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Felix Putze, Johannes Meyer, Joscha Borné, Tanja Schultz, Daniel Holt, Joachim Funke

Towards a 50 msec Cognitive Cycle in a Graphical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Paul Rosenbloom

Practical Optimal-Solution Algorithms for Schema-based Analogy Mapping . . . . . . . . . . . . . . . . . . . . . . . 311
Robert Hamilton, Todd Wareham

Extending the Computational Belief-Desire Theory of Emotions to Fantasy Emotions . . . . . . . . . . . . 313
Rainer Reisenzein

v



Dual-route Connectionist model of Greek Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Ioanna Katidioti, Ian Simpson, Athanassios Protopapas

Matching Results of Latent Dirichlet Allocation for Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Andreas Niekler, Patrick Jähnichen

A self-organized neuronal comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Guillermo Luduena, Claudius Gros

Symposium: Human Performance Modeling

Symposium on Human Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Wayne Gray, David Kaber, Guk-Ho Gil, Sang-Hwan Kim, Noam Ben-Asher, Joachim
Meyer, Shi Cao, Yili Liu, Cleotilde Gonzalez, Glenn Gunzelmann, Kevin Gluck

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Reviewers List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

vi



Organizing Committee 
Nele Rußwinkel & Uwe Drewitz , Technische Universität Berlin 
 
Hedderik van Rijn, University of Groningen 
 

Tutorials 
Frank Ritter, Pennsylvania State University 
 

Program Committee 
Eduardo Alonso, City University London 
Erik Altmann, Michigan State University 
Thierry Bellet, INRETS (France) 
Jelmer Borst, Carnegie Mellon University 
Duncan Brumby, University College London 
Mike Byrne, Rice University 
Rick Cooper, Birkbeck University of London 
Gary Cottrell, University of California, San Diego 
Fabio Del Missier, University of Trento 
Uwe Drewitz, Technische Universität Berlin 
Wai-Tat Fu, University of Illinois at Urbana-Champaign 
Danilo Fum, Dipartimento di Psicologia 
Kevin Gluck, Air Force Research Laboratory 
Fernand Gobet, Brunel University 
Cleotilde Gonzalez, Carnegie Mellon University 
Glenn Gunzelmann, Air Force Research Laboratory 
Tim Halverson, Air Force Research Laboratory  
Andrew Howes, University of Manchester 
Christian Janssen, University College London  
Gary Jones, Nottingham Trent University 
Mark Keane, University College Dublin  
Markus Knauff, University of Giessen  
Boicho Kokinov, New Bulgarian University 
Joseph Krems, Technische Universität Chemnitz 
Bernd Kroeger, RWTH Aachen University 
Johan Kwisthout, Radboud University Nijmegen 
Peter Lane, University of Hertfordshire 
Christian Lebiere, Carnegie Mellon University  
Rick Lewis, University of Michigan 
Luís Macedo, University of Coimbra 
Michael Matessa, ALION 
Ralf Mayrhofer, University of Goettingen  
Alain Mille, University of Lyon 
Claus Moebus, University of Oldenburg  
Shane Mueller, Michigan Technological University 
Christopher Myers, Air Force Research Laboratory  
Josef Nerb, University of Education Freiburg 
Hansjoerg Neth, Max-Planck Institute for Human Development 
David Noelle, University of California, Merced 

vii



David Peebles, University of Huddersfield 
Thad Polk, University of Michigan 
Marco Ragni, University of Freiburg 
Rainer Reisenzein, University of Greifswald 
Frank Ritter, Pennsylvania State University  
Nele Rußwinkel, Technische Universität Berlin 
Dario Salvucci, Drexel University 
Ute Schmid, University Bamberg 
Mike Schoelles, Rensselaer Polytechnic Institute 
Lael Schooler, Max Planck Institute for Human Development 
Barry Silverman, University of Pennsylvania 
Robert St. Amant, North Carolina State University  
Terrence Stewart, University of Waterloo 
Andrea Stocco, Carnegie Mellon University 
Niels Taatgen, University of Groningen 
Julia Taylor, Purdue University 
Manfred Thüring, Technische Universität Berlin 
Greg Trafton, Naval Research Laboratory 
Leon Urbas, Technische Universität Dresden 
Leendert van Maanen, University of Amsterdam 
Marieke van Vugt, University of Groningen  
Robert West, Carleton University 
Sharon Wood, University of Sussex 
Richard Young, University College London 
 

Tutorials Committee 
Frank E. Ritter, Pennsylvania State University  
Thierry Bellet, INRETS (France) 
Éric Raufaste, University of Toulouse 
Jim Davies, Carleton University 
Olivier Georgeon, University of Lyon 
Randolph M. Jones, Soar Technology 
Maik Friedrich, German Aerospace Center 
Nele Rußwinkel, Technische Universität Berlin 
Josef Nerb, University of Education Freiburg 
 

Organizing Team 
Christian Karl 
Stefan Lindner 
Gloria Pöhler 
Juliane Richter 
Maria Schinkmann 
Fei Yan 
 

Conference Poster and Cover Design 
Marlene Vogel 

viii

Steffen Hartwig
Webmaster



Sponsoring & Support  
 
The organizers would like to thank all sponsors for their active support 
and cooperation in the preparation and realization of the conference.   
 
We acknowledge the financial support from: 
 
DFG - Deutsche Forschungsgemeinschaft  
(German Research Foundation, www.dfg.de) 
 
European Office of Aerospace Research & Development 
(www.london.af.mil) 
 
Gesellschaft für Kognitionswissenschaft e.V. 
(German Cognitive Science society, www.gk-ev.de) 
 
Gesellschaft von Freunden der TU Berlin e.V. 
(www.freunde.tu-berlin.de) 
 
Cognitve Science Society 
(cognitivesciencesociety.org) 
 
 
Supported by: 
 
Graduiertenkolleg Prometei  
(research training group prometei, www.prometei.de) 
 
 
 
 !

ix



Invited Speakers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x



 
 

 
The Nature and Transfer of Cognitive Skill 

 
Niels Taatgen (niels@ai.rug.nl) 

 
University of Groningen 

 
 
Is the whole of human cognitive ability an integrated system of knowledge, strategies and 
skills, or a collection of individual tasks and goals? Even though most people would gravitate 
towards the former point of view, the tradition of psychology, cognitive science and cognitive 
modeling adopts at least the research stance of the latter. 
The discussion can be traced back to Thorndike, who rejected the idea of a "formal discipline 
of the mind", and replaced it with the theory of identical elements. According to this theory, 
any ability we have is largely independent of other abilities, unless the two share identical 
elements of knowledge (Stimulus-Response bonds in the time of Thorndike). Singley and 
Anderson introduced the modern version of this idea: transfer between individual skills is 
only possible if they share identical production rules. 
As a consequence, the current research tradition is to study individual skills and tasks with 
little regard for interactions between tasks. This is reinforced by many studies that 
demonstrate a lack of transfer, for example the well-known example in which subjects fail to 
solve a puzzle about a heart surgeon using a laser to remove a tumor after reading a story 
about a general who uses his army to concur the capital. Or the fact that even after taking a 
course in logic, students still fail to solve Wason's selection task. 
Most examples of failed transfer, however, play out on a semantic level, in which subjects fail 
to make the appropriate analogy, even if it is almost forced-fed into them. However, there are 
several experiments that do show transfer, but the transfer of knowledge seems to play out a 
more mechanical, syntactic level. In those experiments, subjects can perform or learn 
particular tasks faster because they have already learn a similar other task. Singley and 
Anderson's experiment with learning text editors is an example: it is easier to learn a new text 
editor if you have already mastered a different editor.  
A new branch of more recent experiments have a similar structure, but focus on executive 
control. By training a particular control task, for example task switching, N-Back or working 
memory, subjects also improve on other executive control tasks, like the Stroop task.  
Cognitive models have a hard time explaining transfer between skills. In production system 
models rules are typically specific to a task, and neural networks models are typically also 
geared towards a particular task. In my talk, I will propose a solution based on the ACT-R 
architecture that involves breaking down productions into their smallest components, in 
which a rule is reduced to either a single comparison or a single atomic action. Models 
constructed on this basis combine these basic components into compound rules that are still 
independent of the particular task, but that can be used in other tasks that share the same 
thinking structures. For example, counting can be helpful in learning to reason in a semantic 
network, because both tasks involve iteration. 
I will demonstrate the generality of the approach with a set of examples (and as time permits): 
the Singley and Anderson (1985) editor experiments, experiments done by Elio (1986) and 
Frensch (1991) in which subjects solved complex arithmetic problems, and experiments by 
Chein and Morrison (2010) and Karbach and Kray (2009) in which training on one task of 
executive control improved performance on others. 
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Modelling Working Memory 
 

Klaus Oberauer (k.oberauer@psychologie.uzh.ch) 
 

University of Zürich 
 

 
Working memory is the blackboard of thinking. Its limited capacity is closely related to 
measures of reasoning ability. Current theories of working memory are primarily verbal 
descriptions of mechanisms and their interactions, which are often vague and ambiguous, 
making it difficult to figure out what exactly they predict. I will present a new model, SOB-
CS, that accounts for a broad range of experimental findings from the so-called complex-span 
paradigm. The complex-span paradigm is the most frequently used paradigm in cognitive 
psychology for investigating working memory. In complex-span tests, participants try to 
remember a list in correct order, and in between presentation of list items, they have to carry 
out brief distracting tasks, such as reading aloud words or solving arithmetic problems. SOB-
CS is a connectionist model that uses distributed representations of items, their list positions, 
and of the material of the distractor task. Items are retained in correct order by associating 
each item to its list position. Memory capacity is limited because of interference by 
superposition of distributed representations. Distractor-task material is also obligatorily 
encoded, thereby adding to interference. Free time can be used to gradually remove 
distractors from memory, thereby reducing interference. I will present applications of SOB-
CS to a number of experiments from the literature, and new experiments that test some of the 
key assumptions of the model.  
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The Emerging Toolbox of Cognitive Engineering 
Models 

 
Alex Kirlik (kirlik@illinois.edu) 

 
University of Illinois at Urbana-Champaign 

 
In his seminal “Skills, Rules, and Knowledge” paper nearly 30 years ago, cognitive 
engineering pioneer Jens Rasmussen wrote: “we do not need a single integrated quantitative 
model of human performance, but rather an overall qualitative model which allows us to 
match categories of performance to types of situations. In addition, we need a number of 
more detailed and preferably quantitative models which represent selected human functions 
and limiting properties within the categories.” In this talk, I will illustrate in detailed fashion 
how contemporary cognitive engineering methodology has indeed come to exist as a toolbox 
of models largely as Rasmussen observed. My review and analysis is based heavily on 
collaborative work with my co-editor John D. Lee in developing The Oxford Handbook of 
Cognitive Engineering (in press). The presentation will include a discussion of the 
handbook’s sections and chapters, as well as various analyses of the entire text considered as 
a corpus of data. These include topic analysis, hierarchical cluster analysis, and network 
analysis. Results indicate that modeling to support cognitive engineering and human factors 
does not consist of one or even a few monolithic models or architectures, but instead as a 
highly diverse ecology of techniques each tailored to a particular niche in human-technology 
interaction. !
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Developing CLARION-based Agents with the New CLARION Library 

 
Michael Lynch (lynchm2@rpi.edu) 

Department of Language, Literature and Communication Rensselaer Polytechnic Institute, 110 Eighth Street, 
Troy, NY 12180 USA 

Telephone: (518) 276-3243 | Fax: (518) 276-4092 
 

Nicholas Wilson (wilson3@rpi.edu) 
Ron Sun (rsun@rpi.edu) 

Cognitive Science Department Rensselaer Polytechnic Institute, Troy, NY 12180 USA 
 
 

Previous tutorials on CLARION have focused 
mainly on presenting detailed introductions to the 
core theoretical con- cepts underlying the 
CLARION cognitive architecture. For this tutorial, 
in addition to providing a detailed introduction to 
the theory, we will also focus on giving participants 
hands-on experience using the new implementation 
of CLARION -- the CLARION Library, version 6.1 
(written in C#). To that end, we will introduce 
guidelines for setting up and using basic and 
intermediate aspects of the library (with detailed 
walk-throughs for several simulation examples) as 
well as present several significant new features and 
en- hancements. 
 As CLARION is implemented in C#, 
participants will learn how they can employ the 
CLARION library on differ- ent operating systems 
using either the Visual Studio or Mono 
development environments. By the conclusion of 
this tutorial, participants should be equipped with 
the necessary foundation to begin developing 
CLARION-based agents for their own applications. 
 

Tutorial Outline 
A General Overview of CLARION (15 min.) 
In this section, an introduction to cognitive 
architectures in general, and CLARION in 
particular, will be presented. CLARION will be 
compared to various other architectures and a brief 
discussion of some past and current applications of 
CLARION will be presented along with cognitive 
justifi- cations and implications. 
CLARION is a unified, comprehensive theory of 
the mind based on two basic theoretical 
assumptions: representational differences and 
learning differences of two different types of 
knowledge --- implicit vs. explicit, among other 
essential assumptions and hypotheses. 
In addition to these theoretical assumptions, 
CLARION is a cognitive architecture composed of 
four main subsystems: the Action-Centered 
Subsystem, the Non-Action-Centered Subsystem, 
the Motivational Subsystem, and the Meta- 
Cognitive Subsystem. 
Action-Centered Subsystem Basics (30 min.) 
In this section, some basic concepts of the Action- 

Centered Subsystem (ACS) will be presented. The 
structure and design of various aspects of the ACS, 
along with the learning mechanisms and the 
properties of the model, will be presented. 
The Action-Centered Subsystem is used mainly for 
action decision-making. In the ACS, the top level 
generally con- tains simple “State!Action” rules, 
while the bottom level uses multi-layer perceptrons 
to associate states and actions. Reinforcement 
learning algorithms (usually with backprop- 
agation) are used in the bottom level while rule 
learning in the top level is mostly “one-shot” and 
can be performed bottom-up (via “explicitation”) or 
independently (e.g., through linguistic acquisition). 
This section will focus on the representation for the 
top and bottom levels, and will detail bottom level 
learning and bottom-up rule extraction and 
refinement (RER). 
Setting up and Using the ACS (30 min.) 
For the first hands-on section of the tutorial, 
participants will be instructed on how to set up and 
install the CLARI- ON Library and are walked 
through a simple simulation example. In addition, 
several core principles necessary for interacting 
with the library will be outlined. 
Working Memory and Goals (15 min.) 
In this section we will discuss the theoretical 
underpin- nings for the working memory (WM) and 
the role that goals play in the decision-making 
processes of the ACS. 
The working memory is conceived as a requisite 
structure within the ACS, whereas goals are stored 
within a top-level construct of the Motivational 
Subsystem, referred to as the Goal Structure (GS). 
Setting up and Using the WM and GS (15 min.) 
For this hands-on section, participants will be 
shown both the manual and action-oriented 
methods for setting-up and using the working 
memory and goal structure. In addition, asimple 
simulation example will be presented that demon- 
strates the use of working memory. 
Drives and Meta-Cognitive Modules (30 min.) 
This section will focus on the structure and design 
of the motivational (MS) and meta-cognitive 
(MCS) subsystems. In particular, the drives within 
the MS and various meta- cognitive modules within 

xv



the MCS, will be described. 
The Motivational Subsystem contains both low-
level (physiological) and high-level (social) 
primary drives that take into account both 
environmental and internal factors in determining 
drive strengths. These drive strengths are re- ported 
to the Meta-Cognitive Subsystem, which regulates 
not only goal structures but other cognitive 
processes as well (e.g., monitoring, parameter 
setting, etc). 
Setting up and Using Drives and Modules (30 min.) 
For this hands-on section, participants will be 
shown both the manual and action-oriented 
methods for setting up and using the working 
memory and goal structure. In addition, a simple 
simulation example will be presented that demon- 
strates the use of these mechanisms. 
Hands-On Practice Session #1 (15 min.) 
In the final section before lunch, participants will 
be given the opportunity to further explore the 
CLARION Library and the simulations that were 
presented to this point. Partic- ipants will also be 
encouraged to ask any questions they may have 
with regard to using the library at this time. 
The Non-Action-Centered Subsystem (45 min.) 
Similar to the section on the ACS, this section will 
detail the Non-Action-Centered Subsystem 
(NACS). The structure and design of the various 
aspects of the NACS, along with the learning 
mechanisms and the theorems describing the 
properties of the model, will be presented. 
The Non-Action-Centered Subsystem stores 
declarative (“semantic”) and episodic knowledge 
and is responsible for reasoning in CLARION. In 
the NACS, the top level con- tains simple 
associations while the bottom level involves 
nonlinear neural networks. Associative learning 
algorithms (e.g., backpropagation or contrastive 
Hebbian) are generally used in the bottom level 
whereas associations in the top lev- el are mostly 
learned “one-shot” (similar to the ACS). 
Performing Reasoning using the NACS (15 min.) 
For this hands-on section, participants will be given 
a very brief introduction to using the reasoning 
mechanism in the NACS. However, as the NACS is 
currently in the devel- opment stage, this 
demonstration will necessarily be brief. 
Intermediate Aspects of the ACS (30 min.) 
In this section we will discuss several intermediate 
con- cepts for the ACS. In particular, we will 
review the theoreti- cal considerations that govern 
IRL and Fixed rules. 
IRL and Fixed rules are the other two forms of 
procedural knowledge (besides RER rules) that can 
be found in the top level of the ACS. 
Setting-up and Using IRL and Fixed Rules (30 
minutes) 
For this hands-on section, participants will be 

shown how to do some basic customization using 
the CLARION Li- brary. In particular, we will 
show participants how to use C#’s delegate concept 
in order to quickly and easily create their own 
customized rules. In addition, a simple simulation 
that uses IRL rules will be presented. 
Pre-Training, Tuning and Parameter Setting (15 
minutes) 
For this hands-on section, participants will be 
shown sev- eral methods for performing simple 
tuning and parameter setting operations in the 
CLARION Library. 
Features and Plugins (15 minutes) 
For this hands-on section, participants will be 
shown some of the useful features and plugins that 
are currently available as part of the CLARION 
Library. 
Hands-On Practice Session #2 (30 min.) 
In the final section of the day, participants will be 
given the opportunity to further explore the 
CLARION Library and ask any additional 
questions they may have. 
 

Relevance for Cognitive Science 
The CLARION cognitive architecture is well 
established with over 100 scientific papers and 
several books. CLARI- ON is particularly relevant 
to cognitive scientists because of its strong 
psychological plausibility and the breadth of its 
application to cognitive modeling and simulation. 
In CLAR- ION, each structure corresponds to a 
psychological pro- cess/capacity. CLARION-based 
models have been used to explain data as diverse as 
implicit learning, cognitive skill acquisition, 
inductive and deductive reasoning, meta- cognition, 
motivation, personality, and social simulations. 
 

Presentation Details 
Descriptions and demonstrations during the 
presentation will be provided using PowerPoint and 
the Visual Studio and Mono development 
environments. 
Participants in the tutorial are encouraged to ask 
questions throughout the presentation to clarify any 
ideas described. 
 

Sample Materials 
• Sample slides: 

https://sites.google.com/site/clarioncognitivearchitect
ur e/presentations 

• A complete technical specification of CLARION: 
http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf 

• A list of CLARION-related publications: 
http://www.cogsci.rpi.edu/~rsun/clarion-pub.html 

• The current (6.1.0.6, C#) and previous (6.0.5, Java) 
versions of the CLARION Library: 
https://sites.google.com/site/clarioncognitivearchitect
ur e/downloads 

• Other demonstration materials: See the "Tutorials" 
folder within the current CLARION Library software 
package 
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Scaling models of cognition to the real world:  
Complexity-theoretic tools for dealing with intractability 

!
Iris van Rooij (i.vanrooij@donders.ru.nl) 

Donders Institute for Brain, Cognition, and Behaviour 
Radboud University Nijmegen !

Johan Kwisthout (kwisthou@liacs.nl) 
Leiden Institute of Advanced Computer Science 

Leiden University 
 

Introduction 
A common theoretical obstacle encountered by 
computational- or rational-level models of 
cognition is that the cognitive capacities that they 
postulate appear to be computationally intractable 
(e.g., NP-hard or worse). Formally, this means that 
the computations that these models postulate 
consume an exponential amount of time. 
Informally, this means that the postulated 
computations do not scale in any obvious way to 
explain how cognitive capacities can operate in the 
real world outside the lab. How can cognitive 
scientists overcome this undesirable property of 
models of cognition? Over the last decade, several 
sophisticated complexity-theoretic techniques have 
been developed in theoretical computer science that 
can be utilized by cognitive modelers to 
systematically generate hypotheses about model 
changes or constraints that yield computational 
tractability without loss of the general applicability 
of the models. With this workshop we aim to bring 
these complexity-theoretic techniques to the 
attention of a broad audience of cognitive modelers 
and illustrate how they can be used to make 
cognitive models that scale to situations of real-
world complexity. !

Morning Session 
In the morning session the tutorial organizers, Van 
Rooij and Kwisthout, will give a conceptual primer 
on computational complexity analysis in the context 
of cognitive modeling. The session will include a 
conceptual introduction to tractable cognitive 
modeling. Subsequently, they will review 
complexity-theoretic concepts (e.g., NP-hard, fixed-
parameter tractability) and techniques (e.g., 
polynomial-time and parameterized reduction). 
Participants will have opportunity to practice the 
techniques via hands-on exercises (these can be 
done using paper and pencil). Also more 
controversial issues will be topic of discussion, 
such as the question to what extent intractable 
computations can be efficiently approximated by 
randomized or heuristic methods. The organizers 
aim for an interactive style of discussion.  
Reading material: van Rooij, I. (2008). The 
Tractable Cognition thesis. Cognitive Science, 32, 
939-984. 

Afternoon session 
In the afternoon session, four speakers will 
illustrate several applications of the concepts and 
techniques introduced in the morning session. Each 
application talk will consider a different type of 
model in a different cognitive domain.   
 
What does (and doesn't) make deriving analogies 
hard? 
Todd Wareham (Memorial University of 
Newfoundland) will present complexity analyses of 
Structure-Mapping Theory (SMT), assessing 
several conjectures in the literature about conditions 
that make analogy derivation under SMT feasible in 
practice. 
 
Does recipient design make intention recognition 
tractable? 
Mark Blokpoel (Radboud University) will consider 
Bayesian models of intention recognition and 
recipient design in the context of communication. 
He will demonstrate these models are NP-hard but 
also identify model constraints that yield 
computational tractability.  
 
A tractability border in natural language semantics 
Jakub Szymanik (University of Groningen) will 
discuss how ambiguity in natural language may be 
related to computational complexity. He will focus 
on logic-based models of quantifier expressions 
(e.g. `some', `more than') and will outline a 
tractability border between quantifier sentences. 
 
Is managing multiple goals an intractable 
balancing act? 
Daniel Reichman (Weizmann Institute of Science) 
will put forth the idea that people find it difficult to 
achieve multiple goals simultaneously because 
doing so entails solving computational intractable 
problems. He will outline approaches that can aid 
people in solving hard problems related to the 
attainment of multiple interrelated goals. !
For more information about this tutorial, full details 
of the schedule, and extra materials, please refer to 
our website: http://tcs.dcc.ru.nl/iccm2012/  

!
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Design principles revisited: The continued design of the Symbolic and Sub-
symbolic Robotics Intelligence Control System (SS-RICS) 

 
Troy Dale Kelley (troy.d.kelley6.civ@mail.mil) 

U.S. Army Research Laboratory Human Research and Engineering Directorate Aberdeen Proving Ground, 
Aberdeen MD 21005 

 
 

Abstract 
The Symbolic and Sub-symbolic Robotics Intelligence 
Control System (SS-RICS) is a production system based 
robotics controller based largely on the cognitive 
architecture the Adaptive Character of Thought-Rational 
(ACT-R). At the beginning of the research program a set 
of design principles were developed to aid in the design 
of the robotics system. These principles are discussed and 
revisited here. 
 
Keywords: cognitive architectures, cognitive 
modeling, robotics 
 

Introduction 
In the last several decades, cognitive architectures 
have been designed around psychological principles 
in an attempt to reproduce the thought patterns of 
the human mind (Anderson & Lebiere, 1998). 
These cognitive architectures have made progress 
in modeling the human mind by using the 
production system architecture as a basis; however, 
they traditionally have had little interaction with the 
outside world which gives them limited 
functionality as real-world robotics controllers. The 
Sub-symbolic Robotic Intelligence Control System 
(SS-RICS) was developed using a production 
system as the central executive, as with traditional 
cognitive architectures, while also using sub- 
symbolic algorithms for perceptual processing. This 
allows SS-RICS to interact with the outside world. 
Additionally, these perceptual sub-symbolic 
algorithms are run in parallel with the production 
system, and mimic the parallel perceptual 
processing seen in the humans and animals. 
Additionally, the production system within SS-
RICS is capable of shutting down certain 
algorithms (i.e. face recognition) if the current goal 
does not require the specified algorithms, thereby 
freeing up computational resources. 
SS-RICS is part of an ongoing development within 
the U.S. Army Research Laboratory of a robotic 
control architecture that was inspired by 
computational cognitive architectures, primarily the 
Adaptive Control of Thought – Rational (ACT-R). 
SS-RICS combines symbolic and sub- symbolic 
representations of knowledge into a robotic control 
structure that allows robotic behaviors to be 
programmed in a production system format. The 
architecture is organized as a goal driven, serially 
executing, production system at the highest 
symbolic level; and a multiple algorithm, parallel 
executing, simple collection of algorithms at the 
lowest sub-symbolic level. 

Five Development Principles 
In order to guide the development of SS-RICS, five 
development principles were established in 2009 
(Kelley et al. 2009). 

1) The lowest level of perception includes 
algorithms running in a parallel fashion, 
while the highest levels of cognition are 
algorithms operating in serial fashion 

2)  At both the low levels and the high levels of 
cognition, the algorithms are relatively 
simple. It is the interaction, processing and 
results of simple algorithms which produce 
complex intelligent behavior. 

3)  Pre-programming SS-RICS is guided by the 
algorithms that are recognized as part of the 
human evolutionary process (for example, 
algorithms for edge detection, auto-focus of 
the eyes, pupil dilatation in different lighting 
environments). The pre-programming that is 
done should allow for the emergence of 
complex behavior, but not be the complex 
behavior itself. 

4) Cognitive development within SS-RICS is 
principally about the reorganization of 
memory elements through increasing and 
decreasing their respective strengths. 

5)  Cognitive development and change can 
occur after allowing for specialized internal 
processing (i.e. dreaming) or after the 
necessary low level elements (i.e. features) 
are in place to allow for higher level 
symbolic extraction. 

 
Developmental principles revisited 

As defined in principle one, we have found an 
enormous value in running perceptual algorithms 
(motion tracking) in parallel with our other sub-
symbolic algorithms (finding corners or gaps in a 
wall). This allows the higher levels of the system to 
turn off perceptual algorithms as the system 
becomes overloaded or runs out of memory; or 
allows us to pick and choose what functionality we 
are interested in, depending on the task. This can 
make the system very adaptive to certain tasks and 
make it able to use all of the available processing 
power for a given task. Additionally, we are 
currently running the cognitive process in serial but 
have found some utility in running multiple 
cognitive processes in parallel. In other words, 
the algorithm for the identification of an object is 
running in parallel with the algorithm for the 
identification of a specific face. The reader might 
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ask – “what is the line between cognitive 
processes and perceptual processes” and it should 
be noted that this distinction can sometimes become 
blurred. It is not entirely clear that the identification 
of a face is, in fact, a cognitive process. We would 
rather reserve cognitive processes to strategy 
selection and problem solving so these lower levels 
processes should be, perhaps, pushed down to the 
parallel aspects of perception. This would make our 
goal stack relatively simple and would make the 
production system relatively simple to program. 
As outlined in principle two, our algorithms, in 
general, remain relatively simple, except in some 
cases were we are using traditional AI techniques 
like Principle Component Analysis (PCA) or 
algorithms involved with Simultaneous 
Localization and Mapping (SLAM) (i.e. particle 
filters). While we strive to use cognitively plausible 
algorithms, traditional robotics algorithms can be 
seen as a means to an end for certain behaviors. For 
example, it is useful to use some SLAM algorithms 
to allow the robot to move from one room to the 
next, while more cognitively based algorithms like 
spreading activation can be used for object 
identification along the way. 
Pre-programming algorithms based on evolutionary 
processes continues, and we feel we have adhered 
to principle three. However, when one considers the 
number algorithms humans are endowed with 
through evolution (i.e. color identification, sound 
localization, pupil dilatation based on light levels, 
object identification, object tracking, movement 
identification, contrast illumination.. and so forth), 
this can be a daunting task. Indeed, we have found 
this to be one of the more difficult and time 
consuming aspects of implementing an intelligent 
robotics system. It is important for any robotics 
engineer to realize that many of these low level 
algorithms need to be in place before any more 
complex behavior can emerge from an intelligent 
system. And while many of these algorithms seem 
intuitively simple (object identification)
 their implementation and interaction with 
other algorithms can create challenging 
developmental issues. 
The reorganization of information as outlined in 
principles four and five continues to be an issue. 
We have not used proceduralization as 
implemented within ACT-R and would like to use 
this process to reduce the number and size of the 
goals developed by programmers. The struggle to 
write simple and powerful goals continues to be an 
issue, and we have looked at using subsumptive 
architectures to reduce the number and size of the 
goals. However, as I have pointed out in other 
articles, you cannot simulate extremely complex 
behaviors (i.e. playing chess) with a subsumptive 
architecture (Kelley and Long, 2010), and more 
powerful planning and strategy selection behaviors 
must still be written by hand or generated by some 
relatively complex process. 
The abstraction and generalization of memories, as 

outlined in principle five, especially different types 
of memories (declarative, procedural and episodic) 
continues to be an area of continued research within 
SS-RICS. Interestingly, we have found some 
computational support 
for the concept of off-line processing or dreaming 
based on the speed of different memory retrievals. 
As part of our development of SS-RICS we found 
that real time retrieving memories for moving 
objects slows the system down too much, and it is 
better to try and remember everything that happens 
and consolidate these memories in order to speed 
retrievals. During consolidation, an off-line strategy 
to activate important memories is used and 
subsequent retrieval times can be greatly increased. 
Specifically, by increasing the strength of important 
memories using bottom-up activation, certain 
perceptions can then be selected by the cognitive 
system depending on their task relevance. This is 
more efficient than trying to identify everything 
that happens in real time. This would be an 
evolutionary argument for dreaming, which 
consolidates memories and speeds their retrieval 
times for the efficient execution of future 
recognitions. 
 

Conclusions 
SS-RICS continues to be undergo a complex and 
challenging development cycle, where new 
developments occur each day. We feel we have 
adhered to our original design guidelines and will 
continue to use these guidelines to further the 
development of the system. 
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Introduction 
How can cognitive processes be accessed and understood 
sufficiently to enable reliable computational models? One 
established way of addressing internal processes is to 
analyze their external representations, most prominently 
natural language produced along with cognitively complex 
tasks (Ericsson & Simon, 1993). The aim of this tutorial is 
to familiarize both young and experienced researchers with 
the systematic and linguistically informed analysis of 
language data collected in order to substantiate cognitive 
models. The method of Cognitive Discourse Analysis 
(CODA) (Tenbrink & Gralla, 2009; Tenbrink, 2010) will be 
introduced, which uses linguistic methods and insights to 
address research questions in cognitive science. One main 
aim is to identify particular types of linguistic patterns in the 
collected data that are likely to point to specific cognitive 
processes. The outcome of a CODA-based analysis is a 
validated account of systematic cognitive processes feeding 
directly into subsequent computational cognitive modelling.  

Methods that employ language to address research 
questions in cognitive science range from psychological via 
psycholinguistic approaches to linguistic discourse analysis. 
In spite of their fundamental diversity, such methods share 
the basic view that patterns in language are systematically 
related to patterns of thought (Chafe, 1998). A prominent 
feature and aim of the CODA framework is to identify 
relevant types of linguistic patterns that are likely to point to 
specific cognitive processes in diverse scenarios. Systematic 
accounts of recurring patterns of thought and prominent 
conceptualizations provide a substantial prerequisite for 
cognitive modelling approaches of any kind.  

CODA can be employed to enhance the analysis of 
think-aloud protocols and retrospective reports for the 
identification of (internal) cognitive processes (Ericsson and 
Simon, 1993; Tenbrink, 2008). Conventionally, the focus in 
this kind of analysis lies on the content of verbal data, 
addressing those aspects (e.g., particular thought processes 
or strategies) that the speakers are themselves aware of. The 
content-based inspection of verbal reports, particularly if 
carried out by experts in the problem domain and set against 
a substantial theoretical background (Krippendorff, 2004), 
often leads to well-founded specific hypotheses about the 
cognitive processes involved. The detailed systematic 
analysis of linguistic features and structures in CODA 
provides a particularly sound basis for using the language 

data as evidence (e.g., Hölscher et al., 2011; Tenbrink et al., 
2011; Tenbrink & Seifert, 2011; Tenbrink & Wiener, 2009).  

CODA is used to gain insights into generalizable 
cognitive phenomena that go beyond conscious reflection by 
individual speakers, and that may not necessarily be directly 
observable in linguistic content. Speakers may not be aware 
of the cognitive structures that are reflected in particular 
ways of framing a representation linguistically. Further-
more, they may not be consciously aware of the underlying 
network of options (Tenbrink & Freksa, 2009) that allows 
for a range of linguistic choices beside their own, which 
emerges more clearly by considering a larger data set 
collected under controlled circumstances. According to 
previous research in cognitive linguistics and discourse 
analysis (e.g., van Dijk, 2008), linguistic features such as 
the verbal representation of semantic domains reflected in 
ideational networks, lexical omissions and elaboration, 
presuppositions, hesitation and discourse markers, and the 
like all indicate certain conceptual circumstances; these are 
related to the current cognitive representations in ways that 
distinguish them from other options available in the 
network. In particular, the chosen linguistic options reflect 
what speakers perceive as sufficiently relevant to be 
verbalized, as well as the information status assigned to the 
diverse parts of the verbalization.   

Besides building on established insights about the 
significance of particular linguistic choices, validating 
evidence for the relationship between patterns of language 
use and the associated cognitive processes can be gained by 
triangulation, i.e., the combination of linguistic analysis 
with other types of evidence such as behavioral performance 
data. In these combined ways, data collected in empirical 
studies serve as validated evidence for subsequent 
computational modelling of complex cognitive processes. 

Format and schedule 
This tutorial is designed to cover a half day (three hours). 
Rather than offering primarily theoretical insights, the 
tutorial will take the participants' current or intended 
projects as a starting point to address the following issues, 
supplemented wherever suitable by practical exercises.  

Motivation: How can language data serve as empirical 
evidence for cognitive modelling? 

Data collection: What kinds of issues need to be 
considered in the light of actual research purposes? 

CODA based analysis (main part): Systematic data 
annotation and interpretation, substantiated by linguistic 
insights. 
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Triangulation and systematization: How can the insights 
gained from language be complemented by other types of 
empirical data and systematized for modelling purposes? 

In contrast to previous offerings, this tutorial will focus 
on the systematic identification of the cognitive steps and 
principles that can be fed into computational models. 

 Target audience information 
There are no particular prerequisites for attending this 
tutorial. It will be open for researchers in cognitive science 
at any point in their career, ranging from graduate students 
to established experts in cognitive modelling. 

Linguistic knowledge or expertise is welcome but not a 
prerequisite for this tutorial. Participants are encouraged to 
bring examples of their own collected natural language data 
as handouts or on their computers. Sample data collected in 
relevant scenarios will be discussed, tailored to the 
participants' current focus of interest.  
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Abstract 
One mode of human decision-making is considered intuitive, 
i.e., unconscious situational pattern recognition. Implicit 
statistical learning, which involves the sampling of 
invariances from the environment and is known to involve 
procedural (i.e., non-declarative) memory, has been shown to 
be a foundation of this mode of decision making. We present 
an ACT-R model of implicit learning whose implementation 
entailed a declarative memory-based learner of the 
classification of example strings of an artificial grammar. The 
model performed very well when compared to humans. The 
fact that the simulation of implicit learning could not be 
implemented in a straightforward way via a non-declarative 
memory approach, but rather required a declarative memory-
based implementation, suggests that the conceptualization of 
procedural memory in the ACT-R framework may need to be 
expanded to include abstract representations of statistical 
regularities. Our approach to the development and testing of 
models in ACT-R can be used to predict the development of 
intuitive decision-making in humans. 

Keywords: implicit learning; cognitive models; unconscious 
learning; ACT-R theory. 

Introduction 
The vast majority of cognitive models discussed at this 
conference are models of rational or analytical cognition. 
The architectures used are primarily ACT-R (R for rational) 
or Soar, and the best papers compare a computational 
implementation of a theory, i.e. a model, to human behavior 
observed in careful laboratory experiments. The authors of 
these papers then claim that the model under consideration 
is a plausible theory of the cognitive process behind the 
observed behavior. This approach is advancing the 
understanding of cognitive processes. However, modeling 
consciously rational behavior addresses only part of human 
cognition and it ignores the ubiquitous influence that 
implicit processing and intuitive decision making has on 
human behavior. 

In the dual-process framework of reasoning and decision 
making (e.g., Evans, 2008; Patterson, Pierce, Bell, Andrews 
& Winterbottom, 2009; Sloman, 1996), one mode of 
decision making is called intuitive. Intuitive decision 
making refers to implicit situational pattern recognition that 
is not thought to involve symbolic rules (Klein, 1998). The 
other mode of decision making is called analytical, which is 
generally accepted to entail symbolic rules. Intuitive 
decision making, which falls under the rubric of 'System 1' 

processing in this literature, is typically described as 
unconscious, fast, and effortless decision making. 
Analytical decision making, which falls under the rubric of 
'System 2' processing, is described as conscious, rational, 
slow, and effortful. Evans (2008) provides a review of the 
evidence supporting the Dual-Process theory. Analytical 
decision making is relatively simple to study because it is 
easy to create tasks for testing and recording behavior 
during rational performance. Intuitive decision making, on 
the other hand, is difficult to study because it is hard to 
artificially create environmental patterns with sufficient 
fidelity to study situational pattern recognition. 

Recently, Patterson and colleagues (Boydstun, Patterson, 
Pierce, Park & Tripp, 2011; Covas-Smith, Patterson, Pierce, 
Cooke & Homa, 2011; Patterson et al., 2009) have 
investigated the development of intuitive decision making in 
a simulated real-world environment. These authors had 
human participants experience simulated flight over a 
synthetic terrain with a sequences of objects (e.g., house; 
vehicle) positioned on the terrain along the flight path. Each 
object sequence was derived from paths taken through a 
finite-state algorithm, which defined a grammar for 
constructing the content of the scene. The use of a finite-
state grammar for creating object sequences was analogous 
to the way in which finite-state grammars have been used 
for studying the implicit learning of artificial letter strings 
(e.g., Reber, 1967). Patterson and colleagues tested the 
conjecture that implicit learning (Cleeremans, Destrebecqz 
& Boyer, 1998; Perrachet & Pacton, 2006) could be one 
way in which intuitive decision making is developed. 

Patterson and colleagues found that naive participants 
could implicitly learn the object sequences quite easily. 
Moreover, the implicit learning of the sequences provided a 
foundation for intuitive decision making about the 
underlying structure of the sequences: following training 
with the artificial object sequences, the participants were 
successful in recognizing novel sequences taken from the 
same grammar during test. That is, the human participants 
implicitly learned to recognize situational patterns.  

The ACT-R architecture (Anderson, 2007; Anderson, et 
al., 2004) has been used before to model implicit learning. 
In particular, Wallach and Lebiere (2003) reviewed the 
theoretical approaches to implicit learning and observed “a 
major shortcoming of these models is their failure to also 
account for explicit learning and for the difference between 
implicit and explicit learning” (pg 217). They then presented 
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ACT-R models of two well-known implicit and explicit 
learning tasks and specifically linked explicit learning with 
the learning of declarative chunks and implicit learning with 
ACT-R’s sub-symbolic learning of the activations of those 
chunks. We will use the same approach here, using the sub-
symbolic representation associated with declarative memory 
as the basis of our model of intuitive decision making. 

This paper presents an approach to studying intuitive 
decision making (i.e., System 1 cognition) that exposes the 
cognitive process to computational modeling and 
experimental testing of theories implemented as models. An 
ACT-R model was developed and compared to human 
subject data on an intuitive decision-making task used by 
Patterson, Pierce, Boydstun, Park, Shannan, Tripp and Bell 
(submitted). 

Patterson et al. Study 
 
Patterson, Pierce, Boydstun, Park, Shannon, Tripp, and 

Bell (submitted) investigated whether implicit learning can 
be a process by which intuitive decision making is acquired. 
One form of implicit learning entails the learning of spatial 
or temporal patterns without full awareness of what is 
learned (Cleeremans, Destrebecqz & Boyer, 1998; Perrachet 
& Pacton, 2006). Implicit learning is likely to be a key 
process by which individuals learn situational patterns on 
which intuitive decisions are based (e.g., Patterson et al., 
2009).  

Patterson et al. extended the classic paradigm by Reber 
(1967) used for studying implicit learning, which entailed 
the learning of a synthetic grammar produced by a finite 
state algorithm that generated artificial letter strings. 
Patterson et al. instead investigated the implicit learning of 
passively viewed, structured object sequences presented in a 
simulated real-world immersive environment used for 
simulating locomotion (Figure 1). In doing so, they used a 
finite state algorithm that created an artificial grammar for 
generating the object sequences and thus the content of the 
environment (Figure 2). For comparison, Patterson et al. 
also investigated the implicit learning of memorized static 
letter strings presented on a flat display, as has been done in 
the past (Reber, 1967) (See Figure 3).  

The finite-state diagram of the grammar shown in Figure 
3 has also been used in many other studies (Cleeremans, 
Destrebecqz, & Boyer, 1998; Matthews, et al., 1989; 
Perrachet & Pacton, 2006). It produces 44 valid structured 
strings of length 8 or shorter. Participants are trained by 
being presented a series of example strings from the 
grammar and are then tested by being asked if a test string is 
legal or not.  

During training, Patterson et al. had human participants 
(1) passively view structured sequences of objects presented 
on a dynamic terrain seen in perspective view (the 
'immersive display' condition), or (2) memorize structured 
strings of letters presented on a static flat display. Following 
training, participants were tested for implicit learning by 
making intuitive pattern-recognition judgments of novel 

structured object sequences or letter strings versus random 
sequences or strings.  

By training participants on the structured object 
sequences or letter strings, and then testing recognition of 
structured versus random sequences or strings, the 
participants performed an 'anomaly recognition' test. The 
random sequences or strings effectively served as an 
anomaly to be recognized because the participants were 
never trained on random sequences or strings. 

