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a b s t r a c t 

The Fuel Replenishment Problem (FRP) is a multi-compartment, multi-trip, split-delivery VRP in which 

tanker trucks transport different types of petrol, separated over multiple vehicle compartments, from an 

oil depot to petrol stations. Large customer demands often necessitate multiple deliveries. Throughout a 

single working day, a tanker truck returns several times to the oil depot to resupply. A solution to the FRP 

involves computing a delivery schedule of minimum duration, thereby determining for each vehicle (1) 

the allocation of oil products to vehicle compartments, (2) the delivery routes, and (3) the delivery pat- 

terns. To solve FRP efficiently, an Adaptive Large Neighborhood Search (ALNS) heuristic is constructed. The 

heuristic is evaluated on data from a Chinese petroleum transportation company and compared against 

exact results from a MILP model and lower bounds from a column generation approach. In addition, we 

perform sensitivity analysis on different problem features, including the number of vehicles, products, 

vehicle compartments and their capacities. Computational results show that the ALNS heuristic is capa- 

ble of solving instances with up to 60 customers and 3 different products in less than 25 minutes with 

an average optimality gap of around 10%. On smaller instances, the heuristic finds optimal solutions in 

significantly less time than the exact MILP formulation. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper deals with a multi-compartment, multi-trip and

plit-delivery routing problem that occurs, for example, in the con-

ext of petrol station replenishment. We denote this problem as

he Fuel Replenishment Problem (FRP). The cost of vehicle trans-

ortation accounts for 60% to 70% of the total cost of the existing

efined oil logistics system ( Lihua, 2012 ). Therefore, efficient vehi-

le routing is crucial. In general, a vehicle is separated into two to

ve compartments storing several incompatible oil products. These

ompartments are inflexible to avoid leakage and contamination.

sing debit meters, the content in one compartment can be split

mong several customers. Likewise, a petrol station can be sup-

lied by multiple vehicles (split-delivery). 

Petrol stations are replenished by a fleet of heterogeneous ve-

icles. The vehicles load fuel at a central depot, and then travel to

ne or more petrol stations to deliver their fuel. Once empty, the

ehicles return to the central depot to resupply after which they
∗ Corresponding author. 
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ontinue servicing other fuel stations. At the end of the day, the

ehicles return to the central depot. 

Each fuel station carries one or more types of fuel. The fuel de-

and of some of the bigger fuel stations, typically located near

usy highways, often exceeds the capacity of a single vehicle.

herefore, multiple vehicles may be required to satisfy the demand

f a single station. The latter contrasts to traditional VRP problems

n which a customer is visited only once by a single vehicle. 

Following the categorization proposed by Coelho and La-

orte (2015) , the Multi-Compartment Delivery Problem considered

n this paper can be classified as a split-split delivery problem. For

plit-split VRPs, three decisions need to be made: (1) the vehicle

outes, (2) the compartment assignment, i.e. the capacity of each

roduct, and, (3) the delivery pattern of each route and each prod-

ct. Every vehicle is allowed to execute multiple trips. 

The main scientific contributions of this paper are as follows: 

• We propose a comprehensive variant of the split-delivery ve-

hicle routing problem (SD-VRP) considering multiple compart-

ments, multiple trips and a heterogeneous fleet of vehicles. 
• We develop a Mixed Integer Programing (MILP) formulation for

the described routing problem. To benchmark, we obtain exact

solutions for some small instances using CPLEX. We addition-

https://doi.org/10.1016/j.cor.2020.104904
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.104904&domain=pdf
mailto:mxdsjyd@163.com
mailto:j.kinable@tue.nl
mailto:t.v.woensel@tue.nl
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ally develop a column generation approach to compute lower

bounds as an additional benchmark. 
• We adapt the Adaptive Large Neighborhood Search (ALNS)

heuristic to solve our problem for larger instances. The so-

lutions obtained by the ALNS approach are compared to the

solutions of both the MILP model and the lower bound ob-

tained by the column generation approach. We show that our

ALNS heuristic consistently outperforms MILP. The ALNS obtains

the same or better solutions than the MILP for all small in-

stances within 10 seconds per instance, whereas, for larger in-

stances, solving the MILP directly does not give a feasible solu-

tion within a two hour time limit. For the largest instance with

60 customers and 20 vehicles, computation times of the ALNS

stay well below 25 minutes, while obtaining an average opti-

mality gap of less than 10%. 

A problem similar to the FRP discussed in this paper is found

in Coelho and Laporte (2015) . Coelho and Laporte (2015) con-

sider several exact branch-and-cut algorithms for a class of multi-

compartment delivery problems based on formulations for multi-

period inventory-routing problems. Using a branch-and-cut ap-

proach, they are able to solve instances with up to 10 customers,

3 products, 3 compartments, and 6 vehicles to optimality. In this

work, the focus is on the design of an efficient metaheuristic ca-

pable of solving a FRP for a single planning period. In contrast to

the VRPs discussed in Coelho and Laporte (2015) , the tanker trucks

in our problem typically perform multiple trips a day. Moreover,

the goal is to compute schedules of minimum duration, thereby

spreading the workload over the available vehicles, as opposed to

merely minimizing the total travel time. 

The remainder of this paper is organized as follows:

Section 2 presents a brief review of the existing work related

to this paper. Section 3 formally describes our problem on-hand

and gives details on the mathematical formulation. Section 4 in-

troduces a column generation method, obtaining a lower bound

for our problem on-hand. In Section 5 , we develop an adaptive

large neighborhood search (ALNS). In Section 6 , we report on the

computational results. We conclude the paper in Section 7 . 

2. Related literature 

In this paper, we discuss a vehicle routing problem involving

multiple compartments, split-delivery, and multiple trips. There

are a few papers related to the problem discussed in this pa-

per. These papers are based on the assumption that the compart-

ments in the vehicle are not equipped with debit meters, imply-

ing that a compartment should be completely emptied once the
Table 1 

Literature comparison. 

Fleet TW MC 

Avella et al. (2004) Heterog. no no 

Abdelaziz et al. (2002) Heterog. no yes 

Ng et al. (2008) Heterog. no yes 

Vidovi ́c et al. (2014) Homog. no yes 

Popovi ́c et al. (2012) Homog. no yes 

Benantar et al. (2016) Heterog. yes yes 

Cornillier et al. (2008a) Heterog. no yes 

Cornillier et al. (2008b) Heterog. no yes 

Cornillier et al. (2009) Heterog. yes yes 

Cornillier et al. (2012) Heterog. yes yes 

Coelho and Laporte (2015) Homog. no yes 

This paper Heterog. no yes 

∗TW: Time Window; MC: Multi-Compartment; MP: Mu

Problem; MD: Multi-Depot; # Cust: Maximum number 

split the compartment and the demand of the customer o

means unsplit and ’s’ means split. 
elivery is started. Avella et al. (2004) studied a petrol replenish-

ent problem involving product packing and vehicle routing. The

uthors simplified the problem by an assumption that each com-

artment of the vehicle must travel either full or empty. Other au-

hors discussed variants of this petrol replenishment problem: sin-

le period ( Cornillier et al., 2008a ), multi-period ( Cornillier et al.,

008b ), with time windows ( Cornillier et al., 2009 ) and multi-

epot ( Cornillier et al., 2012 ). In these papers, the authors limit the

umber of customers (up to 4) for each trip according to a distri-

ution policy used in practice. 

Popovi ́c et al. (2012) propose a Variable Neighborhood

earch(VNS) heuristic for a multi-period Inventory Routing Prob-

em (IRP) involving the distribution of petrol with a multi-

ompartment vehicle fleet. Similar to the aforementioned papers,

opovi ́c et al. (2012) also assume only full compartments are de-

ivered, and each vehicle can visit up to 3 customers per trip.

idovi ́c et al. (2014) developed a Variable Neighborhood Search

VNS) heuristic for a multi-product multi-period IRP with a multi-

ompartment homogeneous fleet. In addition, they proposed a

ILP model for the problem and limited each route to 4 cus-

omers. Benantar et al. (2016) considered a multi-compartment In-

entory Routing Problem (IRP) with time windows. In contrast to

ornillier et al. (2009) , they do not limit the number of customers

isited in a route. 

Table 1 presents a comparison of the main references after

0 0 0. 

The split-delivery vehicle routing problem (SDVRP) also re-

eived attention in the literature. Dror and Trudeau (1989) and

ror and Trudeau (1990) proposed a local search approach to solve

he SDVRP. Afterwards, more complex approaches, such as meta-

euristics and hybrid algorithms were introduced. Sierksma and

ijssen (1998) proposed an algorithm based on a column gen-

ration algorithm, combined with other heuristics to solve a

ight scheduling problem. Archetti et al. (2006) proposed a

abu search algorithm for the SDVRP. These authors also intro-

uced a hybrid Tabu search and integer programming algorithm.

here are few papers that studied exact algorithms for SDVRP.

ee et al. (2006) developed a dynamic programming method with

nfinite state and action spaces. Jin et al. (2007) proposed a two-

tage algorithm with valid inequalities to solve the SDVRP to opti-

ality. Feillet et al. (2006) introduced a branch-price-cut method

o solve the SDVRP. Another branch-price-cut algorithm capable

f solving SDVRP instances up to 100 customers is presented by

esaulniers (2010) . Archetti et al. (2011) enhanced the latter work

y introducing several valid inqualities, and by proposing an effi-

ient Tabu search to solve the pricing subproblem. Finally, a vari-
MP/MT IRP MD # Cust Split 

- no no unlim. - 

- no no unlim. u-u 

- no no unlim. u-u 

MP yes no max. 3 u-u 

MP yes no max. 4 u-u 

- yes no unlim. u-u 

- yes no max. 2 u-u 

MP yes no max. 2 u-u 

MT yes no max. 4 u-u 

MT yes yes max. 3 u-u 

MP yes no unlim. u-u, u-s, 

s-u, s-s 

MT no no unlim. s-s 

lti-Period; MT: Multi Trip; IRP: Inventory Routing 

of customers per route; Split: Split: Possibility to 

r not ( Coelho and Laporte (2015) for the details),’u’ 
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nt of the SDVRP with time-windows, split delivery, and weight-

elated cost is addressed by Luo et al. (2016) . 

