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ABSTRACT

Functional emulation of biological synapses using electronic devices is regarded as the first step toward neuromorphic engineering and
artificial neural networks (ANNs). Electrolyte-gated transistors (EGTs) are mixed ionic–electronic conductivity devices capable of efficient
gate-channel capacitance coupling, biocompatibility, and flexible architectures. Electrolyte gating offers significant advantages for the real-
ization of neuromorphic devices/architectures, including ultralow-voltage operation and the ability to form parallel-interconnected net-
works with minimal hardwired connectivity. In this review, the most recent developments in EGT-based electronics are introduced with
their synaptic behaviors and detailed mechanisms, including short-/long-term plasticity, global regulation phenomena, lateral coupling
between device terminals, and spatiotemporal correlated functions. Analog memory phenomena allow for the implementation of
perceptron-based ANNs. Due to their mixed-conductivity phenomena, neuromorphic circuits based on EGTs allow for facile interfacing
with biological environments. We also discuss the future challenges in implementing low power, high speed, and reliable neuromorphic
computing for large-scale ANNs with these neuromorphic devices. The advancement of neuromorphic devices that rely on EGTs high-
lights the importance of this field for neuromorphic computing and for novel healthcare technologies in the form of adaptable or trainable
biointerfacing.
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I. INTRODUCTION

Present digital computation relies on the von Neumann architec-
ture as implemented with complementary metal-oxide-semiconductor
(CMOS) technology. Due to current limitations in semiconductor
manufacturing technology, modern computer systems typically employ
hierarchical storage and memory-processor discrete approaches to
achieve an optimal balance between computational performance and
computational cost. With this approach, parallel processing is challeng-
ing, an issue commonly referred to as the von Neumann bottleneck.1

A neural system, such as the mammalian brain, is an efficient
information-processing system, which contains about 1011 neurons to
form 1015 synaptic connections.2 Through this specific structure, our
brain is massively parallel and offers distributed computation, which
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combines processing and memory together with a very low power
consumption of�20W. Neuromorphic devices, which aim to emulate
functions of biological neurons and synapses, may provide new build-
ing blocks for the post-Moore law era. In this scenario, neuromorphic
computing is regarded as a promising computing paradigm for future
artificial intelligence (AI), big data analysis, Internet of Things (IoT),
etc.3,4 Since the European Union and the United States took the lead
in launching their Human Brain Project (HBP) and Brain Research
through Advancing Innovative Neurotechnologies (BRAIN) in 2013,
more and more countries and research institutes have been accelerat-
ing investments in brain-inspired technology worldwide. Another

purpose of the brain-related research projects is to enable a better
understanding of the principles of information processing in the brain,
with an ultimate goal to understand malfunctions and find new ways
to cure brain diseases.

Neurons and synapses in the brain are the smallest unit of learn-
ing and memory. As shown in Fig. 1(a), a synapse is the nanogap
(�3.5nm) that connects two neurons, which can receive and process
massive presynaptic inputs to determine the postsynaptic outputs.5

The synaptic weight (W), i.e., the connection strength between neu-
rons, depends on the concentrations of ionic species (e.g., Ca2þ, Naþ,
and Kþ) upon presynaptic action potentials (APs), which modulate

FIG. 1. Schematic illustration of (a) a biological synapse and (b) the EGT-based artificial synapse. (c) Ionic circuits used to model EGTs. (d) The circuits for a voltage-
controlled crossbar array. Synaptic EGTs that encode the synaptic weights are present at each cross point. Diagrams indicated in the dashed frame are two typical device
structures of EGTs. (e) Schematics of a single-layer perceptron (SLP)-based network. Artificial neural networks connect an input layer to an output layer using hidden layers
(synaptic weights, W). The synaptic weight (Wm,n) between each input (Xm) node and output (Yn) node can be modulated to train the network to perform the desired operation.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 011307 (2020); doi: 10.1063/1.5122249 7, 011307-2

Published under license by AIP Publishing

https://scitation.org/journal/are


the release of neurotransmitters. The synaptic weight permits the cou-
pling between neurons, conveying electrical or chemical signals and
influencing the spiking behavior of neighboring neurons, giving thus
rise to the neuronal development. Changes in synaptic strength are
known as synaptic plasticity. In neurology, synaptic plasticity is activ-
ity dependent at either or both sides of the synapse.6 Generally, synap-
tic plasticity can be classified into short-term plasticity (STP) and
long-term plasticity (LTP), respectively. STP corresponds to the tran-
sient modification of synaptic strength after stimulation, which lasts
for tens of milliseconds to a few minutes, while LTP is a persistent
modification of synaptic strength, which can last from hours to years.
In biological systems, STP is required for short-term memory (STM)
and allows synapses to perform critical computational functions in
neural circuits such as transmission, encoding, and filtering of neuro-
nal signals.7 However, LTP is obviously needed for storing the proc-
essed information, i.e., the long-term memory (LTM), and is thought
to underpin learning and memory.8 STP can be converted to LTP after
sufficient training or persistent neuronal activities. A putative neuronal
mechanism of learning and memory is Hebbian synaptic plasticity,
i.e., the synaptic strength between the pre- and postsynaptic neurons
depends on the time-correlation of their activity.9,10 Two classic para-
digms for the induction of Hebbian plasticity is spike-timing-depen-
dent plasticity (STDP) and spike-rate-dependent plasticity (SRDP).11

STDP is the refinement of the Hebbian rule, where the synaptic modi-
fication relies on the relative timing of activity between the pre- and
postsynaptic neurons.12 STDP is considered to be the main learning
and memory mechanism of the brain and also forms the basis for
autonomous, unsupervised learning in neuromorphic computing.13

SRDP is another widely observed learning rule, which reflects the
influence of the activity frequency of presynaptic inputs on synaptic
modification.14

Hardware implementation of synaptic functionalities using
microelectronic devices is regarded as the footstone for neuromorphic
engineering. Multiple and nonvolatile conductance levels of electronic
devices are needed to mimic the basic functions of synaptic plasticity.
Presently, there are two possible ways of synapse realization: the tradi-
tional silicon hardware and the emerging memory devices. The main
advantage of the former is the matureness of silicon and its full inte-
gration with the standard CMOS technology. Mead et al. coined the
term “neuromorphic” in the 1980s and proposed the concept of a sin-
gle transistor learning synapse in 1995.15,16 The silicon approach relies
on charge-based mechanisms as in conventional flash memory and
random access memory (RAM), such as static and dynamic RAM
(SRAM and DRAM). Several MOS transistors are usually needed to
build a silicon neuron.17 With the development of semiconductor
manufacturing technologies over the past two decades, nonbiomimetic
CMOS chips have been the advanced electronic implementation of
neuron circuitry. Brain-like circuits are now commercially available,
by integrating billions of transistors on a square centimeter.18–20

However, the need for high speed and design complexity for CMOS
architectures complicate the path to achieve the interconnectivity,
information density, and energy efficiency of the brain. Unlike the “0”
and “1”-based digital transistors that make up modern computer
chips, alternative analog devices with nonlinear transmission charac-
teristics and slow ion motions are closer to the biophysical properties
of neurons and synapses. In addition, analog computing without using
analog-to-digital or digital-to-analog (ADC/DAC) conversion is not

only energy efficient but has great potential in a mixed-signal neural
network.21 Although the appropriate candidates for artificial synapses
and neurons is still under debate, tunable memory devices including
two-terminal memristors and three-terminal neuromorphic transis-
tors are promising.3,22 The operation principles of these devices are
based on coupled ionic-electronic features.23 The original definition
for memristor (“memory resistor”) was predicted from symmetry
arguments by Chua in 1971.24 In 1976, Chua et al. generalized the
memristor concept to a much broader class of nonlinear dynamical
systems they called memristive systems.25 In 2008, Strukov et al.
correlated the resistive switching devices with memristors, in which
memresistance was experimentally observed in Pt/TiOx/Pt memo-
ries.26,27 The resistance of the devices depends on the history of cur-
rent that has flowed through it under an external bias voltage. Note
that the roots of resistive switching phenomena date back to the
1960s,28,29 while resistive switching devices were proposed as a new
generation of nonvolatile memories even before the experimental evi-
dence of memristors.30 The pinched hysteresis loop has been identified
as the fingerprint of memristive systems,31,32 thereby unifying a broad
class of two-terminal nonvolatile memories as memristors. These devi-
ces include resistive switching RAM (RRAM),33–35 magnetic RAM
(MRAM),36 and phase-change memory (PCM).37 Over the last
decade, memristors were intended for applications in data storage,
logic circuits, and neuromorphic computing. In particular, for neuro-
morphic applications, abrupt switching that is present in conventional
binary memristors (i.e., digital-type memories) is unfavorable, and
analog memory phenomena are desirable for the training of neural
networks with high accuracy/speed.38,39 The gradual switching can be
engineered by redox reactions (e.g., electrochemical metallization, and
valence change),40 the current-induced Joule heating effect,41 the spin-
transfer torque effect,42 and even ferroelectric polarization.43 For the
redox-based resistive switching memristors that are coupled by ionic
and electronic transport dynamics, aspects such as electrolyte materi-
als,44,45 electrode activity,46 filament nucleation,47,48 and ambient49

have been extensively studied to achieve controllable switching charac-
teristics. Nowadays, memristors have attracted great interest for single
synaptic units with high scalability (<2nm), 3D integration capability,
and fast switching speed (�nanosecond).50 Large area arrays of mem-
ristors could be easily integrated in a crossbar architecture to perform
vector-matrix multiplication directly utilizing Ohm’s law and
Kirchhoff’s law.21 Complex computational tasks and artificial neural
networks (ANN) have been implemented with such post-CMOS
device arrays.51–53

On the other hand, neuromorphic transistors could provide an
alternative platform for synaptic electronics because of their structural
nature, with physically separated input and output terminals.54–56

Hysteresis in the transfer curves of transistors with gradually changed
conductance presents a history-dependent memory behavior. Hence,
the synaptic weight (i.e., channel conductance, G) can be precisely
controlled in a tightly coupled fashion between the control terminal
(gate electrode) and the transduction terminals (source–drain electro-
des). Meanwhile, the training or “write” operation is on the gate that is
spatially separated from the signal transmission or the “read” process
on the channel. This endows synaptic circuits with concurrent actuali-
zation of inference and learning, hence facilitating the implementation
of more complex neuromorphic functions.57 Besides, the write current
(i.e., gate current) could be much lower than the read current (drain
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current) so that this three-terminal configuration results in improved
state retention and energy efficiency.58 From the mechanism perspec-
tive, neuromorphic transistors are desirable for the decoupling of STP
and LTP through the use of different functional regions and physical
mechanisms,59–61 thus being a naturally suitable medium in which
STP and LTP can be induced concomitantly and expressed indepen-
dently.62 From other performance and functionality viewpoints, neu-
romorphic transistors offer advantages of multimodal control (e.g.,
electrical, optical, mechanical stimuli, and physicochemical responses
such as gas and ion/molecular sensing63–66), thereby allowing the
implementation of artificial synapses that mimic biological sensory
(afferent) and motor (efferent) neurons.67,68