     

 
 
Figure 1. Photograph showing the simulated real-world 

environment. The scene underwent expansive optic flow 
motion, which simulated passive movement by the 
participant in the forward direction toward the horizon. 

 
 
Figure 2. Depiction of finite state algorithm that defined 

the grammar employed for generating the structured 
sequences of objects used in Patterson, Pierce, Boydstun, 
Park, Shannon, Tripp, and Bell (submitted). 
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Figure 3. Finite state algorithm that defined a grammar of 

letter strings with the same structure as the sequences of 
objects of Figure 2. (From Reber, 1967.) 

 
Results. Figure 4 depicts results obtained for the 

simulated real-world environment and for the static flat 
display, as reported by Patterson et al. Passive viewing of 
object sequences (third bar from the left) resulted in an 
average accuracy of intuitive decision making that was 
equivalent to the average recognition performance that was 
obtained when letter strings presented on a flat display were 
memorized (middle bar). An a-priori t-test showed that the 
difference between these two conditions was not significant, 
t(14) = 0.4, p = 0.7. The two training conditions were 
significantly higher than the no-training control condition 
(left bar), which was at chance-level performance.  

During debriefing, the human participants had trouble 
explicitly verbalizing all of what they had learned during 
training and that a number of their decisions made during 
testing were from a feeling "in the gut". Thus, the training 
methods produced a significant level of implicit learning 
that was a foundation for the pattern-recognition-based 
(intuitive) decision making. 

 
Figure 4. Accuracy of intuitive decision making, as 

measured by recognition performance during the test phase.  
During training, the object sequences were passively 
viewed, and the letter strings were memorized. The control 

group, which involved object sequences, entailed no 
training. Each data point is the mean of eight human 
participants; error bars depict ± 1 standard error of the mean 
(SEM). The data was from one portion of Patterson et al. 
(submitted). 

ACT-R Model  
Our model is based on ACT-R (Anderson, 2007; Anderson, 
et al., 2004). ACT-R is a rule-based architecture 
representing cognitive processes symbolically and sub-
symbolically. Its declarative memory holds chunks of 
declarative facts with an activation level based on the 
recency and frequency of use. IF-THEN rules are held in a 
long-term procedural memory. ACT-R models can learn by 
adjusting the activation of accumulated declarative chunks, 
by adjusting the relative measure of rules, or by combining 
sequential rules into new rules.  

Statistical learning is sometimes modeled as the tuning of 
the relative measures of rules and that approach could have 
been used here. However, to study different strategies 
believed to be used in the implicit learning of abstract 
grammars, the model developed here uses the activation of 
declarative chunks of memory, with each chunk 
representing a bigram of letters. (The task modeled was the 
letter string version of the implicit learning task. An 
analogous model would apply to the object sequence 
version of the task.) 

Our ACT-R model uses both the declarative and 
procedural modules to passively learn and then respond to 
this task. The rules are fixed during the run of the model. 
Declarative memory chunks are added based on experience 
during training and are recalled to make the valid/invalid 
evaluation during testing. 

During training, rules direct the system to read the string 
letter by letter, left to right. The system then forms 
declarative chunks and saves them as an internal 
representation of the grammar based on observed training 
strings. Each declarative fact is a representation of observed 
bigrams indicating which letter was seen before another, 
i.e., a first letter and a predicted second letter. 

 During testing, a representation of the intuitive decision-
making process determined whether all the bigrams in a test 
stimulus have been seen before. To respond, the system 
reads the string left to right and attempts to recall bigrams 
predicting the next letter. A successful retrieval increases 
the activation of that declarative chunk and the ACT-R 
architecture returns the one declarative chunk for an 
attempted recall operation. If the retrieved bigram does not 
match the second letter, a second retrieval is attempted 
using both the first and second letter. If successfully 
recalled, the evaluation continues. If not successfully 
recalled, the test string is evaluated as invalid.  

This approach implements a form of predictive and 
evaluative behavior. Other approaches that could have been 
studied include recalling the first few letters of a string 
(primacy), recalling the last few letters of a string (recency), 
recalling both the first few and the last few letters, or simply 
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deciding by noting whether the number of pairs of letters 
recallable was above a threshold. We could also have tested 
trigram representations, or other representations. The model 
discussed here based its decisions on whether predictive 
bigrams were recallable. 

Replicating Human Subject Experiments 
To compare the ACT-R model to data from Patterson et al 
(submitted), we replicated the passive training and testing 
protocols for strings of letters generated by the artificial 
grammar shown in Figure 3. The human participants and the 
model were trained and tested the same way.  

Training used 18 unique strings drawn from the 44 valid 
strings of length 8 or less. Training was organized as six 
blocks of three unique valid strings, which were presented 
16 times with each string presented for 5 seconds and a 
blank screen shown for 0.6 seconds between strings.  

The testing process also replicated that used with human 
participants. The system presented 88 strings, 22 valid 
strings that were not used for training, and 22 foils, each 
presented twice in a random order. The foils used the same 
letters, but in a random order and were of length 6, 7, or 8. 

For this model, only default ACT-R parameters were 
used, except the retrieval threshold (:rt) for declarative 
memory and the activation noise variable (:ans). 

Model’s Performance 
The model reports whether a test string is valid or not for 
each of the 88 trials. Response accuracy was our only 
performance measure because the response time for the 
human participants was not collected in the Patterson et al. 
study. Figure 5 shows the performance results of the model 
together with the human participants' test performance as 
reported by Patterson et al. (submitted). 

The plotted results for the human participants are the 
means and standard error for 8 individuals as described in 
Patterson et al. (submitted). The plotted model results are 
the means and standard error for 30 runs of the model 
varying the retrieval threshold (:rt) parameter from -1.5 to 
+3.0. The noise parameter, :ans, was 0.1. The :rt parameter 
sets the threshold for successful retrievals from memory 
base on the activation level of chunks of memory. Lower 
values of the parameter allow the model retrieve more 
instances and higher values restrict retrievals to the most 
activated memories. 

A two-tailed, equal variance t-test found that the 
difference in mean accuracy between the humans and the 
model was not significant for the 30 runs with :rt =2.0 (t(29) 
= 15.74, p < 0.001). Note, however, that the mean accuracy 
for the humans and model were very similar and within a 
few percentage points of one another for several values of 
:rt. Therefore, we are encouraged by the closeness of the 
model behavior to that of humans on this implicit learning 
task. 

Because we are using a computational model, it is 
relatively easy to collect additional information on the 
performance of the model and compare it to human data. 

Table 1 provides the human and model performance in more 
detail than the summary information shown in Figure 5.  

 
Figure 5. Model and Human Performance. The human 
performance (H column) and the model’s performance for 
retrieval threshold parameter (:rt) from -1.5 to +3.0 on 
strings of letters learned by passive viewing. Error bars in 
this figure depict ±1 standard error of the mean (SEM) 

Table 1: Human and Model Performance in Detail. 
 

Trial/Response Type Human  Model 
:rt=2.0  

Hits 33/44 34/44 
Correct Rejections 36/44 39/44 
Misses 11/44 10/44 
False Alarms 8/44 5/44 

 
In the table, "Hits" refers to the number of grammatical 
strings that were detected as grammatical, "Correct 
Rejections" refers to the number of ungrammatical strings 
that were detected as ungrammatical, "Misses" refers to the 
number of grammatical strings that were incorrectly seen as 
ungrammatical, and "False Alarms" refers to the number of 
ungrammatical strings that were incorrectly seen as 
grammatical. In a signal detection analysis, one can 
compare the hit rate and false alarm rate to get an estimate 
of the level of criterion that is being used for detection: a 
high hit rate coupled with a high false alarm rate would 
suggest that the detection system is overly responsive and 
that its actual sensitivity is not particularly high. However, a 
high hit rate coupled with a low false alarm rate would 
suggest that the system is responding selectively to a signal 
and that its sensitivity is high. 

While the data shown in Table 1 is insufficient for a 
formal signal detection analysis, it is clear that both the 
human data and the model data reveal a very similar pattern 
of high hit rates coupled with low false alarm rates. This 

4



 

 

would suggest that both systems, human and model, possess 
a similar high level of sensitivity for implicit learning.  

Discussion 
The results show that the ACT-R model can replicate the 
human performance when the retrieval threshold parameter 
is tuned to account for the training protocol. Interestingly, 
the model appears better at recognizing foils than hits like 
humans. Therefore, the results imply we have a reasonable 
model of the intuitive decision making process. 

Intuitive decision making and its development through 
implicit learning depend upon a form of non-declarative 
memory called procedural memory. According to Squire 
(2004, 2009), human memory can be subdivided into two 
basic systems. One system is a declarative memory system, 
which entails conscious recollection about facts and events. 
The other system is a non-declarative memory system, one 
form of which is procedural memory, which involves 
memory relating to the ability to extract common elements 
and patterns from separate events (Knowlton, Ramus & 
Squire, 1992; Knowlton & Squire, 1993; 1996), as well as 
memory supporting the development of skill-like abilities.  

Procedural memory is involved in much more than motor 
skill. Rather, procedural memory is also involved in the 
recognition of invariant properties within patterns of 
information that unfold over time (Patterson, et al., 2009). 
Because procedural knowledge is highly implicit and does 
not require full conscious processing to be evoked and used, 
it is especially useful in situations where the traditional 
analytical (conscious) processing of information, which is 
slow and limited by working memory capacity, would 
burden a person already stressed within a dynamic, time-
pressed task environment.  

ACT-R implements a formalized representation of 
declarative memory and non-declarative procedural memory 
systems and both systems have sub-symbolic components. 
In ACT-R, the declarative memory contains facts and 
events, but the retrieval of facts is not always a conscious 
process in that it is based on the sub-symbolic activation, 
which is based on the history of use of the memory.  

ACT-R’s procedural memory is activated by recognizing 
stimuli, i.e., matching the “IF” parts and then initiates 
actions in one or more of the architecture's modules, such as 
changing the current description of the goal, initiating the 
recall of a declarative chunk of memory, initiating a motor 
action, or moving the focus of the eyes. This is a different 
concept of “procedural” memory that discussed above. 

We used ACT-R’s declarative memory for facts and its 
sub-symbolic activation associated with those memories 
along with simple productions to represent the intuitive 
decision making process. We can produce both the overall 
performance as well as the different performance on hits and 
correct rejections implying we are modeling the cognitive 
processes involved. Our modeling formalization and data 
available raises research questions concerning the intuitive 
decision making process and the appropriate architectural 
approach. Further research will be needed to determine if 

another strategy for the learning and use of the learned 
knowledge would also perform well compared with human 
data.  

Modeling the non-declarative knowledge that was 
investigated in the present study is a challenge because this 
kind of procedural knowledge is more abstract than ACT-
R’s simple symbolic chunks, their activations, or 
productions, yet it is not declarative. This means that the 
conceptualization of non-declarative procedural memory in 
ACT-R may need to be expanded to include abstract 
representations of statistical regularities and invariances 
sampled from the environment.  

Our ability to match available human performance data 
does not mean that we have proven the ACT-R model is 
necessarily an explanation of the underlying human 
cognitive processes. Humans can make the translation of 
their learning in one environment to another, as 
demonstrated by Patterson, et al. Their participants could 
learn pattern independent of the specific items in the 
sequence. However, the ACT-R model is not able to do that 
because the declarative chunks learned are specific to the 
letters in the stimuli and the knowledge are not 
generalizable. Further work in this area may justify 
extending ACT-R to represent implicit patterns more 
abstractly. 

Conclusions 
This work demonstrates some of the reasons for building 
computational cognitive models. First, we are able to 
replicate human performance on this implicit learning and 
intuitive decision making task. This was accomplished by 
implementing a model of a cognitive learning and 
evaluation process that, while consistent with the ACT-R 
theory of cognition (Anderson, 2007), was inconsistent with 
the intuitive nature of procedural memory in humans. The 
strategy implemented was to build a memory of bigrams of 
sequential letters and then evaluating a test string by 
checking that each bigram had been seen before. However, 
other strategies may be similarly successful. 

Second, cognitive modeling supports formally exploring 
alternative explanations for observed behavior. The model 
could be modified to test whether learning trigrams in the 
training strings could yield similar results. It could also be 
modified to test if recognizing only the first few and/or the 
last few letters, i.e., primacy or recency, can match the 
human participants’ performance. A third alternate strategy 
is simply a voting strategy where recognized bigrams are 
counted and if above a threshold, the model would report a 
match. These strategies have not yet been tested, but with a 
cognitive modeling environment, they can be. 

Third, this work also demonstrates that at least some 
System 1 as well as System 2 forms of cognition can be 
replicated within the current ACT-R architecture, but not 
necessarily all. This demonstration included implicit 
learning and intuitive decision making. From the work of 
Patterson et al. (submitted), there is data on the performance 
of human participants who memorize training strings rather 
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than passively viewing them. This may be a nice example of 
an effortful System 2 learning strategy rather than the far 
less effortful System 1 passive learning strategy. The 
characteristics of each system need more study. To address 
other examples of System 1 cognition, ACT-R may need to 
be extended to include introspective factors representing 
emotional aspects of cognition such as current arousal, 
general mood, and temperament.  

Finally, cognitive modeling advances our understanding 
of cognitive processes by providing a framework to 
represent and explore the explanation of behaviors, such as 
intuitive decision making, that seem to be driven by 
cognition that is “beyond rational”. 
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Abstract 

This paper describes how the AMBR model explains multiple 
analogies and more specifically how the use of a superficially 
similar analogical base, that turns out to be inappropriate (we 
call it a bridge analogy), may actually lead to the re-
representation of the target and the activation of a more 
appropriate remote analogical source. A simulation is 
described that demonstrates this capability of the model. A 
specific prediction of the model about the re-representation 
that the presence of the bridge analogical source is causing is 
tested in a psychological experiment. 

Introduction 
Analogy-making is considered to be a basic cognitive 
process that underlies much of human cognition (Hofstadter, 
2001; Holyoak, Gentner, Kokinov, 2001). That is why of lot 
of efforts have been put to investigate this fundamental 
cognitive ability (Holyoak, Gentner, Kokinov, 1998; 
Gentner, Holyoak, Kokinov, 2001; Kokinov, Holyoak, 
Gentner, 2009). 

Most of this research, however, is devoted to 
understanding single analogies, i.e. analogies between a 
target and a single source. While this is certainly a very 
wide spread phenomena, multiple analogies (i.e. analogies 
between a target and multiple sources) do play an important 
role as well. There are two reasons for the use of multiple 
analogies. The first reason is that it is not always the case 
that in our previous experience we do have a case close 
enough to the target that can help us cope completely with 
the new situation. We can, however, combine several 
previous cases each of which partially maps to the target to 
collectively help to solve the problem. In the early days of 
analogy research there were some interesting studies of 
multiple analogies in physics (Collins & Gentner, 1987, 
Clement, 1993), in astronomy (Gentner & Markman, 1997, 
Gentner, et al. 1997), in medicine (Spiro  et al., 1989), in 
biology, archeology and philosophy (Shelly, 1998, 1999, 
2003), in computer science (Burstein, 1986, 1988), in 
transportation (Veloso & Carbonell, 1993). There were even 
some initial computational models of multiple analogies that 
were trying to explain how the information from different 
sources is being integrated ! CARL (Burstein, 1986, 1988) 
and a special version of the Multiple Constraint Theory 
(Holyoak & Thagard, 1989) suggested by Shelly (1999). 
However, later on the mainstream research in the field of 

analogy has concentrated on the single analogy case 
(Gentner, 1983, 1989, Falkenheiner at al., 1989, Holyoak & 
Thagard, 1989, Hummel & Holyoak, 1997, Kokinov & 
Petrov, 2001). 

This paper is returning us to the study of multiple 
analogies from a new perspective following the second 
reason to use multiple analogies: the first analogy that 
comes to our mind is not necessarily the best one and we 
may reject it and search for a better one. Thus this first 
analogy may play the role of facilitator that invites the 
"#$%&'( %&#)( *%+#( $,--( ./( 0bridging analogy1)( 2e are 
interested in the dynamics of the re-representation processes 
that such bridging analogies trigger and how they facilitate 
the multiple analogies production. 

The concept of bridging analogies was first introduced by 
John Clement and then used by Stella Vosniadou and others 
(Clement, 1993, 2009, Vamvakoussi, & Vosniadou, in 
press, Vosniadou & Skopeliti, in press). The idea is that the 
teacher can provide an intermediate analogical base that will 
be in-between the target and the desired remote analogical 
source. They have experimentally shown that children, 
students and even experts make the desired remote analogy 
easier if there is such a bridging analogy provided by the 
teacher of physics or mathematics. 

In contrast, we are interested in the mechanisms of 
spontaneously self-generating of such bridging analogies 
and what their effect could be on the re-representation of 
the target and subsequent search for better analogies. The 
next section describes a simulation experiment which 
demonstrates the capability of the AMBR model to 
spontaneously come up with bridging analogies and use 
them in further search of a better remote analogy. Then we 
present the results of a psychological experiment which tests 
what are the influences of this bridging analogy on the 
evaluation of the desired remote analogy. 

Simulation 

The A M BR Model 
We have used the AMBR model for simulating the process 
of spontaneous multiple analogy-making including the 
generation of bridging and remote analogical sources. The 
general AMBR model is described elsewhere (Kokinov, 
1994, Kokinov & Petrov, 2000, 2001) and for the lack of 
space it will not be presented here again. Crucial features of 
AMBR are the decentralised representation of episodes 
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which allows for context-sensitive construction of the 
episode descriptions (past episodes are not stable static 
structures but are dynamically constructed on the fly); the 
continuous change of the relevance of the various 
representational elements which allows for dynamic 
processes of representation building and re-representation; 
the emergent computation processes which are based on 
local information processing only and depend on the 
computed relevance of the memory elements which allows 
for exhibiting context-sensitive computation. 

In previous work we have demonstrated how perception 
and analogy-making interact in AMBR thus allowing for 
dynamic re-representation of ambiguous input stimuli under 
the pressure of the analogy-making process (Kokinov,  
Bliznashki, Kosev, Hristova, 2007; Kokinov, Vankov, 
Bliznashki, 2009). In the following simulation we are 
#34-%5.&6(789:;"( $,4,<.-./=( /%(45%'>$#( "#?#5,-( analogies 
one after another and exhibit dynamic re-representation of 
the target as result of these intermediate analogies. 

Overview of the Simulation 
The goal of the system is to find an appropriate remote 
analogy for the $,"#(%@( 0,( suicidal terrorist act, made by a 
single terrorist1; and if possible, to transfer additional 
knowledge or even a proposal for how to prevent further 
similar acts. One superficially similar potential base is the 
suicidal act of a kamikaze during the World War II. We 
expect the system easily to activate this base and to launch 
the analogy. However, this analogy is not good and will fail 
later on. The reason is that one vivid aspect of the kamikaze 
is their motivation: the kamikaze is typically coming from a 
wealth family; they are proud of their origin and culture, of 
their country; they perform their suicide act with pride and 
for the prosperity and safety of their country. 

Once activated, the motivational aspect of the kamikaze 
situations will try to map with its analog in the terrorist 
situation. Thus, the question about the deep psychological 
+%/.?,/.%&( %@( /A#( /#55%5."/;"( ,$/( B.--( 0$5%""( /A#(+.&'1C( .)#)(
the system will activate it. 
D%B#?#5C( /A#( #&$%'#'( E&%B-#'6#( ,<%>/( /A#( /#55%5."/;"(

motivation is that he is an immigrant for several years 
already; and although he has good educational and relatively 
good professional successes, he is not happy. He has never 
overcome the cultural differences; the guilty that he has left 
his country; and the nostalgia. 

Once activated, this aspect of the target situation should 
activate completely different base. Namely, the base of a 
Bulgarian emigrant in Ireland who has the same problems to 
adapt himself to a different culture and, as a consequence, 
he beats his wife. Nevertheless that this base seems quite 
'.@@#5#&/( @5%+( /A#( /#55%5."/;"( %&#C( we expect it to win the 
analogy because of the deep structural analogy according to 
the motivation. 

The last step for the system is to make a transfer. The 
story for the Bulgarian emigrant in Ireland has a happy 
continuation. This man has found a solution and has solved 
his problems. Actually, he has opened a Bulgarian 
restaurant and a small shop for traditional Bulgarian 
souvenirs. Thus, from one side, he has never uprooted fully 
from his country and, from other side, has deserved a 

respect from the Ireland people. Spreading of his traditional 
culture allows to the immigrant to stop beating his wife. 

 
Dynamic of the simulation 

The target situation is represented with eight instance 
AMBR-agents (fig. 1). Two of them stand for the terrorist 
himself and for the suicidal act. 

 
Figure 1. Schematic representation of the knowledge 

about the terrorist. The activation is represented with the 
level of gray. 
 

These two nodes are directly attached to the INPUT and 
the activation spreads to the respective concepts and then 
back to some other known instances.  

The other agents (in white on the picture) from the 
terrorist situations represent different aspects that the system 
FE&%B";( ,<%>/( /A#( /errorists but these aspects cannot be 
activated easily. For example, a coalition of agents 
represents the deep motivation for the suicidal act of the 
terrorist ! he is unsatisfied because of nostalgia or no 
acceptance of the cultural differences. However, there are 
not any links from the active elements to this aspect and as a 
$%&"#G>#&$#C( /A#( "="/#+('%#"( &%/( F/A.&E;( ,<%>/( /A."( ,/( /A#(
beginning. 

The ag#&/(F+%5#(,$$#4/,<-#(,$/;(."(,//,$A#'(/%(/A#(HI7J(
node. Its purpose is an eventual solution to be transferred 
from somewhere around this agent. This agent is not 
connected to any other agent except its respective concept-
agent. 

Some other marginal pieces of knowledge are represented 
! for example the fact that the Arabic traditional culture is 
very rich and interesting for the foreigners. 

One binding-node (not shown on fig.1), represents the 
whole situation. All other agents point to it, but there are 
few opposite links and all aspects of the situation cannot be 
activated from a single element. 

During the first 5 AMBR cycles the activation spreads 
through /A#( $%&$#4/"( %@( 0">.$.'#1( ,&'( 0/#55%5."/1( ,&'( /A#&(
<,$E( /%( "%+#( /=4.$,-( .&"/,&$#)(7"( /A#( $%&$#4/( %@( ,( 0K,4,&(
E,+.E,L#1(."(,"">+#'(/%(<#(,(/=4.$,-(.&"/,&$#(@%5(,(">.$.'#C(
./( ."( ,&( %44%"./#( -.&E( @5%+( /A#( $%&$#4/( %@( 0">.$.'#1( /%(
0E,+.E,L#1)( MA#( FE,+.E,L#;( "./uation is represent again 
B./A(,(FE,+.E,L#;(,&'(F">.$.'#;(&%'#"(,&'(-.E#(.&(/A#(/,56#/(
"./>,/.%&(/A#(,$/.%&(F">.$.'#;(."(,(5#-,/.%&(B./A(%&#(,56>+#&/(

terrorist suicide 

cause 

nostalgia 

unsatisfa
ction 

more acceptable act 

traditional culture 

INPUT GOAL 
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! FE,+.E,L#;)(MA."(,--%B"(/A#"#(4,.5"(%@(&%'#"(/%(<#(+,44#'(
easy (see Figure 2). 

 

 
Figure 2. MA#( +,44.&6( <#/B##&( /A#( 0/#55%5."/1( ,&'(

0E,+.E,L#1("./>,/.%&"(%$$>5"(,/( /A#(NOth AMBR cycle. The 
hypothesis agents are represented with diamonds. 

 
I&$#( ,$/.?,/#'C( /A#( &%'#( @%5( FE,+.E,L#;( "45#,'"(

activation to some other agents. The deep motivation for the 
E,+.E,L#;"( ">.$.'#( ."( A."( A%&%5( .&( @5%&/( %@( /A#( &,/.%&C(
emperor and family. Thus, the activation spreads to the 
abstract concepts for the motivation in general, then back to 
the more concrete concepts and instances, and the 
+%/.?,/.%&,-( ,"4#$/( %@( /A#( /#55%5."/;"( ,$/( "/,5/"( "-%B-=( /%(
become active (Figure 3). 

 
Figure 3. Between the 6th and the 19th AMBR cycles the 

+%/.?,/.%&,-(,"4#$/(%@(/A#(0/#55%5."/1("/%5=(<#$%+#"(,$/.?#) 
 
P5%+( %/A#5( ".'#C( ,6,.&( @5%+( /A#( FE,+.E,L#;( <,"#( "%+#(

other concepts become active because of a large number of 
associative links - FQ,4,&;C( F*A%6>&( +%?.#;C( FR&6-,&';C(
FS5#-,&';C(#/$ (Figure 4).  
7"(,( 5#">-/(%@( /A#(,$/.?,/.%&(%@( /A#(0.++.65,&/1(<,"#C( ./"(

elements map to the elements of the target situation. Thus, 
/A#( 0E,+.E,L#1( ,&'( /A#( 0.++.65,&/1( <,"#"( <#$%+#(
competitors for the mapping with target situation. 
MA#( F.++.65,&/;( <,"#( ."( "/5>$/>5,--=( $-%"#5( /%( /A#( /,56#/(

situation, because both share the high-order relations about 
the motivational cause of the respective actions. Thus, 
nevertheless that the actions themselves are very different 
(the immigrant beats his wife, whereas the terrorist makes a 

suicidal act), they map each other because of the pressure 
for structural mapping. 

 

 
Figure 4. Between the 6th and the 17th AMBR cycles the 

,$/.?,/.%&( "45#,'"( @5%+( /A#( 0E,+.E,L#1( <,"#( /%( /A#(
0.++.65,&/1(%&#) 
 

Thus, at time 21 AMBR cycles (Figures 5, 6), the first 
+,44.&6"(<#/B##&(/A#(F/#55%5."/;(,&'(F.++.65,&/;("./>,/.%&"(
,5#( -,>&$A#')(T#?#5/A#-#""C( /A#( FE,+.E,L#;( "./>,/.%&( ."("/.-l 
more active and remains leading for a long time. The 
$%&/.&>%>"( "/5>$/>5,-( 45#"">5#( @5%+( /A#( F.++.65,&/;(
situation cause firstly an inversion of the activation of the 
two bases (time 34); and much later the ratings are inverted 
too (time 77). 

 
Finally, ,/( /.+#( NUV( /A#( 5,/.&6( @%5( /A#( F.++.65,&/;( <,"#(

exceeds the threshold 1.000 and wins the competition. With 
other words, the hypothesis that the binding-node for the 
F/#55%5."/;( "./>,/.%&( $%55#"4%&'"( /%( /A#( 5#"4#$/.?#( <.&'.&6-
&%'#(@%5(/A#(F.++.65,&/;("./>,/ion becomes a winner. 

 

 
Figure 5. Activation level of the binding nodes for the two 

<,"#("./>,/.%&"(WFE,+.E,L#;(,&'(F.++.65,&/;(,"(,(@>&$/.%&(%@(
/.+#X)( 7/( /.+#( NUV( /A#( +,44.&6( B./A( /A#( FS++.65,&/;(
situation wins. 
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Figure 6. Rating of the hypotheses that the target situation 

WF/#55%5."/;X( $%55#"4%&'"( /%( /A#( /B%( <,"#( "./>,/.%&"(
5#"4#$/.?#-=( WFE,+.E,L#;( ,&'( F.++.65,&/;( ,"( ,( @>&$/.%&( %@(
/.+#X)( 7/( /.+#( NUV( /A#( +,44.&6( B./A( /A#( FS++.65,&/;(
situation wins. 
 

The transfer mechanism, however, does not wait for any 
winners. Soon after the goal-,6#&/( F+%5#( ,$$#4/,<-#( ,$/;(
@5%+( /A#( F/#55%5."/;( "./>,/.%&( W"##( @.6)( NX( @.&'"( ./"(
correspondence, the system starts to transfer the respective 
relation. It is known from the base situation that the 
Bulgarian immigrant opened a Bulgarian restaurant in 
Ireland (which is an instance of popularization of the 
Bulgarian traditional culture) and this act causes stopping 
him beating of his wife. Thus, the most important causal 
relation (popularizing own culture in foreign countries 
causes acceptable actions) is transferred to the target 
situation (Figure 7). After winning of the respective 
analogy, these transferred agents remain in the description 
of the target and can be further interpreted. 

 
Figure 7. According to the transfer mechanism, if all 

arguments of a certain relation are mapped but the relation 
itself is not, then a copy of the respective relation is created. 
(The transferred elements are represented as dashed 
rectangles) 

Exper iment 
MA#( #34#5.+#&/( ."( '#".6&#'( /%( /#"/( /A#( +%'#-;"( 45#'.$/.%&(
that a losing base for analogy may play role in highlighting 
specific aspects of the target that will improve the mapping 
between the target and another, appropriate base. 

 
Design: 
We performed an one-factorial between-group 

experiment. The independent variable was the group with 
two levels: control and experimental. The dependent 
variables were the judgments of the people on 7-point scales 
to four questions about how similar the stories and some of 
their aspects are. 

Procedure: 
Each participant received a sheet of paper with three short 

stories written on them. The instruction to the people was to 
read carefully all three stories and to prepare for answering 
some questions on them. There were no time limits for 
reading. Everybody worked alone, with the presence of the 
experimenter in the room only. 

People from the control group received the stories 
0M#55%5."/1C( 0M">&,+.1C( ,&'( 0R+.65,&/1( W.&( /A."( %5'#5XY(
whereas people from the experimental group received 
0M#55%5."/1C( 0Z,+.E,L#1C( ,&'( 0R+.65,&/1 (see more about 
the stories in the section Stimuli below). 

After that, the participants from the both groups received 
another sheet of paper with eight statements on each. The 
instruction was to evaluate on a 7-point scale how confident 
they feel each of the statements. The last four statements 
were equal for the both groups and concern the similarity 
<#/B##&(/A#(0M#55%5."/1(,&'(0R+.65,&/1("/%5.#"C(,"(B#--( /A#(
similarity between some of their aspects. The first four 
statements differed for both groups and concerned the 
".+.-,5./=( <#/B##&( /A#( 0M#55%5."/1( ,&'C( 5#"4#$/.?#-=C(
0M">&,+.1(%5(0Z,+.E,L#1("/%5.#")(MA#("><K#$/"(%@(,&,-="."(
were the answers of the people to the four equal for both 
groups questions. 

Stimuli 
The four stories 0M#55%5."/1C(0Z,+.E,L#1C(0M">&,+.1C and 

0R+.65,&/1 consisted of 120-170 words each. The first three 
stories were described as journalistic coverage, the fourth 
one ! ,"( ,( -#//#5( /%( ,( @5.#&')(MA#( 0M#55%5."/1 coverage was 
about a lonely man who had crashed with a car-bomb in a 
market in New Jersey)(MA#(0E,+.E,L#1 report was about the 
grandson of a kamikaze, hero from the war. The grandson 
has been just nominated as an ambassador of Japan in US. 
The story for the tsunami (a control story for the participants 
from the control group only) was about a japan farmer who 
had -%"/(A."(<>".&#""(<#$,>"#(%@(,(/">&,+.)(MA#(0Immigrant1 
story was a letter from the wife of the immigrant to her 
friend. 

The questionnaire consisted of eight statements. The first 
four statements differed between the two groups. For the 
control group they served evaluating the similarity between 
/A#(0M#55%5."/1(,&'(0M">&,+.1("/%5.#"Y( @%5(/A#(#34#5.+#&/,-(
group ! respectively between /A#( 0M#55%5."/1( ,&'(
0Z,+.E,L#1( "/%5.#")( [#%4-#( "A%>-'( #?,->,/#( A%B( ".+.-,5(
they feel the stories as a whole; the actions of the main 
heroes; the motives for their actions, and the nature of the 
persons as a whole. 

terrorist 
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more 
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immigrant 

beats his 
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more 
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The second group of four questions served for evaluating 
/A#( ".+.-,5./=( <#/B##&( /A#( 0M#55%5."/1( ,&'( 0S++.65,&/1(
stories according to the same criteria. These four questions 
were the same for both groups and were an object of 
analysis. 

Participants: 
42 students from New Bulgarian University participated 

in the experiment for course credits. They were randomly 
assigned to both groups. 24 of them fell in the control 
group; the other 18 ! in the experimental group. 

Results: 
The main rating for how similar the stories for the 

terrorist and the kamikaze was 2.25 (st. dev. 1.225) for the 
control group, and 3.83 (st. dev. 1.79) for the experimental 
group. The difference turned to be significant: t(40) = -
3.404, p = 0.002. 

The respective differences for the three aspects of the 
stories, (whether the actions of the characters are similar; 
whether the motives for the actions of the characters are 
similar; whether the characters are similar in their nature) 
were not significant: respectively, t(40) = -1.184, p = 0.243; 
t(40) = -0.798, p = 0.430; t(40) = -1.033, p = 0.308. 

Thus, the difference of the ratings for the overall 
similarity cannot be caused just by a simple assimilation 
effect. Instead, looking to each aspect of the stories 
separately, people from both groups do not differ in their 
ratings. However, it seems that people from both groups 
weight the different aspects of the stories differently 
because of the context of the third story. With other words, 
people weight the different aspects of the mapped stories 
differently because of the context. This means that they 
have different representations of the target situation. 

 

Conclusions 
 

Analogy-making is a powerful human ability for decision-
making and evaluation. However, retrieval of the most 
appropriate base for analogy is a very difficult task both for 
humans and for the most of the models for analogy-making. 
It is relatively easy to retrieve situations that share the same 
superficial properties with the target, but it is very hard to 
retrieve a situation that shares the same high-level relations. 
In addition, the problem becomes even more difficult if the 
most important for the appropriate mapping aspects of the 
target story are not vivid. 

We proposed an idea how both problems may be attacked 
via exploring the dynamics of multiple analogies. Instead of 
trying to retrieve the appropriate base directly, one may use 
one or more intermediate superficial analogies that slowly 
converge the system to the right solution. From one side, the 
intermediate analogies may help for the retrieval of a better 
structurally but less superficially similar episodes. From the 
other side, the intermediate analogies may cause a re-
representation of the target and may highlight different 
aspects of it. 

We used the AMBR model for analogy making to 
simulate this idea. One aspect of the representation of the 
target situation was left inactivated. The system easily 

extracts from its memory one superficially similar base and 
launched the mapping process. It was impossible for it at the 
beginning to activate one more appropriate base for the 
analogy because of its remoteness. 

However, we propose at least two ways of how this 
remote base may be activated indirectly: 

First, the initial mapping with the superficial base may 
cause a re-representation of the target, highlighting the non-
vivid aspects of it. 

Second, the superficial base may help for the further 
spreading of the activation to close and far associations. 

The mechanisms for structural correspondence of the 
MABR model allow it to support and maintain the 
structurally well-organized mappings. Thus, nevertheless 
that the activation may spread to very different basis and 
many different initial mappings may be launched, AMBR 
behaves stable enough. Once it founds the most appropriate 
base, the consistent mappings cause additional activation of 
the respective appropriate base. 

The hypothesis that a third, structurally not good base, 
may facilitate the analogy between two situations was tested 
with a psychological experiment. People judged with higher 
ratings the similarity between two situations in the context 
of a carefully chosen third one, in comparison with the same 
judgments in the context of an arbitrary third story. The 
context was chosen in a way to initiate some mappings 
between the target and the contextual stories. These initial 
mappings should make the important aspects of the target 
story on which the two stories differ more vivid. As a 
consequence, people weight these aspects higher. 

At the same time, if people focus on the similarity of a 
certain aspect of the stories, there is no reason the context to 
influence their ratings. This was confirmed by the 
experimental results ! 4#%4-#;"( 5,/.&6"('.@@#5('#4#&'.&6(%&(
the context only when the similarity of the whole stories 
should be evaluated; not when the respective similarity 
between concrete aspects of the stories should be rated. 
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Abstract

We present a framework for cognitive modeling of aes-
thetic decision making based on dynamic prototypes.
Starting point of our work is empirical evidence which
shows that subjects’ initial ratings of attractiveness of
objects can be influenced by adapting them to new,
typically more innovative objects. The framework con-
sists of three steps: (1) Estimating an initial proto-
type from the ratings, (2) adapting the prototype due
to the impact of the new objects, and (3) predicting
the attractiveness ratings for subsequently presented ob-
ject by their similarity to the adapted prototype. The
framework allows representation of prototypes and ob-
jects as feature vectors containing metrical or catego-
rial attributes or as structural representations. Within
the framework, a variety of similarity measures and
similarity-to-rating mappings can be explored to gain
more precise insight in the cognitive processes under-
lying aesthetical appreciations. We instantiated the
framework for a first set of data obtained in a psycholog-
ical experiment. In this experiment subjects rated the
attractiveness of an initial set of chairs which varied in
length of the backrest and the saturation of the color.
Subjects then were adapted to a new set of chairs with
extreme values on both dimensions. Finally, subjects
again rated the initial objects. We tested our model
and obtained promising first results.

Introduction
Aesthetical judgements are not only underlying the eval-
uation of works of art but also guide our purchase de-
cisions for mundane objects (Whitfield & Slatter, 1979;

1The reported results were obtained in a student project
of J. Folger, S. Schineller, and D. Seuß, supervised by Ute
Schmid and Michael Siebers. The collaboration between the
Cognitive Systems group of Ute Schmid and the General Psy-
chology Group of Claus-Christian Carbon is supported by
a grant of Bayerisches Staatsministerium für Wissenschaft,
Forschung und Kunst.

Hekkert, Snelders, & Wieringen, 2003). Whenever we
buy something – may it be clothing, furniture, a phone,
or a car – our decision is influenced by aesthetical as-
pects. That is, given a class of objects with comparable
functionality, price range, and brand image, we still pre-
fer one object over another. Often, this preference is
based on visual cues and, more often than not, we can-
not give a clear justification for our preference.

One possible explanation for such aesthetical prefer-
ences is the similarity of objects to our individual pro-
totype for the object category (Rosch, 1978; Kruschke,
2008). Such prototypes are constructed over personal
experience and therefore dynamic (Medin & Heit, 1999;
Ashby & Maddox, 2005). This is reflected, for example,
in the way we are affected by changes of fashion. The
majority of people typically does not like a new style in
clothing or car design if it is freshly introduced to the
market. However, if they are exposed to the new design
over some time, their aesthetical judgement adapts and
the previously liked designs appear less attractive while
the new design gains attractiveness (Carbon, 2010).

Experimental evidence for adaptation effects in aes-
thetical judgements was, for example, given by Faerber
and Carbon (2010). An experimental procedure for an
adaptation experiment can be realized in the following
way: Initially (T1), subjects are presented a set of stim-
uli (e.g., chairs) which vary on some dimensions (e.g.,
length of backrest and saturation of color, see Fig. 3).
Some objects are similar to standard – that is, proto-
typical – artefacts, others highly deviate from typical
appearance. Subjects have to rate the attractiveness of
the given objects. In a second phase (adaptation phase

13



Figure 1: Illustration of a prototype-shift in feature
space due to adaptation to novel objects (represented
as squares)

A), subjects are induced to engage with artefacts which
deviate not, moderately or strongly from the typical ob-
jects. For example, they have to rate different functional
and aethetical features of these objects. Afterwards (T2),
subjects have to rate the attractiveness of the objects in
the initial set again. Over several experiments, Carbon
and his coworkers could show, that if subjects were en-
gaged with strongly deviating objects during the adap-
tation phase, at T2 the more deviating stimuli are rated
more attractive as at T1 while the more standard objects
are rated less attractive.

Carbon and colleagues explain this effect by recalibra-
tion or dynamic prototype change (see Fig. 1): When
confronted with a new artefact which deviates too much
from the prototype for this class of objects (e.g., very
angular car shape, belly-bottom trouser legs), such new
artefacts are rated as not attractive (T1). However, if one
gains more experience with such innovative objects (A),
the prototype undergoes a dynamic change, incorporat-
ing the new objects. Consequently, after a while (T2),
the objects which were originally similar to the prototype
at (T1) are now more distant and the objects which orig-
inally strongly deviated from prototype are now similar
to the updated prototype (T2).

To gain more precise insights in the dynamic changes
of prototype representations and their impact on aes-
thetical decision making, we propose a cognitive mod-
eling framework which allows (1) to estimate an initial
prototype from aesthetical judgements of objects at the
time of the first exposure (T1), (2) to adapt this initial
prototype with respect to the adaptation set (A), and
(3) to use this prototype to predict subsequent aesthet-
ical judgements of objects (T2). Such a model can help
to gain a deeper understanding of aesthetical decision
making. Furthermore, it can provide an initial building
block for an assistant system which allows designers to
evaluate the possible market success of new design lines.

In the following, we first propose a general frame-
work for prototype based generation of aesthetical judge-
ments. Afterwards, we present a first instantiation of the

framework where we model data gained from a psycho-
logical experiment. We conclude with a short discussion
and further work to be done.

A Framework for Generating Aesthetical
Judgements

Given the proposition that an individual generates
his/her aesthetical judgement of an object with respect
to its similaty to his/her prototype, the general frame-
work can be expressed as

∀o ∈ O : K(σ(o, p)) = a(o) (1)

where σ(o, p) is the similarity of the object o to proto-
type p, K is a kernel function, and a(o) is the resulting
attractiveness rating for the object. To simplify matters,
we do not discriminate between a(o) as the mental repre-
sentation of the attractiveness of the object and a(o) as
the externally expressed judgement which, for instance,
is given as a rating on a Likert scale.
To instantiate the general approach, the following

questions must be answered:

• What kind of information of the real-world objects is
included in the prototype?

• How is the prototype represented?

• With what type of measure is the similarity between
prototype and object established?

• Which kernel function is used to map the similarity to
the attractiveness rating?

Illustration

We illustrate these aspects using the material which will
be presented in more detail in section Experiment. The
objects under consideration are chairs. A chair might be
represented using

• holistic visual information such as shape, which char-
acterize a chair as elegant, comfortable, etc.

