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Price differentiation is a common strategy for many transport operators. In this paper, we study a static

multiproduct price optimization problem with demand given by a continuous mixed multinomial logit model.

To solve this new problem, we design an efficient iterative optimization algorithm that asymptotically con-

verges to the optimal solution. To this end, a linear optimization (LO) problem is formulated, based on the

trust-region approach, to find a “good” feasible solution and approximate the problem from below. Another

LO problem is designed using piecewise linear relaxations to approximate the optimization problem from

above. Then, we develop a new branching method to tighten the optimality gap. Numerical experiments

show the effectiveness of our method on a published, non-trivial, parking choice model.

Key words : static multi-product pricing, mixed logit model, nonlinear optimization

1. Introduction

Offering different products at different prices to different travelers is a common practice

in many transportation markets. Classic examples include business-, first-, and economy-

class flight tickets as well as first- and second-class railway tickets. With product and price

differentiation, transport operators are able to get higher revenues by adapting their fares

based on the price sensitivity of their travelers. Basically higher fares are offered to the

ones who are willing to pay more.
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Inferring travelers willingness to pay (WTP) is a long-standing practice in applied eco-

nomics (Hensher et al. 2005). Discrete-choice modeling (DCM) has established itself as an

important and widely-used methodology for extracting valuations such as willingness to

pay (Hess et al. 2018). Transport researchers have used these disaggregate demand models

for more than 40 years, from the pioneer work of McFadden and Zarembka (1974) to more

recent studies on WTP for self driving vehicles (Daziano et al. 2017) or willingness to travel

with green modes in the context of shared mobility (Li and Kamargianni 2019).

Formulating pricing policies based on such disaggregate demand representations allows

to better account for the heterogeneity of the population of interest, where different custo-

mers have different tastes and preferences. Even more importantly, it better reflects the

supply-demand interactions by capturing the tradeoff between the operator objective of

maximizing the expected revenue and the customer objective of maximizing the expected

utility (Sumida et al. 2019).

Despite a more comprehensive representation, including discrete choice models within

pricing problems increases the computational complexity because the choice probabilities

are nonlinear. As a result the expected revenue is highly nonlinear in the prices of the

products and customary used nonlinear algorithms may get terminated at a local optimum.

Due to the importance of the problem, the Operations Research andManagement Science

communities put remarkable efforts on analyzing it. Hanson and Martin (1996) pioneer this

research by showing that the expected revenue function is not concave in prices, even for the

simple multinomial logit (MNL) model. Subsequent authors have demonstrated that, under

uniform price sensitivities across all products, the expected revenue function is concave in

the choice probability vector (Song and Xue 2007, Dong et al. 2009, Zhang and Lu 2013).

Li and Huh (2011) show that this concavity result also holds under asymmetric price-

sensitivities, not only for the MNL model, but also for the nested logit (NL) model that
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generalizes the MNL model by grouping product alternatives into different nests based on

their degree of substitution (McFadden 1977).

Parallel to these work, several authors have shown that under restrictive condi-

tions on the degree of asymmetry in the price sensitivity parameters, unique

price solutions exist for some logit models. This has been shown for the MNL

model (e.g., Aydin and Ryan (2000), Hopp and Xu (2005), Maddah and Bish (2007),

Aydin and Porteus (2008), Akçay et al. (2010)), the NL model (e.g., Aydin and Ryan

(2000), Hopp and Xu (2005), Maddah and Bish (2007), Aydin and Porteus (2008),

Akçay et al. (2010), Gallego and Wang (2014), Huh and Li (2015)), the paired combina-

torial logit (PCL) model (Li and Webster 2017) and lately generalized to any generalized

extreme value (GEV) model (Zhang et al. 2018). In this stream of research, first-order

condition is generally used to find optimal prices. It is worthy to note that in some of

these studies and additional recent ones, pricing decisions are optimized jointly with other

decisions such as assortment or scheduling decisions ((e.g., Du et al. (2016), Jalali et al.

(2019), Bertsimas et al. (2020)).

To accommodate heterogeneity across individuals in their sensitivities to price, Li et al.

(2019) consider a pricing problem under a discrete mixed logit model. As explained by the

authors, the expected revenue function under the mixed logit model is not well-behaved

and the concavity property with respect to the choice probabilities breaks down, even

for entirely symmetric price sensitivities across products and segments. Accordingly, the

theoretical results as well as the solution methods developed for other logit models do not

apply to the pricing problem with demand characterized by a discrete mixed logit model.

So, the authors propose two concave maximization problems that work as lower and upper

bounds for the objective value of the revenue function, under some conditions. Then, they

propose an algorithm that converges to a local optimum.
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In this paper, we consider a more general problem, namely optimal pricing under a

continuous mixed logit model. Our study therefore fits in the established literature on static

price optimization under the family of logit choices. As showed by McFadden and Train

(2000), under mild regularity conditions, the mixed logit model can approximate choice

probabilities of any discrete choice model derived from random utility maximization (RUM)

assumption.

We design an efficient iterative optimization algorithm that asymptotically converges to

the optimal solution. To this end, a linear optimization (LO) problem is formulated, based

on the trust-region approach, to find a “good” feasible solution and approximate the prob-

lem from below. Another LO problem is designed using piecewise linear approximations

as well as the McCormick relaxation (McCormick 1976) to approximate the optimization

problem from above. Then, we develop a new branching method to tighten the optimality

gap and show that the algorithm converges to the optimal solution asymptotically. The

effectiveness of this algorithm is demonstrated on a parking services pricing case for which

the demand model comes from a published, non-trivial, parking choice model.

