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Article

Patient-specific logic models of signaling pathways
from screenings on cancer biopsies to prioritize
personalized combination therapies
Federica Eduati1,2,3,4 , Patricia Jaaks5, Jessica Wappler6, Thorsten Cramer6,7,8 , Christoph A Merten1,

Mathew J Garnett5 & Julio Saez-Rodriguez2,3,9,*

Abstract

Mechanistic modeling of signaling pathways mediating patient-
specific response to therapy can help to unveil resistance mecha-
nisms and improve therapeutic strategies. Yet, creating such
models for patients, in particular for solid malignancies, is chal-
lenging. A major hurdle to build these models is the limited mate-
rial available that precludes the generation of large-scale
perturbation data. Here, we present an approach that couples
ex vivo high-throughput screenings of cancer biopsies using
microfluidics with logic-based modeling to generate patient-
specific dynamic models of extrinsic and intrinsic apoptosis signal-
ing pathways. We used the resulting models to investigate hetero-
geneity in pancreatic cancer patients, showing dissimilarities
especially in the PI3K-Akt pathway. Variation in model parameters
reflected well the different tumor stages. Finally, we used our
dynamic models to efficaciously predict new personalized combi-
natorial treatments. Our results suggest that our combination of
microfluidic experiments and mathematical model can be a novel
tool toward cancer precision medicine.
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Introduction

Charting the dynamic wiring of signaling networks is of paramount

importance to understand how cells respond to their environment.

Identifying the differences in this wiring between normal and

cancerous cells can shed light on the pathophysiology of tumors and

pave the way for novel therapies (Werner et al, 2014; Saez-Rodri-

guez et al, 2015; Zañudo et al, 2018). A powerful tool to gain

insight into these processes is to monitor the response of cells to

multiple perturbations. When combined with mathematical model-

ing, such data can be used to determine cell type-specific wiring

phenomena, predict efficacy of drug treatments, and understand

resistance mechanisms (Saez-Rodriguez et al, 2011; Klinger et al,

2013; Merkle et al, 2016; Eduati et al, 2017; Hill et al, 2017).

Application of this strategy has been limited so far to in vitro

contexts, as the experimental technologies to generate perturbation

data require large amounts of material, which are unavailable from

most primary tissues such as solid tumors. With recently developed

organoid technologies, it became possible to generate large amounts

of material ex vivo, enabling such screens in principle. However,

they would be associated with large costs and, while recapitulating

some of the features of the tumor physiology, the cells unavoidably

diverge from the primary tumor as they are grown ex vivo (Letai,

2017). We have recently developed a novel strategy based on

microfluidics that enables testing apoptosis induction upon a good

number of conditions (56 with the current settings, with at least 20

replicates each) starting from as little as one million viable cells.

Cells are encapsulated in 0.5 ll plugs together with an apoptosis

assay and single or combined drugs. Using valves to control individ-

ual fluid inlets allows the automatic generation of plugs with dif-

ferent composition. These Microfluidics Perturbation Screenings

(MPS) are suitable to collect such drug response datasets even with
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the very limited number of cells available from tumor resection

biopsies (Eduati et al, 2018).

In this study, we set out to construct cell type- and patient-

specific models from the drug response data obtained using the MPS

technology (overview of the pipeline in Fig 1A). We took advantage

of our tool CellNOptR (Terfve et al, 2012), to train a general

network of the underlying intrinsic and extrinsic apoptosis path-

ways from data obtained for two cell lines and biopsies from four

pancreatic tumor patients at different stages. We obtained cell line-

and patient-specific continuous logic models based on ordinary dif-

ferential equations (ODEs). We found these models to be a useful

tool to understand specific pathway deregulations and to predict

new patient-specific therapies.

Results

Data and modeling of apoptosis pathways

Experimental data were generated using a novel Microfluidics

Perturbation Screening (MPS) platform, which allowed performing

combinatorial drug screening of biopsies from human tumors (Edu-

ati et al, 2018; see Materials and Methods). Data represent caspase-

3 (Cas3 in Fig 1B, marked in blue) activation after perturbation with

10 different compounds including seven kinase inhibitors (targeting

IKKs, MEK, JAK, PI3K, EGFR, AKT, PDPK1—inhibited nodes are

depicted in red in Fig 1B), one cytokine (TNF, stimulated node, in

green), and two chemotherapeutic drugs (gemcitabine and Oxali-

platin). All 10 compounds were tested alone and in all 45 possible

pairwise combinations (Fig 1C) on two pancreatic cancer cell lines

(AsCP1 and BxPC3) and biopsies from four patients with pancreatic

tumors at different stages (one intraepithelial neoplasia, two

primary tumors, and one liver metastasis). Measurements were

performed 16 h after perturbation, when Cas3 activation was shown

to reach a plateau (Eduati et al, 2018).

To investigate the signaling mechanisms behind the differential

drug responses of our cell lines and patients, we derived a general

logic model of apoptosis pathways involved in the regulation of

Cas3 (our measurement), which is considered as effector node and

indicator of apoptosis. Models were then trained using the patient-

specific experimental data from Eduati et al (2018) to obtain person-

alized models. The general model (Fig 1B) was built integrating

information derived from literature and from public repositories (de-

tails in Materials and Methods section). The model describes both

intrinsic (mediated by the mitochondria, named Mito in the model)

and extrinsic (mediated by tumor necrosis factor receptors, TNFRs)

apoptotic signals, including nodes encoding for both anti- and pro-

apoptotic effects. We incorporated in the model all nodes perturbed

by specific compounds in our screening such as targeted drugs (ki-

nase-specific inhibitors) and the cytokine TNF. The effect of

chemotherapeutic DNA damaging drugs was not included in the

model since they inhibit DNA replication rather than acting directly

on specific signaling nodes. However, nodes such as p53, which are

activated by DNA damaging drugs, are included in the model since

they are key elements of different pathways. Since our screening

included two AKT inhibitors (i.e., MK-2206 and PHT-427) with dif-

ferent mechanisms of action (allosteric and PH domain inhibitors,

respectively), they were modeled as acting on two different nodes

(AktM and AktP, respectively), both needed for the activation of

AKT.