• metrical visual features such as length of the backrest,

• metrical visual relations such as the proportion of
length of the beackrest to depth of the seat,

• metrical non-visual features such as weight,

• categorial visual features such as color (which typically
is perceived qualitative and not as a metrical feature rep-
resenting wave length),

• categorial non-visual features such as producing coun-
try,

• qualitative spatial relations such as that the back legs
of the chair are under the backrest or in front of the back-
rest.
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Each subset of these different types of information im-
plies a different representational format (Schmid et al.,
2011). If only metric features are considered, each object
can be represented as a feature vector and the prototype
can be represented by an average value for each feature.
Under the – in most domains not valid – assumption

(Nosofsky, 1988), that the features are not correlated
and that the variability of feature values is comparable,
a standard distance metric, such as Euclidian distance
or Manhatten distance could be used to calculate the
similarity between an object and a prototype. However,
it is an open question, whether one of these measures
is guiding the mental similarity assessment or whether
more complex similarity measures are needed. Maybe,
different features have different salience which would re-
sult in a measure with different weights for the different
features. In general, the similarity measure should not
only take into account the isolated features but also in-
teraction terms.
Finally, there are many possible mappings from simi-

larity to aesthetical judgements. In the most simple case,
this might be a linear regression β0 +β1(σ(o, p)) = a(o).
In the case of a similarity measure which deals with dif-
ferent components of object-representation differently, σ
and β1 might be vectors. Alternatively, the mapping
might be non-linear and only captured by specific non-
linear functions. A typical obeservation is that ratings of
attractiveness are based on the MAYA (most advanced
yet acceptable) principle (Hekkert et al., 2003). That
is, objects which are very similar to the prototype are
not perceived as highly, but only medium attractive (be-
cause they are somewhat boring) and objects which de-
viate too far from the prototype are considered as highly
unattractive.
The proposed general model can be viewed as a guide-

line for exploring empirical data to obtain more specific
information about the processes underlying aesthetical
decision making.

Identifying the Similarity and Mapping
Functions

In the context of an experimental setting researching
adaptation as described above (see sect. Introduction),
the ratings obtained during initial representation (T1) of
objects are used to determine K(σ(o, p)) in such a way
that the ratings of each individual can be reproduced as
exactly as possible. To identify σ and K, we propose the
following procedure:

• Predefine a set of plausible measures Σ = {σ1, . . . ,σn} and
functions κ = {K1, . . . ,Km}.

• For each combination Kj(σi(o, p)) estimate p such that the
prediction error of a(o) is minimal over all objects o in O1.
How the estimation can be performed depends on the form
of σi and Kj . In the most simple case, it might be possible
to gain the estimate analytically. Alternatively, the pro-
totype values could be identified by gradient descent, or –

if non-derivable functions are involved – by Monte Carlo
studies.

• Select the most simple function Kj and measure σi which
produces minimal errors.

We believe it reasonable to assume that the functions
found to be fitting the individual ratings best should
be kept constant for the attractiveness ratings after the
prototype adaptation phase (at T2).

Predict Aesthetical Judgements Due to
Dynamic Shift of the Initial Prototype

To include the dynamic change of the initial prototype
due to adaptation to novel objects, the framework is ex-
tended to

∀o ∈ O : K(σ(o, S(p,OA))) = a(o) (2)

where S(p,OA) is a function modeling the shift of the
initial prototype due to adaptation.

The form of the shift function is dependent on the sim-
ilarity measure and mapping function obtained from the
initial ratings. If, for instance, the similarity measure is
based on independent, equally salient features and the
kernel is a linear function, than the prototype is shifted
in the direction of the feature vector of the average over
all objects in the adaptation phase (see Fig. 1). How-
ever – again – things can get more complex. Therefore,
different shift functions S should be investigated in the
context Kj and σi identified in the previous step. The
general procedure for selecting a suitable S is analogous
to the previous step.

Experiment
The stimuli used in the experiment are chairs which were
constructed by varying length of the backrest (l(o)) and
saturation (s(o)). A matrix of chairs where length and
saturation is varied in ten equi-distant steps is given in
Figure 2. For the experiment, chairs for every second
variation were selected as test sets – that is, saturations
are -60, -30, 0, 30, 60 and lengthes are 1, 3, 5, 7, 9. This
selection was made to ensure that the visual variations
were perceivable when presenting the objects at a com-
puter monitor. To refer to a specific chair o, we give its
feature vector 〈l(o), s(o)〉.

21 subjects participated in the study. In a first session
(T1), subjects rated each of the 25 chairs of the test
set on a 7-step Likert scale. Afterwards (A), subjects
were adapted to four chairs with extreme values: the
most extreme chair with 〈9,−60〉 was already contained
in the test set, the other three chairs were the neighbours
〈8,−60〉, 〈8,−45〉, and 〈9,−45〉 (see Fig. 3). After a
time-lag of seven days, this adaptation set was presented
again (A) and afterwards (T2), attractiveness ratings for
the 25 test chairs were obtained the second time.

The experiment was not specifically designed to ex-
plore our cognitive framework. With one rating for each
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Figure 2: Variations of length and saturation

Figure 3: Object space with 10 equi-distant variations
of the two dimensions length of chairback and saturation
(only every second variation per dimension was included
in the initial object set)

of the 25 chairs in the test set, we have a rather small
number of data available for individual models. Con-
sequently, we can only explore similarity measures and
mapping functions which involve a small number of free
parameters. Furthermore, it can be assumed that sat-
uration is perceived more dominantely for chairs with
longer backs than for chairs with shorter ones. Finally,
there might be some impact of the amout of space taken
by a presented chair in relation to the background. With
these caveats, we now will present the cognitive models.

A Model For Attractiveness Ratings of
Chairs

To generate a model based on our framework presented
in equation 1, the values of length and saturation were
normalized via z-transformation.

Exluding a Simple Linear Model

Applying the Occam’s razor principle of simplicity, the
first choice for modeling was to assume that ratings of
attractiveness are linearly dependent on similarity. That
there is no simple linear relation between prototypical-
lity and attractiveness is obvious from the interaction
diagrams of l(o), s(o) and a(o) (see Fig. 4).

Figure 4: Interaction between length l(o), saturation
s(o) and initial attractiveness rating a(o) for three sub-
jects
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Approximating a First Model for the Initial
Prototype

To capture the non-linear effect of variations in length
and saturation, we propose the following instantiation of
the framework given in equation 1:

σ(o, p) =

(
|l(o)− lp|
|s(o)− sp|

)
(3)

K(〈xl, xs〉) = β0 + β1e
−xl + β2e

−xs + β3e
−xlxs (4)

Using the e function (instead of a polynomial) is reason-
able because it results in the fewest possible number of
free parameters in the models. When taking into account
two feature dimensions and their interaction the minimal
number of free parameters is 4. The initial prototypes
where estimated by minimizing

1

2

25∑

i=1

(a(oi)−K(σ(oi, p)))
2 (5)

for each subject where oi and p are vectors 〈l, s〉. The val-
ues for the initial prototypes 〈lp, sp〉 were calculated us-
ing gradient descend with decaying learning rate η with
initial value η = 0.025 and momentum α = 0.25 iterat-
ing over 500 cycles. Values lp and sp were initialized to
the means of the highest rated objects.
The estimated prototypes produced acceptable small

deviations between predicted and observed attractive-
ness ratings (see Tab. 1). The estimated initial proto-
types are given in Figure 5. Note, that there are three
subjects (11, 15, 21) who preferred chairs with long back-
rests from the beginning.

Predicting Attractiveness Ratings From the
Shifted Initial Prototypes

Given the estimates for the individual initial prototypes,
in the next step the model was applied to predict the
attractiveness ratings after shifting the initial prototype
due to the adaptation set. Equation 2 as proposed above
was used for estimation. The parameters β estimated
for the initial prototype were kept as it is reasonable
to assume that the individual influence of the different
features is constant within subjects. Again, gradient de-
scent was applied with initial η = 0.0005.

With the exception of three subjects (6, 11, 15), the
predicted attractiveness ratings again have acceptable
small deviations from the observed ratings. For these
three subjects it might be possible that the good fit for
the initial prototype was due to a local minimum.

The prototype shifts are given in Figure 5. For the
majority of subjects the shift is in the direction of longer
chairs. This is plausible because the adaptation set con-
sisted of four chairs with lengthes 8 and 9. Only subjects
11, 17, and 21 show a shift towards shorter lengthes.
However, this shift is very small for 17 and 21. In the
direction of saturation (which was -60 and -45 in the

Table 1: Estimated values 〈lp, sp〉 for the initial proto-
type and estimated values 〈ls, ss〉 for the shifted proto-
type with mean squared residuals

Pb lp sp MSSQ(a1) ls ss MSSQ(a2)

1 1.42 41.08 17.29 1.75 41.07 39.22
2 1.00 -0.07 6.81 1.73 -0.004 48.51
3 1.54 9.67 27.22 2.79 -0.005 65.62
4 1.43 32.34 37.58 1.56 32.34 24.10
5 1.56 -51.09 10.19 2.13 -51.09 17.67
6 1.66 59.58 13.97 3.91 59.61 100.42
7 2.24 57.63 10.57 2.37 57.65 25.88
8 1.95 51.28 7.64 2.53 32.35 45.06
9 1.25 -4.78 29.46 3.00 -5.18 31.66

10 1.99 -50.52 18.93 5.00 -50.51 45.09
11 6.38 48.60 9.91 5.00 30.00 108.15
12 1.54 9.78 11.79 1.60 18.31 23.93
13 3.88 -35.14 17.86 4.74 -35.13 34.03
14 1.53 55.55 11.26 1.89 55.55 89.45
15 8.21 -56.70 44.86 8.33 -56.75 103.34
16 1.97 -59.97 14.97 3.14 -58.13 24.49
17 1.33 -25.16 2.66 1.23 -25.16 11.77
18 3.72 54.17 8.34 4.02 47.23 14.09
19 2.17 40.46 38.44 2.25 40.46 37.94
20 1.00 -44.86 6.02 1.90 -44.86 33.56
21 7.05 29.91 19.24 6.72 29.00 21.11

Figure 5: Initial prototypes and their shift which predict
initial attractiveness ratings and attractiveness ratings
after adaptation

adaptation set) there is no clear pattern for the shift.
This might be due to the fact that the visual salience
of saturation is more variable between subjects than the
visual salience of length.

Conclusion

Given empirical findings which demonstrate that aes-
thetical preferences change dynamically over time, we
proposed a cognitive framework. Within this framework
it is claimed that aesthetical judgements are based on
similarity to prototype. Similarity assessment and map-
ping of similarity to attractiveness are proposed as sub-
processes underlying aesthetical decision making. The
framework therefore gives a guideline to explore empir-
ically which types of similarity measures and mapping
functions are realised when subjects perform ratings of
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attractiveness.
We explored the framework with empirical data which

were obtained in an experiment where subjects rated the
attractiveness of chairs which varied in the length of the
backrest and the saturation of color. Although there
were only 25 data points per subject, we got satisfying
results in predicting the shift of aesthetical judgements
due to adaptation to novel stimuli.
Based on this initial work, there are several aspects

which we plan to explore in future work: In the current
model the shift of the prototype is estimated in a single
time step over all objects of the adaptation set. A psy-
chological more plausible approach would be to model an
incremental shift. However, for an incremental model, it
is necessary to determine in advance (a) the degree of the
shift – that is, how strong a new object pulls the proto-
type in its direction – and (b) the direction of the shift –
that is, the possible different weights of the dimensions
in the object space. Such an incremental model would
have an additional advantage since it allows a new way
to combine empirical evidence of mere exposure respec-
tively the exemplar theory of categorization and proto-
type theory: Because each presented object induces a
shift, the prototype updates are sensitive not only to
variations in object attributes but also to frequency of
object presentation. That is, if the same objects is pre-
sented serveral times, each presentation would induce a
shift.
Another aspect we plan to explore in the future is

to investigate more sophisticated measures of similarity,
e.g., using different similarity measures for the different
aspects of the objects. Another alternative could be to
replace the similarity measure by fuzzy memberships.
Furthermore, we are interested in models which capture
a mixture of metrical and categorial features and in mod-
els which capture the holistic visual impression.
Finally, the experiment was not specifically designed

to test the proposed framework. Therefore, we plan to
conduct more specific experiments to explore the ex-
planatory power of our framework. Especially, we plan
to investigate attractiveness ratings when object appear-
ance is varied on different kinds and numbers of dimen-
sions. Stimuli should be obtained from different artificial
and natural domains.

References

Ashby, F., & Maddox, W. (2005). Human category
learning. Annual Review of Psychology , 56 , 149-178.

Carbon, C. C. (2010). The cycle of preference: long-
term dynamics of design properties. Acta Psycholog-
ica, 134 (2), 233-244.

Faerber, S. J., & Carbon, C. C. (2010). On the role of vi-
sual adaptations on aesthetic appreciation via changes
of the object space. Perception, 39(S), 76.

Hekkert, P., Snelders, D., & Wieringen, P. van. (2003).

‘Most advanced, yet acceptable’: Typicality and nov-
eltiy as joint predictors of aesthetic preference in in-
dustrial design. British Journal of Psychology , 94 ,
111-124.

Kruschke, J. K. (2008). Models of categorization. In
R. Sun (Ed.), The cambridge handbook of computa-
tional psychology (p. 267-301). New York: Cambridge
University Press.

Medin, D., & Heit, E. (1999). Categorization. In
D. Rumelhart & B. Martin (Eds.), Handbook of cogni-
tion and perception (p. 99-143). San Diego: Academic
Press.

Nosofsky, R. M. (1988). Similarity, frequency, and cat-
egory representations. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 14 (1), 54-
65.

Rosch, E. (1978). Principles of categorisation. In
E. Rosch & B. Lloyd (Eds.), Cognition and catego-
rization (p. 2748). Hillsdale NJ: Lawrence Erlbaum.

Schmid, U., Grossmann, P., Wachter, M., Raab, M.,
Carbon, C.-C., & Faerber, S. J. (2011). How visible
are different variations of spatial features and relations
in logos and how does visibility affect prototype gen-
eration? In Post-Proceedings of the KI’11 Workshop
Visibility in Information Spaces and in Geographic En-
vironments (Berlin, Oct. 4, 2011) (p. 25-36). Univer-
sity of Bamberg Press.

Whitfield, T., & Slatter, P. (1979). The effects of cate-
gorization and prototypicality on aesthetic choice in a
furniture selection task. British Journal of Psychology ,
70 , 65-75.

18



An ACT-R Approach to Reasoning about Spatial Relations with Preferred and
Alternative Mental Models

Sven Brüssow (sven@cognition.uni-freiburg.de)1

Matthias Frorath (frorath@informatik.uni-freiburg.de)1

Marco Ragni (marco.ragni@cognition.uni-freiburg.de)1

Thomas Fangmeier (thomas.fangmeier@uniklinik-freiburg.de)1, 2
1Center for Cognitive Science, University of Freiburg

2Department for Psychiatry, University Clinic Freiburg

Abstract
A computational model of spatial relational reasoning imple-
mented in the ACT-R cognitive architecture allows for the sim-
ulation of a wide range of behavioral data in the context of
both determinate and indeterminate deductive spatial reason-
ing tasks. In that respect the presented study bridges the gap
between results of previous work that investigated determi-
nacy conditions separately. ACT-R’s subsymbolic processing
principles substantially contribute to the underlying theory of
Preferred Mental Models as they add a powerful component
making precise accuracy predictions possible. In addition, the
data is informative about a possible strategy when the task is to
judge if an externally presented spatial description matches a
mental model that resulted from the current reasoning process.
Keywords: Spatial reasoning; mental models; ACT-R

Introduction
The objective of psychological theories to explain and predict
experimental data is best realized by cognitive models im-
plemented in cognitive architectures like ACT-R (Anderson
et al., 2004; Anderson, 2007). Cognitive models help re-
searchers develop intuitions about the cognitive demands
of certain tasks, generate additional data that can be tested
against human data, and eventually allow for theory revalua-
tion. ACT-R is empirically grounded. Its explanatory power
lies in the combination of discrete symbolic descriptions with
constantly interfering non-discrete subsymbolic processes.
Both concepts are needed for an implementation of a psy-
chologically plausible theoretical account.

In the present work, we investigated the potential of ACT-R
to substantiate the theoretical framework of the Preferred
Mental Model Theory (PMMT). The PMMT describes the
deduction process in the context of ambiguous descriptions
and stands in the tradition of the classical Mental Model
Theory originally introduced by Johnson-Laird (1980, 1983).
Mental models are constructed from given spatial relational
information that is typically given by a set of premises. The
PMMT suggests distinct construction principles for determi-
nate and indeterminate premises. If premises are determi-
nate they allow for only one model (which we call UNI for
unique). If premises are indeterminate they allow for multi-
ple model derivations. In this case some mental models de-
rived from these premises may be considered in the deduction
process while others are neglected. The mental model that is
preferred over alternatives will be referred to as the preferred
mental model (PMM), the first alternative model is denoted
by AM1, and the second by AM2.

The reasoning process is commonly divided into three dis-
tinct phases. First, in the construction phase the initial PMM
is incrementally built up from the given premises. Second,
during the inspection phase evidence shows that human rea-
soners try to use the spatial information encoded in the PMM
to validate a putative conclusion (Knauff, Rauh, & Schlieder,
1995; Rauh, Hagen, Schlieder, Strube, & Knauff, 2000; Rauh
et al., 2005; Jahn, Knauff, & Johnson-Laird, 2007); in ac-
cordance with the PMMT the PMM involves the lowest con-
struction costs (Ragni, Knauff, & Nebel, 2005). Third, in the
variation phase, a correct inference depends on the type of
mental model taken into account; dependence solely upon the
initial PMM can lead to counter-examples being missed. The
respective inference process is formally described by discrete
operations starting with incremental integration of premise
terms into the PMM; followed by model-conclusion compar-
isons; and, if necessary, continued with PMM modifications
to an alternative mental model (Ragni & Brüssow, 2011).
Alternative models can be generated by applying additional
variation processes. Hence, with respect to the indeterminate
premises illustrated in Table 1, to validate the conclusion “is
D to the left of B?” two transformations are necessary, pro-
vided that participants test the conclusion with the possible
mental models in the predicted order of PMM, followed by
AM1, and then AM2.

Although the model variation phase is important, little re-
search has systematically investigated the underlying pro-
cesses. Rauh et al. (2000) were the first to investigate er-
rors of omission and commission in spatial relational reason-
ing with intervals. Their presented theory, however, is purely
symbolic; it does not allow for memory effects or other sub-
symbolic effects. This is why we decided to implement the
PMMT in ACT-R.

ACT-R is both a theory and architecture of cognition. It
has successfully been used to simulate a wide range of cog-
nitive tasks. Standing in the tradition of production systems,
originally introduced by Newell and Simon (1972) as appro-
priate formalisms for describing human problem solving be-
havior, procedural knowledge is described by sets of produc-
tion rules that operate on memory chunks that in turn rep-
resent declarative knowledge. Modularly organized, ACT-R
provides distinct components each specialized for certain per-
ceptual or cognitive tasks; environmental visual information
is processed in the vision-module, internal goal formulation
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Table 1: Determinate premises resulting in the model
“ABCD” (top) and indeterminate premises resulting in one
of the three mental models “ABCD,” “ACBD,” or “ACDB”
(bottom). Model denomination refers to unique model (UNI),
preferred mental model (PMM) or alternative mental models
(AM1, AM2). ABÑ represents the premise “A is to the left of
B” and ABÐ the premise “B is to the right of A.” The remain-
ing premises should be read accordingly. Arrows, in addi-
tion, indicate the order of term presentation. Double curve
arrows above mental model representations mark those terms
that need be transposed to transform the source model to the
next alternative model.

P1 P2 P3 UNI PMM AM1 AM2
ABÑ BCÑ CDÑ
ABÐ BCÑ CDÑ ABCD H H HABÑ BCÐ CDÑ
ABÐ BCÐ CDÑ
ABÑ ACÑ CDÑ
ABÐ ACÑ CDÑ H A

ò
BCD AC

ò
BD ACDBABÑ ACÐ CDÑ

ABÐ ACÐ CDÑ

is constructed in the goal module, problem state information
is processed by the imaginal module, the retrieval module ac-
cesses information stored in declarative memory, the manual
module performs motor responses, and the procedural mod-
ule represents the central executive controlling the activities
of these modules. Each module is equipped with an interface
called a buffer holding single chunks that are thus available
across modules. In addition to the capacity restriction of just
one chunk per buffer, productions process information in a
strictly serial way; only one production may be active at a
time. Note that this is not a general restriction of production
systems. Modules, however, may be active in parallel; those
chunks currently distributed across buffers are processed si-
multaneously.

A distinguishing feature of ACT-R is that the above de-
scribed symbolic behavior is constantly directed by subsym-
bolic probabilistic processes. For example, the availability of
chunks to the retrieval buffer depends on their level of acti-
vation, a dynamic numeric value that is computed for each
chunk. Once a chunk has been created its initial activation
decreases according to a fixed decay rate. Chunk activation,
however, can also increase dependent upon (i) the number of
positive retrievals in the past, (ii) spreading activation from
other chunks in the buffers, and (iii) merging of identical
chunks. Similarly, production selection depends on the util-
ity value associated with each production; if multiple produc-
tions match simultaneously, their utility value controls ambi-
guity resolution.

Although the recent focus of research in the context of
ACT-R as a theory has definitely been on grounding the ar-
chitecture on a neurological basis, traditional wide range cov-
erage of behavioral data predictions yet remains an inevitable
prerequisite. Earlier versions of the presented model were
reported previously (Ragni, Fangmeier, & Brüssow, 2010;
Ragni & Brüssow, 2011). It was originally developed to test
ACT-R’s BOLD function (Anderson, 2007) with fMRI data
obtained from a study by Fangmeier, Knauff, Ruff, and Slout-
sky (2006) and tested with more sophisticated behavioral data
obtained from a study by Ragni, Fangmeier, Webber, and
Knauff (2007). Fangmeier et al. investigated phases of the
reasoning process using only determinate tasks whereas the
study of Ragni et al. reported data restricted to indeterminate
tasks. Furthermore, to inhibit linguistic processes Fangmeier
et al. presented premises and conclusions as abstract terms
whereas Ragni et al. presented complete sentences. Hence,
it remained desirable to test model predictions for both uni-
formly presented determinate and indeterminate material ob-
tained from one and the same study.

Accordingly, we present data and predictions based on a
combination of both determinate and indeterminate tasks. In
addition, after participants completed the reasoning task they
were requested to recall their previously created mental mod-
els and then to decide whether a certain constellation of pre-
sented terms match. The data suggest that participants again
first use the PMM rather than an alternative.

Method
Participants. Twenty-eight students (15 female, M “ 22.86
years, SD “ 3.17) participated in the study. Four participants
were excluded from further analysis because they missed the
chance level threshold of 21 correctly solved tasks on con-
clusion validation determined by a binomial test. Participants
gave written consent and either received a small monetary re-
ward or course credit for their participation.

Procedure, Materials, and Design. Participants were
seated in front of a computer screen and first completed six
training tasks. Using a within-participants design they then
completed 48 balanced and randomized tasks chosen from a
total of 288 tasks. There were 24 task sets each assigned only
once. As is illustrated in Figure 1 trials exposed participants
with (1) an initial premise processing, (2) a conclusion vali-
dation, and (3) a mental model validation phase.

Including instructions each session lasted approximately
45 to 60 minutes. Response times and answer correct-
ness for both conclusion and mental model validation were
logged.The material consisted of 144 determinate and 144 in-
determinate tasks each presenting three consecutive premises
(P1-P3) followed by one putative conclusion and a putative
mental model. Premises and conclusions consisted of two
terms. Terms were separated by a centered dot and each term
either appeared to the left or to the right of it. The alignment
of terms on the screen at the same time encoded the underly-
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Figure 1: Sample trial. Spatial relations are indicated by their position, i.e. right aligned ‘Z’ in the first premise means ‘Z is
to the right of.’ For each trial premise and conclusion terms were presented at least 1500 ms. To see the next pair of terms
participants had to press the space bar in the premise processing phase. To complete the conclusion processing phase they had
to press either the left or right arrow key representing ‘yes’ and ‘no’ respectively. Premise and conclusion presentation differed
in the term separating center point. For the final model validation task participants had to respond using the arrow keys again.

ing spatial relation; if the first term appeared left aligned this
indicated a “left-of” relation to the second term that conse-
quently appeared right aligned as soon as the first was cleared
from the screen and vice versa. Note that for illustratory pur-
pose we use the terms “A,” “B,” “C,” and “D” whereas in the
experiment, to avoid sequence effects or particular abbrevi-
ations that can be memorized, “K,” “N,” “X,” and “Z” were
used (cf. Figure 1). Similarly, for each structurally equivalent
premise across trials different terms were used resulting in 24
permutations of model terms. Table 1 shows premise com-
binations for determinate and indeterminate tasks. P1 and P2
differed in the presentation order of terms whereas P3 was the
same in all trials.

After the premises were displayed a putative conclusion
was presented in the same way. Merely the term separator
differed indicating that the presented terms now belong to the
conclusion. Eventually, after participants responded to the
conclusion a configuration of four terms was displayed on
the screen representing a putative mental model. In both de-
terminate and indeterminate tasks participants had to decide
whether the presented configuration matched one of the men-
tal models they had previously constructed.

Cognitive Model
In general, configurations of spatially related terms are rep-
resented as mental model chunks with position slots holding
the respective terms. Hence, premises, conclusions, or entire
mental models share the same structure. Of the ACT-R inter-
nal parameters only activation noise (0.31), retrieval thresh-
old (-0.75), and latency factor (0.4) deviated from the default
values but were held constant across runs.

The ACT-R model processes the first premise without en-
countering any indeterminacy and integrates premise terms
directly into an empty mental model chunk. It then makes no
further use of the information encoded in the first premise.
This is inspired by the findings of Mani and Johnson-Laird
(1982) that human reasoners, having processed the first
premise, forget the corresponding information; there is no
need to remember it because there are no alternative men-

tal models possible that would later require a retrieval of this
information to allow for a modification of the initial PMM.
For successive premises, however, indeterminacy may occur
due to multiple possible positions for term integration. Con-
sequently, the ACT-R model creates extra representations for
successive premises that allow for a later retrieval if indeter-
minacy occurs. The process of flagging a successive premise
to make it available for later processing steps is referred to as
“annotating a premise”. In particular, the ACT-R model flags
the already inserted term after which indeterminacy occurred
as the “reference object” term (RO) and the new term as the
“to be located object” term (LO); the LO has to be inserted
at the first free position rather than at the directly adjacent
first fitting position that is already occupied by another term
from a previously presented premise. Figure 2 illustrates the
process of the construction of the initial PMM including an-
notation assignment.

If the PMM fails to validate the conclusion, the ACT-R
model can now retrieve annotated premises and reuse them
to modify the PMM to an alternative model as is illustrated in
Figure 3. Annotation usage proceeds by transferring the cur-
rent mental model chunk to the imaginal buffer and retriev-
ing the previously annotated premise. An alternative term
configuration can be obtained by moving the LO towards the
RO, i.e. to the first fitting position. In a subsequent step
the ACT-R model retrieves the conclusion chunk again and
tests it in a second comparison step with the modified mental
model. These steps are repeated until the presented conclu-
sion agrees with a mental model causing the motor module
to press the key for a positive response, or when it fails to
retrieve further annotated premises resulting in a key press
representing a negative response.

In the final mental model validation phase the ACT-R
model first retrieves the initial UNI/PMM again and trans-
fers it to the imaginal buffer. This transfer is necessary be-
cause, like the model construction phase illustrated in Figure
2, intermediate term retrievals repeatedly occupy the retrieval
buffer. The reason for the explicit retrieval request for the
UNI/PMM is that participants make fewer errors and need
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Figure 2: Preferred mental model (PMM) construction. This
illustration starts with an incomplete mental model chunk in
the imaginal buffer comprising just the information from the
first premise. Objects processed by the visual module are
linked to term chunks in declarative memory that the model
needs to retrieve before it can integrate them into a mental
model chunk. Note that the first premise is treated differently
because the ACT-R model creates no explicit chunk for it;
for simplicity, the corresponding processing steps are omit-
ted here. Subscripts refer to the annotation flags “reference
object” (RO) and “to be located object” (LO) necessary for
identification in a potential later retrieval (cf. Figure 3).
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Figure 3: Annotation usage. Labels refer to mental model
inspection (I2, I2) and variation (V). Comparisons across
buffers are highlighted in gray. Note that this simplified illus-
tration starts with a conclusion in the imaginal and a preferred
mental model (PMM) in the retrieval buffer. If in I1 the com-
parison of conclusion and PMM fails, the PMM is transferred
to the imaginal buffer, the conclusion is released to declara-
tive memory, and an annotated premise is retrieved allowing
for PMM variation. Eventually, the conclusion is retrieved
again allowing for further comparisons in I2.

less time when no competing alternative model has to be used
for validating the previous conclusion (cf. Figure 4b).

An important difference to the premise processing phase is
that the ACT-R model skips the creation of an additional men-
tal model chunk; instead, it compares the terms in the retrieval

buffer with the UNI/PMM in the imaginal buffer directly.
Similarly, if in an indeterminate case the PMM fails to match,
no modification takes place; instead, a retrieval request for
an alternative model follows and eventually the comparison
phase restarts. The motivation for this omission of additional
mental model creation is that the respective terms are contin-
uously displayed on the screen thus functioning as external
memory; any memorization process involving the creation of
internal representations would be redundant. In the premise
processing phase, however, internal representations are nec-
essary because no complete mental model is presented but has
to be derived in multiple steps. Similarly, in the conclusion
validation phase no external mental model representation is
available. Without generating and keeping internal represen-
tations conclusion validation would, therefore, be impossible.

Results and Discussion
The results support the predictions of the PMMT regarding
the preference for the PMM and the increasing reasoning dif-
ficulty with the transformation distance of alternative models
(cf. Table 1). Table 2 shows the mean error rates (in %)
and response times (in milliseconds) for both conclusion and
mental model validation.

Table 2: Human data. Mean error rates (in %) and response
times (in milliseconds) for both conclusion and mental model
validation.

Conclusion validation Mental model validation
Type Error rate RT Error rate RT
UNI 6.25 4379 7.33 1643
PMM 17.80 4813 15.18 1976
AM1 41.05 5688 47.92 2990
AM2 64.58 5402 67.71 3090

Pearson’s correlation was used to test whether human data
correlated with model predictions. Correlations were com-
puted on a by-task aggregate level for those tasks with an
expected correct response resulting in 120 data points each
for human and model means. The rationale behind this is
that to correctly reject an invalid conclusion reasoners cannot
prematurely terminate the validation process as they would
have to test all possible mental models; premature termina-
tion is only possible with a correct mental model. Hence, if
the task was to reject an invalid conclusion for both data and
model predictions we expected no differences across condi-
tions. Please also note that for mental model validation only
those cases were subject to analysis in which the externally
presented model matched the model that previously validated
the conclusion.

Figures 4a and 4b compare data from 24 participants with
predictions based on 2400 model runs. Each run processes
one of the 24 task sets; hence, with each task set consisting
of 48 tasks this resulted in a total of 2400 ˆ 48 “ 115.200
simulated experimental trials.
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(b) Mental model validation

Figure 4: Average error rates and response times for conclusion and mental model validation. Conclusion validation either
requires a mental model constructed on the basis of determinate premises (UNI) or indeterminate premises (PMM, AM1, AM2).
Correlations were computed on a by-task aggregate level only for those tasks with an expected correct response resulting in
120 data points each for human and model means. Response time correlations were computed with and without taking the
AM2 condition into account. For the latter, the corresponding coefficient is given in brackets. Error bars show 95% confidence
intervals. All correlations were significant at a p ă .001 level.

Error rate correlations between data and ACT-R pre-
dictions showed a significant effect for both conclusion,
r “ .79, p ă .001 (cf. Figure 4a) and mental model valida-
tion, r “ .82, p ă .001 (cf. Figure 4b).

Response time correlations between data and ACT-R pre-
dictions showed a significant effect for both conclusion,
r “ .51, p ă .001 (cf. Figure 4a) and mental model valida-
tion, r “ .33, p ă .001 (cf. Figure 4b). In the AM2 condi-
tion, however, response times for conclusion validation con-
tradict the theoretical assumptions of the PMMT as there is
an unexpected decrease in the average response time in com-
parison to the AM1 condition. However, an error rate of
64.58% results in only few contributing participants when
only correct responses are taken into account. Furthermore, a
lower response time in this context suggests that participants
used the AM1 for conclusion validation rather than the pre-
dicted later stage AM2. As a last resort they may even have
guessed. A similar explanation may hold for the average re-
sponse time for mental model validation and a corresponding
error rate of 67.71% being comparably high. Correlations,
hence, were computed again without taking those tasks re-
quiring an AM2 for conclusion validation into account based
on 96 data points each for human and model means. Correla-
tions then improved and showed a significant effect for both
conclusion, r “ .61, p ă .001, and mental model validation,
r “ .42, p ă .001.

When processing determinate premises with only one re-
sulting mental model (UNI) participants were faster and made
fewer errors than in the remaining conditions. When process-
ing indeterminate premises a well-established preference ef-
fect could be reported for situations where only the preferred
mental model (PMM) was necessary to validate a conclusion;
participants were faster and made fewer errors than if an alter-
native model (AM1 or AM2) was required. They performed
poorer, however, than in the UNI condition. According to

the PMMT this effect can be explained by additional pro-
cesses that annotate indeterminate premises allowing for later
PMM modifications to an alternative mental model. From an
ACT-R theoretical perspective, because these processes re-
quire additional time, additional activation decay of the PMM
also results; consequently, its retrieval at conclusion valida-
tion takes more time and is less reliable. Finally, a “distance
effect” for AM1 and AM2 could be reported; the more mod-
ifications to the initial PMM were necessary, the less likely
they were to be correctly accepted or rejected.

With respect to the mental model validation task human
data suggest that differences in response times depend on the
number of mental models created in the conclusion valida-
tion phase. In the single model condition (UNI/PMM) re-
sponse times were lower than in the multiple model condi-
tion (AM1/AM2). No explicit differences between AM1 and
AM2 emerged. For the AM2 condition this suggests that after
the PMM reasoners tried only one of the two alternatives.

There are, however, slightly higher predicted response
times for mental model validation in the AM2 condition (cf.
Figure 4b) that could not be reported for the human data.
From an ACT-R perspective there is a clear explanation: As
suggested, the mental model validation process starts with the
PMM generated in the premise processing phase. Accord-
ingly, to successfully validate a conclusion in the AM1 con-
dition, apart from the PMM chunk, the ACT-R model needed
to create an additional chunk for the AM1. In the AM2 condi-
tion, however, it had to create chunks for both, the AM1 and
the AM2. Hence, even if the same number of mental mod-
els are recalled in both conditions AM1 and AM2 —as the
response times in the human data suggest—in the AM2 con-
dition the PMM experienced more activation decay because
more time has passed since its last usage. Consequently, the
mapping of activation to retrieval time results in higher values
for the AM2 than for the AM1 condition.
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Conclusion
Our starting point was the question of how human reasoners
process determinate and indeterminate spatial descriptions
and a corresponding cognitive model introduced previously
(Ragni et al., 2010; Ragni & Brüssow, 2011). The advantage
of the present study is that the stimulus material comprised
simple visual presentations of term objects rather than com-
plex linguistic presentation such as sentences. The rationale
behind this is that interfering linguistic processes could thus
be inhibited. In this respect, the present study bridges a gap
between the fMRI study by Fangmeier et al. (2006) and Ragni
et al. (2007): Fangmeier et al. investigated only determinate
problems but presented the material in a plain and functional
way, whereas Ragni et al. covered a wide range of indetermi-
nate problems but presented premise information verbally.

Furthermore, we systematically investigated the processes
of mental model variation—the transformation from an initial
PMM to an alternative model—that so far has received only
little attention. In that context the presented ACT-R model
is both an algorithmic foundation of the PMMT and a theory
explaining behavioral data obtained from experiments using
either linguistic or pictorial representation of premise infor-
mation. To further establish the model and to investigate
the persistence of the outcome of the reasoning process, it
was extended and tested with a wider range of tasks consis-
tently presented non-linguistically. It gives detailed insights
into why certain tasks are computationally more demanding
than others and, apart from being informative about the rea-
soning process itself, it simulates an additional mental model
validation task that is in line with the experimental results in-
dicating a primacy effect for the PMM; the data suggest that
reasoners start comparisons by recalling the PMM rather than
an alternative. Future work will focus on this particular point
as the question of how reasoners proceed, naturally, has im-
plications for the ACT-R model itself. Currently, if the PMM
fails to match an alternative model is requested. Restarting
the variation phase by retrieving annotated premises, how-
ever, would also be a possible strategy.
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Abstract 

!"#$#%&%'(( #)( '*&( +),('( ,%-( )"./,01( ,$$"#,2*( '#( -&23(3#%-
making suggest that inferential judgments are best made on 
the basis of limited information. For example, if only one of 
two cities is recognized and the task is to judge which city has 
the larger population, the recognition heuristic states that the 
recognized city should be selected. In preference choices with 
4U(#$'3#%(C(3'(3((,0(#((',%-,"-('#(,((.5&('*,'(,(+2#%(3-&",'3#%(
(&'1C( 6,(&-( .$#%( (#5&( (35$0&( 2"3'&"3#%C( 3(( &(',603(*&-( '#(
reduce the options available. A multinomial processing tree 
model is outlined which provides the basis for estimating the 
extent to which recognition is used as a criterion in 
establishing a consideration set for inferential judgments. 

K eywords: Decision-making; n-AFC; MPT models; 
Recognition heuristic. 

Introduction 
A much studied approach to the problem of determining 
how individuals (or groups) judge between two options is 
'*&( +),('( ,%-( )"./,01( *&."3('32( )",5&7#"8( ,-9#2,'&-( 6:(
Gigerenzer and colleagues (e.g., Gigerenzer, Hertwig & 
Pachur, 2011). This framework aims to provide both 
descriptive and normative accounts of how judgments are 
made in the real world, where time and computational 
resources may preclude optimizing strategies (e.g., multiple 
regression) where all possible sources of information are 
consulted and appropriately weighted combinations of these 
are applied to inform the judgments made. 

One of the most basic principles underlying the fast and 
frugal approach is the Recognition Principle, later 
formalized as the Recognition Heuristic (RH; Goldstein & 
Gigerenzer, 2002) and implemented in ACT-R (Marewski, 
& Mehlhorn, 2011; Schooler & Hertwig, 2005). The RH 
acts as a stopping rule for more complex heuristics (e.g., 
Take-the-Best, Gigerenzer & Goldstein, 1996) and states 
(35$0:( '*,'C( +;)( '*&( ',(8( 3(( '#( <.-/&(7*32*( #)( '7#( #$'3#%((
scores highest on a given criterion, and only one of the two 
options is recognized, infer that the recognized option 
(2#"&((*3/*&('(#%( '*&(2"3'&"3#%1)(=#"(&>,5$0&C( '*&(*&."3('32(
might be used to judge which of two cities has the larger 
population (Goldstein & Gigerenzer, 2002), which of two 
individuals is the wealthiest (Frosch, Beaman & McCloy, 
2007) or which of two diseases occurs most frequently per 
year (Pachur & Hertwig, 2006).  

The heuristic is applied when the criterion in question is 
known to correlate positively with the probability of 
recognition (Volz, Schooler, Schubotz, Raab Gigerenzer & 
von Cramon, 2006), although the reverse inference can also 
be made in the unlikely event that the correlation is known 
to be negative (Goldstein & Gigerenzer, 2002). In either 

case, the heuristic takes advantage of information latent in 
the environment to inform inference and minimize the 
amount of knowledge sought or retrieved from memory (or 
other, external sources) about the items in question prior to 
making a judgment. 

The RH has not been universally accepted as descriptive 
account of human inference, however. Hilbig and 
colleagues, in particular, have drawn attention to the 
difficulty in identifying when recognition per se is used to  
inform judgment rather than knowledge which accords with 
recognition (Hilbig, 2010; Hilbig, Erdfelder & Pohl, 2010; 
Hilbig & Pohl, 2008; Hilbig, Pohl & Bröder, 2009; Hilbig & 
Richter, 2011). Given the positive correlation between the 
probability of recognition and the criterion in question, it is 
inevitable that many of the other cues that could in principle 
be consulted (even if only one of the items is recognized) 
will result in the same inference as recognition alone.  

One way of addressing this problem is applying a 
multinomial processing tree (MPT) model (e.g., Hilbig et 
al., 2010). MPT models assume sequential, independent 
operations (akin to additive factors logic; Sternberg, 1998) 
which can be expressed as a tree structure, with alternative 
processes at each branch point each associated with a 
parameter that represents the probability of traversing that 
particular branch. The tree structure terminates with an 
observable outcome, and the models are compared to the 
data by estimating the best-fitting parameters and 
comparing the frequency counts of each outcome in 
experimental data to the expected outcomes given the 
parameters estimated (for formal reviews, see Bachelder & 
Rifer, 1999).  

As a concrete example, consider the position in a two-
alternative forced choice task (2-AFC) where the subject is 
asked to indicate which of the two options scores highest on 
the criterion of interest. Here, three trees need to be drawn. 
In the scenario described by the first tree, the subject 
recognizes neither of the options and is forced to guess 
between them. There are therefore only two possible 
outcomes, a correct guess or an incorrect guess, and hence 
only two branches to the tree. The probability of a correct 
guess (the branch leading to the frequency count of correct 
answers) is associated with the parameter g, and the 
probability of an incorrect guess is therefore given by (1-g). 
Where guessing is truly random, g=.5. The scenario 
described by the third tree is similarly of little direct interest 
to the study of the RH. Here, the subject recognizes both 
options and uses knowledge to choose between them, with 
probability correct given by parameter b W+knowledge 
validity1X( and the same two-branch tree-structure as 
previously. This tree is potentially open to expansion, 
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assuming that suitable candidate knowledge processes can 
be identified. Of more immediate interest is the second 
decision tree, which describes the scenario in which exactly 
one of the two options is recognized. Here, there are four 
possible outcomes: the recognized item might be chosen or 
not, and the choice might be correct or incorrect. There are 
also multiple ways in achieving these outcomes.  

Suppose the RH is applied uncritically, then the 
probability that the RH produces the correct answer is given 
by parameter a W+recognition validity1X. However, whether 
the RH is applied uncritically is itself governed by a 
parameter, r. Thus, the probability the RH is applied and is 
correct is given by r.a and the probability the RH is applied 
but results in an incorrect inference is given by r(1-a). If the 
RH is not applied uncritically, then the inference that the 
recognized item is correct might be made by the alternative 
route of applying knowledge. The probability that this 
occurs is the joint probability of the RH being valid, 
knowledge being valid, and knowledge being used, given by 
(1-r).b.a. The routes by which decisions might be made 
according to this MPT model are given exhaustively in 
Table 1. 

 
Table 1:Probabilities of choosing correctly or incorrectly 
via different routes of three simple decision trees. The 

probability of arriving at the end point of any particular 
branch of a decision-tree is the product of the parameters 

associated with each branch-point. 
 
