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Abstract: We investigate whether Szabo’s metrizability theorem can be extended to Finsler spaces of
indefinite signature. For smooth, positive definite Finsler metrics, this important theorem states that,
if the metric is of Berwald type (i.e., its Chern–Rund connection defines an affine connection on the
underlying manifold), then it is affinely equivalent to a Riemann space, meaning that its affine connection
is the Levi–Civita connection of some Riemannian metric. We show for the first time that this result does
not extend to general Finsler spacetimes. More precisely, we find a large class of Berwald spacetimes for
which the Ricci tensor of the affine connection is not symmetric. The fundamental difference from positive
definite Finsler spaces that makes such an asymmetry possible is the fact that generally, Finsler spacetimes
satisfy certain smoothness properties only on a proper conic subset of the slit tangent bundle. Indeed, we
prove that when the Finsler Lagrangian is smooth on the entire slit tangent bundle, the Ricci tensor must
necessarily be symmetric. For large classes of Finsler spacetimes, however, the Berwald property does
not imply that the affine structure is equivalent to the affine structure of a pseudo-Riemannian metric.
Instead, the affine structure is that of a metric-affine geometry with vanishing torsion.

Keywords: Finsler geometry; Berwald spaces; Berwald spacetimes; Szabo’s theorem; metrizability

1. Introduction

Pseudo-Finsler geometry is a promising mathematical framework for an improved geometric
description of the gravitational interaction, beyond the pseudo-Riemannian geometry employed in general
relativity [1–11]. Most recently, Finsler spacetime geometry was suggested as the optimal mathematical
language to describe the gravitational field of kinetic gases [12]. While positive definite Finsler geometry,
as an extension of Riemannian geometry, is a long-standing, well-established field in mathematics [13–15],
pseudo-Finsler geometry is still in the process of being developed [16–22].

The (pseudo-)Finslerian manifolds that can be regarded as closest to the (pseudo-)Riemannian
manifolds are the so-called Berwald spaces, resp. spacetimes [23–26]. For these geometries, the canonical
nonlinear connection, which is the fundamental building block of the Finsler geometry under consideration,
is actually linear in its dependence on the directional variable of the tangent bundle, and thus gives rise to
an affine connection on the base manifold. Hence, the natural question to ask is: Under which conditions
are Berwald geometries metrizable, i.e., under which conditions does there exist a (pseudo-)Riemannian
metric such that the affine Berwald connection is the Levi–Civita connection of this metric?
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For Berwald spaces, i.e., in the positive definite case, this question is answered by Szabo’s theorem [27].
It states that every Berwald space is Riemann metrizable. In other words, for every Berwald space,
there exists a Riemannian metric such that the affine connection of the Berwald space is identical to the
Levi–Civita connection of the metric. The desired Riemannian metric can be constructed explicitly from
the Finsler metric of the Berwald space by averaging the Finsler metric over the indicatrix of the Finsler
function [28]. For Finsler spacetimes, no extension of Szabo’s theorem has been presented so far.

In this article, we show for the first time that it is not possible to extend Szabo’s theorem to Finsler
spacetimes, and thus, Berwald spacetimes are in general non-metrizable. Instead, the following statement
holds. The affine connection of every Berwald spacetime is identical to a metric-affine geometry on the
base manifold, with a torsion-free connection that is in general not metric compatible. More explicitly,
we find examples of Berwald spacetime metrics such that the Ricci tensor of the affine connection is not
symmetric. The origin of this lack of symmetry lies in the weaker smoothness assumptions on the Finsler
Lagrangian compared to the Finsler function on Finsler spaces.

We present this result as follows. In Section 2, we introduce the necessary notions of the geometry
of Finsler spaces and Finsler spacetimes before we present our main result, the non-metrizability of
Berwald–Finsler spacetimes, in Section 3. We close this article with a short discussion of our results in
Section 4.

2. Finsler Geometry

In Finsler geometry, the geometry of a manifold is derived from a general geometric length measure
for curves, defined by a so-called Finsler function. The origin of this idea goes back to Riemann [29],
but it was only systematically investigated by Finsler in his thesis [13]. For positive definite geometries,
the generalization of Riemannian geometry to Finsler geometry has long been known in the literature.
Applying the same kind of generalization from pseudo-Riemannian geometry to pseudo-Finsler geometry
is not so straightforward.