The logic model includes AND gates (circles in Fig 1B) when all

upstream regulators are needed to activate a node, while cases with

multiple independent regulators are considered as OR gates. The

logic model is interpreted using the logic-based ordinary differential

equation formalism (logic ODEs; Wittmann et al, 2009) as imple-

mented in CellNOptR (Terfve et al, 2012). This formalism allows to

maintain the simple causal structure of logic models, while consid-

ering also the dynamic nature of the interactions and the continuous

scale for the activation of the nodes, by using ODEs. Thus, they are

not limited to capture only binary events as is the case for Boolean

models. As previously described (Eduati et al, 2017), we consider

one parameter for each edge j ? i in the network, which character-

ize the strength of the regulation of species i dependent on species j

and one parameter for each node i, which represents the responsive-

ness of the node (see Materials and Methods).

Calibration of the apoptosis model for cell lines

The parameters of the generic model were fitted separately to the

data of each cell line, resulting in specific models tailored to the

experimental data for each cell line (more details in Materials and

Methods section). Parameter fitting was repeated 10 times, and

performances were assessed using different metrics to compare

model simulations with the experimental data, showing good and

quite robust performances (average metrics for AsPC1 and BxPC3,

respectively: Pearson correlation 0.72, 0.74; mean squared error

0.03, 0.02; coefficient of determination 0.5, 0.5; Appendix Fig S1A).

Model simulations for the best specific models were compared with

the corresponding measured experimental data, showing a very

good agreement (Pearson correlation equal to 0.89 and 0.83 for

AsPC1 and BxPC3, respectively; Appendix Fig S1B and C).

The calibrated models for these two cell lines were then used to

uncover potential differentially regulated mechanisms which are

behind the different drug responses of the cell lines. Due to the

limited number of data and the complex nature of the signaling

pathways involved in the activation of apoptosis, not all model

parameters can be estimated with the same confidence. In order to

estimate the variability of the optimized parameter values, we

derived a bootstrapped distribution for each parameter for each cell

line, by repeating the optimization 500 times while randomly resam-

pling the data with replacement (Dataset EV1). Results from boot-

strap iterations were used to assess whether any specific experiment

was essential for constraining the model (Appendix Fig S2) and for

making predictions (Appendix Fig S3), by considering the left out

experiments (due to resampling with replacement) as validation set.

This analysis confirmed that even if a specific condition is missing

from the training set, this does not significantly affect the model and

the resulting predictions. This is probably due to the fact that indi-

vidual drugs are used in multiple experiments (all the combina-

tions); therefore, even if one specific condition is missing from the

training set, the model is still constrained by all the other condi-

tions. These bootstrap distributions were then used to compare the

two cell lines using statistical tests to highlight significant dif-

ferences (Wilcoxon sum rank test, adjusted P-value < 0.01, effect

size > 0.2, see Materials and Methods) as represented in Fig 2A.

The comparison revealed some regulatory mechanisms which are
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cell line: BxPC3
cell line: AsPC1
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biopsy: primary tumor #2
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Figure 1. Apoptosis pathways and experimental data.

A Overview of the pipeline: Patient-specific mathematical models are built for each patient from the combinatorial Microfluidics Perturbation Screening (MPS) data
measured on live cells from cancer patient biopsies.

B Logic model of intrinsic and extrinsic apoptosis pathways regulating Cas3 (our readout, blue node), including all nodes which are perturbed (stimulated in green,
inhibited in red) in the experiments.

C Experimental data consisting of 37 different experimental conditions (columns) for six samples (rows; 2 cell lines and 4 biopsies).
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upregulated in either AsPC1 or BxPC3. Additionally, the dynamic of

Cas3 activation appears to be faster in BxPC3 (node border in

purple). Main differences involve the PI3K-Akt pathway. The main

linear pathway is more active in BxPC3, whereby the negative feed-

back loop, from p53 to PIP3 mediated by PTEN, is stronger in

AsPC1. These differences in the model parameters cause changes in

the dynamic behavior of the system (Fig 2B) and are behind the dif-

ferential activation of Cas3 in response to drugs.

We then investigated if these differences in dynamic behavior

could be derived from their genetic makeup (Garcia-Alonso et al,

2018). From the proteins in our model, only KRAS is functionally

mutated in AsPC1 and TP53 in BxPC3. Furthermore, no known

direct regulators of the nodes in our model—from those in Omni-

Path (Türei et al, 2016), a compendium of pathway resources—were

mutated. Interestingly, KRAS and TP53 are indeed involved in the

pathways that we found to be differentially activated between the

two cell lines, but on their own, they cannot explain the differences

in pathway structure in terms of strength of regulations. Therefore,

information on mutations alone would not be sufficient to describe

the dynamics of the pathways that mediate apoptosis upon drug

A C

B D

Figure 2. Models, predictions, and validation for AsPC1 and BxPC3 cell lines.

A Differentially regulated mechanisms in AsPC1 or BxPC3, highlighted in green or purple depending on whether the corresponding estimated parameters are higher in
AsPC1 or BxPC3, respectively.