Therefore, our work extends the results of the literature in three ways. First, our pricing

problem includes the continuous setting of the mixed logit model, which is more general

than its discrete counterpart, and better reflects the many transport applications in which

mixed logit models have been used (Train 2003). Second, our algorithm can deal with any

linear dependencies in the prices of service, while the results in the literature can only deal

with lower and upper bounds on the prices (Hanson and Martin 1996, Dong et al. 2009,

Li et al. 2019). Third, we show that the algorithm converges to a global optimum without

posing any assumptions, while in the literature either local optimality is mainly considered

or restrictive conditions are posed to have global optimality (Hanson and Martin 1996,

Dong et al. 2009, Li et al. 2019).
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The remaining sections are organized as follows. Section 2 further defines the problem

under consideration. Section 3 presents our global algorithm, while Section 4 shows the

results of our numerical experiments. The final section concludes our paper.

2. Problem description

In this paper, we are interested in solving a static multi-product pricing problem under a

continuous mixed logit model. Static pricing involves the simultaneous pricing of multiple

products, where a fixed price is set for each product (Soon 2011). In our setting, we assume

that a single seller must decide at what price to offer each product from a finite set of

alternatives (also known as product assortment). On the demand side, we assume that

customers choose among the products according to a consumer choice model. The demand

for each product is thus the result of the individual purchase choice of N customers. The

purchase choice is captured by a discrete choice model, that predicts the customer choice

from a finite set of discrete alternatives (Ben-Akiva and Bierlaire 2003).

Let N represent the set of N customers and let I indicate the set of I products available

for purchase, including the ones offered by the seller. Utility functions Uin are defined for

each customer n∈N and product i∈ I. Each utility function takes into account the socio-

economic characteristics and the tastes of the individual as well as the attributes of the

alternative. According to Random Utility Maximization (RUM) theory (Manski 1977), Uin

can be decomposed into a systematic component Vin(β), which includes all observations

of the decision maker (including the offered price pi as well as the price parameter, also

called willingness to pay, βp
in), and a random term εin, which captures the uncertainties

caused by unobserved attributes and unobserved taste variations:

Uin = Vin(β)+ εin (1)

= β
p
inpi+ qin(β

q)+ εin, (2)
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where pi is the endogenous price variable and qin(β
q) is the exogenous part of the utility,

obtained by adding all observed product attributes other than price, weighted based on

customers’ preferences.

The resulting discrete choice model is therefore naturally probabilistic. The probability

that customer n chooses alternative i is defined as

Pin =Pr

[
Vin(β)+ εin =max

j∈I
{Vjn(β)+ εjn}

]
.

The optimal expected revenues obtained from the sales of offering the products is then

naturally given by:

max
p∈RI

∑

i∈I

∑

n∈N

piPin,

s.t. Pin =Pr [Vin(β)+ εin ≥ Vjn(β)+ εjn, ∀j ∈ I] ,∀i∈ I,∀n ∈N ,

Vin(β) = β
p
inpi + qin(β

q), ∀i∈ I,∀n ∈N ,

0≤ pi≤ p̄i, ∀i∈ I,

(3)

where p̄∈RI is a vector containing upper bounds on the prices of products. The most com-

monly used discrete choice models, the multinomial logit (MNL) model, is built upon the

assumption of independent and identically extreme value distributed error terms (Manski

1977), that is εin
i.i.d.
∼ EV (0,1). Under this assumption, the probability for customer n to

select choice alternative i is given by

Pin =
eVin(β)

∑
j∈I e

Vjn(β)
. (4)

Mixed logit probabilities are the integrals of these standard logit probabilities over a

density of parameters (Train 2003). The choice probabilities can then be expressed in the

form:

Pin =

∫
eVin(β)

∑
j∈I e

Vjn(β)
dνβ, (5)
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where νβ is a multivariate probability measure.

The mixed logit model is often considered to be the most popular discrete choice model

for incorporating random taste heterogeneity (Vij and Krueger 2017). As a result, it has

been extensively used in transport studies (e.g., Ye et al. (2020), Han et al. (2020)). In

this paper, we are interested in incorporating this popular choice model into static pricing

problems. This involves solving the following nonlinear maximization problem:

max
p∈RI

∑

i∈I

∑

n∈N

piPin,

s.t. Pin =

∫
eVin(β)

∑
j∈I e

Vjn(β)
dνβ , ∀i∈ I,∀n ∈N ,

Vin(β) = β
p
inpi + qin(β

q), ∀i∈ I,∀n ∈N ,

0≤ pi ≤ p̄i, ∀i∈ I.

(6)

As easily seen in Equation (5), the mixed logit probability is a weighted average of logit

probabilities evaluated at different values of β. The standard MNL model is therefore sim-

ply a special case of the mixed logit where the mixing probability measure νβ is degenerate

at a fixed parameter β̄ (Train 2003), i.e., νβ
({

β̄
})

= 1.

In Li et al. (2019), which is the closest study to our work, the probability measure νβ

is assumed to be discrete. In other words, they assume that βp can take only M distinct

values bpm, b
p
2, ..., b

p
M , resulting in the following logit choice probability:

Pi =

M∑

m=1

wm

eVi(b
p
m)

∑
j∈I e

Vj(b
p
m)

, (7)

where wm is the probability that βp = bpm.

Since no individual specific variables are included in the utility specifications, the choice

probability is the same for all individuals (i.e., Pin = Pi, ∀n∈N) and the objective function

becomes maxp∈RI

∑
i∈I piPi.
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Their pricing problem is therefore also a specific case of the pricing problem under con-

tinuous mixed logit demand. In many transport applications in which mixed logit models

have been used, νβ is specified to be a continuous measure (Train 2003) and individual

specific variables are included in the utility specifications. Therefore, we pose no assump-

tion on the probability measure νβ and provide a method to solve (6), which has never

been considered before, to the best of our knowledge.

3. Methodology

In this section, we introduce a new efficient optimization algorithm for solving the static

multiproduct pricing problem under continuous mixed logit model. The proposed algorithm

is a global optimizer, meaning that it asymptotically converges to the optimal solution.

This is done by designing a method to find a “good” feasible solution, which provide a

lower bound, as well as a method to check the quality of the obtained solution, which

provides an upper bound.