We will recall the definition of Finsler spaces and Finsler spacetimes and point out the differences in
the construction.

Throughout this article, we consider the tangent bundle TM of an n-dimensional manifold M,
equipped with manifold induced local coordinates, as follows. A point (x, ẋ) ∈ TM is labeled by the
coordinates (xa, ẋa) given by the decomposition of the vector ẋ = ẋa∂a ∈ Tx M, where xa are the local
coordinates of the point x ∈ M. If there is no risk of confusion, we will sometimes suppress the indices of
the coordinates. The local coordinate bases of the tangent and cotangent spaces, T(x,ẋ)TM and T∗(x,ẋ)TM, of

the tangent bundle are {∂a =
∂

∂xa , ∂̇a =
∂

∂ẋa } and {dxa, dẋa}. In the following, unless elsewhere specified,
by smooth, we will always understand C∞-smooth.

2.1. Finsler Spaces

A Finsler space is a pair (M, F), where M is a smooth n-dimensional manifold and the Finsler function
F : TM→ R is continuous on TM and smooth on TM \ {0}, and (see [14]):

• F is positively homogeneous of degree one with respect to ẋ: F(x, αẋ) = αF(x, ẋ) for all α ∈ R+,
• the matrix:

gF
ab = 1

2 ∂̇a∂̇bF2 (1)

defines the Finsler metric tensor gF and is positive definite at any point of TM \ {0}, in one (and then,
in any) local chart around that point.
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The length of a curve γ : R ⊃ [t1, t2] → M on a Finsler space is defined by the parametrization
invariant length integral:

S[γ] =
∫ t2

t1

dτF(γ, γ̇) . (2)

To discuss Szabo’s theorem later, we need the building blocks of the geometry of a Finsler space, the
geodesic spray coefficients:

Ga =
1
4

gFaq(ẋm∂m∂̇qF2 − ∂qF2) . (3)

They are defined on each coordinate chart of TM \ {0} and characterize the geodesic equation, which,
for arc length parametrized curves, is:

ẍa + 2Ga(x, ẋ) = 0 . (4)

Further objects we need for the arguments in this article are the horizontal derivative operators:

δa = ∂a − ∂̇aGb∂̇b , (5)

the local coordinate expressions of the Chern–Rund connection coefficients:

Γa
bc =

1
2

gFaq(δbgF
cq + δcgF

bq − δqgF
bc) , (6)

the hh-Chern–Rund curvature:

Rc
adb = δdΓc

ab − δbΓc
ad + Γc

dsΓs
ab − Γc

bsΓs
ad , (7)

and its corresponding horizontal Ricci tensor:

Rab = Rm
amb = δmΓm

ab − δbΓm
am + Γm

msΓs
ab − Γm

bsΓs
am . (8)

It is important to notice that in general, Rab is not symmetric:

Rab − Rba = δaΓm
bm − δbΓm

am = Rc
dab ẋdCc . (9)

Here, Ca = Cb
ab are the components of the trace of the Cartan tensor Cabc =

1
2 ∂̇agF

bc. The last equality
in (9) can most easily be proven by introducing the function:

f = ln
√
|det gL

ab| . (10)

By direct calculation, one finds,

δa f =
1

2|det gL
cd|

δa|det gL
cd| =

1
2

gLmnδagL
mn = Γm

am, (11)

∂̇a f =
1

2|det gL
cd|

∂̇a|det gL
cd| =

1
2

gLmn∂̇agL
mn = Ca (12)
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and therefore:

δaΓm
bm − δbΓm

am = δaδb f − δbδa f = [δa, δb] f = Rc
dab ẋd∂̇c f . (13)

An alternative proof of (13) can be obtained in terms of the trace of Equation (47) of [30] or the use of
Equation (3.4.5) of [14].

The geometric objects introduced in this section make sense on local charts of TM \ {0}. Details on
the construction and properties of these objects in Finsler geometry can be found in [14,15].

Turning to Finsler spacetimes, we will consider the same geometric objects and see that in general,
these only make sense on subbundles of TM \ {0}.