The literature on multi-compartment vehicle routing problem

MCVRP) covers various application domains including waste col-

ection ( Muyldermans and Pang (2010) and Henke et al. (2015) ),

oods or groceries delivery ( Derigs et al., 2011; Hübner and

stermeier, 2018 ) and in livestock transportation ( Oppen and

økketangen, 2008 ). Lahyani et al. (2015) solve a problem involving

he collection of olive oil with different qualities with a branch-

nd-cut algorithm. El Fallahi et al. (2008) augment classical VRP

nstances with vehicle compartments. Mendoza et al. (2010) use

 memetic algorithm to solve an MCVRP with stochastic de-

ands and developed a constructive heuristics for their algorithm

 Mendoza et al., 2011 ). Melechovsk ̀y (2013) extend the MCVRP by

onsidering time windows and solved the problem using a VNS al-

orithm. 

. Problem definition and mathematical model 

The FRP is formally defined on a complete, undirected graph

 = (V, E) with node set V , and edge set E = { (i, j) : i, j ∈ V, i < j} .
he node set V = { 0 , 1 , 2 , . . . , n } consists of a supply depot 0, and

 set of 1 , 2 , . . . , n customers (e.g. the petrol stations). Each cus-

omer i ∈ V has a non-negative demand d i,p for some (oil) product

 ∈ P . For brevity, we often denote the demand d i ∈ R 

| P| of some

ustomer i ∈ V as a vector, i.e. d i = (d i, 1 , d i, 2 , . . . , d i, | P| ) . Assume that

he depot has no demand ( d 0 = 0 ). Servicing is performed by a het-

rogeneous fleet of vehicles K which are stationed at the supply

epot. Each vehicle k ∈ K has C k compartments of capacity Q 

k . For

implicity, we assume that the compartments in a vehicle are of

qual size. Between any pair of locations i, j ∈ V , a positive travel

ime d ij > 0 is specified (satisfying the triangle inequality). A sum-

ary of notation used is provided in Table 2 . 

A solution to FRP consists of a set of itineraries, one for each ve-

icle, which minimizes both makespan and total travel time, while

ollectively satisfying the demand of all customers. More precisely,

 vehicle itinerary describes the order in which a vehicle must visit

ts customers, the quantity of each product it must load when the

ehicle (re-)visits the supply depot, and the quantity of each type

f fuel it must deliver during each of the customer visits. We will

efer to a product delivery as a customer visit . Similarly, a trip is

efined as the sequence of visits performed by a vehicle between

ts departure from the supply depot and its next return to the sup-

ly depot. Note that, since a vehicle is able to resupply, a vehicle

an re-visit the same customer during different trips. 

Let T k be the set of trips performed by vehicle k ∈ K . Trips in T k 
an be performed in arbitrary order, since each trip starts and ends

t the same depot, and there are no temporal constraints imposed

n the customer visits. Each trip t ∈ T k constitutes an ordered se-

uence of customer visits. Each visit v is uniquely associated with

 customer i v ∈ V . A vector qt v = (qt v 1 , qt v 2 , . . . , qt v | P| ) specifies the
Table 2 

Notation. 

Parameter/Set Description 

V = { 0 , 1 , 2 , . . . , n } Set of stations and depot 

E = { (i, j) | i, j ∈ V, i < j} Set of undirected edges 

K Set of vehicles 

P Set of different products 

q ip Demand of station i ∈ V for product p ∈ P 
Q k Capacity of a single compartment of vehicle k ∈ K 
d ij Travel time associated with arc ( i, j ) ∈ E 
C k Number of compartment in vehicle k ∈ K 
T k Trips performed by vehicle k 

T Set of all trips: 
⋃ 

k ∈ K T k 

 

 

 

 

 

f  

t  

o  
uantity of each product delivered to customer i v during visit v .

he set of trips T is defined as 
⋃ 

k ∈ K T k . 
In the remainder of this paper, we denote by δ( S ), for any sub-

et of vertices S ⊆V , the set of edges with exactly one endpoint in S .

hen S is a singleton vertex, we use the shorthand δ( i ) instead of

({ v i }). The set E ( S ) denotes the set of edges with both endpoints

n S . 

We formulate the FRP as a Mixed Integer Linear Program

MILP). For each vehicle k ∈ K , the MILP explicitly models a num-

er of trips T k = { 0 , 1 , 2 , . . . , T max 
k 

} , where T max 
k 

is an upper bound

n the number of trips vehicle k should make. Here T max 
k 

can be

omputed by assuming that all deliveries are performed by a single

ehicle k , i.e.: 

 

max 
k = 

⌈ ∑ 

i ∈ V 
∑ 

p∈ P 
⌈ q ip 

Q k 

⌉
C k 

⌉ 

(1) 

n the MILP formulation below, binary variables x t 
i j 

model whether

ehicle k ∈ K traverses edge ( i, j ) ∈ E during trip t ∈ T k . Similarly,

ontinuous variables u 
t p 
i 

record the amount of product p ∈ P deliv-

red during trip t to customer i ∈ V . The number of vehicle com-

artments dedicated to a product p ∈ P during a trip t is mod-

led by integer variables z tp . Finally, binary variables y t 
i 

are used to

dentify whether customer i is visited during trip t . 

The FRP model is formulated as follows: 

inimize ατ + β
∑ 

k ∈ K 

∑ 

t∈ T k 

∑ 

( i, j ) ∈ E 
d ij x 

t 
ij (2) 

s.t. τ ≥
∑ 

t∈ T k 

∑ 

(i, j) ∈ E 
d i j x 

t 
i j ∀ k ∈ K (3)

∑ 

j∈ V \{ 0 } 
x t 0 j ≤ 1 ∀ k ∈ K, t ∈ T k (4)

∑ 

j∈ V,i< j 

x t i j + 

∑ 

j ∈ V, j <i 

x t ji = 2 y t i ∀ k ∈ K, t ∈ T k , i ∈ V \ { 0 } (5)

∑ 

(i, j) ∈ E(S) 

x t i j ≤| S| −1 ∀ S ⊆ N \ { 0 } , | S| ≥2 , k ∈ K, t ∈ T k (6)

∑ 

k ∈ K 

∑ 

t∈ T k 
u 

t p 
i 

= q ip ∀ i ∈ V, p ∈ P (7)

∑ 

i ∈ V \{ 0 } 
u 

t p 
i 

≤ z t p Q 

k ∀ k ∈ K, t ∈ T k , p ∈ P (8)

∑ 

p∈ P 
z t p ≤ C k ∀ k ∈ K, t ∈ T k (9)

u 

t p 
i 

≤ y t i Q 

k C k ∀ k ∈ K, t ∈ T k , p ∈ P, i ∈ V \ { 0 } (10)

0 ≤ z t p ≤ C k ∀ k ∈ K, t ∈ T k , p ∈ P (11)

0 ≤ u 

t p 
i 

≤ min { Q 

k C k , q ip } ∀ i ∈ V, k ∈ K, t ∈ T k , p ∈ P (12)

x t i j ∈ { 0 , 1 } ∀ (i, j) ∈ E, k ∈ K, t ∈ T k (13)

y t i ∈ { 0 , 1 } ∀ i ∈ V \ { 0 } , k ∈ K, t ∈ T k (14)

Using non-negative scalars α and β , the weighted objective

unction (2) minimizes the makespan as well as the total travel

ime. Constraints (3) track the latest completion time (makespan)

f the vehicle itineraries. Constraints (4) - (6) implement the trip
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Fig. 1. Solutions to the FRP instance given in Table 3 . A square represents the depot, a circle represents a visit v to the customer indicated inside the circle. The vector above 

each circle specifies the delivery quantity per product ( qt v ). The number above the final depot in each route represents the route duration. 
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S  
structure. A vehicle can depart from the depot at most once during

each trip (Constraints (4) ). Constraints (5),(6) respectively imple-

ment flow preservation and eliminate subtours. Next, Constraints

(7) - (9) deal with the vehicle capacities and customer demands.

The demand for each product for each customer must be satis-

fied (Constraint (7) ). Each vehicle compartment can be dedicated

to at most one product (Constraint (9) ), but product allocations

may change between trips. The maximum amount of fuel a ve-

hicle can deliver during a single trip is bounded by the number

of compartments dedicated to this type of fuel, multiplied by the

compartment capacity (Constraint (8) ). From Constraints (8), (9) , it

follows that the maximum amount of product provided by vehi-

cle k during a single trip cannot exceed Q 

k C k . Finally, Constraints

(10) link the u 
t p 
i 

and y t 
i 

variables. 

To reduce symmetry in the model, the following constraints are

added: ∑ 

i ∈ V 

∑ 

j∈ V, 

i< j 

d i j x 
t 
i j ≥

∑ 

i ∈ V 

∑ 

j∈ V, 

i< j 

d i j x 
t+1 
i j 

∀ k ∈ K, t ∈ T k \ T max 
k (15)

These constraints order the trips performed by each vehicle,

thereby ensuring that the duration of each consecutive trip is not

longer than its preceding trip. 

