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By means of high-resolution numerical simulations, we compare the statistical properties of
homogeneous and isotropic turbulence to those of the Navier-Stokes equation where small-scale vortex
filaments are strongly depleted, thanks to a nonlinear extra viscosity acting preferentially on high vorticity
regions. We show that the presence of such smart small-scale drag can strongly reduce intermittency and
non-Gaussian fluctuations. Our results pave the way towards a deeper understanding on the fundamental
role of degrees of freedom in turbulence as well as on the impact of (pseudo)coherent structures on the
statistical small-scale properties. Our work can be seen as a first attempt to develop smart-Lagrangian
forcing or drag mechanisms to control turbulence.
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Introduction.—Fluid dynamics turbulence is character-
ized by intermittent and non-Gaussian fluctuations distrib-
uted over a wide range of space and timescales [1–6]. In the
limit of infinite Reynolds numbers, Re, the number of
dynamical degrees of freedom tends towards infinity,
#dof ∼ Re9=4, where Re ¼ U0L0=ν with ν being the vis-
cosity, U0 and L0 being the typical velocity and large scale
in the flow, respectively. Are all these degrees of freedom
equally relevant for the dynamics? Do extreme events
depend only on some large-scale flow realizations? Can we
selectively control some degrees of freedom by applying an
active forcing and/or drag? These are key questions that we
start to answer by using high resolution numerical studies
of the three dimensional Navier-Stokes equations. The long
term goal is twofold. First, we are interested to have a new
numerical tool to ask novel questions concerning the
statistical and topological properties of specific flow
structures. Second, we aim to develop useful control
strategies to suggest forcing protocols that may be imple-
mented in laboratory experiments, where the flow can be
seeded with millions of passive or active particles, prefer-
entially tracking special flow regions [7–14]. For example,
we nowadays know how to actively control spinning
properties of small magnetic particles [15,16], how to
blow up small bubbles by sound emissions [17–19],
and/or how to assemble micrometric objects with a self-
adaptive shape depending on the flow rheological proper-
ties [20]. Recent developments in 3D printing and micro-
engineering technologies promise that new tools will be
available in the next few years for fluid control or fluid
measurements in the laboratory. We believe that these new
tools could be capable to do, in a “smart”way, what passive
polymers already do in controlling drag and flow correla-
tions [21–23]. In this Letter, we perform a first attempt to

modify or control fluid turbulence by adding a small-scale
forcing only on intense vorticity regions. We start from the
case where the forcing is always detrimental, i.e., removes
energy. The idea is to have a numerical experiment
mimicking the effects of small particles that preferentially
track high vorticity regions (i.e., light bubbles) and that can
be activated such as to spin or blowup and increase the drag
locally. This is only one potential protocol over a wide and
broad range of other applications to many others flow
conditions at high and low Reynolds numbers.
Method.—We consider the Navier Stokes equations

(NSE) for an incompressible flow, subjected to two differ-
ent types of forcing mechanisms:

∂tuþ u · ∇u ¼ −∇Pþ νΔuþ F − f c; ð1Þ

where F is a standard large-scale stirring mechanism while
f c is a second forcing which acts—in our implementation—
as a control term on the small-scale dynamics. In particular,
in this Letter, we will only consider an external smart drag,
proportional to the velocity f cðx; tÞ ¼ cðx; tÞuðx; tÞ and
acting such as to preferentially depleting only those regions
where vorticity is important

cðx; tÞ ¼ β

�
tanh f½ωðx; tÞ − ωp�g þ 1

2

�
; ð2Þ

where ωðx; tÞ ¼ j∇ × uj is the vorticity intensity, ωp is
one threshold above which the control term is strongly
active and β is an overall rescaling factor of the control
amplitude, hence β ¼ 0would correspond to the usual NSE
without control. From its definition it is possible to see that
f cðx; tÞ is always close to zero except inside structures
dominated by the intense vortex filaments, where the tanh
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becomes positive and equal to 1. The regionwhere f cðx; tÞ is
acting and can be tuned by changing the thresholdωp, whose
value has been fixed as a percentage of the maximum
vorticity, ωmax, measured in the stationary state of a
simulation without the control term, hence:

ωp ¼ pωmax;

with 0 < p ≤ 1. In the transition region around the isoline
where ωðx; tÞ ¼ ωp the control function (2) will introduce
compressible effects in (1). Therefore, before adding the
control term to (1) one needs to project it on its solenoidal
component.
The projection operation breaks the local positive def-

initeness of the control term, however, its global effect
remains purely dissipative after averaging on the whole
volume. Hence, the control term goes in addition to the
normal dissipation produced by the kinematic viscosity. In
this way, a second possible channel is opened where the
energy, injected by the large-scale forcing, can be dissi-
pated. The total energy balance equations becomes