2.2. Finsler Spacetimes

To discuss Finsler spacetimes properly, we recall the notion of a conic subbundleQ of TM [18], which
is a non-empty open submanifold Q ⊂ TM\{0}, with the following properties:

• π(Q) = M, where π : TM→ M is the canonical projection;
• conic property: if (x, ẋ) ∈ Q, then for any λ > 0 : (x, λẋ) ∈ Q.

By a Finsler spacetime, we will understand in the following a pair (M, L), where M is a smooth
n-dimensional manifold and the Finsler Lagrangian L : A → R is a smooth function on a conic subbundle
A ⊂ TM, such that:

• L is positively homogeneous of degree two with respect to ẋ: L(x, λẋ) = λ2L(x, ẋ) for all λ ∈ R+,
• on A, the vertical Hessian of L, called the L-metric, is nondegenerate,

gL
ab =

1
2

∂2L
∂ẋa∂ẋb (14)

• there exists a conic subset T ⊂ A such that on T , L > 0, g has Lorentzian signature (+,−,−,−) and,
on the boundary ∂T , L can be continuously extended as L|∂T = 0.1

This is a refined version of the definition of Finsler spacetimes in [19] and basically covers, if one
chooses A = T , the improper Finsler spacetimes defined in [31].

The one-homogeneous function F, which defines the length measure (2), is derived from the Finsler
Lagrange function as F =

√
|L| and interpreted as the proper time integral of observers. For clarity, we list

some important sets appearing on Finsler spacetimes and comment on their meaning:

• A: the subbundle where L is smooth and gL is nondegenerate, with fiber Ax = A∩ Tx M, called the
set of admissible vectors,

• N : the subbundle where L is zero, with fiber Nx = N ∩ Tx M,
• A0 = A \N : the subbundle where L can be used for normalization, with fiber A0x = A0 ∩ Tx M,
• T : a maximally connected conic subbundle where L > 0 and the L-metric exists and has Lorentzian

signature (+,−,−,−), with fiber Tx = T ∩ Tx M.

A major difference between Finsler spacetimes and Finsler spaces, as defined above, is the existence
of these different nontrivial subbundles of TM \ {0}. For Finsler spaces in their classical definition, these
bundles become trivial, i.e., A = A0 = TM \ {0}, N = {0}, and T = ∅.

1 It is possible to formulate this property equivalently with the opposite sign of L and the metric gL of signature (−,+,+,+).
We fixed the signature and sign of L here to simplify the discussion.
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The geometry of Finsler spacetimes is only well defined on A. Some operations, like integration
with a canonical zero-homogeneous length measure, can even only be performed on A0 [19]. On A, the
geodesic spray is given by:

Ga =
1
4

gLaq(ẋm∂m∂̇qL− ∂qL) . (15)

All further geometric objects, which we introduced in the context of Finsler spaces, are defined by the
same expressions (5), (6), (7), (8), and (9), but, just as the geodesic spray, only make sense on A.

The property that in general, the geometry of a Finsler spacetime is not defined on all of TM \ {0} is
crucial in our following finding, that, in general, Szabo’s theorem cannot be extended to Finsler spacetimes.

3. Berwald Spacetime Geometry and Metric-Affine Spacetime Geometry with Non-Metricity

A Finsler space or Finsler spacetime is said to be of Berwald type, or simply a Berwald space or
spacetime, if the geodesic spray is quadratic in ẋ:

Ga(x, ẋ) =
1
2

Ga
bc(x)ẋb ẋc . (16)

In this case, the second ẋ-derivatives of the geodesic spray coefficients are affine connection coefficients
∂̇b∂̇cGa = Ga

bc(x) on the base manifold.
A standard result in Finsler geometry is that, in general, the geodesic spray can be expressed in terms

of the Chern–Rund connection coefficients (6) as:

Ga(x, ẋ) =
1
2

Γa
bc(x, ẋ)ẋb ẋc . (17)

This means that on a Berwald space, or spacetime, the Chern–Rund connection coefficients are
independent of ẋ and the affine connection on M, defined by the connection coefficients Ga

bc(x), is
precisely given by the Chern–Rund connection, i.e., Γa

bc(x, ẋ) = Γa
bc(x) = Ga

bc(x).
For Berwald spaces, it is known that (see [27]):

Theorem 1 (Szabo’s theorem). Let (M, F) be a Finsler space of Berwald type. Then, there exists a Riemannian
metric g on M such that the affine connection of the Berwald space is the Levi–Civita connection of g.