Recognize 0: g (correct) 

            (1-g): (incorrect) 
Recognize 1: r.a (choose recognized, correct) 

         r(1-a) (choose recognized, incorrect) 
         (1-r)b.a (choose recognized, correct) 
         (1-r)b(1-a) (choose unrecognized, correct) 
         (1-r)(1-b)a (choose unrecognized, incorrect) 
         (1-r)(1-b)(1-a) (choose recognized, incorrect) 

Recognize 2: b (correct) 
         (1-b) (incorrect) 
 

From this table, it is clear that MPT models are well-
suited to answering the question of the extent to which the 
RH is employed in any given 2-AFC inference task. 
Estimation the best-fitting set of parameters from the data 
provides the most likely rate of application of the RH in 
terms of the r parameter. This can be done across the sample 
of all subjects within the experiment or, where a sufficiently 
large data-set is available for estimations to be made on an 
individual basis, it can be done per subject. This may be 
useful if, for example, r and a are not independent for some 
subjects (see, e.g., Beaman et al., 2010). However, because 
of the limited data available, in the study reported below 
only estimation across the full dataset was attempted. 

Multi-A lternative Inferences  
Not all inferences of the kind described above involve 

choosing between only two alternatives. Frosch et al. (2007) 
presented 3- or 4-alternatives to choose from in a wealth 
judgment task. Marweski et al. (2010) likewise examined 
the incidence of RH use when judging likelihood of 
electoral success amongst named politicians. Theoretical 
analyses of the success of the RH as a normative theory 
under these circumstances are also provided by McCloy, 
Beaman & Smith (2008). Both a priori theoretical analyses 
and empirical studies rely upon the presumption that there 
are independent processing stages in which N alternative 
options are reduced to a smaller number from which to 
choose, but the decision-making processes employed to 
reduce the number of alternative options may differ from 
those employed to choose from amongst those options. This 
situation parallels one in the literature on consumer choice, 
3%(7*32*( 3'( 3((,((.5&-( '*,'(,(+2#%(3-&",'3#%((&'1( 3(( 3%3'3,00:(
formed from within all the options available (Howard, 1963; 
Wright & Barbour, 1977). Indeed, in some circumstances, 
criterion-inference judgments are equivalent to preference 
choices (e.g., if subjects are asked to indicate which 
politician they believe will win a given election, as in 
?,"&7(83(&'(,0)@((WUONOX(-,',C they are de facto being asked 
which candidate they believe the public as a whole will 
prefer to win the election). These circumstances also lend 
themselves to modeling by means of MPTs. One difference 
between criterion-inference and preference-choice ,ay lie in 
the way in which criteria are applied for preference-choice. 
However, this does not preclude the possibility that 
consideration sets may be invoked in multi-alternative 
inference, even if the nature of the criteria applied may need 
not be identical across the two situations. 

The structure of 3-A F C judgments. 
To model such multi-alternative inferences using MPTs, 

an appropriate data-set is required and tree structures 
representing the structure of the model must be constructed. 
Here, the example of 3-AFC inference is explored using 
data from Frosch et al. (2007) in a study in which subjects 
were asked to indicate which of three names taken from the 
Sunday Times rich list (an annual compilation of the richest 
individuals in the UK) was the wealthiest. 27 such names 
were chosen and, from within this group, were randomly 22 
lists of three names each were produced by random 
selection. 26 subjects were then each given the same series 
of three names to choose from per trial and were asked to 
indicate which name they thought was the wealthiest. They 
were then re-presented with all the names and asked to 
indicate which names they had known prior to the beginning 
of the experiment. As with 2-AFC, the trees describing 
scenarios in which either all the options or none of the 
options are recognized are relatively uninteresting, being 
governed purely by single guessing or knowledge 
parameters (g and b, respectively).  

 For 3-AFC scenarios in which one item is recognized, a 
plausible tree structure is given in Figure 1.The tree 
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structure when one item from three is recognized differs 
from the corresponding structure when one item is 
recognized in a 2-AFC task. As shown in Figure 1, there is 
an extra step with 3-AFC when the RH is not applied, 
knowledge is valid (i.e., will provide the correct inference) 
but the RH is not valid (will provide an incorrect inference). 
The reasons for this can readily be discerned as follows: If 
knowledge is inaccurate and is used in preference to the RH, 
then it will always lead to a false choice, either of the 
recognized item (if recognition is also an invalid cue) or one 
of the unrecognized items (if recognition is a valid cue), as 
in the 2-AFC situation. However, if knowledge is valid then 
this knowledge must be either that the one recognized item 
is high on the criteria or that the recognized item is low on 
the criteria. If the former, the recognized item will be 
chosen, if the latter then it will be excluded from further 
analysis. If both knowledge and recognition provide valid 
cues, then the recognized item must be the correct item and 
it will be chosen. If, however, recognition is not a valid cue 
then the correct item must be one of the two unrecognized 
options: hence there is an extra guessing stage to choose 
between these two. In terms of the equations presented in 
Table 1, the conditional probability of guessing correctly 
when following this particular branch of the tree can be 
expressed as, (1-r1).b1.(1-a1).g1,  

 

Figure 1. A 3-AFC decision tree indicating possible 
processing paths leading to correct or incorrect criterion 

inferences when exactly one item from three is recognized. 

A similar logic can be applied to construct the tree 
structure for scenarios where two of the three options were 
recognized. The decision tree for the scenario when two 
items (out of three) are recognized is more complex than 
when only one item is recognized (Figure 2). Here, the RH 
inclusion rule is explicitly distinguished from the RH itself. 
The RH inclusion rule operates to winnow down the number 
of options under active consideration to a consideration set 
defined in terms of whether the items were recognized or 
not. Thus the RH inclusion rule operates along the 
recognition principle, as does the RH, but unlike the RH is 

only the first step in establishing A by a longer chain of 
inference A which of the items scores most highly on the 
criterion. It is an empirical question whether the RH 
inclusion rule and the RH are applied at equivalent rates 
amongst the same group of subjects attempting the same 
criterion judgment task. 

Figures 1 and 2 show how inferences may be made on the 
basis of recognition, knowledge, or recognition plus 
knowledge when three items are presented but recognition is 
incomplete. Under these circumstances, of course, the 
chosen item may also be either recognized or unrecognized 
and tracing the relevant branch of the decision tree gives 
this information also (e.g., if valid knowledge is used and 
recognition is also a valid cue then the correct choice made 
must be the choice of the recognized option). 

When the inclusion rule is applied, recognition may be a 
valid or an invalid cue. If it is invalid, then 
straightforwardly, the choice of item must be incorrect as 
only the two recognized items are under consideration. If, 
however, recognition is a valid cue then correct inference is 
still not guaranteed as a choice must be made between the 
two recognized items. If the inclusion rule is not applied, 
then the knowledge about the two recognized items 
consulted instead may also be either valid or invalid. If it is 
valid and recognition is also a valid cue, that is to say the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

correct item is one of the two recognized items, then a 
correct inference is made because valid knowledge of the 
two items is sufficient to choose between them. If the 
inclusion rule is invalid, then valid knowledge must be of a 
different type A knowledge that neither of the recognized 
items is correct. In this case too, however, correct inference 
is guaranteed. Following the same lines of argument, if 
knowledge is invalid then an incorrect choice is made 
regardless of whether recognition is valid; that is, regardless 
of whether the invalid choice is of a recognized or 
unrecognized item. 
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Figure 2. A 3-AFC decision tree indicating possible 
processing paths leading to correct or incorrect criterion 

inferences when exactly two items from three are 
recognized 

!"#$%&'()*+,-*."/-0*+"*12'3,*4'5+6*7%+% 
The best-fitting parameters for the model were estimated 
)"#5( ="#(2*( &'( ,0)@(( WUOOBX( C-AFC study using MultiTree 
software (Moshagen, 2010). +D.&((3%/1( $,",5&'&"(( )#"(
situations in which neither knowledge nor recognition could 
be employed were set to produce chance-level accuracy 
(i.e., g = .33, g1 = 0.5). 

An initial model assumed a single value for knowledge 
validity to determine A based on knowledge A whether one 
of two recognized items was correct and also which of these 
two recognized items was the correct option (i.e., on Figure 
2, b3 = 1.0). For this model, recognition and knowledge 
validities were separately estimated for each recognition 
scenario (recognize 0, 1, 2 or 3) as there are reasons to 
suppose that knowledge validity should vary as a function 
of the number of items recognized (e.g., Smith, Beaman & 
McCloy, 2011). Estimating all parameters other than the 
+/.&((3%/1 parameters, g and g1, a goodness-of-fit test 
shows that the best-fitting version of this model nevertheless 
produced expected results which differed significantly from 
those observed, G2=11.01, df=3, p = .01. 

A second model, assuming a decision-point (with validity 
b2) that one of the recognized items A based on knowledge A 
was the correct item and a further decision-point (again, 
based on knowledge but with a different validity, b3) 
produced expected results that did not differ significantly 
from those observed, G2=1.05, df=2, p=.59.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Knowledge validity when all three items were recognized 

was estimated as 0.47 and when one item of the three was 
recognized knowledge validity was 0.56. Knowledge 
validity for correctly realizing Abased on knowledge A that 
one of the two recognized items was the correct choice was  
high, at 0.91 but choosing between these two items once this 
decision was made was difficult, with validity of choices 
estimated at 0.30.  

Interestingly, for this model, the probabilities r1 and r2 
that the RH and the RH-inclusion rule were employed 
(Figures 1 and 2) were estimated as .64 and .63 respectively, 
and the validities of these two rules were also estimated as 
being very similar, a1 (RH validity) = .72 and a2 (inclusion 
rule validity) = .73. Constraining these two rules and their 
validities to take the same values resulted in a model where 
a=.73 and r=.63 which did not differ significantly from the 
6,(&03%&(5#-&0C(EG2 = .19, df = 2, p = .91, nor from the 
data, G2=1.25, df=4, p=.88. For the 3-AFC situation, 
therefore, it appears that there is no discernible difference 
between using the RH to guide choice when only one item 
is recognized and using the RH-inclusion rule to form a 
consideration set which is subsequently informed by 
knowledge. Full parameter values for this version of the 
model are given in the appendix, a comparison of the model 
to the data in terms of observed and expected frequencies 
with which recognized and unrecognized items were chosen 
either correctly or incorrectly is given in Table 2. Although 
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parameter overfitting is a legitimate concern in any 
modelling domain, on which may be fuelled by observation 
of the close fits between expected and obtained results here, 
it is worth noting that A like standard hypothesis testing A a 
failure to provide a good fit given certain assumptions (e.g. 
that r=1.0) may be as informative as obtaining a good fit, 
and it is on this basis that the G2 goodness-of-fit statistic 
operates. 

 
Table 2: The frequency of responses tabulated according to 

whether they were correct or not, and whether the option 
chosen was recognized or not. Observed responses are taken 

directly from the data of Frosch et al. (2007), expected 
responses are the frequencies of responses within those 

particular categories given a model with the tree structures 
shown in Figures 1 and 2 and the parameters given in the 

appendix. 
 

 Frequency of Responses 
 Observed Expected 

Recognize 0:   
Correct 40 35 

Incorrect 65 70 
Recognize 1:   

Correct (recog) 83 84.40 
Incorrect (recog) 25 23.69 
Correct (¬recog) 10 9.87 

Incorrect (¬recog) 16 16.19 
Recognize 2:   

Correct (recog) 79 77.81 
Incorrect (recog) 62 62.79 
Correct (¬recog) 14 14.32 

Incorrect (¬recog) 4 4 
Recognize 3:   

Correct 81 81 
Incorrect 93 93 

 
Finally, models in which the use of the RH was set at the 

level of RH use indicated by the data, if choice of the 
recognized item was taken as an index of RH-use (i.e., 
r1=.78), differed significantly from the best-fitting model, 
EG2=5.15, df=1, p=.02, but not from the data, G2=6.2, df=3, 
p=.1. However, if the same exercise is repeated for the RH-
inclusion rule, the resulting model differs both from the 
best-)3''3%/(5#-&0C(EG2=13.59, df = 1,  p=.0002, and from 
the data, G2=14.65, df=3, p=.002. Using RH-adherence rate 
as an index of the RH-inclusion rule is therefore likely to be 
misleading. 

Discussion 
The modeling results reported here indicate the viability of 
applying the recognition principle as a means of forming a 
+2#%(3-&",'3#%( (&'1( 3%( 2"3'&"3#%( <.-/5&%'( ,(( 7&00( ,((
preference judgment, when there are more than two 
alternatives to consider. The particular tree structures 
proposed for an independent series of decisions can also be 

fit to the data with estimated parameters providing expected 
results that do not differ significantly from those observed 
in the data (Table 2). Although the particular data-set 
modeled here (relative wealth judgments) clearly require  a 
criterion judgment, the distinction between criterion and 
preference judgments is less distinct with other stimuli. For 
example, Marewski et al. (2010)  apply the RH to 
understanding judgments about the relative success of 
candidates in German elections. Although this is clearly a 
2"3'&"3#%( <.-/5&%'( W+7*#( 3((5#('( 038&0:( '#( 73%F1XC( 3'( 2,%(
,0(#(6&( )",5&-(,((,($"&)&"&%2&( <.-/5&%'( W+7*#( 3(( '*&(6&('(
2,%-3-,'&F1) whilst still potentially meeting the pre-
requisites for applying the recognition heuristic or 
recognition principle W+3%)&"( '*,'( '*&( "&2#/%3G&-( #$'3#%(
(2#"&((*3/*&('(#%( '*&(2"3'&"3#%1X. Elucidating the means by 
which multi-alternative inferences may be made, even if the 
expansion is the relatively modest one from 2-AFC to 3-
AFC, helps indicate where there are possible similarities 
between preference choice (where multiple alternatives are 
frequently presented) and criterion inference (where, 
':$32,00:C($,3"&-(2*#32&((,"&($"&(&%'&-C(,(( 3%( '*&(+23':((3G&1(
task popularized by Gigerenzer and Goldstein (1996).  

One interesting feature that became apparent when 
modeling these data was the need for multiple different 
parameters to represent knowledge validity, if not 
"&2#/%3'3#%(9,03-3':)(H*3((6#'*((.$$#"'((I53'*(&'(,0)@((WUONNX(
arguments that knowledge validity should vary as a function 
of the number of items recognized (see also Beaman et al., 
2010) and highlights the need for different types of 
knowledge to be consulted to choose that the correct item is 
one of the recognized set (e.g., b2) and which member of the 
recognized set the correct item may be (e.g., b3; b2 J(b3).  

The model also indicates that, at  least for the data-set 
considered here, there may be little or no difference between 
'*&(,$$032,'3#%(,%-(9,03-3':(#)(,(+"&2#/%3'3#%(3%20.(3#%(".0&1(
and the recognition heuristic per se. This is something of a 
surprise as, a priori, one would assume that a recognition 
inclusion rule might be employed, as a cognitive short-cut, 
even more frequently than the RH itself. However, it may 
simply be that the 3-AFC was too similar to 2-AFC  for any 
differences to become apparent. The data also  show that 
recognition adherence rate is not a good measure of use of 
the recognition principle when more than one item is 
recognized and a recognized item is chosen. The resulting 
model, where r2 is set at the adherence rate, differs 
significantly from both the baseline, best-fitting model and 
the data. Setting r1, the incidence of employing the RH,  
also produces a model that differs significantly from the 
baseline model although, in this case, both models fit the 
data. 

Finally, it is worth noting some limitations of the current 
modelling approach. Like all formal approaches, it relies 
upon a number of background assumptions. The need for 
multiple parameters and the relative independence of certain 
parameters have already been alluded to, but of equal 
concern is the lack of an underlying process model. The 
framework as it currently exists blurs the boundaries 
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between the existence of cognitive processes and their 
efficacy, and the challenge is to provide a process model 
which both draws clear distinctions between the two and 
shows how, and when, knowledge is consulted.  
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Appendix 
Parameter values for the version of the 3-AFC model fit to 
the data in Table 2. Standard errors for all of the estimates 
are given in parentheses. 
 

F ree Parameters: 
Probability applying 
recognition principle 

 

r1 (RH) = r2 (inclusion rule) .63 (.05) 
Recognition validity for 
R H and recognition 
inclusion rule 

 

a1=a2 .73 (.03) 
K nowledge validity  

b1 (1 item recognized) .56 (.11) 
b2 (2 items recognized) .91 (.05) 
b3 (choice between 2 

recognized items) 
.47 (.04) 

b4 (3 items recognized) .30 (.17) 
F ixed Parameters: 

Probability correct guess  
g .33 
g1 .5 

 

30



Data Acquisition Dynamics and Hypothesis G eneration 
 

Nicholas D . Lange (ndlange@gmail.com) !" 
Rick P. Thomas (Rickey.P.Thomas-1@ou.edu) " 

Eddy J. Davelaar (e.davelaar@bbk .ac.uk) ! 
!Birkbeck, University of London, Department of Psychological Sciences,  

Malet Street, London, UK, WC1E 7HX 
"University of Oklahoma, Department of Psychology 

Lindsey Street, Norman, OK, USA 73019 
 

Abstract 

When formulating explanations for the events we witness in 
the world temporal dynamics govern the hypotheses we 
generate.  In our view, temporal dynamics influence beliefs 
over three stages: data acquisition, hypothesis generation, and 
hypothesis maintenance and updating.  This paper presents 
experimental and computational evidence for the influence of 
temporal dynamics on hypothesis generation through dynamic 
working memory processes during data acquisition.  Results 
suggest that data acquired from the environment undergo 
dynamic competition in working memory, the results of 
which dictate the weights allocated to individual data in the 
generation process. 

K eywords: hypothesis generation, temporal dynamics, 
working memory, abduction, diagnostic reasoning 

Introduction 
Hypothesis generation is a pre-decisional process by which 
we formulate explanations and beliefs regarding the 
occurrences we observe in our environment. The hypotheses 
we generate from long-term memory bring structure to 
many of the ill-structured decision making tasks we 
encounter on a daily basis. As such, hypothesis generation 
represents one of our most fundamental and ubiquitous 
cognitive faculties. Given such regularity, it is no surprise 
that hypothesis generation forms a core component of 
several professions. Auditors, for instance, must generate 
hypotheses regarding abnormal financial patterns and 
mechanics must generate hypotheses concerning car 
problems. Perhaps the clearest example, however, is that of 
medical diagnosis. A physician observes a pattern of 
symptoms presented by a patient (i.e., data) and uses this 
information to generate likely diagnoses (i.e., hypotheses) in 
#$(%&&'()()'(%*+,#-$().%(+#)-%$)/0(12((%$)(3-0%#0%(0)#)%)((4-5%$(
these examples, the importance of developing a full 
understanding of the processes underlying hypothesis 
generation is clear, as the consequences of impoverished or 
inaccurate hypothesis generation can be injurious. 

When engaged in hypothesis generation tasks, cognitive 
limitations place constraints on the acquisition of bits of 
data used to cue long-term memory for the retrieval of likely 
hypotheses. Important to the present work is the fact that 
data acquisition most often occurs serially. This, in turn, 
dictates that individual pieces of data are acquired in some 
temporal relation to one another. These constraints, 
individual data acquisition over time and the relative 
ordering of data, are likely to have significant consequences 

for hypothesis generation processes. Given these basic 
constraints it is intuitive that temporal dynamics must form 
an integral part of any comprehensive account of hypothesis 
generation processes. In our view temporal dynamics 
influence beliefs over three stages: data acquisition, 
hypothesis generation, and hypothesis maintenance and 
updating (as further data is acquired or judgments and 
decisions rendered). This paper concerns the temporal 
dynamics unfolding over the initial data acquisition phase 
which until now has remained unaddressed. 

At present there exists limited data concerning the 
temporal dynamics of hypothesis generation tasks.  Thus, 
the influences of the constraints operating over these 
processes are not yet well understood. Until such influences 
are addressed at an empirical and theoretical level a full 
understanding of hypothesis generation processes will 
remain speculative. Interest in understanding these 
underlying temporal dynamics is increasing however. For 
instance, Sprenger & Dougherty (2011) found a general 
recency bias in hypothesis generation whereby people 
tended to generate hypotheses more consistent with data 
received later than data received earlier. Additionally, 
Mehlhorn et al. WUONNX( -$5%0)-6#)%3( .'7( .8+').%0%0/(
memory activations are influenced by the amount of data 
that has been received at various time steps finding 
increases in memory activation with increases in supporting 
data. 

HyGene (Dougherty, Thomas, & Lange, 2010; Thomas, 
Dougherty, Harbison, & Sprenger, 2008), short for 
hypothesis generation, is a computational architecture 
addressing hypothesis generation, evaluation, and testing. 
This framework has provided a useful account through 
which to understand the cognitive mechanisms underlying 
these processes. Here we extend this work by incorporating 
working memory dynamics from the context activation 
model of list memory (Davelaar, et al., 2005) to account for 
data acquisition dynamics subserving the cued recall process 
inherent in hypothesis generation. 

HyGene & Temporal Dynamics 
HyGene rests upon three core principles. First, it is assumed 
that hypothesis generation represents a generalized case of 
cued recall. Data observed in the environment (Dobs), which 
one would like to explain, act as cues prompting the 
retrieval of hypotheses from long-term memory (LTM). For 
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Figure 1: Flow diagram of processing in HyGene 

 
instance, when a physician examines a patient, he/she uses 
the symptoms expressed by the patient as cues to related 
experiences stored in LTM.  These cues activate a subset of 
related memories in episodic memory which guide the 
generation of hypotheses from semantic memory. These 
retrieval processes are indicated in steps one, two, and three 
of Figure 1. As viable hypotheses are retrieved from LTM 
they are placed in the Set of Leading Contenders (SOC) as 
demonstrated in step four. The SOC (%+(%0%$)0(984%$%/0(
working memory construct to which the second principle 
applies. 

The second principle holds that the quantity of hypotheses 
that can be maintained at one time is constrained by 
cognitive limitations as well as task characteristics. That is, 
the more working memory resources that one has available 
to devote to the generation and maintenance of hypotheses, 
the more accommodating the SOC will be of additional 
hypotheses. Working memory capacity places an upper 
bound on the amount of hypotheses (and data) that one will 
be able to maintain at any point in time.  In many 
circumstances, however, attention will be divided by a 
secondary task. Under such conditions this upper bound is 
reduced as the alternative task siphons resource that would 
otherwise allow the population of the SOC to its 
unencumbered capacity (Dougherty & Hunter, 2003a; 
Dougherty & Hunter, 2003b; Sprenger & Dougherty, 2006; 
Sprenger et. al., 2011).   

The third principle states that the hypotheses maintained 
in the SOC form the basis from which probability 
judgments are derived and provide the frame from which 
hypothesis testing is implemented. This principle 
underscores the function of hypothesis generation as a pre-
decisional process underlying higher-level decision making 
tasks and can be seen as step five in the diagram.  

:.%0%(#002;+)-'$0(&'(;().%(1'(%('&(984%$%/0().%'(%)-1#,(
framework. HyGene in its current form is static with regards 
to data acquisition and utilization. The model receives all 

available data from the environment simultaneously and 
engages in only a single iteration of hypothesis generation.  
Given the static nature of the model, each piece of data used 
to cue LTM contributes equally to the recall process.  There 
is reason to suspect, however, that all available data do not 
generally contribute equally. What is needed is an 
understanding of working memory dynamics as data 
acquisition, hypothesis generation, and maintenance 
processes unfold and evolve over time in hypothesis 
generation tasks. 

A Dynamic Model of Data Acquisition and 
Hypothesis Generation 

We now forward a dynamic version of HyGene in which the 
activations of individual pieces of data acquired from the 
environment fluctuate over time in working memory prior to 
hypotheses being generated from long-term memory. The 
activation levels possessed by each piece of data at the time 
of generation are used as weights in the retrieval of 
hypotheses. This allows the activation of each piece of data 
in working memory to govern its individual contribution to 
the generation process. These dynamic working memory 
processes were borrowed from the context-activation model 
of memory (Davelaar et al., 2005).  This model dictates that 
the activations of the items in working memory 
systematically fluctuate over time as the result of competing 
processes described by Equation 1. 
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Equation 1: activation calculation of the  
context-activation model 
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The activation level of each item in the buffer, xi, is 
determined by the items activation on the previous time 
step, self-recurrent excitation that each item recycles onto 
itself !, sensory input I, inhibition from the other active 
items ", and zero-mean Gaussian noise # with standard 
deviation $. % is the Euler integration constant that 
discretizes the differential equation. 
   Figure 2 illustrates the interplay between these competing 
forces in noiseless runs of the buffer when five pieces of 
data have been presented to the model for a fast rate of 100 
iterations (top panel) and for a slower rate of 1500 iterations 
(bottom panel).  The activation of each data rises as it is 
presented to the model and its bottom-up sensory input 
contributes to the activation. These activations are then 
dampened in the absence of bottom-up input as inhibition 
from the other items drive activation down. Self-recurrency 
can keep an item in the buffer in the absence of bottom-up 
input, but this ability is in proportion to the amount of 
competition from other items in the buffer. As can be seen, 
the fast presentation rate, in comparison to the slow rate, 
results in less competition from later items as the truncation 
of sensory input renders them less competitive. Importantly, 
this shift from recency to primacy with increasing 
presentation rate is a unique prediction made by this 
dynamic buffer and challenges other buffer models 
(Davelaar, et al., 2005).  
 

 
Figure 2: Activation trajectories for 5 sequentially received 
data at fast presentation rate (top) and slow presentation rate 

(bottom)  
 

   HyGene utilizes a representation from the multiple trace 
global matching models of MINERVA II (Hintzman, 1986, 
1988) and the decision making model MINERVA-DM 
(Dougherty et al., 1999)1. Separate episodic and semantic 

                                                           
1 <'(( #(;'(%( ).'('26.( )(%#);%$)( '&(984%$%/0( 1';+2)#)-'$#,(

architecture please see Thomas, Dougherty, Harbison, & Sprenger, 
(2008) or Dougherty, Thomas, & Lange (2010) 

memory stores are present in the model.  While semantic 
memory stores only individual prototypes of each disease, 
each experience the model acquires is represented in 
episodic LTM as a series of concatenated minivectors of 1s, 
0s, & -1s where each minivector represents a hypothesis or 
data. That is, each trace is made up of one hypothesis and 
several pieces of data (in our case four). Retrieval is 
initiated when Dobs are matched against the data minivectors 
in LTM. This results in an activation level for each trace 
where a greater overlap in features present in the trace and 
in the Dobs results in greater activation. The weightings from 
the data acquisition buffer are used to weight the activations 
of each minivector in episodic memory at this point in 
retrieval. Therefore, the activation levels associated with 
each trace are directly influenced by the weightings for each 
data supplied by the dynamic working memory processes of 
the buffer. 
    Once these activation values have been obtained, only a 
subset of the episodic traces activated over a criterion are 
used for further processing in the model. From this subset of 
traces a probe is derived as a cue to semantic memory for 
the generation of hypotheses. This cue is matched against all 
known hypotheses in semantic memory. The activation 
values for each hypothesis serve as input into sampling via 
=21%/0( 1.'-1%( (2,%)( Generation proceeds until a stopping 
rule is reached based on the total number of resamplings of 
previously generated hypotheses (i.e., retrieval failures). 
    We now present two experiments investigating separate 
consequences of hypothesis generation being extended over 
time. The first experiment examines how the mere serial 
position of a diagnostic datum influences the generation of 
the hypothesis it implies. Experiment two examines how 
processing time (i.e., presentation duration) per datum 
influences the contributions of the individual data in the 
generation process. The novel model of dynamic data 
acquisition and hypothesis generation discussed above is 
used to simulate the findings from both experiments. 
Critically, although many instantiations of a working 
memory buffer may predict the results from Experiment 1, 
the results from Experiment 2 provide support for our 
specific buffer instantiation, as borrowed from the context- 
activation model, underlying data acquisition in hypothesis 
generation tasks. 

The Influence of Data Acquisition Dynamics 
on Hypothesis Generation 

Exper iment 1 
 
The generalized order effect paradigm was developed by 
Anderson (1973) to examine the differential weighting of 
descriptive attributes presented in impression formation 
tasks.  The procedure involved embedding a fixed list of 
information with a critical piece of information at various 
serial positions thereby allowing differences in the final 
rating to be uniquely attributable to the serial position of the 
critical data.  The present experiment represents an 
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adaptation of this paradigm to a simulated medical diagnosis 
task to assess the impact of specific data serial positions on 
hypothesis generation. 

Method  
Participants Seventy-two participants participated in this 
experiment for course credit. 
 
 
Design The design of Experiment 1 was a one-way 
between-subjects design with data order as the independent 
variable.  The ecology for this experiment as defined by the 
conditional probabilities between the hypotheses and data is 
shown in Table 1. Each of the values appearing in this table 
represents the probability that the symptom will be present 
(e.g., fever) given a particular hypothesis whereas the 
complementary probability represents the probability of the 
symptom absence.  As demonstrated in the table, the only 
diagnostic piece of data was D1 whereas the remaining 
cues, D2-D4, were non-diagnostic. 
 

Table 1: Disease (Hypothesis) x Symptom (Data) ecology 
of Experiment 1. 

 

Symptoms 

 D1 D2 D3 D4 

Diseases 

H1: M etalytis 0.8 0.6 0.6 0.6 

H2: Zymosis 0.2 0.6 0.6 0.6 

H3: Gwaronia 0.2 0.6 0.6 0.6 
 
Table 2 displays the four data orders.  Each of these orders 
was identical (D2 " D3 " D4) except for the position of 
the D1 data within them. 
 

Table 2: Data presentation orders. 
!*"#$%$&'(')*&*"*%)')*&*! 

1 2 3 4 

O rder 1 D1 D2 D3 D4 
O rder 2 D2 D1 D3 D4 
O rder 3 D2 D3 D1 D4 
O rder 4 D2 D3 D4 D1 

 
Procedure The procedure was comprised of two stages. The 
first stage was an exemplar training task in which a series of 
hypothetical pre-diagnosed patients was presented to the 
participant in order for them to learn the contingencies 
between the hypotheses and data through repeated 
experience. Each of these patients was represented by a 
diagnosis at the top of the screen (H1, H2, or H3) and a 
series of test results (i.e., symptoms) pertaining to the 
columns of D1, D2, D3, and D4. Over the course of the 
training phase the specific test results precisely respected 
the disease-symptom contingencies appearing in Table 1. 

Following an arithmetic distraction task, the second stage 
of the procedure commenced. This was an elicitation phase 
in which we implemented our manipulation of data order 
and assessed hypothesis generation performance. The 
participants were then told that they were now going to see 
#$( -$3-5-32#,(+#)-%$)/0(08;+)';0(#$3(7'2,3( ).%$(>%(#0?%3(
to report the most likely diagnosis for the patient. The 
+#()-1-+#$)()(-66%(%3().%('$0%)('&().%(+#)-%$)/0(3#)#(0)(%#; at 
their readiness. Each datum of was presented individually 
for 1.5 seconds. The order in which the data were presented 
was determined by the order conditions as shown in Table 2.  
Following the presentation of the last datum the participant 
responded with the most likely disease. 

Results 
Empirical Nominal logistic regression was carried out on 
the generation data to examine the effect of data serial 
position on the generation of H1 (Metalytis), the disease 
with the greatest posterior probability given the data. There 
was a significant trend for H1 being reported as the most 
likely hypothesis as the serial position of the diagnostic data 
increasedC(@2(1) = 4.32, p < 0.05. 
 
Computational To simulate Experiment 1, ).%( ;'3%,/0 
episodic memory was endowed with the Hypothesis-Data 
contingencies described in Table 1. On each trial each piece 
of data was presented to the buffer for 1500 iterations 
(mapping onto the presentation duration of 1500 ms) and 
the order of the data was manipulated to match the data 
orders used in the experiment.  1000 iterations of the entire 
simulation were run for each condition2.  The model data 
was supplemented with a constant guessing parameter of 
0.31 across all conditions. 

 
Figure 3: Human and Model results for Experiment 1 

plotting the probability of reporting H1 as most likely across 
order conditions.  Error bars represent standard errors.  

 
As is demonstrated in Figure 3, the model is able to capture 
the empirical data quite well. This effect is directly 
attributable to the weights from the buffer being applied to 
the generation process. 

                                                           
2 The parameters used for this simulation were the following. 

HyGene: L=0.85, Ac=0.075, Phi=4, KMAX=8 Buffer: Alpha=2.0, 
Beta=0.2, Lambda=0.98, Delta=1.0 
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Exper iment 2 

M ethod 
Participants One hundred and twenty four participants 
participated in this experiment for course credit. 
 
Design The design of Experiment 2 was a one-way 
between-subjects design with the presentation rate of the 
data as the independent variable. The ecology for this 
experiment appears in Table 3.  The important aspect of this 
ecology is that the early data (D1 and D2) are diagnostic in 
favor of H1 whereas the later data (D4 and D5) favors H2. 

 
Table 3: Disease (Hypothesis) x Symptom (Data) ecology 

of Experiment 2. 
!! D1 D2 D3 D4 D5 

H1:M etalytis 0.8 0.7 0.5 0.3 0.3 
H2: Zymosis 0.3 0.3 0.5 0.7 0.8 

 
Procedure The procedure of this experiment was very 
similar to that of Experiment 1. Participants learned the 
hypothesis-data contingencies in an exemplar training phase 
prior to elicitation. However, in between these two phases of 
the experiment there was a learning test to discriminate 
participants that had learned the contingencies well from 
those that did not learn the contingencies.  For this test the 
participants were provided with an individual piece of data 
and asked what the most likely hypothesis was.  Their total 
learning score was the amount of correct responses in this 
task3. 
   In the elicitation phase the participants were provided with 
the data in the order in which they appear in Table 3, that is, 
consecutively from D1 to D5. Directly following the last 
piece of data the participant entered the disease they thought 
was most likely given the +#)-%$)/0(08;+)';0. What varied 
between participants was the rate at which these data were 
presented.  Half of the participants were presented the data 
at a fast rate (144 ms each) while the other half were 
presented the data at a slow rate (1504 ms each).   
   As displayed in Figure 2, the context-activation model 
predicts the fast presentation rate to lead to the earlier data 
residing more strongly in working memory following D5 
whereas the model predicts the opposite for the slower 
presentation rate. Therefore we predicted that the fast 
presentation rate should lead to greater relative activations 
of early data thereby leading to greater generation of H1, 
whereas the opposite would be the case when the data are 
presented slowly leading to a preference for H2 and 
accordingly a lower rate of H1 relative to the fast condition. 

Results 
Empirical Although the rate of H1 selection was slightly 
higher in the fast presentation rate condition, this difference 

                                                           
3 Responses were counted automatically correct for responses to 

the D3 data as both hypotheses were equally likely. 

did not reach significance, z = 1.27, p = 0.102. A further 
analysis was performed within groups of high learning and 
low learning participants based on their performance in the 
learning test. Those scoring higher than 60% were counted 
as high learners and those scoring lower were counted as 
low learners. Conditional analyses within each learning 
group revealed a marginal effect of presentation rate for the 
low learners, z = 1.6, p = 0.054 and no effect for the high 
learners, z = 0.34, p = 0.367. This result reflects the fact that 
the trend witnessed in the overall data was, somewhat 
counter-intuitively, due to those that did not learn the 
contingencies in the task as fully. We explain this effect 
below with our model. 
 
Computational To simulate Experiment 2 the model was 
endowed with experience in the ecology displayed in Table 
3. The manipulation of presentation rate was implemented 
in the model by varying the number of iterations the model 
was presented each piece of data. For instance, in the fast 
condition each piece of data received bottom-up input for 
100 iterations whereas in the slow condition each piece of 
data received bottom up activation for 1500 iterations. 
     In line with the empirical result, however, we are not 
solely concerned with capturing differences in presentation 
rate, but we are additionally interested in capturing the 
difference that manifesting between the high and low 
learning groups. We posit this difference to be attributable 
to the role of working memory capacity (WMC). It is likely 
that high capacity participants were better able to learn the 
contingencies as each exemplar provided several bits of 
information for encoding. Furthermore, successful learning 
likely included some form of hypothesis testing carried out 
over successive exemplars which would be cognitively 
taxing, but beneficial to learning. Therefore we suggest that 
the high learning group possessed a greater proportion of 
high capacity participants. 
    In the present analysis, we ask if differences in a 
parameter governing the emergent capacity of the buffer 
could explain the presence of a presentation rate effect 
amongst low learners and its amelioration amongst high 
learners. As the beta parameter governs the strength of the 
global inhibition that is applied to each item this parameter 
can be used to impose capacity constraints (Davelaar, 2007). 
As beta is increased, competition between items is increased 
and fewer items will cohabitate the buffer. We manipulated 
beta at two levels to capture low learning/low capacity 
(beta= 0.1) and high learning/capacity (beta=0.05) and used 
presentation rates of 100 iterations (fast rate) and 1500 
iterations (slow rate)4. This resulted in averaged summed 
activations in the buffer of 2.22 in the slow rate and 2.33 in 
the fast rate under beta=0.05 and values of 1.96 in the slow 
rate and 1.74 in the fast rate under beta=0.1. Therefore, 
more activation was present in working memory on average 
when beta=0.05 relative to beta=0.1. This entire simulation 
was run for 700 model runs of each condition. 

                                                           
4 All other model parameters were the same as those used for 

Experiment 1. 
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Figure 5: Human and Model results for Experiment 2 

plotting the probability of generating H1 and H2 as most 
likely by presentation rate and learning/capacity groups.  

Error bars represent standard errors. 
   
    As demonstrated in Figure 5, the model is able to capture 
the patterns in the data occurring with differences in 
presentation rate and differences in learning between 
participants. 

Discussion   
We presented and tested an extension of the HyGene model. 
The model was endowed with a dynamic working memory 
buffer and adequately captured a recency bias in generation 
(Experiment 1).  In addition, the sensitivity of the dynamic 
buffer to presentation rate was shown to influence 
hypothesis generation (Experiment 2). Moreover, individual 
differences in learning or WMC interacted with the balance 
of incorporating primacy and recency items in the decision. 
Moreover, the ability of our model to capture the results 
from both experiments lends credence to our specific buffer 
implementation. 
    The present work demonstrates the utility of 
understanding working memory dynamics during data 
acquisition (cf. Mehlhorn et al., 2011) and suggests that the 
activations of individual pieces of data in working memory 
govern their individual contributions to the hypothesis 
generation process. The model presented here will be 
extended in future work such that the activations of 
hypotheses themselves will be subject to the competitive 
buffer dynamics demonstrated here. This model will address 
the hypothesis maintenance and updating components of 
temporally dynamics hypothesis generation and utilization 
following retrieval from long-term memory. 
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Abstract
I present a model of expert comprehension performance for
2× 2 “interaction” graphs typically used to present data from
two-way factorial research designs. Developed using the ACT-
R cognitive architecture, the model simulates the cognitive
and perceptual operations involved in interpreting interaction
graphs and provides a detailed characterisation of the infor-
mation extracted from the diagram, the prior knowledge re-
quired to interpret interaction graphs, and the knowledge gen-
erated during the comprehension process. The model produces
a scan path of attention fixations and a symbolic description
of the interpretation which can be compared to human eye
movement and verbal protocol data respectively, provides an
account of the strategic processes that control comprehension,
and makes explicit what underlies the differences between ex-
pert and novice performance.
Keywords: Graph comprehension, ACT-R

Introduction
Working with graphs is a complex skill that requires specific
knowledge of the representational system being used together
with a set of procedures to map spatially represented infor-
mation in the graph with a set of propositions that specify
quantitative and qualitative relationships between the entities
represented. Providing a detailed account of this skill there-
fore requires one to specify a number of core assumptions
including: what and how information is encoded in the di-
agram, what and when information is obtained from the di-
agram by the user during a task, what and how prior graph
knowledge is stored and utilised, and what new knowledge is
created during the process. In addition, one must also specify
the strategies people employ to carry out different tasks and
how much these strategies use information in the diagram and
in stored internal representations.

There have been several attempts to provide detailed pro-
cess models of different aspects of graph use. Models are
constructed from sets of perceptual and cognitive operators
(e.g., encode the value of an indicator, make a spatial compar-
ison between indicators (Gillan, 1994), compare two digits in
working memory, or make a saccade (Lohse, 1993)), obtained
either from task or verbal protocol analyses. Lohse (1993)
and Gillan (1994) have produced models of question answer-
ing with several different graph types (including line graphs,
bar charts and scatter plots) by constructing sequences of op-
erators (each of which has an associated execution time) to
generate predicted scan paths across the graph and total task
completion times which can be compared to human data.

Other researchers have procedurally analysed graph use
for different purposes. For example, Casner (1991) identi-
fied a set of perceptual and cognitive operators to construct
models of several graph-based tasks which informed an auto-
mated system that generated graphical representations most

suited to the tasks commonly undertaken with them. A simi-
lar method was adopted by Tabachneck-Schijf, Leonardo, and
Simon (1997) in their analysis of an economics expert’s con-
struction of a graph while explaining the principle of sup-
ply and demand which they then used to develop a compu-
tational model incorporating both diagrammatic and proposi-
tional representations.

More recently, the cognitive modelling of reasoning with
information displays has been advanced by the develop-
ment of cognitive architectures; computational theories of
the large-scale structure of the mind providing accounts of
how cognition is controlled and how knowledge is encoded,
stored, retrieved and utilised (e.g., ACT-R (Anderson, 2007),
EPIC (Meyer & Kieras, 1997), and Soar (Laird, Newell, &
Rosenbloom, 1987)).

The first two of these architectures incorporate theories of
visual processing and motor control which allows modellers
to produce more detailed accounts of the information ob-
tained from the display during the task. For example Peebles
and Cheng (2003) used ACT-R to produce a computational
model of question answering using two different types of line
graph. Their model generated saccades and fixations as it an-
swered each question which, together with task completion
times, were compared to human data. In addition, the model
was able to account for human scan paths in terms of the vary-
ing demands on memory imposed by different questions.

The Peebles and Cheng study, as did those by Lohse (1993)
and Gillan (1994), investigated question answering in which
participants were given items of information and were re-
quired to produce associated information using different pro-
cesses, including identification (e.g., “In 1997, what was the
value of gas?” (Peebles & Cheng, 2003)), comparison (e.g.,
“In 1977 did tin cost less than sulphur?” (Lohse, 1993)), and
arithmetic computation (e.g., “What is the sum of A, B, and
C?” (Gillan, 1994)).

While these are important tasks, particularly for investi-
gating sequences of elementary processes, it could be argued
that they do not necessarily reflect how many people normally
work with graphs and that they do not address the important
prior comprehension stage where labels and graphical fea-
tures are encoded, associated, and interpreted (Carpenter &
Shah, 1998).

