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ASTEROIDS: A Stixel Tracking Extrapolation-Based
Relevant Obstacle Impact Detection System

Willem P. Sanberg , Member, IEEE, Gijs Dubbelman , Member, IEEE, and
Peter H. N. de With , Fellow, IEEE

Abstract—This paper presents a vision-based collision-warning
system for ADAS in intelligent vehicles, with a focus on urban
scenarios. In most current systems, collision warnings are based
on radar, or on monocular vision using pattern recognition. Since
detecting collisions is a core functionality of intelligent vehicles,
redundancy is essential, so that we explore the use of stereo vision.
First, our approach is generic and class-agnostic, since it can detect
general obstacles that are on a colliding path with the ego-vehicle
without relying on semantic information. The framework estimates
disparity and flow from a stereo video stream and calculates stix-
els. Then, the second contribution is the use of the new asteroids
concept as a consecutive step. This step samples particles based on
a probabilistic uncertainty analysis of the measurement process to
model potential collisions. Third, this is all enclosed in a Bayesian
histogram filter around a newly introduced time-to-collision versus
angle-of-impact state space. The evaluation shows that the sys-
tem correctly avoids any false warnings on the real-world KITTI
dataset, detects all collisions in a newly simulated dataset when the
obstacle is higher than 0.4 m, and performs excellent on our new
qualitative real-world data with near-collisions, both in daytime
and nighttime conditions.

Index Terms—ADAS, collision warning, time to collision, stereo
vision, bayesian histogram filter.

I. INTRODUCTION

THIS paper presents a stereo vision-based collision-warning
system for assisted or automated driving. Started in the

past, and recently boosted by new technology, obstacle or
drivable space detection have been an active research area for
intelligent vehicles [1], [2], together with early extensions to
control [3]. An objective of this research is to reduce traffic
accidents, predominantly by avoiding collisions. This requires
detecting potential collisions accurately and timely, irrespective
of whether the avoidance will be executed by a human driver or
an automated control system.

The most advanced vision-based collision avoidance systems
currently presented in literature rely on a combination of sensor
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modalities, like LIDAR, V2I or V2V communication, Radar,
GNSS+IMU, cameras and HD maps [4]–[7]. The benefit of such
an approach is that it facilitates redundancy over modalities in
the perception system of a car. This is an important vehicle safety
aspect for real-world applicability [5], e.g. to reduce the effect of
sensor malfunctioning or to remove blind spots in the perception
of the surroundings.

To this end, we propose to develop a generic forward-collision
warning system using a stereo camera. Stereo cameras are
increasingly employed in cars with Advanced Driver Assist
Systems (ADAS), mainly for high-level semantic reasoning
and scene-geometry estimation. Therefore, our research looks
into further exploiting stereo vision, and aims at identifying
strong and weak points of a disparity-based approach. During
the past years, the so-called Stixel World algorithm has gained
momentum for efficient automotive vision analysis. Originally,
it presented an efficient representation of scene geometry from
disparity data [8]. This has been enhanced in two ways. Taking
a data view, the disparity analysis is extended with color data [9]
and probabilities of semantic classes [10]. In a functional
view, it has been extended with e.g. dynamics [11] and object
recognition [12]. In our case, we want to exploit stixels in a
collision-warning system for urban scenarios, where different
types of traffic participants can pass close by the ego-vehicle (the
ADAS-equipped car), at maximum speeds of around 50 km/h.
For this purpose, we provide an end-to-end probabilistic
method.

The benefit of a probabilistic method is that it can handle noise
from the disparity estimation process on difficult, low-texture re-
gions, smooth out the spatial quantization arising from the Stixel
World processing, and maintaining uncertain measurements in
the system. In addition, it facilitates fusing information into a
larger system, for instance, to complement short-range radars
that typically are employed for this task, although this is beyond
the scope of this work. Fig. 1 provides an example result of our
system. Summarizing, this paper addresses collision warning by
exploiting probabilistic modeling of uncertain disparity and flow
measurements, where the representation facilitates fusion with
other ADAS processes.

The key contributions of this paper can be summarized as
follows. We introduce
� a generic collision-warning system that is not limited to

predefined classes or scenarios;
� a particle-sampling strategy (asteroids) for probabilistic

analysis of noisy, dynamic disparity stixels;
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Fig. 1. Illustrating ASTEROIDS in action: generating a collision warning at
night (top left) from noisy stixels (bottom left) caused by noisy disparity (top
right); bottom right: top-down view of tracked potential obstacles.

� a state space that is designed specifically for collision
warnings, based on axes over impact time and angle.

Our algorithm can be employed on affordable hardware and
has no requirements on car connectivity or HD maps. Our
validation utilizes both known and new public data, featuring
both real-world and simulated data and includes scenarios at
nighttime.

The remainder of this paper is organized as follows. Section II
provides a more specific overview of related work. Section III
presents the high-level structure of our proposed method, fol-
lowed by a detailed description of the key algorithmic modules
in Section III. Sections IV and V present our evaluation strategy
and the corresponding results. Section VI concludes the overall
work.

II. RELATED WORK

Our research aims at exploiting stixels to generate reliable
collision warnings in an urban setting, where many and multiple
types of traffic participants (cars, pedestrians, cyclists, buses,
etc.) can pass close by to the ego-vehicle (e.g. the ADAS-
equipped car), at maximum speeds of around 50 km/h.

Stixels are vertical superpixels with fixed pixel width, which
are produced by analyzing disparity data with the Stixel World
algorithm [13]. This algorithm processes the data in a column-
based manner and divides the scene into either ground or fronto-
parallel, rectangular obstacle patches, which are assigned a sin-
gle disparity value. This forms an efficient representation of the
scene geometry and has a proven value for different subdomains.
For instance, the disparity Stixel World has been fused with
deep neural nets for both semantic scene segmentation [10]
and instance segmentation [14], where stixels have been also
clustered to detect and recognize objects [12]. Additionally, the
Stixel World analysis can provide a supervisory function in an
online training setup for free-space segmentation [15], [16].
Given this broad promising range of applications, we want to
extend it even further and explore the strengths and weaknesses
of a stixel-based approach to extract relevant collision-warning
information.