The FRP, as defined by Constraints (2) - (15) , belongs to the class

of NP-hard problems (reduction to the Capacitated Vehicle Routing

Problem). An example problem instance of FRP having 4 customers,

3 products and five 3-compartment vehicles is given in Table 3 .
Table 3 

Instance data for V = { 0 , 1 , 2 , 3 , 4 } . 
(a) Demands of the customers 

p 1 p 2 p 3 

1 145 260 260 

2 0 370 75 

3 0 295 150 

4 0 150 110 

(b) Distance Matrix 

0 1 2 3 4 

0 0 13 12 12 24 

1 13 0 8 23 33 

2 12 8 0 18 26 

3 12 23 18 0 12 

4 24 33 26 12 0 

m  

o

 

s  

o  

o  

p  

r  

U  

c

 

 

ach vehicle compartment has a capacity of 80 units. An optimal

olution to this problem instance in which the makespan compo-

ent is prioritized over the total travel distance is shown in Fig. 1 a.

bserve that each vehicle has a maximum capacity of 80 × 3 = 240

nits, and that some customers require more than 240 units of

roducts. It might be tempting to create dedicated Full Truck Load

FTL) trips for customers who’s demand exceeds the capacity of a

ingle vehicle, but this approach leads to suboptimal solutions. As

n example, we could create an FTL trip for customer 2 in which a

ehicle delivers 240 units of p 2 . In the resulting optimization prob-

em we would have to assign the FTL trips to vehicles, as well as

ny additional trips required to serve the remaining demand of

ach customer. The resulting schedule is depicted in Fig. 1 b: de-

pite a higher number of FTL trips, the makespan of the solution

 b is longer than the makespan of solution 1 a. 

. Lower bounds 

The model presented in Section 3 explicitly models trips for

ach vehicle. As a consequence, the performance of this model is

trongly correlated to the number of trips allocated to each vehicle.

he bound T max 
k 

computed in Eq. (1) is typically weak. Computing

tronger bounds is non-trivial. Consequently, the scalability of the

ILP model is limited. 

In order to assess the quality of the ALNS heuristic presented in

ection 5 on larger problem instances, we propose an alternative

athematical model that can be used to compute strong bounds

n the optimal objective value. 

For a given vehicle k ∈ K , let T k be the set of all potential re-

ource feasible trips vehicle k can make. Each trip must visit one

r more customers, and start and end at the supply depot. More-

ver, let δt denote the duration of trip t , μt 
ip 

the amount of product

 ∈ P delivered to customer i ∈ V during trip t , and let binary pa-

ameter e t 
i j 

indicate whether edge ( i, j ) ∈ E is traversed in trip t .

sing binary assignment variables w 

t 
k 

which assign trips to vehi-

les, we then formulate the FRP as follows: 

MP : 

minimize ατ + β
∑ 

t∈ T 

∑ 

k ∈ K 
δt w 

t 
k 

(16)

s.t. τ ≥
∑ 

t∈ T 
δt w 

t 
k ∀ k ∈ K (17)
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∑ 

t∈ T 

∑ 

k ∈ K 
μt 

ip w 

t 
k ≥ q ip ∀ i ∈ V, p ∈ P (18)

w 

t 
k ∈ Z 0 ∀ t ∈ T , k ∈ K (19)

τ ≥ 0 (20) 

The weighted objective function (16) , together with Constraint

17) minimize the makespan plus the total travel time. Constraints

18) ensure that the demand of each customer is satisfied. 

Due to the large number of potential trips for each vehicle, this

odel cannot be solved directly by an ILP solver. Instead a Col-

mn Generation (CG) procedure is developed. Let LPM be the Lin-

ar Program Relaxation obtained from model MP by relaxing the

ntegrality conditions on the w 

t 
k 

variables ( Eq. (19) ). Associate dual

ariables ζ k ≤ 0, ηip ≥ 0 with constraints (17), (18) respectively.

he dual problem DMP of LPM then becomes: 

DMP : 

maximize 
∑ 

i ∈ V 

∑ 

p∈ P 
ηip q ip 

(21) 

s.t. δt (ζ
k − α) + 

∑ 

i ∈ V 

∑ 

p∈ P 
μt 

ip η
ip ≤ 0 ∀ t ∈ T , k ∈ K (22)

−
∑ 

k ∈ K 
ζ k ≤ α (23) 

ζ k ≤ 0 ∀ k ∈ K (24)

ηip ≥ 0 ∀ i ∈ V, p ∈ P (25)

ollowing a standard CG procedure (e.g., see Desaulniers, 2010 )

PM is solved for a small subset of trips T ′ 
k 

⊂ T k for all vehicles

 ∈ K . At every iteration of the CG procedure, a pricing problem is

olved for each vehicle k ∈ K to identify columns with negative re-

uced cost, i.e. columns for which δt (ζ k − α) + 

∑ 

i ∈ V 
∑ 

p∈ P μt 
ip 
ηip >

 , which are then added to the set T ′ 
k 

. A simplified version of the

ILP model in Section 3 can be used to solve the pricing problem

or a given vehicle k ∈ K ; the definitions of the variables remain

he same, but their t index is dropped. The pricing problem then

ecomes: 

P RI CI NG ( k ) : 

maximize 
(
ζ k − α

) ∑ 

( i, j ) ∈ E 
d ij x ij + 

∑ 

i ∈ V \ { 0 } 

∑ 

p∈ P 
ηip u ip 

(26) 

s.t. Eq. (4) − (6) , (8) − (10) (27)

When solving the Master Problem for a homogeneous set of ve-

icles as opposed to a heterogeneous set, it suffices to solve the

ricing problem only once for a single vehicle k ′ during each iter-

tion of the column generation algorithm, where k ′ = argmax 
k ∈ K 

ζ k .

his observation follows directly from the definition of the pricing

roblem and the domains of the dual variables. 

The master problem is strengthened by adding the following

apacity Inequalities: 

∑ 

k ∈ K 

∑ 

t∈ T 

∑ 

(i, j) ∈ δ(S) 

e t i j w 

t 
k ≥ 2 

⎡ 

⎢ ⎢ ⎢ 

∑ 

p∈ P 

⌈ 

d p (S) 
Q 

⌉ 

C 

⎤ 

⎥ ⎥ ⎥ 

∀ S ⊆ V \{ 0 } , | S| ≥ 2 

(28) 

Associating dual variables λS with inequalities (28) leads to the

ollowing adjusted pricing problem: 

t (ζ
k − α) + 

∑ 

i ∈ V 

∑ 

p∈ P 
v t ip η

ip + 

∑ 

S⊆V \{ 0 } , | S|≥2 

∑ 

(i, j) ∈ δ(S) 

e t i j λS > 0 (29)
This change to the pricing problem is easily accommodated for

n the objective function (26) of our pricing problem formulation.

ince the set of Capacity Inequalities is exponentially large, it is

ndesirable to add them all at once to the master problem. In-

tead, a separation procedure is used to separate violated inequal-

ties. We first run the CG procedure until no more columns with

egative reduced cost can be identified. Next the separation pro-

edure is invoked. Whenever violated inequalities are identified,

hey are added to MP and the CG procedure is resumed. To sepa-

ate Capacity Inequalities, we first invoke the heuristic route-based

lgorithm proposed by Archetti et al. (2011) (see Section 4.2 in

rchetti et al. (2011) ). If this method fails to identify violated in-

qualities, we subsequently invoke the computationally more ex-

ensive partial enumeration routine by Desaulniers (2010) (see

.2.1 in Desaulniers (2010) ). 

Finally, when no more columns with negative reduced cost or

iolated inequalities can be identified, an optimal solution to LPM

s obtained. Note that, due the relaxation of the integrality con-

itions of the w 

t 
k 

variables, the resulting solution can be frac-

ional. The CG procedure can be embedded in a branch-and-price

ramework in order to guarantee integer feasible solutions. The

atter is however outside the scope of this paper. We refer in-

erested readers to Desaulniers (2010) , Archetti et al. (2011) , and

uo et al. (2016) . The optimal solution to LPM constitutes a valid

ower bound on the optimal objective value of our FRP. 

. ALNS heuristic 

This section presents an Adaptive Large Neighborhood Search

ALNS) heuristic for the FRP, based on the ALNS framework out-

ined in Ropke and Pisinger (2006) and Pisinger and Ropke (2007) .

imilar to a conventional Large Neighborhood Search (LNS) heuris-

ics ( Shaw, 1998 ), ALNS follows a ruin-and-recreate paradigm.

owever, in contrast to LNS, ALNS relies on multiple destroy and

epair operators, which are randomly selected through preferen-

ial selection. An overview of our ALNS framework is provided in

lgorithm 1 . During each iteration of the heuristic, a destroy oper-

tor is chosen to ruin the current solution, thereby removing visits,

rips, or even entire routes from the schedule. Next, a repair op-

rator is selected to repair the (partially) destroyed solution. The

estroy/repair procedure is embedded in a local search framework,

n our case Simulated Annealing, to determine whether the new

olution is accepted as the starting point of the next iteration, or

ejected in favor of the old solution. The ALNS heuristic terminates

hen either a time limit is reached, or a maximum number of

on-improving moves have been performed. 

The ALNS heuristic is initialized with a feasible solution ob-

ained through a constructive heuristic ( Section 5.1 ). At each itera-

ion of the ALNS heuristic, a destroy and a repair operator are se-

ected based on their past performance. A description of this selec-

ion procedure is provided in Section 5.2 , followed by an overview

f destroy and repair operators ( Section 5.3 ). Each invocation of

 destroy operator removes one or more visits from the schedule

nd adds them to a pool of removed visits. Notice that multiple

isits belonging to the same customer can be removed during a

ingle invocation. These visits are added separately to the pool of

emoved visits; we do not aggregate these visits into a larger visit.

fter the destroy operator removed a number of visits, a repair op-

rator is selected to re-insert the visits stored in the removal pool

ack into the schedule. Typically there exist multiple feasible al-

ernatives to re-insert a visit back into the schedule, each leading

o a different solution with a different objective value. The repair

perator ultimately decides which of these alternatives is selected.