Comprehension requires knowledge of the conventions
used in the graph to represent data and other facts such as how
labels are to be interpreted based on their location. The output
of the process is assumed to be a set of knowledge structures
that represent the variables and graphical features together
with structures that encode knowledge about the quantitative
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Figure 1: One of the eight line graphs used in the expert study
(Peebles & Ali, in preparation).

or qualitative relationships between the variables depicted.
A prime example of a scenario where people encounter a

graph with the sole aim of comprehending the relationships
between variables (as opposed to identifying trends or indi-
vidual values for example) is the analysis of data from facto-
rial experiments. The simplest form of factorial design is the
two-way factorial design, containing two factors, each with
two levels, and one DV. Statistical analysis of these designs
typically results in a 2× 2 matrix of mean values of the DV
corresponding to the pairwise combination of the two levels
of each IV. Interpreting the results of even these simplest
of designs accurately and thoroughly is often not straight-
forward however, but requires a significant amount of con-
ceptual understanding—for example the concepts of simple,
main, and interaction effects. As with most other statistical
analyses however, interpretation can be eased considerably
by representing the data in diagrammatic form.

Data from two-way factorial designs are most often pre-
sented as either line or bar graphs—variously called interac-
tion or ANOVA graphs. An examples line graph is shown in
Figure 1. Because the data come from pair-wise combina-
tions of the IV levels, the rules for interpreting interaction
graphs are quite specific however and sufficiently different
from other more frequently encountered line graphs that sim-
ply applying general interpretive rules will not prove particu-
larly helpful (other than for obtaining the DV values of spe-
cific conditions etc.). The key elements of knowledge to be
obtained from interaction graphs are the simple, main and in-
teraction effects of the IVs and these have to be identified in
specific features of the graph.

In a series of studies, Peebles and Ali have observed and
recorded novices (undergraduate psychology students) and
experts (cognitive science professors and postgraduate re-
searchers) interpreting interaction graphs like the one in Fig-
ure 1 (Peebles & Ali, 2009; Ali & Peebles, in press; Peebles

& Ali, in preparation). These studies have shown that with-
out knowledge of the appropriate interpretive rules, novices’
interpretations are often limited to qualitative descriptions
of differences between conditions and can be skewed by
the different Gestalt principles of perceptual organisation
(Wertheimer, 1938) operating in the graph. In contrast, expert
users are able to employ their knowledge of which graphical
features represent which effects to identify relationships be-
tween variables much more rapidly and accurately with no
prior knowledge of the domain variables being represented in
the graph.

The purpose of the research reported here is to develop a
computational model of graph comprehension that specifies
the processes underlying both expert and novice behaviour
with sufficient detail and comprehensiveness to satisfy all of
the criteria outlined at the beginning of this paper. Specif-
ically, the model aims to provide a precise account of the
minimum information required to interpret interaction graphs
appropriately together with a hypothesis as to the nature of
the processes involved in representing and interpreting that
information. The model is developed within the ACT-R cog-
nitive architecture and therefore embodies assumptions about
the nature of the mental representations and the computations
that form the strategies used to generate new representations.
Finally, the model provides an explanation for the differences
between expert and novice interpretations.

A model of graph comprehension
Space limitations preclude a detailed description of ACT-R
here. However a comprehensive account of the cognitive ar-
chitecture can be found in Anderson (2007). In summary,
ACT-R consists of a set of modules that acquire information
from the environment, process information, and execute mo-
tor actions to achieve goals. ACT-R has memory stores for
declarative and procedural knowledge. The former consists
of a network of knowledge chunks while the latter is a set of
production rules. Cognition proceeds via a pattern matching
process that attempts to find production rules with conditions
that match the current state of the system and tasks are per-
formed through the successive actions of production rules.

ACT-R also incorporates a subsymbolic level of compu-
tations that govern memory retrieval and production rule se-
lection and which allow models to account for widely ob-
served recency and frequency effects on retrieval and forget-
ting. Subsymbolic computations also underlie ACT-R’s dif-
ferent learning mechanisms.

For tasks involving displays and other devices, task envi-
ronments can be defined to be acted upon by the model. The
graphs used in this study are defined as sets of visual objects
(lines, circles, rectangles, and text) with certain features (size,
colour) at specific x-y coordinates on a 2D window.

The graph comprehension model is based on verbal proto-
col data from novice and expert users (Peebles & Ali, 2009;
Ali & Peebles, in press; Peebles & Ali, in preparation). In
these studies, verbal statements recorded during the compre-
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hension task were coded and categorised in terms of their
functional role and content (e.g., “an association between a
level and its identifier”; “a comparison between the two leg-
end variable levels for one of the levels of the x axis variable”)
to produce a set of common interpretive operations.

The verbal protocols indicate that comprehension is typi-
cally carried out in two main phases: (a) a variable identifica-
tion stage followed by (b) a pattern recognition and descrip-
tion stage. The protocols also reveal that experts and a large
proportion of novices rarely report specific DV values, but
typically produce qualitative descriptions of the differences
between conditions.

In the first stage, the three variables are identified, cate-
gorised as dependent or independent according to location,
and the latter associated with their levels, which in turn are
associated with identifiers (left or right position for the x axis
variable and colour for the legend variable).

In the second stage, distances between plot points are ob-
served and compared, with the results being used to probe
long-term declarative memory for interpretive knowledge. If
this is successful, the retrieved knowledge is used to provide
an interpretation. If there is no interpretation available how-
ever, the model will simply describe the identification or com-
parison process being carried out. Interpretive operations are
carried out until either a full interpretation is produced or until
no other operations are available or identified.

Representing and encoding information in the graph
The key information that the model must encode and utilise
from the graph representation is a set of four x-y coordi-
nate points and the spatial distances between them. Although
the model processes symbolic representations, it assumes
that spatial information is initially encoded quantitatively and
subsequently categorised into qualitative descriptions. The
perceptual processes by which the information is obtained
or represented are not specified in detail, although it is as-
sumed that it is via a set of prior elementary perceptual tasks
(Cleveland & McGill, 1984). Cleveland and McGill (1984)
identified ten such tasks (e.g., length, direction, area, and po-
sition on a common scale) as the “perceptual building blocks”
of graph comprehension that encode quantitative information
from graphical elements.

At least two such elementary perceptual tasks are assumed
to be required for these graphs. The first is position on a
common scale and this is the primary comparison that takes
place. It is assumed that readers initially encode the spatial
distance between plot points into a quantitative representa-
tion (the proportion, p, of the distance to the overall length
of the y axis) and then categorise this ratio according to size.
For this model six categories were assumed: “no” (p = 0),
“very small” (0 < p < 0.2), “small” (0.2 =< p < 0.4), “mod-
erate” (0.4 =< p < 0.6), “large” (0.6 =< p < 0.8), and “very
large” (0.8 =< p =< 1.0). Although it is an assumption of
the model that distances are categorised in this way, the ex-
act processes by which these final categories are produced are
not specified in detail.

The second process that is assumed readers can perform
is to compare the magnitude of two distances and produce a
symbolic description of the difference. The elements formed
for this comparison are assumed to be the result of Gestalt
processes of perceptual organisation (Ali & Peebles, in press;
Kosslyn, 1989; Pinker, 1990) which allow users to group ob-
jects by colour or proximity. This comparison also allows
users to perceive and compare the directions of the two dif-
ferences (i.e., the relative sizes of the variables’ level values).
These relative values produce the various patterns such as
crossed, parallel and diverging lines which are recognised and
interpreted by expert users.

Prior graph knowledge
Two forms of declarative knowledge are used during the task:
prior knowledge relating to how the graph represents infor-
mation and knowledge of the variables and their relationships
generated during the comprehension process itself.

There are three core items of knowledge required to inter-
pret interaction graphs. Two are common to many Cartesian
graphs and concern (a) the typical allocation of the dependent
and independent variables to the graph axes and legend and
(b) the principle that the distance between two graphical ele-
ments is directly related to the magnitude of the relationship
between the conceptual entities that the elements represent.

The third set of facts required are specific to the graph type
and concern the graphical and spatial indicators of the three
key important interpretive facts; simple effects, main effects,
and interactions. The three indicators are (a) the distance be-
tween two plot points which indicates the size of the simple
effect of the level jointly represented by those points, (b) dif-
ferences in the y-axis location of the midpoints between two
pairs of plot points which indicate the size of the main effect
of the variable, and (c) differences in the inter-point distances
between levels, combined with information about their point
ordering, which indicates the size, and type of any interac-
tions that may exist.

This knowledge is represented as symbolic structures in
the model’s long term memory and is currently the minimum
required to indicate that the interpretative process has suc-
ceeded. It is possible however to add further causal knowl-
edge relating to the various effects to allow the model to pro-
vide more detailed explanations of the relationships identi-
fied.

Generated knowledge
Several declarative knowledge structures are also generated
during comprehension. The first is a set of related chunks that
represent each variable, the levels associated with it, and the
identifiers of each level. Three other knowledge structures are
generated to accumulate and associate items of graph and in-
terpretive information during a specific sub-task. In the expert
model all knowledge retrieval requests will succeed, resulting
in knowledge structures that associate qualitative descriptions
of differences and their interpretation. These structures could
then be used to produce verbal explanations.
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For example one structure records the processing of an in-
dividual level which could produce the explanation: “The
difference between the two values for high plant density is
very large so there’s a very large simple effect of high plant
density” while another records the information accumulated
when comparing the average values of two levels of one vari-
able (e.g., “There is a large difference between the fasting lev-
els; high fasting generally resulted in greater glucose uptake
than low fasting, which indicates a large main effect of fast-
ing”). The third stores the results of comparing the lengths
and point ordering of two levels (e.g., “Although the effect
size of the cement type levels is the same, the direction of
their effects is different so that means there is an interaction
between the two independent variables”.)

Finally, a representation is produced when a simple com-
parison between points is made which does not associate an
interpretation (e.g., “When the nitrogen level is high, maize
yield is much greater for compact plants than for sparse
plants”.).

The comprehension process
In the Appendix is an output trace produced by the model as
it carries out the comprehension task using the graph in Fig-
ure 1, with each line in the trace representing one or more
steps in the process (variable names have been shortened to
allow the lines to fit the format of this paper). The text in
square brackets is information currently being processed that
has either been obtained from the graph or retrieved from
declarative memory1.

In the trace, numbers in square brackets represent the per-
ceptual difference between two objects on the screen. These
are subsequently translated into qualitative size judgements
according to the categories described above. Other text in the
output is simply to indicate other events (e.g., goal setting
or memory retrieval failures) or to clarify what a particular
knowledge element represents.

As previously intimated, the model assumes that compre-
hension proceeds after an initial phase of variable identifica-
tion, a process usually initiated by reading the title. Currently
when the model reads the title the three words that name vari-
ables are identified by retrieving previously defined word cat-
egory information from declarative memory. This mechanism
is undoubtedly simplistic and currently substitutes for a more
complex knowledge retrieval process that is assumed to take
place.

The model then seeks items of text at the left, right and
lower regions of the display. When each variable label is
identified, the model identifies it as a particular type accord-
ing to its location and then, associates the independent vari-
ables with their level labels by identifying nearby text. The
model also associates each of the four levels with its physi-
cal attribute; left, right, blue and green and uses these labels
when processing the graph. This is consistent with verbal

1A video of the model interpreting all eight graphs from the
expert study (Peebles & Ali, in preparation) can be viewed at
http://youtu.be/z2kAwrOrjIM

protocol and eye movement data from our studies showing
that graph readers often produce an interpretation and then
must re-read the appropriate label in order to identify which
particular level is being processed.

When the three variables have been processed, the model
then attends to the pattern produced by the four coordinate
points in the plot region and then selects a particular feature
or pair of features to process. The probability of selecting
a particular feature to process may depend on a number of
factors, including visual salience and pattern familiarity. For
example, a large difference between objects, or parallel or
crossing lines may draw the user’s attention and lead them to
attempt to interpret the feature first. Although it is possible to
incorporate these processes for the model to select features in
any order, for simplicity, the current model selects features in
the order: simple, followed by main, and finally interaction
effects.

These three effects are identified by different indicators in
the graph. The size of the simple effect of a level is indicated
by the distance between the level’s two plot points while the
main effect of a variable is indicated by the difference in the
y-axis location of the midpoints between the variable’s two
pairs of plot points. Finally, the nature and size of interaction
effects are indicated by differences in the inter-point distances
between levels, combined with information about their point
ordering.

The model represents the interpretation process by a set of
production rules for each indicator type. When the appropri-
ate condition occurs (i.e., the model is directing attention to
the plot region), individual production rules fire to draw atten-
tion to specific indicators. The indicator (a spatial distance,
difference or order comparison), is extracted from the pattern
and (together with information about what the indicator is)
used to probe declarative memory for an interpretation con-
sisting of the name and size of the effect. For example on line
29 of the trace the model identifies that there is no difference
between the plot points on the left of the display and then re-
trieves the knowledge that this indicates that there is no sim-
ple effect of sparse plant density (these labels being obtained
by seeking the text below the points being observed).

For each indicator, if the memory retrieval attempt fails,
the model simply describes the difference being attended to.
This is demonstrated in lines 37 and 38 of the trace which
compare the levels of the legend variable for each of the x axis
variable levels and which correspond to the statement “when
plant density is sparse, low and high nitrogen levels are the
same but when plant density is compact, the high nitrogen
level is greater than the low nitrogen level”. This form of
statement is very common in novice graph users.

Once a recognition production rule fires to initiate the pro-
cess, a chain of subsequent productions is triggered which
obtains further information from the graph and declarative
memory until an interpretation is produced. The current pro-
duction set is sufficient to process any 2×2 data set of three
variables to produce an appropriate interpretation similar to
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the trace in the Appendix.

Discussion
Comprehending and reasoning with graphs requires a wide
range of perceptual and cognitive operations sequenced to-
gether in various combinations to perform specific tasks. The
type and sequence of operators involved in a task may differ
depending on a number of factors, including the graph or do-
main knowledge of the user, the type of graph being used, or
individual cognitive factors such as working memory capac-
ity (which may determine the relative frequency of memory
retrieval requests and saccades to graph labels etc.).

Graph comprehension is an important area to study there-
fore because it provides an opportunity to investigate how
environmental and internal factors interact to produce be-
haviour. In addition, graph-based tasks can be analysed using
behavioural measures such as eye movements and concurrent
verbal protocols to provide insights into what and when infor-
mation is being processed during the course of the activity.

Computational modelling is a valuable tool for developing
and testing hypotheses about the representations and mecha-
nisms necessary for cognitive tasks as it provides a formal-
ism for characterising them, requires one to be explicit about
the boundaries of one’s model in terms of which processes
are being defined precisely and which are not, and allows
one to explore the consequences of particular assumptions
(McClelland, 2009).

Developing models within a cognitive architecture such as
ACT-R provides the additional benefit of allowing the model
to incorporate a large number of assumptions regarding is-
sues such as knowledge representation, cognitive control, vi-
sual attention, learning and forgetting etc., all of which are
supported by previous empirical research. In addition, ACT-
R’s vision module includes mechanisms that allow models
to simulate certain Gestalt principles of perceptual organisa-
tion, which are regarded as playing a crucial role in the vi-
sual processing of graphical representations (Kosslyn, 1989;
Pinker, 1990). Specifically, the comprehension model asso-
ciates variables and their levels, and levels with their colour
identifiers using mechanisms that are functionally equivalent
to the Gestalt laws of proximity and similarity respectively.

The model described above represents an initial attempt
to specify at a detailed algorithmic level the representations,
cognitive processes, and strategies involved in comprehend-
ing interaction graphs. It provides a precise account of the
graph knowledge required and the spatial information neces-
sary to interpret the graph accurately and specifies a control
structure that determines the flow of information during the
task to generate a set of knowledge representations, saccades
and fixations over the graph, and a sequence of output state-
ments which are largely consistent in terms of order, function
and content with verbal protocols produced by expert users.

The assumptions of the model imply that to interpret inter-
action graphs accurately, novices must acquire three forms of
graph-specific knowledge: an understanding of what effects

the different distances and spatial differences in the graph
indicate, the relationship between distance and effect size,
and how the various combinations of distance differences and
point orders can be interpreted in terms of the interactions be-
tween the IVs. The model provides a precise specification of
the relatively small amount of knowledge required and a clear
demonstration of its sufficiency to interpret the graphs.

The current model can be considered a first approximation
to a more detailed model that incorporates additional factors
to broaden the scope of behaviour accounted for. Previous
studies have shown that comprehension performance varies
quite widely, even between experienced users (Peebles & Ali,
2009; Ali & Peebles, in press; Peebles & Ali, in prepara-
tion). For example, the order in which effects were identi-
fied varied, often as a result of the relative visual salience of
the graphical features being displayed (e.g., very large main
effects were often identified rapidly). Also, explicitly iden-
tifying simple effects was uncommon and other effects were
sometimes overlooked by experienced users.

This variation in performance is no doubt due to a number
of factors including the different effects of visual salience and
Gestalt principles of perceptual organisation operating (Ali
& Peebles, in press), and varying levels of graph knowledge
and working memory capacity etc. In addition, previous stud-
ies compared expert and novice performance on both bar and
line graph formats and showed that the interpretations of all
users (but novices in particular) were affected by the format
used. Specifically, line graphs users are influenced to attend
to the legend variable while bar graph users attend to the two
IVs more equally (Peebles & Ali, 2009; Ali & Peebles, in
press; Peebles & Ali, in preparation). Broadening the scope
of the model further, other factors such as domain knowledge
and the number of variable levels (Shah & Freedman, 2011)
should also be addressed.

The current model provides a solid basis from which to ex-
plore hypotheses concerning the mechanisms underlying this
broader range of behaviour. These hypotheses will take the
form of enhanced or reduced declarative graph or domain
knowledge, additional recognition productions, and mecha-
nisms to represent visual salience. A more comprehensive
model must also bring ACT-R’s subsymbolic mechanisms
that govern memory retention, retrieval, and learning pro-
cesses into play as these no doubt have a significant effect
on strategy choice and eye movement patterns (Peebles &
Cheng, 2003).

Finally, the current model does not attempt to provide a
detailed account of the perceptual processes by which spa-
tial information is encoded or represented during the exe-
cution of elementary perceptual tasks. There are currently
several attempts to develop mechanisms for spatial repre-
sentation and processing within cognitive architectures—
including ACT-R—however (a number of which are pre-
sented in (Gunzelmann, 2011)) and it may be possible for
the current functions to be replaced in a future model by ones
more conforming with theory and empirical evidence.
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Beyond the goal of developing the model to account for the
full range of observed behaviour with an increasing number
of interaction graph formats, lies the larger aim of construct-
ing a model of comprehension for a broader class of graphs.
As discussed earlier, interaction graphs embody a specific set
of interpretive rules that are not shared by other graphs. The
current model clearly identifies and characterises these rules
and distinguishes them from the knowledge and procedures
that can be applied to other graphs. It is hoped that in so
doing, the model will simplify the task of identifying graph-
specific operators and form a basis upon which to develop
and explore a range of graph comprehension models for other
graphical formats. As it stands however, the model provides a
valuable demonstration that the assumptions it currently em-
bodies are sufficient to produce an expert interpretation of the
relationships depicted in 2×2 interaction graphs.

Appendix: Model output for the graph in Figure 1

1 seek text at top of display. . .
2 [m-yield] = [variable]
3 [as] [a] [function] [of] [p-density] = [variable]
4 [and] [n-level] = [variable]
5 seek text at far right of display. . .
6 [n-level] at [far right] = [independent] variable
7 look to nearest text. . .
8 [low] = level of [n-level]
9 [high] = level of [n-level]

10 seek objects in plot region. . .
11 [blue] [line]
12 no memory for [blue] look to legend
13 [blue] [rectangle]. looking for nearest text. . . [blue] = [low]
14 [green] [rectangle]. looking for nearest text. . . [green] = [high]
15 seek text at far left of display. . .
16 [m-yield] at [far left] = [dependent] variable
17 seek text at bottom of display. . .
18 [p-density] at [bottom] = [independent] variable
19 look to nearest text. . .
20 [compact] = level of [p-density]. [compact] = [right]
21 [sparse] = level of [p-density]. [sparse] = [left]
22 identify legend levels. . .
23 [0.0] diff [blue] so [no] [simple] effect [low] [n-level]
24 [0.5] diff [green] so [moderate] [simple] effect [high] [n-level]
25 compare [blue] & [green] levels. . .
26 [small] diff. [high] [n-level] > [low] [n-level]
27 [small] [main] effect [n-level]
28 identify x axis levels. . .
29 [0.0] diff [left] so [no] [simple] effect [sparse] [p-density]
30 [0.5] diff [right] so [moderate] [simple] effect [compact] [p-density]
31 compare [left] & [right] levels. . .
32 [small] diff. [compact] [p-density] > [sparse] [p-density]
33 [small] [main] effect [p-density]
34 compare left and right patterns. . .
35 [0.5] diff in distance between points. [right] bigger
36 [moderate] diff & [same] point order so [moderate] [interaction]
37 for [sparse] [p-density] [low] [n-level] = [high] [n-level]
38 for [compact] [p-density] [high] [n-level] > [low] [n-level]
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Abstract 
In the classical music tradition, knowing how to read music is 
an essential skill and is seen as a fundamental component to 
develop when learning to play the piano. This research’s 
focus is to study the possible impact of the different teaching 
approach on the acquisition of initial reading skills.  By using 
cognitive modeling, we are hoping to observe through 
computer simulation the problem solving and decision-
making tasks involved in decoding a simple musical score. 
The paper introduces the Middle-C and Intervallic methods 
followed by a description of an ACT-R cognitive model and 
simulation results upon learning with each of the piano 
methods.  

Keywords: Music reading, piano methods, ACT-R.  

Introduction 
In the classical music tradition, knowing how to read 

music is an essential skill and is seen as a fundamental 
component to develop when learning to play the piano 
(Galyen, 2005; Sloboda, 2005). However, learning to read 
musical notation is a long and arduous undertaking 
(Anderson, 1981; Hahn, 1985) and, despite the value we 
attribute to it, it is not always successful. In North America 
and in Europe, piano book tutors are at the centre of a 
beginner student’s learning environment as piano teachers 
often rely on these books to provide the whole foundation of 
a pianist’s musical education and much of the initial training 
on reading musical notation (Stewart, Henson, Kampe, 
Walch, Turner & Frith, 2003; McPherson & Gabrielsson, 
2002). However, while having music reading as a common 
objective, the book tutors have introduced fundamentally 
different approaches such as the Middle-C, Intervallic or 
Multi-key approach; and more recently the Eclectic or 
Modified Multiple Key approach, which has supplanted the 
original Multi-key (Lomax, 1990). Surprisingly, despite the 
fact that the main focus of the piano tutors is the 
development of music reading skills, little is known about 
how this is done. Piano pedagogy textbooks provide long 
list of advantages and disadvantages for each of the different 
teaching approach (Uszler, Gordon & Smith, 2000), 
however it is all based on intuition and on teachers 
experience and it has no experimental basis to support the 
analysis, or formal model of its development. Little 
scientific information is available to evaluate the real impact 
of each reading systems, to establish their efficacy and 
efficiency. 

It is well recognized that there is a lack of cognitive 
models to explain how music reading is acquired. Hodges, 
the author of the Handbook of Music Psychology (1996) and 
author of a chapter on music reading in the Handbook of 
Research in Music Teaching and Learning (1992) wrote that 
“in music there is no theory devoted specifically to an 
explanation of music reading: thus, the bulk of the research 
appears to be devoid of a theoretical underpinning” (1992, 
p. 469). Sixteen years later, he confirmed that the situation 
was still the same (Lemay, 2008). The few theoretical 
models that have been proposed over the years are either 
still in an embryonic stages or entirely speculative and 
devoid of an experimental basis (Udtaisuk, 2005). The most 
well-known cognitive model of music sight-reading was 
published by Wolf in 1976, and it was developed entirely 
based on interviews with four pianists (Wolf, 1976). It 
explains sight-reading as a problem-solving activity of 
pattern recognition, but no quantitative investigations were 
undertaken to refine and give legitimacy to the model. 
Fifteen years ago, Waters, Townsend and Underwood 
(1998) realized a series of laboratory experimentation to 
observe how pattern recognition’ skills could play an 
important role in expertise musical sight reading and they 
have shown that in the pattern-recognition task, immediate 
recall of presented material correlate strongly with good 
sight-reading skills. Their study confirmed various 
experimentations conducted previously by Sloboda (1978, 
1985) to show the importance of pattern recognition in 
various tasks related to music reading. However, while 
pattern recognition seemed to be a promising avenue to help 
our understanding of music reading skills, Madell and 
Hébert (2008) deplore the fact that more recent trends in 
music reading research has been to experiment with the 
intricacy of eye tracking technology without a focus on 
pattern recognition (Kinsgler and Carpenter, 1995). In 
addition, music reading studies deals with musicians who 
already know how to read music and have often reach the 
level of expertise. These models do not always shed lights 
on the skills required by a novice just being introduced to 
music notation. Without a solid model of music reading 
acquisition, it is not surprising that piano teaching material 
have come to propose very different approaches to music 
reading. 

Piano playing is an elaborate skill that requires the 
coordination of many cognitive resources and subtle body 
movements. As such, expert piano playing performance has 
been the subject of many investigations (Hallam, Cross & 
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Thaut, 2009; Altenmüller, Wiesendanger & Kesselring, 
2006; Parncutt & McPherson, 2002). However, the effect of 
pedagogical methods on novice performance and learning 
has not received the same level of attention from a cognitive 
point of view (McPherson, 2006). Empirical data on the 
effect of piano methods on learning are scarce, and very 
difficult to obtained in a controlled setting. As a first step to 
characterise the effect of pedagogical methods on novice 
performance and learning, a series of computer simulations 
were designed. The main objective of the simulations was to 
compare the resulting states of a common cognitive model 
after learning to play sequences of short piano pieces from 
different piano methods. The simulations focused on 
learning the association between the musical notation and 
the correct motor movements on the piano keyboard.  The 
task to be performed by the model was a form of sight-
reading task (Fourie, 2004). The task was to read a note on a 
music score, and play it on the piano. The model did not 
intend to capture looking ahead behaviour (Fourie, 2004), 
the representation and processing of musical sounds 
(Chikhaoui, Pigot, Beaudoin, Pratte, Bellefeuille & 
Laudares, 2009), learning motor skills (Jabusch, Alpers, 
Kopiez, Vauth & Altenmüller, 2009), movement preparation 
(Palmer, 2005), and multitasking of music reading and 
motor movements as threaded cognitive tasks (Salvucci & 
Taatgen, 2008) were excluded from the models. 

The Middle-C and Intervallic approaches 
This research’s focus is to study the possible impact of the 

different teaching approaches on the acquisition of initial 
reading skills. By using cognitive modeling, we are hoping 
to observe through computer simulation the problem solving 
and decision-making tasks involved in decoding a simple 
musical score. We want to examine how the different 
reading systems impact on the perceptual and motor 
processes. Since the Middle-C approach and the Intervallic 
approach have dominated the market for many decades now, 
we have selected two tutor series that are a good 
representation of each approach: The A.B.C. of Piano 
Playing: An Easy Method for Beginners (Berlin, Koniček & 
Precious, rev. ed. 1983; original ed. 1941); The Music Tree: 
A Plan for Musical Growth at the Piano (Clark, Goss & 
Holland, rev. ed. 2000; original ed. 1973; Clark first 
introduced the intervallic approach under the title Time to 
Begin in 1955). These authors published their first tutor in 
the middle of the 20th century, both publications have gone 
through revision and re-edition and both are still in use by 
piano teachers. In order to understand the basic 
characteristics of the reading process involved in each 
approach, a quick overview of their reading system will be 
provided. 

According to Lomax (1990), the Middle-C reading 
approach became influential in the early 1900s. Introduced 
by Mathews in Standard Graded Course of Studies for the 
Pianoforte in Ten Grades (1892), it was then popularised by 
the very successful tutors written by John Thompson 
Teaching Little Fingers to Play (1936) and the Modern 

Course for Piano (1936). Berlin’s A.B.C. of Piano Playing 
(1941) published a few years later and selected for our 
analysis was very much in line with the earlier Middle-C 
tutors. This reading approach requires the student to place 
the thumbs of each hand on middle C. The entire first piece 
is often played with that note only, and then on the 
following pieces, one note above and one note below middle 
C are introduced. As new notes are introduced, note names 
and traditional staff notation are learned simultaneously. 
The hand position with both thumbs sharing middle C and 
the other fingers resting on the surrounding white keys is 
maintained generally for quite a long period of time so that 
the student becomes familiar with these notes. This reading 
approach was extremely influential throughout the second 
half of the 20th century, Schaum and Cupp (1985) wrote 
that “the Middle C approach continues to prevail because of 
its unparalleled success and thoroughness. It is probably the 
most widely accepted keyboard teaching system presently in 
use” (p. 68) and Lomax (1990) was affirming “the Middle C 
Method is still one of the most widely used approaches 
today” (p. 101). 

In 1955, Frances Clark revolutionised the way that music 
reading could be thought with the publication of her 
Intervallic approach tutor Time to Begin. Elements of this 
approach had been introduced earlier: partial-staff notation 
in Loomis’ Progressive Music Lessons (Loomis, 1875) and 
the Landmark approach in Year by Year Books (Williams, 
1924). However, Clark was able to define the Intervallic 
approach like no one had done before her and she 
popularised it among piano teachers. She developed a 
reading system where piano students are taught to read 
music by recognizing intervals. As Uszler (1991) explains 
“the Intervallic approach stressed the development of 
spatial-directional reading habits connected with the 
formation of hand-shapes and movements that follow from 
intervallic recognition” (p. 107). Students are encouraged to 
read by contour recognition and the musical staff is 
introduced one line at a time. They are thought to recognize 
steps (neighbouring keys) and skips (skipping over one key) 
on a partial staff, then intervals are introduced (seconds, 
thirds, fourths, etc.) and finally they are given certain 
landmarks on the keyboard and they are thought to 
distinguish the direction of the music through intervals that 
are related to these guide posts. Unlike the Middle C 
approach, the Intervallic approach reinforces playing all 
over the keyboard. 

Simulation of Early Music Reading  
Skills Acquisition 

This section presents the simulation methodology and 
simulation results obtained by running an initial cognitive 
model playing a series of musical staves belonging to either 
the Middle-C or the Intervallic piano methods. The ACT-R 
cognitive architecture was used to run the simulation 
(Anderson, Bothell, Byrne, Douglass, Lebiere & Qin, 2004). 
The simulation procedures consisted of: a) developing an 
initial cognitive model, b) running the cognitive model with 
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the different conditions represented by the different 
sequence of music staves from the two piano methods, and 
c) comparing the model states resulting from the separate 
simulations.  

Initial cognitive model 
The initial model contained only the minimal declarative 

and procedural knowledge to be able to visually scan a 
music staff for notes, the piano keyboard for keys, move the 
hands and fingers over piano keys, press, hold and release 
them, and the capabilities to process instructions from a 
tutor. In addition to the content of the declarative and 
procedural memories described in the following sections, 
the cognitive model also used base level activation of 
declarative chunks, production rules compilation, and 
reinforcement learning.  

Declarative knowledge. The initial model assumed no 
prior knowledge of musical notation, and of its association 
to specific key locations on the piano keyboard. The only 
declarative knowledge the initial model held were chunks 
about the association between the number of beats (1 to 4), 
and the subjective perception of time encoded as ticks. The 
model however had chunks encoding the approximate 
duration of 1, 2, 3, and 4 beats (60 beats per minute) using 
the ACT-R temporal module (Taatgen, van Rijn & 
Anderson, 2004).  

The Figure 1a and 1b presents the visual encoding of the 
music scores. As figure shows, both the Middle-C and the 
Intervallic methods share the same encoding, in spite of the 
differences in the layouts. The visual encoding of a note 
visual location includes its X and Y absolute visual 
locations, its relative horizontal and vertical visual locations, 
as well as four duration encodings using a combination of 
full or empty circles, with or without stems, and with or 
without a dot.  

Note visual-
location

X Y

vloc

Duration
Encoding hloc

 
a. Middle-C 

Note visual-
location

X Y

vloc

Duration
Encoding hloc

 
b. Intervallic

Figure 1: ACT-R visual encoding of music staves. 

The Figure 2 presents the visual encoding of the piano 
keyboard. This encoding is used to direct the hands towards 

the proper key to associate with the encoding of the note 
information on the music staff. The visual encoding of a key 
location includes the absolute X and Y visual locations, the 
key color (black or white), the group type (around 2 blacks 
or 3 blacks), the relative position of a key in the group, as 
well as the relative position of the group on the keyboard.  

Key visual-
location

X
Y Colour

Group 
Type

Group 
Pos

Pos in 
Group

 
Figure 2: Visual encoding of the piano keyboard 

 using ACT-R chunks.  

In addition to the visual encoding of the staves and the 
keyboard, the model includes a chunk type representing the 
knowledge about a note, which binds together the musical 
notation information (staff, vertical location on the staff, 
duration encoding), motor directives (number of beats, 
hand, and finger to use), and associated key on the keyboard 
(group type, group position, key position in group, and key 
colour). This representation aims at capturing the visual 
characteristics of notes for musical notations, and in this 
respect, it differs from a representation of its sound 
properties (Chikhaoui et al., 2009).  

Closely related to the note chunk, the model includes an 
execution plan. An execution plan is basically a note chunk 
augmented with the information about the horizontal 
position of a note on the staff to encode the sequence of 
notes to play, and the number of ticks (Taatgen et al., 2004)
that the note should be pressed. The execution plan acts as 
the control structure for the model’s behaviour. Chunk slots 
are filled up based on visual encoding and memory 
retrievals until the plan can be executed. Plan execution 
chunks are held in the goal buffer of the ACT-R cognitive 
architecture. The encoding for the note is similar to the 
theory of event coding where perception and action share a 
common representation (Hommel, Müsseler, Aschersleben 
& Prinz, 2001). 
Procedural knowledge A total of 19 productions are part of 
the model’s initial procedural knowledge. These productions 
can be classified in productions for processing the tutor’s 
instructions (2), processing the visual information on the 
staff (2), determining the note duration (5), its key location 
on the keyboard (4), the finger and hand to use (4), and 
finally executing the motor action on the keyboard (2). The 
Figure 5 characterizes the overall flow of control in the 
model. The first task of the model is to attend the staff and 
encode the next note visual features. Then the model 
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attempts to retrieve from declarative memory a note chunk 
using the visual features as cues. The retrieved note chunk 
slots are used (or guessed if no note is retrieved) to complete 
the missing information in the execution plan.  The note 
duration, fingering and key location need to be determined 
in no particular order. Once the execution plan is completed, 
the model locates the key on the keyboard, move the hand 
and finger to the location, and press and hold the key for the 
given duration.  

Figure 3 also includes a description of the flow of control 
between the student model and an automated tutor. The 
tutor compares the note to be played by the student model to 
its performance and provide either a positive reward, or a 
negative reward with instructions. An instruction consists of 
a note chunk, correcting the note played. After the reception 
of an instruction, the model harvests its content to 
declarative memory, and proceeds to re-attend to same note 
on the staff. If the note played was correct, the model just 
proceeds to the next note on the staff.  

Student Model

Duration
Key location

Fingering

Tutor

Attend to staff

Encode Note
Visual Features

Recall Note Information
(or guess)

Complete Plan

Locate Key & Move 
Hand to Key

Press and Hold key for 
Duration

Are the Duration, Key 
Pressed and Fingering 

correct?

Provide Instructions
&

Negative Rewards

NoPositive Rewards

Yes

 
Figure 3: Flow of control and interaction with tutor. 

Running the simulation 
The simulation consisted of running a sequence of 

introductory piano pieces from the Middle-C method, and 
another one from the Intervallic method. For both 
sequences, the model started in an identical initial state 
(described in the previous section). Each sequence had 8 
pieces and the model had to play every piece 5 times before 
moving to the next piece. The following pieces were used in 
the Middle-C and Intervallic conditions. 

Middle-C (Berlin et al., 1983): Second lesson right, 
Second lesson left, third lesson right, third lesson left, fourth 
lesson right, fourth lesson left, sixth lesson right, sixth 
lesson left. 

Intervallic (Clark et al., 2000): Take Off, Landing, In a 
Canoe, Space Ship Inchworm, Rock Band, On the 
Bleachers, Halloween.  

 After each executed pieces, model states data were 
collected, in particular the number of declarative chunks in 
memory, as well as the trace of production rules execution, 
and their relative utility.  

Results and discussion 
There types of data were collected during the simulation 

execution: the number of declarative chunks in memory, the 
trace of production rules execution, and their relative utility. 
The aggregated results are presented in the Figures 4 and 5. 

Figure 4 shows the number of declarative chunks in 
memory as the model progress through the execution of the 
40 pieces of music (8 different pieces played 5 times). As 
the graphic shows, the Middle-C method (lower line) has a 
very gradual introduction of musical note information when 
compared to the Intervallic method. The main reason for 
this difference is somewhat obvious. Because the intervallic 
method forces the learning musician to play over multiple 
octaves, the number of note chunks is therefore larger, 
reflecting the demands of the music scores.  
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Figure 4: Number of declarative chunks as a  

function of pieces played. 

Figure 5 shows the percent of time spent by the model on 
building an execution plan, which means the exclusion of 
the time devoted to visual encoding and motor execution, 
and the inclusion of processes related to instruction 
encoding, retrieval, and filling up the execution planning 
chunk slots.  A visual inspection of the graph seems to 
indicate that the Middle-C method (lower line) requires less 
retrieval and execution planning time than the Intervallic 
method. Similar to the previous result on the number of 
declarative chunks, the larger number of notes to be played 
with the Intervallic method demands more motor planning. 
However, the line threads seem to also have different 
patterns. The Intervallic method has more or less a constant 
planning time over the course of the simulation. On the 
other hand, the Middle-C method seems to require an 
increase of planning time. This increase could be correlated 
with the increase of notes in the method.  The apparent 
consistency of planning time for the Intervallic method 
might reflect a ceiling effect cause by the constant number 
of features per note (location, duration, fingering).  
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Figure 5: Percent of time spent  

on building an execution plan. 

Results from the production compilation indicated that the 
model learnt to skip productions, reflecting knowledge 
acquired about the meaning of the notes. Both methods 
generated similar productions and their utility values were 
comparable. For both piano methods, the utility values of 
new productions were larger than the initial production 
utilities, in particular for the productions related to the note 
information associated to the plan duration of a pressed 
keyboard note.   

Conclusion 
Advanced music reading skills (sight-reading) exhibits a 

smooth coordination of visual encoding and motor skills 
(Fourie, 2004; Kopiez & Lee, 2008). With skill 
development, this combination requires a transition from 
multitasking to cognitive processes concurrency. As notes 
are being read on the staff, motor movements are planned 
and executed, while the reading process is progressing 
beyond what is currently played. Sight-reading efficiency 
demands the coordination of psycho-motor speed, early 
acquired expertise, mental speed, and the ability for auditory 
imagery (Kopiez & Lee, 2008). 

As an initial step towards characterizing the effect of 
different piano methods on the acquisition of piano playing 
skills, we constructed a minimal cognitive model which 
acquired declarative and procedural knowledge through the 
execution of novice piano pieces form the Middle-C and 
Intervallic methods. Inspection of the resulting models 
revealed differences in terms of declarative memory and 
cognitive processing demands. In particular, the intervallic 
method requires a larger number of declarative knowledge 
related to notes, and more gesture planning than the Middle-
C method.  

There are some limitations to the current state of the 
research that need to be mentioned. In particular the model 
would need to integrate a representation of sound to a note 
(Chikhaoui et al., 2009). This is important because the inner 
playing of a piece of music is a good determinant of music 
reading performance (Fourie, 2004). Also the model only 
focuses on individual note and has no notion of musical 
phrase. A more realistic model of motor movement could 
also be added, but mostly the model should be able to adress 
the visual and motor concurrency and the development of 
reading ahead strategies. The model does not aim at 

modelling errors. For example Fourie (2004) reports that 
80% of error in sight-reading are rhythmic in nature, 
probably caused by the difficulty related to locating the 
correct key on the keyboard. This measure could be an 
interesting one in comparing the Middle-C and Intervallic 
methods, given the larger number of keyboard keys in the 
latter method. In this respect, the model should also have a 
representation of intervals, which as the moment is not 
present. Note accents were left out of the simulation, even 
though it is present in the introductory pieces of both the 
Middle-C and Intervallic methods.  
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Abstract 

Problem solving involves adapting known problem solving 
methods and strategies to the task at hand (Schunn & Reder, 
UOONX(!"#($%&"'(')*(+,*-'.','(/('0($%"0'#*1*#((%(.*(2(3*(345!"(
ability to adapt the cognitive processing strategies to face new 
!"#(4"*-6*$(*#($%"#'('%"0(%+((3*(*")'1%"5*"(7(W8!9!0(*((!,)C(
2005, p. 95). This work presents an ACT-R 6.0 model of 
complex problem solving behavior for the dynamic 
microworld game FireChief (Omodei & Wearing, 1995) that 
models the performance of participants predisposed to behave 
either more or less flexibly based on the nature of previous 
training on the task (Cañas et al., 2005). The model exhibits a 
greater or lesser degree of cognitive inflexibility in problem 
solving strategy choice reflecting variations in task training. 
The model provides an explanation of dynamic task 
performance compatible with the Competing Strategies 
paradigm (Taatgen et al., 2006) by creating a second layer of 
strategy competition that renders it more flexible with respect 
to strategy learning, and provides an explanation of cognitive 
inflexibility based on reward mechanisms.  
K eywords: complex problem solving; cognitive inflexibility; 
dynamic tasks; strategy use; adaptation.  

Introduction 
Problem solving involves adapting known problem solving 
methods and strategies to the task at hand (Schunn & Reder, 
2OONX( !"#( $%&"'(')*( +,*-'.','(/( '0( $%"0'#*1*#( (%( .*( 2(3*(
human ability to adapt the cognitive processing strategies to 
+!$*( "*:( !"#( 4"*-6*$(*#( $%"#'('%"0( %+( (3*( *")'1%"5*"(7(
(Cañas et al., 2005, p. 95). When approaching a new 
problem, it is thought that problem solvers with higher 
levels of cognitive flexibility will outperform those who are 
less flexible because the former tend to consider alternative 
ways to solve the problem (Stewin & Anderson, 1974) 
rather than rigidly adhering to well-used methods. In their 
study of cognitive flexibility, Cañas et al. (2005) found that 
participants became predisposed to behave either more or 
less flexibly based on the nature of previous training on the 
task. Those trained repeatedly on the same problem scenario 
developed a preference for how they solved the task, 
becoming faster and more fluid in their actions over time. 
When subsequently tested on a different scenario their 
behavior was inflexible in adapting to the new test 
conditions and performance suffered. In contrast, those 
trained on a series of varying problem solving scenarios 
demonstrated an ability to adapt their problem solving 
behavior flexibly to the challenges presented by the new test 
scenario. The work presented here describes an ACT-R 

model for the Cañas et al. (2005) problem solving task that 
demonstrates varying degrees of cognitive flexibility 
depending on the training regime it undergoes. Analysis of 
the model provides an explanation of cognitive inflexibility 
based on reward mechanisms.  