We start from the bare disparity stixels, but aim at designing
a generic method, so that it can always benefit from the more

advanced versions of the Stixel World proposals under develop-
ment, e.g. with object clustering or semantic labels.

In related work on collision-warning systems, we have ob-
served several limitations that we mitigate or avoid altogether.
First of all, most current systems are limited to highway sce-
narios [6], [7], [17]. Although those can operate at higher
vehicle speeds, the systems will not be able to deal with street
crossings, non-vehicle traffic or oncoming traffic, which is not
a fundamental limitation in our method.

Second, most collision-warning systems rely on vision with
trained pattern recognition. For instance, a MobilEye system will
only recognize cars, trucks, motorcycles, cyclists and pedestri-
ans, with the additional limitation to fully visible rear-ends for
vehicle detection [18]. Similarly, the system of Cherng et al.
classifies situations into five pre-defined dangerous motions that
are limited to the ego-direction (such as cut-ins) and can handle
only regularly-sized cars, just one of which may be in view in a
scenario [19]. Both these approaches rule out handling crossing,
oncoming, and passing traffic, in contrast to our algorithm.

The mono-camera based system of Ess et al. deploys several
class-specific detectors, for instance for cars and pedestrians.
Subsequently, they rely on class-specific motion models to pre-
dict object trajectories for enhanced accuracy [20]. In contrast,
our system can handle any tangible object, without knowing
its type. This aspect makes the system more robust and widely
applicable, since it is not limited to the set of objects for which
it was trained.

Moreover, we model objects in a very generic way and aim
at a procedure that also does not rely on high-level knowledge
such as infrastructure layout [5] or intention estimation [21]. In
the same light, we do not rely on V2V or V2I-communication
streams and/or centralized roadside compute [6], [7], but instead
focus on a pure independent ego-car strategy.

Since our framework concerns tracking elements over time
and predicting their future path, a motion model and a data-
association strategy should be selected. Models for motion
are available in different levels of complexity, varying by the
incorporation of steering angles, yaw rate, acceleration and
velocity [22], which can also be employed in parallel and fused
afterwards to handle cluttered measurements in highly dynamic
urban environments [23]. Since we aim at an class-agnostic
analysis and execute on a medium-level stixel representation,
and not on object level, we do not model model higher order
dynamics. Instead, we use simple constant-velocity kinematics
without any rotational component in this work and rely on
the power over having multiple stixels per object and gener-
ating multiple asteroids in a probabilistic fashion to justify this
simplification. Regarding the problem of data association for
tracking, we propose a strategy similar to the extended SORT
algorithm [24], which is a box-overlap analysis, enhanced with
appearance modeling. In contrast to [24], we simplify the ap-
pearance encoding into a histogram, which does neither require
training on class-specific examples nor has to execute a neural
net during the association process.

These constraints will inherently limit the time horizon within
which our predictions are reliable. Our goal is to explore these
boundaries and identify the strengths and weaknesses of the
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stixel-based approach, rather than providing a stand-alone all-
encompassing collision-warning solution. However, our method
is able to utilize additional information by design, if it would be
available from other system modules.

Thirdly, other previous work addresses free-space detection
(the area in front of the vehicle where it can drive) [2], [9], [15],
[16], which is a related or even the dual problem of collision
warning. With our proposed method, we explicitly add motion
estimation, motion prediction and timing into the system and
analyze the obstacle part of the scene instead of the ground part.
This extends the analysis to dynamic data instead of using only
static data.

Related to that, systems in literature typically use geometry-
oriented state spaces, for instance by storing locations in oc-
cupancy grids, and then derive motion as a secondary sig-
nal [25], [26]. In contrast, our design of the state space directly
stores the relevant information, namely time-to-collision and
angle-of-impact. This is in line with our goal of designing a
collision-warning system. This will be explained in more detail
in the next section.

An earlier version of this system has been presented at a high
level in [27]. This current work provides two main extensions.
First, we present the full algorithmic details of all processing
blocks, several of which have been updated and improved.
Second, we provide an extended experimental analysis on more
data, illustrating the practical applicability of the design. More
specifically, the previous version generated, at best, minimally
12 false warnings on KITTI data, whereas the current system cor-
rectly generates no false warnings on the same set and performs
reliably on newly recorded real-world data with true potential
collisions. Even though this is not an automotive-grade industrial
validation, it shows both theoretical and practical feasibility of
the proposed system.

Summarizing, we focus our design on an urban setting with
medium driving speeds, with nearby traffic and obstacles. Fur-
thermore, we do not limit ourselves to specific classes of objects
or types of scenarios and aim at generic collision cases and
broad usage. To further generalize, we avoid relying on semantic
information on traffic layout or participant intentions and restrict
ourselves in this work to affordable sensor hardware without
V2V or V2I communication infrastructure. Our state space is
designed to directly model the quantity of interest, namely angle
and time of impact.

III. PROPOSED METHOD

A. System Architecture

This subsection explains the key concepts and design choices
that are underlying the high-level system architecture. First of
all, a main challenge when working with stereo disparity data is
that it tends to be noisy in general, and missing or erroneous on
low-texture image regions, such as surfaces of smooth road or
shiny cars specifically. The stixel representation addresses some
of these aspects, but at the cost of spatial quantization, due to
the limited disparity resolution and fixed horizontal grid. This,
in turn, conflicts with smooth, fine-grained tracking of obstacles
over time. A typical approach, given these kinds of challenges,

Fig. 2. High-level schematic overview of our collision warning system. It
extracts flow and disparity from stereo video and generates asteroids from stixels
to analyze potential collisions.

is to employ a probabilistic processing pipeline. This facilitates
maintaining any uncertain information in the system for as long
as possible.