Let us reformulate the optimization problem (6) as

opt=max
p∈RI

f(p)

s.t. Ap≥ b, p≥ 0,

(8)

where f(p) =
∑

i∈I
pi

fi(p)
, fi : R

I → R is a positive convex function with continuous second

derivative, and the feasible region is a polytope. More specifically, (6) can be formulated

as (8) by setting

fi(p) :=
1∑

n∈N

∫
1

∑
j∈I e

β
p
jn

pj+qjn(βq)−β
p
in

pi−qin(βq)
dνβ

.

As 1
x
is a convex function on {x : x > 0} and integral preserves convexity (see Page 79

of (Boyd and Vandenberghe 2004)), fi(p) is a positive convex function with continuous

second derivative.
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3.1. Designing a method to construct lower bounds

To construct the lower bounds, we use a trust-region method (Conn et al. 2000), where

solutions are obtained iteratively in the neighborhood of the previous feasible solution. A

typical way of finding a better solution is by approximating the objective function with a

quadratic function and solving the following optimization problem in the kth iteration:

max
p∈RI

1

2
pTHkp+ gTk p

s.t. ‖p− pk‖2 ≤ rk

Ap≥ b, p≥ 0,

(9)

where Hk ∈ R
I×I is the Hessian matrix and gk ∈ R

I is the gradient vector of the objec-

tive function at the feasible solution pk obtained in the (k − 1)st iteration, rk is the

radius of the neighborhood, and where ‖.‖2 is the Euclidean norm. The issue is that the

objective function of (8) is neither convex nor concave, and hence (9) might be a nonco-

cave quadratic optimization problem, known to belong to the class of NP-hard problems

(Pardalos and Vavasis 1991). To avoid this issue, we use the linear approximation of the

objective function in each iteration and use the following optimization problem:

max gTk p

s.t. ‖p− pk‖1 ≤ rk

Ap≥ b, p≥ 0,

(10)

where ‖.‖1 is the ℓ1-norm.

Algorithm 1 provides the steps taken to find a “good” feasible solution using (10). As

one can see, (10) is a linear optimization problem and hence optimal solutions are in

the boundary points of its feasible region. So, the algorithm starts with searching for a

good solution in the boundary of the neighborhood of the initial solution with radius 1. It
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continues the search unless it does not reach to a point with improvement in the objective

function. Then, the radius of the neighborhood gets halved with the hope of finding a better

solution. The algorithm gets terminated when the improvement in the last two iterations

are less than a given tolerance error θ, hence a local optimum.

Algorithm 1 Steps to obtain a “good” feasible solution using (10)

1: select a random feasible solution p0

2: f 1 :=+∞, r0 := 1, k= 0,

3: while |f 1− f(pk)|> θ, for a given error, do

4: find pk+1 by solving (10) with radius r0

5: p̄0← pk, p̄1← pk+1, f 0← f(p̄0), f 1← f(p̄1)

6: while f 1 > f 0 do

7: p̄0← p̄1, f 0← f 1

8: find p̄1 by solving (10) with initial point p̄0 and radius r0

9: f 1← f(p̄1), r0← 1

10: r0← r0

2

11: pk+1← p̄1, increase k by 1

12: return pk

3.2. Designing a method to construct upper bounds

In this section, we explore the properties of the optimization problem (8) and use them

to develop an overestimator to construct an upper bound on the objective value of the
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problem. To this end, we first reformulate (8) as a biconvex optimization problem:

max
p,τ∈RI

∑

i∈I

piτi

s.t. fi(p)τi≤ 1, ∀i ∈ I,

Ap≥ b,

τi, pi≥ 0, ∀i ∈ I.

(11)

It is clear that (8) and (11) are equivalent as fi(p) is a positive function. Problem (11)

belongs to the class of biconvex optimization problems, as it contains functions that are

convex in p and convex in τ . There are different methods to solve biconvex optimization

problems (see the review paper by Gorski et al. (2007)). In this section, we use McCormick

relaxation (McCormick 1976) as well as piece-wise linear underestimators of fi(p) to con-

struct a linear optimization problem that approximate the objective function of (8) from

above.

To do so, let us assume that we have a collection of K feasible points P = {p0, p1, ..., pK}.

As fi(p) is a convex function for any i∈ I, we have (Bazaraa et al. 2013)

fi(p)≥ fi(p
k)+∇fi(p

k)T (p− pk), ∀i∈ I, k= 1, ...,K.

Therefore, as τi, i ∈ I, are nonnegative, the following bilinear optimization problem pro-

vides an upper bound on the objective value of (8):

max
p,τ∈RI

∑

i∈I

piτi

s.t.
(
fi(p

k)+∇fi(p
k)T (p− pk)

)
τi≤ 1, ∀i∈ I, k= 1, ...,K,

Ap≥ b,

τ ≥ 0.

(12)
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To have a tractable approximation, we further approximate (12) by the following linear

optimization problem:

max
p,τ∈RI

W∈RI×I

∑

i∈I

Wii (13a)

s.t. Ap≥ b, (13b)

fi(p
k)τi+∇fi(p

k)T (Wi:− pkτi)≤ 1, ∀i∈ I, k= 1, ...,K, (13c)

AWi: ≥ bτi, ∀i∈ I, (13d)

LBτi (Ap− b)≤AWi:− bτi, ∀i∈ I, (13e)

AWi:− bτi≤UBτi (Ap− b) , ∀i∈ I, (13f)

Wij ≥LBτipj + τiLBpj −LBτiLBpj , ∀i, j ∈ I, (13g)

Wij ≥UBτipj + τiUBpj −UBτiUBpj , ∀i, j ∈ I, (13h)

Wij ≤UBτipj + τiLBpj −UBτiLBpj , ∀i, j ∈ I, (13i)

Wij ≥LBτipj + τiUBpj −LBτiUBpj , ∀i, j ∈ I, (13j)

LBτ ≤ τ ≤UBτ , (13k)

LBp ≤ p≤UBp. (13l)

where LBp, UBp ∈RI are the vectors containing component-wise lower and upper bounds

of p, LBτ , UBτ ∈ R
I are vectors containing the component-wise lower and upper bounds

of τ , respectively, and Wi: = [Wij ]j∈I. Problem (13) is constructed by linearization of the

bilinear optimization problem equivalent to (12) including some redundant constraints.