Among all kinds of neuromorphic transistors, electrolyte-gated
transistors (EGTs), in which the semiconducting channel is in contact
with a gate electrode via an electrolyte [Fig. 1(b)], have shown to be
very promising for the implementation of artificial synapses. The elec-
trolyte is an ionic conductor but an electronic insulator dielectric.69

An electrolyte could be either in a liquid or a solid state, having ions
(anions and cations) displaced in opposite charges at the electrolyte/
electrode interfaces in response to an electric field. Typically, two
major categories of EGTs have been employed for synaptic electronics
depending on the permeability of the semiconductor channel to the
ions of the electrolyte. Specifically, the impermeable one is the
electrolyte-gated field-effect transistor (EG-FET) with the channel cur-
rent modulated by the gate voltage via a capacitive field-effect mecha-
nism at the channel/electrolyte interface. Due to the ultrathin
“electrical double layers” (EDLs, �1.0nm) formed at the gate/electro-
lyte and electrolyte/semiconductor interfaces, EG-FET is often known
as electrical double layer transistors (EDLTs). The other type is called
an electrochemical transistor (ECT), which is based on electrochemical
doping/dedoping processes upon the bulk injection of ionic species to
the redox-active channel material. Previously, EGTs have been widely
used in chemical and biological sensing, which was enabled by their
high transconductance and compatibility with aqueous solutions and
biological systems.70–72 The interest in EGTs dramatically increased in
recent years after being associated with the concept of neuromorphic
transistors. Compared to dielectric thickness-dependent field-effect
transistors (FETs, nF/cm2), EGTs employ a high parallel plate capaci-
tance (�1–10 lF/cm2) and/or volumetric capacitance (�370 F/cm3 or
�500 lF/cm2 equivalent capacitance/unit area) to realize the high
coupling efficiency of the gate to the channel.73 This feature endows
synaptic EGTs with the ability to alter conductance at ultralow vol-
tages (�millivolt), leading to an attractive alternative in energy-
efficient neuromorphic circuits.74 Moreover, coupled and tunable ionic
and electronic conductances make EGTs valuable for electronic synap-
ses [Fig. 1(c)] since their operation mode approaches the biological
counterparts when compared to other technologies. For these reasons,
EGTs can be exploited for the realization of electronic prostheses to
directly interface with living neurons that have signals of low ampli-
tude.75 Another benefit of the synaptic EGTs is their structural flexibil-
ity in constructing the synaptic networks. A shared electrolyte would
be an interesting feature to provide a global control mechanism (one-
input to multioutputs).76 On the other hand, an electrolyte is particu-
larly suitable for the lateral-gated transistor configuration [Fig. 1(d)],
enabling multi-inputs to one-output.77 In this regard and given the
specific characteristics of EGTs (e.g., ion/electron interaction, high spe-
cific capacitance, physiological environmental compatibility, and

architectural flexibility), a unique opportunity arises to explore these
devices as candidates for neuromorphic building blocks with new and
unconventional form factors [Fig. 1(e)].22,68,78

In this review, the recent advances in EGT-based synaptic elec-
tronics, from a single device to neural networks, are comprehensively
summarized and discussed. A brief theoretical background of static
and transient characteristics for EGTs is introduced in Sec. II. In Sec.
III, recent developments of synaptic responses and artificial perception
neurons are reviewed based on the electrolyte gating of metal oxides,
organic materials, and 2D materials. Finally, challenges and perspec-
tives for future research of synaptic electronics and neuromorphic sys-
tems based on electrolyte-gated transistors are discussed in Sec. IV.

II. ION TRANSPORT IN NEUROMORPHICS

In biological synapses, signals are carried via the exchange of var-
ious ionic or molecular species. The action potential opens the
voltage-gated calcium channels of the presynaptic membrane, leading
to the secretion of neurotransmitter vesicles at the synaptic cleft.79

Neurotransmitters are defused through the synaptic cleft and bind to
receptors of the postsynaptic membrane to activate ion channels. The
influx of ions at the postsynaptic membrane alters the polarization
state of the neuron, and action potentials are fired if a depolarization
threshold is exceeded.80 Therefore, neuromorphic devices that involve
signals of ionic or molecular nature are desirable due to the their bio-
logical relevance during device operation.

There are different approaches to implement coupled ionic and
electronic conductivities in artificial synapses to emulate the biological
synaptic functionality. The concept of using electrolytes in contact
with semiconducting materials is not a new one. It dates back in the
‘50s when researchers at Bell labs were experimenting with germanium
electrodes interfacing the aqueous solution of potassium hydroxide,
potassium chloride, and hydrochloric acid.81 These experiments
showed that electrolytes can be efficiently used to modulate the semi-
conductor surface potential, validating the idea that they can also be
employed for transistor gating. The motivation behind that was to
take advantage of the large capacitance electrolytes can deliver, which
allows for extremely low operation voltages. In this part, as a case
study, we mainly focus on organic electrolyte-gated transistors, and
specifically, we are going to present their basic operation mechanism
and provide the main equations that govern their steady state and
transient response. To achieve this, we categorize electrolyte-gated
transistors in two major classes.82 The first one includes transistors the
semiconducting film of which is impermeable to the electrolyte ions
[Fig. 2(a)], while in the second class, these ions can penetrate the semi-
conductor, changing its redox state [Fig. 2(b)].

In the impermeable mode of operation, an applied gate voltage
forces ions to migrate to and pile up at the gate/electrolyte and electro-
lyte/semiconductor interfaces. These ions screen charges at the gate
and accumulate (or deplete) carriers in the semiconducting film. As a
result, EDLs are formed at both interfaces, which can be considered as
capacitors with a Debye screening length k at the nanometric scale. In
this case, the thickness of the dielectric is reduced to an interface level,
resulting in a high parallel plate capacitance. The specific capacitance
of these nanocapacitors can be estimated to 10 lF/cm2, a value signifi-
cantly larger than the typical 0.1 lF/cm2 achieved by solid-state dielec-
tric capacitors.82,83 It is also worth noticing that for these devices, the
applied gate potential drops predominantly at the formed double layer
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capacitors, while the voltage remains constant in the bulk of the (electri-
cally neutral) electrolyte. The above fact implies that the operation of an
impermeable EDL transistor can be considered an extreme case of a FET.

Therefore, for the steady state regime, the channel current is
given by an equation similar to the one derived for FETs84

IDS ¼
W
L

lC0 VG � VThð ÞVD �
V2
D

2

� �
; (1)

whereW and L are the channel width and length, l is the charge car-
rier mobility, C0 is the capacitance of the dielectric per unit area, VTh is
the threshold voltage, VD is the source drain bias, and VG is the voltage
applied at the gate electrode.

Regarding the transient analysis, the current can be expressed as
the sum of the initial and the charging currents.85 In this approach,
the Ward-Dutton model was adopted in an electrolyte-gated FET in
order for the terminal charges and capacitances to be calculated and
consequently the charging currents to be obtained. Finally, the tran-
sient drain and source currents are given as follows:

iD tð Þ ¼ ID0 tð Þ þ dQD tð Þ
dt

; (2)

iS tð Þ ¼ IS0 tð Þ � dQs tð Þ
dt

; (3)

where ID0 tð Þ and IS0 tð Þ are the initial currents and QD tð Þ and QS tð Þ
the charges at the drain and source, respectively.

For the permeable mode, the electrolyte ions can penetrate the
semiconductor film, thereby modulating its conductivity, a process
called electrochemical reaction. The EDL at the gate/electrolyte

interface in this case may or may not be formed depending on the gate
material employed (polarizable or nonpolarizable gate electrodes).
Transistors that work in this configuration are called electrochemical
transistors (ECTs), and the redox is a reversible process taking advan-
tage of the entire volume of the conducting film and delivering large
volumetric capacitance values.86 As a result, small changes in gate
biases result in large modulations in drain current, which is the reason
for ECTs to operate as efficient switches and powerful amplifiers.
Organic electrochemical transistors (OECTs) often employ a conduct-
ing polymer that is electrochemically active and ion permeable. With
the right choice of the channel material, the device can operate either
in the accumulation or the depletion mode [Fig. 2(c)].87 Specifically,
for the latter mode, [poly(3,4-ethylenedioxythiophene) doped with
poly(styrene sulfonate) (PEDOT:PSS)], an archetypical conductive p-
type polymer blend consisting of hole conductive PEDOT oligomers
polymerizing in the ion conductive PSS template, has been widely
exploit in biosensing and neuromorphic applications. PEDOT:PSS can
undergo an oxidation/reduction reaction and switch between the con-
ducting (oxidized) PEDOTþ and the insulating (neutral) PEDOTo

electrochemical states. The PSS chain is hydrophilic and ion permeable.
Applying a positive bias at the gate leads to the injection of cations into
the polymer blend [Fig. 2(d)]. Therefore, the positive bias at the gate
leads to the diffusion of cations into the PSS structure and the compen-
sation of the sulfonic acid groups of PSS. At the same time, PEDOT
charge carriers (polarons and bipolarons) hop between PEDOT
regions through p-p stacking. This mechanism thus provides both
ionic and electrical conductivities in the channel. The charge neutrality
of the PEDOT:PSS layer implies a reduction in the number of holes in
the polymer, which is similar to electrochemically dedoping. These
excess holes are extracted at the drain electrode, and since the drain
current is proportional to the quantity of mobile holes in the channel,
it probes the doping state of the organic polymer.73

The steady state current in a device like that is given by a formula
that bares similarities to (1)

IDS ¼
W � d
L

lC� VTh � VGð ÞVD �
V2
D

2

� �
; (4)

where W, L, and d are the channel width, length, and thickness,
respectively, l is the charge carrier mobility, C� is the capacitance per
unit volume of the channel, VTh is the threshold voltage, VD is the
source drain bias, and VG is the voltage applied at the gate electrode.
The figure of merit of the conducting polymer can be defined by the
product of the charge-carrier mobility and volumetric capacitance
(l�C�).86 Equation (4) for ECTs is similar to Eq. (1) for EG-FETs, with
the difference that the product of channel thickness (d) and volumetric
capacitance (d�C�) replaces C0. This variation defines the difference
between the two devices.

Finally, when it comes to the transient response, a quasistatic
approximation ignores the spatial voltage and charge density varia-
tions and averages the ionic current and charge density. As a result,
the transient drain current is simplified to88

I t;VGð Þ ¼ Iss VGð Þ þ DIss 1� f
se
si
i

� �
exp � t

si

� �
; (5)

where Iss (VG) is the steady-state source-drain current at a gate voltage
VG and DIss is the difference between the current for gate voltage VG

minus the current voltage for gate voltageVG¼ 0 and f a proportionality

FIG. 2. Typical architecture of EGTs. Accumulation-mode operation of an EGT for
(a) undoped ion-impermeable and (b) permeable semiconductors. Depletion-mode
operation for conducting polymers (e.g., PEDOT:PSS) (c) without and (d) with posi-
tive gate voltage.
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constant to account for the spatial nonuniformity of the dedoping
process.