When inserting a visit somewhere in the schedule, we ensure

hat the resulting (partial) schedule remains feasible. This implies

hat a visit can only be inserted into an existing trip if this does
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Algorithm 1: ALNS with SA. 

Input : Destroy operators 	, repair operators 
 , initial 

temperature T , cooling rate κ , initial solution X init 

Output : A feasible solution X best 

1 X current ← X best ← X init 

2 it nonImp ← 0 

3 repeat 

4 Select a destroy operator δ ∈ 	 with probability 

w d / 
∑ | 	| 

i =1 
w i 

5 Select a repair operator ψ ∈ 
 with probability 

w ψ 

/ 
∑ | 
| 

i =1 
w i 

6 X new 

← ψ(δ(X current )) 

7 if obj( X new 

) < obj( X current ) then 

8 it nonImp ← 0 

9 X current ← X new 

10 if obj( X current ) < obj( X best ) then 

11 X best ← X current 

12 else 

13 it nonImp ← it nonImp + 1 

14 Generate a random number ε ∈ [0 , 1] 

15 if ε < e −(ob j(X new ) −ob j(X current )) /T then 

16 X current ← X new 

17 T ← κ T 

18 Update operator probabilities 

19 until timeLimit or it nonImp ≥ nonImp max 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Split insertion - splits a visit into multiple 

smaller visits. 

Input : visit v for some customer i v ∈ V 

1 cost ← 0 � total cost incurred by splitting visit v 
2 qt ← qt v 
3 T s = { t ∈ T : 0 < a (t , qt ) < qt} 
4 while qt > 0 and T s � = ∅ do 

5 t ′ = argmin t ∈ T s 
c i v (t) 

| a (t ,qt ) | � trip with lowest weighted 

insertion cost 
6 cost ← cost + c i v (t ′ ) 
7 insert (v ′ , t ′ ) and set qt v ′ = a (t ′ , qt) , i v ′ = i v 
8 qt ← qt − qt v ′ 
9 T s = { t ∈ T s : 0 < a (t , qt ) ≤ qt} 

10 if qt > 0 then 

11 fail() 
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i  

o  
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e
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o  

t  

t  

t  

p  

Algorithm 3: Implementation of a ( τ , qt ). 

Input : demand vector qt ∈ R 

| P| , trip τ ∈ T 

Output : vector s v ∈ R 

| P| , 0 ≤ s v ≤ qt: quantity of products 

that would be supplied to customer i v if a new visit 

v ′ for customer i v were to be inserted into trip τ

� Fill up partially filled compartments. Let res t p be 
the total unused capacity of non-empty compartments 
holding product p ∈ P of the vehicle serving trip t ∈ T . 

1 s v = [ min { res τ p , qt p } ] p∈ P 
2 qt ← qt − s v 

� Allocate products to empty compartments. Let c τ be 
the number of empty compartments of the vehicle serving 
trip τ. 

3 c ′ ← c τ
4 while c ′ > 0 do 

5 p ′ = argmax p ∈ P qt p −
∑ 

t∈ T \ τ res t p 

6 if qt p > 0 then 

7 s v p ′ = s v p ′ + min { Q 

k , qt p ′ } 
8 qt p ′ = min { 0 , qt p ′ − Q 

k } 
9 c ′ ← c ′ − 1 

10 return s v 
not exceed the capacity of the vehicle performing the trip. When-

ever a visit is inserted into a trip which already contains a visit for

the same customer, we simply merge these visits and the respec-

tive delivered quantities. 

We consider three strategies to insert an individual visit into

the schedule: Integral Insertion (II), Split Trip Insertion (STI), and

Split Insertion (SI). 

The II strategy simply inserts a visit into an existing trip. The

STI strategy splits an existing trip t into two trips t 1 , t 2 , and assign

the visit to either one of the two trips. Splitting a trip is performed

by inserting a depot visit in between the sequence of customer vis-

its. If this depot visit is inserted after the last customer visit, then

this is equivalent to creating a new empty trip. To limit the num-

ber of alternative solutions to be evaluated, we require that the

visit that has to be inserted becomes either the last visit in trip t 1 ,

or the first visit in t 2 . Finally, in contrast to the II strategy, the SI

strategy does not reinsert a visit v back into the schedule; instead

a number of smaller visits are inserted such that the amounts of

each product supplied by the smaller visits add up to qt v . In doing

so, the SI strategy aims to increase vehicle utilization by claiming

left-over capacity of vehicles. In our implementation of the SI strat-

egy, we do not exhaustively consider every possible alternative to

split a visit into smaller visits which can be distributed over the

existing trips, as the number of alternatives is typically too large.

Instead, we devised a fast, heuristic procedure to compute SIs. Note

that this approach does not guarantee to identify any feasible SI

even if one exists. 

An overview of the SI strategy is given in Algorithm 2 . Let

c i ( t ) be the minimum cost incurred when inserting a visit for cus-

tomer i into trip t ∈ T , where c i (t) = 0 when trip t already visits

customer i . When splitting a visit v into multiple smaller visits,

we must ensure that the product quantities delivered in the re-

sulting visits add up to qt v . An iterative procedure, described in

Algorithm 2 , is used to split a visit v for customer i v . At each itera-

tion, the algorithm determines the best trip t to insert a new visit
 

′ for customer i v , based on a ratio between the insertion cost and

he product quantities that can be delivered in trip t . This process

s repeated until visits equivalent to a demand of qt v are inserted,

r the set of trips with residual capacity is exhausted. In the latter

ase, the operator fails to split delivery v . A vector qt , initialized to

t v , is used to track the remaining demand for each product after

ach iteration of the algorithm. 

Note that to prevent too much fragmentation, the SI operator

s only allowed to insert visits into trips which cannot be used by

he II operator (trips that do not have enough residual capacity to

erve qt v entirely). The function a (t , qt ) : (T , R 

| P| ) → R 

| P| is used to

etermine the quantity st ∈ R 

| P| , 0 ≤ st ≤ qt , of products that can

e delivered to customer i v in trip t , based on the residual capacity

f the vehicle performing trip t . A precise definition of the func-

ion a ( t, qt ) is provided in Algorithm 3 . The function first attempts

o fill up any partially filled compartments of the vehicle serving

rip t . Next, a greedy procedure is used to fill up any unused com-

artments of the same vehicle. Preference is given to products for
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Table 4 

Adaptive adjustment of the operator scores. 

Reward Value Eligibility criteria 

σ 1 5 The last ALNS iteration produced a new best solution 

σ 2 3 The last ALNS iteration produced a solution that was better than the solution from the previous iteration 

σ 3 1 The solution from the last ALNS iteration is worse than the solution from the previous iteration, but was nevertheless accepted 
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hich there is a large demand and for which there is little spare

apacity in any of the other trips (line 5). 

.1. Initial solution 

An initial feasible solution X init for the ALNS heuristic is ob-

ained through a simple constructive procedure. This procedure

orks in two separate phases: 

1. Generate a set of vehicle-independent trips T such that the trips

collectively satisfy the demand of all customers. 

2. Assign each trip t ∈ T to a vehicle. 

When vehicles are heterogeneous, we only generate trips which

eet the capacity requirements of the smallest vehicle k ′ =
rgmin 

k ∈ K 
Q 

k C k , having C = C k 
′ 

compartments and Q = Q 

k ′ capacity

er compartment. 

The process of generating trips is subdivided into three steps,

hich attempt to generate trips with high vehicle utilization. The

euristic first generates dedicated trips for each customer i ∈ V in-

ependently, which utilize the maximum capacity ( C × Q ) of the

mallest vehicle. Clearly, for a given customer i ∈ V , there exist
 ∑ 

p∈ P � q ip /Q� 
C 

⌋ 

such trips. 

Let q i , i ∈ V , be a vector representing for each product the re-

aining, unsatisfied demand of a customer. After generating the

ull Truck Load (FTL) trips, for a given customer i ∈ V , it follows

hat: 
∑ 

p∈ P 
⌊ 

q ip 
Q 

⌋ 

< C, i.e. the residual demand of the remaining

roducts is not sufficient to fill up another vehicle with C com-

artments of size Q . Next, a number of dedicated, Less-than-Truck-

oad (LTL) trips for each customer are derived. We require that

or each dedicated LTL trip, each vehicle compartment must hold

ome product, and that precedence is given to products for which

he customer has the largest residual demand. As an example, let

 = 3 , Q = 80 , and d i = (100 , 20 , 50) for some customer i . We cre-

te a dedicated LTL trip for customer i containing a single visit

 with qt v = (100 , 0 , 50) . The residual demand of customer i be-

omes q i = (0 , 20 , 0) . Again, for a single customer i ∈ V , there exist
 ∑ 

p∈ P � q ip /Q� 
C 

⌋ 

such LTL trips. 

After updating q i with the LTL trips for each customer i ∈ V , the

ollowing conditions hold: |{ p ∈ P : q ip > 0 }| < C and 

∑ 

p∈ P q ip <
Q, i.e. the residual demand of customer i can be satisfied by a sin-

le vehicle. In the third, and last step of the trip generation phase,

or each of the customers i ∈ V with residual demand, we create a

ingle visit v having qt v = q i . Next, these visits are greedily inserted

nto the existing trips, following the insertion strategies outlined in

he previous section, thereby always selecting the strategy that in-

reases the objective the least. 

