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Abstract

Understanding cardiovascular growth and remodeling (G&R) is
fundamental for designing robust cardiovascular tissue
engineering strategies, which enable synthetic or biological
scaffolds to transform into healthy living tissues after implan-
tation. Computational modeling, particularly when integrated
with experimental research, is key for advancing our under-
standing, predicting the in vivo evolution of engineered tissues,
and efficiently optimizing scaffold designs. As cells are ulti-
mately the drivers of G&R and known to change their behavior
in response to mechanical cues, increasing efforts are
currently undertaken to capture (mechano-mediated) cell
behavior in computational models. In this selective review, we
highlight some recent examples that are relevant in the context
of cardiovascular tissue engineering and discuss the current
and future biological and computational challenges for
modeling cell-mediated G&R.
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Introduction

The ultimate goal of (m situ) cardiovascular tissue en-
gineering (CVTE) is to regenerate cardiovascular tissues
to restore or improve tissue function [1—3]. Current
main approaches involve the use of a (synthetic)

biodegradable scaffold, which acts as temporary support
for infiltrating cells that create their own, ideally native-
like extracellular matrix (ECM) environment while the
scaffold degrades over time. Such living engineered
tissues can potentially overcome the limitations of cur-
rent cardiovascular replacements, owing to their
intrinsic ability to grow (i.e. change in mass and volume)
and remodel (i.e. change in material properties) in
response to changes in demands. However, current
tissue engineering approaches still suffer from some
limitations. A mechanistic understanding of the pro-
cesses mediating functional and pathological growth and
remodeling (G&R) is therefore conditional to design
novel scaffolds that can guide these processes towards
physiological regeneration and preserved long-term
functionality.

Mechanical factors are increasingly recognized as
important drivers of G&R [4,5]. Computational models
capturing the mechanics and mechanobiology of car-
diovascular tissues are therefore indispensable to
mechanistically understand and predict the complex
interplay between mechanics and cardiovascular G&R.
In fact, recent studies have clearly demonstrated that
integrating computational modeling into the experi-
mental workflow leads to a substantially improved un-
derstanding and superior preclinical outcomes of novel
tissue engineering approaches [6—9].

Extensive research in the computational biomechanics
and mechanobiology field has been devoted to devising
constitutive laws describing the biomechanical behavior
of cardiovascular ECM (for some recent reviews, see
Refs. [10—12]), and to developing algorithms that
capture mechanically driven G&R of ECM components
(e.g. see Refs. [8,13—16]). These developments are
essential for accurately estimating overall tissue func-
tionality and the mechanical cues responsible for tissue
G&R. Concurrently, given that cells are key drivers of
G&R and a conditional factor discriminating living from
nonliving materials, increasing efforts are currently
undertaken to model various types of cell behavior as
well. This is particularly important for CVTE, as an
increased understanding of cellular processes and their
downstream effects on ECM G&R may reveal oppor-
tunities for steering cell behavior and consequently
ECM G&R via rational adaptations in the scaffold
design.
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In this selective review, we highlight some examples
of the current efforts and future challenges in
modeling cell behavior that are relevant in the
context of CVTE. Particularly, we focus on the as-
pects of (1) cytoskeletal remodeling, (2) cell turn-
over and migration, and (3) cell signaling, followed
by a more general discussion on the future biological
and computational challenges regarding modeling
cell-mediated G&R.

Cytoskeletal remodeling

Cellular contractility has evident effects on tissue
remodeling, as cellular forces can, for example, lead
to tissue compaction (Figure 1A) and reorientation of
collagen fibers (Figure 1B) [17,18]. Stress fibers are
the main contractile component of the cytoskeleton
of nonmuscle cells, such as heart valve interstitial
cells [19]. Consequently, the orientation and matu-
ration of these actomyosin bundles, respectively,
determine the direction and magnitude of cellular
forces (Figure 1B). However, modeling and predicting
stress fiber organization is very complex because it
remodels in response to several topographical and
mechanical stimuli ([20] for a review), respectively
provided, for example, by collagen fibers and pulsatile
blood flow. For a better understanding, increasing
efforts have been drawn toward developing compu-
tational models for stress fiber remodeling [21—25].

