverage, median ρs, and median Cxy expressed as median [interquartile range], and the number of participants
with at least one hour of valid epochs for different post-processing.

Post-processing Per-participant Per-participant Per-participant Participants with > 1 h
steps coverage [%] ρs Cxy of valid epochs [#]

None 100.0 [100.0-100.0] 0.54 [0.44-0.64] 0.81 [0.72-0.88] 389
Step Q 95.4 [90.3-97.5] 0.57 [0.45-0.66] 0.83 [0.74-0.89] 387
Step Q+C 89.9 [81.1-93.8] 0.59 [0.47-0.67] 0.85 [0.76-0.90] 386
Step Q+C+A 75.3 [64.1-84.2] 0.62 [0.50-0.72] 0.88 [0.82-0.92] 384

Post-processing steps: None= no post-processing, step Q=mPQI > 0.7, step Q+C= step Q & IBI coverage > 66%, step Q+C+A=

step Q+C & activity counts > 21.

Statistically different (p< 0.05) from the performance without post-processing (None).

Table 4. Per-participant respiration rate estimation performance in terms of average and the standard deviation and CP2 expressed as
median [interquartile range].

Per-participant Per-participant
average estimation standard deviation

Post-processing Per-participant error of estimation error Per-participant
steps coverage [%] [breaths/min] [breaths/min] CP2 [%]

None 87.4 [78.8-93.7] 0.76 [0.27-1.44] 2.11 [1.80-2.55] 70.4 [59.2-78.6]
Step Q 84.1 [74.3-91.7] 0.71 [0.22-1.37] 2.06 [1.73-2.45] 71.4 [60.7-79.4]
Step Q+C 80.1 [68.0-88.5] 0.62 [0.12-1.22] 1.96 [1.60-2.30] 73.7 [63.1-81.1]
Step Q+C+A 69.9 [54.8-79.4] 0.53 [0.05-1.12] 1.85 [1.44-2.19] 76.1 [66.1-84.2]

Post-processing steps: None= no post-processing, step Q=mPQI > 0.7, step Q+C= step Q & IBI coverage > 66%, step Q+C+A=

step Q+C & activity counts > 21.

Statistically different (p< 0.05) from the performance without post-processing (None).

The similarity was influenced by the quality of the PPG signal and by motion levels, as shown in figure 5.
Most epochs had a high mPQI (0.7 or more for 89% of epochs) and an average IBI coverage (0.5 or more for
84% of epochs). The similarity increased along with the increase of the two factors describing the quality of
the PPG signal. As expected from sleep recordings, most of the epochs consisted of low motion levels (91% of
epochs had activity counts< 70). Motion level affected ρs and Cxy negatively: an increase in movement
activity coincided with a decrease in morphological similarity. Already from a mild motion level (70> activity
counts≥ 21) the median ρs and the median Cxy decreased more than 60% respective to the null motion level
(activity counts< 21). For medium and high movement levels (387> activity counts≥ 70 and activity
counts≥ 387) the similarity between the reference respiratory activity and the PPG-RAS was mostly weak
(median ρs < 0.3). When post-processing was applied, the similarity between the respiratory activity signals
improved, e.g. the first interquartile of the similarity metrics increased up to 14% (table 3). With each
post-processing step, the similarity between the signals increased and coverage decreased.

3.2. Respiration rate performance
The results for respiration rate estimation with different steps of post-processing are summarized in table 4.
The coverage without post-processing was loe Orphanidower than 100% because the respiration rate
estimation was performed only for epochs with at least three breathing cycles. Similarly to ρs and Cxy, each
post-processing step increased the performance (lower average and standard deviation of the estimation
error, and higher CP2) at the cost of epoch coverage. We measured a 30% drop in coverage in the lowest
interquartile between no post-processing (‘None’) and when the final post-processing step (‘step Q+C+A’)
was applied.
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Figure 5. Epoch-by-epoch Spearman’s correlation and spectral coherence for different values (x-axis) of (a) mPQI, (b) IBIs
coverage and (c) motion level. The boxplots show median and interquartile range. The whiskers are 1.5 times the corresponding
quartile, and points outside the whiskers are omitted since considered outliers.