The variable Wij is added to linearize the bilinear term τipj, for i, j ∈ I. Constraint (13c)

is a linearization of the first constraint in (12). Constraint (13d) linearizes the redundant

constraint (Ap− b)τi ≥ 0, for i ∈ I. Constraints (13e) and (13f) are the constraints pro-

posed by Zhen et al. (2018) to tighten the linear relaxation. Constraints (13g), (13h), (13i),
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and (13j) are obtained by using McCormick relaxation (McCormick 1976). Therefore, the

objective value of (13) is an upper bound on the objective value of (12) and hence (11).

Remark 1. To construct (13), we need to compute LBτ and UBτ . Since in the optimal

solution (τ ∗, p∗) of (11), we have τ ∗
i = 1

fi(p∗)
, we can compute LBτi by solving the convex

optimization

min
p∈RI

1

fi(p)

s.t. Ap≥ b, p≥ 0,

and can compute 1
UBτi

by solving the convex optimization

min
p∈RI

fi(p)

s.t. Ap≥ b, p≥ 0.

�

Hitherto, we have provided a method to obtain a “good” feasible solution (Section 3.1)

and an optimization problem to provide an upper bound on the objective value of (8)

(Section 3.2). In the next section, we provide a new branching method to tighten the gap

between the lower and upper bounds.

3.3. New branching method for continuous variables

A typical branching method in continuous optimization is done by first choosing the branch-

ing variable and then splitting its feasible interval into two intervals (Misener and Floudas

2014, Floudas et al. 2005, Akrotirianakis and Floudas 2004). As one can notice, such

branching methods result in binary trees, as in each iteration we only have two branches.

In this section, we implement Voronoi diagram (Aurenhammer 1991) as a branching strat-

egy, which provides us with many branches in each iteration with the hope of closing the

optimality gap faster.



A. Marandi, V. Lurkin: Static Pricing Problems under Mixed MNL Demand

14

Voronoi diagram is designed to partition a set with respect to finite number of points in

it. Let us assume that P = {p1, ..., pK} is the set of K points in the feasible set S. Then,

Voronoi diagram partitions S into K subsets each of which contains only one point. The

partitioning is done such that the points in the kth subset are closer to pk than any other

points. Mathematically, the kth subset corresponding to pk is constructed as follows:

Sk = S ∩
{
p∈Rn : ‖pk− p‖2 ≤ ‖p

k− pj‖2, ∀j : j 6= k
}
,

which can equivalently be formulated as

Sk = S ∩

{
p∈Rn : (pj − pk)Tp≤

1

2
(pj − pk)T (pj + pk), ∀j : j 6= k

}
. (14)

In our branching, we start with two feasible solutions P1 = {p1, p2} and partition the

feasible region into two subsets S1
1 and S1

2 using Voronoi diagram. Then, for each subset the

method in Section 3.1 provides two feasible solutions p3 and p4 in S1
1 and S1

2 , respectively.

The second iteration uses the updated set of solutions P2 = {p1, p2, p3, p4} to partition

S. Let us denote by S̄2
k the partition corresponding to the feasible solution pk in P2,

k = 1, ...,4. Then, the branching is done by intersecting S1
1 and S1

2 with S̄2
k, k = 1, ...,4.

Figure 1 illustrates the first two levels of branching obtained by the algorithm.

Similar to the standard branch and bound algorithms, to avoid extra branching, we solve

the relaxation problem (13) in each node to get an upper bound on the optimal value

in that node. If the upper bound is lower than the objective value of the best obtained

solution or the same as the lower bound on that node, then we terminate branching of that

node, as we know the branching does not result in a better solution.

It is important to notice that in a node corresponding to a feasible solution pk, the

trust-region method in Section 3.1 can return pk again, which results in a loop. To avoid

loops, we have an extra step in which we check whether we obtain a new solution from the
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S

S1
2

S2
8 = S1

2 ∩ S̄
2
4

S2
7 = S1

2 ∩ S̄
2
3

S2
6 = S1

2 ∩ S̄
2
2

S2
5 = S1

2 ∩ S̄
2
1

S1
1

S2
4 = S1

1 ∩ S̄
2
4

S2
3 = S1

1 ∩ S̄
2
3

S2
2 = S1

1 ∩ S̄
2
2

S2
1 = S1

1 ∩ S̄
2
1

Figure 1 Branching tree obtained by Voronoi diagram.

trust-region method. In case the solution is the same as pk, we find a new solution by the

following procedure.

Let us denote by S, LBp, and UBp, the feasible region of the current node in which

we cannot find a new solution, lower bounds, and upper bounds on the solutions in S,

respectively. Also, let us denote by i the index that has the maximum UBpi−LBpi among

i= 1, ..., I. So, we have

pk
i
≶LBpi

+
UBpi

−LBpi

2
+ ǫ,
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where ≶ is either < or > and

ǫ=





0 if pk
i
>LBpi

+
UBpi

−LBpi

2
,

0 if pk
i
<LBpi

+
UBpi

−LBpi

2
,

ρ if pk
i
=LBp

i
+

UBpi
−LBpi

2
,

where ρ > 0 is a small enough scalar. Let us assume without loss of generality that

pk
i
<LBpi

+
UBpi

−LBpi

2
+ ǫ, (15)

then, we solve the following convex quadratic optimization problem to find the new solu-

tion:

min
p∈RI

(p− pk)T (p− pk)

s.t. p∈ S

pi ≥LBp
i
+

UBp
i
−LBp

i

2
+ ǫ.

(16)

Using (16), we try to find the closest solution to pk in

{
p∈Rn : p∈ S, pi≥LBpi

+
UBpi

−LBpi

2
+ ǫ

}
.