Motion particle sampling in time and direction is the first
probabilistic aspect. We propose a probabilistic method that is
specifically designed to capture typical noise in our stixel-based
approach. It revolves around particle sampling to model the
probability density function of obstacle motion. In short, it
consists of the following steps. First, in the process of estimating
the velocity of a stixel, the corresponding uncertainty is modeled
as well. Second, we sample moving particles, which we call
asteroids, from that velocity model to propagate its uncertainty
into the collision-warning process. The model captures uncer-
tainty both in speed and in direction. If both are measured
with a high confidence, this will generate a very dense ball of
asteroids, traversing through space. However, a stixel with a
confident direction but with an uncertain speed will generate a
laser-beam like stripe of asteroids: they might hit the car all at
the same point, but will arrive in a time interval. Alternatively, a
stixel with a confident speed but with an uncertain direction will
generate a set of asteroids in a wave-front, potentially hitting
the car from different directions at similar times. When both
direction and speed are uncertain, a dispersed cloud of asteroids
can be expected. More details on this approach are provided
in Section III-F. Concluding, this modeling fluently combines
accurate and uncertain measurements of noisy, dynamic data, so
that it can be analyzed further in the processing pipeline.

Representation of collision data is the second key design
choice for the following stages. Since analyzing and predicting
dynamic processes in general benefit from filtering over time,
we propose to utilize a Bayesian histogram filter. A histogram
offers an efficient yet flexible representation. It can represent
multi-modal distributions directly without enforcing high-level
assumptions on the modeled data, which suits our aim of pro-
viding class-agnostic collision warnings.

Our Bayesian histogram filter models a state space that con-
tains the probability of a collision with the ego-vehicle from
a certain angle at a certain time-to-collision. Naturally, the
Bayesian filter encompasses a prediction and a measurement-
update phase which are both repeated at each time step. Ad-
ditionally, we have a Collision Analysis module that interprets
the state and generates warnings accordingly. Fig. 2 portrays
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Fig. 3. Schematic visualization of the sides of impact (s.o.i.) around the
ego-vehicle with the employed coordinate system (left) and the state space
with discretized angle-of-impact, time-to-collision and p(col, ttc, aoi) versus
p(¬col, ttc, aoi) for a single side of impact (right). Our evaluation is focused
on the area highlighted in red for the front side of the ego-vehicle.

the whole system. The state space and the three high-level
processing blocks are described in the following subsections.

B. State Space

Since the goal of our system is to provide collision warnings,
we introduce a state-space design that is directly suited to
address such warning information. To this end, we define a three-
dimensional state space, the axes of which are time-to-collision
(ttc), angle-of-impact (aoi) and collision (col). Fig. 3 shows a
schematic visualization.

The system monitors such a state space for the five sides-of-
impact (s.o.i.) of the vehicle, as shown in Fig. 3. We focus on
the frontal view in this work, since that is within the field of
view of the sensor setup. We discretize the time axis with steps
of half the sample time of the input data stream (this equals 0.05
seconds) to a maximum of 5 seconds, and split the angle-of-
impact uniformly in five non-overlapping ranges of 36o each.
To obtain a complete joint probability distribution, we calculate
the belief in no collision p(¬col, ttc, aoi) and the collision belief
p(col, ttc, aoi) for each angle and time pair.

C. Bayesian Filter: Prediction

The prediction step of the Bayesian histogram filter in our
system is straightforward due to the design of the state space:
the entire space can be shifted over the amount of bins along the
time-to-collision axis, corresponding with the sampling rate of
the camera. Additionally, we apply a normalized box-averaging
filter with the same aperture as the shift. This introduces a
dispersion of the belief to reflect the uncertainty in the prediction
step, i.e. the process noise.

D. Bayesian Filter: Measurement Update

The principal stage of our histogram filter is the measure-
ment update and consists of several steps, depicted in Fig. 4.
This figure presents a more detailed view of the top-left re-
gion of Fig. 2. The aim is to convert the stereo video data at
the input via stixel and asteroid processing into a likelihood
p(measurement |col, aoi, ttc). First, the stereo image pair and
the previous left camera image are used to estimate disparity
and flow. The disparity is processed with the Stixel World
algorithm to build fronto-parallel rectangular superpixels. Our
main contribution is in the introduction of the following three

Fig. 4. Schematic overview of the measurement update stage, generating the
data likelihood for the Bayesian filter of our collision-warning system. Note that
this a more detailed view of the top-left block of Fig. 2.

processing blocks, depicted in yellow, which are discussed in
the next subsections.

E. Measurement Update: Stixel Tracking

The Stixel Tracking block first extracts the median 2D optical
flow for each stixel. Next, it translates this to 3D-world motion
by trying to match each stixel to the corresponding stixel of
the previous set. This matching process first moves a current
stixel to its previous image position, using its optical flow as
pixel translation. Then, it analyzes the overlapping stixels of
the previous set at that location. The stixel is disregarded if
less then 75% of its moved area falls within the image, or if
less than 50% has overlap with previous obstacle stixels. The
overlap analysis is conceptually illustrated in Fig. 6 and further
explained below. If there is only one overlapping stixel, this is
considered the match. If there are multiple overlapping stixels,
these candidates are analyzed in a small selection process. First,
candidates that have an overlap ratio of less then 1/(Noa + 1)
are disregarded, where Noa is the number of candidates. If this
still leaves multiple candidates, the stixel is matched to the
candidate with the highest Bhattacharyya coefficient, comparing
the stixel texture-wise via a normalized one-dimensional color
histograms (10 bins per channel). If no such candidate exists, no
match is made. Each resulting match is assigned a corresponding
confidence from this overlap analysis, coa, which is defined as
follows:

coa(s) =

⎧⎨
⎩

area(scur) ∩ area(smatch)
area(scur)

