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Abstract

In this paper, we will shed light on when to pack and use 3D-printers in disaster response op-

erations. For that, we introduce a new type of problem, which we call the two-stage stochastic

3D-printing knapsack problem. We provide a two-stage stochastic programming formulation for this

problem, for which both the first and the second stage are NP-hard integer linear programs. We

reformulate this formulation to an equivalent integer linear program, which can be efficiently solved

by standard solvers. Our numerical results illustrate that for most situations using a 3D-printer is

beneficial. Only in extreme circumstances, where the quality of printed items is extremely low, the

size of the 3D-printer is extremely large compared to the knapsack size, when there is no time to

print the items, or when demand for items is low, packing no 3D-printers is the best option.

Keywords: disaster response operations, 3D-printing, two-stage stochastic programming, knapsack

problems

1 Introduction

Natural disasters, like floods, hurricanes, tornadoes, earthquakes or volcanic eruptions, do have a

significant impact on humanity. They cause tens of thousands of deaths, hundreds of thousands of

injuries, and billions of dollars in economic losses each year around the world (Dilley et al., 2005).

The International Federation of Red Cross and Red Crescent Societies (2005) show that a significant
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part hereof is caused in the aftermath of such natural disasters. Considering this fact, it is important

that the allocation of basic survival resources, such as clean water, food, medicines, cooking utensils,

and shelter, as well as the allocation of supportive resources, such as spare parts and repair tools is

executed in a fast and proper way (Özdamar et al., 2004; Perry, 2007).

An aspect that complicates the allocation of basic survival and supportive resources is the level of un-

certainty. Typically, the impact of a natural disaster is hard to predict (Berkes, 2007; Van Wassenhove,

2006) and, as a consequence, the actual number of basic survival and supportive resources needed,

is hard to predict as well. A new, emerging technique that can deal with this form of uncertainty is

the technique of 3D-printing, (see, e.g., Savonen et al. (2018); Tatham et al. (2015) and the references

therein). With this technique, also known as additive manufacturing, one can create objects (e.g.,

cooking utensils, bottles, screwdrivers, shelter, pipe clamps, or water purification kits) locally. This

means that, if one decides to transport 3D-printers to a disaster area, one introduces the possibility to

anticipate on actual (i.e., local) demand. For instance, in Nepal, this technique has been successfully

used for printing medical supplies and restoring water supply in the aftermath of the earthquake in

2015 (Hall, 2016; Saunders, 2017) and in Haı̈ti, this technique has been successfully used for printing

screwdrivers, pipe clamps and bottles in the aftermath of the earthquake in 2010 (Goulding, 2017).

The benefits of using 3D-printing are not limited to the possibility to deal with demand uncertainty.

For instance, in literature, it is believed that printing material, which is in liquid or powder form,

can be packed much more efficient than physical items. Consequently, more printing material (and

subsequently more (future) printed items) can be packed for a disaster response mission. However,

3D-printing also has some drawbacks, which makes it a less attractive option. For instance, the weight

and volume of 3D-printers is still significant nowadays. This implies that, if one plans to transport

some 3D-printers to a disaster area, this weight and volume cannot be used to pack other critical items.

Moreover, the quality, and usability, of printed items is still, inferior to non-printed items. And, finally,

the 3D-printing time of items is still in terms of hours –time that is crucial during a disaster response

mission. Indeed, with these advantages and disadvantages of 3D-printing (see Table 1 for a summary),

is not clear immediately whether we should pack 3D-printers for a disaster response mission, or not.

Positive effects Negative effects

Possibility to deal with demand uncertainty 3D-printing time

Efficient packing of printing material Weight and volume of 3D-printers

Reduced quality of printed items

Table 1: Positive and negative effects of using 3D-printing.

In this paper, we will shed light on when to bring 3D-printers or not, which amount of printing

material to take and which items to bring physically, to a disaster area. For that, we introduce a new
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type of problem, which we call the two-stage stochastic 3D-Printing knapsack problem (TSS-3DKP). In

the first stage of this problem, a decision maker has to fill a multidimensional knapsack (e.g., a cargo

airplane at a home location), with the special consideration of taking 3D-printers with an associated

amount of printing material, or not. Then, in the second stage (e.g., in the disaster area), demand for

basic survival requirements as well as supportive resources is revealed, and the physically brought

items that match demand are allocated. If at least one 3D-printer is taken, the next consideration is

how to use the printing material for the remaining demand. Based on a maximum of printing time

per 3D-printer - which resembles the urgency of delivering items fast (e.g., within 24 or 48 hours) - a

decision on the number and type of printed items (per 3D-printer) is made. Meeting demand, via a

physically brought item or a printed item, results in an item-specific reward, which may depend on

its nature (i.e., whether it is printed or not). This reward may represent the (relative) importance of

having such an item. Aim is to make, a priori, a decision upon the number of physical items to take,

whether to bring 3D-printers or not, the amount of printing material to take, and how to use it (i.e.,

which items to print), in order to maximize the expected total reward.

From a practical perspective, it is important that our TSS-3DKP can be solved within reasonable com-

putation time (e.g., within hours). This may be challenging, since our problem is, in contrast to stan-

dard two-stage stochastic programming problems (Birge and Louveaux, 2011), NP-hard in both the

first and the second-stage problem. We tackle our TSS-3DKP, by transforming it into a deterministic

equivalent (i.e., into a large integer linear programming problem). This allows us to solve our problem

by standard solvers within reasonable computation time. We want to emphasize that this transfor-

mation is not straightforward, because the number of constraints and variables of our second-stage

problem depend on the first-stage decisions. We overcome this dependency by introducing several

dummy variables and a smart upper bound on the possible number of packed 3D-printers.

We use our deterministic equivalent to execute several numerical experiments. In particular, we will

investigate how the advantages and disadvantages of Table 1 (i.e., quality of printed items, the weight

and volume of 3D-printers, the storage efficiency of printing material, the printing time, and the

demand uncertainty) effect the decision of when to use 3D-printing, and when not.

Now, we summarize the main contributions of this paper:

1. We formulate a new two-stage stochastic knapsack problem, inspired by disaster response op-

erations, in which one determines the numbers of physical items and 3D-printers to pack, the

amount of printing material to pack, and how to use this printing material.

2. We are able to provide a deterministic equivalent for our two-stage stochastic 3D-printing knap-

sack problem, which allows us to solve the problem within reasonable computation time.

3. Via numerical experiments, we are able to identify under which circumstances it is beneficial to

bring 3D-printers, and by how much, to a disaster area.
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Finally, it is worth mentioning that our model formulation of the TSS-3DKP and associated (numerical)

results may find future applications in other domains such as the military (e.g, a military mission on

a remote location) and aerospace (e.g., a long-term mission to Mars).