Once all trips are generated, we assign them to vehicles. This

ssignment problem is solved by a greedy heuristic which allo-

ates trips one by one, to the vehicle with the shortest itinerary,

ith ties broken arbitrarily. In case the vehicles are heterogeneous,

 trip is only assigned to vehicle if that vehicle meets the capacity

equirements to perform that trip. For instance, there might exist a

ehicle which has more capacity than the smallest vehicle ( C × Q ),

ut has fewer compartments. As such, this larger vehicle is unable

o perform trips in which C different products have to be delivered.
.2. Operator selection 

As is conventional in ALNS, the destroy (resp. repair) operators

re selected with a probability proportional to their past perfor-

ance. Let � be the set of available operators (e.g. destroy op-

rators), and w γ a weight associated with each operator γ ∈ �.

he probability that an operator γ ∈ � is selected is set equal to

 γ / �i ∈ �w i . 

The ALNS search is partitioned into sequences of 100 consec-

tive iterations. Throughout a sequence, the performance of each

perator is monitored, and, at the end of the sequence the weights

f the operators are adjusted according to their performance. Each

ime an operator is invoked during an ALNS iteration, it is able to

ollect a reward; a summary of potential rewards and their eligi-

ility criteria is given in Table 4 . Let πγ be the total reward accu-

ulated by operator γ during a sequence, and βγ the number of

imes the operator was invoked during the sequence. At the end of

ach sequence, the normalized performance of an operator is given

y 
πγ

βγ
, and a new weight w 

′ 
γ for each operator γ ∈ � is calcul ated

s follows: 

 

′ 
γ = w γ (1 − ξ ) + ξ

πγ

βγ
, (30)

here scalar ξ (0 ≤ ξ ≤ 1) controls how sensitive the weights re-

ct to changes in the operator’s performance. In our implementa-

ion, at the beginning of the ALNS search, all operators have equal

eight. Moreover, destroy and repair operators are selected inde-

endently from each other. 

.3. Destroy and repair operators 

Six removal operators are used, the first three of them are

irectly adopted from Shaw (1998) , Ropke and Pisinger (2006) ,

isinger and Ropke (2007) ; the remaining three operators are tai-

ored to our problem. To be self-contained, we include a brief de-

cription of each operator. For more details, we refer to the afore-

entioned references. 

• Random Removal (RR): randomly remove φ ∈ [1, ρ| V |] visits

from the schedule, where the scalar ρ is the destroy rate. 
• Worst Removal (WR): Iteratively remove φ ∈ [1, ρ| V |] visits.

Each removal yields a new schedule. In every iteration, we re-

move the visit who’s removal from the schedule will benefit the

objective value the most. Ties are broken arbitrarily. 
• Shaw Removal (SR): Remove similar visits, where the similar-

ity between a pair of visits u, v, u � = v , is expressed by a sim-

ilarity metric s ( u, v ). Let l u v = −1 if visits u, v are performed

during the same trip, l u v = 1 otherwise. We define s (u, v ) =
ϕd i v i u + ψ l v u + χ‖ qt u − qt v ‖ 1 , where ϕ, ψ , χ are independent

scalars, and where the terms d i v i u , resp. ‖ qt u − qt v ‖ 1 have been

normalized by resp. the largest distance between a pair of cus-

tomers, and a vector representing the largest demand for each

product. The SR operator iteratively removes φ ∈ [1: ρ| V |] vis-

its from the schedule, each time selecting the visit v ∗ which is

most similar to the visit u removed in the preceding iteration,

i.e. v ∗ = argmin 

v 
s (u, v ) . The first visit to be removed is selected

at random. 
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Table 5 

The parameters of ALNS. 

Notation Description Value 

nonImp max Maximum number of non-improving iterations 1000 

timeLimit Time limit (in seconds) 3600 

T Initial temperature SA 200 

κ Cooling rate SA 0.9995 

Nsg Number of iterations per segment 100 

ξ Reaction factor 0.1 

ρ Destroy rate for removal operators 0.45 

ϕ First Shaw parameter 0.2 

ψ Second Shaw parameter 0.25 

χ Third Shaw parameter 0.1 
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• Longest Route Removal(LRR): remove the longest route from

the schedule. 
• Visits in Long Routes Removal(VLRR): randomly remove φ ∈ [1,

0.5 V num 

] visits from the η = 0 . 5 | K| longest routes, where V num 

is the total number of visits in these routes. 

Next to the above removal operators, we use one additional op-

erator which does not remove visits, but reallocates trips in their

entirety: 

• Trip Reallocation (TR): Randomly select and remove ζ ∈ [1:

0.45| T |] trips from the schedule. Sort the removed trips in de-

scending order based on their duration, and iteratively re-insert

them back into the schedule, each time assigning a trip to the

vehicle with the shortest itinerary. 

Note that, unlike the other removal operators, the TR operator

is not followed by one of the insertion operators described below. 

To repair the (partially) destroyed schedules, four repair opera-

tors are used to reschedule visits that are removed by the destroy

operators: 

• Greedy Insertion (GI): For each of the unscheduled visits in the

removal pool, this operator computes the lowest cost to re-

insert the visit somewhere in the schedule using the II, SI and

STI insertion strategies. Next, the operator inserts the visit with

the lowest insertion cost into the schedule, and updates the in-

sertion costs of the remaining unscheduled visits accordingly.

This procedure is repeated until all visits have been resched-

uled. 
• Greedy with Split Preference (GSP): Same as GI, but instead of

considering all insertion strategies, this operator attempts to in-

sert each visit using SI. Only in the event that a visit cannot be

inserted through SI, e.g. when the existing trips do not have

enough residual capacity, the operator resorts to the II and STI

strategies. 
• Regret Insertion ( Ropke and Pisinger, 2006 ) (RI-2, RI-3): For

each unscheduled visit v , we compute the cheapest option f 1 v 
to reschedule visit v through the 3 different insertion strate-

gies, as well as the i th cheapest alternative f i v for when options

f 1 
j 
, . . . , f i −1 

v are unavailable. For each unscheduled visit v , a so-

called regret cost 	i 
v is computed, where 	i 

v is the difference in

cost between f 1 v and f i v . At each iteration, the operator greedily

selects the visit v with lowest cost 	i 
v , reschedules it using f 1 v ,

and updates f 
j 

u for j = 1 , . . . , i for the remaining unscheduled

visits accordingly. We include two different Regret Insertion op-

erators, RI-2 and RI-3, for i = 2 and i = 3 respectively. 

Since the insertion heuristics are quite myopic, we followed the

suggestion of Ropke and Pisinger (2006) to add noise to the in-

sertion heuristics. This prevents these heuristics from always mak-

ing the move that seems best locally. The same settings as in

Ropke and Pisinger (2006) are used. 

6. Experiments 

In this section, we perform an experimental evaluation of the

proposed ALNS heuristic based on a large testbed of FRP instances

derived from real-world data. All experiments are conducted on a

system having an Intel Core i5-3320M 2.67 GHz Processor, 8 GB

RAM, and running Windows 10 Professional. The algorithms are

implemented in Java 8. The MILP models are solved through IBM

ILOG CPLEX 12.8 using default settings and a time limit of 7200

seconds. An overview of the parameters used in our ALNS imple-

mentation is provided in Table 5 . These parameters are determined

empirically. The scalars α, β in the objective function (2) are fixed

to 100 and 1 respectively. 
.1. Problem instances 

To generate realistic benchmark instances, we used data from

ingBo Chaoyang Oil Transportation Co., Ltd., a Chinese petroleum

ransportation company. The customer demands for each product

re sampled from their customer delivery data. Similarly, the ve-

icle sizes (number of compartments and compartment dimen-

ions) are based on vehicles used by the company. Unfortunately,

he company was unable to provide us with the actual locations of

he fuel stations (customers), or the travel distances between each

air of locations. Instead we were provided with the travel distance

 i between the depot and each customer location i ∈ V . To mimic

ctual travel data, we assigned each customer i to a location rela-

ive to the depot by a polar coordinate ( r i , φi ), where φi is a ran-

om angle uniformly selected from [0, 360[. The distance d ij be-

ween locations i and j is given by the Euclidean distance, rounded

own to the nearest integer. By computing the distance matrix in

his manner, we preserve the travel distances r i , while guarantee-

ng that the distance matrix satisfies the triangle inequality. 

To evaluate the performance of the ALNS heuristic, we first

enerated 112 problem instances partitioned into 64 small and

8 medium instances. Each instance specifies a set of customers,

heir locations, a demand per product per customer, the number

f available vehicles, the number of compartments in a vehicle,

nd the volume of a compartment. The small instances have up

o 16 customers, up to 5 homogeneous vehicles each having 3

ompartments with a fixed volume of 8k units, and up to 3 dif-

erent petrol products. The medium instances on the other hand

ave up to 60 customers which are served by up to 20 homoge-

eous vehicles having the same number of compartments as in

he small instances, but with capacities of up to 16k units. The

ollowing naming convention is used to uniquely identify these

roblem instances: s α-v β-p γ -c δ − ε, where α denotes the num-

er of customers, β the number of vehicles, γ the number of prod-

cts, δ the number of compartments per vehicle and ε the capac-

ty of a single compartment. Sections 6.2 –6.5 present the compu-

ational results for these homogeneous problem instances. Later,

n Section 6.6 , we conduct a limited number of experiments on

roblem instances involving a heterogeneous fleet of vehicles. As

escribed in Section 6.6 , these heterogeneous problem instances

re obtained through a simple transformation of the homogeneous

roblem instances. 