, if Noa = 1;

1− (dmax
oa − dmin

oa )/dmax
oa , if Noa > 1;

(1)

where area(s) is a stixel area counted in pixels, and dmax
oa and

dmin
oa denote the largest and the smallest disparity value of the

candidate stixels, respectively. Using this normalized disparity
range as a confidence metric in the case of multiple candidates,
ensures that coa is not too conservative, especially if there is
over-segmentation in the previous set of stixels. More specifi-
cally, if a stixel overlaps with multiple previous stixels that all
have a similar disparity value, this should not lead to a low
confidence in the previous stixel position. After the matching
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Fig. 5. Left: our processing visualized in a top-down view with the ego-vehicle at the center left (moving to the right), the camera field-of-view in dark orange;
five colored sides-of-impact and grid lines at every 10 m. Furthermore, the figure shows stixel tracks, sampled asteroid clouds and detected colliding asteroids (in
bright red). Right: corresponding camera image with the collision warning overlay.

Fig. 6. Conceptual illustration of the stixel tracking process by overlap anal-
ysis: move a stixel according to its image flow (top, black striped) and analyze
the overlapping stixels of the previous set (top, dotted light blue); this leads to a
match with a certain confidence (bottom middle, green/yellow), or no match at
all (red, right).

process, both stixels that could not be matched and stixels that
are clear outliers are removed, to avoid cluttering the subsequent
process, while still facilitating a high inclusion of measurements.
The tracked stixel should have a confidence of more than 0.5;
be within relevant range of the ego-vehicle (at most 30 m to
the left or right, 2.5 m up or down; up to 60 m in front) and
should have a relative speed below 150 km/h, considering that
the maximum allowed absolute speed is 50 km/h. The colored
tails of the stixels in Fig. 5 illustrate the result of the tracking
process.

F. Measurement Update: Asteroid Sampling

The tracked stixels are supplied to the subsequent Asteroid
Sampling block, which generates so-called asteroids for each
stixel. An asteroid is a particle with a trajectory sampled from
two one-dimensional Gaussian distributions, one for each of the
x- and z-velocities, so that

vx ∼ Nx(vx, σ
2
vx
) and vz ∼ Nz(vz, σ

2
vz
). (2)

We choose to exclude the y-dimension at this stage. This is in
agreement with the design of the state space, which does not
differentiate between vertical angles of impact, and the fact that
the stixel tracking step already removes stixels that are situated
too high or too low. To compensate for this simplification, we

assume that the ego-vehicle’s height spans this entire vertical
range: nothing can pass over or under. This is over-cautious, but
simplifies the estimation to a two-dimensional problem.

The average velocity in each axis is calculated from the Ntrk

previous positions in the stixel track, hence (analogous for z):

vx = 1
Tsample·Ntrk

Ntrk−1∑
k=0

xt−k − xt−k−1, (3)

The variances of distributions in Equation (2) are derived by
extending the standard uncertainty propagation in disparity esti-
mation using a camera pinhole model with the stixel estimation
and our matching process. First of all, the error propagation for
the velocity estimate, using standard probability theory calcula-
tion rules [28], results in

σ2
vx
(s) =

σ2
xt

+ σ2
xt−1

T 2
sample

, (4)

and a similar propagation for z. Second, the stixel-position vari-
ances can be defined from applying two camera pinhole models.
These cameras have a stereo camera baseline b, the u-coordinate
of the left-camera’s principal point u0 and left camera’s focal
length fu. The obtained disparity estimation process comes with
uncertainty σ2

disp, which is fixed at 0.5 pixels. This modeling
leads to the following equations:

σ2
xt
(s) =

σ2
disp

h
·
(
b · (uc,t − u0)

d2t

)2

,

σ2
xt−1

(s) =
σ2
disp

coa · h ·
(
b · (uc,t−1 − u0)

d2t−1

)2

,

σ2
zt
(s) =

σ2
disp

h
·
(
b · fu
d2t

)2

,

σ2
zt−1

(s) =
σ2
disp

coa · h ·
(
b · fu
d2t−1

)2

,

where the variables from the stixel under analysis h, uc, d
and coa represent height, central u-coordinate, disparity, and
overlap-analysis confidence, respectively. Intuitively, stixels that
have a larger height also have a more certain x- and z-position,
since each row of the stixel can be considered an additional
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measurement. Additionally, a sub-optimal overlap confidence
(coa < 1) will increase the uncertainty in the estimate of the
previous position.

Third, the amount of asteroids that should be generated for
each stixel depends on several aspects, which are included in the
following equation:

Nast(s) = A(s) · ρast · cfit(s) · cσ2
d
(s). (5)

The core value in this equation is A(s), which is the stixel
surface in m2, calculated by translating all four stixel u, v, d
corner-points to 3D world coordinates. This surface is multiplied
with the asteroid density (ρast), a system parameter, to come
to an initial number of asteroids. However, the equation also
incorporates two confidence values, that both can reduce the
number of generated asteroids. The first one, cfit(s), is adapted
from [29] and defined as follows:

cfit(s) = 1/(1 + exp (eobstacle(s)− eground(s))), (6)

where the values eobstacle and eground model energies, given by

eobstacle(s) =
1
h

∑
v∈vc±h/2

|dv − d|, (7)

eground(s) =
1
h

∑
v∈vc±h/2

|dv −Δdg · (vc − v)− d|, (8)

with stixel values h (height), vc (center row) and d (disparity).
Additionally, these energies are summed over the rowsv spanned
by the stixel, and use dv as the disparity data in the stixel
area at row v and Δdg as the expected slope of disparity data
representing flat ground. This slope can be calculated from the
camera setup using Δdg = b/hcam, where hcam is the height of
the camera above the ground surface.