Various semiconducting materials have been actively examined in
synaptic EGTs. Note that the ionic dynamics in EGTs are complicated,
and ionic gating modes could be modulated by varying the stimulation
conditions on the gate terminal, such as the width, frequency, and
polarity of the gate pulses, which serve as the driving force of ion
migrations toward the rigid or soft channel materials. The most com-
mon classes of channel materials consist of rigid metal-oxide semicon-
ductors [indium-zinc-oxide (IZO),89,90 indium gallium zinc oxide
(IGZO),91–93 and indium-strontium-zinc-oxide (ISZO)94], binary
metal-oxides [zinc oxide (ZnO)95], perovskite oxides [tungsten oxide
WO3 (Ref. 61)], 2D materials [graphene,96–98 MoS2,

59,99,100 a-
MoO3,

101,102 WSe2,
103 etc.], 1D materials [carbon nanotubes

(CNTs),104,105 InP nanowires,106 and polymer nanowires107,108], and
soft organic semiconductors [PEDOT:PSS,58,109 poly(3-hexylthio-
phene) (P3HT),110,111 polyaniline (PANI),112,113 2,7-dioctyl[1]benzo-
thieno[3,2-b][1]benzothiophene (C8-BTBT),114 pentacene,115 etc.].
The large free volumes in the conjugated polymer (CP) bulk can also
transport ions, leading to an extremely high transconductance dictated
by the volumetric capacitance (C�).86 Amorphous oxide
semiconductor-based synaptic EGTs have a combination advantages of
high mobility, transparency, and inherent persistent photoconductivity
(PPC) by optimizing the metallic composition ratios.94 These inorganic
semiconductors could be deposited either by solution-processing or
magnetron sputtering with uniform properties in large scale produc-
tion. They can act as both an electrode and a channel,116 like the way
of conducting polymer PEDOT:PSS.117

III. NEUROMORPHIC DEVICES AND FUNCTIONS

The biologically inspired neuromorphic systems are expected to
be capable of dealing with complex and intelligent tasks, where neuro-
morphic functionalities need to be implemented at the single device or
circuit level. Below, the basic principles of neuromorphic devices and
functions are presented.

A. Synaptic plasticity and global phenomena

Synaptic plasticity, i.e., the ability of synapses to modulate the
coupling between the pre- and the postsynaptic neurons, leads to the
dynamic development of the neuronal network. For synaptic plasticity,
there are two forms of synaptic responses, namely, potentiation and
depression, which are linked to the strengthening and weakening of
synaptic transmission, respectively.118 For STP, short-term potentia-
tion (STPo) and short-term depression (STD) in synapses act as high/
low-pass filtering that plays a significant role in the information proc-
essing of auditory and visual system.119 STP in the form of amplitude
encoding is also believed to enhance the bandwidth of neurons when-
ever saturation in their rate code is reached.120 For LTP, it is now clear
that long-term potentiation (LTPo) and long-term depression (LTD)
are used for multiple brain functions in addition to learning and mem-
ory, as it contributes to the neuronal development.121,122 Fundamental
synaptic plasticity behaviors have been successfully mimicked in
electrolyte-gated synaptic transistors, such as excitatory/inhibitory
postsynaptic current (EPSC/IPSC), paired pulse facilitation/depression
(PPF/PPD), and high/low-pass filtering effects, and spike-timing-
dependent plasticity (STDP).

The electrostatic coupling effect has been widely used to mimic the
STP functions in dense semiconductor-based EDLTs.123 Chen et al.
reported on a carbon nanotube (CNT) channel synapse with a
hydrogen-doped poly(ethylene glycol) (PEG) electrolyte.105,124 When
the presynaptic spike was low and short (5V, 1ms), the dynamic change
of postsynaptic current (PSC, channel current) was induced by the
hydrogen ion accumulation at the electrolyte/channel interface, which in
turn modified the electron concentration in the CNT channel.83 Such an
interfacial EDL electrostatic modulation process was reversible when the
gate voltage was removed, representing the temporal analog phenome-
non in biological synapses. The CNT synaptic device showed dynamic
signal processing and learning functions with an extremely low energy
of �7.5 pJ/spike. In contrast to the two-terminal memristive devices in
which the energy consumption is mainly contributed by the write opera-
tion, the read energy of synaptic EGT is comparable or larger than the
write energy because the gate leakage current is generally much lower
than the channel current, and thus, the energy efficiency is read lim-
ited.101,125 The overall energy consumption scales with the channel
area.74 Channel materials with inherently low conductivity are more
suitable to construct energy-efficient synaptic EGTs.58

The STP functions based on the electrochemical doping concept
were initially demonstrated by Gkoupidenis et al. in PEDOT:PSS
based organic electrochemical transistors (OECTs) gated with an
aqueous KCl electrolyte (0.1 M).109 In this depletion-mode transistor,
synaptic functions were reproduced by applying positive presynaptic
voltage pulses (VPre) at the gate electrode (with amplitude VP, width
tP, period TP, and time interval between the pulses Dt ¼ TP � tP).
Cations (Kþ) were injected from the electrolyte to the soft
PEDOT:PSS blend, resulting in the compensation of the sulfonic acid
groups of PSS and the charge neutrality of the PEDOT:PSS layer. This
electrochemically dedoping lost mobile holes in PEDOT:PSS and
thereby induced an inhibitory postsynaptic current (IPSC). After
removing the pulse, the injected cations relax to the electrolyte, and
the PEDOT:PSS layer was reversibly doped to its initial high-
conductance state, showing a typical short-term depression behavior.
The PPD behavior was mimicked by applying a pair of pulses at the
gate electrode [Fig. 3(a)]. The depression percentage decreased with
the increasing time interval Dt. High frequency presynaptic stimuli
were heavily suppressed, enabling the depressive PEDOT:PSS OECT
to serve as a low-pass filter that impedes supernumerary bursts of pre-
synaptic pulses. Frequency-dependent high- or low-pass filtering could
be realized in a single device depending on the patterns of presynaptic
activity.126,127 For example, Ling et al. reported an identical spike-
polarity method to mimic the concomitance of excitatory and inhibi-
tory short-term plasticities in a PEDOT:PSS OECT.126 Owing to the
distinctive volumetric capacitance (C�) and rapid electrochemical dop-
ing process (�0.4ms) of OECTs, the dynamical reconfiguration
between the excitatory and inhibitory responses with 10mV stimulus
resolution and multilevel synaptic strength was realized by controlling
the doping degree of PEDOT:PSS, without preforming operations or
introducing additional modulation terminals. High frequency input
signals (50Hz) could induce a strong suppression/potentiation effect
to filter out the corresponding low/high frequency input signal, and
thus, both low-pass/high-pass filtering functions can be implanted in a
single synaptic device by modulating the synapse operation modes.

An enormous effort has been made in understanding the mecha-
nism that underlies learning and memory.128 Learning may be
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described as the mechanism by which new information about the
world is acquired and memory as the mechanism by which that
knowledge is retained. At the cellular level, it has been revealed that
long-term potentiation consists of distinct phases involving different
molecular mechanisms.129 The storage of long-term memory is associ-
ated with gene expression, de novo protein synthesis, and formation of
new synaptic connections.8 At the device level, ion penetration into
the channel is the identifying characteristic of OECTs, resulting in an
operation mechanism that is distinctly different from EDLTs. Given
the inherent reversibility of ion injection/extraction in/from the loose
bulk of the channel volume, the implementation of long-termmemory
properties in conjugated polymer-based OECTs is still challenging.
Generally, the nonvolatile conductance tuning was obtained in

synaptic OECTs by modulating the electronic structure of channel
materials.58,130,131 Gkoupidenis et al. used a poly(tetrahydrofuran)
(PTHF)-based PEDOT derivative (PEDOT:PTHF) as the OECT chan-
nel gated with an aqueous KCl electrolyte (0.1 M).132 When a high
reduction potential was applied, the polymer structure PEDOT:PTHF
underwent a structural collapse and an opposite polarity oxidation
potential was required for the reversal of this conformational
change.133 As a result, the PEDOT:PTHF OECTs exhibited a nonvola-
tile phenomenon and could operate either in the STM or LTM regime,
depending on the number of training pulses [Fig. 3(b)]. The amplitude
of PSCs persisted a permanent increase in synaptic efficacy after the
repetitive stimulation, resulting in long-term phenomena. The coexis-
tence of a STP function upon an LTM state is similar to biological

FIG. 3. (a) PPD effect in PEDOT:PSS-based synaptic OECTs.109 Reproduced with permission from Gkoupidenis et al., Adv. Mater. 27, 7176 (2015). Copyright 2015 Wiley-
VCH. (b) STM to LTM transition as a function of the pulse training sequence.132 Reproduced with permission from Gkoupidenis et al., Appl. Phys. Lett. 107, 263302 (2015).
Copyright 2015 AIP Publishing LLC. (c) STM to LTM transition as a function of pulse duration (Vp ¼ 2.5 V).102 Reproduced with permission from Yang et al., Adv. Mater. 29,
1700906 (2017). Copyright 2017 Wiley-VCH. (d) Schematic of the ion gel–gated P3HT core-sheath nanowire synaptic transistor. (e) LTP and LTD triggered by 60 negative and
60 positive pulses.108 Reproduced with permission from Xu et al., Sci. Adv. 2, e1501326 (2016). Copyright 2016 AAAS. (f) Zoomed-in HRTEM image and schematic illustra-
tions of Liþ adsorption on the surface (left, STP) and Liþ intercalations into the van der Waals gaps (right, LTP).103 Reproduced with permission from Zhu et al., Adv. Mater.
30, 1800195 (2018). Copyright 2018 Wiley-VCH. (g) Asymmetric STDP function implemented in the WO3-based synaptic EGTs.

61 The inset shows the schematic representa-
tion of the synaptic EGTs. Reproduced with permission from Yang et al., Adv. Mater. 30, 1801548 (2018). Copyright 2018 Wiley-VCH. (h) Schematic of the configuration of the
array of PEDOT:PSS-based synaptic OECTs and principle of the global input. (i) Spatial maps show that the global input forces a global restriction on every output.76

Reproduced with permission from Paschalis et al., Nat. Commun. 8, 15448 (2017). Copyright 2017 Springer Nature Publishing.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 011307 (2020); doi: 10.1063/1.5122249 7, 011307-7

Published under license by AIP Publishing

https://scitation.org/journal/are


memory and supports merged processing and storage capabilities in a
single device level. Gerasimov et al. reported an evolvable synaptic
OECT by electropolymerizing a self-doped conjugated monomer
sodium 4-(2-(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)mthio-
phen-3-yl)ethoxy)butane-1-sulfonate (ETE-S) as the channel and 0.01
M NaCl as the electrolyte, which exhibited STM and LTM functionali-
ties.60 The p-type PETE-S could operate in the hybrid accumulation–
depletion mode, enabling the mimicking of short-term potentiation
(STP) and depression (STD) when applying a small negative/positive
VG below 0.3V with short pulse duration (100ms). However, the
LTPo and LTD properties were attained by electropolymerization and
electrochemical overoxidation of the channel material under 30VG

spikes of �0.5V and �2V (1s), respectively. Classical conditioning
was also demonstrated by connecting a preformed PETE-S resistor
and an evolvable OECT.