.2. Performance of ALNS 

In this section, we analyze the performance of the ALNS heuris-

ic by comparing it against the bounds produced by the MILP

odel from Section 3 and the CG model from Section 4 . We solve

he set of small instances with the MILP model, the CG model and

he ALNS heuristic. The medium instances are solved through CG

nd ALNS since these instances are too large to solve through the

ILP formulation. 
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Fig. 2. Gap comparison. 
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Detailed results for each instance are given in Tables A.7 and

.8 in the Appendix. Column LB provides the strongest lower bound

erived from the CG and, when available, the MILP model. For

LNS, we report the best f b , average f a and worst f w 

solution ob-

erved in 10 independent invocations of the ALNS algorithm, as

ell as the average computation time t ( s ). Column gap reports the

ercentage gap between f b and LB , calculated as 
f b −LB 

f b 
. For MILP,

e report the best solution f obtained within a time limit of 2

ours, the percentage gap between f and LB , and the computation

ime t ( s ) in seconds. Finally, for CG, we report the best objective

alue f and the computation time t ( s ) in seconds. All instances are

rdered in ascending order of the number of customers, number of

ehicles, number of products, number of compartments and com-

artment size. 

As can be observed from Table A.7 , the MILP model only solves

nstances up to 10 customers within a time limit of 2h. Out of the

4 small instances, MILP solves 18 instances to proven optimality.

he same optimal solutions are found by our ALNS heuristic. For

he instances with 12 or more customers, MILP never terminates

efore the two-hour time limit. The ALNS heuristic however is able

o find high quality solutions (average gap 1.7%) for all small in-

tances in less than 10 seconds per instance. When comparing the

est ALNS solutions f ( b ) with the MILP solutions f we observe that

LNS consistently outperforms MILP as the ALNS solutions are ei-

her identical or better than the MILP solutions for all small in-

tances. 

To assess the scalability of the ALNS heuristic, we repeat

hese computational experiments on the set of medium instances

 Table A.8 ). For these instances, we can only compare against the

ounds obtained from our CG model. Even for the largest instances

n this set, having 60 customers and 20 vehicles, computation

imes of the ALNS heuristic stay well below 25 minutes, while ob-

aining an average gap ( 
f b −LB 

f b 
) of 7.5%. When expressing the gap

etween LB and average objective value f a (as opposed to f b ), we

itness only a minor gap increase of 1.3%. This shows that the

LNS results are robust across multiple runs. 

Fig. 2 a depicts a summary of the bounds computed for each of

he instances in the small data set. The 0% gap line corresponds

o the LB column in Table A.7 , i.e. the strongest lower bound.

he blue line (ALNS) and green line (MILP UB) correspond to the
ap(%) columns in the same table. Finally, the black line (CG LB)

nd the red line (MILP LB) represent the gaps between these two

ower bounds and the strongest lower bound (0% line). For in-

tance, the black line is calculated as − LB −CG 
LB . As can be observed

rom Fig. 2 , for the first 18 instances the MILP model produces the

trongest lower bounds. Once the instances become too large (12

ustomers or more), the MILP model is no longer able to derive

trong bounds: for instances 40–64 the best lower bound is pro-

ided by the CG model. Fig. 2 a depicts the gaps computed between

LNS and CG for the medium instances. Even for the largest in-

tances in this set, the gap stays well below 12%. 

Fig. 3 analyses various properties of the solutions obtained

hrough the ALNS heuristic. | Cap | is the total vehicle capacity (sum

f compartment capacities). Fig. 3 a shows the average number of

rips performed by a vehicle. This number ranges from 0.5 to 10.5,

nd tends to grow linear in the number of customers. The slope

f these curves is proportional to the number of available vehi-

les, and their capacities. Fig. 3 b depicts the average number of

ustomers visited during a single trip. Clearly this number is lim-

ted by the vehicle capacity. In the FRP the average number of

ustomers per trip is quite low due to the fact that customer de-

ands are high compared to the vehicle capacities. Finally Fig. 3 c

easures the vehicle utilization, computed as the average fraction

f the vehicle capacity occupied during a trip. Clearly, the ALNS

euristic is able to compute very dense solutions, with average uti-

ization rates of up to 97%. The average utilization rate increases

nversely proportional to the total vehicle capacity, and is relatively

ndependent of the number of available vehicles. 

.3. Computation times 

Fig. 4 shows the influence of the various instance features on

he average ALNS computation times. Naturally, computation times

o up when the number of customers increases. For a fixed num-

er of customers, we observe a decrease in computation time when

he number of vehicle compartments or their capacity increases

 Fig. 4 b and c). A strong increase in computation time is observed

hen the number of different products increases ( Fig. 4 d). Finally,

n contrast to the aforementioned instance features, we do not wit-

ess a strong correlation between the number of vehicles and the

otal computation time of the ALNS heuristic ( Fig. 4 a). 
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Fig. 3. Solution statistics. 
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6.4. Impact of compartment splitting 

Individual compartments of fuel delivery vehicles are typically

equipped with debit meters to deliver precise quantities of fuel to

customers. Moreover, it becomes possible to split the fuel stored

into a single compartment over multiple customers. From an oper-

ational as well as a computational perspective, allowing compart-

ment splitting increases the complexity of the problem due to a

drastic increase in search space. A reasonable question to ask is

how beneficial it is to allow compartment splitting? One might

conjecture that there is a diminishing effect to compartment split-

ting when the number of customers increases due to an increase

in the number of potential routes and delivery patterns. 

A comparison of the results obtained through ALNS with and

without compartment-splitting over multiple customers on a sub-

set of 32 instances containing 20–40 customers is presented in

Fig. 5 . As is shown in the figure, the objective value of all 32 in-

stances improves when compartment-splitting is allowed. The av-

erage improvement in objective value equals 12.5%. Moreover, we

observed a marginal increase in the average objective improvement
btained from splitting compartments when the number of cus-

omers increases. 

.5. ALNS Operator performance 

Fig. 6 investigates the performance of the ALNS operators de-

cribed in Section 5.3 . This analysis is performed using average re-

ults obtained from 16 instances, each having 40 customers, and

hich have been solved 10 times per instance. The x-axis of each

raph shows the progress of the heuristic: the heuristic starts at 0%

completion’, and finishes at 100%. This completion metric allows

s to compare different ALNS runs mutually, independent of the

umber of iterations performed by the time the heuristic termi-

ates. Fig. 6 a depicts the cumulative contribution of each operator,

xpressed in the number of times an operator discovered a new

ncumbent solution and normalized by the total number of times

 new incumbent solution was found (percentage). Solid lines rep-

esent destroy operators, whereas dashed lines are the repair op-

rators. Naturally, the largest number of improving solutions are

iscovered early in the search. Towards the end of the search, the
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Fig. 4. Impact of instance features on average ALNS computation time. 

Fig. 5. Impact of compartment splitting. Each triangle represents an instance from 

the medium data set; the triangle colors correspond to the number of customers in 

the instance. A slight increase in the benefit obtained through compartment split- 

ting can be observed when the number of customers increases. 
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raph gradually flattens out. The SR destroy operator (Shaw Re-

oval, green) and the RI-3 repair operator (Remove-Insert, brown)

re responsible for the discovery of the largest number of new best

olutions. 

Recall from Section 5.2 that during each ALNS iteration, the de-

troy and repair operators are selected proportional to their nor-

alized performance w γ / �i ∈ �w i , and that the performance of

n operator γ ∈ � is measured in terms of collected rewards

 Table 4 ). The graphs in Fig. 6 b and 6 c plot for each operator γ ∈ �

he average ratio w γ / �i ∈ �w i ov er the course of the heuristic. In-

eresting to observe is that although percentage wise the SR re-

oval operator discovers the largest number of incumbent solu-

ions ( Fig. 6 a), the performance of this operator degrades over time

 Fig. 6 b) and is surpassed by the LRR (black) and VLRR operators

pink). The RI-2, RI-3 repair operators consistently outperform the

I and GSP operators ( Fig. 6 c). Finally we observe from Fig. 6 a and

 that the performance of the Worst-Removal (WR, green) operator

s relatively poor. Also in the work by Ropke and Pisinger (2006) ,

his operator has the lowest performance. To investigate whether

t would be better to disable the WR operator altogether, we

eran our experiments. We observed that disabling the WR opera-

or benefits some instances, but negatively affects other instances.

e suspect that this operator is useful in some cases to escape
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Fig. 6. ALNS operator performance, averaged over 10 invocations of the ALNS heuristic over 16 instances with 40 customers each. 
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local minima. Therefore, we decided to leave the operator in,

and let the operator selection mechanism ( Section 5.2 ) deal with

it. 

6.6. Heterogeneous vehicles 

Thus far, all experiments are conducted with a homogeneous

fleet of vehicles. In this subsection we investigate the perfor-

mance of the ALNS heuristic on problem instances involving a

heterogeneous set of vehicles. To perform this experiment in

a controlled manner, we use the homogeneous instances intro-

duced in Section 6.1 to generate sets of heterogeneous problem

instances. 

In what remains we refer to the set of homogeneous instances

as Type A instances. We generate two new sets of heterogeneous

problem instances, which we will refer to as Type B and Type C

instances respectively. These new instances only differ in one di-

mension from the Type A instances: instances of Type B are in-

stances in which the vehicle capacity of all the vehicles is the

same, but some vehicles have more (but smaller) compartments,
hereas for the Type C instances all vehicles have the same num-

er of equal-sized compartments, but some vehicles are larger than

thers. Note that we do not consider problem instances where

ome vehicles have unequal sized compartments, as no such ve-

icles exist in our real-world data. Moreover, the presence of ve-

icles with unequal sized compartments would further compli-

ate the problem at hand, since we would have to explicitly de-

ermine to which compartment a product is assigned, as opposed

o assigning products to vehicles without distinguishing individual

ompartments. 

Given an instance of type A with k vehicles, C compartments

er vehicle, and Q the capacity of a single compartment, and Q =
 × Q the total vehicle capacity, we create instances of types B and

 as follows: 

Type B: k 1 = � 0 . 75 × k � vehicles with C1 = C − 1 compart-

ments with a compartment size of Q1 = Q / (C − 1) , and k 2 =
� 0 . 25 × k � vehicles with C2 = C compartments with a com-

partment size of Q2 = Q /C
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Table 6 

Results f or the heterogeneous problem instances (averages). 