The reason to solve (16) is that if the trust-region algorithm converges to a local maximum,

the new solution helps our method to jump to another part of the feasible region (but not

far from the current solution) to explore more parts of the region. Another reason is that

we want to decrease the volume of the feasible region in each branching iteration. Hence,

by selecting i we are ensured that in the next branching iteration the feasible region has

a shorter length along side the i
th

axis, which implies asymptotically convergence of the

algorithm, based on the following theorem.

Theorem 1. Let us denote by S the feasible region of (8), and its Voronoi diagram

partitions Sm
k , k = 1, ...,Km, in the mth iteration, based on the obtained set of feasible
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solutions. Also, let us denote by Br(p) a hyperball with the center p and radius r. Let optm

be the upper bound obtained in the mth iteration. Set

rm := max
k=1,...,Km

{min{r : Sm
k ⊆Br(p), for some p∈ Sm

k }} .

In other words, rm is the maximum radius of the smallest hyperball among those covering

the partitions Sm
k . If rm→ 0 as m tends to +∞, then optmց opt, meaning the sequence of

upper bounds asymptotically converges to the optimal value of (8).

Proof Let us first reformulate the optimization problem we are dealing with in the mth

iteration. Given the set of obtained solutions, Pm = {p1, ..., pK
m

}, in the mth iteration we

want to solve

opt
m
=max

p∈RI

∑

i∈I

pi

fm
i (p)

s.t. p∈ S,

(17)

where

fm
i (p) := max

k=1,...,Km

{
fi(p

k)+∇fi(p
k)T (p− pk)

}
.

Let p∗ be an optimal solution of (8) and p∗
m

be an optimal solution of (17), m= 1, ...,+∞.

As S is a polytope and fi(p) is convex with continuous second derivative, we know there

exists γ > 0 such that for any p∈ S, i∈ I,

∇2fi(p)� γI,

where ∇2fi(p) ∈ R
I×I is the Hessian matrix and I ∈ R

I×I is the identity matrix. The rest

of the proof is split into proving the following four statements:

(I) If rm→ 0 as m tends to +∞, then for any i∈ I, we have fm
i (p)

Uniform
−−−−→ fi(p);

(II) For any i∈ I, if fm
i (p)

Uniform
−−−−→ fi(p), then

∑

i∈I

pi

fm
i (p)

Uniform
−−−−→

∑

i∈I

pi

fi(p)
;
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(III) If for any p ∈ S, limm→+∞

∑
i∈I

pi
fm
i (p)

=
∑

i∈I
pi

fi(p)
, then maxp∈S

∑
i∈I

pi
fm
i (p)

reaches

maxp∈S
∑

i∈I
pi

fi(p)
,

(IV) If maxp∈S
∑

i∈I
pi

fm
i (p)

reaches maxp∈S
∑

i∈I
pi

fi(p)
, then optmց opt,

where
Uniform
−−−−→ denotes the uniform convergence.

Proof of (I): Let us fix i ∈ I. To prove fm
i (p)

Uniform
−−−−→ fi(p), we should show that for any

ǫ > 0, there exists M ∈N such that for any m≥M and any p∈ S we have fi(p)−fm
i (p)< ǫ.

Given ǫ > 0, let us set ǭ :=
√

2ǫ
γ
. From the assumption, we know there exists M ∈N such

that for any m≥M , we have rm < ǭ. In other words, for any m≥M and p∈ S there exists

k ∈ {1, ...,Km}, such that ‖p− pk‖2≤ ǭ.

Furthermore, for any p, y ∈ S, we know that (see Theorem 1 in Chapter 10 of (Grossman

2014))

fi(y)− fi(p)−∇fi(p)
T (y− p)≤

γ

2
‖y− p‖22.

Therefore, for any m≥M and p∈ S, there exists k= 1, ...,Km such that

fi(p)− fm
i (p)≤ fi(p)− fi(p

k)−∇fi(p
k)T (p− pk)≤

γ

2
‖pk− p‖22 ≤

γ

2
ǭ2 = ǫ,

or equivalently, fm
i (p)

Uniform
−−−−→ fi(p).

Proof of (II): Let us fix i∈ I. Set γ̄i :=maxp∈S pi, and γ̄ :=maxi=1,...,I γ̄i. Let us fix ǫ > 0

and set ǭi :=
ǫΩ2

i

2γ̄
, where Ωi =minp∈S fi(p). As fi(p)> 0 for p∈ S and S is bounded, Ωi > 0.

By the assumption, there exists M ∈N such that for any m>M and any p∈ S, we have

fi(p)− fm
i (p)<min

{
Ωi

2
, ǭ
}
. Hence, fm

i (p)> Ωi

2
for any m≥M and p∈ S. So, we have

∣∣∣∣
pi

fm
i (p)

−
pi

fi(p)

∣∣∣∣= |pi|
∣∣∣∣

1

fm
i (p)

−
1

fi(p)

∣∣∣∣≤ γ̄
|fi(p)− fm

i (p)|

|fi(p)fm
i (p)|

≤
2γ̄ǭ

Ω2
i

= ǫ.

Thus, we have proved that for any i ∈ I, pi
fm
i (p)

Uniform
−−−−→ pi

f i(p)
. As the finite summation pre-

serves uniform convergence, we have

∑

i∈I

pi

fm
i (p)

Uniform
−−−−→

∑

i∈I

pi

fi(p)
.
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Proof of (III): Let us set

gm(p) :=
∑

i∈I

pi

fm
i (p)

, g(p) :=
∑

i∈I

pi

fi(p)
.

We know that for any p ∈ S, gm(p) ≥ g(p). Let us denote by p∗
m

an optimal solution of

maxp∈S gm(p),m= 1, ...,+∞, and by p∗ an optimal solution of maxp∈S g(p). By assumption,

we know for a given value of ǫ > 0, there exists M ∈N such that for any m>M and any

p∈ S we have gm(p)− g(p)< ǫ. So, for any m>M

g(p∗)+ ǫ≥ g(p∗
m

)+ ǫ > gm(p
∗m),

where the left inequality is due to optimality of p∗, and the right inequality is because of

the uniform convergence. Therefore, for any m>M

gm(p
∗m)− g(p∗)< ǫ,

which concludes (III).