The confidence cfit(s) expresses how well the stixel model
fits the raw disparity it covers, knowing that the optimization
process explores two options (ground or obstacle). It compares
fitting either a fronto-parallel surface or a sloped surface to
the condensed single disparity column in the stixel. The other
confidence, cσ2

d
(s), is the normalized inverted variance of the

disparity within the stixel region. This is more generic than the
previous one, since it also considers the fact that a stixel spans
multiple columns. Both these confidence values aim to decrease
the chance of generating false asteroids from stixels in noisy
disparity data, by reducing the generated amount.

The top-down view in Fig. 5 shows the sampled asteroid
clouds as colored blobs at the end of stixel tracks. The asteroid
clouds from the trees (on the right of the ego-vehicle) are larger,
illustrating more uncertainty in those measurements.

G. Measurement Update: Asteroid Propagation

The third block, Asteroid Propagation, takes the cloud of
asteroids, propagates them along their generated trajectory and
monitors which ones are going to impact a safety bubble around
the ego-vehicle and the corresponding time to impact.

The propagation process relies on a constant velocity model,
no advanced dynamic models are applied at the current stage.
The constant velocity model is a reasonable choice given the

goal of offering a generic, class-agnostic analysis. Naturally,
this constraint will limit the time horizon where our predictions
are reliable. The goal is to explore these boundaries and iden-
tify the strengths and weaknesses of the stixel-based approach,
rather than providing a stand-alone all-encompassing collision-
warning solution. However, note that our method is able to utilize
additional information by design, if it would be available from
other system modules.

Performing the collision assessment based on a linear trajec-
tory extrapolation can be solved efficiently as a standard geo-
metric line-segment intersection problem, as presented in [30].
We formulate both the trajectory of the asteroid and the side-of-
impact lines with an origin point (αo and soio) and a direction
vector (αv and soiv), and find τ and ζ such that

αo + τ · αv = soio + ζ · soiv. (9)

By using this representation, τ directly provides the time to
an impact, and ζ indicates the location of the impact (as the
distance from soio). Therefore, an asteroid collides with the side-
of-impact if and only if

(0 < ζ < |soi|) ∧ (0 < τ < ∞), (10)

where |soi| represents the length of the side-of-impact.
For the truck at the left of the scene in Fig. 5, the asteroids

are clearly projected in front of the object (marked in bright red)
from analyzing the corresponding stixels tracks.

H. Measurement Update: From Histogram to Distribution

The results of asteroid propagation are represented in a 2D
histogram, matching the configuration of the state space. Each
bin contains the amount of colliding asteroids mast for its corre-
sponding angle-of-impact and time-to-collision. This histogram
is then translated into the likelihood with a linear model that
depends on the asteroid density parameter ρast by

p(mast|col, aoi, ttc) = 2/ρast ·mast/ρast, (11)

p(mast|¬col, aoi, ttc) = 2/ρast · (1−mast/ρast). (12)

When mast ≥ ρast, we enforce saturation by setting
p(mast|col, aoi, ttc) = 2/ρast and p(mast|¬col, aoi, ttc) = 0.
This means that a fully confident surface of 1 m2 will generate
enough asteroids to saturate a histogram bin, independent of the
density parameter. Next, the likelihood is fed into the Bayesian
filter-update stage. Additionally, the collision probabilities are
further processed in the Collision Analysis block, described
below.

I. Collision Analysis on the State Space

The collision analysis block (see Fig. 2) processes the state
and generates warnings if necessary. This module completes the
system pipeline and facilitates assessing the reliability of the
analysis in a tangible way.

First of all, this block extracts a collision probability for each
state cell from the joint probability, by marginalizing over the
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collision axis, so it calculates p(col|ttc, aoi):

p(col|ttc, aoi) = p(col, ttc, aoi)

p(col, ttc, aoi) + p(¬col, ttc, aoi) . (13)

Consecutively, it adds robustness by employing a CFAR al-
gorithm, which performs peak detection and tracking in the
probability distribution, as discussed in the following.

1) CFAR: Peak Detection: The next step is to identify peaks
in the probability distribution that correspond to potential col-
lisions. This process addresses the fact that the asteroids in the
histogram are sampled from the noisy tracked stixel data, and
hence, they travel towards the car as a dispersed cloud. Since
this shows similarities to detecting objects in noisy RADAR
data, we propose to employ a well-established method from that
field and use a Constant False-Alarm-Rate (CFAR) detection
scheme [31], [32]. CFAR is an adaptive thresholding technique
to find relevant peaks against noisy background clutter. In theory,
it provides the desired detections at the cost of a pre-defined
false-alarm rate, hence the name. This is based on assumptions
on the distribution of background clutter. We now briefly de-
scribe this, adapted to our context.

A CFAR detector checks if the probability in a cell is a local
maximum and higher than a certain threshold. This threshold
is derived from the neighboring cells to adapt it to the local
noise caused by outlying measurements. We treat each angle-
of-impact (aoi) as an independent sequence of measurements,
which means that our CFAR neighborhood is one dimensional,
along the time-to-collision-axis (ttc) only. Therefore, we leave
out the aoi index for brevity in the following equations. For-
mally, our CFAR collision-peak detection Ccfar(ttc) is defined
with the following set of equations:

Ccfar(ttc) = . . .

(p(col|ttc) > Tcfar(ttc)) ∧
(
ttc ≡ argmax

τ∈Θcfar

p(col|τ)
)

(14)

Tcfar(ttc) =
αcfar

Ncfar

∑
τ∈Θcfar

p(col|τ), (15)

αcfar = Ncfar(p
−1/Ncfar

fa − 1), (16)

using several system parameters, where pfa is the theoretically
desired probability of false-alarm, Θcfar the definition of the
neighborhood of the ttc-bin under analysis, and Ncfar the corre-
sponding amount of training cells (bins) in that neighborhood.
The neighborhood consists of training cells, both in front and
behind the cell under test. To suppress spurious detections,
typically one or more guard cells are defined, in between the
cell under test and the training cells. Our Θcfar is configured
empirically at two front-training cells, two front-guard cells, six
after-guard cells and six after-training cells. So, Θcfar spans 17
ttc-bins but has Ncfar = 8.