Thus, the affine structure of a Berwald space (M, F) is identical to the affine structure of a Riemannian
manifold (M, g). The metric g can be constructed explicitly from the Finsler metric gF by an averaging
procedure over its ẋ dependence [28].

Next we demonstrate that Szabo’s theorem can in general not be extended to Berwald spacetimes.

3.1. A Necessary Condition for the Metrizability of Berwald Spacetimes

Let (M, L) be a Berwald spacetime with Chern–Rund affine connection coefficients Γa
bc = Γa

bc(x), as
defined in (6). Then, the horizontal Chern–Rund Ricci tensor (see (8)) is independent of ẋ and takes in
every coordinate chart the form:

Rab = ∂mΓm
ab − ∂bΓm

am + Γm
msΓs

ab − Γm
bsΓs

am . (18)

It can be regarded as the Ricci tensor of the affine connection with coefficients Γa
bc(x) on M. A

necessary, but not sufficient, condition for the connection defined by Γa
bc to be the Levi–Civita connection

of a pseudo-Riemannian metric is that the Ricci tensor (18) is symmetric.
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From (9), we find that for Berwald geometries, the skew-symmetric part is given by:

Rab(x)− Rba(x) = Rc
dab(x)ẋdCc(x, ẋ) , (19)

where we expressed the explicit dependence on variables x and ẋ to highlight that this equation encodes
much information about the geometry of Berwald spacetimes. In particular, it gives rise to the following
theorem:

Theorem 2 (Symmetric Ricci tensor on smooth Berwald spacetimes). If (M, L) is a Berwald spacetime with
A = TM \ {0}, then Rba(x) = Rab(x).

The proof of Theorem 2 will be presented in Appendix A.
In other words, if L is smooth and gL is non-degenerate on TM \ {0}, the Ricci tensor of a

Berwald–Finsler geometry is symmetric. For Finsler spaces, as we defined them in this article, these
conditions are satisfied by definition; see Section 2.1. Yet, in the class of Finsler spacetimes, there are many
interesting classes of examples for which A is not entirely TM \ {0}, but usually only a subset. This is the
origin of the existence of Berwald spacetimes with a non-symmetric Ricci tensor.

If one weakens the definition of Finsler spaces and allows for Finsler functions that are not smooth
everywhere on TM \ {0}, as for example conic Finsler geometries, introduced in [18], with a positive
definite Finsler metric, then also these admit examples of Berwald type for which the Ricci tensor is not
symmetric and hence provide Berwald spaces that are not metrizable. The same arguments we presented
for Finsler spacetimes hold in the positive definite case, since the main point is the non-smoothness of the
Finsler function/Finsler Lagrangian on TM \ {0}.

Next, we explicitly present a class of Finsler spacetimes that are, in general, not metrizable, since their
Ricci tensor is not symmetric.

3.2. Non-Metrizable Berwald–Finsler Spacetimes

The following Finsler spacetimes are of Berwald type, but not metrizable, since their Ricci tensor is
not symmetric. As we have seen in the previous section, the reason is that the set of admissible vectors A
is smaller than TM \ {0}, which is rather the usual case for Finsler spacetimes, than the exception.

Let α(ẋ, ẋ) = αab(x)ẋa ẋb be constructed from a pseudo-Riemannian metric α, β(ẋ) = βa(x)ẋa a
one-form on M evaluated on a generic tangent vector, and c, m, p real numbers. Moreover, define the

zero-homogeneous variable s = β(ẋ)2

α(ẋ,ẋ) . Consider the (α, β)-Finsler Lagrangian:

L(x, ẋ) = α(ẋ, ẋ)s−p(c + m s)p+1 . (20)

A brief discussion about the causal properties of this type of Finsler Lagrangians can be found in Appendix
B.