The remainder of this paper is organized as follows. We start in Section 2 with a literature review.

In Section 3, we introduce our two-stage stochastic programming problem. In Section 4, we focus

on solving our problem, by presenting and testing a deterministic equivalent. Then, in Section 5, we

identify, via numerical experiments, under which circumstances it is beneficial to bring 3D-printers,

and by how much, to a disaster area. We close with a conclusion in Section 6.

2 Literature review

In this section, we will identify how our TSS-3DKP contributes to the literature. We do so by providing

an overview of the (OM/OR) literature on two-stage stochastic knapsack problems, disaster operations

management, and 3D-printing, and for each of them, identify how our TSS-3DKP contributes to it.

2.1 Two-stage stochastic knapsack problems

A classical combinatorial optimization problem is the knapsack problem (Kolesar (1967)). In this

problem, a decision maker has to fill a knapsack with items, each with an associated weight and

reward. The aim of the decision maker is to find the best layout, i.e., a feasible combination of items,

according to the size of the knapsack, that maximizes the sum of the rewards. Many variations

of this classical problem have been studied. For some of these variations, the decision maker has

to fill a knapsack based on incomplete information (e.g., the reward of items is uncertain) and has

recovery options once complete information becomes available. The aim of the decision maker is then

to maximize the expected reward. In literature, these variations are classified as two-stage stochastic

knapsack problems. The first stage refers to the setting with partial information and the second stage

refers to the setting with complete information and recovery options.

The literature on two-stage stochastic knapsack problems is relative young and consists of a few

papers only. Kosuch and Lisser (2011) study a two-stage stochastic knapsack problem with normally

distributed item weights and a recovery option that limits to either the addition or the removal of

items. To restrict the probability that the item weights exceed the knapsack size (in the second stage)

they include a chance constraint to the first-stage problem. A variant, with discretely distributed item

weights, is studied by Kosuch (2014). Knapsack size uncertainty is studied by Akker et al. (2016).

They model this uncertainty by discrete scenarios and introduce a recovery option that consists of the

removal of items. This problem is extended to multiple knapsacks by Tönissen et al. (2017). Finally, a

quadratic version of the two-stage stochastic knapsack problem with item weight uncertainty has been

studied by Lisser et al. (2010) and with both item weight and reward uncertainty by Song et al. (2018).
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Our paper contributes to this new stream of literature, by studying a two-stage stochastic knapsack

problem with uncertainty in (item) demand and a recovery option that consists of ’creating’ new items

out of another item (i.e., the printing material). To the best of our knowledge, this paper is the first that

studies a two-stage stochastic knapsack problem with such type of uncertainty and recovery option.

2.2 Disaster operations management

Disaster operations represent the set of activities performed before, during and after a disaster in

order to diminish its impact (Altay and Green (2006)). In general, it is hard to prepare for, and conse-

quently to manage such type of activities. This is mainly due to the unpredictable nature of disasters.

In the OM/OR literature on disaster operations management, this uncertainty plays a predominant

role (see, e.g., the extensive literature reviews of Galindo and Batta (2013) and Leiras et al. (2014)).

Common uncertainties in this literature include demand uncertainty (Alem et al., 2016; Tofighi et al.,

2016; Tricoire et al., 2012; Verma and Gaukler, 2015), uncertainty of the condition of facilities and/or

roads (Chang et al., 2007; Fan and Liu, 2010; Hu et al., 2019; Li et al., 2012; Sanci and Daskin, 2019),

travel time uncertainty (Ahmadi et al., 2015; Bayram and Yaman, 2018; Döyen et al., 2012), and cost

uncertainty (Bozorgi-Amiri et al., 2012; Li et al., 2011; Paul and Zhang, 2019).

Two-stage stochastic programming is an appropriate method to deal with such uncertainties. In-

stead of using standard cost minimizing objectives, in disaster operations management, meeting

expected demand is often preferred due to significant consequences with respect to human lives

(Barbarosolu and Arda (2004) and Rawls and Turnquist (2010)). In Balcik and Beamon (2008) the ful-

fillment of demand is modelled by maximizing the expected satisfied demand, in Salmerón and Apte

(2010) by minimizing the expected casualties, and in Noyan et al. (2016) by maximizing the expected

accessibility. A common first-stage decisions is the in-advance storage of relief items (Davis et al.

(2013); Lodree Jr et al. (2012)) or locating facilities (Elçi and Noyan (2018); Li et al. (2011)). A few au-

thors use other first-stage decisions such as the retrofitting of roads (Peeta et al. (2010)), buildings

(Zolfaghari and Peyghaleh (2015)) or bridges (Liu et al. (2009)). The most prevalent second-stage de-

cisions are the transport of commodities in the aftermath of a disaster (Rezaei-Malek et al. (2016);

Tofighi et al. (2016)) or an evacuation plan (Li et al. (2012, 2011)). We refer to Grass and Fischer (2016)

for an overview of two-stage stochastic programming problems for disaster operations management.

In this paper, we also use two-stage stochastic programming to deal with uncertainty (namely, demand

uncertainty). In particular, we will use this method in a disaster response setting. To the best of

our knowledge, we are the first who use two-stage stochastic programming to investigate whether

bringing 3D-printers to a disaster area is useful or not. We want to emphasize that there exist some

qualitative papers on 3D-printing for disaster response missions (see, e.g., Savonen et al. (2018) and

Rodrı́guez-Espı́ndola and Beltagui (2018)). These studies focus on the necessary requirements and

specifications 3D-printers should have for being successfully used in a disaster area.
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2.3 3D-printing

Although the technique of 3D-printing, also known as additive manufacturing, has already been ap-

plied in practice for years, the development of quantitative models studying the impact of 3D-printing

in OM/OR literature is rather limited. To the best of our knowledge, there exist a few published works

in this domain only. Westerweel et al. (2018) investigate the impact of 3D-printing on component de-

sign. In particular, they characterise under which conditions a component should be produced with

traditional technology and under which conditions a component should be produced via 3D-printers.

Song and Zhang (2019) present a general framework to study the design of spare parts logistics in

the presence of 3D-printing technology. In particular, they formulate a model that determines which

parts to stock and which to print. Khajavi et al. (2014) and Liu et al. (2014) both model a multi-echelon

spare parts supply chain and numerically investigate the effect of centralized versus decentralized

3D-printing capacity. Dong et al. (2016) evaluate the choice between traditional technology and 3D-

printing related to assortment planning for general inventories in a manufacturing setting. An overlap

in all these papers is the presence of a 3D-printer with a, possibly unlimited, amount of printing ma-

terial. However, in our problem, the presence of a 3D-printer and associated printing material is not

guaranteed: it is an essential decision in our optimization problem. This indicates that we do study a

new type of 3D-printing (OM/OR) problem and so contribute to this rather new stream of literature.