3.3. Performance per sleep stage
Different degrees of similarity between the reference respiratory activity signal and the PPG-RAS were found
when the 30-seconds epochs were grouped according to sleep stages (figure 6). The lowest performance was
observed in Wake, followed by stage N1 sleep. All ρs and Cxy differences between sleep stages were statistically
significant (Kruskal–Wallis H and Conover’s tests p< 0.05). Applying the post-processing steps resulted in a
statistically significant increase in performance for each sleep stage (Mann–Whitney rank test p< 0.05).
Epochs scored as Wake and N1 had the largest increase in ρs and Cxy with, respectively, 28% and 12%
increments of the median ρs and 23% and 11% increments of the median Cxy.
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Figure 6. Epoch-by-epoch Spearman’s correlation and spectral coherence for different sleep stages (in parenthesis the number of
epochs). (a) and (b) before post-processing; (c) and (d) after the final post-processing step (step Q+C+A) were applied. The
boxplots show the median and interquartile range. The whiskers are 1.5 times the corresponding quartile, and points outside the
whiskers are omitted, since considered outliers.

Figure 7. Epoch-by-epoch Spearman’s correlation and spectral coherence for different OSA severities (in parenthesis the number
of epochs). (a) and (b) before post-processing; (c) and (d) after the final post-processing step (step Q+C+A) were applied. The
boxplots show the median and interquartile range. The whiskers are 1.5 times the corresponding quartile, and points outside the
whiskers are omitted, since considered outliers.

3.4. Performance per OSA severity
We found a statistically significant difference in similarity between the reference respiratory activity signal
and the PPG-RAS for each set of epochs grouped according the OSA severity class (Kruskal–Wallis H and
Conover’s tests p< 0.05) (figure 7). The participants without OSA had the higher Cxy; instead mild and
moderate OSA cases had a higher ρs, especially after the post-processing was applied. For both similarity
metrics, the epochs belonging to participants with severe OSA had the lowest values. N2 was the sleep stage
most present in epochs grouped per OSA severity (over 50% of sleep time). The epochs belonging to severe
OSA cases had the least amount of N3 (13% of sleep time) with respect to the other OSA severity classes
(normal 18%, mild and moderate 16%). The performance for each OSA severity group significantly
increased when the post-processing was applied (Mann–Whitney rank test p< 0.05). Epochs belonging to
severe OSA had the largest increase in ρs and Cxy with 11% and 9% increments of median ρs and median Cxy.
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4. Discussion

Extracting respiratory activity information from wrist-worn PPG could represent an important step towards
new unobtrusive monitoring solutions for sleep and, especially, for sleep-disordered breathing conditions.
Here, we propose a PPG-RAS: respiratory activity surrogate extracted from the wrist-worn reflective PPG
signal. We assessed the morphological similarity between the reference thoracic respiratory activity signal
and the PPG-RAS in the time and frequency domain using, respectively, the Spearman’s correlation ρs and
the spectral coherence Cxy. Results showed that PPG-RAS compares well with the reference thoracic
respiratory activity signal. The proposed post-processing further strengthened performance using
parameters that can be easily obtained in wrist-worn PPG devices, i.e. the quality of the PPG signal and the
acceleration that is usually measured with this type of devices.

We found that PPG signal quality and motion levels influenced the performance of PPG-RAS. A low
mPQI entails that most of the PPG pulses are rejected and, therefore, there are fewer data to calculate the
respiratory surrogate. However, the mPQI is not only informative on the number of usable pulses, but also
on the quality of the pulses included in the calculation. In fact, even when mPQI was just above the threshold
used for pulse rejection (i.e. 0.6-0.7 interval), the similarity between the reference and the surrogate was weak
(ρs < 0.3 and Cxy < 0.5, figure 5(a)). The IBI coverage complements the mPQI as a quality indicator because
it is a direct measure of the number of pulses available for the surrogate extraction. The relationship between
IBI coverage and performance (figure 5(b)) did not present the same sharp increase seen for the mPQI
(figure 5(a)). This is because even when the IBI coverage was mediocre, there might have been enough
high-quality pulses to accurately estimate the surrogate. The respiratory frequency range (upper limit
0.6 Hz) is generally lower than the heartbeat frequency range (lower limit 0.5 Hz), therefore even the
exclusion of some pulses usually leaves enough points to describe the respiratory activity signal. The
relationship between motion levels and respiratory activity signal similarity confirmed that the more quiet
sleep is, the easier it is to accurately capture respiratory activity with a wrist-worn sensor (figure 5(c)).