B Time course simulation of PI3K-AKT pathway and related inhibitors in AsPC1 and BxPC3. Lines represent median values, and error bars represent standard deviation
from the bootstrapped simulations.

C Assessment of model predictions by cross-validation, removing for each repetition all experiments involving one of the eight drugs (the corresponding drug targets
are reported in the legend) from the training set and using it as test set. Bad predictions (Pearson Correlation < 0.6—which corresponds to removal of drug targeting
PDPK1) are marked with empty dots.

D New drug combinations predicted to be highly specific for each cell line, limited to targettable nodes. Combinations predicted to be specific for AsPC1 are marked in
green and those specific for BxPC3 in purple. Combinations predicted to have no effect in both cell lines are marked with a dot.
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treatment. The same holds when looking at basal transcriptomics

(Iorio et al, 2016; Appendix Fig S4), supporting the observation that

static data are not sufficient to investigate the dynamics of a complex

system. Differences in signaling pathways (Fig 2A) are driven by the

functional status of the nodes that cannot be inferred solely from dif-

ferences in gene expression (Appendix Fig S4).

Model predictions and validation

We decided to test the predictive power of our cell line-specific

mathematical models in two ways: (i) using cross-validation on the

existing dataset and (ii) predicting the effect of new drug combina-

tions that can be experimentally tested.

First, optimization was repeated randomly selecting eight condi-

tions as validation set and using the remaining 36 for training (boot-

strapping 100 times). This procedure was repeated for 20

randomized test sets, and results show a good correlation between

the predictions and the measurements in the validation set (average

Pearson Corr = 0.7). Even when the cross-validation was repeated

removing all the experiments involving a specific drug each time

(instead of random ones; Fig 2C), predictions are still very good

(Pearson Corr range 0.66–0.97) for all drugs except PHT-427 (Akt

and PDPK1 inhibitor, Pearson Corr = �0.29). This implies that

experiments with PHT-427 are essential to define the models.

Mathematical models were then used to simulate the effect of

targeting all nodes of the network in pairwise combinations, there-

fore simulating the effect of potential new drugs acting on pathways

that were not previously tested using MPS. For each cell line, we

simulated the effect of 186 new perturbations (12 on individual

nodes and 174 on node pairs), by inhibiting the corresponding node

in the model. Varying confidence of model parameter estimation

from the available data is expected to affect the ability to predict

certain conditions. By using the family of models optimized using

bootstrap, we obtained a distribution of the predicted activation of

Cas3 in response to the different simulated conditions, therefore

retaining information on the confidence we have for each prediction.

In particular, we identified the predictions which were significantly

different between the two cell lines (Wilcoxon sum rank test,

adjusted P-value < 0.01, effect size > 0.3, see Materials and Methods;

Appendix Fig S5), focusing on those that involve the inhibition of

pairwise combinations of the 12 targettable nodes (JAK, MEK, RAS,

NFkB, JNK, TNF, AktM, Mdm2, EGFR, PI3K, BclX, IKKs; Fig 2D).

This results in 66 drug combinations, 34 of which are specific for

AsPC1 and 13 for BxPC3 and 10 have no effect on both cell lines.

We then tested experimentally three of the top combinatorial

therapies predicted to be highly specific for one of the cell lines

based on our mathematical models (Fig 3A–C). For all three cases,

we had concordance between model prediction and experimental

validation. Interestingly, all three combinations are targeting the

PI3K/Akt pathway, which is the one where most differences were

highlighted between the two cell lines. As the KRAS oncogene is

mutated in > 95% of pancreatic adenocarcinomas (Jones et al,

2008), inhibition of signaling pathway downstream of KRAS is

considered to be an attractive therapeutic approach. Against this

background, we tested the combination of the Akt inhibitor MK-

2206 with a MEK inhibitor (trametinib). As predicted by our model,

the validation experiments showed that the combination of trame-

tinib and MK-2206 is more efficacious and synergistic (based on

Bliss independence model) in BxPC3 than in AsPC1 cells (Fig 3D,

Appendix Fig S6). In line with this, a recent report on preclinical

models of pancreatic cancer displayed enhanced efficacy of gemc-

itabine plus nabPaclitaxel when combined with MK-2206 and trame-

tinib (Awasthi et al, 2019). KRAS-mutant colorectal cancer was

found to be extremely sensitive to combined inhibition of Bcl-2/Bcl-

xL and mTORC1/2 (Faber et al, 2014). Interestingly, the combina-

tion of navitoclax (a Bcl-2/Bcl-xL/Bcl-W antagonist) with PHT-427

(targeting PDPK1 and Akt, the bona fide downstream effector of

mTORC2) was predicted by our model to be specific for BxPC3 cells.

Additionally, loss of function in PTEN was shown to be important

for synergistic interaction between MEK and mTOR inhibitors

(Milella et al, 2017). While both AsPC1 and BxPC3 are PTEN wild

type, our model identified a weaker negative feedback loop medi-

ated by PTEN in the BxPC3 cell line that could justify the observed

synergy. This prediction was also confirmed by the experimental

data showing that the combination of navitoclax and PHT-427 is

more efficacious and synergistic in BxPC3 than in AsPC1 cells

(Fig 3E, Appendix Fig S7). Of note, the combination of Bcl-2/Bcl-

xL/Bcl-W antagonists and drugs targeting PDPK1/Akt has thus far

not been discussed as a treatment option for pancreatic cancer,

further demonstrating the applicability of our model to identify

innovative combinatorial approaches. Finally, we tested the combi-

nation of a PI3K inhibitor (taselisib) with the Bcl-2/Bcl-xL/Bcl-W

antagonist navitoclax. Agents targeting the PI3K pathway in combi-

nation with a Bcl-2 family inhibitor have been previously suggested

to be relevant in the context of pancreatic cancer (Tan et al, 2013).