3 Two-stage stochastic 3D-printer knapsack problem

In this section, the two-stage stochastic 3D-printing knapsack problem (shortly TSS-3DKP) will be

formulated. We will do so by first describing the two stages (i.e., the first and second stage) and

thereafter presenting the mathematical formulation of our TSS-3DKP.

3.1 The first stage

In the first stage, a decision maker has to fill a multidimensional knapsack (e.g., a cargo airplane at

a home location) with physical items, units of printing material and 3D-printers such that it does not

exceed the weight capacity W and volume capacity V of the knapsack. Each physical item i, from the

set of physical items N, has a weight wi and a volume vi. In addition, each unit of printing material

has weight wb and volume vb and each 3D-printer has weight wp and volume vp. The first-stage

decision of the decision maker is denoted by vector a = ((ai)i∈N, ap, ab) with ai the number of times

item i ∈ N is added to the knapsack, ab the units of printing material included into the knapsack, and

ap the number of 3D-printers added to the knapsack.
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3.2 The second stage

In the second stage (e.g., a disaster area) the decision maker has to allocate the ab units of printing

material to the ap 3D-printers. Before the decision maker does so, demand for items is revealed and the

physically brought items that match (this) demand are allocated. Demand is modelled by a discrete

set of scenarios S, where each scenario s ∈ S specifies the demand ds
i for all items i ∈ N and occurs

with probability qs ∈ [0, 1] such that ∑s∈S qs = 1. We want to stress that, in literature on disaster

operations management, discrete scenarios are often used to model uncertainty. This is due to the

uniqueness of disasters, which makes the determination of probability distributions problematic (see,

e.g., Grass and Fischer (2016)). For each scenario s ∈ S, we denote the number of physically brought

items that match demand by as
i = min{ai, ds

i} for all i ∈ N and consequently, denote remaining

demand by ds
i − as

i for all i ∈ N. Based on this remaining demand, the decision maker has to allocate

the ab units of printing material to the ap 3D-printers. For this second-stage decision, the decision

maker has to take into account the maximum amount of printing time T per 3D-printer, and the fact

that each printable item i ∈ Np, with Np ⊆ N, requires mi units of printing material and time ti

to print. Finally, given that P(x) = {i ∈ N+|i ≤ x} is defined as the set of 3D-printers for any

x ∈ N0, the second-stage decision of the decision maker for each scenario s ∈ S is denoted by

ps = (ps
ij)i∈N,j∈P(ap), with ps

ij the number of times item i is printed on 3D-printer j in scenario s.

Meeting demand via a physically brought item i ∈ N or printed item i ∈ Np results in an item-specific

reward, which may depend on its nature (i.e., whether it is printed or not). This reward may rep-

resent the (relative) importance of having such an item. The reward for a physically brought and

matched item i ∈ N is ri and its printed reward is αri with α ∈ [0, 1] for all i ∈ Np. This factor

α resembles the lower quality of the printed items. The total reward for a given first-stage deci-

sion a and a second-stage decision ps for scenario s ∈ S is given by ∑i∈N as
i ri + α ∑i∈Np ∑j∈P(ap) ps

ijri.

And, subsequently, the expected total reward, based on all possible demand scenarios, is given by

∑s∈S qs

[

∑i∈N as
i ri + α ∑i∈Np ∑j∈P(ap) ps

ijri

]

. Aim of the decision maker is to make a first-stage decision

a and a second-stage decision ps for all s ∈ S that maximizes the expected total reward1.

3.3 Mathematical formulation of the TSS-3DKP

Now we give a mathematical formulation of our two-stage stochastic 3D-printing knapsack problem.

TSS-3DKP max ∑
s∈S

qsQ(a, s)

s.t. ∑
i∈N

aiwi + apwp + abwb ≤ W, (1)

1For the specific setting with ri = 1 for all i ∈ N, our objective can be recognized as the (expected) amount of satisfied

demand. This objective is used frequently in the literature on disaster operations management.
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∑
i∈N

aivi + apvp + abvb ≤ V, (2)

ab ≤ apM, (3)

ap, ab, ai ∈ N0 ∀i ∈ N, (4)

where,

Q(a, s) := max ∑
i∈N

as
i ri + ∑

i∈Np
∑

j∈P(ap)

αps
ijri

s.t. as
i ≤ ds

i ∀i ∈ N \ Np, (5)

as
i + ∑

j∈P(ap)

ps
ij ≤ ds

i ∀i ∈ Np, (6)

as
i ≤ ai ∀i ∈ N, (7)

∑
i∈Np

∑
j∈P(ap)

ps
ijmi ≤ ab, (8)

∑
i∈Np

ps
ijti ≤ T ∀j ∈ P(ap), (9)

as
i ∈ N0 ∀i ∈ N, (10)

ps
ij ∈ N0 ∀i ∈ Np, ∀j ∈ P(ap). (11)

Constraints (1) and (2) ensure that no more number of items, units of printing material and 3D-printers

will be packed, according to the weight and volume restrictions of the knapsack. Constraint (3), which

is a big-M formulation, guarantees that it is only allowed to pack printing material if at least one

3D-printer is taken. Constraint (4) ensures integrality of the decision variables. Constraints (5), (6),

and (7) ensure that reward can only be gained for those physical items and printed items that meet

demand. Constraint (8) guarantees that the amount of printing material used does not exceed the

amount of printing material packed. Constraints (9) ensure that each 3D-printer can be used for at

most T time units. Constraints (10) and (11) ensure integrality of the decision variables. Note that we

model as
i (= min{ai, ds

i}) as a decision variable in our second-stage problem which takes, due to our

formulation, the minimum of the values ai and ds
i for all i ∈ N and all s ∈ S. Also note that the number

of constraints (9) and (11) depend on the first-stage decision ap. Hence, the number of constraints and

variables of the second-stage problem depend on the decisions in the first-stage problem.

We want to emphasize that both the first-stage and the second-stage problem of our TSS-3DKP are

NP-hard integer programming problems. Both problems are NP-hard because they are generalisations

of the unbounded knapsack problem (Martello and Toth, 1990), which is a classical NP-hard combina-

torial optimization problem. We will support these claims, by showing that special cases of our first

and second-stage problems can be recognized as unbounded knapsack problems. For the first-stage,

we consider the special case with no 3D-printers, no printing material, and exactly one scenario for
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which demand for each item is infinite. Furthermore, we set V = 0 and vi = 0 for all i ∈ N. For this

situation, our first-stage problem can be recognized as a classical unbounded knapsack with size (i.e.,

weight capacity) W and items with weight wi and reward ri for all i ∈ N. For the second-stage, we

consider the special case with no physical items, exactly one 3D-printer, infinite demand, and mi = 0

for all i ∈ Np. For this situation, our second-stage problem can be recognized as a classical unbounded

knapsack with size T and items with weight ti and reward αri for all i ∈ Np.