Background 
There are several cognitive modeling paradigms (Taatgen et 
al., 2006) for problem solving involving strategy selection. 
In the Competing Strategies paradigm (ibid.), several 
strategies are implemented in a cognitive architecture and 
then compete for use in solving a problem. According to 
Taatgen et al. (2006) utility learning can be used to 
determine the best strategy. This paradigm has been 
successfully applied in modeling problem solving behavior 
for static tasks  (Lovett & Anderson, 1996; Peebles & 
Bothell, 2004) and tasks in dynamically changing situations 
such as Air Traffic Control (Schunn & Reder, 2001; 
Schoelles & Gray, 2000).  

Dynamic problem solving tasks pose an added layer of 
complexity. In dynamic situations the problem solver needs 
to execute not only the appropriate action but also to 
implement it at the right time: a good decision at one 
moment could be ineffective the next. In order to obtain 
good performance both selection and execution of the 
chosen strategy must be effective.  

Problem solvers must also be ready to change strategy as 
and when the situation demands (Gonzalez et al., 2004); 
they must continuously process feedback in order to select 
appropriate actions within an ever-changing situation 
(Brehmer & Dörner, 1993). Underlying this ability, 
according to Schunn & Reder (2001), strategy choice is 
influenced by overall success and 2;/"!5'$( (!0<0(.1'"&( (%(
the forefront the importance of the ability to adapt to 
$3!"&'"&( 04$$*00( 1!(*07( (p. 61). They argue that although 
participants may use a similar set of strategies they can 
differ in their ability to opportunistically apply those 
strategies in response to the situation.  

This ability to adapt behavior may be affected by factors 
such as cognitive inflexibility, which can be produced as a 
consequence of the way problem solvers interact with the 
task at hand. As skill in a task improves and becomes more 
automatic so cognitive inflexibility may increase, 
particularly in tasks with a high level of consistency 
(Ackerman, 1988). For example, in a fire-fighting task, 
Cañas et al. (2005) found evidence of cognitive inflexibility 
in participants trained repeatedly on the same problem 
scenario who, having found an effective strategy, failed to 
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relinquish it despite situational changes that reduced its 
effectiveness. This contrasted with participants trained on a 
variety of different problem scenarios. 

However, studies investigating cognitive inflexibility 
have not always drawn consistent results. For example, 
Schunn & Reder (2001) found no evidence for cognitive 
inflexibility in their study involving training on an Air 
Traffic Control task when situational changes affecting 
success on the task were introduced.  

The work presented here implements an ACT-R model of 
the Cañas et al. (2005) study to elucidate the mechanisms of 
cognitive inflexibility further in an attempt to reconcile 
these disparate findings. 

The F ire Chief Microworld 
The Cañas et al. (2005) study used a dynamic microworld 
game called FireChief (Omodei & Wearing, 1995) for the 
problem solving task. Figure 1 shows the FireChief display.  

Figure 1: The FireChief microworld display 
 

Players combat fires spreading in a landscape using truck 
and copter fire-fighting units. A FireChief problem scenario 
depicts a landscape comprising forest, clearings and 
property, the position of initial fires, fire-fighting units, and 
the direction and strength of the wind. Copter and trucks can 
be moved between landscape grid cells and Drop Water 
(DW) over cells to extinguish fires. Copters move three 
times faster than trucks and cannot be destroyed by fire, but 
!( (14$<=0(:!(*1( (!"<0(3!)*(double capacity and are able to 
Control Fire (CF) by creating a fire-break. Commands are 
issued through a combination of mouse and keyboard 
operations and their execution takes a fixed amount of time 
(4 seconds to DW; 2 seconds to CF) and a variable amount 
of time to Move a unit depending on distance and type of 
unit. Wind strength and direction are in the upper right-hand 
corner of the display. Task performance is inversely 
proportional to the number of cells destroyed by fire at the 
end of the trial.  

The FireChief problem state changes both independently 
!"#(!0(!($%"0*>4*"$*(%+( (3*(6!1('$'6!"(=0(!$('%"0(!"#( ('5*(
pressure is directly related to fire development, which 
depends heavily on wind strength. 

The Cañas et al. (2005) study 
Each trial for the FireChief task lasts 260 seconds. The 
experimental data comprises a list of commands executed 

during each trial that is indexed to a detailed description of 
the changing scenario. The first 16 trials comprise the 
training phase and the last 8 trials the testing phase. There 
were two training conditions: constant and variable.  

In the constant training (CT) condition the problem 
scenario is exactly the same for each trial and wind strength 
and direction remains fixed. In the case of variable training 
(VT) a different scenario is presented in each of the sixteen 
trials. Trials vary in landscape composition, initial position 
of fire-fighting units and fires and, importantly, wind 
direction and strength varies throughout the trial.  

There are also two test conditions. In the Wind Direction 
Change (WDC) condition the wind changes direction every 
60 seconds. These shifts in wind direction have a dramatic 
impact on fire development. In the second Efficiency 
Reduction (ER) test condition, appliances deliver less water 
and are therefore less effective in extinguishing fires.  

As previously hypothesized, Cañas et al. (2005) found 
participants in the CT condition improved performance as 
the number of trials increased; however, during the test 
phase this same group demonstrated a distinct lack of 
flexibility in adapting their problem solving strategy to the 
new task demands. In contrast, participants in the VT 
condition demonstrated a greater facility for changing 
strategies under test conditions. The findings were 
consistent across both WDC and ER test conditions 

The Model 
The ACT-R 6.0 (Anderson et al., 2004) model interfaces to 
a LISP version of the FireChief microworld (De Obeso 
Orendain & Wood, 2010). Task knowledge comprises both 
procedural (condition-action) rules that produce behavior 
according to four high level strategies: Barrier, Non-
Barrier, Stop, and Follow (ibid.) and three declarative 
knowledge components that impact this behavior: (1) the 
goal chunk, the main task objective is to extinguish the fire; 
(2) the strategy specification chunk, which defines whether 
the model will use a mixture of DW and CF commands, 
whether or not a barrier will be created, and which method 
of attacking the fire is preferred (attack weak fires, attack 
strong fires or attack the strongest fire); and (3) the intention 
chunk, used to track the current intention (stored in the 
ACT-R imaginal buffer, Anderson et al., 2004). Intentions 
emanate from steps in pursuit of the main goal, according to 
the chosen strategy. 

The model identifies its preferred strategy by comparing 
the utility of its four strategy rules, combined with a 
situation assessment, and retrieves the corresponding 
strategy specification chunk. This chunk remains unaltered 
throughout the entire trial, unless there is a strategy change.  

Overall the model behavior reflects the use of procedural 
knowledge over declarative knowledge: it is constructed in 
such a way that it is mainly controlled by the utility learning 
mechanism. The content of the three declarative chunks 
determine which rules are applicable in different situations, 
but there is always more than one eligible rule, so the 
decision about what to do next is taken in terms of utility.  
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A C T-!"#*$%&'&%(*')*+,&,- mechanism 
Utility designates the perceived value of implementing a 
procedural rule, and thereby its associated behavior, and is 
updated via a reward mechanism reflecting task success. 
Throughout runtime, Rule utilities are compared during the 
process of conflict resolution where only the rule with the 
highest utility is selected and thereby acted upon. In ACT-R 
when a reward is triggered the utility values of all rules that 
have fired since the last reward are updated. The actual 
reward allocated depends on the absolute value of the 
reward and the length, in time, between the giving of the 
reward and the execution of that rule. The consolidation of 
strategies and the existence of cognitive inflexibility 
discussed here are explained in terms of utility variations in 
the set of rules indentified as key in implementing a 
strategy. A key rule is one that enters the conflict set during 
ACT-R conflict resolution and hence competes in 
determining the next intention or action of the model.  

Achieving adaptivity 
?3*( $%"0'#*1!.,*( )!1'!.','(/( %.0*1)*#( '"( 6!1('$'6!"(0=(
protocols suggests that for the FireChief task there is 
variation not only in strategy choice, but also in the chosen 
method of execution. The dynamic nature of FireChief 
introduces a dynamic component into the execution of 
strategies that forces a second layer of competition between 
alternative courses of action within the same strategy. For 
this reason a paramount feature of the model is to enable 
this kind of competition. In the FireChief task there are four 
fire-fighting units (Copter, Truck), three commands (DW, 
CF, Move) and four hundred locations. From a very broad 
6*106*$(')*( (3*( 5%#*,=0( %6*1!('%"0( !1*( #*)%(*#( (%(
determining the agent, type and spatial location of the next 
command and a strategy functions as a mechanism for 
helping the model to constrain this decision. Two types of 
control coexist within the model. The current representation 
of the task (the strategy specification chunk) guides actions 
through top-down control. Nevertheless bottom-up control 
is particularly relevant when considering dynamic tasks 
therefore feedback from the environment is used to guide 
the further selection of actions by triggering a wider variety 
of rules than those specified in the strategy chunk. 

 
 

Figure 2: The basic cycle of the model comprising a 
second layer of within-strategy competition  

The model uses an adaptation of the Competing Strategies 
paradigm (Taatgen et al., 2006): the core of the model is the 
Decision Point/Action/Reward cycle shown in figure 2. 

 The basic cycle starts with a Decision Point (identifying 
eligible rules) continues with the Execution of an action 
(rule-firing), and finishes with the awarding of a Reward. 
The branching factor at every Decision Point is variable and 
there are External Events that can interrupt the flow of 
actions in the cycle such as alarms and visible changes in 
the environment that prevent the effects of an action taking 
place, for example, a cell catching fire before a CF 
command is completed. The model is designed in such a 
way that Decision Points occur frequently. In this way the 
model is mainly governed by the utility values of its rules. 
This bottom-up control feature results in the emergence of 
interesting behaviors (observed in participants) such as 
2:!'('"&(.*3!)'%17: when a truck is Moved to a cell with the 
intention of issuing a CF command, '+( (3*( 5%)*5*"(=0(
length is shorter than 2 cells, the model tends to wait for the 
unit to arrive (incurring in a waste of time but increasing the 
probability of issuing the CF command as soon as the unit 
arrives, rendering its success more likely). The description 
and analysis of emergent behaviors is outside the scope of 
this paper.  

The same set of rules is used for modeling performance of 
the task under both training conditions from the Cañas et al. 
(2005) study. However, rewards for task performance and 
thus specific rule utility values will vary according to the 
unique experience of the model on any given trial (model 
run). Furthermore, these utility values will accumulate over 
both training and testing phase. 

Rewarding the execution of commands 
Within the model positive rewards are received for 
successfully completing commands and negative rewards 
for failing to execute commands successfully or for wasting 
time (this means that the utility of a rule can be negative). In 
this way, any action that contributes to the successful 
completion of a command is rewarded predisposing the 
model to continually issue commands. External reward: 
final performance 

In addition to built-in ACT-R utility learning mechanisms 
a further external reward mechanism affects the utility of the 
four strategy rules. The strategy rule invoked for a given 
trial is modified at the end of each trial based on final 
performance (the amount of non-destroyed terrain 
remaining at the end of the trial). For instance, if the rule 
that selects the Stop strategy is fired and the final 
performance achieved during the trial is high, the rule=0 
utility is increased. Manipulating rule utilities outside the 
standard ACT-R mechanism, has also been used elsewhere 
(e.g., Schoelles & Gray, 2000).   

Results 
Data fitting: The model was fitted to the Cañas et al. (2005) 
study participant data as described in De Obeso Orendain & 
Wood (2010).  

Performance: During the training phase the average 
performance of participants in the CT group is 78.7 while 

51



the average performance of the model for CT is 77.1. In the 
VT group, the average performance of participants is 78.45 
versus 81.2 for the model. The fit of the model is better for 
the Barrier and Stop strategies (r2=.987) which are the most 
structured strategies (De Obeso Orendain & Wood, 2010).  

Strategy use: For the CT training scenario the Barrier 
strategy using CF commands to construct a fire-break (ibid.) 
is a good option because the fire develops quickly and soon 
reaches an intensity that surpasses the capability of the fire-
fighting units. In the CT condition both participants and the 
model use the Barrier strategy increasingly more frequently, 
by trial 16 participants use the Barrier strategy 71% of the 
time while the model is using it 79% of the time.  

Strategy change: During the training phase participants 
in the VT group change strategy with more frequency than 
participants in the CT group, the model captures this 
tendency (r2=.93 RMSD=1.43). The fact that both 
participants and model use the Barrier strategy more 
frequently, and there is less strategy change, during CT 
facilitates the consolidation of this strategy in the CT group. 

Learning in C T : A significant performance increment 
was obtained by comparing the first (1-4) and last four 
training trials (12-16) for both participants and the model. 
(F(1,33)=4.417, p<.05 and F(1,33)=5.17 p<.05 
respectively). This means that consolidating the use of the 
Barrier strategy is beneficial by objective criteria.    

Cognitive inflexibility: After the training period both 
participants and the model undergoing the CT condition 
exhibit inflexibility on two levels: strategy choice and 
strategy implementation. Both kinds of inflexibility can be 
traced to variations in key rule utility values induced by the 
two training conditions.  

The set of rules available for use are exactly the same for 
both training conditions (a single model undergoes either of 
the training conditions). However, the pattern of change in 
utility values varies as a consequence of the training 
received. As shown in figure 3 for the Barrier strategy: over 
the sixteen training trials average utility values of Barrier 
strategy rules for the CT group (TOP-DOWN CT) far exceed 
those for the VT group (TOP-DOWN VT). 

This contributes towards an explanation of cognitive 
inflexibility in strategy choice. As a consequence of the CT 
condition, the reward function shapes the utility values of 
(3*(5%#*,=0 rules in such a way that it becomes relatively 
insensitive to changes in reward. The high utility values of 
rules for the preferred Barrier strategy in the CT group 
shield the model from relatively small variations in success. 
When creating a barrier is no longer the best approach, such 
as occurs during the test phase, the model will eventually 
change its behavior through repeated negative reward after 
the utility values of the rules for the preferred strategy have 
reduced sufficiently in comparison to the rules for 
alternative strategies. But this takes time, giving rise to the 
observable phenomenon of cognitive inflexibility.  

In contrast, the model subjected to the VT condition is 
more sensitive to changes in reward during the test phase 
because its rules for implementing alternative strategies are 
more evenly weighted; because the differences between 
their utility values is smaller, a small amount of negative 
reward is able to trigger a switch to an alternative strategy.  

Differences in utility also contribute towards an 
explanation of cognitive inflexibility in strategy 
implementation, again discussed here in relation to the 
Barrier strategy.  

There are a range of actions that might be involved in 
constructing a barrier by a variety of methods represented as 
the set of rules available whenever the Barrier strategy is 
selected. One subset of rules comprises methods that 
implement the Barrier strategy in a structured top-down 
manner. For example, top-down Barrier strategy rules 
systematically identify the next section of the barrier to be 
constructed by locating CF commands in grid cells adjacent 
to that section of the barrier just formed.  

In comparison, other rules involve a greater degree of 
bottom-up control in implementing actions. For example, a 
bottom-up strategy rule might locate the next section of the 
barrier to be constructed by looking to see where the fire is 
before making a decision about where to put the next 
section of the barrier. These top-down and bottom-up rules 
compete throughout the creation of a barrier (while the 
Barrier strategy is selected) and those selected by ACT-R 
give rise to the final form of the barrier.  

 
Figure 3: Changes in top-down strategy and bottom-up 

responsive Barrier rule utilities during training  
 

Figure 3 shows the average utility values for these two 
notional subsets of rules over the sixteen training trials: the 
utility of the rules implementing the strategy top-down 
increases as more trials are completed during CT (TOP-
DOWN CT) as their repeated use is continuously rewarded.  
This phenomenon occurs only when the problem scenario 
does not vary dramatically between trials so that there is no 
significant variation in the effectiveness (and thus reward 
value) of the actions being executed on repeated trials. In 
comparison the bottom-up responsive rules involve many 
more perceptual actions to locate the spread of fire, taking 
longer to construct the barrier, consequently receiving a 
relatively lower reward (BOTTOM-UP CT). Over time, this 
serves to increase the probability of using the top-down 
subset of rules in the CT group producing the divergence 
shown in Figure 3. The utility values for the same notional 
subsets of rules for the VT group, again, remain more 
evenly balanced owing to the variability in training 
rewarding the top down implementation of the strategy less 
consistently. 
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As in the case of strategy choice, CT leads to cognitive 
inflexibility in strategy implementation, with potentially 
insufficient regard given to sensing the environment over 
top-down construction of the barrier, when conditions 
change, as witnessed for the CT group under test conditions. 

Testing phase: Comparisons were made to determine the 
impact of cognitive inflexibility on performance in the first 
testing trial. The average performance in the 17th trial in the 
ER condition in better for participants/model after CT 
(86.09/78.14) than after VT (72.19/69.83). Both participants 
and the model in the CT group use the Barrier strategy 
more effectively than the VT group in the ER condition, an 
indication that these participants have consolidated the 
Barrier strategy following a top-down approach. The CT 
group does not need to change strategy because using CF 
commands is the only sure way to stop the fire in the ER 
condition (and constructing a barrier using CF is the best 
approach and therefore has an advantage). The average 
performance in the 17th trial in the WDC condition is better 
for participants/model after VT (78.51/78.14) than after CT 
(71.38/74.87). This is because shifts in wind direction make 
fire behavior unpredictable so flexible behavior is required. 
This flexibility is best achieved using more situation-
sensitive responsive rules such as those contributing more 
bottom-up control in the creation of the barrier.  

Control of behavior : Figure 3 shows that the model 
trained in the CT condition has a clear preference for the use 
of top-down control while the model trained in the VT 
condition has no such preference. This difference has an 
impact in the WDC test phase when the wind changes 
direction in trial 17 at second 60. In a model trained in the 
VT condition the bottom-up rules are more easily able to 
win the competition through small variations in utility 
values following negative reward. Therefore, when the 
change in the wind occurs, the model will probably select 
the next target cell based on the location of the fire. On the 
other hand, the behavior of a model trained in the CT 
condition will reflect its high utility rules implementing the 
top-down approach to the creation of the barrier so it will 
continue to place the next section of barrier without recourse 
to observing the fire.  The risk is that when the form of the 
barrier is constructed without considering the actual shape 
of the fire it may not be effective. In this sense the 
automation of the strategy (cf. Ackerman, 1988) runs the 
risk of deterring the problem solver from extracting relevant 
information about the problem state to guide behavior.  

To validate the results obtained with the cognitive model, 
further evidence to support this interpretation was sought 
from the spatial distribution of CF commands in the Cañas 
et al. (2005) study data for participants during the WDC 
testing phase: groups CT-WDC and VT-WDC to determine 
whether the semicircle pattern, a top-down control outcome, 
was present. These test groups were chosen because the 
wind direction change test condition alters the path of the 
fire in such a way as to make the top-down control 
implementation of the Barrier strategy less effective than a 
bottom-up more responsive mode of barrier construction. It 
was found is that the CT-WDC group data presents a 
semicircle pattern of barrier, evidence of top-down 

application of the Barrier strategy, whilst the VT-WDC 
group does not. This indicates that the semicircular pattern 
does not emerge in the VT group behavior because the 
variability of both the VT condition and the WDC testing 
phase does not reward the rules implementing it.  
 

Discussion 
The model captures the behavior of both training groups 
with a single set of rules for implementing all four strategies 
either or both bottom-up and top-down control. Participants 
in the CT group have the opportunity to consolidate their 
strategies and hence generate quick, fluid actions; while 
those in the VT group execute more controlled, albeit 
flexible, actions. When the testing phase begins people in 
the CT group are less (cognitively) flexible in adapting to 
the new demands of the task. In general terms, participants 
in the VT condition changed strategy more often and 
showed more cognitive flexibility during the testing phase. 
The model demonstrates how cognitive inflexibility can be 
traced to the utility values of rules governing behavior 
indicating the potential role of reward feedback learning 
mechanisms in complex problem solving in dynamic 
domains. 

The CT condition presents to the model more stable 
feedback from the environment (in the form of rewards) to 
its actions in comparison with the VT condition. In the CT 
condition the model tends to respond by executing CF 
commands in a fashion that resembles a barrier. As 
experience in the task is gained, the model learns how to 
deploy this strategy with more efficiency.  

The ACT-R reinforcement learning mechanism is able to 
capture the phenomenon of cognitive inflexibility but in 
order to achieve this it was necessary to provide the model 
with adequate responsiveness. Rather than following a 
recipe to implement a strategy, the approach used in this 
research was the Decision Point/Action/Reward cycle which 
(using standard ACT-R mechanisms) maximizes the number 
of decision points during strategy execution and thereby 
enforces competition between rules in selecting the next 
action at almost every time step so that the model can find 
the best way of implementing a strategy. This reflects the 
5%#*,=0( #*6*"#*"$*( %"(@8?-A=0( 04.-symbolic processes. 
In this way, the model was able to capture critical aspects of 
the data including interesting phenomena such as waiting 
behavior. This indicates that in complex dynamic tasks 
participants may be aware of the consequences of their 
actions over relatively small time intervals.     

This study contributes to our understanding about strategy 
use in complex dynamic tasks: which strategies are used, 
how they are selected, and how strategy execution changes 
as experience is gained. Good performance is linked to an 
effective combination of strategic control with attention to 
changing task demands.  

The cognitive model also prescribes a mechanism in 
which environmental feedback controls how actions are 
selected in a highly dynamic task.! Through the 
implementation of the cognitive model it was found, for 
example, that strategy execution depends on the fine-tuning 
of ACT-R production rule utilities as a consequence of 
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environmental rewards. Selecting actions based on utility 
comparisons facilitates a fluid and quick selection of actions 
that is instrumental in obtaining good performance, 
particularly in dynamic and time pressured situations. In 
dynamic tasks there is a continuous competition between 
top-down and bottom-up control. This competition is 
mediated by the characteristics of the learning process such 
as those exemplified in the Cañas et al. (2005) study, for 
which in the CT condition the top-down form of control 
dominates. The account provided by the model is that rules 
implementing top-down strategic control come to dominate 
behavior increasingly over rules implementing bottom-up 
responsive behavior during the CT phase owing to task 
consistency. This phenomenon increases the probability of 
performing well in the CT problem scenario but also 
produces cognitive inflexibility. 

 As mentioned in the introduction, Schunn & Reder 
(1996) found no evidence for cognitive inflexibility in their 
ATC study regarding strategy selection (choice of runway B 
long or short B on which to land aircraft) despite a long 
training period. However, we can learn from the work 
presented here; this would indicate that rules involved in the 
selection of choices in behaviour (for example, choosing 
between runways on which to land aircraft) have similar 
utility. A critical factor that enabled the dominance of 
certain rules in FireChief was the high consistency of the 
CT trial. In this respect, the ATC task is only partially 
consistent. An examination of the Ackerman (1988) study, 
from which the data for the second experiment of Schunn & 
Reder (1991) was extracted, reveals that weather conditions 
(wind speed, wind direction, and ground condition) varied 
randomly about twice a minute, and also that within each 
trial aircraft type, of which there are four, are randomly 
drawn from the queue. It seems that this experimental 
design shares more similarity with the VT condition in the 
Cañas et al. (2005) study rather than the CT condition, so 
when experimental changes are introduced no subset of 
rules has become dominant.  

This research also provides an explanation of how 
dynamic tasks can be modeled using the Competing 
Strategies paradigm by incorporating an additional layer of 
within-strategy execution competition, enabling the bottom-
up manifestation of strategies, such as that described here. 
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Abstract 

Computational cognitive modeling is normally thought of as 
rational cognition. However, there are human behaviors that 
do not appear to be driven by rational cognition. The other, 
“beyond rational” cognition is also appropriate for 
computational models of cognition. The panel will discuss 
their efforts at modeling this form of cognition. 

Keywords: cognitive models; cognition; Dual Process 
Theory, emotion, intuition. 

Introduction 
Cognitive modeling has been primarily aimed at 
implementing and testing theories explaining behavior 
driven by rational, multi-step cognition and it has been very 
successful (e.g., Anderson, 2007; Anderson, et al., 2004; 
Laird, 2008; 2012). However, there are many human 
behaviors that seem to be driven by aspects of behavior that 
are not the same as “rational” cognition: immediate 
judgments, intuitive, emotional, and other non-rational, 
hence "beyond rational" processes. These aspects may result 
in such phenomena as emotional natural language 
generation, optical illusions, snap judgments, and humor.  

There has been a growing literature on these processes. 
Significant books include LeDoux’s The Emotional Brain, 
Gigerenzer’s Gut Feelings, Klein’s Sources of Power, 
Thagard’s Hot Thought, Minsky’s The Emotion Machine, 
and Irvine’s On Desire. Herbert Simon also addressed this 
topic in his Reason in Human Affairs. However, 
computational models of non-rational cognition are 
relatively rare (cf., Gratch & Marsella, 2004; Kennedy & 
Bugajska, 2010).  

The Dual Process Theory could provide a basis for 
computational cognitive modeling of these aspects. The 

Dual Process Theory suggests two types of processes drive 
behavior (Evans, 2008; Sloman, 1996). Reality may be 
more nuanced than a simple dichotomy and this grouping is 
somewhat controversial. The more neutral terms for the two 
processes are System 1 and System 2, with System 2 being 
the rational, conscious, multi-step, slower, more 
evolutionarily advanced process (Kahneman, 2003). The 
implicit learning discussion of a few years ago could 
provide examples of one or the other side, rather than trying 
to fit all implicit learning phenomena within one side 
(Wallach & Lebiere, 2002). It may also be that rather then 
two processes, there may be a spectrum of processes 
between two extremes or cognition may have more 
dimensions than one. There is a suggestion that much of our 
behavior is the result of this other reasoning. 

This panel will address the topics related to cognitive 
modeling of beyond-rational cognition. The panel members 
will present their views on the topic and whether it would be 
appropriate for the cognitive modeling community to 
entertain models of behavior driven by beyond rational 
processes. 

Panel Makeup 
The panel consists of cognitive modelers who have thought 
about this topic. Each has provided an abstract of their input 
to this topic.  

William G. Kennedy 
Starting with the ancient Greeks, we have believed that 
there were two forms of cognition that control our behavior: 
passion and reason, and that there was an inner battle for 
control of the mind (LeDoux, 1996). Dualism, proposed by 
Descartes, separated mind and body and has been 
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discredited in current philosophy (Evans, 2010). When we 
began to study cognition scientifically, William James 
considered reasoning, consciousness, emotion, instinct, and 
will as separate topics, although consciousness received the 
shortest treatment (James, 1892/2001).  

With the cognitive revolution of the second half of the 
20th century came a focus on testable theories of Cognitive 
Science and the verbal descriptions of non-rational 
cognition have been marginalized. However, recently there 
has been resurgence in interest in the other side, the 
intuitive, emotional side of cognition. There have been 
many books written on how people make decisions using 
methods outside traditional rational cognition. Dualism has 
evolved through a dual representation of knowledge, visual 
and verbal (Paivio, 1971) into a Dual Process theory of 
cognition (Evans, 2008; Sloman, 1996). 

The Dual Process theory suggests a distinct separation of 
cognitive processes and they can be organized into (at least) 
four groupings: consciousness, evolution, functional 
characteristics, and individual differences (Evans, 2008). 
For example, Table 1 presents the functional characteristics 
of the two systems.  

 
Table 1: Functional Characteristics of the Dual Process 

Theory (from Evans 2008). 
 

System 1 System 2 
Associative Rule-based 
Domain specific Domain general 
Contextualized Abstract 
Parallel Sequential 

 
In addition to the concept and the separation of 

characteristics, even the naming of the two systems is 
controversial and calling them System 1 and System 2 is an 
attempt to keep the discussion focused on the content, not 
the naming (Gray, 2007; Kahneman, 2003).  

As an indication of the trend in the interest in the topic, 
Figure 1 is offered. The figure shows the frequency of 
searches for the term “System 1 System 2” 

 
 

 
Figure 1. Google Trending of “System 1 System 2” 
 

With the general attention to the concept of dual processes 
of cognition, the cognitive modeling community should 
consider more seriously modeling cognition “beyond 
rational.” 

 

Frank Ritter 
Frank will discuss work on modeling the effects of caffeine 
on behavior, and work on modeling the effects of stress on 
behavior. These approaches have been done with sets of 
changes overlaying the cognitive architecture. More recent 
work suggests that perhaps this approach is productive in 
the short term, but that a longer term solution is to model 
the physiological substrate that cognition is based upon 
(Dancy, Ritter, & Berry, 2012; Ritter, Dancy, & Berry, 
2011), as well as modeling more complex cognition 
including multiple types of appraisal and process 
monitoring.  

Christian Lebiere/Ion Juvina/Alessandro 
Oltramari 
Cognitive architectures such as ACT-R (Anderson & 
Lebiere, 1998; Anderson et al., 2004) have been quite 
successful at formalizing and organizing basic cognitive 
processes in computational frameworks that can accomplish 
complex tasks. Contrary to common descriptions as purely 
symbolic or rational, they actually integrate both explicit 
and implicit cognitive processes, including declarative and 
procedural knowledge as well as symbolic and subsymbolic 
levels of representation. The duality of System 1 (automatic) 
vs. System 2 (controlled) processes is thus an 
oversimplification of the reality of complex cognition, 
which integrates basic, intuitive steps of cognition driven by 
the subsymbolic parameters of the knowledge structures 
involved into controlled threads of execution capable of 
accomplishing complex tasks. Despite the success of this 
purely cognitive approach at modeling a broad range of 
cognitive tasks, we have found it necessary to contemplate 
integrating emotional processes into the architectural 
framework. 

The mainstream approach (e.g., Gratch, Marsella et al., 
2009; Marinier, Laird, et al., 2009) is concerned with 
modeling discrete emotions as they arise from appraisal 
processes that are hardwired in the architecture. Our 
approach to modeling affective processes is complementary 
to that approach. We claim that only psychological 
primitives need to be included in the architecture. 
Psychological primitives are basic mechanisms that allow us 
to learn and adapt to the environment. Perceptual 
experiences, knowledge and skills are not to be included in 
the architecture. They can be part of specific models and are 
usually developed through various learning mechanisms. 
According to this view, discrete emotions are not 
psychological primitives. They are not biologically given 
(Barrett, 2006) but instead develop (are learned) from core 
affect. We conceive of emotion as a perceptual-conceptual 
experience that is analogous to color perception. People use 
category knowledge about color to shape the perception of 
wavelengths of light into the experience of color (Barrett, 
2006). Correspondingly, people use category knowledge 
about emotion to shape the interoception of core affect into 
the experience of emotion. Core affect is the constant stream 
of transient alterations in an organism’s neurophysiological 
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state that represent its immediate relation to the flow of 
changing events (Russell, 2003). It is typically characterized 
along two (or three) dimensions: valence and arousal (and 
approach-avoidance). Changes in core affect can result from 
physiological (e.g., hunger) and cognitive processes 
(valuation). Valuation is the process of learning the 
(expected) value of stimuli encountered in the environment. 
Very few stimuli have intrinsic value (i.e., they act directly 
on our nervous system without involving prior learning). 
Typically, people learn the value of stimuli by associating 
them with core affect states and external events.  

We have developed a simple valuation mechanism that 
associates a specific value to every representation (chunk). 
These values are called valuations and can be used to 
evaluate new stimuli. They are learned via a reinforcement 
learning mechanism similar to the mechanism of learning 
the utilities of actions. Thus, the valuation of a chunk is a 
learned expectation of the likelihood that the chunk would 
be relevant to the current situation. The relevance indicated 
by valuation is additive to that indicated by activation. The 
sign and magnitude of valuation can be used as constraints 
on retrieval. Valuations are computed based on the rewards 
that the model receives during its execution and they change 
as the model is executed.  

We claim that activation and valuation (together with 
learning) are the necessary and sufficient architectural 
building blocks of cognitive and affective processing. We 
are using these mechanisms to develop specific models in 
which cognition and affect interact to produce human-like 
goal-directed adaptive behavior. For example, in a variant of 
the game Prisoner’s Dilemma, we showed that a cognitive 
model was more effective than the human participants. 
Specifically, it learned that cooperation was more beneficial 
in the long term, and it did not react to occasional 
unreciprocated attempts to cooperate (Juvina, Lebiere, et al., 
2011). However, human participants showed signs of 
emotional reactivity. Particularly, they were more likely to 
immediately react by defecting after unreciprocated 
cooperation, ignoring the potential long-term benefits of 
sustained cooperation. This behavior has been observed in 
other studies with similar tasks and associated with a 
specific pattern of neural activity (e.g., Rilling, 2008). In 
order to correct for the mismatch between model and human 
data, we introduced an emotional bias in the model. The 
assumption was that such a bias develops in human-human 
interactions to prevent exploitation of a player by another. 
We claim that such emotional biases are learned from 
interaction experience using the architectural mechanism 
described above. 

Jonathan Gratch  
As someone that studies and models emotion, I definitely 
agree there is value in a symposium on "beyond rational" 
processes, but I will take issue with the perspective that 
attempts to dichotomizes cognition and characterizes 
traditional/successful cognitive modeling as sequential and 
deliberative. In general, I have a problem with dual process 

explanations which (in my view) tend to overly simplify 
cognition as either:  emotional vs. rational; intuitive vs. 
deliberative; or “System 1” vs. “System 2. Rather, I will 
argue that dual-process distinctions are largely an artifact of 
how we study and formalize cognition. On the one hand, 
normative frameworks for formalizing cognition (e.g., 
decision theory, game theory or Bayesian inference) 
highlight human departures from “rational behavior” that 
may say more about the limits of our frameworks than the 
duality of human cognitive processes (e.g., see Gigerenzer, 
1991). On the other hand, experimental paradigms that 
illustrate such dualities present participants with unnatural 
situations designed to highlight these distinctions. Instead, I 
see thought arising from a tight coupling and dynamic 
unfolding of a variety of processes (some more naturally 
characterized as automatic/parallel and some more naturally 
characterized as sequential). 

I am also not convinced that cognitive models are most 
naturally seen as simply sequential/deliberate. Even early 
cognitive architectures such as Soar (Newell, 1990) have 
this close coupling of "automatic" (e.g., elaborations) and 
deliberative/sequential (e.g., operators) processes (although 
we might quibble about if this maps well onto any specific 
dichotomy), and many "successful" cognitive models (e.g. 
Thagard’s 2002 coherence models); models of perceptual or 
motor processes) are not naturally viewed as sequential.  

Despite these quibbles about dual process models, I fully 
agree that cognitive science, and especially the cognitive 
modeling community, have largely ignored modeling 
problems that involve emotion and motivation with the 
consequence that, on the one hand, we are sorely lacking 
when it comes to information processing accounts of 
emotional processes. On the other hand, cognitive models 
tend to overlook a whole class of problems and mechanisms 
that might give a different window on how cognition works 
outside the emotionally-sheltered laboratory. 

Richard Young (Discussant) 
Richard Young has a long-standing interest in cognitive 
modeling, cognitive architectures, and related matters. He 
will respond to the presentations in the symposium, doing 
his best to identify common threads and contentious themes, 
before opening the discussion to the audience. 
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Abstract 

This paper presents a computational modeling approach for 
negative effects simulation of visual distraction while driving a car. 
In order to investigate these effects, an experiment was firstly 
implemented on a driving simulator. Twenty participants were 
invited to perform a car following task in different driving 
conditions (12 driving scenarios), with or without a secondary task 
of visual distraction. Empirical data collected through this 
experiment show that visual distraction negatively impacts the 
driving performance at both perceptive and behavioral levels, and 
then increase the risk of having a crash. Beyond these effects on 
the observable performance, the aim of this study is also to 
investigate and simulate these distractive effects on mental models 
of the road environment. Indee!C(!"#$%";&(!%'#&#()&(*)!(+%,*$#("&(
are based on a temporal-spatial mental model, corresponding to the 
!"#$%";&(situation awareness (SA). This mental representation must 
be permanently updated by perceptive information extracted from 
the road scene to be efficient. In case of visual distraction requiring 
off-road scanning, mental model updating is imperfectly done and 
!"#$%";&(*'-#()&(*"%(-,.&(+*&%!(()(*(/%)-*0("%1"%&%)-*-#()(-,*-('*)(
dramatically differ from the situational reality, in case of a critical 
change in the traffic conditions (e.g. sudden braking of the lead 
car). From these empirical results, a computational model (named 
COSMODRIVE for COgnitive Simulation MOdel of the DRIVEr) 
was implemented for simulating visual distraction effects and 
human errors risks at perceptive (visual scanning changes) 
cognitive (erroneous Situation Awareness) and behavioral levels 
(late reaction time and crash risk increasing).  

K eywords: Computational Model, car Driver, Visual Distraction, 
Situation Awareness, Temporal-Spatial Mental Representation. 

1. Introduction: V isual distraction and research 
objective in terms of computational simulation 
23C4CD5( 3!"#$%!&('$&#()( (**!+*$,+( $+(,%-!%( *,( &(.!)/( 0,+*%,)(
*1!( 0(%( (+-( *,( %!&2,+-( *,( !'!+*&( 1(22!+$+3( ,+( *1!( %,(-4(
5%$'!%(-$&67896!"#("$$%&'( (&'()!*!+,-.(,! -/!+(0*1(+! -)! 2'(!
,(345)-2-4)!46! -)64,7*2-4)!)((+(+! 24!/*6(01!*334780-/'! 2'(!
+,-.-)5! 2*/9!:(3*;/(!/47(!(.()2"!*32-.-21"!4:<(32"!4,!8(,/4)!
&-2'-)!4,!4;2/-+(!2'(!.('-30(!3478(00(+!4,!2()+(+!24!-)+;3(!
#$=!>%&'=%()! )$&*#&+,! -##=+#&.+! -/-0! *%.1! #$=!>%&'&+,! #-)2?(
W:)*(+C(,6-.X/( ;0( +1*( 2(3*(4(5C(672+)(8+790(1(2(:**0(39)*(
&;$;#<=>( ?;@!#;?( <>( A;;C( B;CD#( D#?(E"%#C( W7FF=X( (*/! *!
+-.(,/-4)!46!*22()2-4)!*&*1! 6,47!*32-.-2-(/!3,-2-3*0! 64,! /*6(!
>%&'&+,!#./-%>!-!3.14=#&+,!-3#&'&#0?/((
 

Two main forms of distraction are commonly described in 
the literature, namely visual and cognitive distraction. The 
8G>/?>( -HI?&( H( !>JK?>;&( @?9?&-off->GH!LC( E,J0?( -,?( 0H--?>(
-HI?&( -,?J>( @/JM!&-off->GH!L( W:JA-G>( ?-( H0)C( UOOBX)( ;,?(
present study is focusing only on visual distraction due to a 
&?AGM!H>9(KJ&NH0( -H&I( -HIJM<( -,?(!>JK?>;&(?9?&(G88( -,?( >GH!)(

This type of distraction can occurs when drivers look at in-
vehicle displays. For example, in research conducted by 
Wierwille et al. (1988) under real traffic conditions where 
text was displayed on an on-board screen, the average 
length of a glance at the outside environment was 1.5 to 1.7 
seconds, while the amount of time spent watching the road 
decreased to about 50 to 65% of total eye movement. Visual 
scanning toward on-board-devices varies with the nature of 
displayed information and the type of additional task to be 
performed while driving, but also according to the 
&J-NH-JGMH0( !?/HM!( HM!( !>JK?>;&( H!HO-H-JGM( &->H-?<J?&(
regarding both the driving situation and the demand and the 
reading task demands. However, focusing visual attention 
for some period of time on in-vehicle visual target creates 
an unsafe driving issue. Senders et al. (1967) argued that 
when drivers look away from the road, uncertainty about the 
roadway situation increases. When uncertainty reaches a 
certain threshold, drivers look back to the road. More 
recently, Wierwille (1993) quantified this threshold of off-
road glance duration at 1.8 seconds on a straight road and 
1.2 seconds on a curve on average for a normal driver. Such 
thresholds may also vary according to driver speed or traffic 
condition and may be also subject to individual differences.  
 

P1(03*2( 70( 6)7Q*)( :*1(Q79)( 6R*( +9( Q72R()( 672+)(8+790( 1(Q*(
:**0( 76*0+7.7*6( 70( 273R)(+9)( 9)( 70( Q7Q9( 2+R67*2/( !"#"$%&(
'()*+"'( ,%#"( ',-./( (,%(( #+')%&( *+'($%0(+-/( +/0$"%'"'( (,"(
*+'1"$'+-/( -2( "3"( 4%^"( 1%(("$/( 2$-5( (,"( $-%*.%3( W"646(
7-/5"^( "(( %&6C( 899:X6( ;/( ("$5'( -2( *$+#+/4( 1"$2-$5%/0"C(
#+')%&(*+'($%0(+-/(,%'(<""/( %&'-( %''-0+%("*( +/( (,"( &+("$%()$"(
.+(,( &%$4"C(*+'0$"("('(""$+/4(%*=)'(5"/('(%/*( +/0$"%'"*( &%/"(
*"#+%(+-/'( W"646( >/4'($_5C( ?-,%/''-/( %/*( `'(&)/*C( 899@A(
!%&#)00+C( 899BX6(C-."#"$C( %'( *+'0)''"*( <3( D,%/4( W89BBXC(
')0,( +/2"$"/0"(,%'(<""/(5%+/&3(%''"''"*( 2-$( &-."$E&"#"&(-2(
*$+#+/4( 0-/($-&( %/*( &"''( +'( F/-./( 0-/0"$/+/4( (,"( +/("$/%&(
0-4/+(+#"( "22"0(( -2( #+')%&( *+'($%0(+-/6( G-$"-#"$C( %'(
;HSID!#;J( <K!L( DM<K"NC( (*! +*2*5+,-.()! *88,4*3'! 24!
-+()2-61-)5! +(2,-7()2*0! (66(32/! 46! +-/2,*32-4)! 7*1! )42! :(!
/;66-3-()2! 24! (/2*:0-/'! *! 3*;/*0! 0-)9! :(2&(()! +,-.(,!
8(,64,7*)3(! *)+! .-/;*0! 8,43(//! -)2(,6(,()3(!" #4+(0-)5"
-)2(,)*0" 3'*)5(/" -)" +,-.(," $-2;*2-4)" %&*,()(//" 46" 2'("
+,-.-)5" ().-,4)7()2"+;(" 24" .-/;*0"+-/2,*32-4)"*,(" ,(&;-,(+"
24" 34)30;/-.(01" -+()2-61" 8,(3-/(" ,(0*2-4)/'-8/" :(2&(()"
>'()='*+",='-.'/-03=*"-0>">(*1'-31(.0"-0>"*2,,.'1"=--=31()="
/(1(3-1(.0" *1'-1=3(=*" -.'" >(*1'-31(.0*?6( :,+'( +'( (31+0%&&3(
.,%(( (,+'($"'"%$0,(.-)&*( &+F"( (-("O1&-$"6(P"3-/*( (,"(."&&E
T#"Q#( !USDR<( "S( T!LMDI( J!L<NDR<!"#L( "#( JN!T;NL!( "#$%&'(
()*+),-.,(( +/0(0*.1./-(2,*34*5+/6,( +)( )7,(42,*+).4/+8( 8,1,8(
W,9-9(:+81;66.C(<==>XC()7,(+.5(43()7.((*,(,+*67(.((+<41,(+88()4(
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0,1,842( +( 6452;)+).4/+8( 540,8( +<8,( )4( (.5;8+),( )7,(,(
0.()*+6).1,(,33,6)((?@(AB#"CB$!(D#<%&<#?@(CE&BC@C$$(540,8./-(
+((+(0F/+5.6(1.(;+8G(2+).+8(540,8(43()7,((;**4;/0./-9((

2. Empirical data collection among human 
drivers to study visual distraction effects 
The methodological specificity of the driver modelling 
approach implemented in this research was to use the same 
virtual Platform (named SIVIC; Gruyer et al., 2006) as (i) a 
driving simulator for empirical data collection among 
human drivers, and then, as (ii) a virtual road environment 
to be interfaced with the driver model for virtual simulations 
WJH(I,H><?( -J(>?O>J!NI?(,N/HH&;(O?>8J>/HHI?&X)(KIIJ>!JH<(
-J(-,J&(HOO>JHI,C(,N/HH(!>JL?>&;(M?,HLJJN>(HH!(!>JL?>(/J!?0(
performances were observed and simulated for the same 
driving scenarios, in the same virtual road environment. 