Our three-step post-processing allows a trade-off between ensuring morphological similarity of the
respiratory activity estimate with the reference, and coverage. Inevitably, some of the recordings ended up
having a low number of epochs after applying all post-processing steps (table 3). This was expected given the
dataset: the real-world nature of the recordings implies the presence of a higher number of artifacts in the
collected signals when compared with a dataset acquired in a protocolized, well-controlled laboratory
setting. It is also important to consider that a real-world clinical dataset of this size comports having a wide
variety of characteristics, including participants with comorbidities or medication affecting the
cardiovascular system, such as cardiac arrhythmias or hypertensive medication (Papini et al 2018, Allen 2007,
Castaneda et al 2018). These factors may play a detrimental role when cardiovascular signals are used to
extract other measurements, such as respiration in the current case. Nevertheless, the method and the
post-processing proposed were able to derive a surrogate with a consistent match with the reference, as
suggested by the interquartile range of the performance (table 3 and table 4).

To our knowledge, there is no previous work on reflective, green-light, wrist-worn PPG for the extraction
of a respiratory activity surrogate and only one regarding respiration rate estimation with similar
measurements. The device and method proposed by Renevey et al (2018) extracted respiration rate from 31
full-night sleep laboratory recordings belonging to seven healthy participants wearing two wrist-worn PPG
devices. Their respiration rate estimation method had a mean absolute error of 0.8 [0.5–1.2] breaths/min
(median and interquartile range). Our mean absolute errors were 1.50 [1.13–2.07] without post-processing,
and 1.24 [0.87–1.72] breaths/min with full post-processing. Having multiple recordings from the same
healthy participant, and even from the same measurement, lowered the variability of the dataset used by
Renevey et al (2018) and most likely contributed to a lower estimation error with respect to our method.
Besides, the result difference could have been enhanced by their manual selection of the recordings based on
the quality of PPG and reference signals (56 recordings were initially collected) that was not performed on
our dataset in order to provide performance close to the real application scenario. Apart from this research,
the comparison with the literature is limited to methods tested with other types of setups and sensors, and
results have to be interpreted with caution. Also Chang et al (2018) and Park and Lee (2019) proposed
respiration rate estimation methods for wrist-worn green light PPG. Their methods, although interesting
from a signal processing point of view, were evaluated on datasets considerably different from ours in terms
of size, variability and similarity to the real-world application. The method proposed by Chang et al (2018)
achieved higher respiration rate estimation performance than our method; however, they evaluated their
method on 75 protocolized five-minutes recordings. Instead, we achieved similar performance to the method
proposed by Park and Lee (2019) that was tested on 30 recordings lasting five minutes from five young
healthy participants. Our method could estimate breathing rate to a level in line with the extensive literature
using other types of PPG sensors even when post-processing was not applied. We were able to estimate the
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respiration rate with high coverage especially considering the real-world dataset used (Charlton et al 2016).
Using the post-processing steps allowed a significant increase in the respiration rate estimation performance,
at the expense of the coverage. When our final post-processing step (step Q+C+A) was applied, the coverage
drop came with a moderate increase in respiration rate performance (e.g. 14% for the CP2 lowest
interquartile). Therefore, especially for breathing rate estimation, choosing the post-processing steps should
be done according to the application requirements, e.g. choosing to include the final post-processing step
only when a high estimation accuracy is required.