Proof of (IV) Based on the assumption, for a given ǫ > 0, there exists M ∈N such that

for any m≥M , we have opt
m
− opt < ǫ

2
. Let us denote by PM the set of feasible solutions

obtained until the Mth iteration. In the ℓth iteration of the algorithm, let us denote by

õpt
ℓ
the optimal value of the linearization of (17) constructed by including (13c) in (13)

only for the points in PM . Therefore, if ℓ≥M , then õpt
ℓ
≥ optℓ, as PM ⊆Pℓ.

As it is shown by McCormick (1976), if rℓ reaches 0 as ℓ tends to +∞ then õpt
ℓ
ց opt

M
.

Therefore, there exists L∈N such that for any ℓ≥L, we have õpt
ℓ
− opt

M
≤ ǫ

2
. Hence, for

any ℓ >max{L,M} we have

optℓ− opt≤ õpt
ℓ
− opt= õpt

ℓ
− opt

M
+ opt

M
− opt≤

ǫ

2
+

ǫ

2
= ǫ.

Proof of the theorem: Combining (I), (II), (III), and (IV) implies that optmց opt as m

tends to +∞. �
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Theorem 1 asserts that the objective value of (13) converges to the optimal value of

(8). In the next section, we show how the algorithm efficiently works on a case study on a

parking services pricing problem.

4. Case study

In this section, we illustrate the effectiveness of our method to solve static pricing problems

formulated from continuous mixed logit model. We refer to our method as LiBiT, as it is

based on linearization of a biconvex optimization and trust-region algorithm. The numer-

ical results of this work were carried out on a Laptop featuring 4 processors 2.60 GHz and

8.00 GB RAM running Julia 1.0.3 (Bezanson et al. 2017) and MATLAB R2016a. We use

JuMP 0.18.6 (Dunning et al. 2017) to pass Linear Optimization problems to IBM ILOG

CPLEX 12.7.1. To compare the performance of our method, we also use two algorithms in

the NLOPT package (Johnson 2014). To have a fair comparison with the other algorithms,

in LiBiT we numerically find the gradient using FiniteDiff package in Julia.

Remark 2. We also used SNOPT 7.7 (Gill et al. 2005) to solve (6), however, for all

instances it ran into numerical issues. Therefore, we have not reported the results obtained

by this solver. �

4.1. Parking choice model description

The selection of this case study is motivated by the availability of a published, non-trivial,

disaggregate parking choice model by Ibeas et al. (2014), that we can use to characterize

the demand. Furthermore, this case study has been recently used by Paneque et al. (2018)

to demonstrate how to integrate advanced discrete choice models in pricing problems using

a a mixed integer linear programming (MILP) formulation.

The parking choice consists in three services:

• paid on-street parking (PSP),

https://github.com/JuliaDiff/FiniteDiff.jl
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• paid parking in an underground car park (PUP),

• free on-street parking (FSP).

The latter does not provide any revenue to the operator. Table 1 shows all explanatory

variables used in the utility functions of the mixed logit model. These are features related

to the age of the vehicle, the income of customers, the type of trip, the access time to the

destination from the parking, and information whether the customer is a resident or not.

Given these features and following the mixed logit model proposed by Ibeas et al. (2014),

we build the following three utility specifications:

VFSP,n = β
p
FSP,n× pFSP + qFSP,n

= qFSP,n,

VPSP,n = β
p
PSP,n× pPSP + qPSP,n,

VPUP,n = β
p
PUP,n× pPUP + qPUP,n.

The utility specification of the free on-street parking only contains the exogenous part

qFSP,n since there is no fee to pay for that option (pFSP = 0). The price sensitivities param-

eters βp
PSP,n and β

p
PUP,n are then further expressed as:

β
p
PSP,n = βFEE +βFEEPSP (LowInc)

×LowIncn+βFEEPSP (Resident)
×Residencen

β
p
PUP,n = βFEE +βFEEPUP (LowInc)

×LowIncn +βFEEPUP (Resident)
×Residencen.

The exogenous parts of utilities are modeled as:

qFSP,n = βAT ×ATFSP+βTD×TDFSP +βOrigin×Originn,

qPSP,n =ASCPSP+ βAT ×ATPSP+βTD×TDTSP ,

qPUP,n =ASCPUP+ βAT ×ATPUP+βTD×TDPUP +βAgeV eh≤3
×AgeV eh≤3n.
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Features Definition

ASCPSP Alternative specific constant for the PSP alternative.

ASCPUP Alternative specific constant for the PUP alternative.

ATFSP The access time to the free on-street parking.

ATPSP The access time to the paid on-street parking.

ATPUP The access time to the paid underground parking.

TDFSP The access time to the destination from the free on-street

parking.

TDPSP The access time to the destination from the paid on-street

parking.

TDPUP The access time to the destination from the paid under-

ground parking.

Origin A dummy parameter that is 1 if the origin of the trip is

internal to the town.

p
PSP

Fee for the paid on-street parking.

pPUP Fee for the paid underground parking.

LowInc A dummy parameter that is 1 if the income of the cus-

tomer is below 1200e/month.

Residence A dummy parameter that is 1 if the customer is a resident.

AgeV eh≤3 A dummy parameter that is 1 if the age of the vehicle is

lower than 3 years.

Table 1 Features used in the parking choice model.
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The values of coefficient parameters used in Ibeas et al. (2014) are depicted in Table 2.

Parameters βAT and βFEE are assumed to be normally distributed and correlated, with

cov(βAT ;βFEE) =−
3
2
.