Small instances Medium instances 

A B C A B C 

f b 8769.84 8661.11 8656.70 24925.40 24645.71 24673.69 

f a 8827.50 8739.25 8766.04 25264.17 25007.96 25034.56 

f w 8935.86 8842.52 8878.59 25675.85 25425.00 25456.71 

gap 1.69 6.01 5.89 7.50 8.24 9.43 

t(s) 0.61 1.02 1.05 99.47 201.37 213.93 

AVG trips/vehic 3.00 2.96 2.96 5.08 5.07 5.12 

AVG cust/trip 1.41 1.41 1.37 2.21 2.13 2.12 

AVG vehic cap util 0.89 0.89 0.88 0.93 0.93 0.93 
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Type C: k 1 = � 0 . 75 × k � vehicles with C1 = C compartments

with a compartment size of Q1 = 0 . 75 Q /C, and k 2 = � 0 . 25 ×
k � vehicles with C2 = C compartments with a compartment

size of Q2 = 

Q ×k −(k 1 ×C×Q1) 
C×k 2 

Note that, for a given instance of Type A, the corresponding in-

tances of Types B and C have the exact same number of vehicles,

nd, summed over all vehicles, the total available vehicle capacity

s also the same. As per example, from a type A instance s20-v5-

3-c3-80 0 0 with k = 5 , C = 3 , Q = 80 0 0 , the following 2 new in-

tances are created: 

Type B: k 1 = 3 vehicles with C1 = 2 compartments with a com-

partment size of Q1 = 120 0 0 , and k 2 = 2 vehicles with C2 =
3 compartments with a compartment size of Q2 = 80 0 0 . No-

tice that both the vehicles with 2 compartments and with 3

compartments have a total capacity of 240 0 0. The 5 vehicles

together have 5 × 240 0 0 = 120 0 0 0 capacity. 

Type C: k 1 = 3 vehicles with C1 = 3 compartments with a com-

partment size of Q1 = 60 0 0 , and k 2 = 2 vehicles with C2 =
3 compartments with a compartment size of Q2 = 110 0 0 .

So we have 3 smaller vehicles with a total vehicle capac-

ity of 180 0 0, and 2 larger vehicles with a total vehicle ca-

pacity of 330 0 0. These 5 vehicles together have 120 0 0 0

capacity. 

Using the Type A instances listed in Tables A.7 and A.8 , we

enerate both small and medium sized instances of Types B and

. Table 6 reports the results averaged over all heterogeneous

nstances. A description of the reported values can be found in

ection 6.2 . 

When comparing the results of Type B, C against Type A, we

otice that both the best, average and worst ALNS objective values

mprove while the optimality gaps stay roughly the same. Despite

he fact that the heterogeneous instances are harder to solve, as

itnessed from the increased computation times, we conclude that

he ALNS heuristic produces solutions of consistent quality across

ifferent instance types. Increasing the number of compartments

er vehicle, as is the case for instances of Type B, results in a

lightly higher vehicle utilization, and hence a marginal reduction

n the number of trips that have to be performed per vehicle. The

mprovements in both the best, average and worst ALNS solutions

or Type C, although minor, show that further cost reductions can

e achieved when an adequate mixture of differently-sized vehi-

les is deployed. 
. Conclusions 

In this paper, we addressed a Fuel Replenishment Problem

FRP). Specifically, we considered a split delivery vehicle routing

roblem with multiple compartments and multiple trips. The ob-

ective is to determine the routing of the vehicles, the delivery pat-

ern of each trip and the allocation of products to vehicle compart-

ents, while minimizing the makespan of the resulting routes. We

ormally defined the problem and proposed a MILP model for it. In

rder to solve this problem effectively, we proposed an Adaptive

arge Neighborhood Search (ALNS) algorithm. Additionally, we also

roposed a column generation approach to compute tight lower

ounds. 

We generated small and medium-sized instance sets to evalu-

te the performance of ALNS. We showed that the ALNS is able

o find (near) optimal solutions much faster than the exact MILP

odel using CPLEX. Moreover, the ALNS heuristic is able to han-

le instances that are significantly larger: we obtain very good

olutions within 10 0 0 seconds for instances with 60 customers,

0 vehicles, 3 products and 4 compartments. Finally, sensitivity

nalysis is performed to assess the influence of important prob-

em instance features (number of vehicles, products, compart-

ents and their capacity) on the solution quality and computa-

ion times. Our numerical results show that significant savings

re obtained by allowing for multiple trips and splitting customer

emand. 

Future research could involve extending our models and

olution approach to consider stochastic demands. In this

ontext, Inventory-Routing models are highly relevant to

onsider. 
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Appendix A. Detailed computational results 

Table A1 

Small instances. 

ALNS 

instance LB f b f a f w 

s2-v3-p2-c3-8000 4900.0 4900 4900 4900

s2-v3-p2-c4-8000 3383.0 3383 3383 3383

s2-v3-p3-c3-8000 5335.0 5335 5335 5335

s2-v3-p3-c4-8000 5109.0 5109 5109 5109

s2-v5-p2-c3-8000 2700.0 2700 2700 2700

s2-v5-p2-c4-8000 2700.0 2700 2700 2700

s2-v5-p3-c3-8000 3435.0 3435 3435 3435

s2-v5-p3-c4-8000 2726.0 2726 2726 2726

s4-v3-p2-c3-8000 7372.0 7372 7372 7372

s4-v3-p2-c4-8000 5249.0 5249 5249 5249

s4-v3-p3-c3-8000 9875.0 9875 9875 9875

s4-v3-p3-c4-8000 7339.0 7399 7459 7599

s4-v5-p2-c3-8000 4972.0 4972 4972 4972

s4-v5-p2-c4-8000 4949.0 4949 4949 4949

s4-v5-p3-c3-8000 6476.0 6476 6555.9 7275

s4-v5-p3-c4-8000 5003.0 5003 5023.2 5205

s6-v3-p2-c3-8000 7410.0 7410 7410 7410

s6-v3-p2-c4-8000 6375.0 6375 6375 6375

s6-v3-p3-c3-8000 11126.9 11327 11378.1 11,53

s6-v3-p3-c4-8000 8649.0 8649 8649.9 8650

s6-v5-p2-c3-8000 5010.0 5010 5010 5010

s6-v5-p2-c4-8000 4979.0 4979 4979 4979

s6-v5-p3-c3-8000 7083.6 7236 7275.6 7335

s6-v5-p3-c4-8000 5347.0 5349 5409.2 5550

s8-v3-p2-c3-8000 8547.0 8547 8547 8547

s8-v3-p2-c4-8000 7515.0 7515 7537 7619

s8-v3-p3-c3-8000 12978.0 12978 13088.3 13,18

s8-v3-p3-c4-8000 10065.7 10400 10419.7 10,50

s8-v5-p2-c3-8000 5450.0 5450 5502.1 5647

s8-v5-p2-c4-8000 5019.0 5019 5020.8 5022

s8-v5-p3-c3-8000 7800.0 8078 8088.6 8178

s8-v5-p3-c4-8000 6602.0 6602 6671.3 6705

s10-v3-p2-c3-8000 9357.6 9577 9751.8 9883

s10-v3-p2-c4-8000 8237.0 8237 8257.6 8342

s10-v3-p3-c3-8000 14093.0 14420 14,440 14,52

s10-v3-p3-c4-8000 11306.4 11432 11554.5 11,63

s10-v5-p2-c3-8000 5876.9 6077 6090.6 6189

s10-v5-p2-c4-8000 5238.0 5238 5238.1 5239

s10-v5-p3-c3-8000 8663.0 8820 8850 8920

s10-v5-p3-c4-8000 6853.4 7132 7153.1 7235

s12-v3-p2-c3-8000 11740.9 12049 12059.4 12,15

s12-v3-p2-c4-8000 9445.5 9888 9917.9 9988

s12-v3-p3-c3-8000 17899.2 18126 18178.1 18,23

s12-v3-p3-c4-8000 13421.9 13904 14025.9 14,10

s12-v5-p2-c3-8000 7266.0 7549 7590.8 7750

s12-v5-p2-c4-8000 5911.7 6188 6241 6391

s12-v5-p3-c3-8000 10712.5 11128 11188.8 11,23

s12-v5-p3-c4-8000 8229.4 8607 8647.4 8711

s14-v3-p2-c3-8000 12859.2 13183 13223.9 13,28

s14-v3-p2-c4-8000 10648.9 11018 11029.2 11,12

s14-v3-p3-c3-8000 19387.0 19981 20082.7 20,38

s14-v3-p3-c4-8000 14821.0 15243 15,263 15,34

s14-v5-p2-c3-8000 7983.8 8184 8194.1 8285

s14-v5-p2-c4-8000 6439.3 6819 6898.7 7118

s14-v5-p3-c3-8000 11852.4 12281 12301.9 12,38

s14-v5-p3-c4-8000 9142.1 9343 9454.2 9548

s16-v3-p2-c3-8000 14380.4 14522 14562.5 14,62

s16-v3-p2-c4-8000 11366.2 11947 11978.1 12,05

s16-v3-p3-c3-8000 20866.8 21731 21916.3 22,14

s16-v3-p3-c4-8000 15880.6 16272 16426.4 16,68

s16-v5-p2-c3-8000 8706.1 8922 8962.6 9122

s16-v5-p2-c4-8000 6977.6 7447 7508.9 7650

s16-v5-p3-c3-8000 12789.3 13331 13476.9 13,64

s16-v5-p3-c4-8000 9766.5 10072 10169.9 10,38
MILP CG 

gap t ( s ) f gap t ( s ) f t ( s ) 