2) CFAR: Peak Tracking: The CFAR peak detector provides
the most critical time-to-collision and does not handle any data
association between multiple potential collision blobs in the
state in itself. In our CFAR peak-tracking step, we focus on
detecting the most critical collision smoothly and leave handling
of multiple targets for future work.

Our CFAR peak tracker consists of a sliding-window buffer
with a length of seven frames for each angle-of-impact. Within
that buffer, lines are fit through every pair of collision-peak ttcs.
This again assumes a constant-velocity model, which would lead
to a linearly decreasing ttc in more recent measurements. For
every line, we find the number of measurements in the buffer that
are within three ttc steps of the fitted line. If there are at least
four of these inliers, the line is considered to represent a collision
event. The event with the highest number of inliers is selected
to generate a warning with its corresponding extrapolated ttc.
When multiple lines have equal support, the one with the most
urgent time-to-collision is given priority. This sliding-window
strategy suppresses spurious detections and simultaneously, it is
cautious towards missed peaks in the first step.

Fig. 5 presents an example result where the bright red stixels
on the front of the truck are stixels that cause the generated
collision warning, visible in the top-down view and also in the
overlay on the camera image.

IV. EVALUATION APPROACH

This section explains the validation of the proposed system by
addressing the selection of data sets, performance metrics and
the performed experiments. Even though the provided evaluation
cannot serve as an automotive compliant end-to-end validation
of the system, it demonstrates the feasibility of our stixel-based
collision warning system through simulated and real-world ex-
periments.

A. Data

Our validation process is performed on three different data
sets: two with real-world data and one with simulated data.

The simulated PreScanStereoCollision data (PSSC) is newly
made for this research with the PreScan software package [33]
and exported in KITTI format for compatibility. This simulated
data is included in our evaluation to test actual collisions and
easily evaluate different relevant scenarios. We have created
5 sequences in the PreScan environment: Straight, Figure-8,
Y-crossings-Fast, Y-crossings-Slow and Mixed. Fig. 7 shows
example frames of each sequence. Sequence Straight is a large
rectangular trajectory with head-on collisions with static objects
of decreasing sizes (e.g. from truck to car, down to kids) and an
empty road with common side objects. Sequence Figure-8 is
similar, but now on a curved road, so that the heading changes
constantly. The Y-crossings sequences contain a straight trajec-
tory with different objects approaching on collision course from
the right at consecutive y-crossings. In the Fast version, each
participant moves at its own nominal speed, while in the Slow
one, speeds are decreased so to match the maximum relative
speed of the Straight sequence. Finally, the Mixed sequence is
a busy, fully dressed city center with multiple traffic participant
approaching from various directions (either safe or on collision).
The simulated stereo camera has a baseline of 30 cm, a resolution
of 1024× 512 pixels and a field of view of 46.2× 24.1 degrees.

Additionally, we evaluate our system on the KITTI-tracking
dataset. This KITTI data has no collisions and only a handful of
near-collisions, but a crucial aspect is to quantify any false alarms
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Fig. 7. Examples of our PreScanStereoCollision (PSSC) sequences; from left to right: Straight, Figure-8, Y-crossings and Mixed

Fig. 8. Distribution of collisions over ttcs for the PSSC and KITTI data sets; the stacked histogram shows the different PSSC sub sequences. It shows that the
KITTI recordings contains very few potential collisions, explaining the need for the complementary simulated PSSC data.

on real-world data. The evaluation requires ego motion as well
as true object positions. Hence, the evaluation is limited to the
training set of KITTI-tracking. This is the only part of the data
set for which the annotated object bounding boxes and positions
are available, which can be exploited to generate ground-truth
collision warnings. We generate stixels on the surface of object
bounding boxes, and set their motion according to the annotated
motion of the object. These stixels are then used to generate a
single asteroid each, with fixed motion that is extrapolated to
produce the reference ttc labels.

On top of that, we have recorded a real-world dataset,
TUE&ACNL, at the Eindhoven University of Technology cam-
pus (TUE), the Automotive Campus Netherlands (ACNL) at
Helmond and the roads in between. During these recordings,
the car is driven around the TUE campus in normal traffic for
30 minutes and is also steered towards near-collision with other
traffic or static obstacles. The recordings at and towards ACNL
are partially in normal traffic and partially on temporarily closed
roads. This data has been captured under both overcast and bright
sunny conditions, including several cases of strong back light.
Notably, several sequences were recorded during nighttime.
This dataset has no annotations of true obstacle positions and
motion for a full quantitative evaluation. However, it offers a
valuable qualitative insight into the collision warnings that the
system generates in real-world conditions, since we have used
a regular automotive-grade stereo camera. Table I summarizes
the properties of the employed annotated data, regarding the
duration and the number of frames and collision events.

TABLE I
EVALUATION DATA OVERVIEW

(1) Provided are: baseline, image width, horizontal field-of-view and frame rate.
(2) TUE&ACNL has no ground-truth annotations.
(3) Roughly 5,000 of these frames were recorded at night.