Recently, building on previous models [21,23], our
group has developed numerical algorithms to predict
stress fiber orientation in response to both topo-
graphical and mechanical stimuli [24,26]. By coupling
these models with equations describing collagen
turnover and prestretch as a result of stress fiber
contraction, we could simulate the remodeling of
native and tissue-engineered heart valves. Simulations
of native heart valves suggested that cellular forces
and alignment in response to mechanical stimuli are
crucial for the emergence of the physiological collagen
alignment at fetal age, whereas cellular alignment in
response to topographical stimuli provided by collagen
fibers is fundamental to maintain and reinforce the
physiological collagen alignment during infancy [27].
Simulations of tissue-engineered heart valves were
adopted to elucidate the role of cell contractility in
the retraction of tissue-engineered leaflets shortly
after implantation and to provide guidelines to avoid
this unwanted phenomenon [28]. Further simulations
were central to guide and improve the remodeling of
tissue-engineered heart valves, such that they can now
maintain excellent functionality up to one year after
implantation [7]. Overall, these studies highlight the
potential of analyzing stress fiber remodeling to
achieve an increased understanding of cardiovascular
tissue remodeling and eventually improve remodeling
outcomes.

The computational models that we have developed to
predict stress fiber remodeling [24,26] are mainly based
on previous  vitro observations and only partly moti-
vated by bio-chemo-mechanical considerations, which
might limit their predictive potential in unexpected
scenarios. More recently, by modifying a previous ther-
modynamically motivated framework for stress fiber
remodeling [25], Chen et al. [29] proposed a new
explanation for the orientation of stress fibers in
response to mechanical stimuli. This novel thermody-
namic model could be integrated with models for cell-
mediated remodeling of cardiovascular tissues to pro-
vide a more physically motivated understanding, as
already carried out for the investigation of tendon
remodeling [30]. Furthermore, future studies could
include the remodeling of additional (cytoskeletal)
components that interact with stress fibers and
contribute to regulate their organization and contrac-
tility in response to both topographical and mechanical
cues, such as focal adhesions [31], microtubules [32],
and vimentin [33]. Analyzing these interactions might
inspire new approaches to engineer functional cardio-
vascular tissues and might elucidate pathologies asso-
ciated with a dysregulation of these cellular
components.

Cellular migration and proliferation

Cellular migration and proliferation can lead to changes
in tissue volume, composition, and organization. For
example, restenosis of arterial stents and vein grafts is
correlated with excessive migration and proliferation of
vascular smooth muscle cells in the intima layer [34].
While migrating, cells also secrete matrix metal-
loproteinases and exert forces, thereby causing ECM
remodeling [35,36]. Accounting for migration and pro-
liferation is therefore crucial to understand G&R of
tissue-engineered cardiovascular grafts, as cell infiltra-
tion and proliferation are the main processes occurring
at early stages after implantation (Figure 2).

Cell migration and proliferation can be modeled with
continuum or agent-based models, depending on the
degree of accuracy and efficiency required. Following a
continuum approach, the local cell density can be
captured by adopting a single partial differential equation
accounting for chemo-attractants (for migration) and the
local nutrient concentration (for mitosis/apoptosis)
[37,38]. In contrast, agent-based models require a set of
rules/equations to describe the movement and prolifer-
ation of individually modeled cell agents. The continuum
approach is advantageous to investigate relatively large
cell populations because it allows for considering the
local cell concentration by solving a very limited number
of equations. Agent-based models are often adopted
when a relatively small population of cells is analyzed and
a higher degree of accuracy to describe cell migration and
proliferation is desired. For example, given their
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importance for restenosis of coronary stents and vein
grafts, several agent-based models have been recently
proposed to accurately describe these two phenomena in
this area [39—44].

In the context of tissue engineering, modeling cell
migration and proliferation increases our understand-
ing of the processes causing heterogeneity in the
distribution of cells and collagen in tissue-engineered
constructs, as recently demonstrated by Soares and
Sacks [38]. By coupling several partial differential
equations, their model considered local and temporal
variations in oxygen concentration depending on the
tissue-engineered construct porosity, permeability, and
deformation; cell chemotaxis toward higher oxygen
concentrations; and cell proliferation and ECM depo-
sition dependent on the local oxygen concentration. In
agreement with previous experiments, this parsimo-
nious model predicted that mechanical stimulation of
tissue-engineered samples increases the oxygen con-
vection, which in turn decreases the transversal het-
erogeneity of the distribution of oxygen, cells, and
ECM observed for statically cultured engineered tis-
sues. However, as pointed out by the same authors in
a different study [45], the proposed model cannot
explain the recently demonstrated existence of an
optimum strain for cell-mediated ECM formation
[46]. Although cell-independent phenomena might
also play a role, such as the optimum level of strain
shielding against degradation observed for collagen
[47], this observation invokes additional research. For
example, the model of Soares and Sacks [38] could be
enriched and adopted to test the hypothesis that the
phenomena observed by D’Amore et al. [46] are a
consequence of a cell mechanoresponsive behavior in
terms of proliferation and apoptosis. Altogether, these
studies [38,46] exemplify how a strong interplay be-
tween experiments and simulations can lead to new
hypotheses and a better understanding of the G&R of
engineered tissues, as already demonstrated for other
cardiovascular tissues (we refer the reader to a review
by Holmes [48] for examples).