We will now illustrate our two-stage stochastic 3D-printing problem by means of a small example.

Example 1. Consider a knapsack with weight capacity W = 4 and volume capacity V = 4, that can be filled

with two types of printable items (i.e., N = Np = {1, 2}). For the items, we have w1 = v1 = w2 = v2 = 4

with r1 = 1 and r2 = 2. The items require m1 = m2 = 2 units of printing material and each unit of printing

material has weight wb = 1 and volume vb = 1. In addition, each 3D-printer has weight wp = 2 and volume

vp = 2, and, in total, there are two scenarios (i.e., S = {s1, s2}), with qs1 = 0.7 and qs2 = 0.3. Demand is

given by d
s1
1 = 1, d

s1
2 = 0, ds2

1 = 0, ds2
2 = 1. Finally, the maximum amount of printing time per 3D-printer is

given by T = 1, the printing time per item by t1 = t2 = 1, and the quality factor (per printed item) by α = 0.8.

For this specific situation, there exist three candidates solutions, namely: (i) taking one physical item of type 1,

(ii) taking one physical item of type 2, or (iii) taking one 3D-printer with 2 units of printing material. For the

first two candidate solutions, no 3D-printer is taken, and consequently, the expected total reward for the first

strategy equals (0.7 · 1 =)0.7 and for the second strategy equals (0.3 · 2 =)0.6. For determining the expected

reward for the third strategy, we first need to identify how the units of printing material should be used in

the two demand scenarios. For the first demand scenario (i.e., s1), it is optimal to print item 1, resulting in

(0.7 · 0.8 · 1 =)0.56, and for the second demand scenario (i.e., s2), it is optimal to print item 2, resulting in

(0.3 · 0.8 · 2 =)0.48. Hence, the expected total reward under the third strategy equals (0.56 + 0.48 =)1.04,

implying that bringing a 3D-printer and allocating the printing material according to demand is optimal.

To the best of our knowledge, there exist no standard (commercial) solvers that can directly solve

two-stage stochastic programming problems. For that reason, we will transform our TSS-3DKP into

another, but equivalent, formulation that is suitable for standard solvers (e.g., CPLEX).

4 Solving the TSS-3DKP

In this section we will present an equivalent formulation of our TSS-3DKP that can be solved by

standard solvers. Moreover we will show, via some numerical experiments, that this equivalent for-

mulation can be solved (with standard solvers) within reasonable computation time.

4.1 An equivalent formulation for solving the TSS-3DKP

It is well-known that a standard two-stage stochastic programming problem can be modelled as a large

integer linear programming problem with variables and constraints for each of the scenarios. Such an
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integer linear programming formulation is called the deterministic equivalent. The idea is to trans-

form our TSS-3DKP, which is also a two-stage stochastic programming problem, into its deterministic

equivalent. However, the TSS-3DKP has the non-standard feature that the number of constraints and

variables in the second-stage depends on the first-stage decisions, implying that the deterministic

equivalent cannot be given directly. We overcome this dependency, by identifying an upper bound

on the total number of 3D-printers that can be packed, and include printed-related constraints and

variables of the second-stage problem into our deterministic equivalent as if the knapsack would be

filled with this upper bound of 3D-printers. Although this approach may lead to an increase in the

total number of constraints and variables, it allows for a reformulation of our TSS-3DKP2.

Before we present the deterministic equivalent formulation, we first explain how we determine an

upper bound on the maximum number of packed 3D-printers. For each scenario s ∈ S, we determine

how many 3D-printers are needed to print all demand ds, assuming that items are allocated one by

one in order of their indices to the 3D-printers. Hence, we first try to allocate all demand of item 1 to

the first 3D-printer, followed by item 2, 3, . . . , |Np|, and we go to the next 3D-printer if adding another

item would exceed the printing T of the 3D-printer. Taking the maximum number of 3D-printers over

all possible scenarios then gives us our first upper bound U. Sometimes, this upper bound exceeds the

total knapsack weight or volume. In those cases, we select the maximum number of 3D-printers that

fit the knapsack as upper bound. Formally, we define our upper bound as Z = min {⌊ W
wp

⌋, ⌊ V
vp
⌋, U}.

We will now illustrate our upper bound by means of a small example.

Example 2. Consider a situation with two types of printable items (i.e., N = Np = {1, 2, }), two scenarios

(i.e., S = {s1, s2}) with associated demands ds1
1 = 3, ds1

2 = 1, ds2
1 = 1, d22

2 = 2, a knapsack with weight capacity

W = 10 and volume capacity V = 12, a 3D-printer with wp = 5, vp = 3, T = 5, and printing times t1 = 2

and t2 = 3. We now allocate the demand of the items to the 3D-printers in order of their indices. Hence, for

scenario s1, we allocate two items of type 1 to the first 3D-printer, and one item of type 1 and one item of type

2 to the second 3D-printer. For scenario s2, we allocate one item of type 1 and one item of type 2 to the first

3D-printer, one item of type 2 to the second 3D-printer, and one item of type 2 to the third 3D-printer. The

maximum number of 3D-printers needed (over all scenarios) is thus U = 3. Moreover, ⌊ W
wp

⌋ = 2 and ⌊ V
vp
⌋ = 4,

implying an upper bound on the total number of 3D-printers of Z = 2.

For the deterministic equivalent formulation, we also need to introduce some new notation. For the

given upper bound Z, we define binary variables yj ∈ {0, 1} for all j ∈ P(Z), with yj = 1 if 3D-printer

j is packed and 0 otherwise.

Now, we are ready to present the deterministic equivalent of our TSS-3DKP.