1

2
∂thu2i ¼ νhΔu2i − hf c · ui þ hu · Fi; ð3Þ

where we have the total kinetic energy, E ¼ 1
2
hu2i, the

viscous dissipation εν ¼ νhΔu2i, the dissipation induced
by the control mechanism, εc ¼ hf c · ui, and the energy
injection rate εf ¼ hF · ui, and with h•i we intend an
average on the whole volume.
Numerical simulations.—In Fig. 1 we present two

visualizations of a plane of the vorticity intensity in the
stationary state for two simulations, one for the standard
NSE (top panel) and one with the control term acting on the
flow (bottom panel). The two planes in Fig. 1 are warped
upwards depending on the vorticity values, in this way it is
possible to see that the intense peaks developed by the NSE
are pruned by the small-scale forcing in the controlled
dynamics. From the figure it is qualitatively evident that
vorticity is strongly depleted when the small-scale drag is
acting, as expected. In the same figure, next to the vorticity
planes, we show a 3D rendering of the contour regions
where the vorticity value is above 20% of its maximum
value, for the case of the uncontrolled NSE (top panel) and
the contour regions where the vorticity value is above the
forcing threshold, p ¼ 0.2, for the case of the controlled
flow (bottom panel). From the volume rendering, we can
appreciate that the control forcing tends to homogenize the
spatial distribution of the intense vorticity events while they
result more intermittently and localized when the dynamics
is not controlled. One possible interpretation of this effect is
that the control term is highly nonlinear, hence its dynamics
can lead to a decorrelation in the time evolution of the
Fourier phases at different scales and consequently to a
depletion of intermittency. Indeed synchronization among

Fourier phases has been already observed to be key for the
formation of high singular and intermittent structure in the
Burgers equation [24,25] and it is believed to be important
for Navier-Stokes equations too. It is also interesting to
observe that the volume fraction where the forcing acts is
very small, even though in those visualizations we are using

FIG. 1. (Top row) Left: vorticity amplitude in a 2D plane, from
a simulation without control term (β ¼ 0). Right: regions where
the vorticity amplitude is above 20% of its maximum over the
flow volume. (Bottom row) Left: visualization of enstrophy plane
from a simulation with active control term. Both visualizations
are obtained using the same range in the color axis. Right: regions
where the vorticity amplitude is above the control forcing
threshold ωp ¼ 0.2ωmax. The control forcing amplitude is
β ¼ 5. Both simulations are performed with N ¼ 10243 collo-
cation points.

TABLE I. Control: indicates if the term (2) is applied (On) or
not (Off); N is the number of collocation points for each
direction; β is the amplitude of the control term; p is the
percentage of the maximum vorticity above which the control
term is active ωp ¼ pωmax; εf is the mean energy input injected
by the large-scale forcing; ν is the kinematic viscosity. The
amplitude of the Ornstein-Uhlenbeck forcing is f0 ¼ 0.16 and
f0 ¼ 0.14 for N ¼ 256 and N ¼ 1024, respectively; the corre-
lation time is τf ¼ 0.6 for N ¼ 256 and τf ¼ 0.23 for N ¼ 1024.
The forcing is active on the window kf ¼ ½0.5∶1.5� for resolution
N ¼ 256 and on kf ¼ ½0.5∶2.5� for N ¼ 1024. The Kolmogorov
scale is η ¼ ðν3=εÞ1=4, where ε is the dissipation rate. Resolution
is kept at η=dx ≥ 0.7.

Control N β p εf ν

Off 256 � � � � � � 2.2 5.2 × 10−3

Off 1024 � � � � � � 5.5 8 × 10−4

On 256 ½0.1 ÷ 50� ½0.1 ÷ 0.7� 2.2 5.2 × 10−3

On 1024 50 ½0.05 ÷ 0.6� 5.5 8 × 10−4
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a broad threshold in terms of the vorticity values,
p ¼ ωp=ωmax ¼ 0.2.
To assess the statistical properties of Eq. (1) a set of

direct numerical simulation have been performed at chang-
ing resolution and the control parameters, namely β andωp.
We used a pseudospectral code with resolutions up to 10243

collocation points in a triply periodic domain Ω of size
L ¼ 2π. A full 2=3 dealiasing is implemented (see Table I
for details). The homogeneous and isotropic external force,
F, is defined via a second-order Ornstein-Uhlenbeck
process [26]. All simulations where control is on, have
been produced starting from a stationary configuration of
the uncontrolled case β ¼ 0 and all statistical quantities are
calculated after that a new stationary state is achieved.
In Fig. 2 we present the time average of the instantaneous

energy spectra:

Eðk; tÞ ¼ 0.5
X

k<jkj<kþ1

jûðk; tÞj2; ð4Þ

which are almost independent of the control parameter, p.
Only for the smallest value of ωp, with p ∼ 0.2, we can
notice a small energy depletion at large wave numbers.
However, in all cases, the inertial range scaling properties
are unchanged with the slope being very close to the
Kolmogorov’s prediction k−5=3. In the inset of the same
figure we show for the controlled simulation with p ¼ 0.2
and β ¼ 5, the balance of the energy flux produced by the
nonlinear term, ΠnlðkÞ, by the viscous drag, ΠνðkÞ, and by
the control forcing, ΠfcðkÞ. In the stationary state we can
write the Fourier space energy balance equation as:

ΠnlðkÞ þ ΠfcðkÞ þ ΠνðkÞ ¼ εf; ð5Þ

where εf is the large-scale energy input of the stochastic
forcing. From the inset of Fig. 2 we can see that the control
forcing is mainly active in the high wave numbers where its
contribution equals the one from the viscous dissipation,
while at small or intermediate wave numbers the nonlinear
interactions remain the leading one.
Configuration space statistics.—In the following we

analyze the statistics of the longitudinal velocity increments
defined as δru ¼ ½uðxþ rÞ − uðxÞ�r=r. In particular we are
interested in the assessment of the effects produced by the
control term on the intermittent properties of the NSE. To
do that we study the scaling properties of the longitudinal
structure functions (SF) defined as:

SpðrÞ≡ h½δru�pi ∼ rζp : ð6Þ

Intermittency is measured by the departure of the scaling
exponents from the Kolmogorov 1941 prediction, ζp ¼
p=3 in the inertial range, η < r < L0. In particular, any
systematic nonlinear dependency on the order of the
moment will induce a scale dependency in the flatness,
defined by the dimensionless ratio among fourth and
second order SF:

FðrÞ ¼ S4ðrÞ
½S2ðrÞ�2

: ð7Þ

The flatness for the controlled turbulent flow at resolution
N ¼ 10243 is presented in Fig. 3, for the case with p ¼ 0.2,
compared with the uncontrolled case β ¼ 0 and with the
uncontrolled case but with an a posteriori pruning of all
events where ω > ωp. The latter measurement is intro-
duced in order to understand how much the dynamical
pruning imposed by the evolution of Eq. (1) is different
from a simple conditioning on small-vorticity events taken
on the full uncontrolled NSE. It is important to underline
that the a posteriori analysis is actually performing a
conditional statistical averaging of the velocity increments
and not a proper pruning of the velocity fields. In other
words, in the a posteriori analysis, we skip in the
computation of the structure functions those positions
where the vorticity amplitude exceeds the threshold used
in the dynamical control. A real a posteriori pruning
protocol would have required to pad to zero the velocity
inside the high vorticity regions, consequently introducing
artificial discontinuities and thus higher values for the
flatness. As one can see comparing the empty circles (full
β ¼ 0 NSE) with the empty squares (active control with
p ¼ 0.2) the effects on the flatness are dramatic, with both
a 100% reduction on the smallest scale and a decrease of
the scaling slope in the inertial range. Similarly, by
comparing the results with the a posteriori conditioning
(empty triangles) we see that indeed it is crucial to have a
dynamical control to deplete intermittency. In the
Supplemental Material [27] we present an analysis of

FIG. 2. Energy spectra averaged on time for different simu-
lations with N ¼ 256 at changing the control threshold,
ωp=ωmax ¼ p, with a fixed amplitude, β ¼ 5. Notice that β ¼
0 corresponds to the uncontrolled full NSE. Inset: energy fluxes
contributions, nonlinear term (Πnl), control term (Πfc ), and
viscous term (Πν) normalized to the mean energy input, εf.
Here p ¼ 0.2 and β ¼ 5.
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the flatness at changing the control amplitude β and the
width of tanh function in Eq. (2). The flatness behaviour is
qualitatively unchanged when varying the control param-
eters over a wide range of values, confirming that the
intermittency reduction is not due to a particular choice of
the control term. To our knowledge this is the first evidence
that intermittency can be strongly depleted in a dynamical
way with a dynamical criterion based on configuration-
space filtering, at difference from what obtained by fractal
pruning in [28–31]. In the inset of Fig. 3 we show the
effects of the vorticity control point by point in the flow
volume, by plotting the standardised probability density
function (PDF) for the instantaneous and local enstrophy,
Ω ¼ j∇ × uj2, and shear intensity, S ¼ P