The STM to LTM transition has been extensively studied in
EDLTs and can be accomplished by modifying the ionic gating effects
from ideal electrostatic coupling (surface accumulation and without
interfacial electrochemical processes) to electrochemical reactions (ion
intercalation) through higher VP and/or longer tP gate presynaptic
spikes [Fig. 3(c)].61,102,103,134 Xu et al. reported organic core-sheath
nanowire artificial synapses that were gated with an ion gel composed
of a poly(styrene-block-methyl methacrylate-block-styrene) (PS-
PMMA-PS) triblock copolymer and 1-ethyl-3-methylimidazolium
bis(trifluoromethyl sulfonyl) imide [EMIM]þ[TFSI]� ionic liquid [Fig.
3(d)].108 The p-type poly(3-hexylthiophene) (P3HT) core was printed
and wrapped with a polyethylene oxide (PEO) sheath. The nanowire
printing technique could precisely define the channel length down to
300nm, ensuring that the synaptic device has a low energy consump-
tion down to�1.2 fJ per spike. When the synaptic transistor was stim-
ulated by 30 presynaptic spikes (�1V or 1V, 50ms), the anions/
cations that accumulating near the nanowire would penetrate into the
P3HT core through the PEO sheath and gradually increased/decreased
the charge carrier density in the channel. Due to the PEO sheath, the
spontaneous release of the trapped ions in the P3HT nanowire was
slow, and this restricted mobility induced LTP or LTD. As shown in
Fig. 3(e), the organic nanowire-based synaptic transistor operated in
an analog fashion with gradual but nonlinear conductance changes.
However, a large range of linearly and symmetrically programmable
conductance states are required to avoid complex programming
schemes in large arrays and to facilitate near-ideal training and infer-
ence accuracy in neural network simulations.131,135 In this regard,
Yang et al. reported a polymer electrolyte PEO:LiClO4 gated synaptic
transistor based on 2D van der Waals (vdW) layered WSe2 that could
biorealistically emulate both STP and LTP.103 As shown in Fig. 3(f),
the high-resolution transmission electron microscopy (HRTEM) char-
acterization supported that when a gate pulse (5V, 50ms) was applied,
the Liþ ions were adsorbed to the surface of the 2D materials. Ions dif-
fused back into the ion gel after the removal of the gate bias, leading to
the STP property. In contrast, when the Liþ ions got intercalated into
the vdW material after the application of 100 gate pulses (5V, 50ms),
they could not be liberated spontaneously after removing the gate bias,
and hence, backward diffusion of the ions was retarded, leading to the
LTP behavior. Because the STP property was dominated by surface
adsorption, the short-term synaptic response was related to the effec-
tive area of the vdW channel, whereas it was insensitive to the layer
number of the vdWmaterial. The long-term synaptic activity could be

effectively manipulated by tailoring the diffusion dynamics by varying
thicknesses and structures of the vdW materials, producing LTP and
LTD functionalities with enhanced linearity, symmetry, and reproduc-
ibility. Ge et al. reported concomitant STP and LTP behaviors using
the insulator–metal transition mechanism in an n-type tungsten oxide
(WO3) synaptic transistor, which was gated with an ionic liquid of
N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis-(trifluoro-
methylsulphonyl)-imide [DEME]þ[TFSI]�.61 When a positive VG

(0.6V, 70ms) was applied, DEMEþ ions accumulated at the ionic liq-
uid (IL)/channel interfaces to form EDLs and induced additional elec-
trons in the channel. Once VG was removed, cations and anions in the
ILs relaxed and mixed together in short time, leading to volatile phe-
nomena. The results of X-ray photoelectron spectroscopy (XPS),
Raman spectroscopy, transmission spectroscopy, and secondary ion
mass spectrometry (SIMS) clarified that when VG (1.8V, 210ms) was
higher than the threshold value of the hydrolysis reaction (VT), the
trace water molecules contained in the ILs could dissociate into pro-
tons (Hþ) and hydroxyls, both of which had smaller ion sizes and rela-
tively high chemical reactivity.102 The protons then penetrated into the
WO3 channel, resulting in the formation of a stable metallic HxWO3

phase and the nonvolatile resistance state. The synaptic potentiation
and depression could be reproduced by consecutive positive (1.8V,
210ms) and negative spikes (�1V, 210ms), respectively. A typical
asymmetric STDP was obtained in this WO3 synaptic transistor,
which was induced by temporal correlations of pre- and postsynaptic
spikes [Fig. 3(g)].

Various mechanisms have been adopted to implement the non-
volatility and modulate the functional regions from STP to LTP, such
as electrostatic coupling, electrochemical doping/dedoping, charge
trapping/detrapping, ferroelectric polarization, and phase transforma-
tion (electropolymerization, insulator-to-metal, semiconductor-to-
metal, and amorphous-to-crystalline).60,61,98,136 Note that most of the
reported LTP is based on large structural transformations in channels,
resulting in high write noises and even irreversible electrochemical
doping.134 If operated in their subthreshold regime (e.g., with the use
of low amplitude and/or narrow width input pulses), the nonvolatile
transistors can practically only show STM dynamics without affecting
the LTM. However, nonvolatile neuromorphic devices with write-
erase ability and structural stability are highly desired. For example,
Fuller et al. reported an all solid-state, nonvolatile electrochemical
transistor. In this device, a negative gate voltage induced the intercala-
tion of Liþ dopants into the channel of Li1�xCoO2.

137 The channel
then undergoes an insulator-to-metal transition with nearly six orders
of magnitude increase in electronic conductivity. A positive gate volt-
age could reintercalate Liþ and return the channel to its initial conduc-
tivity. This process was highly reversible and without large structural
transformations. In a device based on the conductive polymer
PEDOT:PSS, a similar LTP behavior was demonstrated.58 In this
example, the device resembles an electrochemical battery, where ionic
charges (protons) can move through the electrolyte that separates the
two organic electrodes, while electronic charges move through the
electronic circuit. This results in enhanced state stability and analog
tuning. To further enhance the state and cycle stability, smart material
design and the definition of the number of separable states have to be
taken into account.130

Hebbian plasticity alone through potentiation and depression is
expected to be insufficient to explain activity-dependent development
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because it tends to destabilize the activity of neural circuits (i.e., higher
temporal correlation between pre- and postsynaptic signals leads to a
higher coupling between neurons, with no upper limit).138

Homeostatic plasticity is another important function that is believed
to stabilize the neuronal activity that was induced by the positive-
feedback nature of Hebbian plasticity.139 Homeostatic plasticity mech-
anisms include global changes in synaptic strengths and changes in
neuronal excitability. Due to the fact that biological neural networks
are immersed in a common electrolyte environment, global factors of
this environment are forcing specific normalization functions that reg-
ulate the overall network behavior.139 Gating OECTs with electrolytes
offers a straightforward way to emulate homeostatic regulation, a phe-
nomenon that is not easily accessible with other solid-state technolo-
gies.76,140,141 Gkoupidenis et al. demonstrated the global control of a
whole array of PEDOT:PSS-based OECTs that were immersed in a 0.1
M NaCl electrolyte [Fig. 3(h)]. The weights of these individual artificial
synapses could be modulated globally by the voltage applied on the
electrolyte and by its ion concentration, in the way that was analogous
to homeostasis. The synchronization of I/O transmission could be
reproduced in this system [Fig. 3(i)]. Additionally, the electrolyte
established soft connections between individual devices (grids) without
hard connectivity (i.e., physical wiring). It was also shown that the out-
put (Oi) of these grids could be synchronized by a global oscillatory
input despite the fact that individual local inputs (Ii) were stochastic
and independent.141 The synchronization effect was more pronounced
at its amplitude extrema and high frequency of the global oscillatory
input. This global temporal coupling resembled well the phase locking
of neurons to brain oscillations, leading to a functional type of connec-
tivity found in brain oscillations (i.e., binding through synchrony).

B. Biofriendly materials and mechanically flexible
electrolytes

In recent years, flexible, wearable, and implantable electronics are
attracting increasing interest for healthcare and biomedical applica-
tions.142 In addition, the use of biocompatible and biodegradable
materials in electronic devices can be an important trend in the devel-
opment of green electronics.143 Compared with metal-oxide semicon-
ductors, biofriendly conjugated polymers (CPs) as channel materials
of EGTs have received growing attention in flexible neuromorphic
platforms for their advantages such as chemical tunability, low
cost, mechanical flexibility, and compatibility with printing and roll-
to-roll processes.144 Conjugated polymers can not only transport ions
but also transport holes (p-type; popular examples include
PEDOT:PSS,145,146 PANI,113 P3HT,147,148 and poly(2-(3,30-bis(2-(2-
(2-methoxyethoxy)ethoxy)ethoxy)-[2,20-bithiophen]-5-yl)thieno [3,2-
b]thiophene) [p(g2T-TT)]149,150) or electrons [n-type, such as
p(gNDI-gT2),151 P-90,152 and poly(benzimidazobenzophenanthroline)
(BBL)153]. The simulation of synaptic functions in organic EGTs has
extended the functionality into E-skins, artificial afferent nerve, etc.,
which highly benefits from the mixed conductivity and biocompatibil-
ity features of conjugated polymers.144,154,155

Biocompatible and biodegradable electrolyte materials are also
highly recommended for green electronics since the electrolyte is the
integral part of an EGT. Electrolyte materials consist of ionic liquids
(ILs),61,156 ion-gels,92,157,158 polyelectrolytes,159 polymer electro-
lytes,100,103,160 aqueous salts [e.g., NaCl, KCl, and phosphate buffered
saline (PBS) solution], and even water.161 Among them, proton-rich

biopolymers are attracting growing interest for solid-state electrolytes
of green and flexible synaptic transistors since the transport of protons
is found in many natural phenomena such as muscle contraction, taste
receptor cells, and mammalian brain.162,163 Typical biopolymer electro-
lytes that have been used include polysaccharides (chitosan,164–167

sodium alginate,168 pectin,169 and starch170), cellulose (lignin114), and
proteins (albumin171). Shi et al. used chicken albumen as the electrolyte
film in n-type IZO-based synaptic EGTs.171 According to the leakage
and electrochemical impedance spectroscopy (EIS) measurements [Fig.
4(a)], the hydrated albumen film was an electron insulating but ionic
conducting electrolyte with a maximum leakage current density of
5� 10�7 A/cm2 at �0.02MV/cm and a high proton conductivity (r)
of �3.7� 10�4 S/cm. The ionic conductivity was mainly attributed to
the migration of protons induced by the amino acid interaction with
H2O. Protons could move along the hydrogen-bond network following
the Grotthuss mechanism. Thus, it was necessary to maintain a certain
water content for the fabrication and characterization of the biopoly-
mer electrolyte-based synaptic transistors. As shown in Fig. 4(b), the
specific capacitance increased with the decreasing frequency and
reached the maximum value (>1.0 lF/cm2) at 1.0Hz due to the forma-
tion of huge interface EDL capacitance. Note that at a higher voltage
level of >2.0V and a frequency of <10Hz [Fig. 4(c)], the mobile pro-
tons penetrated across the albumen/IZO interface and reacted with
IZO, resulting in surface hydrogenation and an increase in nonvolatile
IZO conductance. For the biodegradable electronics, Guo et al.
reported a starch-based electrolyte for indium-tin-oxide (ITO) synaptic
EGTs.170 Starch is an environmentally friendly and naturally abundant
polymeric carbohydrate. During the gelatinization process, water mole-
cules are bound to the starch chain network. The proton conductivity
(r) of the �14lm thick starch film was estimated to be �2.6� 10�3

S/cm. The proton related EDL capacitance was �1.6 lF/cm2 at 1Hz.
Both short-term and long-term synaptic plasticities were mimicked
under voltage spikes of 0.5V (10ms) and 4V (600ms), respectively.
Due to the water solubility of the starch film, the devices could easily be
dissolved in DI water after soaking for 60 s [Fig. 4(d)].