B. Metrics

The performance of our collision-warning system will be
quantified at two places: before and after CFAR peak tracking.
Ultimately, the goal is to design a system that handles the
complete events properly. Hence, it is acceptable that the system
misses a collision peak in some frames, if it still detects the
corresponding event relying on other frames. The evaluation
on a per-peak basis gives an idea on the intermediate level of
performance. It contains more samples, which increases the
reliability of the analysis, while it also provides insights into
strengths or weaknesses in the processing. This performance is
also relevant for the described case where the collision analysis
would be fused in a larger system. The performance will be
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Fig. 9. Three typical collision warnings illustrating clean results from good (top), medium (middle) or noisy (bottom) input; from left to right: left camera image
with warning overlay, disparity data, flow data, stixels with flow vector, top-down view. Note that the ego-vehicle is cornering in the first example, so the warning
looks false but is correct.

quantified by calculating the Recall, the Precision and their
harmonic mean (F1 score), both before and after peak tracking.

C. Time Range

As explained in Section II, the time horizon in which our
system can reasonably operate is inherently limited by our
modeling assumptions. The most dominant limitation originates
from our use of a constant-velocity motion model, which is
especially uncertain in our context of operation: urban areas
with nearby traffic from any direction.

To link our evaluation to real-world conditions, we rely on
stopping-distance guidelines, as used by the NACTO [34] and
NHTSA [35]. They provide ballpark figures for feasible de-
acceleration, that are said to range from 6 m/s2 for a reasonably
skilled driver to 9.8 m/s2 for a professional driver under good
conditions. Since our system is designed for urban scenery, the
ego-vehicle speed is around 50 km/h. In that case, it would
require somewhere between 1.4–2.3 s to fully stop the ego-
vehicle, depending on driver skills and conditions. Therefore,
if the collision-detection module is integrated tightly into the
car control system (e.g. with automated emergency braking),
it should operate reliably at least up to 1.4 s. However, if the
module purely generates warnings to assist a human driver, it
should operate reliably to up to 2.3 s.

Fig. 8 shows the distribution of collision events in our data
over time-to-collision. The events in our simulated data are dis-
tributed rather homogeneously between 0.3 and 3.0 s. The graph
of the KITTI-event distribution, however, confirms that this data
was recorded during a clean drive. Namely, the handful of short,
potential collision events are never closer than 1.5 s. Therefore,
this part of the experimental validation is focused on avoiding
false warnings on the KITTI data within the above-mentioned
time ranges, while obtaining a high F1 score on the PSSC in that
same time range.

As mentioned, the objective of this work is to explore the op-
erational boundaries and identify the strengths and weaknesses

of the stixel-based approach, rather than providing a stand-alone
all-encompassing collision-warning solution.

D. Experiments

The objective of the validation is already covered by the
selection of the data sets, i.e. simulated data with several relevant
scenarios and real-world data to test practical applicability. To
further explore the system robustness, we have evaluated the
performance over different settings of the core system param-
eters, being the asteroid density, the maximum tracking length
and the parameter pfa for the CFAR module within the Colli-
sion Analysis block. These experiments focus on validating the
system.

Additionally, we will test the influence of the quality of
the input data by selecting different algorithms or settings to
generate the disparity and flow data. For disparity, we compare
using the traditional, widely adopted Semi-Global Block Match-
ing (SGBM) algorithm [36] to using a newer, state-of-the-art
deep learning-based method, namely DispNet [37]. For flow
estimation, we rely on FlowNet2 [38], also based on deep
learning. The authors of FlowNet2 have presented several ar-
chitectures and made them publicly available. The different
available versions vary highly in inference speed, with a trade-off
against pixel-level performance quality. This can be exploited
to experimentally quantify the robustness of our data processing
against degraded input flow data. In turn, this will offer relevant
insights on the trade-off between system latency and perfor-
mance quality. Since our our system is stixel-based rather than
pixel-based, we aim at being robust to these lower-quality, yet
faster versions of flow estimation.

In the design of our state space and by the structure of the ego-
vehicle’s impact bubble, the system is able to handle collisions
from all directions and at different sides of impact. However,
the evaluation will be limited to the detection of collisions at
the front of the vehicle. The cause of this constraint is that
the annotated real-world data has been recorded with a single,
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Fig. 10. Best performance on PSSC using settings that produce no false
positives on the KITTI data set with ttc <1.4 s (top), ttc <1.75 s (middle)
and ttc <2.3 s (bottom).

forward looking stereo camera, so that it is currently not feasible
to validate this functionality.

V. RESULTS

A first indication of the results is provided in Fig. 9. It
illustrates typical performance on low-quality flow and noisy
disparity, whereas our probabilistic approach is still able to
extract relevant information.

A. Quantitative Evaluation on KITTI and PSSC

As a first quantitative evaluation, we present the performance
with respect to the ego-vehicle breaking times, as discussed
in Section IV-C. Fig. 10 portrays the performance of three
system configurations that do not detect any false events on the
KITTI dataset for the use case of an integrated system (no false
positives with ttc <1.4 s, top graph), the use case of a human-
in-the-loop (no false positives with ttc <2.3 s, bottom graph)
and an intermediate case (no false positives with ttc <1.8 s,
middle graph). Within the subset of configurations that comply
with that constraint, we present the one with the highest F1

on the simulated PSSC data. On PSSC, these settings suffer
from up to three false negatives, all in the Fig. 8 sequence. The
main cause of these misses is the curved ego-motion, which (1)
makes the potential collisions short, barely being the minimum
required for the event detection module, and (2) does not fit
the prediction step, only considering straight motion. On top
of that, one collision is with a man lying down on the road
(second picture in Fig. 7), which is so low positioned that
it is barely represented with stixels. CFAR detects a peak at
ttc =0.6 s, which is too late for the peak tracking to activate. This

shows that our current system is vulnerable concerning objects
lower than around 0.4 m, and could be better adapted to curved
ego-motion.

Secondly, Fig. 11 provides an analysis on how different
system parameters influence the detection performance, using
the PSSC data. Each row shows a different parameter: the
method of disparity estimation, the method of flow estimation,
the maximal length of stixel tracks, the asteroid density and
the CFAR parameter pfa. We accumulated the results of all
parameter combinations, and generated the surfaces by aver-
aging all sub-experiments with a specific value of the parameter
under test. The left set of graphs show the peak-detection results,
the right set those after peak tracking. Both present the Recall,
Precision and F1 scores.