Hence, being able to predict the efficacy of this combination for

specific patients (or cell lines in this case) would be highly desir-

able. Our validation experiments showed that the combination of

taselisib and navitoclax is more efficacious and synergistic in AsPC1

than in BxPC3 cells (Fig 3F, Appendix Fig S8), confirming our

model-based predictions.

Encouraged by these in vitro results, we performed in vivo valida-

tion on xenograft mouse models (Dataset EV2 and EV3). As

predicted by our mathematical models, when treated with a combi-

nation of trametinib and MK-2206, both mouse models showed a

significantly different response (P-value = 0.04, see Materials and

Methods for details) with BxPC3-derived mice showing a stronger

response (Fig 3G). For the other treatments, no significant difference

was found (P-value = 0.27 for navitoclax + taselisib, P-value = 0.22

for navitoclax + PHT-427). Additionally, we tested the effect of

gemcitabine, the standard of care in pancreatic cancer, which

showed a similar effect in both out mouse models (P-value = 0.75).

Interestingly, the combination of trametinib and MK-2206 provides

significantly better treatment with respect to gemcitabine in the

BxPC3 mouse model (P-value = 0.04), while this is not the case for

the AsPC1 mouse model (P-value = 0.77; Fig 3H). Overall, these

results suggest that our mathematical models have a potential for

predicting personalized treatment that can specifically improve

in vivo response with respect to the standard of care.

Personalized apoptosis models for patients’ tumors

The same fitting pipeline previously described for the cell lines was

applied to the data from the four pancreatic tumor biopsies (intraep-

ithelial neoplasia, two primary tumors and one liver metastasis) to

obtain personalized models. Patient-specific parameter distributions
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were used to investigate patient heterogeneity at the level of mecha-

nisms involved in apoptosis signaling pathways. Results are summa-

rized in Fig 4A, showing the 16 (out of 93) parameters which are

different in at least one patient (Kruskal–Wallis rank sum test,

adjusted P-value < 0.01, effect size > 0.2, see Materials and Methods).

For these parameters, we also performed post hoc pairwise statistical

tests to directly compare all patients (Wilcoxon sum rank test,

adjusted P-value < 0.01, effect size > 0.2, see Materials and Methods).

For instance, for the parameter representing the EGFR ? JAK regula-

tion, the null hypothesis of equal distribution is not rejected when

comparing the two primary tumors (lower two boxes in gold) between

themself and with respect to intraepithelial neoplasia (top-left box,

half gold next to the corresponding interaction in Fig 3A); however, it

is rejected when comparing each of them with liver metastasis (top-

right box, in cyan). Also, the comparison of intraepithelial neoplasia

and liver metastasis suggests that the two samples do not come from

different distributions (top boxes, both cyan).

Overall, the most different sample is the liver metastasis (dif-

ferent from all the others in 7 of the 16 heterogeneous parameters

(44%)), especially in the extrinsic apoptosis pathway mediated by

complex I, cIAPs, and Cas8. This larger dissimilarity could be justi-

fied by the difference both in stage and in tissue, since all other

samples were resected from the pancreas. Also, the intraepithelial

neoplasia shows a quite high level of dissimilarity (37.5%), local-

ized in particular in the IKKs-NFkB pathway, which could reflect the

more advanced stage of the disease. Interestingly, the two primary

tumors are the most similar to each other (similar in 11 out of the

16 parameters, corresponding to 69%). However, significant dif-

ferences were found especially in the PI3K-AKT pathway, similarly

to what we observed for the two pancreatic cancer cell lines. Impor-

tantly, these similarities, which reflect the different tumor stages,

were not evident directly from the data, where primary tumor #1

clusters closer to the liver metastasis and primary tumor #2 closer to

the intraepithelial neoplasia (Appendix Fig S9).

D

G H

E F

A B C

Figure 3. In vitro and in vivo experimental validation of model predictions.

A–C Model simulations when inhibiting (A) MEK and AktM nodes, (B) BclX, AktP and PDPK1 nodes, (C) BclX and PI3K nodes. Data are shown using notched boxplots: the
middle line represents the median, the box limits correspond to the interquartile range and the whiskers extend to the most extreme data point, which is no more
than 1.5 times the length of the box away from the box (outliers are represented as dots).

D–F In vitro experimental validation of the combination of (D) trametinib (MEK inhibitor, anchor drug at 1 lM) and MK-2206 (Akt inhibitor, 8-points 1:3 dilution series),
(E) navitoclax (BclX inhibitor, anchor drug at 10 lM) and PHT-427 (AktP and PDPK1 inhibitor, 8-points 1:2 dilution series), (F) navitoclax (BclX inhibitor, anchor drug
at 2.5 lM) and taselisib (PI3K inhibitor, 8 time points 1:3 dilution series). Data shown are for three biological replicates with three technical replicates each (error
bars represent standard error of the technical replicates). Corresponding boxplots show the resulting synergy scores (Bliss model) computed for each biological
replicate considering all concentrations of the anchor drug and the highest two concentrations of the combined drug. Summary statistics are represented using a
horizontal line for the median and a box for the interquartile range. The whiskers extend to the most extreme data point, which is no more than 1.5 times the
length of the box away from the box.