Signaling pathways

Cellular phenomena such as cellular forces, migration,
and proliferation are regulated not only by local me-
chanical cues but also by cell—cell signals from neigh-
boring cells (Figure 3). For example, endothelial cells in
the arterial intima layer can react to local cues by
expressing growth factors (e.g. platelet-derived growth
factor (PDGF)) that, while diffusing, influence the
behavior of cells in the media [49]. Therefore, including
cell—cell signals in computational models is crucial to
predict how local cues influence the global G&R of
cardiovascular tissues and to guide cells toward a

physiological G&R of tissue-engineered arteries

(Figure 3A) and heart valves (Figure 3B).

Cell—cell signals can occur at different length scales and
are as such classified as endocrine (long distances),
paracrine (short distances), and juxtacrine signals
(requiring cell—cell contact). In the context of G&R in
the vasculature, paracrine and juxtacrine signaling are
mostly analyzed (Figure 3C and D). On the one hand,
paracrine signals can be modeled via continuum partial
differential equations to account for the signal diffusion
[50—53]. On the other hand, juxtacrine signals require
the adoption of agent-based modeling [54], as this
approach enables the consideration of individual cellular
positions and thus the identification of the signaling
network of contacting cells.

Models accounting for cell—cell signals can be adopted to
investigate G&R as a result of communication among
different cells. For example, Marino et al. [51,52] have
recently proposed a computational framework for cell-
mediated ECM remodeling in arteries accounting for
the reaction-diffusion of paracrine signals. With this
framework, the authors analyzed how the crosstalk be-
tween signals coming from macrophages in the adven-
titia, endothelial cells in the intima, and pharmacological
treatments can influence the production of matrix
metalloproteases by cells in the media, which in turn
affects arterial remodeling. Given the importance of
cell—cell signaling for the regulation of cell activity, a
similar approach could be adopted to investigate and
guide the remodeling of engineered tissues.

Cell activity is also influenced by juxtacrine signals. For
example, transforming growth factor (TGF-B) seems to
affect the regulation of the vascular smooth muscle cell
phenotype via a crosstalk with Notch [55], a juxtacrine
signal influencing several differentiation markers
(Figure 3D). In vitro experiments have also shown that
Notch is affected by cyclic strain [56]. As such, this
signaling pathway is most likely crucial for cell-mediated
G&R in response to mechanical stimuli. This highlights
the importance of developing models for juxtacrine
signaling in cardiovascular tissues, such as the model
recently proposed by our group [54]. Interestingly, by
accounting for the Notch mechanoresponse and the
phenotypic modulation of Notch, this model suggested
that the communication of arterial cells via Notch in-
duces a collective phenotypic switch of cells from syn-
thetic to contractile (and vice-versa) depending on the
arterial wall thickness, which may be essential for the
emergence of arterial homeostasis.

As the number of cross-talking signaling pathways that
are known to regulate cell behavior will probably only
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Effects of cell contractility on the evolution of engineered cardiovascular tissues. (a) Cellular contractility strongly influences the remodeling and functionality of tissue-engineered constructs upon im-
plantation. Over time, excessive cellular contractility can cause compaction of tissue-engineered vascular grafts and heart valve leaflets. (b) Cellular contractility is strongly regulated by the remodeling of
stress fibers: actomyosin bundles in the cellular cytoskeleton determine the direction of collagen fiber deposition and cellular forces, thereby strongly influencing collagen fiber (re)orientation.

ABojoiqoueydsw pue salueydaw yloq ui Bulspowsas pue yimouy :ABojoiqourydsy pue solueysswolg


www.sciencedirect.com/science/journal/24684511

Computational modeling for cardiovascular tissue engineering Loerakker and Ristori 5
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Current in situ tissue engineering approaches rely on the potential of scaffolds to attract and favor the proliferation of native cells infiltrating from the
recipient’s circulation. An incorrect rate of migration and proliferation of host cells can lead to an unfavorable delay of the growth and remodeling process

of engineered tissues.

increase over time, future efforts should also be directed
toward identifying key signaling pathways and how
exactly these are affected by mechanics. For example,
signaling network models could be developed to identify
the main drivers of specific cardiovascular cellular
behavior, for example, as demonstrated by Zeigler et al.
[57] for myofibroblasts. This will enable the reduction
of the model rules and parameters, thereby decreasing
the computational costs while increasing the confidence
in the model predictions.