2In Section 4.2, we will also show that, although the total number of constraints and variables grows under this approach,

our deterministic equivalent formulation can still be solved in reasonable computation time.
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ILP-3DKP(Z) max ∑
s∈S

qs



∑
i∈N

as
i ri + ∑

i∈Np
∑

j∈P(Z)

αps
ijri





s.t. ∑
i∈N

aiwi + abwb + ∑
j∈P(Z)

yjwp ≤ W, (12)

∑
i∈N

aivi + abvb + ∑
j∈P(Z)

yjvp ≤ V, (13)

ab ≤ ∑
j∈P(Z)

yj M, (14)

as
i ≤ ds

i ∀i ∈ N \ Np, ∀s ∈ S, (15)

as
i + ∑

j∈P(Z)

ps
ij ≤ ds

i ∀i ∈ Np, ∀s ∈ S, (16)

as
i ≤ ai ∀i ∈ N, ∀s ∈ S, (17)

∑
i∈Np

∑
j∈P(Z)

ps
ijmi ≤ ab ∀s ∈ S, (18)

∑
i∈Np

ps
ijti ≤ Tyj ∀j ∈ P(Z), ∀s ∈ S, (19)

yj ≤ yj−1 ∀j ∈ P(Z) \ {1}, (20)

yj ∈ {0, 1} ∀j ∈ P(Z), (21)

ab ∈ N0 (22)

ai ∈ N0 ∀i ∈ N, (23)

as
i ∈ N0 ∀i ∈ N, (24)

ps
ij ∈ N0 ∀i ∈ Np, ∀j ∈ P(Z), ∀s ∈ S. (25)

The objective coincides with the original objective of the TSS-3DKP: it is the expected total reward

obtained from meeting demand by physical and 3D-printed items over all possible scenarios. Con-

straints (12) and (13) limit the total item, 3D-printer and printing material weight and volume to the

weight and volume restrictions of the knapsack. The big-M Constraint (14) guarantees that printing

material is only taken when at least one 3D-printer is taken. This constraint guarantees indirectly that

we can only print when we have a 3D-printer. Constraints (15), (16) and (17) ensure that reward can

only be gained for those physical items and 3D printed items that meet demand. Constraints (18)

guarantee that the amount of printing material used does not exceed the amount of printing material

packed. Constraints (19) ensure that each 3D-printer can be used for at most T time units. Note that

this amount (of time) becomes zero if the 3D-printer is not taken. Constraints (20) guarantee that

3D-printer j is taken if and only if 3D-printer j − 1 is taken. This excludes many symmetric solutions

and consequently decreases the solution time of the CPLEX solver. Constraints (22), (23), (24), and (25)

ensure integrality of the decision variables.
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4.2 Computational experiments

In this section, we will discuss the outcomes of our computational experiments to provide insights

in the solvability of our deterministic equivalent formulation. We do so by first explaining how we

generate our instances and then continue by discussing our computational experiments.

4.2.1 Instance generation

For every instance, we first specify the following parameters: the number of items |N|, an upper

limit to demand D, the number of scenario |S|, the (printed item) quality factor α, and the 3D-printer

weight wp and volume vp. Thereafter, we will generate the items. Remember that every item has a

weight wi, a volume vi, a reward ri, a required printing material mi, and printing time ti. We generate

the weight wi and the reward ri according to the uncorrelated instance class of Pisinger (Pisinger,

2005). This class is realistic for disaster response missions: it considers many different items for

which the weight, volume, and rewards vary heavily. For the volume, printing time and required

printing material per item, we use the following distributions for generation: vi ∼ ⌊U[0.2, 5]wi⌉,

ti ∼ ⌊U[0, 10]⌉ and mi ∼ ⌊U[0.5, 0.9] · min (wi, vi)⌉. Note that we use ⌊ ⌉ to denote that we round

our values to the nearest integer. Moreover, we set wb = vb = 1. In combination with the generation

of mi, this implies that printed items can always be packed more efficiently than physical items.

Thereafter, we generate the demand for the |S| scenarios. First, we generate the maximum demand

for each item i ∈ N from uniform distribution Ui ∼ ⌊U[1, D]⌉. Then, for each scenario s ∈ S we

generate a demand ds
i ∼ ⌊U[0, Ui]⌉ for all i ∈ N and the probability qs = 1

|S|
. We continue by

generating printing time T ∼ ⌊U[0.2, 1] · ∑s∈S qs ∑i∈Np tid
s
i ⌉. Note that this printing time T is a fraction

of the average total time to print all items. Finally, we generate the knapsack weight capacity W ∼

⌊U[0.5, 1] · ∑s∈S qs ∑i∈N wid
s
i ⌉, which can be seen as a fraction of the average total weight of all items,

and volume capacity V ∼ ⌊U[0.5, 2] · W⌉, which depends on the knapsack weight capacity.

We will study various instance sets with varying number of items, upper limit demand and number

of scenarios, but with the same α = 0.8 and wp = vp = 5000. We will refer to such an instance set by

NxDySz with x the number of items, y the upper limit to the demand and z the number of scenarios.

4.2.2 Computational results

The experiments are programmed in Java with the CPLEX library version 12.8.0, and run on a laptop

with an Intel Core i7-4710MQ Quad Core 2.5 GHz processor with 32 GB of RAM. We use CPLEX

standard settings and the reported solution times include everything that is required to solve our

instances, such as the time required for reading the instances, the time to determine upper bound Z,

the time required for building the model, and the time to solve the model. The maximum computation

time to solve a single instance is set equal to 3600 seconds.
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We will test our ILP-3DKP(Z) on five different instance sets, each consisting of 100 instances. The first

instance set, which we use as a base case, consists of 100 items, an upper limit of demand of 100, and

50 scenarios. Recall that we (can) refer to this instance set as N100D100S50. In addition, we will study

instance set N200D100S50, N100D200S50, N100D100S100, and N200D200S100.

We will study each instance set on four performance criteria: the average number of cuts and nodes

used by the branch-and-bound tree of CPLEX, the number of instances that cannot be solved within

3600 seconds, and the average computation time of those instances that can be solved within 3600

seconds. For the first two criteria (i.e., cuts and nodes) we want to stress that if an instance is not

solved within 3600 seconds, a fail is registered, and the number of cuts and nodes used so far is

reported. The performance criteria of the five instance sets can be found in Table 2.

Instance set cuts (#) nodes (#) fails (#) time (seconds)

N100D100S50 1297 38822 1 12

N200D100S50 2870 0 0 3

N100D200S50 1488 1 0 1

N100D100S100 2638 19921 1 50

N200D200S100 5616 5 0 16

Table 2: The performance criteria of the 5 instance sets.

Table 2 indicates that almost all instances (except for the two failed ones) can be solved within minutes.

In particular, we observe, based on individual results not reported here, that most of these instances

do not require branching (i.e., generate no nodes) and are solved entirely by adding cuts. However,

the two failed instances (one from N100D100S50 and one from N100D100S100) turn out to be hard to

solve (i.e., they cannot be solved to optimality within 3600 seconds). These particular instances have

a high number of generated nodes (namely 3017763 and 1158576) and consequently require extensive

branching. Moreover, it turns out that, if we increase the maximum computation time to 86,400 seconds

(i.e., 24 hours) these two instances cannot be solved to optimality either.