G In vivo validation on cell line derived xenograft mouse models comparing the effect on the mouse models derived from the two cell lines. Data shown are for four
mice (error bars represent the standard error—full data are provided as Dataset EV2 and EV3). P-values were derived using linear mixed-effect models to compare
longitudinal data (corrected for multiple comparisons using Holm method).

H In vivo comparison of the combination of trametinib and MK-2206 with the control condition (vehicle alone) and with the standard of care gemcitabine (error bars
represent the standard error—full data are provided as Dataset EV2 and EV3).
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Model-based prioritization of new personalized treatments

The personalized models can be used not only to investigate the

patient-specific deregulated mechanisms, but also to predict novel

experimental conditions as previously shown for the cell lines. For

example, we can simulate the effect of a new kinase inhibitor by

inhibiting the corresponding node in the model and predict its effect

on Cas3 and thus on apoptosis. By implementing in silico testing,

we can increase the throughput of our screening method for each

patient, allowing to predict the effect of new potential therapies

which cannot be experimentally tested due to limited biopsy

material.

For each patient, we simulated the effect of 12 new single and

174 combinatorial therapies (186 in silico perturbations in total)

targeting nodes in our model. Having applied bootstrap when deriv-

ing our personalized optimized models, as previously described, we
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Figure 4. Patient-specific models of signaling pathway.

A Mechanisms which are differentially regulated among the patients are highlighted with thick black lines. Colored squares represent the same distribution (same
color) or differential distribution (different colors) across the four patient samples.

B Patient-specific predictions of new drug combinations. Predictions are ranked for each patient and color coded to compare the efficacy with the other patients.
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obtained a distribution of the predictions for each simulated pertur-

bation. This allowed us to perform statistical tests to compare the

effect of the same treatment across patients and focus on patient-

specific effects, removing 129 out of the 186 treatments that were

not statistically different between patients (Kruskal–Wallis rank sum

test, adjusted P-value < 0.01, effect size > 0.3, see Materials and

Methods). With this step, we removed treatments that could not be

predicted with sufficient confidence for any patient (broad distribu-

tions), and the treatments showing high predicted efficacy for all

patients, that could be likely due to general toxicity. For the remain-

ing 57 conditions, we performed also post hoc comparison between

all patient pairs (Wilcoxon sum rank test, adjusted P-value < 0.01,

effect size > 0.3, see Materials and Methods). Similar to what we

noticed comparing model parameters, using these predictions we

observed that primary tumors behave most similar as they show no

statistical difference in 79% of the cases. This is much higher than

the similarity observed in comparison with intraepithelial neoplasia

(60% and 43% for primary tumors #1 and #2, respectively), or the

liver metastasis (12% and 11%, respectively, for primary tumors #1

and #2).

Finally, in order to prioritize new patient-specific promising treat-

ments, we ranked the simulated perturbations for each patient by

patient specificity (i.e., higher effect size in the pairwise compar-

ison); Fig 4B shows the top ten for each patient. Interestingly, there

are three treatments showing strong potential (among the top ten)

for both primary tumors. Two of these consist of targeting Mdm2 in

combination with JAK and IKKs, respectively. Mdm2-p53 binding is

known to be an important target in pancreatic cancer, where TP53

mutations occur in 50–70% of the patients (Morton et al, 2010).

Finding treatments to combine with drugs disrupting this binding,

like Nutlin-3 (Khoo et al, 2014), is currently of great interest (Bykov

et al, 2018) especially in pancreatic cancer (Izetti et al, 2014). In

particular, the activation of the JAK-STAT pathway has been shown

to be common in pancreatic cancer (Matsuoka & Yashiro, 2016) and

is often associated with TP53 mutation (Wörmann et al, 2016),

suggesting that targeting Mdm2-p53 and JAK could be indeed a

promising combination therapy for some patients. Based on our

predictions, combinatorial targeting of Mdm2 and JAK is also effica-

cious in the intraepithelial neoplasia, while targeting Mdm2 in

combination with IKKs is more efficacious in the liver metastasis.

Discussion

Given the intrinsic complexity of cancer, experimental data obtained

recording the cellular response to perturbations are essential to study

cancer cells as a dynamic system. These functional data provide

complementary information to that obtained by genomic profiling in

steady state and are particularly relevant for investigating therapeutic

efficacy of anticancer drugs (Yaffe, 2013; Letai, 2017). Further

knowledge can be extracted by analysis of these experimental pertur-

bation data via mathematical modeling, providing a rationale for

mechanism-based interpretation of drug response.

We here present an approach to effectively build mechanistic

models from the integration of prior knowledge of the underlying

pathways and large-scale perturbation datasets that can be

measured on patient samples. This integration with cell type- or

patient-specific data enables a contextualization of otherwise

non-specific prior knowledge. Because of the low material needed

by our recently developed MPS platform (Eduati et al, 2018), our

approach can be applied not only to in vitro but also to ex vivo

settings, as demonstrated in this study. Our tool allows us to dissect

functional differences in the signaling pathways by comparing the

model parameters. These parameters recapitulate similarity between

different tumor stages better than the drug screening data, suggest-

ing that they can shed light on the molecular basis of tumors at the

individual patient level. In addition, the tool can be used to ration-

ally select efficacious combination therapies, as illustrated in the

study in cell lines. We chose a simple logic formalism so that we

could efficiently model large networks despite measuring a single

readout. Importantly, the models were continuous, based on ODEs,

and thus able to capture quantitative differences. In silico and

in vitro analyses demonstrate that our approach is robust. In

summary, our combination of mathematical modeling and ex vivo

perturbation data helps to investigate possibly deregulated mecha-

nisms (or pathways) and to explain specific responses to drugs

directly on patients’ biopsies.