We are not the first to propose a post-processing method in this field. However, most methods described
in literature aim to improve breathing rate estimation and not the respiratory activity surrogate extraction
per se (Charlton et al 2016). For instance, most of the methods proposed by Charlton et al either merge
several estimations and exclude those with high disagreement (Karlen et al 2013) or smoothen the estimation
based on previous values (Lazaro et al 2013). We tested these two approaches, finding that they did not
improve respiration rate estimation performance of our method. It should be noted that these described
methods were developed and tested for a different type of PPG sensor and a different application scenario.
Here, we propose a different post-processing philosophy that does not rely on the output measurement itself.
Instead, it is exclusively based on the characteristics of the PPG signal and the phenomena influencing it, and
therefore independent of possible errors in the calculation of the output, whether it is respiratory activity or
breathing rate.

Previously (Papini et al 2018), we showed that a quality index based on correlation (see Orphanidou et al
2014, used by Charlton et al 2016) tends to be less precise than our pulse quality index because it is less
resilient to the presence of artifacts and, especially, of arrhythmic beats. In addition, we removed individual
pulses with low quality after the PPG segmentation and only excluded epochs having mostly low-quality
pulses during post-processing (by using the median quality instead of the average quality). This allowed
epochs with only a few heavily corrupted pulses to still be used in the estimation of respiration without being
influenced by low-quality pulses, thus increasing the performance with a low impact on coverage. Relying on
a resilient pulse quality index and post-processing tuned specifically for wrist-worn PPG is particularly
important for methods to measure patients overnight, since factors detrimentally influencing the estimation
are likely to occur and an opportune coverage has to be guaranteed.

The PPG amplitude variation used to derive PPG-RAS is related to changes in the per-heartbeat cardiac
output generated with each breath (Karlen et al 2013, Buda et al 1979): during inspiration, cardiac output
decreases, while during expiration it increases. However, cardiac output is also driven by sympathetic and
parasympathetic activity, with the former increasing it (Calvert and Lefer 2012). Therefore, the contribution
of respiration activity to cardiac output is proportionally weaker during sleep stages where sympathetic
activity is higher (or parasympathetic activity is lower). In addition, blood pressure and the vascular tone
decrease with progression through the three non-REM sleep stages and from wake to sleep (Somers et al
1993, Tobaldini et al 2013), increasing the impact of respiratory activity on the PPG signal (Allen and Murray
1999, Shelley 2007). Therefore, we think that the significant influence of sleep stage on the performance of
our method can be explained by differences in cardiovascular activity depending on each sleep stage. In fact,
the increase in similarity from N1 to N3 non-REM sleep fits with the known autonomic changes over these
sleep stages.

Wake epochs often contain movements and therefore changes in the PPG and thorax RIP signal which
are independent of respiratory activity. In fact, when full post-processing was applied, the performance
during awake periods significantly increased. However, the performance during Wake did not match the
other stages even after post-processing, probably because awake periods have higher sympathetic activity
compared to sleep (Tobaldini et al 2013). It is important to highlight that our recordings took place during
‘natural’ sleep, and as such, awake periods were different from previous studies on the topic where
participants were simply asked to actively maintain a quiet behavior and sometimes even a fixed breathing
rate and breathing depth (Lazaro et al 2013, Charlton et al 2016, Addison 2017, Hartmann et al 2019).

The lower morphological similarity of N1 in comparison with REM and the other non-REM sleep stages
might be explained by high-intensity movements and periodic limb movements being more likely to occur
during N1 (Allena et al 2009). This hypothesis is corroborated by the accelerometer-based estimations of
motion, and by the percentage of annotated periodic limb movements during N1. In our dataset, the epochs
containing such limb movement were 39% for N1 and 21% for REM, i.e. the sleep stage with the second
most movements. Just like for wake, using our final post-processing step (step Q+C+A) significantly
increased the similarity between reference respiratory activity and PPG-RAS during N1 but it remained
significantly different from REM, i.e. the sleep stage with the closest performance. This might be due to the
extended influence of periodic limb movements on the cardiovascular system occurring during non-REM
sleep when compared with those occurring during REM (Allena et al 2009). In addition, N1 often follows
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awakenings and, therefore, it might present the cardiovascular continuation of these events (Carskadon
Rechtschaffen 2011).