Finsler spacetimes (M, L) are generalizations of Bogoslovsky/p-Kropina/very general relativity
geometries [1,5–7,23,32–35], which we recover for c = 1, m = 0. The classical Kropina case is included by
setting p = 1. In [36, Corollary 3], we have shown that (M, L) is a Berwald spacetime if and only if the
covariant derivative of the one-form β with respect to the Levi–Civita connection of α satisfies:

∇aβb = H
(
[c(1− p) + mα−1(β, β)]βaβb + cpα−1(β, β)αab

)
, (21)
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for an arbitrary function H = H(x) on M. The resulting geodesic spray is:

Ga(x, ẋ) =
1
2

Γa
bc(x)ẋb ẋc =

1
2
(
γa

bc(x)− H (pc(δa
b βc + δa

c βb)− βa(mβbβc + pcαbc))
)

ẋb ẋc , (22)

and thus, the resulting affine connection coefficients are:

Γa
bc(x) = γa

bc(x)− H (cp(δa
b βc + δa

c βb)− βa(mβbβc + cpαbc)) . (23)

Here, γa
bc are the Christoffel symbols of the pseudo-Riemannian metric α; R[γ]ab below is the

corresponding Ricci tensor. For the Chern–Rund Ricci tensor (18), we find:

Rbd = R[γ]bd + cpαbd
(

H2α−1(β, β)(c + 3cp + mα−1(β, β)) + βa∂a H
)

+ βbβd
(
2cpH2(c + mα−1(β, β)) + mβa∂aH

)
− βb∂dH(mα−1(β, β)− 3cp)− cpβd∂b H . (24)

Thus, for the skew-symmetric part,

1
2
(Rab − Rba) =

1
2
(4cp−mα−1(β, β))(βa∂bH − βb∂a H) . (25)

We summarize these findings as follows.

Proposition 1. Let (M, L) be a Finsler spacetime defined by a Finsler Lagrangian of the type L(x, ẋ) =

α(ẋ, ẋ)s−p(c + m s)p+1 as in Equation (20). Then, the skew-symmetric part A(R) of the Chern–Rund Ricci
tensor is given by:

A(R) = f β ∧ dH , (26)

where f = 1
2 (4cp−mα−1(β, β)) is a scalar function. If f 6= 0 and β ∧ dH 6= 0, then (M, L) is non-metrizable.

This shows that the Ricci tensor corresponding to the Finsler Lagrangian (20) may not be symmetric
when H 6= 0, in particular when the one-form β is not covariantly constant (cf.(21)). This is indeed often
the case2, for example in the class of (α, β)-Kundt spacetimes introduced in [36], with Lagrangian (20). For
the sake of conciseness, we present below a very simple geometry in this class for which the Ricci tensor is
not symmetric, providing an explicit counterexample that shows that Szabo’s theorem does not hold in
general for Berwald spacetimes.

Let the Lorentzian metric α and the one-form β be given by:

α = 2 dudv + v φ(x, y)du2 + dx2 + dy2, β = du, (27)

where u, v are so-called light-cone coordinates and φ is a scalar function. It is easy to see that β is a null
one-form with respect to α, i.e., α−1(β, β) = 0. Assuming c 6= 0 and p 6= 1, the pair α, β satisfies condition
(21) with H = φ

2c(p−1) ; hence, the resulting Finsler Lagrangian L = αs−p(c + ms)p+1 is of Berwald type.

2 We will elaborate on this in forthcoming work.
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Plugging the function H in Equation (25), we find the following non-trivial components of the
skew-symmetric part of the Ricci tensor:

1
2
(Rux − Rxu) =

p
p− 1

∂xφ, (28)

1
2
(

Ruy − Ryu
)
=

p
p− 1

∂yφ. (29)

We see that they are independent of the parameters c and m and do not vanish for non-constant φ

and p 6= 0. This simple counterexample shows that the affine connection of a Berwald spacetime (M, L) is
not necessarily equivalent to the Levi–Civita connection of a (pseudo-)Riemannian metric. Hence, Szabo’s
theorem does not extend to general Finsler spacetimes.

We would like to point out that if one would exchange the Lorentzian metric in the examples with
a Riemannian metric, the same derivations can be made. Hence, if one allows for Finsler spaces with a
Finsler function that is not smooth on all of TM \ {0}, as for instance conic Finsler geometries [18], one also
finds counterexamples to Szabo’s theorem for positive definite Finsler geometries.