The MPS platform can be extended in the future to provide richer

data, and thereby improve the mathematical models. We have so

far generated MPS data with a large number of perturbations but a

single readout (apoptotic marker). While informative, in particular

to study the effect of anticancer drugs, it is limited to capturing a

subset of signaling networks. MPS can in principle be applied to

other markers, as well as connected to richer output technologies,

such as high-content imaging, or single-cell RNA sequencing. We

expect that the breadth and depth of our models will increase when

expanding readouts. In addition, our modeling approach is not

limited to MPS, but can be used with different types of data describ-

ing molecular or phenotypic changes upon perturbation. Besides the

readouts, extension to multi-time-point measurements will provide

additional insight into the dynamics and feedback regulation of the

system. Finally, a higher granularity in drug concentrations tested

will provide information on intermediate effects. We expect that

further developments of technologies for functional screening of

cancer patient biopsies will follow in the near feature (Letai, 2017),

and this will reflect in further improvement of patient-specific math-

ematical models that can be obtained using our pipeline.

Considering a family of models allows us to account for cell

signaling uncertainty for both estimated parameter values and

model predictions, which could be due to cellular heterogeneity

(Kim et al, 2018). This is currently taken into account when

comparing models and when making predictions of efficacious ther-

apy. By using statistical tests, we consider as promising only combi-

nations that are robustly more efficacious for each individual

patient/cell line. Having few cells per plug (~100) and many repli-

cates (at least 20 per condition), we have collected information on

the heterogeneity of cellular response to drugs within a patient

sample, which could be taken into account when building the

model. Statistical models could be used in the future also to distin-

guish between the variability due to technical noise (same for all

plugs) and the variability due to heterogeneity of cellular response

to drugs (specific for each condition). In addition, our current

approach integrates data from different cell types, providing an

“average” model. Alternatively, different cell types can be sorted

out prior to the MPS experiments, to obtain cell type-specific

information.
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Generation of perturbation data followed by mathematical

modeling has proven to be a powerful tool to study cancer biology

and therapies in vitro (Klinger et al, 2013; Molinelli et al, 2013;

Eduati et al, 2017; Hill et al, 2017). The insights from in vitro

models can be extrapolated to patient data using a patient’s static

profiling, such as gene expression (Fey et al, 2015). When no other

data are available, this is certainly a very valid strategy to generate

personalized models. Our work shows, however, that this basal

information cannot recapitulate the insights obtained by data upon

perturbation. If one can generate such data directly from patient

samples, we should be able to generate more precise models that

provide more accurate insights and predictions. We believe the

strategy presented in this work can contribute to the development of

functional precision cancer medicine.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source
Identifier or
catalog number

Experimental Models

AsPC-1 ATCC CRL-1682

BxPC-3 ECACC 93120816

Chemicals, enzymes and other reagents

CellTiter-Glo 2.0 Promega G924C

Navitoclax Selleckchem S1001

Taselisib Selleckchem S7103

Trametinib Selleckchem S2673

MK-2206 Selleckchem S1076

PHT-427 Selleckchem S1556

Gemcitabine Selleckchem S1149

ACHP Tocris 4547

Gefitinib Selleckchem S1025

Software

CNORode2017 https://github.com/saezlab/CNORode2017

Eduati et al (2017)

Other

Microplate reader Beckman-Coulter Paradigm Detection Platform

Methods and Protocols

Microfluidics setup, screened compounds, and samples
Data were generated using our Microfluidics Perturbation Screening

(MPS) platform as presented in (Eduati et al, 2018). A cell suspension

is generated from cell lines in culture or from patient biopsies

(Fig 1A). A microfluidics chip is then used to automatically generale

plugs with different chemical composition, using valves that can be

opened and closed using a Braille display. In each plug, cells (about

100) are encapsulated together with one or two compounds and a

rhodamine 110 (green-fluorescent dye)-based substrate of caspase-3

((Z-DEVD)2-R110), which is a marker of apoptosis. The activation of

caspase-3 causes the cleavage of the substrate and the subsequent

release of the green fluorescence in the plug. Alexa Fluor 594 (or-

ange-fluorescent dye) is added to the cell suspension to verify the

proper mixing of the different components in each plug.

Samples are produced in a sequential way in multiple replicates

(12 for perturbations, 20 for untreated control), and each sample is

followed by a corresponding barcoding sequence produced using

two different concentrations of Cascade Blue dye (blue-fluorescent

dye) to encode the sample number in binary digits. The full

sequence of conditions is repeated at least twice (resulting in a total

of at least 24 replicates per perturbation). Aqueous plugs are sepa-

rated by mineral oil plugs to avoid cross-contamination. All plugs

are collected in a tube and incubated overnight for 16 h at 37°C and

5% carbon dioxide. Fluorescence in three channels (green, orange

and blue) is measured for each plug by exciting it with lasers (375,

488, and 561 nm) and detecting the emissions with corresponding

three photomultiplier tube (PMT) detectors (450, 521, and

> 580 nm).