In addition to the nontoxicity and biodegradability, biopolymer-
based electrolyte films have the advantage of being active flexible sub-
strates in forming or conforming to complicated textures and
shapes.172 Liu et al. reported a freestanding chitosan membrane to act
as both the electrolyte and the flexible substrate in the IZO EGTs.164

The 100lm chitosan membrane was able to form transparent
pinhole-free conformal coatings with a surface strain (e) of 0.5% at
10mm bending radius. Since the chitosan membrane is a three-
dimensional proton conductor, when a positive presynaptic spike was
applied on the in-plane gate, protons were driven laterally and accu-
mulated at the chitosan/IZO channel interface [Fig. 4(e)]. The drain
current was increased due to the accumulated electrons by the proton/
electron electrostatic coupling effect. Figure 4(f) shows the paired pulse
facilitation (PPF) behavior as a function of the interval between two
successive presynaptic spikes (1.5V and 50ms) for the freestanding
synaptic transistor. The PPF ratio decreased gradually with increasing
Dt, and a maximum PPF value of �222% was obtained at Dt¼ 10ms.
The distance between the laterally coupled gate electrodes and the
channel layer was shown to play a key role in the operation frequency.
For example, the PPF value decreased much slower with a larger gate-
to-channel distance due to the fact that longer diffusion time was
needed for the protons to relax back to the balanced state in the case

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 011307 (2020); doi: 10.1063/1.5122249 7, 011307-9

Published under license by AIP Publishing

https://scitation.org/journal/are


of a larger migration distance.173 Due to the lateral coupling property,
the freestanding solid-state electrolyte has been proven suitable for
coplanar-gated transistors to emulate temporal summation func-
tions.165 As can be seen in Fig. 4(g), the obtained EPSC was asymmet-
rical with respect to the time interval between the temporally
correlated spikes from two separate gate inputs. Huang et al. reported
the use of wood-derived cellulose nanopapers (WCNs) as a freestand-
ing electrolyte in C8-BTBT-based synaptic transistors [Fig. 4(h)].114

The as-fabricated 30lm WCNs were composed of densely packed
nanosized fibers with around 1nm roughness [Fig. 4(i)]. This smooth
active substrate exhibited high transparency (close to 90%) in the
visible-light region. Freestanding WCNs were rich in hydrogen bonds
and thus able to absorb moisture from the air and thus introduce pro-
tons into WCNs. The active film exhibited an ionic conductivity of

7.3� 10�3 S/cm and a high laterally coupled effective capacitance of
18.65 nF/cm2 at 30Hz. The spatial summation function was repro-
duced in the C8-BTBT synaptic transistors with dual coplanar-gates,
which showed a sublinear integration. The lateral effective capacitance
and the dendritic integration effect were tuned by controlling the dis-
tance of the in-plane gates. A high-pass filtering effect was also simu-
lated in Fig. 4(j), and the increase in the presynaptic spike frequency
would induce a strong EPSC amplitude increase.

C. Spatially correlated functions

In the brain, information processing is spatiotemporal. The abil-
ity of the human brain to convert input information from multipath-
ways into specific output patterns is important for learning, memory,

FIG. 4. (a) A typical Nyquist plot of the albumen film. The inset shows the diagram of the schematic diagram of the albumen-gated synaptic EGT. (b) Specific capacitance of
the albumen film as a function of frequency under different AC potentials. The inset shows the schematic diagram of the IZO/albumen interface hydrogenation process under
high bias potential. (c) STM to LTM transition as a function of pulse amplitudes (tp ¼ 1 s).171 Reproduced with permission from Wu et al., Sci. Rep. 6, 23578 (2016). Copyright
2016 Springer Nature Publishing. (d) Dissolution processes of the starch electrolyte gated ITO synaptic transistors on a glass substrate in de-ionized water at room tempera-
ture.170 Reproduced with permission from Guo et al., Org. Electron. 61, 312 (2018). Copyright 2018 Elsevier. (e) Schematic diagram of the chitosan-gated IZO freestanding
synaptic transistor. (f) PPF index as a function of presynaptic spike interval (Dt) between two successive presynaptic spikes (1.5 V, 50 ms). The inset shows the optical image
of the freestanding synaptic transistors.164 Reproduced with permission from Liu et al., Adv. Mater. 27, 5599 (2015). Copyright 2015 Wiley-VCH. (g) Spatiotemporally correlated
EPSC as a function of Dtpre2-pre1 between the two presynaptic spikes (0.5 V and 1 V, 20ms).

165 Reproduced with permission from Wu et al., J. Mater. Chem. C 2, 6249 (2014).
Copyright 2014 Royal Society of Chemistry. (h) Schematic of WCN-gated C8-BTBT freestanding synaptic transistors. (i) AFM image of WCNs. (j) A high-pass filtering behavior
in the C8-BTBT synaptic transistor.114 Reproduced with permission from Dai et al., ACS Appl. Mater. Interfaces 10, 39983 (2018). Copyright 2018 American Chemical Society.
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executing event-driven behaviors, and enabling parallel computa-
tions.174 Dendritic integration plays an important role in information
transformation including the addition of nonsimultaneous unitary
events (temporal summation) and addition of unitary events occurring
simultaneously in separate regions of the dendrite (spatial summa-
tion).175 An electrolyte shows frequency sensitivity and bulk ion conduc-
tivity, enabling the laterally gated transistor configuration in which both
the gate electrodes and a source-drain channel are patterned concur-
rently in one plane, decreasing fabrication complexity. Spike pulses
applied on multi-in-plane gates are in analogy to parallel synaptic inputs
from various dendritic positions. Both the gate-to-channel distance (den-
drite to postsynapse) and gate electrode area contribute to the change in
the synaptic weight.77,100 Thus, electrolyte-gated neuromorphic transis-
tors with lateral multigates would be helpful for realizing spatially corre-
lated functions and advance the capability of neuromorphic
performance on single synaptic devices. Interesting spatiotemporal infor-
mation processing functions such as spatial co-ordination and visual ori-
entation recognition,77,100,111,127,161,176 visual detection,177 sound location
functionality,178 spiking logic response,99,110,164 spatial summation,114,179

and classical conditioning180 have been demonstrated.
Orientation selectivity is a broadly investigated phenomenon in

the primary visual cortex.181,182 Gkoupidenis et al. demonstrated this
function in a PEDOT:PSS-based OECT array with 3� 3 coplanar Au
gate electrodes [Fig. 5(a)].77 An enhanced current response I0 (i.e.,
PSC amplitude) was obvious for the gates that are closer to the drain
electrode, which was attributed to the decrease in the electrolyte resis-
tance (RE) for smaller gate-drain electrode distances (d). Similar to the
current response I0, inhomogeneity toward the drain electrode was
also evident in the relaxation time (tR) mapping. The closest to the
drain, gate electrode (x¼ 1, y¼ 1) resulted in the lowest tR value. This
spatial inhomogeneity in PSC could thus be used for implementing
the orientation selectivity function. As shown in Fig. 5(b), the variable
orientation could be created by superimposing eight gate pulses at gate
electrode 0 and another gate electrode x (x¼ 1� 6), simultaneously.111

The spatial orientations of the input pulse were defined by the angle
range from 0� to 180�. Figure 5(c) shows the polar diagram of the
EPSCs for different spatial orientations of the input pulse for this ion-
gel gated P3HT synaptic transistor. The average peak EPSC was gradu-
ally increased with the orientation angle changed from 0� to 50.2� or
from 180� to 129.8�, which was similar to the orientation tuning curve
in the primary visual cortex. The maximum tuning response (2.22 lA)
was obtained at the orientation angle of 129.8�, for gate electrode 5
that was the closest to the drain electrode. Neurons in the primary
visual cortex respond preferentially to edges with a particular orienta-
tion. Inspired by this, a neuromorphic system with a combination of
photodetectors and a multigated synaptic transistors was further
developed to mimic the edge recognition function.161,176,179 As shown
in Fig. 5(d),161 a square panel with five pairs of black-white grating
patterns was moved along the y axis in the yoz plane. The orientation
angle (h) was defined as the angle between the z axis and the grating
orientation. The coordinate of the photodetector is (x, 0, 0), and the
coordinate of the panel center was (0, y, 0). Each time the edge of the
grating pattern moved across the coordinate origin, it was detected by
the photodetector, and the processing circuit would provide a voltage
pulse (0.5V, 10ms) to the presynaptic terminal of the aqueous solu-
tion gated n-type indium–gallium–zinc oxide (IGZO) synaptic transis-
tor. Figure 5(e) shows that when the maximum value of EPSC was

obtained at the orientation of 0�, ten presynaptic spikes induced by
ten edges were triggered successively. Orientation selectivity was
shown to be dependent on the ionic conductance of the aqueous elec-
trolyte. Besides, the alcohol solution gated synaptic transistor demon-
strated the highest degree of orientation selectivity since the delivery of
hydronium and hydroxyl ions was inhibited (facilitated) by alcohol
molecules (salt ions). An individual multigate neuromorphic transistor
has also been used for object detection. Wan et al. designed a visual
system for emulating the Lobula Giant Movement Detector (LGMD)
neuron.177 The system was constructed by a 20� 20 photoreceptor
array connecting to the multiple in-plane gate arrays of the IZO neu-
romorphic transistor in a one-to-one correspondence [Fig. 5(f)].
Proton conducting graphene oxide (GO) electrolytes were fabricated
on graphene/poly(ethyleneterepthalate) (PET) substrates. Both of the
square object and the photoreceptor array were parallel to the xoy
plane with the center coordinates of (0, 0, zo) and (0, 0, za), respec-
tively. The gray dashed box denotes the image of the object in the pho-
toreceptor array, and the edge movement thus could be detected by
comparing the difference between the successive images. The excit-
atory stimuli (0.5V, 1.0ms) were triggered and then sent to the corre-
sponding presynaptic terminals (gates) of the neuromorphic transistor
once the object edge was detected by using a photoreceptor. Three
object approaching modes (toward, away, and parallel) to the photode-
tector array were then distinguished according to the EPSC dynamics.