Respiratory events have several hemodynamic consequences that might have affected the PPG-RAS.
During these events, the cardiac output decreases due to intrathoracic pressure swings affecting the right and
left ventricular functioning (Weiss et al 1996). When these events terminate, the blood pressure rises due to
the increased cardiovascular resistance generated by the increased peripheral sympathetic activity (Tamisier
et al 2018). In addition, the ends of the respiratory events are often associated with arousals and body
movements (Thomas 2003) The decrease cardiac output might contribute to enhance the respiratory
contribution to the cardiac output variation, thus increasing the PPG-RAS morphological similarity with the
reference. However, the PPG-RAS might also be affected by a reduction of PPG amplitude occurring after the
termination of respiratory events that it is not related to the respiratory activity (Gil et al 2008) (besides the
detrimental effect of sympathetic activations and the movements). In mild and moderate OSA the positive
effect of respiratory events on the similarity between the respiratory activity signals might have prevailed
over the other negative effects in calculating ρs. This was not noticeable in severe OSA probably due to the
lower amount of N3 sleep: N3 had the best similarity performance, therefore a lower presence of this stage
offsets the ρs towards lower values. Differently from ρs, Cxy decreased along with the increase of OSA severity.
This might be due to the increased spectral complexity of the respiratory activity introduced by respiratory
events. These events are characterized by non-stationary breath length variations (e.g. due to normal
breathing resumption) that might be not correctly quantified by this metric. However, further investigations,
including hemodynamic and respiratory effort measurements, are required to confirm the effect of
respiratory events on morphology alteration of PPG and, consequently, of the PPG-RAS.

The lowest percentage of N3 and the respiratory events prevalence are most likely the reasons behind
severe OSA benefiting the most from the post-processing. Post-processing step decreases principally N1 sleep
and preserves most of N3 (respectively 30% and 10% decreases), thus increasing the weight of sleep stage
with higher similarity in the performance evaluation. Instead, the activity counts-based post-processing
targets respiratory arousal movements, preserving the epochs with subtle movements that are less likely to
affect the PPG-RAS extraction.

We think that the presence of OSA might be less relevant in determining the PPG-RAS performance than
the different sleep stages since the similarity variation between OSA severities was lower than between the
sleep stages. Therefore, PPG-RAS might be useful for the development of OSA monitoring algorithms and
especially when they are provided with sleep stage information to contextualize the PPG-RAS reliability.

5. Conclusion

We proposed a method to derive a respiratory activity surrogate from a wrist-worn reflective PPG sensor,
commonly used in consumer wearable devices. The surrogate was validated on a sleep-disordered population
close to a ‘real-world’ sleep monitoring scenario with wearable devices. It showed good similarity with the
reference respiratory activity and the proposed post-processing approach allowed further trade-offs between
accuracy and a lower coverage of the recordings. We were able to characterize the method with respect to the
quality of the PPG, movement levels, sleep stages and OSA severity. Understanding the strengths and
limitations of the method in regard to these parameters is fundamental before wrist-worn PPG devices can
be used to monitor respiration during sleep in clinical practice. Being able to derive a surrogate
morphologically similar to the reference respiratory activity allows extracting respiratory activity
characteristics other than just respiratory rate. For instance, it would be possible to assess the variability of
the respiratory activity by deriving the standard deviation of the breath length or the relative changes in
respiratory amplitude. These features could help to identify sleep phenomena, such as OSA, using
wrist-worn PPG devices. Future work will focus on using the PPG-based respiratory activity signal and its
associated features to develop monitoring algorithms for sleep apnea and related disorders.

6. Data availability

Data from the SOMNIA database will be made available under the conditions described in the published
SOMNIA protocol (van Gilst et al 2019). Specific restrictions apply to the availability of the data collected
with sensors not comprised in the standard PSG set-up, such as wrist-worn PPG, since these sensors are used
under license and are not publicly available. These data will become available however from the authors
upon reasonable request and with permission of the licensors.
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7. Ethical statement

The SOMNIA study met the ethical principles of the Declaration of Helsinki, the guidelines of Good Clinical
Practice and the current legal requirements. The study was reviewed by the medical ethical committee of the
Maxima Medical Center (Eindhoven, the Netherlands. File number N16.074). The protocol for data analysis
was approved by the Medical Ethical Committee of the Kempenhaeghe Hospital and by the Philips
Institutional Review Board. All participants provided informed consent.
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