The 10 screened compounds (alone and in all pairwise combina-

tions) include two cytotoxic drugs (gemcitabine and Oxaliplatin),

standard of care for pancreatic cancer, 7 kinase inhibitors (ACHP:

IKKi, AZD6244: MEKi, Cyt387: JAKi, GDC0941: PI3KI, Gefitinib:

EGFRi, MK-2206: AKTi, and PHT-427: AKTi & PDPK1i) and one

cytokine (TNF).
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In accordance with the Declaration of Helsinki of 1975,

human pancreas biopsies (primary tissue samples) were obtained

during routine clinical practice at University Hospital Aachen,

Aachen, Germany, and were provided by the RWTH Aachen

University Centralized Biomaterial Bank (cBMB) according to its

regulations, following RWTH Aachen University, Medical Faculty

Ethics Committee approval (decision EK 206/09). Sample

processing at the EMBL in Heidelberg, Germany, was approved

by the EMBL Bioethics Internal Advisory Committee. Informed

consent was obtained from the patients for research use of the

samples. As described in Eduati et al (2018), processed samples

were carefully selected by the pathologist from the resected

tissue to guarantee that only the specific tissue of interest was

screened.

Building the apoptosis pathway model
The logic model shown in Fig 1B was derived by manual litera-

ture curation starting from the model described by Mai and Liu

(Mai & Liu, 2009) and integrating additional information in order

to include all nodes perturbed in our experiments and to well

describe pathway cross-talks. Logic rules were also adopted from

the Boolean model of apoptosis by Schlatter et al (2009). We

modeled both the intrinsic (mediated by the mitochondria) and

the extrinsic (mediated by death receptors, TNFRs) apoptosis

signals including nodes encoding both anti- and pro-apoptotic

effects. Binding of TNF to TNFRs activates the extrinsic pathway

mediated by caspase-8 (Cas8 in Fig 1B) activation of caspase-3

(Cas3). The two distinct caspase-8 activation pathways (Wang

et al, 2008) are represented by the cascade involving complex I

(composed of RIPK1, TRADD, TRAF2), which induces the forma-

tion of two different caspase-8 activation complexes: complex IIA

(TRADD, RIPK1, FADD, Pro-caspase 8) and complex IIB (RIPK1,

TRADD, FADD, Pro-caspase 8, cFLIP) that can be inhibited by

cFLIP and cIAPs, respectively. For simplicity, caspase-8 is

modeled as a separate node (Cas8) regulated by the two

complexes. TNF can also regulate the intrinsic pathway through

the activation of NFkB (anti-apoptotic node) by removal of its

inhibitor IkB. The activation of the intrinsic pathway is executed

by the mitochondria through the release of SMACs (second mito-

chondria-derived activator of caspases) and cytochrome c. The

former deactivates IAPs, which are anti-apoptotic proteins, and

the latter binds to Apaf1 (apoptotic protease activating factor-1)

and pro-caspase 9 which is converted to its active form of

caspase-9 (Cas9) and in turn activates caspase-3 (Cas3).

Both Akt and ERK have an anti-apoptotic effect by phosphorylat-

ing BAD (Balmanno & Cook, 2009) and thus unbinding it from BclX

and this can be modeled as an OR gate (She et al, 2005). We also

included the pro-apoptotic effect of ERK as regulator of p53 (Cagnol

& Chambard, 2010). Additional cross-talks from RAS to MEKK1 and

PI3K pathways were included as described by Grieco et al (2013).

Additional interactions between nodes in the network were found

using Omni-Path (Türei et al, 2016) and through manually curating

the literature supporting the interactions in the databases. For exam-

ple, in this way we found support for potential context-dependent

cross-talks from PDPK1 to MEK (King et al, 2000; Borisov et al,

2009; Aksamitiene et al, 2012) and to IKK/NFkB signaling (Tanaka

et al, 2005) which were therefore added to our prior knowledge

network.

Data normalization and formal definition of logic ODEs
Data from the MPS were preprocessed using the pipeline for data

analysis and quality assessment described in Eduati et al (2018) and

implemented in R (https://github.com/saezlab/BraDiPluS). In

short:

1 We used the signal in the orange channel (see description of

the Microfluidics setup) to discard corrupted data correspond-

ing to improperly formed plugs.

2 For each screened condition in each run (i.e., full sequence of all

tested conditions—see description of the microfluidics setup),

we computed the median across replicates (12 plugs produced

per condition, median, and standard error are reported in

Appendix Fig S10) and the corresponding z-score. Additionally,

we compute the FDR-corrected P-value with respect to the

untreated control (one-sided Wilcoxon rank sum test).

3 Median z-score and combined P-values (using Fisher’s

method) were then computed across different runs (at least

two per sample).

4 In order to be used in the logic formalisms, data were scaled

between 0 (untreated control, which is also the initial state of

the model) and 1 (maximum activation). Conditions which

were defined as not significantly different with respect to the

untreated control (combined P-value < 0.05) were also set to 0.

For implementing and optimizing the mathematical models, we

used the CellNOptR tool (Terfve et al, 2012) and a modified version

of the CNORode add-on to model logic-based ordinary differential

equations (ODEs), as presented in Eduati et al (2017) and available

at: https://github.com/saezlab/CNORode2017. The logic network

described in the previous section “Building the apoptosis pathway

model” is therefore used as a scaffold to build the logic ODE model.

In the logic ODE formalism (Wittmann et al, 2009), each node (i.e.,

species xi) is modeled by an ODE with a continuous update function

Bi representing the regulation by the Ni upstream nodes.

dxi
dt

¼ siðBiðfðxi1Þ; fðxi2Þ; . . .fðxiNiÞÞ � xiÞ

The tunable parameter si represent the life-time of species i. We

define each regulation using a sigmoidal transfer function:

fðxijÞ ¼ 1�
ð1�xijÞnij

ð1�xijÞnijþk
nij
ij

1

1þk
nij
ij

where parameters nij and sij are fixed to 3 and 0.5, respectively,

and the tunable parameter kij represent the strength of the regula-

tion of species j on species i (edge j?i). When kij = 0, there is no

regulation, which correspond to removing the interaction, while

higher values of kij correspond to stronger regulation. No new

interactions can be created during model optimization. The effect

of the compounds used to perturbed the system was simulated by

forcing the activity of the specific node to 1 in case of a stimulating

compound (TNF) and to 0 in case of an inhibiting compound (all

kinase inhibitors).