The computing functions in the neural network are based on
synaptic integrations. The spatial summation has been leveraged to
reproduce Boolean logic operations. As shown in Fig. 5(g), two types
of logic “AND” and “YESV2” were constructed, respectively, by chang-
ing the applied gate voltage drop across the channel that was con-
trolled by the area of gate electrodes. The input 10ms voltages of 0
and 1.0V were defined as 0 and 1, respectively. The integrated EPSC
amplitude was defined as the output, and the threshold value was set
to 750nA. For the same electrode area, the EPSC amplitude was larger
than the threshold line only when input signals were “11,” which indi-
cated the AND logic. When the area of G2 was �2.5-fold larger than
that of G1, the capacitance of the G2-electrolyte interface would be
larger to induce the efficient EDL gating. As long as input V2 is 1, the
output EPSC amplitude was larger than the threshold value, which
indicated the YESV2 logic. Besides, the “OR” logic, synaptic weight reg-
ulation, and coincidence detection could be achieved by introducing a
modulatory terminal (Gm), and thus, the network functionalities can
been enriched.110,164 The spatial summation effect was also demon-
strated with two spatial isolated presynaptic inputs in GO-coupled
synaptic transistors [Fig. 5(h)].179 When the input spikes were first
triggered individually and then simultaneously on two in-plane gates
(G1 and G2), the three EPSCs can be obtained. The red and blue curves
were the EPSCs (A1, A2) triggered by single presynaptic spikes (V1

and V2) ranged from 0.2 to 1.4V on G1 and G2, respectively. The
expected sum (SE, green dashed curves) was defined as the arithmetic
sum of two individual EPSC responses (A1 þ A2), and the measured
sum (SM, black curves) was the EPSC stimulated by the two simulta-
neously triggered spikes. Summation would be expected to range from
sublinear to superlinear depending on the stimulus intensity of the
individual excitatory postsynaptic potentials (EPSP). Figure 5(i) shows
that such spatial summation was nearly linear for low spike voltages. A
linear summation model has been postulated to facilitate coincidence
detection by cortical neurons.183 Strong superlinear for intermediate
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spike voltages and sublinear for high spike voltages were necessary for
the exponential function and logarithmic function, respectively.184

The nature and geometry of the gate electrode can be regarded as
a key factor for designing the initial synaptic weight distribution in

the electrolyte-gated neuromorphic system. For example, classical con-
ditioning according to the Pavlovian associative learning rule has been
implemented in a multiterminal P3HT synaptic transistor.180 The
topology of multi-inputs to one-output was mapped with lateral gates

FIG. 5. (a) Spatial mapping the resulting amplitude I0 of the IPSC. Each (x, y) gate electrode was pulsed separately (0.3 V, 50ms).77 Reproduced with permission from
Gkoupidenis et al., Sci. Rep. 6, 27007 (2016). Copyright 2016 Springer Nature Publishing. (b) Schematic illustrations of the ion gel-gated P3HT synaptic transistor with a multi-
in-plane-gate structure. (c) Polar diagram of the EPSCs for different spatial orientations of the input pulse.111 Reproduced with permission from Qian et al., Appl. Phys. Lett.
110, 083302 (2017). Copyright 2017 AIP Publishing LLC. (d) A schematic diagram showing the measurements for the orientation tuning experiment. (e) The normalized gain
of EPSC responses plotted as a function of the orientation angle for the solution-gated IGZO synaptic transistor.161 Reproduced with permission from Wan et al., ACS Appl.
Mater. Interfaces 8, 9762 (2016). Copyright 2016 American Chemical Society. (f) The EPSC output of the visual system recorded in response to an object when it moves
toward the photoreceptor array. (g) Input–output characteristics of the AND and YESV2 logics from the two combinations of presynaptic input terminals.177 Reproduced with per-
mission from Wan et al., Adv. Mater. 28, 5878 (2016). Copyright 2016 Wiley-VCH. (h) The schematic diagram of the spatial summation with two spatial isolated synapses. (i)
The measured sum (SM) plotted as a function of expected sum (SE).

179 Reproduced with permission from Wan et al., Adv. Mater. 28, 3557 (2016). Copyright 2016 Wiley-VCH.
(j) Schematic of highly interconnected P3HT neural devices with an ion-gel membrane as both an electrolyte and a substrate. (k) Simulation of Pavlov’s learning.180

Reproduced with permission from Fu et al., ACS Appl. Mater. Interfaces 10, 26443 (2018). Copyright 2018 American Chemical Society. (l) The proposed multigated architec-
ture of analogous artificial MoS2 synapses. (m) Controlled facilitation and depression of synaptic weights with the electroiono-photoactive multigated architecture.59

Reproduced with permission from John et al., Adv. Mater. 30, 1800220 (2018). Copyright 2018 Wiley-VCH.
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through solid-state ion-gel consisting of poly(vinylidenefluoride-
cohexafluoropropylene) (PVDF-co-HFP) and 1-ethyl-3-methylimida-
zolium bis-(trifluoromethylsulfonyl)imide ([EMI]þ[TFSA]�) ionic liq-
uid [Fig. 5(j)]. Based on protonic electrochemical doping/dedoping
processes at P3HT/ion gel interfaces, four types of STDP learning
behaviors of Hebbian STDP, anti-Hebbian STDP, symmetrical STDP,
and visual STDP were successfully mimicked on a single neuromor-
phic transistor. The classical conditioning was demonstrated as shown
in Fig. 5(k), and four �3V pulse signals (tp ¼ 50ms and Dt¼ 50ms)
were applied to the G2 electrode to simulate the unconditioned stimu-
lus of “bell ringing,” which induced a smaller change in the synaptic
weight value (DWpeak) compared to the defined threshold (45 lA,
green dotted line), corresponding to the absence of salivary response.
When four �5V pulse signals (tp ¼ 50ms and Dt¼ 50ms) were
applied to the G1 electrode to simulate the conditioned stimulus of
“sight of food,” a DWpeak value larger than the threshold was triggered,
which corresponds to the salivary response. Then, four �3 and �5V
input signals were applied simultaneously to the G1 and G2 electrodes
to simulate the training process. After training, a salivary response
could be produced even with four �3V pulse signals (bell ringing)
due to the nonvolatile feature. Therefore, an effective link between the
input signals applied to the G1 and G2 electrodes was established,
demonstrating that dynamic processes of memorizing were incorpo-
rated into the gate matrix simulation.

The coexistence of multiple forms of synaptic plasticity would
increase the processing capability and memory storage capacity of
neuromorphic transistors.126 With nonplanar and multigated architec-
tures, neuromorphic EGTs could operate independently either in a
pristine ionotronic mode, an electronic mode, or a photoactive
mode.59,185,186 This configuration enables a higher order of plasticity
that emulates the effects of neuromodulators such as dopamine or
noradrenaline, also called heterosynaptic plasticity or three-factor
learning.187,188 More importantly, they can operate synergistically in a
dual-gated additive/subtractive mode, allowing the programming of
weight changes with fine precision, with the net weight change defined
by the overall capacitive coupling across the semiconducting chan-
nel.189 Mathews et al. reported the synergistic gating effect of the elec-
tro-iono-photo in MoS2 EGTs [Fig. 5(i)].59 This 2D channel-based
EGT addressed different levels of charge-trapping probabilities to
finely tune the synaptic weights: for example, electron trapping-
detrapping at the SiO2/MoS2 interface though the back-gate (Si) was
responsible for the electronic-mode, ion migration–relaxation kinetics
at the ionic liquid/MoS2 interface although the top-gate (Beryllium
copper probe) accounted for the ionotronic-mode, and persistent pho-
toconductivity though an additional light gate was used in the photo-
active-mode.94 The three modes were combined to modulate Hebbian
STDP plasticity with metaplasticity and homeostatic regulation [Fig.
5(m)]. Classical conditioning was emulated using simultaneous paired
stimulation of unconditioned optical and conditioned voltage pulses,
resulting after the training process in associative learning.

D. Perceptron-based artificial neural network

Perceptron is a model of feedforward neural networks that com-
prise densely interconnected adaptive processing subunits (artificial
neurons).190 Perceptron-based artificial neural networks (ANNs) are
intended to emulate the brain’s ability to recognize and distinguish the
difference between objects or meanings.191 A single-layer perceptron

(SLP) comprises an input layer and an output layer and can perform
binary classification and thus solve linearly separable problems. The
capacity of ANNs can be further enhanced by introducing additional
intermediate layers (i.e., hidden layers) to construct multilayer percep-
trons (MLPs). Thus, MLP networks are capable of solving nonlinear
separable problems for multiclass classification.192 The performance of
hardware-based ANNs has been simulated with some specific learning
algorithms, mainly including the backpropagation (BP) method in
which the synaptic weights are iteratively adjusted, while error back
propagates from the output to input.137,193,194 In these simulations, the
channel conductance change (DG) was used as the weight update for
executing the learning algorithm.195 Since the weights represent the
synaptic strength, these processes are commonly referred to as potenti-
ation and depression in synaptic devices, inspired from the biological
terminology.196 In terms of computing, cognitive tasks like pattern rec-
ognition and classification demand synaptic devices with a wide
dynamic linear conductance range131 and distinguishable readout
states.130 The symmetric weight update along with low write noise and
low switching voltages and currents determines the efficiency of cross-
bar neuromorphic computational kernels and significantly improves
the classification accuracy of backpropagation schemes.137,189 Owing
to the decoupled input and output electrodes, as well as the symmetry
between the material at the gate and the channel, synaptic EGTs can
achieve gradual nonvolatile conductance changes in a range, which
shows nearly linear and symmetric weight update.137 In addition, the
large specific capacitance enables low energy consumption, making
EGTs as important building blocks favorable for large-scale, energy-
efficient neuromorphic computing networks.

Van de-Burgt et al. reported the simulations of the neural net-
work using a PEDOT:PSS-based electrochemical neuromorphic
organic device (ENODe) gated with a proton conductor Nafion
[Fig. 6(a)].58 As shown in Fig. 6(b), the ENODes showed a battery-like
operation by decoupling the read and write operations with an exter-
nal switch. This results in enhanced state stability and analog tuning.
Hence, a low energy switching (<10 pJ for 103 lm2 devices) and long
retention times (25 h with a 0.04% standard deviation in conductance)
could be achieved simultaneously. In an�1V range, long-term poten-
tiation and depression displaying 500 discrete and nonvolatile conduc-
tance states were obtained by applying 5006 1.5mV (1 s) presynaptic
pulses [Fig. 6(c)]. According to the statistical distribution of �15 000
experimentally measured conductance levels, the numerical weights
showed small nonlinearity (NL) and low noise (<1%), meeting the
requirements for high ANN training accuracy when executing
updates. A three-layer network (a single-layer perceptron with one
hidden layer) based ANN was simulated with the backpropagation
method. The simulated ENODe-based learning circuit achieved a high
classification accuracy between 93% and 97% for three types of image
recognition: an 8� 8 pixel image version of handwritten digits;
Modified National Institute of Standards and Technology (MNIST), a
28� 28 pixel version of handwritten digits; and a Sandia file classifica-
tion dataset. Moreover, plastic ENODes fabricated on PET substrates
enable the potential integration of neuromorphic functionality in flexi-
ble electronic systems.

Shang et al. reported the simulation of handwritten digit recogni-
tion using a 2D layered a-phase molybdenum oxide (a-MoO3)-based
synaptic EGT array gated by a PEO:LiClO4 electrolyte [Fig. 6(d)].