Since finding an optimal solution seems to be a problem for some instances, the next step is to in-

vestigate the effect of the stopping criteria on the branch-and-cut algorithm (in CPLEX). The standard

stopping criteria of this algorithm is the relative gap of 0.01%. We will study the effect by solving a

specific instance set for various relative gaps, namely 0.01%, 0.1%, 1.0%, and 10%. The specific instance

set combines the five, previously introduced, instance sets. We present our results in Table 3.

The results from Table 3 indicate that for some instances, a lot of time is spent on improving the

solution slightly, or on proving that the optimal solution has been found. This becomes most apparent
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Relative gap cuts (#) nodes (#) fails (#) time (seconds)

0.01% 2782 11750 2 31

0.1% 2832 1 0 4

1% 2942 0 0 4

10% 2777 0 0 3

Table 3: Comparison of the ILP-3DKP(Z) method for different relative gaps.

when increasing the gap from 0.01% to 0.1%. In that specific case, the number of nodes decreases from

11750 to 1, which illustrates that branching is not required anymore for most instances. Moreover,

from Table 3, we can learn that increasing the relative gap from 0.1% to 10% has a rather limited effect

on the average computation time (i.e., computation time reduces from 4 to 3 seconds, on average).

We believe that for practical applications (e.g., a disaster response mission), it is important to obtain

sufficiently good solutions within hours. Solving our TSS-3DKP with a relative gap of 0.1% will exactly

do that. Consequently, we will apply this relative gap in the remainder of this paper.

5 To print or not to print?

In Section 4, we presented a deterministic equivalent of our two-stage stochastic 3D-printing knapsack

problem. We have shown that, with this formulation, it is possible to solve our original problem

with standard solvers in reasonable computation time. Consequently, this formulation can be used

to identify whether bringing 3D-printers to a disaster area is useful, or not. As discussed in the

introduction of this paper (i.e., in Section 1), this decision depends, amongst others, on the following

five aspects: (i) the quality of printed items, (ii) the volume and weight of 3D-printers, (iii) the storage

efficiency of printing material, (iv) the 3D-printing time, and (v) demand uncertainty. In this section,

we will study the effect of these five aspects on the outcomes of our TSS-3DKP. For that, we will, for

each aspect, construct a number of instance sets. These instance sets will be constructed such that they

vary in the associated aspect only (e.g., a varying quality of the printed items α, or a varying weight

wp and volume vp of the 3D-printer). Per instance set, we then answer the following two questions:

1. Should we bring 3D-printers, and if so, how many?

2. What is the added value of using 3D-printers?

For answering the first question, we will return, per instance set, the median, minimum, maximum,

and average number of 3D-printers taken. For answering the second question, we will first determine,

per instance, the percentage increase in total reward if bringing 3D-printers is allowed. We then answer

our second question by taking the median, minimum, maximum, and average of this percentage over
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all instances of the instance set. Since we construct several instance sets per aspect, we will answer

these questions several times per aspect. We now continue by discussing these outcomes per aspect.

5.1 The quality of printed items

As discussed in the introduction of this paper, the quality of printed items is still inferior to physical

items. This could prevent a decision maker from packing 3D-printers. In this section, we will study

the effect of this quality on our two questions. We model the quality of the printed items by solving

instance set N100D100S50 for different values of α. In particular, we will solve this instance set for

α ∈ {0.1, 0.2, . . . , 1.0}. The results are presented in Table 4.

3D-printers (#) reward (%)

α median min-max (average) median min-max (average)

0.1 0 0-0 (0.0) 0.0 0-0 (0.0)

0.2 0 0-1 (0.0) 0.0 0-0 (0.0)

0.3 1 0-1 (0.5) 0.1 0-3 (0.5)

0.4 1 0-1 (0.9) 2.2 0-8 (2.5)

0.5 1 1-2 (1.0) 6.0 0-13 (5.7)

0.6 1 1-2 (1.1) 9.6 2-21 (9.7)

0.7 1 1-3 (1.2) 14.0 4-32 (14.3)

0.8 1 1-3 (1.3) 19.2 7-45 (19.5)

0.9 1 1-3 (1.4) 25.0 9-58 (25.5)

1.0 1 1-4 (1.6) 31.8 13-73 (32.5)

Table 4: An overview of the median, minimum, maximum and average number of both the packed

3D-printers and the percentage increase in reward, for varying values of α.

From Table 4 we can learn that an increase in α (i.e., a higher quality of printed items) coincides with

an increase in (i) the number of packed 3D-printers and (ii) the percentage increase in total reward.

Next, we observe that for values of α larger or equal than 30%, it is beneficial to bring 3D-printers,

implying that printing items, even with a fairly low quality, payoffs rapidly.

5.2 The effect of the weight and volume of 3D-printers

The weight and volume of a 3D-printer is still significant nowadays. This weight and volume can also

be used for transporting physical items. In this section, we will study the effect of the 3D-printers

weight and volume on our two questions. We will do so by introducing a factor k. This factor

represents the number of times a 3D-printer fits (in terms of weight and volume) within the knapsack.
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In particular, we study instance set N100D100S50 with k ∈ {2, 3, 5, 10, 20, 30, 40, 50, ∞}. If k = ∞, we

set wp = vp = 0 and otherwise we set wp = ⌊W
k ⌉ and vp = ⌊V

k ⌉. The results are presented in Table 5.

3D-printers (#) reward (%)

k median min-max (average) median min-max (average)

2 0 0-0 (0.0) 0 0-0 (0.0)

3 1 0-1 (0.7) 5.1 0-21 (5.7)

5 1 0-1 (1.0) 11.4 0-32 (12.2)

10 1 1-2 (1.1) 16.1 3-39 (16.9)

20 1 1-2 (1.2) 18.8 4-43 (19.4)

30 1 1-3 (1.4) 19.8 5-44 (20.3)

40 1 1-3 (1.4) 20.3 5-45 (20.7)

50 1 1-3 (1.5) 20.8 5-45 (21.0)

∞ 3 2-7 (3.1) 22.7 6-47 (22.2)

Table 5: An overview of the median, minimum, maximum and average number of both the packed

3D-printers and the percentage increase in reward, for varying values of k.

The results of Table 5 show that the number of packed 3D-printers and the percentage increase in total

reward increases in k. We observe that even for fairly low values of k, it is already beneficial to pack

a 3D-printer. The weight and volume of a 3D-printer should exceed 33% (k < 3) of the total knapsack

weight and volume before packing physical items only (and thus no 3D-printer) is more beneficial.

5.3 The storage efficiency of printing material

As discussed in the introduction of this paper, the storage efficiency of physical items is inferior to

the storage efficiency of printing material. In this section, we study the effect of the storage efficiency

of printing material on our two questions. We do this by introducing factor l. This factor indicates

the fraction of printing material needed in comparison to physical items, in terms of both weight

as volume. In particular, we will study instance set N100D100S50 with l ∈ {0, 0.1, 0.2, ..., 1} and set

wi = vi, mi = ⌊l · wi⌉, and wb = vb = 1. The results are presented in Table 6.