3.3. Affine Structure of Berwald Spacetimes

In physics, metric affine theories of gravity are considered as an extension of general relativity [37,38]
and an effective description of quantum gravity [39]. In these theories, a spacetime manifold is
equipped with a spacetime metric and an independent affine connection, which in general is not metric
compatible, possesses curvature and torsion. Special instances of metric affine gravity are those where
the connection has either only torsion [40], is only not-metric compatible [41–43], has only curvature (the
usual pseudo-Riemannian case), or possesses any possible combination of these three properties. In this
section we briefly summarize that the geometry of non-metrizable Berwald spacetimes is equivalent to a
metric affine geometry with a torsion free, non-metric compatible connection.

Pick any pseudo-Riemannian metric g, and let γa
bc[g] be the Christoffel symbols of its Levi–Civita

connection. Then:

Γa
bc(x) = γa

bc[g] + Da
bc , (30)

where D is a (1, 2)-tensor field on M. By construction, the Γa
bc(x) are symmetric in their lower indices,

and hence, they define a torsion-free affine connection. Thus, by the decomposition of affine connections
into Levi–Civita, contorsion, and non-metricity parts, the tensor Da

bc defines the non-metricity Qabc =

∇agbc = −Ds
acgsb − Ds

abgsc of the connection. In view of this argument, we can formulate the following
proposition:

Proposition 2. Let (M, L) be a Berwald–Finsler spacetime, and let Γa
bc be the induced affine connection coefficients

on M. Moreover, choose any pseudo-Riemannian metric g. The affine structure of the Finsler spacetime (M, L) is
equivalent to the affine structure of the metric-affine geometry of (M, g, Γ), where the connection defined by the
connection coefficients Γa

bc is torsion free, but in general not metric compatible. A Berwald–Finsler spacetime is
metrizable if and only if there exists a pseudo-Riemannian metric g such that the non-metricity Qabc vanishes.

4. Discussion

Evidently, Finsler spacetime geometry has a very different behavior compared to that of Finsler spaces.
The origin of this difference lies, on the one hand, in the weaker smoothness assumptions on the defining
Finsler Lagrangian L and, on the other hand, in the fact that its indicatrix is necessarily non-compact in
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the indefinite case [44]. As a consequence, classical theorems that hold on Finsler spaces may not hold on
Finsler spacetimes anymore. It was already known that Deicke’s theorem [45] does not hold on generic
Finsler spacetimes [44]. With this article, we demonstrated for the first time that the same is true for
Szabo’s theorem.

These findings call for a systematic study and classification of the geometric properties of Finsler
spacetimes in general and of Berwald spacetimes in particular.
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Appendix A. Proof of Theorem 2

To identify the origin of the lack of symmetry of the Chern–Rund–Ricci tensor, which implies
non-metrizability, we used Theorem 2, which we state here again:

If (M, L) is a Berwald spacetime with A = TM \ {0}, then Rba(x) = Rab(x).

We now provide the proof of the theorem. The starting point of the proof is Equation (9):

Rab − Rba = δaΓm
bm − δbΓm

am = Rc
dab ẋdCc , (A1)

which on Berwald spacetimes implies that the expression:

φ(x, ẋ) = Rc
dab(x)ẋdCc(x, ẋ) = Rc

dab(x)ẋd∂̇c f (x, ẋ) (A2)

is actually independent of ẋ. It is clear that the Ricci tensor of a Berwald spacetime is symmetric if and only
if φ identically vanishes, which we will now connect to the zeros of the derivatives of the function f . The

function f = ln
√
|det gL

ab|, as defined in (10), is zero-homogeneous in its dependence on ẋ, which means
it naturally lives on the positive projective tangent bundle PTM+; see [19].

Recall that PTM+ is defined as the set of equivalence classes [(x, ẋ)], where (x, ẋ) ∼ (x′, ẋ′) if and
only if (x′, ẋ′) = (x, λẋ) for some positive real λ. This makes PTM+ a 2n − 1 dimensional manifold
with coordinate charts built as follows. Consider a coordinate chart (U, ϕ) on M and define the open
subsets V+

i = {(x, ẋ) ∈ TU|ẋi > 0} and V−i = {(x, ẋ) ∈ TU|ẋi < 0} on TM. Then, for each [(x, ẋ)] with
(x, ẋ) ∈ V±i , we define the coordinates:

(xa, uα) =

(
x0, ...xn,

ẋ0

ẋi , ...,
ẋi−1

ẋi ,
ẋi+1

ẋi , ...,
ẋn−1

ẋi

)
, (A3)

where a = 0, ..., n − 1 and α = 0, ..., n − 2. More conveniently, one can use so-called homogeneous
coordinates (xa, ẋa), which are nothing but the coordinates on TM of an arbitrary representative of the
equivalence class [(x, ẋ)]. Homogeneous coordinates are only defined up to a scaling factor. PTM+ itself
is a fiber bundle over M, with compact fibers, diffeomorphic to Euclidean spheres [46]. Functions on
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TM \ {0} can be understood as functions on PTM+ if and only if they are zero-homogeneous in ẋ; in
homogeneous coordinates, calculus on PTM+ is formally identical to the one on TM.

Assume that A = TM \ {0}. This implies that |det g| is smooth and nonzero on TM \ {0}, and so is
f . Moreover, since they are zero-homogeneous in ẋ, they can be regarded as functions on PTM+.

Fix an arbitrary x ∈ M and an arbitrary local chart around x, then fx(·) = f (x, ·) is defined on the
fiber PTx M+, which is compact. Since fx is smooth, it admits at least a local extremum, say at ẋ = v, and
hence, ∂̇a fx|ẋ=v = 0. For the function φ(x, ẋ), this implies:

φ(x, v) = Rc
dab(x)vd∂̇c f (x, v) = 0 . (A4)

On the other hand, on Berwald spacetimes, φ is independent of ẋ, and we can conclude that φ is
identically zero for all ẋ, which completes the proof.

As a remark, the crucial ingredient of the proof is that |det gL
ab| is smooth and nonzero on the entire

TM \ {0}. If |det gL
ab| were only smooth and nonzero on a smaller subset, then fx would not be defined on

the entire fiber PTx M+, and the conclusion of the theorem would fail.

Appendix B. Generalized Bogoslovsky/Kropina–Finsler Lagrangians

The class of Finsler Lagrangians we considered as a counterexample to Szabo’s theorem are given
in Equation (20), which we rewrite here in the best way to briefly investigate the causal structure of the
Finsler Lagrangian:

L(x, ẋ) = α(ẋ, ẋ)s−p(c + m s)p+1 =
α(ẋ, ẋ)p+1

β(ẋ)2p

(
c + m

β(ẋ2)

α(ẋ, ẋ)

)p+1

(A5)

=
ζ(ẋ, ẋ)p+1

β(ẋ)2p , (A6)

where we introduced the shorthand notation of an effective bilinear form ζ(ẋ, ẋ) = cα(ẋ, ẋ) + mβ(ẋ)2.
Hence, the Finsler Lagrangian in consideration is effectively of Kropina/Bogoslovsky/VGR, for which
the metric ζ is constructed from more fundamental building blocks. Depending on the properties of the
building blocks β, α, m, and c, ζ can have different signatures.

The causal structure of L can be characterized for three different ranges of values for the parameter p:

1. p > 0: L = 0⇔ ζ(ẋ, ẋ) = 0, and L is not defined for β(ẋ) = 0;
2. 0 > p > −1: L = 0⇔ ζ(ẋ, ẋ) = 0 or β(ẋ) = 0;
3. p < −1: L = 0⇔ β(ẋ) = 0, and L is not defined for ζ(ẋ, ẋ) = 0.

The third case never leads to a Finsler spacetime since the null set β(ẋ) = 0 singles out a hyperplane
and never allows for the existence of a convex cone of timelike vectors.

For the other two cases, a necessary condition to obtain a Finsler spacetime is that the bilinear form
ζ is a pseudo-Riemannian metric of a Lorentzian signature [19, Appendix B], where the same class of
Finsler Lagrangians is studied for p = −q. This demand leads to conditions on β, α, m, and c, from the
determinant:

det ζab = c3 det(αab)(c + mα−1(β, β)) , (A7)

which must be negative.
For a choice of β, α, m, and c such that this necessary requirement is satisfied, one can apply the

classification done in [19, Appendix B] to identify viable Finsler spacetimes. A main finding there is that
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for −1 < p < 1 and β being ζ timelike, the cone of future pointing timelike vectors T is given by the cone
of future pointing timelike vectors of ζ.

A complete classification of the Finsler Lagrangians (20) goes beyond the scope of this article and is
left for future investigation.
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