Overall, the graphs show better performance at a smaller ttc.
This makes sense, since it is mostly closer to the ego-vehicle,
so the obstacle is clearer in view, and probably sufficiently long
such that it could be tracked better.

A noteworthy observation is how little the system perfor-
mance is impacted by the choice of the flow method. Using the
smallest FlowNet2 version (FN2-s) yields practically identical
performance to using the full version, although the former one
can be executed roughly 17 times faster than the latter (7 ms on
an GTX-1080 GPU), at the cost of a drop in pixel-accuracy of
the optical-flow result of up to a factor of 2 [38]. This shows the
potential in robustness of combining a superpixel strategy with
probabilistic sampling and filtering (Section III-A).

Additionally, the surfaces show that allowing for longer stixel
tracks improves the recall and hence the F1 score of the system,
both before and after CFAR peak tracking. Other than that, there
is a slight preference towards a smaller asteroid density and a
high pfa for the peak detection.

A similar analysis for the impact of system configuration on
the results on KITTI data is provided in Fig. 12. Since there are
so few actual potential collisions, we only focus on the number of
false positives here, which should be preferably low. The surface
plots show that most false CFAR peaks (before tracking) occur
at a large ttc. However, no false events occur at high ttc. This
can be explained by the fact that the measurements at large ttc
are more uncertain and tracking is not yet able to support the
estimation, which leads to inconsistent peak detections within
the CFAR module. Subsequently, the peak-tracking step filters
these out, thereby improving the system robustness.

Other important observations are that reducing either the flow
quality, or the use use of a small asteroid density, or a large pfa
value all have a slight negative impact on the results. A striking
graph is that of the maximum tracking length: shorter tracks or
long tracks are better than medium tracks. We hypothesize that
short tracks lead to noisy data that is filtered out later more easily,
while long tracks lead to more accurate estimations that do not
need to be removed.

B. Timing

The algorithmic contributions are implemented in C++ and
tested on a desktop PC (Xeon E5-1660 0 CPU @3.30 GHz× 12;
15.6 GB). On the KITTI data, the Stixel World algorithm takes
roughly 20 ms. The bottleneck within our proposed blocks is
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Fig. 11. Impact analysis of system configuration on the system performance using PSSC data, split over different parameters and plotted over time-to-collision.
The color yellow represents a desired high score. Note that reducing the quality of the flow and/or disparity has little impact on the performance (top 2 rows).

Fig. 12. Analysis of the relative impact of system configuration on performance with KITTI data, split over different parameters and plotted over time-to-collision.
Because of the low actual potential collisions, we show only false positives. Color towards red represents an undesired (relatively) high FP count. The color ranges
are stretched individually to emphasize relative performance within each parameter; comparing results between parameters or with and without peak tracking in
an absolute sense is not the goal here.

the Stixel Tracking module, requiring 35-45 ms at present. It is
faster on the PSSC data (15–20 ms), since the stixel segmentation
is much cleaner, which indicates that removing clutter stixels
prior to the matching process can speed up processing. Asteroid
Sampling, their propagation including the collision check, and
the histogram filter need 1–4 ms, the CFAR detection 0-1 ms.
Together, this results in a processing speed of 15-17 fps, which
is sufficiently fast for real-time operation on the 10-fps datasets.

C. Qualitative Evaluation on TUE&ACNL

This section presents the qualitative results on the
TUE&ACNL data: real-world recordings of 63 minutes in

normal traffic and on closed roads, partially during the night,
with several intentional near-collisions. Fig. 13 presents four ex-
amples of typical ASTEROIDS performance on near-collisions.
The first three examples show frames that were 0.5 s apart, the
snapshots of the rightmost example (with the small pole) are
1/6 of a second apart, since it was only shortly on a collision
trajectory. Even though we cannot quantify the estimated ttcs,
the warnings generated by the system seem natural and plausible
to the driver. Moreover, there was not a single false warning
during the whole recording. Three-quarters of the data was
recorded in bright sunny weather, causing sharp shadows, high
contrast, temporal flicker, direct sunlight and reflections, which
our setup could all handle. The rest of the data was captured
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Fig. 13. Examples of our system in action on TUE&ACNL data, in each column three snapshots per collision event; from left to right: a car crossing and slowing
down; a road works fence at night; a slim lamppost and a low pole at the side of the road.

during nighttime. The system was still able to generate warnings
for near-collisions in the dark, although they typically occurred
later (earliest at ttc ≈1.5 s). In conclusion, this experiment
supports our proof-of-concept evaluation with the findings on
the KITTI and PSSC datasets and shows promising real-world
applicability.

VI. CONCLUSION

This paper has presented a vision-based collision-warning
system for ADAS in intelligent vehicles. The approach is class-
agnostic as it detects general obstacles that lay on a collision
trajectory with the ego-vehicle without relying on semantic in-
formation. This is in contrast with most current systems, that rely
on pre-trained pattern recognition and are limited to predefined
object classes or situations. Our framework estimates disparity
and flow from a stereo video stream, extracts stixels, and sam-
ples so-called asteroids based on an uncertainty analysis of the
measurement process to model potential collisions. This is all en-
closed in a Bayesian histogram filter around a time-to-collision
versus angle-of-impact state space. The end-to-end probabilistic
approach is specifically designed to handle the noisy disparity
and flow data, so that the system does not require an accurate
and computationally expensive estimation of those signals. The
evaluation shows that the system correctly avoids false warnings
on the real-world KITTI dataset, detects all but one collisions
in a newly simulated dataset, and performs excellent on our
new qualitative real-world data with near-collisions, both during
daytime and nighttime conditions.
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