Using the CellNoptR package, the logic model was compressed as

described in Saez-Rodriguez et al (2009) to reduce model complex-

ity. Parameters were estimated by fitting the model simulation to the

experimental data using the optimization toolbox MEIGO (Egea et al,
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2014). Bootstrapped distributions for all parameters were obtained

by repeating the optimization resampling data with replacement.

Statistical tests for comparisons of parameters and predictions
Non-parametric tests were used because they are highly robust

against non-normality. Pairwise comparisons (both on parameters

and on predictions) for cell lines were performed using Wilcoxon

rank sum test. Kruskal–Wallis rank sum test (one-way ANOVA on

ranks) was used when comparing multiple groups (i.e., for

patients, both on parameters and on predictions) and followed by

post hoc pairwise comparison with Wilcoxon sum rank test on the

parameters which are not equally distributed among all groups.

Effect size w was computed for Wilcoxon rank sum test as Z=
ffiffiffiffi
N

p
,

where Z is the statistics from the test and N is the number of

observations, and for the Kruskal–Wallis rank sum test, it was

computed as
ffiffiffiffiffiffiffiffiffiffiffiffi
X2=N

p
where v2 is the statistics from the test and N

is the number of observations. P-values were always Bonferroni

adjusted to correct for multiple hypothesis testing. Significance

thresholds (reported also in the main text) were set to 0.01 for all

adjusted P-values. For the effect size, the threshold was set to 0.2

when comparing model parameters and 0.3 when comparing

predictions (to further limit the number of significant testable

predictions). Perturbations are considered to have no effect if their

median predicted value is < 0.07.

In vitro validation experiments
AsPC1 and BxPC3 cells were used at passage 2–4 after thawing and

seeded at 12,800 or 8,000 cells per well, respectively, in a 96-well

plate with RPMI media (supplemented with 10% FBS, 1% penicillin/

streptomycin, 4.5 mg/ml glucose, and 1 mM sodium pyruvate) on

day 0. Drugs were added on day 1, and viability was measured after

72 h using CellTiter-Glo� (Promega). Navitoclax has been used at

fixed concentrations of 2.5 lM and 10 lM. Trametinib has been used

at fixed concentrations of 0.25 lM and 1 lM. Taselisib and MK-2206

were used up to a concentration of 10 lM in an 8-points 1:3 dilution

series, spanning a 2,000-fold range. PHT-427 was used up to a

concentration of 75 lM in an 8-points 1:2 dilution series. We

performed three biological replicates. For each biological replicate,

each data point was measured in at least three wells per plate (i.e.,

technical replicates). Raw data were preprocessed by subtracting the

average background (blank) and removing outliers only if one out of

three technical replicates was off by > 30% compared to the other

two. This resulted in a maximum removal of two data points per

plate. Viability data were normalized to the negative control condi-

tion (i.e., DMSO treated cells). We fitted a four-parameter log-logistic

model using the “drm” R package (Ritz et al, 2015) and computed

the synergy score with Bliss independence model as implemented in

the “synergyfinder” R package (He et al, 2018).

Xenograft mouse models
Xenograft mouse experiments were performed by an external

company (EPO Berlin). All animal experiments were carried out in

accordance with the German Animal Welfare Act as well as the

UKCCCR (United Kingdom Coordinating Committee on Cancer

Research). The respective pancreas carcinoma cell suspensions of the

human AsPC1 or BxPC3 cells were injected subcutaneously (s.c.) into

the left flank of anaesthetized female NMRI nu/nu mice. Tumors were

allowed to establish a palpable size (about 0.1 cm2), before the

treatment was started. A total of 40 mice were used, grouping the

animals in five groups for each cell line (four animals per group). Mice

in the five groups were treated, respectively, with (i) gemcitabine

(100 mg/kg i.p. once a week in PBS); (ii) combination of navitoclax

(100 mg/kg p.o. Q1D) and taselisib (2.5 mg/kg p.o. Q1D); (iii) combi-

nation of trametinib (1 mg/kg p.o. Q1D) and MK-2206 (120 mg/kg

p.o. sequence days 0,2,4,7,9,11); (iv) combination of navitoclax

(100 mg/kg p.o. Q1D) and PHT-427 (200 mg/kg p.o. BID per

10 days); and (v) vehicle p.o. alone. During the study, tumor volumes

were measured in two dimensions with a caliper. Measurements were

performed twice a week to capture the growth characteristics of the

different tumor models. Tumor volumes (TV) were calculated by the

formula: TV = (width² × length) × 0.5. During the study, mice were

maintained under sterile and controlled conditions (22°C, 50% rela-

tive humidity, 12-h light–dark cycle, autoclaved food and bedding,

acidified drinking water) and monitored for body weight and health

condition. Relative tumor volume (RTV) was computed with respect

to day 0 (i.e., first day of treatment). Statistical comparison was

performed using the R package TumGrowth (Enot et al, 2018) making

use of linear mixed-effect models to compare longitudinal data. Holm

method was used to correct for multiple comparisons.

Data availability

Microfluidics Perturbation Screening (MPS) data are available at:

https://github.com/saezlab/BraDiPluS. New validation data and the

code to guarantee reproducibility of the results are available at:

https://github.com/saezlab/ModelingMPS.

Expanded View for this article is available online.
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