2.1 Apparatus  
The experiment used a fixed-base simulator integrating a 
real car seat, three PC monitors for presenting the driving 
scene (the back mirror view is computationally integrated in 
the central image), and a Logitec G 25 kit including the 
steering wheels, 3 pedals, a gear box, and indicators. Two 
web-cameras were used for recording drivers; face and feet 
movement on the pedals. A third video camera was also 
added behind the car seat, in order to film the driving 
?HLJ>JH/?H-( HH!( -,?( !>JL?>;&( activity. A 12-inch tablet 
computer was placed in front of the main simulator screens. 
This display was used to present the visual distraction tasks 
to the drivers. This screen was positioned approximately 15 
degrees down and 30 degree right of the natural line of sight 
of participants in viewing the driving scene. 

2.2 Participants  
Twenty experienced drivers of middle-age (from 23 to 56 
years old) participated to this experiment. All the drivers 
have a minimum of 5 years of driving experience and they 
drive a minimum of 5.000 km per year. The recruitment of 
subjects was balanced for gender. Participants were 
instructed to perform the secondary task in accordance with 
the demands of the driving situation. The instruction 
emphasized that safe driving was of the highest priority.  

2.3 Driving task 
The full experiment followed a 3×2×2×2 factorial design 
with one primary driving task of car following to be 
performed in three different driving contexts (requiring 
different driving speeds: 130 km/h for Highway, 90 km/h 
for rural roads and 50 km/h for urban areas), from two 
required following distances (free versus imposed at a value 
of 0.6 second of Inter-Vehicular Time [IVT]), and two types 
of lead car behavior (having a steady versus irregular 
velocity) and then, two levels of visual distraction (with and 
without). In total, there were 12 driving scenarios to which 
each participant was exposed, once time without any 
secondary task, and then, on time with a secondary task. 

Each scenario was around 1 minute in duration and 
presented one experimental condition. 

2.3 V isual secondary task  
:7,(:,64/0+*F(:+(F(43(1.(;+8(0.()*+6).4/()4(<,(2,*34*5,0(
<F( )7,( 2+*).6.2+/)(( N+(( )7,( 34884N./-D( +( (,)( 43( O( 1.(;+8(
2.6)4-*+5(C( +((46.+),0( N.)7( +/( +;0.)4*F( <,,2C( N,*,(
0.(28+F,0(4/(+/(+00.).4/+8((6*,,/((.);+),0(4/( )7,(*.-7)((.0,(
W/,+*( )7,( ;(;+8( 24(.).4/( 43( )7,( *+0.4X9( :45,( (,64/0(( 8+),*(
W3*45(O()4(U((,69XC(>(43()7.((O(2.6)4-*+5((+22,+*,0(;/0,*()7,(
3.*()((,)C(+/0()7,(0*.1,*(7+0()4(;(,(+(OG<;))4/((6455+/0(34*(
./0.6+)./-(N7.67(2.6)4-*+5(.((*,28.6+),0(WE.-9(>X9(

 

 
Figure 1: The visual Secondary Task to be performed 

2.4 Main results  
2.4.1 V isual strategies for additional screen scanning 
Visual strategies during secondary task have been extracted 
8>J/( -,?( HHH09&J&( J8( LJ!?J( 8J0/( J8( OH>-JIJOHH-&;( 8HI?&(
collected during the experiment. The two main different 
visual scanning patterns of the additional-screen observed 
among human drivers are presented in figure 2 (others 
strategies are adaptations of one of the two main patterns).  

 
Figure 2: Visual scanning patterns observed among human drivers  

The first strategy (58 % of the cases, and more 
systematically used by 40% of the participants) consists in 
waiting from 3 to 4 seconds when the beep occurs, hoping 
that only one screen scanning will allow the participant (a) 
to see the 3 pictograms, (b) to see the replicated one, and (c) 
to provide the answer. The main advantage of this strategy 
is to reduce the number of glance, but the convenient is to 
require a long glance of 2 seconds (in mean), for processing 
all the pictograms. The second strategy (observed in 31 % 
of the cases, and more systematically used by 25% of the 
participants), was to look at the screen briefly when the beep 
occurs (mean duration of 0.8 sec.), in order to observe the 3 
pictograms, and then to go back to the road scene while 
regularly checking the screen (via brief glances of 0.5 sec) 
until the replicated pictogram appears. When it occurs, a 
more long off-road glance (around 1.5 sec.) is implemented 
for checking the replicated pictogram and validating the 
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answer. By contrast with the preceding one, this second 
strategy requires a several glances, but the advantage is to 
process visual information in two times (corresponding to 
question, and then answer), requiring a shortest last glance. 
 

2.4.2 V isual distraction effect on driving performance 

Two main negative impacts of a visual distraction on the 
!>JL?>&;( O?>8J>/HHI?&( E?>?( JM&?>L?!( !N>JH<( -,J&(
experiment. The first one occurs in normal conditions, and 
the second one occurs for critical scenarios (i.e. when the 
lead car brakes), increasing the accident risk. 
 
In normal driving conditions, two main differences due to 
visual distraction were observed among the participants: (i) 
a significant reduction (T-test, p<0.001) of the safety 
margins in free following conditions (without ST, mean 
value of IVT is of 3 s. without ST, vs 2.65 s. with ST) and 
(ii) a significant degradation (p< 0.05) of the following 
performance in constrained following conditions (in these 
scenarios, drivers have to follow the lead car at an imposed 
IVT of 0.6 s., and the percentage of time when this value is 
performed is of 57% without ST, vs 44 % with ST). These 
results show a negative effect of visual distraction for short 
following distance keeping. 
 
In critical driving conditions, the two main negative impacts 
J8( -,?( LJ&NH0( F;( JH( !>JL?>&;( O?>8J>/HHI?&( H>?( WJX( HH(
increasing of reaction time for braking (the differences are 
only significant for the constrained following task : 0.89 s. 
vs 1.1 s.; p<0.05), and (ii) a risk of crash increasing. The 
Table 1 presents the percentages of collision occurring with 
the lead car for the total number of required emergency 
braking, by respectively considering the different driving 
scenarios investigated. It appears that the risk of collision 
due to a visual distraction is here significantly increased for 
4 of the 10 driving scenarios requiring an emergency 
braking (i.e. bold values). The highest negative impacts of 
visual ST were observed for the constrained unsteady car 
following scenarios, in both urban and rural environments. 

!"#$-*%&*'-(3-()"*-+*",*3"$$-+-"(*.-)/*)/-*$-"/*3"(**
Context Driving scenario No ST With ST 

Highway Free steady lead car following 55 % 50 % 
 F ree unsteady lead car following* 35 % 50 % 
 Constrained steady lead car following    65 % 70 % 
 Constrained unsteady lead car following 70 % 70 % 

Rural Free unsteady lead car following 60 % 60 % 
 Constrained unsteady lead car following* 55 % 80 % 

Urban F ree steady car lead following* 20 % 30 % 
  Free unsteady lead car following 30 % 30 % 
  Constrained steady lead car following 30 % 30 % 
  Constrained unsteady lead car following* 25 % 90 % 

 
 (*Bold Values indicate the main observed differences in driving 

performance due to visual distraction) 
 

2.4.3 Example of crash due to visual distraction  
The following figure presents a typical case of driving 
accident due to visual distraction, as observed during this 
experiment (in free following conditions, view a). ;/( )7.((
,P+528,C()7,(8,+0(6+*(<*+F,((N7,/()7,(0*.1,*(.((844F./-(34*(
)7,( +00.).4/+8( (6*,,/( W.-(&" :XC( 1.+( +( 84/-( -8+/6,( 43( <(
(,64/0(9(V7,/((7,(*,2+F((+)),/).4/()4()7,(*4+0(W.-(&"3XC((7,(
74N,1,*( 0.(641,*(( +( 6*.).6+8( -+2( <,)N,,/( )7,( ,P2,6),0(
24(.).4/(43()7,(8,+0(6+*(+((5,/)+88F(+((,((,0(0;*./-()7,(433G
*4+0( -8+/6,( W<F( +((;5./-( +( (),+0F( (2,,0( 43( )7,( 8,+0( 6+*(
0;*./-( )7.((2,*.40X(+/0( )7,(4<=,6).1,( *,+8.)F(N7,*,( )7,( 8,+0(
6+*( .(( +6);+88F( 1,*F( 684(,9( :7,*,34*,C( (7,( .55,0.+),8F(
6+**.,0(4;)(+/(,5,*-,/6F(<*+F./-( W=9:Q( (,64/0(43( *,+6).4/(
).5,X9(W/34*);/+),8FC( )7,( 6488.(.4/( 6+//4)( <,( +14.0,0C( +/0(
)7,(6*+(7(N.)7()7,(8,+0(6+*(466;*((./(.-(&"+! 
 

(
E.-;*,(OD(:F2.6+8(,P+528,(43(6*+(7(0;,()4(1.(;+8(0.()*+6).4/ 

3. Computational modeling and simulation of 
01+2!"*#$%&'!(&$)**+,,+(&%*)**#'$-+'%.*/0 
By using the empirical data collected in this experiment, a 
computational model, based on the COSMODRIVE 
(COgnitive Simulation MOdel of the DRIVEr) theoretical 
approach (Bellet et al., 2007), has been implemented into 
the SIVIC virtual plate-form (Gruyer et al, 2006). By 
contrast with other driver models available in the literature, 
the core specificity of COSMODRIVE is to simulate 
!>JL?>&;( /?H-H0( >?O>?&?H-H-JJH( H&( H( visual-spatial (i.e. 3 
Dimensional) and dynamic model!of the road environment. 
Indeed, from their interaction with the road environment, 
drivers build mental model of events and objects 
surrounding them. This mental model corresponds to the 
!>JL?>;&( Situation Awareness (Endsley, 1995). They are 
dynamically formulated in working memory through a 
matching process between perceived information and pre-
existing operative knowledge (Ochanine, 1977). At the 
tactical level (Michon, 1985), such a mental representations 
provides an ego-centred and a goal-oriented understanding 
of the traffic situation. They take the form of a dynamic 3D 
model of the road environment, liable to be mentally 
explored by the driver in order to anticipate events or action 
effects through cognitive simulations of mental deployment 
(Bellet et al, 2010; 2011), and thus providing expectations 
on future situational states. This cognitive process of 
anticipation, based on both implicit and explicit mental 
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simulations (Bellet et al., 2009), is a core function of the 
human cognitive system in dynamic contexts. The central 
&->NI-N>?( &NOOJ>-JH<( -J( -,?(!>JL?>;&(FK( JH(GHFRHS=T:U(
cognitive architecture is working memory. From this point 
of view, this architecture is inspired by the ACT-R theory 
(Anderson et al., 2006). However, the working memory of 
COSMODRIVE merges both procedural and declarative 
memories, and comes more from the operational memory 
concept J8( IJH-I,?HIJ( WN>XXX( -,HH( 8>J/( -,?( ?H!!?0?9;&(
working memory model (1986). With COMSODRIVE, car 
driving is modeling as a dynamic regulation loop of 
interaction between drivers and the road environment.  

 

Figure 4 provides a synthetic overview of this model as 
implemented on the SIVIC virtual platform. Synthetically 
the functional architecture of the model is based on 3 main 
modules (i.e. Perception, Cognition, and Action modules), 
in order to drive a virtual car into a virtual environment, 
through -EJ( &9HI,>JHJ@?!( @V?>I?O-JJH-Cognition-KI-JJHL(
regulation loops: an automatic and implicit mode versus an 
attentional and explicit mode (Bellet et al, 2009). This 
dichotomy is well established in scientific literature, for 
example, with the distinction put forward by Schneider and 
Schiffrin (1977) between controlled processes, which 
require cognitive resources and which can only be 
performed sequentially, and automatic processes, which can 
be performed in parallel without any attentional effort. In 
the same way, Rasmussen (1986) distinguishes different 
levels of activity control according to whether the 
behaviours implemented rely on (i) highly integrated 
sensorial-motor reflexes (Skill-based behaviors), (ii) well 
mastered decision rules for managing familiar situations 
(Rule-based behaviors), or (iii) more generic knowledge that 
is activated in new situations, for which the driver have not 
any prior experience (Knowledge-based behaviors). 
 

 

Fig. 4: Architecture of COSMODRIVE model 
 

From this architecture, the Perception Module is in charge 
to simulate human information processing, the Cognition 
Module is in charge to simulate mental representation 
elaboration (SA) and decision-making processes at both the 
attentional and automatic levels, and the Action Module is 
in charge to simulate executive functions and vehicle 
control abilities, allowing the model to dynamically 
progress on the SIVIC virtual road by driving a virtual car. 

3.1 The Perception module  
;,?(V?>I?O-JJH(RJ!N0?( HI-&( H&(HH( @JH-?>8HI?L(M?-E??H( the 
external road environment (as simulated with SiVIC) and 
the driver model. It simulates human information processing 
of sensorial data before their integration in the Cognition 
module for traffic conditions analysis, situational change 
anticipation, decision making, and then action planning and 
implementation through the Action Module. The Perception 
module is based on a virtual eye (Figure 5). This virtual eye 
includes three visual field zones: the central zone 
corresponding to foveal vision (solid angle of 2.5 ° centred 
on the fixation point) with a high visual acuity, para-foveal 
vision (from 2.5° to 9 °), and peripheral vision (from 9° to 
150 °), allowing only the perception of dynamic events.  
 

 
Fig. 5: COSMODRIVE virtual eye 

 

From this virtual eye, COSMODRIVE is able to integrate 
information perceived in the road environment through two 
main processes (Bornard et al, 2011). The first one, named 
perceptive integration, is a data-driven process (i.e. bottom-
up) and allows the cognitive integration of environmental 
JH8J>/H-JJH( JH( -,?( !>JL?>;&( /?H-H0( >?O>?&?H-H-JJH&)( ;,?(
second one, named perceptive exploration and based on 
A?J&&?>;&(perceptual cycle theory WN>WXXC( J&(H(@IHJE0?!<?-
!>JL?HL(O>JI?&&(WJ)?)(-JO-down) in charge to actively explore 
the road scene, according to the tactical goal to be reached 
and to the event expectations included in the driving 
schemas. In the frame of a car following task, the main point 
J8( JH-?>?&-( J8( -,?( !>JL?>;&( LJ&NH0( H--?H-JJH( J&( -,?( 0?H!( IH>)(
However, in case of a visual secondary task to be performed 
while driving, the virtual eye must sometimes leave the road 
in order to observe the additional screen, according to the 2 
different visual scanning patterns observed among human 
drivers during our experiment (presented in fig. 2).  

3.2 The Cognition module  
;,?( GJ<HJ-JJH( RJ!N0?( J&( JH( I,H><?( -J( &NOOJ>-( !>JL?>&;(
Situation Awareness, DecisionFMaking and Action 
Planning. The specificity of COSMODRIVE architecture, 
by contrast with other driver models developed with ACT-R 
(e.g. Salvucci, 2006), is to be able to support dynamic 
reasoning based on visual-spatial mental models. This type 
of 3-Dimensional (3D) mental representation is a key 
IJ/OJH?H-(J8(>?H0(!>JL?>&;(IJ<HJ-JJH(W??00?-(?-(H0C(UOO>XC(MN-(
they are not easy to implement, and then to process, with the 
ACT-R architecture (except as a chunk, i.e. a set of facts or 
logical units, stored in declarative memory). In order to 
&J/N0H-?( ,N/HH( !>JL?>&;( LJ&NH0-spatial knowledge and 
dynamic reasoning in a more realistic way, we therefore 
defined a specific computational formalism named driving 
schemas (Bellet et al, 2007). Coming from both Piaget;& 
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(1936) concept of operative scheme and the Minsky (1975) 
frames theory, a driving schema is a functional 3D-model of 
the road Infrastructure associated with a Tactical Goal to be 
reached in this infrastructure. It is made of a Driving Path, 
defined as a sequence of Driving Zones, and integrates a 
sequence of Actions to be progressively implemented when 
progressing on the path. The decision to implement or not 
an action depends of Conditions to be checked by the driver 
regarding the occurrence of Events in particular Perceptive 
Zones of the road infrastructure. An event is an Object with 
specific Characteristics (its aspect, behaviour, or status). 
Once activated in working memory and instantiated with the 
characteristics of the current road environment, the active 
driving schema becomes the tactical mental representation 
of the driver, that is continuously updated as and when s/he 
progresses on th?( >JH!)( T-( IJ>>?&OJH!&( -J( -,?( !>JL?>;&(
situation awareness of the situation. In the frame of a car-
following task on straight line as investigated in this paper, 
the driving schema is focused on the tactical goal of 
progressing along the same road lane (no overtaking), at a 
given speed, and keeping a safe distance with the lead car.  
 

XJ<N>?(XV(GHFRHS=T:U(@UHL?0JO?-IJH?&L(/J!?0 

At the operational level, corresponding to an automatic 
control loop, COSMODRIVE regulation strategy is jointly 
based on envelope zones and pure pursuit point approaches. 
From a theoretical point of view, the concept of envelope 
zones comes from two classical theories in psychology: the 
notion of body image of Schilder (1950), and the theory of 
proxemics defined by Hall (1966), relating to the distance 
keeping in social interactions with other humans. Regarding 
car-driving activity, envelope zones also refer to safety 
margins. At this last level, COSMODRIVE model (Fig.6) is 
MH&?!( JH(BJH-H>H-J&;( EJ>I( WN>WJX( !J&-JH<NJ&,JH<( H( safety 
zone, a threat zone, and a danger zone. Envelope zones 
correspond to the portion of the path of driving schema to be 
JIINOJ?!(M9( -,?( L?,JI0?( JH( -,?( H?H>( 8N-N>?)(K&( HH( @,J!!?H(
!J/?H&JJHL(J8( -,?( &JIJH0( IJ<HJ-JJHC( H&( &N<<?&-?!(M9(!"##;$(
theory (1966), these proxemics zones are also mentally 
projected to other road users, and are then used to 
dynamically interact with them, as well as to anticipate and 
manage the collision risks. %&'$( ()'*+,"#( $-'./( '$(
permanently active while driving, as an implicit awareness 
of our expected allocated space for moving. As with the 
01&'#23*;$( body schema, it belongs to a highly integrated 
cognitive level (i.e. implicit regulation loop), but at the same 
time, it favors the emergence of critical events in the 
2*')3*;$( 345#'1'+( "6"reness. Therefore, the envelope zones 
5#"7( "( 13.+*"#( *8#3( '.( +&3( *39,#"+'8.(8:( ($81'"#/( "$(63##( "$(
(5&7$'1"#/( '.+3*"1+'8.$(6'+&(8+&3*( *8"2(,$3*$(,.23*(.8*;"#(
driving conditions (e .g. inter-vehicle distance keeping), and 
in the risk assessment of path conflicts and their 

management, if a critical situation occurs (commitment of 
emergency reactions). 

Moreover, two Decision-Making processes are implemented 
in COSMODRIVE model, one for each regulation loops 
presented in fig. 4. At the attentional level, corresponding to 
explicit decisions, this process is modelling through State-
Transition automats intimately linked with the driving path 
and conditions integrated in tactical driving schemas. In real 
driving conditions, this tactical level is typically used for 
overtaking decision-making. However, in the frame of the 
empirical data collected in our experiment, primarily 
involving automatic driving abilities, the tactical level is 
mainly active when the lead car suddenly brakes and when 
the situation becomes critical. At the automatic level, an 
implicit decision-making is implemented through envelope 
zones, in order to keep a safety distance with the lead car 
(i.e. keep it in the green zone). 

3.3 The Action module  
The Action Module is in charge to perform vehicle-control 
skills, according to the driving actions decided and planned 
at the representational level by the Cognition module. The 
two core regulation mechanisms effectively implemented by 
the Action Module are based on (i) the Pure-Pursuit Point 
method and (ii) safety margin keeping by using Envelope-
Zones. The Pure Pursuit Point method is used by 
COSMODRIVE for the lateral and the longitudinal controls 
of the car along the driving path of a tactical schema 
(Mayenobe, 2004). Mathematically, the pure-pursuit point is 
defined as the intersection of the desired vehicle path and a 
1'*1#3(8:(*"2',$(13.+3*32("+( +&3()3&'1#3;$(*3"*("4#3(;'258'.+(
(assuming front wheel steer). Intuitively, this point describes 
the steering curvature that would bring the vehicle to the 
desired lateral offset after traveling a distance of 
approximately l. Thus the position of the pure-pursuit point 
maps directly onto a recommended steering curvature: k = -
2x/l, where k is the curvature (reciprocal of steering radius), 
x is the relative lateral offset to the pure-pursuit point in 
vehicle coordinates, and l is a parameter known as the look-
ahead distance. According to this definition, the operational 
control of the car by COSMODRIVE is a monitoring loop 
in charge to permanently keep the Pursuit Point in the 
driving path, to a given speed assigned with each segment of 
the tactical schema, as instantiated in working memory.  

 

Figure 7: Pursuit Point and Envelope Zones  
 

COSMODRIVE abilities for vehicle-control are thus 
supported in the Action module by the pure-pursuit point 
method (for monitoring the lateral and longitudinal position 
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of the car), and by the envelope zones strategies (for 
managing interactions with the other road users). Figure 6 
illustrates this regulation strategy in the frame of a car-
following task: the pursuit point determines the cap to be 
followed by the virtual ego-car, and the envelope zones are 
used for keeping a safe IVT distance with the lead car. 

3.4 Simulation of visual distraction effects  
By considering the empirical data presented in section 2, the 
visual scanning patterns of the additional screen collected 
during this experiment among human drivers (cf. fig 2) were 
implemented in the Perception module of COSMODRIVE, 
in order to simulate visual distraction effect$( 8.( 2*')3*$;(
behaviors (visual strategies and vehicle control) and to 
investigate human errors liable to occur when drivers 
perform a visual secondary task while driving. Indeed, 
beyond the observable effects of visual distraction on 
2*')3*$;( 53*:8*;".13C the aim of the COSMODRIVE 
computational modeling approach was also to simulate such 
distractive impacts on car drivers Situation Awareness.  
 

 
Fig. 8: driving performance simulation of a distracted driver 
 

When driving, drivers must continually update their mental 
model of the driving situation as and when they dynamically 
progress on the road. In case of additional task requiring off-
road scanning, mental model updating is imperfectly done 
".2( 2*')3*;$( "1+'8.$( "*3( +&,$( <"$32( 8.( "( ;3.+"#(
representation that may dramatically differ of the situational 
reality, in case of a critical change in the traffic conditions. 
 
This is typically what occurred in the example of crash 
initially presented in fig. 3, and then analyzed in Figure 8 
and 9 from COSMODRIVE simulations. These 2 Figures 
correspond to a simulation case for a similar driving 
scenario presented in fig. 3 (free following task). Like 58 % 
of the observed human drivers, COSMODRIVE 
implemented here the first visual strategy for scanning of 
the additional screen (cf. fig. 2), requiring a long glance of 2 
seconds. During these 2 seconds, the model manages the 
IVT with the lead car by using its mental representation of 
the driving situation (see stages 2 on fig. 9).  Unfortunately, 
the lead car brakes when the virtual eye is off-road and 
COSMODRIVE Situation Awareness progressively 

becomes very different of the situational reality (stage 3 on 
Fig. 9). When the driver/model repays attention to the road 
scene (view c on Fig.8 and stage 4 on Fig. 9), they suddenly 
become aware of the critical gap between the expected lead 
car position (as mentally assessed during the off-road glance 
by assuming a steady speed of the lead car) and the critical 
nature of the objective reality (as illustrated at stage 4 on 
fig. 9). Therefore, like the human driver presented in fig. 3, 
the model immediately carried out an emergency braking 
(reaction time of 0.8 sec. on Fig 8), but the crash cannot be 
avoided.  
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3.4 Conclusion and perspectives  
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Abstract 
Taxiing an airplane at a major airport requires the pilot to 
interact the world outside the cockpit, the instrumentations 
within the cockpit, and the co-pilot. As many actions require 
time to pass before their outcome can be evaluated, the pilot 
must have an approximate sense of how much delay should 
occur before the outcome of an action can be evaluated. 
Finally, taxiing is a paradigmatic example of multitasking. 
These three ingredients (a) a high level of interaction with 
dynamic task environments, (b) a sense of time, and (c) 
multitasking, present challenges for theories of cognition and 
the building of process models of taxiing. We describe a 
model, SimPilot, its initial validation, and its implications for 
cognitive theory.  

Keywords: Multitasking; interactive behavior, delayed 
feedback, threaded cognition; cognitive control; task 
switching. 

Introduction 
A good applied problem drives basic science and a good 

theory can be useful, to paraphrase Newell (Newell & Card, 
1985) and Lewin (1951). We believe such a relationship 
exists between taxiing an aircraft and cognitive theory. A 
task analysis of taxiing reveals that multiple cognitive, 
perceptual, and motor actions are preformed in parallel. The 
pilot must listen for commands and respond to commands 
from the ground controllers, while navigating the complex 
layout of airports. The pilot must steer and turn the plane 
while monitoring the aircraft speed. These and the other 
tasks require pilots to manipulate instruments in the cockpit 
while attending to signs and other planes outside the 
cockpit. In addition, key steps in taxiing require verbal and 
gestural contact with the co-pilot. The complexity of the 
Boeing 737-800 cockpit is evident in Figure 1.  

In summary, taxiing is a paradigmatic example of 
multitasking where each task has its own subtasks that must 
be interleaved with those of the other tasks. It is exceedingly 
interactive. Not only does the pilot create change in the 
external and internal environment but many changes to 
which the pilot must respond arise from external factors. 
Finally, unlike most tasks modeled by cognitive science1, 
changes produced by pilot actions may not be immediately 
apparent but requires the pilot to maintain some sense of 

                                                             
1 But not all tasks, see Anzai (1984), for an exception. 

passing time and some expectation for when the results of 
his or her actions should become apparent.  

SimPilot models the cognition and behavior of an airline 
pilot taxiing a Boeing 737-800. The mechanisms for 
multitasking that we use are Salvucci and Taatgen’s theory 
of threaded cognition (2008; 2010), which at the moment is 
a candidate architectural mechanism within the ACT-R 
cognitive architecture (Anderson, 2007; Anderson, et al., 
2004). We view SimPilot as an exploration of the strengths 
and weaknesses of the theory of threaded cognition as well 
as a potential tool for aviation psychology. 

An open question for cognitive architectures is whether 
multitasking should be considered an architecture feature or 
a strategic adaptation that is driven by the accommodation 
of more basic architectural features to the demands of the 
task environment. Hence, besides being of applied interest, 
SimPilot may shed light on a key theoretical question. 

 
Figure 1. The Boeing 737-800 cockpit. 

Indeed, we suggest that SimPilot is the most 
comprehensive model yet developed using threaded 
cognition. Unlike prior models that are dual-threaded, 
SimPilot models three threads and uses the entire ACT-R 
6.0 architecture to perform the taxiing application. In this 
paper, the next section will provide a brief overview of 
ACT-R 6.0 with threaded cognition. Then previous work 
within ACT-R to model multitasking performance is 
discussed. The SimPilot model is then described. We 
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discuss the predictions the model made about pilot 
performance and how those predictions fared in an 
empirical evaluation. We conclude with an evaluation of 
threaded cognition as a mechanism to perform multitasking 
within a cognitive architecture. We end with a few words 
about the use of the simulated task environment, X-Plane™, 
for cognitive science research and computational cognitive 
modeling. 

ACT-R 6.0 
ACT-R 6.0 (Anderson, 2007) is an embodied cognitive 
architecture that has perceptual and motor components 
along with cognitive processing, memory, and control 
components. The perceptual and motor components enable 
SimPilot to operate user interfaces by passing the interface 
software the same commands passed by the input devices 
used by humans. As the SimPilot is a cognitive, not an 
artificial intelligence model, its input commands mimic the 
speed and accuracy of human users. 

The ACT-R architecture requires the modeler to specify 
two types of knowledge. Declarative knowledge specified 
by the modeler represents background knowledge required 
to perform a certain task. The declarative knowledge is 
represented as chunks. A chunk has a type, which serves to 
specify the structure of the chunk. The chunk structure is 
composed of named slots, which hold values. Declarative 
chunks are stored in the Declarative Memory Module. Time 
to retrieve an item from memory varies as a function of the 
recency and frequency of that item’s occurrence (Schooler 
& Anderson, 1997; Sims & Gray, 2004). Like humans, 
errors can occur in the memory retrieval process due to 
random fluctuations (noise) in memory strength or 
activation (Sims & Gray, 2004). Either the wrong chunk is 
retrieved or the intended chunk is not “strong” enough to be 
remembered. 

The second type of knowledge specified by the modeler is 
procedural knowledge in the form of pattern matching 
productions. Productions specify how a certain task is done. 
A production consists of a set of constraints that must be 
satisfied before the actions specified by the production can 
be executed. Productions are stored in the Procedural 
Module. ACT-R checks every 50ms (human time) all of its 
productions and executes one of the productions whose 
pattern is matched. If more than one production can execute 
then ACT-R chooses the one it calculates would be the most 
useful at this time. This serial execution is not as 
constraining as it might seem and has been shown to be as 
accurate at simulating fine-grained human behavior as 
architectures that allow parallel firing of productions (Byrne 
& Anderson, 2001). If a production could fire but did not 
because another one had a higher utility, chances are that in 
50 ms it will be able to fire. The productions are intended to 
represent the fine-grained procedural steps that are executed 
to perform some task. ACT-R adds noise to the utility 
calculation to simulate the variability in time and 
performance that humans make. 

ACT-R maintains simulated human time in that time for 
ACT-R processes and actions are set to the theoretical times 
for the corresponding human events such as shift of visual 
attention, or memory retrieval. When the model does a task 
ACT-R produces a trace that includes the action taken and a 
time stamp. The trace allows model performance to be 
compared with human performance. 

The perceptual components of ACT-R allow the model to 
see and hear. In common with the human brain, the visual 
component has where and what paths (Findlay & Gilchrist, 
2003). The where path allows the model to detect features of 
an object such as color, size, and shape at a 2-D location in 
space. The what path moves visual attention to that location 
to encode the object with those features. ACT-R hears in 
much that same way that it sees in that sound events are 
detected and auditory attention is invoked to encode those 
sounds. By encoding objects and sounds in the environment 
the visual and auditory components add new declarative 
knowledge to the model. The motor component is the 
model’s hands and voice. The manual component is capable 
of moving and clicking the mouse. Movement times are a 
based on Fitts' Law (Fitts, 1954). The vocal module is 
capable of speaking text and subvocalization (see, e.g., Huss 
& Byrne, 2003). 

The imaginal component of ACT-R is intended to hold 
intermediate representations required in solving a problem 
or performing some task. New declarative chunks can be 
added by this component. The temporal component 
maintains an internal clock. The goal component in hold 
chunks that guide task execution. For the model presented in 
this paper the default goal component is replaced with a 
module that implements a form of threaded cognition 
(Salvucci & Taatgen, 2008) that implements the 
multitasking required for the taxiing task. 

Threaded Cognition 
The current architectural candidate for multitasking in ACT-
R is threaded cognition (Salvucci & Taatgen, 2008, 2011); 
an integrated theory of concurrent multitasking. 
Multitasking is defined as doing 2 or more tasks at once. A 
thread is sequence of processing steps coordinated by a 
serial procedural resource and executed across perceptual 
and motor resources. The key claims of threaded cognition 
are that multiple active goals can exist. Associated with 
each goal is a block of procedural processing. Processing 
conflicts can exist for procedural, declarative, perceptual, 
and motor resources. A thread will grab a resource if it 
needs the resource and the resource is available. It will 
release the resource when no longer needed. According to 
Salvucci and Taatgen, cognition favors the least recently 
processed thread. Declarative retrievals can be converted to 
hard coded productions over time thus reducing both 
declarative and procedural resource conflicts.  

Background  
Salvucci (Salvucci et al., 2006) explored interleaving task 
segments during a discrete driving task. Subjects used a 
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keyboard to steer a vehicle while entering navigation 
information as a second task. In particular they investigated 
how changing the timing characteristics of the driving task 
affected the interleaving of the tasks. To do this they used 
the temporal module of ACT-R and threaded cognition. 
They developed a top down and a bottom up model of 
cognitive control. In the bottom-up model, events (that is, 
changes to ACT-R’s perceptual and temporal buffers) 
determine when task switching will occur. In the top-down 
model, the general executive (an early version of threaded 
cognition) interleaves the two tasks. Both models change the 
time interval for switching based on whether recent switches 
were early, late or on time.  

Borst and Taatgen (2007) extended the threaded cognition 
concept that peripheral resources and declarative memory 
are shared between processes without executive intervention 
to problem representations, which are maintained in the 
imaginal buffer. They modified the discrete driving task of 
Salvucci (2006) to devise two tasks, one hard and one easy, 
in which the participants had to keep track of the problem 
state. The experiment and model they developed did show 
extra interference in task performance when both tasks 
needed the imaginal buffer. 

Veksler (2011) used the latest implementation of threaded 
cognition in ACT-R 6.0 in a decision making task to 
monitor a task event while searching a display. This task is a 
spin-off of the Argus task (Schoelles, 2001) in which 20 
targets appear on a radar screen. Each target has an assigned 
threat value, which the participant can acquire by clicking 
on the target. The task objective is to find the target with the 
largest threat value from a table of six alternatives, which is 
displayed on the right side of the screen. The degree of 
difficulty in acquiring the treat value is implemented via a 
lockout period, which is the time from clicking on the target 
to the actual display of the threat value. The lockout period 
was a between-subject condition that varied from 0 seconds 
to 8 seconds. Without any perceptual constraints her initial 
model switched many more times than human participants. 
When the perceptual constraint that the monitor task will 
only be initiated if model has not found a pre-attentive 
feature during the search thread was implemented, then the 
model did a much better at matching human switch rates. 

Zemla (Zemla et al., 2011) has developed an ACT-R 
model of the taxiing task using the X-Plane simulation. The 
model does not use threaded cognition, since the focus of 
the model to produce a high-fidelity model of the turning 
and steering the plane while taxiing. The model is quite 
successful in modeling these subtasks. SimPilot does not 
steer or turn with the accuracy of this model but is more 
concerned with the interactive, multitasking aspects of the 
taxiing task. 

SimPilot Description 
The SimPilot model was developed as a proof-of concept 
system that intended to show that cognitive modeling can be 
applied to the evaluation of new technologies in aviation 
that are intended to increase runway safety. The system 

consisted of the SimPilot model and ACT-R 6.0 running on 
one system, and the X-Plane simulation of a Boeing 737-
800 running on the same or different computer. The 
communication between SimPilot and X-Plane simulator 
was via TCP/IP. Other aircraft running X-Plane on other 
computers simulated ground traffic at the airport. The X-
Plane software provides several different interface options. 
One option is through a Software Development Kit (SDK). 
The user develops a plugin following the specifications of 
the SDK to access data variables used by X-Plane. Most of 
the data values that are displayed in the cockpit can be 
accessed both for reading and writing in this manner. The 
X-Plane system polls the plugin for requests to read and 
write these data values. For example, the ground speed of 
the aircraft can be read or the frequency of the radio can be 
read or set in this manner. 

The scenario modeled by SimPilot begins with clearance 
from Air Traffic Control at the Dallas-Ft.Worth Airport, to 
taxi from the terminal, via a prescribed route to the hold 
short area of the runway. Once there, SimPilot must wait for 
clearance, then move onto the runway, and takeoff. 
Instructions and flight information can be given by Air 
Traffic control at anytime along the route. The route could 
involve several taxiways to reach the runway and other 
simulated aircraft. Concurrent subtasks include taxiing, 
monitoring the speed of the aircraft, maintaining situation 
awareness, and steering. 

SimPilot Structure 
SimPilot specifies visual-location chunks and visual-object 
chunks for the cockpit instruments. This file is read when 
the model is loaded. When the model moves visual attention 
to the location of an instrument the corresponding visual-
object chunk is created. 

ACT-R models are goal-driven, that is, task control is 
specified in declarative chunks that will serve as the current 
task goal. SimPilot specifies task goals for a number of 
subtasks, such as power-up, steering, turning, tune radio, 
switch lights, monitor speed etc. Since SimPilot uses 
multitasking, a task control chunk that specifies the subtasks 
that can execute together is also specified.  

Productions have three structures. One structure does not 
have a goal but reacts to new information from the external 
environment. Examples include commands from ground 
control or comments from the co-Pilot. The structure of the 
task control productions specify what tasks can run 
concurrently. Third, regular productions have a goal with 
either a state slot or a time constraint slot. 

SimPilot Task Control Flow 
The first version of SimPilot did not use threaded cognition, 
but attempted to implement multitasking by using ACT-R’s 
default ACT-R, one-level deep, goal buffer in several 
different ways. It was found that this switching was either 
not very cognitively plausible or took too much time. In one 
approach, the old goal was stored in a slot in the new goal 
and retrieved directly from that slot when it was necessary 
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to switch back. This approach is not cognitively plausible or 
very flexible with more than two goals. Another approach is 
to retrieve old goals through declarative memory (Altmann 
& Gray, 2008) but this approach did not meet the time 
requirements of a highly interactive environment requiring 
immediate actions. Threaded cognition offered a good 
alternative although all models using threaded cognition up 
to this point have been far simpler than the complexity 
required for taxiing. Task analysis also showed that the 
number of tasks that are being done at one time varies. The 
threaded cognition goal module maintains a set of goals. 
The goal buffer is used as part of threaded cognition and in 
accordance with Taatgen’s Minimal Control Principle 
(Taatgen, 2007), using a goal state slot is kept to a 
minimum. The control constraints come from the 
availability of the perceptual modules. In addition, the 
temporal module and buffer are used to monitor events at 
specific intervals, which also provides a form of control. 

We define a subtask (of taxiing) to be a set of one or more 
goals to be executed using threaded cognition. That is, the 
goal module is responsible for switching the goal buffer 
between these goal chunks. The subtask control chunks are 
linked together though a slot which contains the next 
subtask to be executed. When the current goal set has 
accomplished its part of the task a subtask control chunk is 
made the current goal, which retrieves the chunk specifying 
the next multitasking set.  

In SimPilot, a thread maintains control by either not 
clearing the perceptual buffers or having the imaginal buffer 
maintain a representation unique to the thread. For the most 
part a thread can only start executing if the perceptual and 
imaginal buffers are clear. A thread gives up control by 
clearing these. As the model was being developed it was 
realized that communication between threads is sometimes 
required. Normally in ACT-R communication between 
productions is done through the imaginal buffer, but in 
SimPilot the imaginal buffer is thread specific so this 
pointed to the need for another buffer, which can be 
considered as a extended imaginal buffer that is common to 
all threads. In SimPilot this is called the situation buffer. 

 
SimPilot Steering! When humans steered X-Plane, they 
used a joystick that had a nose wheel control capability. For 
the model to steer X-Plane several options are available. 
Early on in the project the joystick was configured to 
change the yoke pitch, roll, and yaw, so initially the option 
that sets the SDK variables for the yoke pitch, roll, and yaw 
was implemented.  When the joystick was reconfigured to 
manipulate the nose wheel, the option that the mouse acts as 
the joystick and changes the nose wheel in the same way as 
the human subjects was implemented. Also, steering 
requires both perception and manual operations. SimPilot 
looks at the heading display on the cockpit to monitor the 
current heading and looks at a point on the windshield, 
which is the target for the movement.  

 

It uses the temporal module to keep from responding too 
fast to course corrections. 

 
SimPilot Turning Turning is similar to steering, but in 
turning the plane goes from a beginning heading to a final 
heading, and the current heading changes rapidly. Also, 
turns decreases the momentum of the aircraft so human 
pilots often increase thrust during the second half of the 
turn. In the first half of the turn SimPilot steadily increases 
the deflection of the nose wheel in the direction of the turn, 
it then brings it back to zero deflection in the second half, 
always trying to keep the rate of turn below 5 
degrees/second. SimPilot looks at a point on the windshield 
and moves the cursor to that location.  

 
SimPilot Parameters The model is predictive in the sense 
that it was not fit to data. The standard ACT-R parameters 
were used. It would be very hard to fit the model to data for 
individual parameters due to the complexity of the task. 
Likewise, as the model requires the X-Plane simulation and 
can only be run in real time, each model run takes 5-10 
minutes. This real-time constraint makes it nearly 
impossible to do the 100’s or 1000’s of model runs that 
most model fitting requires. 