Mixed Logit

ASCPSP 32

ASCPUP 34

βAT ∼Normal(−0.788,1.06)

βTD -0.612

βOrigin -5.762

βFEE ∼Normal(−32.3,14.12)

βFEEPSP (LowInc)
-10.995

βFEEPSP (Resident)
-11.44

βFEEPUP (LowInc)
-13.729

βFEEPUP (Resident)
-10.668

βAgeV eh≤3
4.037

Table 2 Values of coefficient parameters.

The pricing problem is to determine the optimal prices (or parking fees) of the two paid

parking services, i.e., p
PSP

and p
PUP

, so that the revenue of the operator is maximized.

Since the purpose is to show the practicality of LiBiT, we consider an unlimited capacity

for the parking services. In the pricing problem, p
PSP

and p
PUP

are the only endogenous

variables, and all others are exogenous demand variables for which values are given.

4.2. Numerical results

We compare the performance of LiBiT with the other algorithms by applying them to

instances generated with the above-mentioned features.
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We first show how LiBiT works to solve the pricing problem containing the continuous

mixed logit model. As there are limited solvers capable of dealing with optimization func-

tions including integral, we compare our results with two algorithms provided in NLopt

package (Johnson 2014) that are capable of solving (6) asymptotically. We use Direct−L

(Gablonsky and Kelley 2001), which uses systematic splitting methods to divide the fea-

sible region into smaller rectangles, and ESCH (da Silva Santos et al. 2010), which is a

modified evolutionary algorithm for global optimization problems. The main drawback of

the algorithms is that they do not provide any optimality guarantee.

Then, we apply LiBiT to solve the pricing problem with discrete mixed logit model and

compare its performance with the existing methods in the literature.

4.2.1. Results on the continuous mixed logit model For the continuous mixed logit

model (6), we set the time limit to 17 hours. This is because the objective function contains

an integral, which needs a lot of computational efforts. To be able to compute the integral

we limit the box to the 0.99 confidence set, i.e., [−3.6,1.94]× [−68.52,3.92], and use the

Cuba package (Hahn 2005, 2016) in Julia.

To have a better understanding of the optimization problem (6), we plot the objective

functions for N =10 and N =50 customers over the standard box in Appendix A. As one

can see, the objective function of the instance with N = 10 is more flat than the one with

N = 50. However, both objective functions contain many local optimums.

Let us discuss the performance of our method on the instance with N = 10. To solve

the optimization problem, LiBiT starts from trivial feasible solutions
[
0
0

]
and

[
1
1

]
and use

Voronoi diagram to partition the feasible region (Figure2a). Then, for each partition of

the feasible region, the trust-region algorithm, Algorithm 1, is employed to obtain new

solutions (red squares in Figure 2b). Then, using Voronoi diagram LiBiT partitions the
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(a) First iteration (b) Second iteration (c) Third iteration

Figure 2 Illustration of the first three iterations of LiBiT applied to the parking choice model with N = 10

customers

feasible region based on the set of four feasible solutions (Figure 2b) and for each partition

finds new solutions (blue dots in Figure2c) using trust-region algorithm. One can notice

that there is no solution obtained by LiBiT on the bottom-right partition in Figure 2c.

The reason is that LiBiT recognizes that the upper bound obtained on this partion is

lower than the objective value of the best found solution and hence there is no need to

investigate this area.

LiBiT continues the procedure until either the time limit is reached or the objective value

of the best obtained feasible solution does not deviate from the upper bound obtained by

the linearization by at most 10−4.

Lower bound Upper bound Opt. gap Time (Minutes)

LiBiT 6.21 6.21 0.00% 275.17

Direct−L 6.21 - - 1020

ESCH 6.21 - - 1020

Table 3 Information obtained on solving (6) with N = 10.

As one can see in Table 3, all the algorithms can find the optimal solution, however,

LiBiT is the only one with optimality guarantee. LiBiT can solve the problem in 4.58
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hours, while the other two methods are unable to guarantee optimality of the obtained

solutions within the time limit of 17 hours.

To have a better understanding of the behaviour of LiBiT to solve (6) with N = 10

customers, we illustrates in Figure 3 how the lower and upper bounds are improved over

time. For this instance, LiBiT finds the optimal solution after 4 iterations but needs 27

iterations to close the optimality gap.

0 50 100 150 200 250 300

5

10

15

Time (Minutes)

O
b
je
ct
iv
e
va

lu
e Upper bound

Lower bound

Figure 3 Illustration of the LiBiT convergence for solving (6) with N =10 after each branching.

The performance of the algorithms are similar when we increase N from 10 to 50. The

only difference is that LiBiT can guarantee optimality of the obtained solution after 16.92

hours. The main reason for the long computation time is that, the computational com-

plexity of the objective function increases when N increases due to numerical derivations

as well as integral. Because of this complexity, each iteration of LiBiT takes much longer

when N increases from 10 to 50. It is worth emphasizing that the other two algorithms

cannot guarantee optimality of the solution.

To further analyze the behaviour of LiBiT, we illustrate the improvements of lower and

upper bounds over time in Figure 4. As one can see, after the fourth iteration, there is no

improvement in the lower bound while the upper bound keeps getting improved until the

21st iteration.
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Lower bound Upper bound Opt. gap Time (Minutes)

LiBiT 31.30 31.30 0.00% 1015.22

Direct−L 31.30 - - 1020

ESCH 31.30 - - 1020

Table 4 Information obtained on solving (6) with N = 50.

0 200 400 600 800 1,000 1,200
20

40

60

80

Time (Minutes)

O
b
je
ct
iv
e
va

lu
e Upper bound

Lower bound

Figure 4 Illustration of the LiBiT convergence for solving (6) with N =50 after each branching.