101

Voltage pulses with higher amplitudes (>62V) or long duration
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times (10ms) induced the reversible intercalation of Liþ dopants into
the a-MoO3 lattice, forming molybdenum bronze (LixMoO3) and
leading to a nonvolatile DG. By alternatively applying 50 identical
pulses (62.5V, 10ms) with 10 s interval, bidirectional analog switch-
ing was obtained, where the near-linear channel conductance was set
to numerous states between 42 and 75 nS in both the LTP and LTD
processes. This low conductance was promising for the application of
neuromorphic networks composed of large-scale device arrays. The
minimum energy consumption value for a nonvolatile DG was 1.8 pJ
for a single pulse (2.5V, 10ms) event with the channel length of

�10lm. The calculated asymmetric ratio (AR) value of the synaptic
transistor was as small as 0.316 0.12 [the inset in Fig. 6(f)]. The cycle-
to-cycle variation, i.e., write noise, was <12% in 15 a-MoO3 EGT
nanosheets with the channel thickness of 16.8–28.0 nm, indicating
good device-to-device uniformity. Based on the experimentally mea-
sured LTPo and LTD characteristics, a three-layer network was used
to perform supervised learning with BP methods. Figure 6(e) schemat-
ically shows a crossbar array. The simulated recognition accuracy
approached 87.3% for a large image (28� 28 pixels) of handwritten
digits after 40 training epochs [Fig. 6(f)]. Park et al. reported a

FIG. 6. (a) Schematic of the PEDOT:PSS-based flexible all solid-state neuromorphic device. (b) Schematic explaining the decoupling of the read and write operations. (c) LTP
and LTD displaying 500 discrete states.58,214 The inset shows a zoom-in image showing the individual states. Reproduced with permission from van de-Burgt et al., Nat. Mater.
16, 414 (2017). Copyright 2017 Springer Nature Publishing. (d) Schematics of a three layer (one hidden layer) neural network. (e) Schematics of a synaptic weight layer com-
posed of voltage programmed Li-ion synaptic transistor crossbar array and access devices. (f) The recognition accuracy evolution with training epochs for the 28� 28 pixel
handwritten digit image. The inset shows the asymmetric ratio (AR) between the LTP and LTD and the temporal variation are calculated over 50 cycles.101 Reproduced with
permission from Yang et al., Adv. Funct. Mater. 28, 1804170 (2018). Copyright 2018 Wiley-VCH. (g) The IFG array is mapped to a three-layer neural network used to classify
XOR logic. (h) G modulation read current <10 nA while maintaining a high signal-to-noise ratio during nearly linear and symmetric programming. (i) XOR classification func-
tion.74 Reproduced with permission from Fuller et al., Science 364, 570 (2019). Copyright 2019 AAAS.
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photonic synaptic EGT with a mixed weight updating mechanism for
the simulation of high-speed and low-power optic-neural networks.92

GO nanosheets modified with long alkyl chains (alkylated GO) were
embedded as the charge-trapping sites between the ion-gel blocking
gate electrolyte and the IGZO semiconducting channel. With the assis-
tance of a light pulse, a larger conductance change ratio (Gmax/Gmin)
without the degradation of the nonlinearity property was obtained and
the recognition rate of MNIST training patterns was improved from
49% to 62% with 100 weight states. To further improve the recognition
accuracy, more conductance states and a higher ratio of Gmax/Gmin

were required through adjusting the gate pulse duration and/or ampli-
tude but without sacrificing the linearity. A promising solution is to
improve the ion capacity of the channel materials and the conductance
sensitivity to doping. The nonlinear potential drop between the series
resistance also affects the linearity.58

Emelyanov et al. demonstrated experimentally a double hidden lay-
ered ANN to solve a nonlinearly separable task (implementation of an
XOR logic gate).197 In their synaptic EGTs, HCl p-doped PANI was used
as the channel materials and interfaced with a PEO:LiClO4 solid electro-
lyte. In the simulation, every decision boundary was performed by one
neuron in the two hidden layers, and the points inside the triangle-like
class corresponded to class 1, while the others corresponded to class 0.
The double hidden layers allowed the perceptron to classify not only
“black” (logic 0) and “white” (1) classes but also “gray” ones (some range
of signal amplitude between logics 0 and 1). The possible position of deci-
sion boundaries between classes could be well defined after the learning
procedure. The ability of artificial neurons to classify the “exclusive or”
(XOR) logic function is a basic demonstration of the nonlinear separable
task. Fuller et al. experimentally implemented this function into a 3� 3
ionic floating-gate memory array (IFG).74 The memory array was based
on a PEDOT:PSS EGT connected to a selector device of two-terminal
volatile conductive-bridge memory (CBM). This CBM permitted the
individual addressing of redox transistors in a crossbar configuration (at
the circuit level, not the physical crossbar configuration). Determined by
the competition between write gate voltage (VW) and the ON threshold
Vth of the CBM, electron injection (extraction) through the CBM into the
top PEDOT:PSS gate results in the reversible electrochemical oxidation
(reduction) of the bottom PEDOT:PSS channel,58 thereby increasing
(decreasing) G. The redox transistors operated similar to a flash memory
but with more than an order of magnitude lower voltage operation and
weight readout<10nAwhile maintaining a high signal-to-noise ratio. In
addition, the devices showed finely spaced conductance levels with near-
ideal analog behavior [Fig. 6(g)]. Moreover, the downscaled devices could
enable a remarkable >1-MHz write-read frequency (<1 ls) for the
polymer-based redox transistors. For the demonstration of the XOR logic
function, an input example X ¼ [1, 0] [blue in Fig. 6(h)] was fed to the
first layer of the network (orange), whereas the output YT¼ [1, 1], where
T denotes the matrix transpose, was sent to the last layer (green). The
final output of the network correctly classified X ¼ [1, 0] as ZT ¼ [1]
according to the XOR truth table. The network was used to execute ana-
log dot products during inference in a 3� 3 prototype array with 100%
accuracy [Fig. 6(i)]. Such highly efficient neuromorphic computers could
extend ANN learning to new low-power platforms.

E. Neuromorphic sensing and biointerfacing

EGTs offer high and tunable transconductance to electrostatic
potential changes and also to electrochemical phenomena, making them

sensitive for interfacing biological substances and signals.198,199 Inspired
by the fact that nervous systems can sense, process, memorize, and clas-
sify various external stimuli, synaptic EGTs have been developed to
mimic stimulisensitive artificial synapses and smart sensorimotor nerve-
tronics.64,200 Synaptic EGTs could enable potential applications in
adaptable biointerfacing, neuroinspired actuation, with long-term appli-
cations such as local diagnosis and treatment through closed-loop con-
trol of biological environment, and local control of a neural activity.67

1. Synaptic coupling of living neurons

In the field of bioelectronics, EGTs have been interfaced with
neuronal cells for biochemical signal recording and transduction of
bioelectrical signals from cells and tissues.86,201 The amplitude of the
intracellular action potential (AP) is in the range of few tens of milli-
volt, and it is about 2 orders of magnitude larger than the amplitude of
the extracellular potential (few hundreds lV).202 Owing to the large
specific capacitance/transconductance, EGTs have a unique advantage
of being able to sense ultralow spike amplitudes, which are in the range
of intracellular APs. Functional coupling of living neurons through
artificial synapses is the primary requirement for their implementation
as prosthetic devices or in building hybrid networks.203,204 Vuillaume
et al. reported a pentacene/AuNP-based synapse transistor interfaced
with neurons [Fig. 7(a)].115 The NaCl-gated pentacene/AuNP EGTs
showed short-term facilitating and depressing behavior when chang-
ing the input spike frequency at a low spike voltage of 50mV. Human
neuroblastoma stem cells (SH-SY5Y) were then adhered, grown, and
differentiated into neurons on top of the 15nm pentacene channel
[Fig. 7(b)]. The STP response was monitored before and after cell
growth. When cells differentiated into neurons for day 6 [Fig. 7(c)],
there was a detectable amplitude change in the STP response.

A synapse is a biological structure, which connects two neurons
enabling specific and unidirectional information flow (excitation or
inhibition) from one neuron to another. In this regard, Erokhin et al.
demonstrated this functional interface between two living neurons in
rat brain slices via a PANI-based synaptic EGT [Fig. 7(d)].75 Initially,
APs evoked by suprathreshold depolarizing current injection in either
neuron failed to evoke any response in another cell of the pair, indicat-
ing that this pair of cells was not connected by natural synapses in either
direction. The two neurons were then connected through an electronic
circuit with a PANI synaptic EGT to play the role of a synapse analog.
As the resistance of the PANI channel reduced upon depolarization, the
consecutive depolarizing steps and the APs in “presynaptic” cell 1
induced a gradual increase in voltage responses from the PANI EGT
[Fig. 7(e), plot 3] and in “postsynaptic” cell 2 (plot 4). When the depola-
rizing response in cell 2 reached the AP threshold (��40mV) at sweep
#113 (plot 4), cell 2 started to reliably fire APs. Moreover, the PANI
synapses efficiently supported synchronized delta-oscillations in this
two-neuron network. As a result, the unidirectional, activity-dependent
coupling of living neurons through an organic synaptic EGT was real-
ized. For further perspective of implantable prosthetic synapses, one
must fulfill requirements such as size scaling, biocompatibility, flexibil-
ity, and stretchability of the artificial synapse.

2. Artificial sensory systems

Neuromorphic EGTs are physical computing nodes that can
directly interface with analog signals from sensors, enabling the
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efficient construction of artificial sensory systems with integrated sens-
ing/actuation and signal processing functionalities. Since skin is the
largest organ of the human body, which contains a variety of sensors,
it offers the ability to perceive and interact with the surrounding envi-
ronment.154,200 Zang et al. reported a dual-organic-transistor-based

tactile-perception system (DOT-TPE) with integrated sensing and
neuron-like information-processing functionalities of pressure stimuli
[Fig. 8(a)].205 The proposed DOT-TPE consisted of both a pressure-
sensing organic field-effect transistor (OFET) and a signal-processing
OFET using poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) as

FIG. 7. (a) Optical bright field images of SH-SY5Y cells grown on interdigitated Au electrodes coated by a pentacene/AuNP thin-film. (b) Immuno-fluorescence images of SH-
SY5Y differentiation on the synaptic EGT at day 6. (c) STP recorded as a function of electrical spike frequency (after cell differentiation).115 Reproduced with permission from
Desbief et al., Org. Electron. 38, 21 (2016). Copyright 2016 Elsevier. (d) Infrared differential interference contrast microphotograph of a P7 rat brain slice with visually identified
L5/6 neocortical cells (cell 1,2) recorded simultaneously. (e) Activity-dependent coupling of two cortical neurons by PANI-based synaptic EGT.75 Reproduced with permission
from Juzekaeva et al., Adv. Mater. Technol. 4, 1800350 (2019). Copyright 2019 Wiley-VCH.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 011307 (2020); doi: 10.1063/1.5122249 7, 011307-16