The results of Table 6 show that the number of 3D-printers and the percentage increase in total reward

decreases for an increasing l (i.e. if the material needed to print items takes up more space). Even

when there is no benefit of the storage efficiency of the printing material (i.e., l = 1) a 3D-printer is

still often packed. This illustrates that the uncertainty in demand can be enough to bring 3D-printers.
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3D-printers (#) reward (%)

l median min-max (average) median min-max (average)

0 1 1-3 (1.3) 17.9 6-51 (19.5)

0.1 1 1-3 (1.3) 16.1 6-45 (17.4)

0.2 1 1-2 (1.2) 14.3 5-39 (15.3)

0.3 1 1-2 (1.2) 12.4 5-32 (13.1)

0.4 1 1-2 (1.1) 10.6 4-25 (10.9)

0.5 1 1-2 (1.1) 8.6 3-18 (8.7)

0.6 1 1-1 (1.0) 6.7 3-12 (6.8)

0.7 1 1-1 (1.0) 5.0 2-9 (4.9)

0.8 1 0-1 (1.0) 3.3 0-7 (3.3)

0.9 1 0-1 (0.9) 2.1 0-5 (2.0)

1 1 0-1 (0.8) 1.3 0-3 (1.2)

Table 6: An overview of the median, minimum, maximum and average number of both the packed

3D-printers and the percentage increase in reward, for varying values of l.

5.4 3D-printing time

Time is crucial during a disaster response mission. However, the time to print a single item may still

require hours. This may results in a relative low number of printed items. This number will increase

if the time to print a single item reduces (e.g., due to improvements in printing technology). In this

section, we will investigate how a change in this printing time effects our two questions. In particular,

we will model this by introducing a factor m ∈ {0, 0.1, 0.2, ..., 1.0, ∞}. This factor indicates the fraction

of items that can be printed on one 3D-printer, on average. Given this setup, we will use maximum

amount of printing time T = ⌊m · ∑s∈S qs ∑i∈Np tid
s
i ⌉. We will present our results in Table 7.

From Table 7, we observe that, except for the case m = 0, in which no 3D-printers are taken, the

number of packed 3D-printers decreases in m and converges for large m to exactly one 3D-printer.

Note that for m = ∞ all items can be printed on one 3D-printer and consequently there is no reason

to pack more than one 3D-printer. From Table 7, we also observe that for 0.6 ≤ m ≤ 1 at most one

3D-printer is packed, although not all items can be printed on one 3D-printer. It turns out that in

this interval, on average, more than half of the printing time of the demand is utilized on the first

3D-printer. Consequently, the second 3D-printer is, on average, not fully utilized, which makes it

likely that this second 3D-printer is not being packed at all. Furthermore, we observe from Table 7

that the percentage increase in total reward increases until m = 0.8 and stabilizes afterwards. This

indicates that for large m, some items are preferred being packed physically (e.g. to get a better

reward), although these items could be printed without packing any additional 3D-printers.
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3D-printers (#) reward (%)

m median min-max (average) median min-max (average)

0 0 0-0 (0.0) 0 0-0 (0.0)

0.1 3 1-5 (2.8) 10.3 1-21 (10.3)

0.2 2 1-3 (2.2) 14.7 4-28 (15.1)

0.3 2 1-2 (1.8) 16.8 5-33 (16.9)

0.4 1 1-2 (1.4) 17.4 5-35 (17.7)

0.5 1 1-2 (1.1) 18.2 5-35 (18.5)

0.6 1 1-1 (1.0) 18.7 5-37 (19.1)

0.7 1 1-1 (1.0) 19.0 5-38 (19.4)

0.8 1 1-1 (1.0) 19.2 5-39 (19.5)

0.9 1 1-1 (1.0) 19.2 5-39 (19.5)

1 1 1-1 (1.0) 19.2 5-39 (19.5)

∞ 1 1-1 (1.0) 19.2 5-39 (19.5)

Table 7: An overview of the median, minimum, maximum and average number of both the packed

3D-printers and the percentage increase in reward, for varying values of m.

5.5 The effect of demand uncertainty

One of main advantages of using 3D-printers is the possibility to deal with demand uncertainty.

Consequently, it is likely that the number of packed 3D-printers increases for an increasing degree

of uncertainty. In this section, we will investigate the effect of this degree of uncertainty on our two

questions. We will model the degree of demand uncertainty by solving our instance sets for different

values of the upper limit of demand D. In particular, we will study instance set N100D100S50 with

D ∈ {20, 21, 22, . . . , 217}. Recall that, in our instance generator, D identifies the domain of the uniform

distributions that generate the demand for all items. Consequently, an increasing D will coincide with

a higher degree of uncertainty. Moreover, recall that in our instance generator, the knapsack weight

and volume capacity, and the printing time are based on the total average demand. In this section,

we are only interested in the effect of changing D. For that reason, we fix the following parameters

W = V = 100, 000 and T = 4000. We report our results in Table 8.

From Table 8, we observe that both the number of 3D-printers as the percentage increase in reward

increase up to a certain degree of uncertainty (i.e., D = 2048 and D = 256, respectively), and decrease

afterwards. The increasing part confirms our intuition that more uncertainty coincides with packing

more 3D-printers. The decreasing parts, however, is counterintuitive. This outcome, which is a result of

our way to model uncertainty, can be explained as follows. For sufficiently large degrees of uncertainty,

demand of items will exceed the knapsack weight and volume capacity for a majority of the scenarios.
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3D-printers (#) reward (%)

D median min-max (average) median min-max (average)

1 0 0-0 (0.0) 0.0 0-0 (0.0)

2 0 0-0 (0.0) 0.0 0-0 (0.0)

4 0 0-0 (0.0) 0.0 0-0 (0.0)

8 0 0-0 (0.0) 0.0 0-0 (0.0)

16 1 0-1 (0.6) 0.1 0-2 (0.3)

32 1 1-1 (1.0) 5.9 2-15 (6.4)

64 1 1-1 (1.0) 14.7 6-31 (15.6)

128 1 1-2 (1.5) 23.6 12-47 (24.3)

256 2 1-3 (2.1) 25.1 15-51 (26.5)

512 3 2-4 (2.6) 22.5 8-43 (23.1)

1024 3 2-5 (3.1) 18.0 5-60 (20.5)

2048 3 1-7 (3.3) 14.5 3-37 (15.4)

4096 3 0-7 (3.2) 10.5 0-51 (12.9)

8192 3 0-8 (3.1) 6.7 0-51 (9.4)

16384 2 0-8 (2.4) 3.0 0-67 (7.3)

32768 0 0-12 (1.5) 0.0 0-55 (4.8)

65536 0 0-11 (1.0) 0.0 0-31 (2.2)

131072 0 0-11 (1.1) 0.0 0-59 (3.5)

Table 8: An overview of the median, minimum, maximum and average number of both the packed

3D-printers and the percentage increase in reward, for varying values of D.