We can also compare the improvement obtained after each iteration in LiBiT for the

instances with N = 10 and N = 50. Figure 5 shows that the improvements in the optimality

gaps are rather close for the instances withN =10 and N = 50. Such a similar improvement

occurs as the computational complexity of the problems (10) and (13) used in LiBiT are

not dependent on N . So, changes in N should not affect the performance of LiBiT after

each iteration, while they affect the computational time. We should emphasize that the

use of numerical derivation and integral is not necessary for the above instances, and

one can analytically derive the gradient function as well as the integral function, which

can boost the computation times of LiBiT. We do not use the analytical gradients and

integrals to have a fair comparison with other methods. Moreover, the branching algorithm

is compatible with parallel computations. After each branching iteration, the computations

of the lower and upper bounds on different nodes can be done in different CPUs and
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the results can be analyzed in one specific CPU. Such computations can decrease the

computation time dramatically.
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Figure 5 Illustration of the improvement of optimality gap for solving (6) with N = 10 and N = 50 after each

branching iteration.

4.2.2. Results on the discrete mixed logit model In order to compare LiBiT with

the algorithm proposed by Li et al. (2019), which is a local optimizer, we followed their

approach by considering that the market contains M = 100 customer segments and that

the probability for a single customer to belong to any of these segments is the same (i.e.,

wm = 1
M
,m= 1,2, ...M). Since no individual specific variables are included in their utility

specifications, we used the features of one single individual, and then randomly generated

100 points for βAT and βFEE. The choice probabilities are then given by (7).

Table 5 provides the results obtained by both algorithms. As one can see, both algorithms

can obtain the optimal solution rather fast (in around half a Second). Since the algorithm

proposed by Li et al. (2019) is a local optimizer it is expected to reach to a solution faster

than LiBiT, but the time difference is negligible. For this instance, LiBiT finds the optimal

solution without conducting any branching iteration. In other words, the optimal value of

the solution found using the trust-region method is the same as the optimal value of (13).

Finally, we also tested our LiBiT optimizer on the simple MNL model by assuming fixed

βAT = −0.788 and βFEE = −32.3 parameters for 10 and 50 customers. As this type of
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Lower bound Upper bound Opt. Gap Time (Seconds)

LiBiT 0.2824 0.2824 0.00% 0.51

Local optimizer
0.2824 - - 0.45

(Li et al. 2019)

Table 5 Comparison between the local optimizer algorithm proposed by Li et al. (2019) and LiBiT.

problem can be solved using the off-the-shelf optimization solver, we use the open-source

mixed integer nonlinear optimization solver SCIP 5.0.1 (Gleixner et al. 2017). To pass

the Nonlinear Optimization problems to SCIP, we use OPTI Toolbox (Currie and Wilson

2012) developed in MATLAB.

Table 6 provides the comparison between LiBiT and the solver SCIP. As one can see,

SCIP not only cannot reach to a feasible solution better than the origin but also it is

unable to find a proper upper bound on the optimal value of the problem within the time

limit of 600 Seconds. Despite SCIP’s inabilities, LiBiT can find the optimal solution and

guarantee optimality in less than 33 seconds.

Lower bound Upper bound Opt. Gap Time (Seconds)

LiBiT 6.36 6.36 0.00% 32.22

SCIP 0 4.2× 1019 1022% 600

Table 6 Information obtained on solving (6) with degenerate mixing probability measures with N = 10

customers.

To have a better understanding on how LiBiT converges to the optimal solution, we

illustrate how the optimality gap is reduced over time. As Figure 6 shows LiBiT finds the

optimal solution in the first iteration and attempts to close the optimality gap by doing

23 branching iterations.
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Figure 6 Illustration of the LiBiT convergence for solving (6) with degenerate mixing probability measures with

N =10 after each branching.
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Figure 7 Illustration of the LiBiT convergence for solving (6) with degenerate mixing probability measures with

N =50 after each branching.

For the instance with N =50, we see similar performances of SCIP and LiBiT. As Table

7 shows, SCIP struggles in finding a nontrivial solution and a proper upper bound for this

instance in 600 Seconds. However, LiBiT finds the optimal solution and can guarantee its

optimality in 41.37 seconds

Lower bound Upper bound Opt. gap Time (seconds)

LiBiT 31.93 31.93 0.00% 41.37

SCIP 0 1020 1023% 600

Table 7 Information obtained on solving (6) with degenerate mixing probability measures with N =50.

Similar to the results of applying LiBiT to solve instances with continuous mixed logit

model, the increase in N results in the increase in the computational time to solve instances
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with MNL model. However, the difference between the computation time of instances with

the MNL model is much less than the one for the continuous model. This is because, as

mentioned before, numerical computations of derivative and integral are time consuming

procedure, which can be avoided by using analytical formulas.

5. Conclusions

Pricing problems under disaggregate demand assumptions is still an under explored area

of research in transportation in despite of its numerous applications. In this paper, we

explored a static multi-product pricing problem under a continuous mixed logit model.

To the best of our knowledge, this highly general and highly used continuous mixed logit

model had never been considered in pricing problems before.

We designed an efficient iterative optimization algorithm that asymptotically converges

to the optimal solution. We used linear optimization problems designed based on a trust-

region approach to approximate the problem from below and therefore find a “good”

feasible solution. We then used piecewise linear approximations as well as McCormick

relaxation to obtain an upper bound on the optimal value of the nonlinear optimization

problem. Thanks to a new branching method, we then tightened the optimality gap and

proved asymptotic convergence of our algorithm.

The effectiveness of this general algorithm was demonstrated on a parking services pric-

ing case, and benchmark against solvers and existing contributions in the literature were

performed. Our algorithm can accommodate a large variety of choice models available in

the literature, including advanced choice models allowing complex and precise representa-

tions of individual behavior. We therefore hope that our work can motivate further research

on pricing problems that better capture the interactions between supply and demand deci-

sions.
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A. Illustration of the objective functions of the continuous mixed logit

model for the case study

(a) N = 10

(b) N = 50

Figure 8 Illustration of the objective function of (6) for the parking choice model with N = 10 and N = 50

customers.
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B. Illustration of the objective functions of the MNL model for the

case study

(a) N = 10

(b) N = 50

Figure 9 Illustration of the objective function of (6) with a degenerate mixing probability measure for the parking

choice model with N =10 and N = 50 customers.
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