Published under license by AIP Publishing

https://scitation.org/journal/are


the channel layer. Chitosan was selected as the electrolyte to establish
the proton–electron coupling at the semiconductor/dielectric interface.
The suspended-gate OFET exhibited a high sensitivity of over
50 kPa�1, which was sufficient to mimic the tactile sensing properties
of human skin (8–192 kPa�1). The pressure sensor acted as the signal
transduction element for converting the external pressure into presyn-
aptic current pulses. Due to the instantaneous change in the potential
drop across the sensing device in the DOT-TPE, the triggered presyn-
aptic signals were processed simultaneously by monitoring the output
current Ipost of the synaptic EGT [Fig. 8(b)]. Hence, the cognitive tac-
tile information was collected, and the increase in the strength and
duration of the sustained pressure caused an increase in Ipost. By taking
advantage of the short-term synaptic facilitation function of DOT-
TPE, 3� 3 pixel arrays were built to mimic the tactile perception of
dynamic mechanical contact. Tactile perception with comprehensive
information on pressure strength and frequency was demonstrated
[inset in Fig. 8(b)]. Kim et al. reported a bioinspired flexible organic
artificial afferent nerve made of a resistive pressure sensor, an organic
ring oscillator, and an ion gel-gated conjugated polymer-based synap-
tic transistor [Fig. 8(c)].206 The artificial afferent nerve could collect
pressure signals (1–80 kPa) and converted them into action potentials
(0–100Hz) by using ring oscillators. The function of braille character
reading was implanted in this artificial afferent nerve by connecting
three synaptic transistors with two ring oscillators and a 2� 3 array of
pressure sensors [Fig. 8(d)]. The synaptic transistor integration could
significantly improve the discrimination among the braille characters

with a larger Victor-Purpura distance (DVP) of �300. Furthermore,
the artificial afferent nerve was connected to the biological efferent
nerves of a detached cockroach leg to complete a hybrid monosynaptic
reflex arc. The flow of information from multiple pressure (amplitude
and frequency) triggered the isometric contraction actuation of the tib-
ial extensor muscle accordingly, indicating the successful emulation of
a biological reflex arc. Recently, Chen et al. developed a self-powered
ion gel-gated PDVT-10 synaptic transistor that mimicked the tactile
synapse.207 This synaptic transistor was actuated by a triboelectric
nanogenerator (TENG) that functioned as the tactile sensor to realize
the self-powered tactile synapse. The self-powered synaptic system was
able to realize AND and OR logic functions and Pavlovian condition-
ing. The biomimetic functionality of tactile perception systems, com-
bined with their promising features of flexibility and large-area
fabrication, represents a step forward for pressure-sensory synapses
towards novel E-skins for neuromorphic sensing and actuation.

Photostimulated synapses using light as the input signals not
only combine visual perception, information processing, and memory
together but also provide advantages such as higher bandwidth,
robustness, and potential for parallelism, which is suitable for simulat-
ing retinal neurons.208–210 The transduction of the color and intensity
of the incident light into neural signals is a main process for visual per-
ception. Guo et al. reported a ferroelectric/electrochemical modulated
organic synaptic EGT for an ultraflexible, artificial visual-perception
system [Fig. 8(e)].136 A p-type copolymer poly(isoindigo-co-bithio-
phene) [P(IID-BT)] was used as the channel material, and bilayered

FIG. 8. (a) Equivalent electrical circuit for the DOT-TPS. (b) The relative changes in current in the pressure sensing device and the Ipost responses of the synaptic transistor
under different pressures.205 The inset shows the schematic illustrations of the tactile speed-perception functionality of the DOT-TPE array. Reproduced with permission from
Zang et al., Adv. Mater. 29, 1606088 (2017). Copyright 2017 Wiley-VCH. (c) Schematic illustrations of the hybrid reflex arc made of an artificial afferent nerve and a biological
efferent nerve. (d) Braille reading functionality of the artificial afferent nerve system.206 Reproduced with permission from Kim et al., Science 360, 998 (2018). Copyright 2018
AAAS. (e) Photograph of a 5� 6 artificial visual-perception system array. Scale bar, 5 mm. (f) Color recognition functionality of the ferroelectric/electrochemical modulated artifi-
cial visual-perception system (Left: NIR, Right: green).136 Top is the signal mapping immediately recorded after light exposure, and bottom is the remnant signals after 1800 s.
Reproduced with permission from Wang et al., Adv. Mater. 30, 1803961 (2018). Copyright 2018 Wiley-VCH. (g) Schematic illustrations of the organic optoelectronic synapse
and neuromuscular electronic system.107 Reproduced with permission from Lee et al., Sci. Adv. 4, eaat7387 (2018). Copyright 2018 AAAS.
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poly(vinylidenefluoride-cotrifluoroethylene) [P(VDF-TrFE)] and
poly[(1-vinylpyrrolidone)-co-(2-ethyldimethylammonioethyl methac-
rylate ethyl sulfate)] [P(VP-EDMAEMAES)] acted as the polyelectro-
lytes. Besides the fundamental STP/LTP operations by electrochemical
doping, the large EDL capacitance allowed P(VDF-TrFE)’s polariza-
tion switching, to achieve an extra ferroelectric LTP function with reli-
able nonvolatility. This synaptic EGT was integrated with an organic
light-sensitive electronic component to construct an artificial visual-
perception system. This light sensory system displayed an incident
light intensity and frequency dependent electrochemical LTP to ferro-
electric LTP transition. A 5� 6 pixel array was demonstrated to allow
for color recognition by converting photons from different wave-
lengths with identical intensity (10.80 mW/cm2) into volatile (850 nm,
64Hz) and nonvolatile (550 nm, 64Hz) synaptic signals, respectively
[Fig. 8(f)]. The wavelength-recognition functionality characterized by
signal’s degree of nonvolatility was attributed to the higher-energy
green light-triggered extra ferroelectric LTP compared to the electro-
chemical only LTP with near infrared (NIR) irradiation. Lee et al.
reported an optoelectronic sensorimotor synapse based on a stretch-
able organic nanowire synaptic transistor (s-ONWST), integrated with
a photodetector and a neuromuscular system [Fig. 8(g)].107 The ion
gel-gated fused thiophene diketopyrrolopyrrole (FT4-DPP)-based syn-
aptic EGT was built onto a 100% prestrained styrene ethylene butylene
styrene (SEBS) rubbery substrate to introduce the stretchability. Each
visible light pulse induced an output presynaptic voltage of �1.1V
from the organic photodetector to drive the s-ONWST. Spike duration
and number-dependent plasticity were similar in the stretchable
s-ONWST at 100% strain to those in the device at 0% strain. The
optoelectronic sensorimotor system was then used for optical wireless
communication. The International Morse code was coded in the form
of patterns of visible light to trigger the postsynaptic potentiation of
the s-ONWST, and every letter of the English alphabet was decoded
according to the sum of EPSC amplitude peak values. Photoelectric
neuromorphic devices are promising for the development of next-
generation human–machine interface applications, soft robotics,
neurorobotics, and electronic prostheses.211,212

IV. SUMMARY AND PERSPECTIVES

Overall, electrolyte-gated transistors are promising candidates for
synaptic electronics and neuromorphic computing owing to their
mixed ionic/electronic transduction, physiological environmental
compatibility, mechanical/architectural flexibility, and in particular
low energy consumption. Basic synaptic functions have been success-
fully mimicked. Unique functions arising from the inherent properties
of electrolyte-gated devices are also demonstrated, including global
regulation phenomena, coplanar coupling, and integration with free-
standing active substrates and with living neurons, among other exam-
ples. A variety of complex tasks, such as dendritic integration, classic
conditioning, pattern recognition, and sensory function, are realized in
EGT-based arrays and circuits.

Currently, emulating the synapse behavior is still the main focus
in this emerging field. Some challenges (reconfigurability, stability, reli-
ability, speed, power consumption, and supporting circuitry such as
selector devices) are being faced for the realization of large-scale
ANNs using EGTs. The current scientific challenges and perspectives
can be summarized as follows:

First, a more profound insight should be obtained into the ion
transport/trapping related device physics to ensure stable and reliable
neuromorphic functionalities. The most fundamental synaptic behaviors
of STP and LTP are selectively induced by controlling the degree of
device volatility through hybrid mechanisms. The LTP behavior suffers
in many cases from challenges in large structural transformations of
channel materials and/or parasitic oxidation reactions, leading to perfor-
mance degradation. Novel channel materials and gating mechanisms are
highly desired to maintain electronic structures for the implementation
of LTP functions. Next to the simulated synaptic behavior, additional
metrics should be systematically reported to evaluate the reconfiguration
ability, device stability and (cycling) lifetime, and endurance.

An increase in the write-read speed and a decrease in energy con-
sumption are needed to be able to build neuromorphic networks. The
operation speed of EGTs is mainly limited to �kilohertz (millisecond),
with the exception of a few examples, by the ion drift and diffusion in
the gate electrolyte and/or the channel. Selecting gate electrolytes and
channel materials with high ion mobility to shorten the ion migration
time are currently suggested. The speed could also be increased by scaling
down device dimensions, especially by reducing the channel and electro-
lyte thickness to shorten the ion diffusion distance. When the device is
scaled down to sub-100nm scale, it is possible to increase the switching
speed to �megahertz (microsecond), which can also decrease the power
consumption to the subfemtojoule level for a single spike event.
Furthermore, internal ion-gated electrochemical transistors, with ions
that are preloaded on the channel, have shown faster operation speeds,
but their applicability in the neuromorphic device configuration should
be further investigated.213 Vertical configurations of transistors can also
further reduce ion diffusion time, compared with a planar geometry.

Moreover, the high-density integrated circuits (ICs) of synaptic
EGTs suffer from device-to-device uniformity (e.g., device noise, non-
linearity, and asymmetry) and environmental dependence (e.g.,
humidity> 50%). In addition to the optimization of thin film prepara-
tion techniques, cumulative probability and related statistics of chan-
nel conductance change (DG) extracted from a large amount of
experimental measurements should be considered to properly simulate
device nonidealities. Another issue is the requirement of a liquid elec-
trolyte and humidity ambience in some synaptic devices. From a tech-
nological point of view, liquid gates are difficult to scale below 100nm
dimensions or to integrate with the existing solid-state circuits. From
an application point of view, solid electrolyte-based synaptic EGTs
show that these platforms can be downscaled for space-efficient elec-
tronic devices, while studies performed with a liquid electrolyte show
their potential applications for interfacing with biology, such as
human/machine interaction through neuromorphic sensing/actuation,
personalized healthcare, and artificial nerves and organs.

Neural network training algorithms suitable for such device net-
works and supporting (external) hardware circuits should be further
developed. The single-layer perceptron (SLP) model is the simplest
kind of neural network and has been widely employed to implement
basic training and learning. Nevertheless, more complex neural net-
works are required to solve demanding tasks. Toward this direction,
there are only scarce attempts of hardware multilayer perceptrons
with EGTs. Apart from feedforward networks, recurrent networks
with EGTs are yet to be explored.

In the long-term, materials science and neuroscience should go
hand in hand in order to define the computational primitives of the
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brain, which are necessary for processing, and up to which level of
complexity these primitives have to be emulated at the device level.
This bidirectional interaction between the two disciplines should be
extended beyond the functional device implementation of the synapses
and neurons.
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