0.0 0.2 4900 0.0 4.6 3433.3 0.1 

0.0 0.2 3383 0.0 3.3 2849.7 0.1 

0.0 0.2 5335 0.0 2.4 4635.0 0.1 

0.0 0.1 5109 0.0 3.9 3742.3 0.2 

0.0 0.1 2700 0.0 2.4 2100.0 0.1 

0.0 0.0 2700 0.0 2.5 1743.0 0.1 

0.0 0.1 3435 0.0 2.9 2835.0 0.1 

0.0 0.1 2726 0.0 2.7 2289.0 0.1 

0.0 0.1 7372 0.0 6.7 5905.3 0.2 

0.0 0.1 5249 0.0 2.6 4978.3 0.3 

0.0 0.2 9875 0.0 320.7 9441.7 0.4 

0.8 0.1 7339 0.0 5.5 6832.3 0.3 

0.0 0.1 4972 0.0 6.7 3612.0 0.2 

0.0 0.1 4949 0.0 4.3 3045.0 0.3 

0.0 0.1 6476 0.0 242.5 5775.0 0.4 

0.0 0.1 5003 0.0 6.2 4179.0 0.6 

0.0 0.1 7410 0.0 19.1 7129.7 0.6 

0.0 0.1 6375 0.0 9.0 5995.3 0.5 

1.8 0.2 11327 1.8 7204.8 11126.9 1.0 

0.0 0.1 8649 0.0 426.9 8480.3 2.3 

0.0 0.1 5010 0.0 72.0 4410.0 0.8 

0.0 0.1 4979 0.0 123.9 3667.1 0.7 

2.1 0.2 7236 2.1 7210.1 6727.0 1.1 

0.0 0.1 5347 0.0 397.3 5187.0 2.9 

0.0 0.2 8547 0.0 483.3 8438.8 1.0 

0.0 0.1 7515 0.0 184.1 7356.1 0.9 

0.0 0.4 12978 0.0 7205.1 12978.0 4.4 

3.2 0.2 10297 2.2 7200.6 10065.7 5.8 

0.0 0.1 5450 0.0 3293.2 5130.3 1.4 

0.0 0.1 5019 0.0 208.6 4504.2 1.8 

3.4 0.4 8078 3.4 7201.2 7800.0 6.3 

0.0 0.2 6602 0.0 4443.3 6226.5 4.9 

2.3 0.3 9577 2.3 7203.6 9357.6 2.1 

0.0 0.2 8237 0.0 765.6 7923.5 3.1 

2.3 0.8 14,523 3.0 7217.9 14093.0 5.8 

1.1 0.4 11,736 3.7 7209.3 11306.4 19.5 

3.3 0.3 6077 3.3 7200.2 5693.3 2.5 

0.0 0.2 5238 0.0 565.7 4886.2 2.4 

1.8 0.7 9220 6.0 7220.4 8663.0 12.6 

3.9 0.4 7335 6.6 7215.4 6853.4 10.5 

2.6 0.4 12,461 5.8 7223.1 11740.9 12.3 

4.5 0.3 9888 4.5 7213.9 9445.5 7.8 

1.3 2.2 19,672 9.0 7206.8 17899.2 35.2 

3.5 0.8 15,034 10.7 7204.3 13421.9 23.6 

3.7 0.5 7757 6.3 7208.6 7266.0 8.7 

4.5 0.4 6189 4.5 7205.9 5911.7 8.9 

3.7 2.8 11,437 6.3 7211.8 10712.5 27.0 

4.4 1.0 8805 6.5 7213.8 8229.4 35.6 

2.5 0.5 14,399 10.7 7214.6 12859.2 7.5 

3.4 0.6 11,627 8.4 7209.9 10648.9 16.6 

3.0 4.4 20,184 3.9 7208.7 19387.0 37.1 

2.8 2.0 17,188 13.8 7213.1 14821.0 59.6 

2.4 0.6 8392 4.9 7205.8 7983.8 31.2 

5.6 0.6 7528 14.5 7210.6 6439.3 6.3 

3.5 3.4 14,030 15.5 7212.4 11852.4 38.1 

2.2 1.4 11,264 18.8 7210.9 9142.1 61.1 

1.0 0.9 15,443 6.9 7210.6 14380.4 45.0 

4.9 0.9 13,899 18.2 7211.1 11366.2 19.2 

4.0 6.7 26,740 22.0 7209.8 20866.8 121.3 

2.4 3.0 18,534 14.3 7224.7 15880.6 50.7 

2.4 1.2 11,177 22.1 7216.1 8706.1 25.9 

6.3 0.9 8449 17.4 7225.8 6977.6 20.8 

4.1 6.2 15,510 17.5 7216.3 12789.3 55.2 

3.0 2.9 11,119 12.2 7209.3 9766.5 63.1 
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Table A2 

large instances. 

ALNS 

Instance LB f b f a f w gap(%) t(s) 

s20-v5-p2-c3-8000 12188.5 12,806 12909.6 13,115 4.8 2.8 

s20-v5-p2-c3-16000 7409.5 7765 8015 8184 4.6 1.2 

s20-v5-p2-c4-8000 9462.0 9868 10010.8 10,287 4.1 2.0 

s20-v5-p2-c4-16000 7087.8 7763 7795.3 7870 8.7 1.7 

s20-v5-p3-c3-8000 17881.4 18,476 18737.1 19,000 3.2 9.7 

s20-v5-p3-c3-16000 9854.0 10,181 10,501 10,702 3.2 3.4 

s20-v5-p3-c4-8000 13438.6 14,381 14557.1 14,797 6.6 5.1 

s20-v5-p3-c4-16000 7826.4 8393 8601.7 8914 6.8 2.9 

s20-v3-p2-c3-8000 19863.7 20,806 20937.9 21,112 4.5 2.0 

s20-v3-p2-c3-16000 11951.3 12,461 12625.4 12,770 4.1 1.4 

s20-v3-p2-c4-8000 15843.3 16,068 16159.2 16,377 1.4 1.3 

s20-v3-p2-c4-16000 9671.3 10,087 10212.4 10,297 4.1 0.8 

s20-v3-p3-c3-8000 28904.7 30,178 30465.6 30,896 4.2 8.9 

s20-v3-p3-c3-16000 15840.2 16,480 16848.3 17,301 3.9 3.5 

s20-v3-p3-c4-8000 21964.4 23,380 23646.4 23,892 6.1 5.1 

s20-v3-p3-c4-16000 12789.5 13,593 13788.3 14,205 5.9 2.4 

s40-v8-p2-c3-8000 26291.0 28,614 28959.1 29,348 8.1 52.7 

s40-v8-p2-c3-16000 15283.1 16,726 17125.5 17,365 8.6 26.2 

s40-v8-p2-c4-8000 21064.5 22,666 22906.6 23,308 7.1 42.8 

s40-v8-p2-c4-16000 12637.0 13,601 13799.5 14,086 7.1 14.2 

s40-v8-p3-c3-8000 33332.9 35,855 36513.8 37,031 7.0 109.2 

s40-v8-p3-c3-16000 18848.1 20,811 21144.2 21,373 9.4 57.7 

s40-v8-p3-c4-8000 25807.2 27,737 28040.5 28,710 7.0 81.2 

s40-v8-p3-c4-16000 15313.6 16,824 17167.5 17,646 9.0 31.4 

s40-v5-p2-c3-8000 41228.1 44,515 44891.1 45,773 7.4 36.1 

s40-v5-p2-c3-16000 24041.8 25,923 26430.8 26,979 7.3 19.6 

s40-v5-p2-c4-8000 32531.6 34,962 35338.2 35,898 7.0 32.8 

s40-v5-p2-c4-16000 19740.2 20,786 21175.9 21,413 5.0 15.0 

s40-v5-p3-c3-8000 51363.0 56,067 56652.1 57,118 8.4 106.4 

s40-v5-p3-c3-16000 29233.9 32,220 32573.9 32,969 9.3 53.9 

s40-v5-p3-c4-8000 40220.4 42,832 43505.7 44,094 6.1 63.7 

s40-v5-p3-c4-16000 23551.8 25,719 26084.4 26,450 8.4 32.4 

s60-v8-p2-c3-8000 41780.3 46,210 46638.9 47,495 9.6 258.1 

s60-v8-p2-c3-16000 23941.0 26,339 26728.4 27,268 9.1 101.9 

s60-v8-p2-c4-8000 32678.6 36,056 36521.4 37,241 9.4 157.3 

s60-v8-p2-c4-16000 19278.8 21,463 21752.3 22,078 10.2 76.2 

s60-v8-p3-c3-8000 52705.7 59,290 59725.3 60,357 11.1 580.4 

s60-v8-p3-c3-16000 29862.5 33,034 33609.6 34,542 9.6 236.7 

s60-v8-p3-c4-8000 40697.6 45,345 45897.1 46,424 10.2 411.9 

s60-v8-p3-c4-16000 23518.1 26,332 26713.7 27,155 10.7 197.2 

s60-v12-p2-c3-8000 28885.1 31,882 32295.4 32,797 9.4 235.3 

s60-v12-p2-c3-16000 16554.0 18,411 18611.4 18,885 10.1 111.6 

s60-v12-p2-c4-8000 22593.3 25,235 25444.7 25,821 10.5 149.6 

s60-v12-p2-c4-16000 13319.0 14,960 15168.7 15,487 11.0 77.0 

s60-v12-p3-c3-8000 36437.0 40,961 41531.1 41,945 11.0 536.3 

s60-v12-p3-c3-16000 20636.7 22,929 23362.9 24,107 10.0 281.8 

s60-v12-p3-c4-8000 28136.6 31,103 31851.4 32,211 9.5 340.5 

s60-v12-p3-c4-16000 16289.6 18,325 18707.8 19,348 11.1 193.7 
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