ijð∂iuj þ ∂juiÞ2,
for one case of active control, p ¼ 0.2, and compared with
the no-control, β ¼ 0 case. There are two interesting things
to remark. First, when the control is active, the far tails of
the vorticity are markedly depleted, with almost a sharp
cutoff at ω ∼ ωp, which is the clear signature that the
control is able to deplete intense vorticity events and to not
allow them to grow again during the evolution. This fact is
also good news from a sort of min-max approach; it means
that the amount of control needed is not too high, being
very efficient in stopping the formation of strong vorticity.
The second interesting point to remark is that the prefer-
ential depletion on vorticity is indeed changing the topo-
logical distribution of extreme events in the flow: from the
standard case where they are mainly given by high vorticity
where no control exists to the case where the extreme

fluctuations (far right tails) are more dominated by strong
shear events. The control term seems to introduce other
subleading effects such as the formation of a small bump in
the vorticity distribution; this is visible in the inset of Fig. 3
from the relative increase of the probability of measuring
enstrophy values around the cutoff threshold of the control
term. This small effect would require more work to be
quantitatively clarified and it is most probably highly
sensitive to the specific functional shape of the control
forcing.
Drag reduction.—Going back to the observation of the

mean quantities, it is interesting to estimate the effect of the
smart forcing on the drag coefficient of the system. Indeed
the new smart control allows the system to preferentially
dissipate energy inside the vortical regions where it is
active. It is important to remark that in the absence of
boundaries the best way to identify a drag-reduction
mechanism is to compare the energy injection rate (input)
and the response of the flow via the total kinetic energy
(output), a well-established procedure, as already suggested
in [32–34]. Hence to quantify the smart-control effect we
go back to the balance (3) and split the total drag, dtot, in
two contributions, dν and dc, as follows:

dtot ¼ dν þ dc; dν ¼
ενL0

u3rms
; dc ¼

εcL0

u3rms
: ð8Þ

In Fig. 4 we show the mean drag coefficients as a function
of the vorticity threshold ωp ¼ pωmax for the simulations
with N ¼ 2563 collocation points and with a moderate
control amplitude, β ¼ 5. Figure 4 shows that the drag
contribution coming from the control term is negligible up

FIG. 3. Log-log plot of the flatness, FðrÞ, versus r from 30
different time snapshots at resolution N ¼ 10243. Results without
control terms, β ¼ 0 (NSE). Data with active control
ωp=ωmax ¼ 0.2, β ¼ 50. The dashed line at FðrÞ ¼ 3 represents
the expected value for a Gaussian distribution. We also show the
flatness from a posteriori pruning. Errors are evaluated as the
standard deviation from 30 configurations. Inset: comparison of
the PDFs of enstrophy, x ¼ Ω, (solid lines) and shear intensity,
x ¼ S (dashed lines) measured from simulations of standard NSE
(black lines) and from the system controlled with forcing thresh-
old, ωp=ωmax ¼ 0.2 and amplitude β ¼ 5 (red lines).

FIG. 4. Drag coefficient for the viscous dissipation dν (green
line), the control forcing dc (black line), and their sum dtot (cyan
line). Results are shown as a function of the threshold,
ωp=ωmax ¼ p, and the volume fraction, V, where the control
forcing is acting (upper scale). Here the resolution is N ¼ 2563

and the control forcing amplitude is β ¼ 5. Errors are evaluated as
the standard deviation of the temporal fluctuations.
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to a threshold p ∼ 0.6, instead, moving towards lower
thresholds, the dissipation produced by the small-scale term
increases and, around p ¼ 0.2, the kinematic viscosity and
the control dissipations become of the same order. Moving
further the threshold towards lower vorticity values the
control term becomes the leading contribution responsible
for the energy dissipation. In this way, a drag enhancement
is observed for the smaller threshold value and the overall
drag coefficient is increased almost by a factor of 2
compared to the free NSE at p ¼ 1.
Conclusions.—We have presented a first implementation

of a smart small-scale control scheme for turbulent flows,
based on preferentially dumping high vorticity regions. In
this Letter, we have shown that the extra drag exerted on the
vortex filaments produce a strong reduction on configura-
tion-based intermittency, with the depletion of fat tails and
rare events in the vorticity field. The topological relative
weight of rotational and extensional regions is also affected
abruptly. The overall dumping of vortex filaments leads to a
sort of drag increase. This study opens the way to explore
other control Lagrangian mechanism, e.g., based on the
heavy-light particles preferential concentration and/or other
smart particles that can be self-activated or activated by
external control fields, as for the case of magnetic objects.
Together with the study of possible real Lagrangian control
mechanisms, it would be interesting to study the effects of
the new control approach when applied to turbulent flows
in different and more realistic conditions such as in
rotating, stratified, or shear flows, where the turbulent
dynamics is known to develop different energy cascades. In
some cases, vorticity is intense even at large scales, which
would imply the application of a control mechanisms that is
correlated on scales comparable with the domain size.
Optimization of the particles’ properties to track a specific
flow region can also be attempted in order to enhance or
deplete only specific fluctuations [35–39].
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