General challenges and future directions
The success of  situ CVTE primarily relies on the
individual’s regenerative capacity, which should enable
the (synthetic) scaffold to transform into a living
tissue with native-like form and function. Since this
intrinsic regenerative capacity varies across individuals
owing to subject-specific differences in age, gender,
and potential comorbidities, the evolution of engi-
neered grafts can substantially vary across individuals,
with consequentially varying degrees of success
[58,59]. Therefore, besides focusing on the develop-
ment of computational models regarding the specific
behavior of (healthy) ECM-producing cells, it is also
important to model how cell-mediated G&R interacts
with other regenerative processes as a function of
patient-specific conditions.

The immune system is obviously a key player in
regeneration, and  vitro [60,61] and m vivo [62,63]
studies have clearly demonstrated that the inflammatory
response during the early phases after scaffold implan-
tation has a key influence on the ultimate G&R of
engineered vascular grafts. Over the past years, the
Humphrey lab made important progress in modeling the
interplay between immuno-driven and mechano-
mediated G&R. For example, Miller et al. [13,64]
demonstrated that incorporating the transition from
inflammatory-mediated tissue formation to mechano-
biologically driven G&R is critical for correctly modeling
the  wvivo evolution of engineered vascular grafts.
Recently, Szafron et al. [8] investigated the impact of
variations in inflammatory response and showed that the
moderate inflammatory response to the implanted
construct in immuno-compromised mice is more favor-
able for long-term vessel development compared with
the exuberant response exhibited by immuno-compe-
tent mice.

In the future, an increased focus on including specific
immune cell behavior may lead to novel insights in this
area and potentially to tools to direct the immune
response toward functional regeneration. Several m vitro
experiments have demonstrated that macrophages, key
players in the foreign body response, are
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Figure 3
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Regulation and impact of cellular phenotypes. Proper regulation of the phenotype of cells infiltrating scaffolds is a key requirement to avoid excessive
thickening of tissue-engineered arteries (a) and heart valve leaflets (b). Therefore, after implantation, a quiescent cellular phenotype should be induced
when the transformation of the scaffold toward a native-like tissue has been completed. The regulation of cellular phenotype, as well as cellular
migration and contractility, is strongly influenced by cell-cell communication. For example, paracrine signaling can influence cell migration (c), whereas
juxtacrine signaling (e.g. via Notch) induces differentiation of synthetic vascular smooth muscle cells toward their contractile phenotype (d).

mechanosensitive and can change their phenotype
depending on how they are mechanically loaded [65—
67]. Including macrophage mechanosensitivity and
other relevant cellular phenomena will be important for
obtaining a mechanistic understanding of how immune
cells, in conjunction with (recruited) tissue cells, drive
the cell-mediated 7 vivo evolution of engineered grafts.

On the other hand, the inclusion of increasingly detailed
cell behavior in computational models poses several
challenges related to computational costs, parameter
identification, and model validation. Efforts aimed at
more efficiently solving the model equations or
approximating their solutions [14,68—70] are essential
to ensure that models remain numerically tractable
when applied to simulating G&R under complex i vivo
conditions. The challenges related to parameter iden-
tification and model validation can be partially resolved
when more, systematic, and quantitative experimental
data become available. Still, it is important to minimize
the number of mechanisms and model parameters

depending on the research question under investigation
to balance model complexity and uncertainty, and
consequently maximize model credibility [71].

Summary and outlook

Understanding cardiovascular G&R is fundamental for
designing successful and robust # sitw CVTE strate-
gies. Notwithstanding the essential role of experi-
mental research, computational modeling is key for
advancing our understanding and particularly our
predictive capability of G&R. As cells are the ultimate
drivers of G&R, increasing efforts are currently un-
dertaken to model various types of mechano-mediated
cell behavior. In this selective review, based on their
applicability to the CVTE field, we highlighted some
relevant examples of recent developments in
modeling cytoskeletal remodeling, cell turnover and
migration, and cell signaling and discussed some of
the current and future challenges for advancing the
computational mechanobiology field.

Current Opinion in Biomedical Engineering 2020, 15:1-9
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When combined with algorithms that describe G&R of
the ECM, these cell-mediated G&R models will enable
further optimization of scaffold properties [72,73], to
ideally control cell behavior and optimize downstream
matrix formation. Furthermore, these models will be
crucial to estimate the sensitivity of CVTE outcomes to
variations in patient-specific factors. To facilitate this
process, it is important that the computational modeling
field joins forces with experts in tissue engineering, cell
biology, immunology, medicine, and materials science, as
the multidisciplinary nature of tissue engineering [1]
naturally calls for multidisciplinary research collabora-
tions to advance the field.
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