As a consequence, many of these scenarios can be recognized as if there was no restriction on demand

for these items. This means that we can recognize our knapsack problem as a deterministic one.

Consequently, there is no reason to pack 3D-printers to adapt for demand uncertainty. The only

remaining reason to pack 3D-printers is the better packing efficiency of printing material. Hence, the

number of 3D-printers packed will reduce significantly and this is exactly what we see in Table 8.

6 Conclusion

In this paper, we shed light on when to bring 3D-printers or not, which amount of printing material to

pack and which items to bring physically, to a disaster area. For that, we introduce a new type of prob-

lem, which we call the two-stage stochastic 3D-printing knapsack problem. We present a deterministic

equivalent of our problem, which allows us to solve the problem with standard solver techniques. Our

numerical results illustrates how the quality of printed items, the weight and volume of 3D-printers,
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the storage efficiency of printing material, the printing time, and the demand uncertainty effect the

outcomes of our model. It turns out that for most situations packing a 3D-printer is beneficial. Only in

extreme circumstances, where the quality of printed items is extremely low, the size of the 3D-printer

is extremely large compared to the knapsack size, when there is no time to print the items, or when

demand for items is low, taking no 3D-printers is the best option.

For future research, we identify four interesting research directions. The first one relates to the mod-

elling assumptions of the 3D-printers. In our paper, we consider a sort of ”ideal” 3D-printer: it can

print all items with the same type of printing material and it can be set-up, and used easily in a disaster

response mission. It would be of interest to see how robust our model is against these type of assump-

tions (e.g., what happens if we have different types of 3D-printers that can print specific types of items

only?). As a second research direction, one could extend our TSS-3DKP by including dependencies

between the items. With this modelling feature, it is possible to include composed items that consist of

several printed or physical subitems. As a third research direction, one could extend our TSS-3DKP by

introducing decision dependent uncertainty (cf. Goel and Grossmann (2006)). In such a setting, one

could invest time to get more accurate demand information. Clearly, this creates a trade-off between

reducing demand uncertainty and arriving late(r) at a disaster area. As a final research direction, it is

of interest to see how our TSS-3DKP could be applied to other application domains (e.g., a military or

aerospace setting), which each may have their own, unique, characteristics.

One of the strengths of our model is that sufficiently large instances can be solved by commercial

solvers within reasonable computation time. However, this may no longer be the case for (the afore-

mentioned) future research directions. Consequently, the need for (other) efficient solution methods

becomes apparent. A candidate for this is logic-based Benders decomposition (Hooker and Ottosson,

2003), a generalization of Benders decomposition (Benders, 1962) that allows the second-stage problem

to be any optimization problem rather than precisely a linear or nonlinear programming problem.
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A. Döyen, N. Aras, and G. Barbarosoğlu. A two-echelon stochastic facility location model for human-

itarian relief logistics. Optimization Letters, 6(6):1123–1145, 2012.

Ö. Elçi and N. Noyan. A chance-constrained two-stage stochastic programming model for humanitar-

ian relief network design. Transportation Research Part B: Mcethodological, 108:55–83, 2018.

Y. Fan and C. Liu. Solving stochastic transportation network protection problems using the progressive

hedging-based method. Networks and Spatial Economics, 10(2):193–208, 2010.

21



G. Galindo and R. Batta. Review of recent developments in OR/MS research in disaster operations

management. European Journal of Operational Research, 230(2):201–211, 2013.

V. Goel and I. E. Grossmann. A class of stochastic programs with decision dependent uncertainty.

Mathematical Programming, 108(2-3):355–394, 2006.

C. Goulding. 3D printing of disaster relief tools and shelters, and R&D tax credits, October 2017. URL

https://3dprint.com/192352/3dp-disaster-relief-rd-credit/.

E. Grass and K. Fischer. Two-stage stochastic programming in disaster management: a literature

survey. Surveys in Operations Research and Management Science, 21(2):85–100, 2016.

N. Hall. 3D printers can change humanitarian aid, August 2016. URL

https://3dprintingindustry.com/news/3d-printers-can-change-humanitarian-aid-91658/.

J. N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical Programming, 96(1):

33–60, 2003.

S. Hu, C. Han, Z. S. Dong, and L. Meng. A multi-stage stochastic programming model for relief

distribution considering the state of road network. Transportation Research Part B: Methodological, 123:

64–87, 2019.

International Federation of Red Cross and Red Crescent Societies. World disasters report, December

2005. URL https://www.ifrc.org/Global/Publications/disasters/WDR/69001-WDR2005-english-LR.pdf.

S. Khajavi, J. Partanen, and J. Holmström. Additive manufacturing in the spare parts supply chain.

Computers in Industry, 65(1):50–63, 2014.

P. Kolesar. A branch and bound algorithm for the knapsack problem. Management Science, 13(9):

723–735, 1967.

S. Kosuch. Approximability of the two-stage stochastic knapsack problem with discretely distributed

weights. Discrete Applied Mathematics, 165:192–204, 2014.

S. Kosuch and A. Lisser. On two-stage stochastic knapsack problems. Discrete Applied Mathematics, 159

(16):1827–1841, 2011.

A. Leiras, I. de Brito Jr, E. Q. Peres, T. R. Bertazzo, and H. T. Y. Yoshizaki. Literature review of

humanitarian logistics research: trends and challenges. Journal of Humanitarian Logistics and Supply

Chain Management, 2014.

A. C. Li, L. Nozick, N. Xu, and R. Davidson. Shelter location and transportation planning under

hurricane conditions. Transportation Research Part E: Logistics and Transportation Review, 48(4):715–

729, 2012.

22

https://3dprint.com/192352/3dp-disaster-relief-rd-credit/
https://3dprintingindustry.com/news/3d-printers-can-change-humanitarian-aid-91658/
https://www.ifrc.org/Global/Publications/disasters/WDR/69001-WDR2005-english-LR.pdf


L. Li, M. Jin, and L. Zhang. Sheltering network planning and management with a case in the gulf coast

region. International Journal of Production Economics, 131(2):431–440, 2011.

A. Lisser, R. Lopez, and X. Hu. Stochastic quadratic knapsack with recourse. Electronic Notes in Discrete

Mathematics, 36:97–104, 2010.
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