SimPilot Representation of Environment 
Interactive models like SimPilot are heavily dependent on a 
good representation of the environment. The cockpit that X-
Plane provides (as shown in Figure 1) is very complex and 
contains many user interfaces objects that are not the usual 
Human Computer Interaction (HCI) type of objects. For 
example, tuning the radio, which is one of the capabilities of 
the model, requires an interactive routine of 22 productions. 
The radio has an inner and outer dial. The outer dial 
determines the integer portion of the frequency and the inner 
dial controls the decimal portion. The radio has an active 
indicator and a standby indicator. The model sets the stand-
by indicator and then presses a button to switch the 
frequency entered to the active display.  

To navigate the airport or follow a route, the locations of 
airport signs is required. Again X-Plane does not provide an 
automatic way to encode this information. We used Google 
Earth to obtain some of the taxiway and runway locations. 
KML files were exported from Google Earth and the MSS 
contains some code to parse these files. 

 

SimPilot Performance Measures 
Table 1 shows the number of visual attention shifts and the 
number of subtask switching for the speed monitoring, 
navigation monitoring and steering threads for two taxiing 
tasks. These results were extracted from the ACT-R trace 
files produced for each run. Due to lack of eye data we 
cannot compare these to human saccades and fixations. 
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Table 1. Model Attention and Subtask Shifts. 
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SimPilot Validation 
Human data was collected from 6 pilots with varying 
degrees of experience. The model has only gone through an 
alpha where no model parameters were fit to the data, so the 
model data presented in Table 2 (Jungemann, 2011) can be 
interpreted as model predictions. In fact the model was only 
run in the complete system configuration once, which did 
expose several problems.  
 

Table 2. Performance measurements and results 
 
Performance  Measure Human 

Mean/SD 
Model 
Mean/SD 

Average Taxi Speed 9.8/1.4 6.5/0.7 
Maximum Taxi Speed 15.3/2.6 8.7/0.5 
Average Throttle Setting 0.13/0.03 0.11/0.002 

Maximum Throttle Setting 0.46/0.21 0.15/0.01 
 
The data shows that this version of the model is far from 

being an expert pilot, but several factors make quantitative 
comparison of model and human data difficult. The braking 
capability of the human pilots was very different than the 
model. The humans had pedals that were used to brake the 
plane, but ACT-R has no foot motor module or interface to 
the pedals so the model performed braking through 
adjusting a X-Plane variable. The human pilots used a 
joystick to steer the aircraft via the nose wheel of the plane. 
The model could not control the joystick directly in X-Plane 
but used the cursor to control the nose wheel. 

Some of the measures that we could compare model 
versus human performance are shown in Table 2. The 
average taxi speed is the aircraft ground speed in nautical 
miles per hour, calculated from start of taxi to the hold short 
area of the runway. The maximum taxi speed is the highest 
ground speed attained on taxiway. The average throttle 
setting is X-Plane data value that ranges from Idle to Full. 
The maximum throttle setting is the highest throttle setting 
from start to hold short. 

Discussion 
Since we do not have actual data on the task switching 
behavior of human pilots, novice or expert, taxing with X-
Plane, our evaluation of threaded cognition is from an 
engineering perspective. By itself the implementation of 
threaded cognition is underspecified for multitasking in this 
environment. The main issue for cognitive engineering is 
how much does threaded cognition shift the burden of task 
switching from the modeler to the architecture. In the ACT-
R architecture without threaded cognition the modeler must 
make an explicit request of the goal module to switch goals. 
With threaded cognition the goal module, if two or more 
goals match, will allow only one production with a goal of 
that type to execute at a time, since it will be placed at the 
end of the queue after its production executes. This will be 
fine in situations where this type of alternate behavior is 
required, but in most situations other factors determine task 
behavior. For example, pilots do not alternate between 
checking the speed of the plane and looking at the center 
line. The pilots check their position on the taxiway much 
more than checking the speed. The speed is checked at 
periodic intervals, which is implemented in SimPilot by the 
temporal module. 

In many cases, the first production of a thread is a check 
for some condition, for example, is the speed of the aircraft 
within certain limits. If not, then the function of the thread is 
to correct that condition as fast as possible. In these cases 
the threat should not be interrupted. With the current 
implementation, it is up to the modeler to code this into the 
productions. So while some of the task control has been 
shifted to the architecture, much of it must still be done by 
the modeler. 

In developing the model, it became evident that 
decomposing the taxiing task into subtasks required that 
each subtask maintain its own representation in the imaginal 
buffer to hold the knowledge unique to that subtask. For 
example, monitoring speed requires knowledge about speed 
limits while navigating requires knowledge about position. 
Global data, such as where you are on the route to the 
runway, is data shared by different subtasks and need to be 
held in a shared buffer. In SimPilot a global buffer called 
the situation buffer was created. This buffer can be thought 
of as an imaginal buffer for the entire task. It has the same 
modeling considerations as regular imaginal buffers such as 
how long should the data persist before some it should be 
practiced, etc. 

The interface to the X-Plane environment initially seemed 
promising but has not worked as hoped. For the cockpit 
interface, SimPilot needs to know the x and y pixel location, 
name, color and size of all the instruments. X-Plane does 
provide the names and the x and y pixel locations for some 
of the instruments but not for the majority of them. This 
information has to be hand calculated which is a very labor-
intensive process. The reactiveness of the model to changes 
in the plane’s data values is constrained by the polling 
interface. X-Plane does provide a datagram interface, which 
would allow faster interactions between the model and X-

70



plane, but this interface is not well-documented nor 
guaranteed not to change.  

In order to be able to make comparisons between 
SimPilot and human pilots, an analysis of where humans are 
looking while they are doing this task is essential. The next 
step in the development of SimPilot is to collect eye data on 
human multitasking behavior in this task and use the results 
improve the model. 

To simulate the multitasking required to taxi a Boing 737-
800 at a major airport, the SimPilot model uses all the 
components of ACT-R with an implementation of the theory 
of threaded cognition. This effort has both theoretical 
implications for ACT-R and threaded cognition and is a 
start on solving the important applied problem of the effects 
of multitasking on pilot performance.  
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In this paper we introduce a new cognitive modeling system 
called Emergic Networks. The Emergic Network system is 
designed to facilitate functional, nonlinear decomposition 
with the aim of understanding how different neural systems 
can interact to produce specific instances of cognitive 
functionality. The first part of the paper briefly describes the 
motivation for the system and the second part briefly 
describes the system and provides a web location for 
downloading. 

Second O rder Emergence 
The type of emergence we are interested in involves 
cognitive re-use (Anderson, 2010), where the same  neural 
circuits interact in different ways to produce different types 
of cognitive functionality. That is, the parts, taken together, 
cannot be considered as a module devoted to a specific 
cognitive function. There are two ways that emergence can 
be thought of as underlying cognitive functions. The first is 
when a cognitive function arises as an emergent property 
from a dedicated system of neural circuitry. In this case 
there is a one to one mapping from cognitive function to 
neural structure. We can call this, neural to functional 
emergence. Attempting to localize brain areas associated 
with particular cognitive functions would be an example of 
research based on this assumption (Poldrack, 2010). 
However, it is also possible for functions directly supported 
by dedicated neural circuitry to interact and produce second 
order functional emergence; that is, an emergic function 
arising from the interaction of underlying functions. In the 
case of second order functional emergence, it would be a 
mistake to search for a dedicated neural structure designed 
to produce that function. Instead, the goal would be to 
explain how such functions emerge through the interaction 
of underlying functions.  

Everyone agrees that some form of neural to functional 
emergence allows the brain to act in a functional way. 
However, second order functional emergence is 
controversial because it implies that the industry of mapping 
high-level observable functions to specific brain areas is 
partially or wholly misguided. This issue is represented by 
two opposing theoretical positions: the Anatomical 
Modularity position and the Cognitive Re-Use position. 
According to the Anatomical Modularity position, each 
cognitive function is implemented by a dedicated neural 
system (Bergeron, 2007). In contrast, the Cognitive Re-Use 
position (Anderson, 2010) asserts that most or all cognitive 
functions are the product of underlying, interacting 
functions that can play different roles in the formation of 

different cognitive functions. Theories related to the idea of 
Cognitive Re-Use include: neural exploitation, shared 
circuits model, neuronal recycling, massive redeployment, 
highly connected hubs, descent-with-modification 
modularity, the Lego model, fine-grained information 
processing operations  and distributed processing as 
mentioned by Anderson. 

In terms of emergence, the anatomical modularity 
position seems to be associated with an implicit assumption 
that the modules will interact in an additive, linear manner 
to produce easily decomposable aggregate behaviours. In 
contrast, the cognitive re-use position seems like it would 
almost require some form of non-linear interaction or 
emergence to get it to work. This difference is possibly due 
to the fact that the assumed output of anatomical modules is 
often symbolic in nature, whereas the functions in cognitive 
re-use would be primarily pre-symbolic; that is, functions 
that need to be combined to produce the ability to process 
symbols (or to act as if we can process symbols). 

Some cognitive modeling systems include recurrent 
interactions that can lead to emergence. For example, 
recurrent networks employ recurrent feedback loops, 
CLARION (Helie & Sun, 2011) has explicit modules for top 
down and bottom up processes that can potentially produce 
recurrent feedback, and ACT-R has been used to model 
recurrent feedback between agents (e.g., West, Stewart, 
Lebiere, & Chandrasekharan, 2005). Recurrent feedback 
also plays an important role in Dynamic systems models of 
cognition (Krech, 1950) and in various neural models, such 
as NENGO (Eliasmith & Anderson, 2003). However, while 
all of these systems can employ feedback to achieve 
interesting emergent effects, none of these systems were 
designed specifically to model and study the role of second 
order emergence in cognition. Dynamic systems theory is 
designed for studying emergence, but it is not a modeling 
system. It is a collection of mathematical tools for analyzing 
dynamic systems. A dynamic systems model must be 
constructed mathematically and there are no cognitive or 
neural constraints on how this should be done. Spiking 
neural models are designed to model neural to cognitive 
emergence. Such systems can be used to model second 
order functional emergence but the process would be guided 
and constrained by bottom up, neural constraints. This is a 
good thing, but a more complete research program would 
also involve exploring this from a purely functional point of 
view, as we are not yet completely sure what the neural 
constraints should be.  

The emergic network is designed to explore how lower 
level functions are combined and re-used to produce 
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multiple instances of higher level functionality. Emergic 
networks are non-symbolic and in some ways similar to 
spiking neuron models. In particular, the emergic units that 
make up the networks are similar to clusters of neurons that 
perform a specific function and the connections between the 
emergic units are functionally similar to the neural 
connections between clusters. Also, similar to neural 
systems, emergic networks process information in a 
continuous manner. However, the point of emergic networks 
is to understand emergence based on functionality, not 
neural behaviour. As far as we know, the emergic network 
is the first cognitive modeling system specifically designed 
to model second order functional emergence and re-use. 

Emergic Networks 
The decomposition of intelligent behaviour into cognitive 
functions and structures has traditionally progressed by 
hypothesizing macro-level functions that emerge from a 
minimal interaction between localized brain modules. An 
alternative approach considers finer grained brain modules 
as realizing micro-level functions that are extensively reused 
(M. L. Anderson, 2010) and interact to cause higher order 
functions to emerge, often in a non-linear fashion. However, 
this latter approach greatly complicates the scientific 
reduction of cognition not only because of an extra level of 
non-linear decomposition, but mostly due to a lack of 
characterization and experience in such an analytical space. 
Emergic networks are meant as a step forward in clarifying 
and dealing with this issue. 

An emergic network consists of a connected set of 
emergic units, each forming a micro-level portion of 
functional computation and behaviour. An emergic unit 
computes a function that can be represented mathematically 
or by computer code. Emergic units have input and output 
ports that connect them to other emergic units through links. 
Links transport values between the units. The values can 
take any mathematical form (e.g., numbers, vectors, and 
statistics). Links are unidirectional and have a scaling factor 
that is set to 1 by default. Input and output ports can be 
connected to multiple links. By default, link values are 
summed at input ports while an output port will duplicate its 
value to all destinations. 

The emergic network architecture is synchronous, with 
links having a minimal delay of one tick. That is, the 
delivery of values through the links is clocked so that all 
values arrive at the same time. The values flowing around 
the network are intended to represent small changes, i.e., to 
approximate a physical system of continuous change and 
interaction (Rumelhart, McClelland, & Group, 1987). 
Emergic networks model asynchronous behaviour by setting 
time delays (counted in ticks) small enough for computing 
the effective functions of emergic units in an incremental 
fashion. 

It is interesting to note that although the emergic network 
was developed independently, the structure we have just 
described is very similar to NENGO, which is a spiking 
neuron modeling system. This is can be attributed to the fact 

that both systems are concerned with identifying the basic 
units of neural computation. In NENGO the functions 
carried out by the emergic units are carried out by realistic 
spiking neuron models. However, the focus of these systems 
is different. The focus of NENGO is to consider realistic 
neural constraints when modeling systems of neural 
computation. The focus of emergic networks is to model 
second order emergence and cognitive re-use. That is, to 
explore how different functions can interact to produce 
cognitive phenomena. The goal with emergic networks is to 
work out cognitive design principles that might otherwise be 
overlooked by assuming a one to one mapping between 
cognitive functions and neural units.  

The code for building Emergic Networks can be 
downloaded from http://emergic.upwize.com/?page_id=6. 
Currently we are working on an emergic network model to 
produce a unified account of low level visual effects such as 
filling-in. Preliminary results are available at 
http://emergic.upwize.com/?page_id=31. 
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Abstract
We propose a hierarchical approach for Bayesian modeling and
segmentation of continuous sequences of bimanual object ma-
nipulations. Based on bimodal (audio and tactile) low-level
time series, the presented approach identifies semantically dif-
fering subsequences. It consists of two hierarchically executed
stages, each of which employs a Bayesian method for unsu-
pervised change point detection (Fearnhead, 2005). In the first
step we propose to use a mixture of model pairs for bimanual
tactile data. To this end, we select "object interaction" and "no
object interaction" regions for the left and the right hand syn-
chronously. In the second step we apply a set of Autoregressive
(AR) models to the audio data. This allows us to select regions
within "object interaction" segments according to qualitative
changes in the audio signal. Two simple model types that allow
the calculation of modality-specific segment likelihoods serve
as a foundation for this modeling approach. Based on the ac-
quired ground truth, empirical evaluation has showed that the
generated segments correctly capture the semantic structure of
the test time series. The developed procedure can serve as a
building block for higher-level action and activity modeling
frameworks.

Introduction
An important objective of today’s interdisciplinary research
of human-machine interaction is machine perception of hu-
man action and activity (Krüger, Kragic, Ude, & Geib, 2007),
(Bobick & Davis, 2001), (Turaga, Chellappa, Subrahmanian,
& Udrea, 2008), (Aggarwal & Park, 2004). Areas like cogni-
tive and social robotics, artificial intelligence, ambient intelli-
gence, sports science and neurobiology collaborate on under-
standing of the mechanisms of human movements. Research
in cognitive robotics is aimed towards enabling robots to in-
teract with humans in everyday scenarios. Within this area,
we focus on the topic of autonomous identification of biman-
ual object manipulations from low-level bimodal observation
sequences. In order to participate in a simple interaction sce-
nario or learn from a human, a robot needs the ability to au-
tonomously single out relevant parts of the movement exe-
cuted by a human.

Analysis of various sensor readings describing the human
hand dynamics during manual interaction have been con-
ducted recently by different researchers (Bernardin, Ogawara,
Ikeuchi, & Dillmann, 2005; Dillmann, Rogalla, Ehrenmann,
Zöllner, & Bordegoni, 2000; Kawasaki, Nakayama, & Parker,
2000). In general, one is interested in autonomous identifi-
cation of action primitives in the context of imitation learn-
ing and human-machine interaction (Sanmohan, Krüger, &
Kragic, 2010; Takano & Nakamura, 2006). Within this do-
main, Matsuo et al. focused on force feedback (Matsuo,

Murakami, Hasegawa, Tahara, & Ryo, 2009) while a com-
bination of different sensors like CyberGlove, Vicon or mag-
netic markers and tactile sensors has been used by (Pardowitz,
Knoop, Dillmann, & Zöllner, 2007), (Kawasaki et al., 2000)
and (Li, Kulkarni, & Prabhakaran, 2006). In (Zöllner, As-
four, & Dillmann, 2004) a bimanual approach is described.
Audio and ultra-wide band tags have been successfully used
in (Ogris, Stiefmeier, Lukowicz, & Troster, 2008) and (Ward,
Lukowicz, Troster, & Starner, 2006).

Identification and learning of manual action primitives
from continuous sequences is still an open question. We
address it by proposing a novel hierarchical approach for
uni- and bimanual time series. The bimodal approach is
inspired by the fact, that humans employ different percep-
tion channels like hearing, proprioception, haptics and vi-
sion. Furthermore, our recent work has showed that audio
and tactile data can generate a symbolic sequence of ac-
tion primitives of sufficient granularity and semantic content
(Barchunova, Haschke, Franzius, & Ritter, 2011). The auto-
matically extracted action primitives have been successfully
used in a classification application with HMM-based models
(Grossekathöfer et al., 2011). During a considerable num-
ber of simple object manipulations (e.g. grasping, shifting,
shaking, pouring, stirring or rolling) application of force is
naturally accompanied by specific types of sound. We ex-
ploit this fact by performing modeling and segmentations
based on the analysis of the audio signal structure and contact
forces recorded on the fingertips. Our method handles three
main challenges arising in automated modeling of action se-
quences: (i) inter- and intrapersonal variance of sensor data,
(ii) absence of prior knowledge about the structure of the ac-
tion sequence (i.e. location, type and number of action prim-
itives) (iii) modality fusion. The data recorded for different
human demonstrators exhibits a high degree of interpersonal
and intrapersonal variance. However, our method solely de-
pends on the temporal structure of the data and is invariant
to absolute data values, the speed of action execution, way of
grasping or the manipulation object. Furthermore, the output
is person-invariant. Our method does not employ any spe-
cific knowledge about the components of the action sequence.
Based on two simple models, the modeling does not require
a large set of domain-specific heuristics describing each ac-
tion primitive as is commonly the case in similar approaches
(Pardowitz et al., 2007; Kawasaki et al., 2000; Zöllner & Dill-
mann, 2004). Due to the simplicity of these two fundamental
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Figure 1: Experimental setup: a human demonstrator wearing
contact sensors performs manipulation operations with a plas-
tic bottle equipped with a structure-borne microphone. The
CyberGlove trajectories also recorded in this scenario are not
evaluated in this work.

models and the modeling concepts used within our approach,
the developed procedure can be easily used in a wide range of
scenarios, like imitation learning, cooperation and assistance.
Because the segmentation steps for individual modalities are
executed hierarchically, no additional multimodal fusion (e.g.
(Ogris et al., 2008)) is necessary.

We evaluate our method in an everyday scenario in which
a human demonstrator performs several object manipulation
operations with a large non-rigid plastic bottle with a han-
dle. In this evaluation, we assess the performance of the
segmentation method w.r.t. the accuracy of the generated
segment borders. The rest of this paper is organized as fol-
lows: Sec. ”Experimental Setup” explains the acquisition of
action sequences within the scenario. Sec. ”Segmentation
Method” introduces the two steps of the proposed method.
In Sec. ”Evaluation” we discuss our evaluation method and
experimental results of the procedure, Sec. ”Conclusion and
Outlook” concludes the paper with a brief discussion and out-
look.

Experimental Setup
In our scenario, a human demonstrator performs sequences of
simple uni- and bimanual object manipulations with a gravel-
filled plastic bottle1, as can be seen in Fig. 1.

We use two types of sensors to record the time series of the
performed action sequences (corresponding modality names
used in formulas appear in parentheses):

• A structure-borne microphone AKG C411 L attached to
the bottle records an audio signal (a), which is focused
on in-object generated sound, ignoring most environmental
noise.
1The use of gravel instead of liquid is due to safety concerns.

We have used liquids in a similar scenario restricted to the audio
modality.

• 2 × 5 FSR pressure sensors attached to the fingertips of
each CyberGlove (t: both hands, tl: left hand, tr: right
hand) record the contact forces.

The human demonstrator was instructed to perform a se-
quence of basic manipulation actions in the fixed order
showed in the enumeration below. To obtain ground truth
for later evaluation of computed segment borders we have
used two methods of ground truth acquisition: manually
annotated (unconstrained) and automated cue-driven (con-
strained). In the unconstrained scenario the human demon-
strator was asked to conduct the sequence at her/his natural
speed. The annotation of the action sequences has been con-
ducted based on a video recording of the interaction scene.
Within the cue-driven constrained scenario the aspired be-
ginning or end of an action within a sequence was signalled
to the human demonstrator via headphones as explained in
(Barchunova, Haschke, Franzius, & Ritter, 2011). To achieve
a rich variance for individual action primitives between dif-
ferent trials in the constrained scenario, we added Gaussian
noise to the nominal time of the action primitives as specified
in parentheses:

1. pick up and hold the bottle with both hands (2 s + η1)

2. shake the bottle with both hands (.7 s + η2)

3. hold the bottle with both hands (.3 s + η3)

4. put down the bottle and pause (1 s + η4)

5. unscrew the cap with both hands (1.2 s + η5)

6. release cap and pause (1 s + η6)

7. grasp and lift the bottle with right hand (2 s + η7)

8. pour with right hand (1 s + η8 + 1 s + η9 )

9. hold the bottle (.3 s + η10)

10. put down the bottle and pause (1 s + η11)

11. screw the cap with both hands (1.2 s + η12 )

The random variables ηi ∼ N (0, .5 s) denote the randomized
timing of subsequences. The overall length of the time se-
ries of a trial accumulates to approximately 30 seconds. Both
annotation methods have specific advantages and disadvan-
tages. The cue-driven annotation is a completely automated
way of ground truth acquisition, avoiding time-consuming
manual annotation but putting constraints on the execution
speed and sequence. This method is suitable for acquiring
ground truth for large number of trials. Manual annotation is
more precise and more time-consuming, but it does not rely
on perfect adherence to audio cues by the human demonstra-
tor.
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Segmentation Method
The recorded time series of multiple sensors capture complex
descriptions of action sequences. This section describes how
such time series data is segmented and modeled. Our seg-
mentation approach applies Fearnhead’s method (Fearnhead,
2005) previously used for unsupervised detection of multi-
ple change points in one-dimensional time series. In his
work Fearnhead describes a deterministic method that maxi-
mizes the posterior distribution of the number and location of
change points w.r.t given observations. The estimated change
points are optimal in the sense that a combination of a prior
distribution on segmentations and segment-wise likelihoods
is maximized. The segment likelihood is computed with re-
spect to a single model chosen from a fixed set of models.
Our approach combines a preprocessing step with a set of
simple, modality-specific models to enable a probabilistic de-
scription of the recorded time series as the basis for apply-
ing Fearnhead’s algorithm (introduced in Sec. ”Bayesian Seg-
mentation”). In the preprocessing step each sensory channel
is reduced to a compact scalar description capturing its tem-
poral structure. Two basic data models, an autoregressive and
a threshold model, are employed within the procedure for the
channel-specific modeling (see Sec. ”Basic Data Models”).
Their association to the tactile and audio modalities is ex-
plained in Sec. ”Signal Preprocessing for Basic Models”. Fi-
nally, in the Sec. ”Two-Stage Segmentation” the two stages of
the procedure – the segmentation based on the tactile modal-
ity and the subsegmentation based on audio – is described.

Bayesian Segmentation
In general, Fearnheads’ algorithm segments an arbitrary time
series y1:T by determining a set of change points 1 < τ1 <
· · · < τN < T at which qualitative changes occur in the data.
Within the probabilistic framework of Fearnhead’s algorithm,
the optimal segmentation is obtained by maximizing the
Bayesian posterior2 P(y1:T | τ1:N)P(τ1:N) which consists of a
likelihood term and a prior distribution over segmentations
P(τ1:N). In a common choice of this prior, the probabil-
ity P(τ1:N) is composed of probabilities of individual seg-
ment lengths which are computed according to the geomet-
ric distribution P(l) = λ(1− λ)l−1. Consequently, the prior
is characterized by a single parameter λ that is reciprocal to
the expected segment length under a geometric distribution,
i.e. λ ∝ 1/u where u is the expected length of subsequences.
Once λ has been chosen, neither the number of change points
N nor any information regarding their positions have to be
specified in advance.

The likelihood term P(y1:T | τ1:N) is the probability, that
the observed time series originates from a set of given mod-
els, which are fixed over the period of an individual segment.
To this end, a finite set of models M is employed. Given a
particular model m ∈ M , the marginal likelihood P(ys:t | m)
is the probability, that the entire subsequence ys:t can be ex-

2We suppress the constant normalization factor P(y1:T )
−1.

plained by this model. Prior probabilities P(m) can be asso-
ciated with all models to reflect their relative frequency.

Basic Data Models
In order to locally represent the preprocessed sensor data we
employ two simple kinds of probabilistic models: a thresh-
old model and a set of autoregressive models AR(1), AR(2),
AR(3).

The threshold model is a binary model designed to es-
timate whether the entire segment data lies below or above
a given threshold γ. The marginal likelihoods associated to
these models, denoted by m<γ and m>γ resp., indicate how
well the time series segment ys:t fits the assumptions of being
below or above the threshold. For m<γ we define the improper
marginal likelihood as follows:

P(ys:t | m<γ) =
t

∏
k=s

p(yk|m<γ), (1)

where p(yk | m<γ) =

{
1, if yk < γ
po otherwise

(2)

where p(yk|m<γ) is the probability, that a single sample yk fits
the model assumption. The parameter p0 is the probability of
a simple data point yk being an outlier w.r.t. the model. De-
noting the segment length by u = t − s and the number of not
fitting samples by n = |{yk > γ | s ≤ k < t}|, and ignoring
the constant normalization factor, we can derive the follow-
ing, more compact formulas for both models:

P(ys:t | m<γ) = po
n and P(ys:t | m>γ) = po

u−n (3)

As can be seen from Eq. 3, the marginal likelihood becomes
smaller, the more data points are on the wrong side of the
threshold.

The Autoregressive model is a special case of a general
linear model ys:t = G(p)

s:t β+ ε, where β and ε denote the pa-
rameter vector and white noise respectively. The matrix of
the basis vectors for the autoregressive model of order p = 3
is defined as follows:

G(3)
s:t =





yt−1 yt−2 yt−3
yt yt−1 yt−2
. . . . . . . . .

ys−1 ys−2 ys−3



 .

Please refer to (Fearnhead, 2005), Section II and III.B for the
method of likelihood calculation for this model.

Signal Preprocessing for Basic Models
The preprocessing steps are modality-specific and facilitate
subsequent likelihood calculations.

Tactile signal. The tactile feedback is susceptible to strong
noise and large variations within action primitives (e.g. dur-
ing shaking). Thus, tactile values for each hand are summed
up to yield a cumulative tactile force for each time spot. The
threshold models are applied to this scalar time series to dis-
criminate “object contact” from “no object contact” for each
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Table 1: Overview of channel-specific models.

Sensor channel Model Notation
tactile sum left threshold mL, ml
tactile sum right threshold mR, mr
audio signal AR mAR(1), mAR(2), mAR(3)

hand. The parameter γ specifies the threshold for recognizing
hand-object contact. We denote the “object contact”-models
with capital-letter subscripts: mL and mR for the left and right
hand respectively. The corresponding notations for the “no
object contact”-models are ml and mr. Note that the assign-
ment of a “contact” or “no-contact” model by the segmenta-
tion method automatically yields an identification of the con-
tact status during the segment.

Audio signal. Often, actions are accompanied by a typical
sound, whose structure and volume remains approximately
constant during the whole action primitive. Consider for ex-
ample shaking an object or pouring water into a glass. Also
segment boundaries are sometimes accompanied by a short,
but strong change of the audio signal, e.g. placing or dropping
an object.

Hence, we consider the local oscillating structure of the
recorded audio signal. The signal is also subsampled and
recording artifacts are removed by discarding samples whose
amplitude exceeds a specified threshold. The resulting time
series is logarithmized and whitened to normalize it to a given
variance range w.r.t. amplitudes of individual samples. To
the preprocessed data we apply the autoregressive models de-
noted by mAR(1), mAR(2) and mAR(3).

The Table 1 summarizes the association of data models to
sensor channels.

Two-stage Segmentation
In our two-stage segmentation approach, we use tactile in-
formation to obtain a rough split of the sequence into subse-
quences of “object interaction” and “no object interaction”.
Subsequences that have been recognized as “object interac-
tion” are analyzed in detail w.r.t. qualitative changes of the
audio signal in order to refine the rough segmentation.

In the following two subsections, we describe the applica-
tion of Fearnhead’s algorithm to bimanual tactile data (first
segmentation step) and to audio modality (second subseg-
mentation step). This is based on two respective sets of mod-
els M and Msub. Hereby M consists of a mixture of product
models based on the threshold model applied in the first step;
Msub is a set of simple AR models, which is applied in the
second step. The two-stage application of the segmentation
procedure and the modality-specific local and bimanual mod-
els constitute the main contributions of this paper.

Segmentation Based on Tactile Modality The first step
performs a rough joint analysis of the tactile signals of both
hands. The analysis of bimanual data is based a mixture of
four pairs of threshold models M , combined in a multiplica-

tive way. Each pair corresponds to a particular contact state of
the left and the right hand at once. All possible combinations
of pairs define the following set M := {mlr,mLr,mlR,mLR},
where “no contact for both hands” (mlr), “contact for left
hand only” (mLr), “contact for right hand only” (mlR), and
“contact for both hands” (mLR). The likelihoods of these
joint models are computed as products of the individual like-
lihoods, e.g.:

P(ys:t | mlR) = P(ys:t | ml) ·P(ys:t | mR)

An overview of the notation can be found in the Table 2. As-
signments of the four joint contact-state models to segments
in a computed segmentation are illustrated in the first row of
Fig. 2. Contact assignments identify parts of the time series
that are directly associated with object interactions. With this
approach no additional fusion is necessary for modeling of
the bimanual tactile data. The contact state for both hands is
determined in one pass.

Table 2: Overview of notation used for product models.

Notation Description
mlr no contact for both hands
mlR contact for right hand
mLr contact for left hand
mLR contact for both hands

In contrast to a pointwise application of threshold methods,
Fearnhead’s method – even when used with threshold models
– is not sensitive to noise which could otherwise lead to se-
vere oversegmentation with many extremely small segments.

Sub-segmentation of Object-Contact Segments Based on
Audio Modality In this subordinate segmentation step,
all segments related to object interaction are further sub-
segmented employing the audio modality and using Fearn-
head’s method once again. This time, the signal is assumed
to be produced by Auto-Regressive (AR) models of order
1, 2 or 3: Msub = {mAR(1),mAR(2),mAR(3)}. Thus the sub-
segmentation is formed by selecting segments that exhibit
homogeneous oscillatory properties within the audio modal-
ity. The sequential application of segmentation and selection
steps yields a set of segments that are characterized by con-
stant contact topology in respect to overall hand activity as
well as homogeneous characteristics of the audio signal.

Evaluation
We recorded 60 trials of the action sequence described in
Sec. ”Experimental Setup” with three subjects. This corre-
sponds to ca. 105 data points and 60× 11 = 660 expected
change points in total. For each subject, 10 trials have been
recorded with automated cue-based scheduling for ground
truth and 10 trials have been manually annotated. Cue-
based ground truth has been described in our previous work
(Barchunova, Haschke, Franzius, & Ritter, 2011). In order
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Figure 2: Hierarchical segmentation of a multimodal time series of action primitives: The first row shows the summed tactile
signals of both hands and the resulting segmentation (cf. Sec. "Segmentation Based on Tactile Modality"). The segments
indicated by an alternating coloring, perfectly match the underlying object-interaction structure. The second row displays
the raw audio signal and the more detailed segmentation structure gained from refining object-interaction segments obtained
from tactile-based segmentation (cf. Sec. "Segmentation Based on Audio Modality"). This subordinate segmentation step can
correctly identify the subsequences: grasp, hold, shake, put down and pour.

to obtain the annotated ground truth for the beginning and
the end of actions within the sequences, the data has been
hand-labelled based on the video and audio recorded by an
additional camera3. The corresponding labels have been set
to match exactly the action primitives described in Sec. :
grasp+lift2, shake, hold2, putdown2, unscrew, grasp+lift1,
pour, hold1, putdown1, screw. In the following section we
analyze the results of applying the two-stage segmentation to
the constrained and unconstrained scenario.

Segmentation Quality
We assess the obtained segmentations w.r.t. the timing accu-
racy of the generated segmentation in both, the constrained
and the unconstrained scenario. In order to assess the aver-
age error µ, the temporally closest generated change point is
searched within a temporal window around the ground truth
change point. The average distance between the ground truth
and the generated change point measures the accuracy of the
segmentation. The value µ is calculated by averaging over the
trials.

The Fig. 3 (left) shows an overview of subject-specific tim-
ing deviations for all three human demonstrators hd1, hd2,
hd3 in the constrained scenario. As can be seen from the
figure the average action-specific temporal error lies in the
range from 0.05 seconds to 0.3 seconds for all subjects. In
most cases it lies below 0.2 seconds. Furthermore, the action-
specific error between different subjects varies in the range of
0.1 seconds. The variance of the error is negligible.

The Fig. 3 (right) compares the constrained and uncon-
strained execution scenarios. The red bars illustrate the tem-
poral error averaged over all subjects for the constrained sce-
nario (see left plot). The green bars present the temporal er-
ror averaged over all subjects in the unconstrained scenario.
The plot does not show strong difference between the action-
specific errors for both scenarios. The largest differences oc-
cur for “pour”, “hold” and “putdown1”.

Tests conducted with different test objects, fluids, different

3Here we have used a QuickCam Pro 9000 Analog Mono

sequences of object manipulations have showed comparable
results. The assignment of product models to the bimanual
tactile data in the first step has yielded 100 percent correct
results. A more detailed evaluation of the segmentation pro-
cedure can be found in (Barchunova, Haschke, Grossekathoe-
fer, et al., 2011).

Conclusions and Outlook
In this paper, we presented a novel method for unsupervised
bimodal segmentation and modeling of object manipulation
operations in the context of a bimanual interaction scenario.
We carried out experiments with human subjects and applied
the proposed method to the collected data in two different
scenarios: constrained and unconstrained. The experimental
evaluation has showed satisfactory results in both scenarios.
In particular, the results showed invariance of the segmenta-
tion quality w.r.t. different human demonstrators and speed
of execution.

The robustness and generalization ability make the method
suitable for use as a building block in higher-level modeling
procedures. Due to the simplicity of the two fundamental
models and the modeling concepts used within our approach,
the developed procedure can be easily used in a wide range
of scenarios. Furthermore, the hierarchical approach to seg-
mentation makes traditionally applied fusion unnecessary.

In our future work we seek to apply our method online
within a higher-level human-machine interaction scenario.
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Introduction 
Spoken dialog systems (SDSs) have to respond adequately 
in many different situations to a multitude of different, 
partly misrecognized user inputs. Thus, user simulation is a 
valuable means to test such systems during design time. 
Although the user models used for the simulation are often 
incomplete and not always accurate, the simulated data 
contain much of the information found in a user test 
(Engelbrecht, 2012). Thus, next to reducing the effort to 
adapt the models to new systems, an interesting research 
question is how to analyze large amounts of generated data 
efficiently. This paper contributes to two types of analysis, 
namely design error detection, and prediction of perceived 
system quality. 

Both tasks can be improved by modeling the point-of-
view of the user on the dialog. One aspect of this is what the 
user believes to be the current system state. A wrong belief 
may point to concrete interface problems. On the other 
hand, we may be interested in how the user perceives the 
dialog to progress. From such data, it may be possible to 
derive good predictors of user judgments. 

This paper presents ongoing work on this topic. We do 
not use a general model of cognition, but rather model this 
specific aspect of cognition on a conceptual level. The 
model is used to annotate real user interactions with an 
estimate of the believed system state at each dialog 
exchange. From this, several parameters are derived and 
correlated with design problems annotated in the corpus and 
with judgments by the users. 

Belief Model 
The believed system state is structured in the same way as 
the real system state. It consists of a set of slots (or 
variables) for each type of input, e.g. price range or food 
type. These slots are filled with values provided in the user 
utterances)(G)!)C( "#( $%&( '$$&()*+&( ,-./( 0112"*!( #1(( )( +%&)3(
-$)0")*( (&4$)'()*$5( "4( 164&(7&8C( $%&( 494$&/( :1'0d add the 
7)0'&(,+%&)35($1($%&(price 401$C()*8(,"$)0")*5($1($%&(food slot. 
Later, these values are used in the database query to find a 
matching restaurant. Contrary to the system state, the 
believed system state is not updated based on the concepts 
mentioned by the user, but based on the system feedback. 

Recent work circling around POMDP-based, self-learning 
SDSs has discussed how a system may track several 
concurring hypotheses about the previous user inputs in a 
probabilistic representatio*(1#($%&(,6&0"&7&85('4&(($)424(W&)!)(

Thompson et al., 2010). Although a probabilistic model 
would be more powerful, we use a deterministic, rule-based 
belief model. The reason is that users exhibit far more 
competencies than systems in extracting context 
information, which are difficult to model statistically. In 
addition, the parameterization and model structure are not as 
straightforwardly specified. 

In order to exemplify the resolution level of the system, 
some example rules for the belief update are presented in 
Table 1. It can be noted that rules can refer to many, and 
completely different, aspects of the dialog history, which 
complicates the efficient probabilistic representation in a 
Bayesian network. In addition, processing these rules 
requires some annotations of the prompts, mainly with the 
confirmed concepts and explicit or implicit information they 
carry about the system state. 

 
Table 1: Belief update rules (examples). 

! Add concepts explicitly confirmed by the system. 
! In case affirmation of the confirmation by the user is 

required, and the user does not affirm or the system 
asks for any of the confirmed values in the next 
exchange, remove all confirmed values. 

! Empty slots queried by the system; however, if the 
system asks to repeat the value, filled the slot with an 
'*2*1:*(7)0'&(W,;;;5X. 

! If the system provides no feedback, add all values of 
the previous user utterance, as long as the system 
continues consistently (e.g. not asking for one of the 
provided slots) 

Use Case 
In order to analyze how the belief model can support the 
analysis of experimental data, we use a database collected 
with the BoRIS restaurant information system (Möller, 
2005). 40 Users (29m, 11f; M = 29.0y, SD=9.7) performed 
five different tasks. Three dialogs could not be used in the 
analysis, resulting in 197 dialogs (2001 exchanges) in the 
entire dataset. 

Each dialog was judged on a SDS usability questionnaire. 
Factor analysis revealed a scale related to the overall 
acceptance of the system (for details, see Möller, 
Engelbrecht & Schleicher, 2008). In addition, log files are 
available, listing transcripts of each user and system turn 
along with speech understanding errors and task success 
annotations. Finally, a list of design problems was compiled 
and annotated at all dialog exchanges where they manifest 
in interaction problems. 
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Results 
First, it is analyzed how well problematic exchanges can be 
predicted by the occurrence of mismatches between actual 
and believed system state. Intuitively, situations where the 
user has a wrong belief about the system state are 
problematic by themselves. However, we try to provide 
some quantification with respect to the problems annotated 
in the database. This is usually measured by recall and 
precision, where recall measures how many of the 
exchanges where a problem is annotated are also annotated 
with a wrong belief state. Precision, in turn, measures how 
many of the wrong belief state exchanges also have a 
problem annotation. We measure a recall of 0.50 and a 
precision of 0.66. In other words, checking the 893 
exchanges where a wrong belief was annotated, half of the 
problematic situations are found, and 304 exchanges are 
analyzed in vain. 

Figure 1: Distance between believed and desired system 
state through the 12 exchanges of an example dialog, and 

regression line through the points. 
 
Next, features for the prediction of the user ratings were 

created. User judgments have previously been predicted 
from interaction data using trained classifiers (Walker, 
Litman, Kamm & Abella, 1997). A main problem remains 
to find good predictors generalizing across different 
systems. Analyzing the interactions from the '4&(.4(
perspective may be a key factor to achieve this. 

First, the edit distance between the believed system state 
and the user goal can be determined as the number of 
unfilled slots plus twice the number of wrongly set slots. As 
illustrated in Figure 1, this distance can be specified for each 
exchange in a dialog. Via linear regression, the progress 
towards the goal can then be specified as the gradient of the 
regression line. Correlation analysis shows that the gradient 
is a fair predictor of system acceptance, compared to the 
standard predictors dialog duration and task success (Table 
2). If we only consider the gradient over the last three 
exchanges, the correlation is even higher, which could be 
interpreted as recency effect (cf. Hassenzahl & Sandweg, 
2004). 

Table 2: Correlations of performance and judgments. 
Performance r p 
task success 0.26 0.00 
dialog duration 0.31 0.00 
gradient(dist.), all 0.26 0.00 
gradient(dist.), last3 0.34 0.00 
CER 0.00 0.96 
perceived CER -0.21 0.00 

Furthermore, the perceived concept error rate (CER) can be 
calculated by comparing what the user said at each 
exchange to what she believes was understood. Table 2 
shows that, contrary to the true CER, the perceived CER is 
significantly correlated with the judgments. 

Conclusion 
This paper showed, using an example SDS, that modeling 
the belief users have about the system state over the course 
of a dialog can provide valuable information for data 
analysis. Differences in the believed and desired system 
state (vaguely) hinted to system design errors. In the future, 
more qualified indicators may be derived from the belief 
annotations. Furthermore, new parameters for the prediction 
of user judgments were derived and showed correlations 
with the judgments in the range of task success and dialog 
duration. Subsequent research will show if the new 
parameters are independent from previous ones and thus 
useful as additional predictors. 

Unfortunately, as many different parameters and complex 
relations between the dialog acts of user and system need to 
be exploited to update the believed system state, no sound 
probabilistic model could be presented at this stage. In 
addition, the generalization of the model to other SDSs has 
to be tested. Finally, other knowledge users collect about the 
system during a dialog could be tracked to analyze the data 
more comprehensively and run user simulations with the 
models. All this will be dealt with in future work. 
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Abstract 

Until today there exist few theoretical assumptions about 
the concept of landmark salience. They could be divided 
into two fields: a more physical view (inherent aspects of 
the landmarks) and a more cognitive/personal view (the 
validation of the specific landmark from the individual 
cognitive features). We here combine these two aspects 
and present first empirical evidence for the inter-
dependence of visibility and structural salience. 

K eywords: wayfinding; landmarks; perceptual, cognitive, 
structural salience; visibility 

Introduction 
What is a landmark and how can a landmark be defined? 

Today there exist several definitions of landmarks (e.g., 
Lynch, 1960; Presson & Montello, 1988), additionally 
models of landmark salience have been put up (e.g., Klippel 
& Winter, 2005; Caduff & Timpf, 2008). 

While Lynch (1960) assumes objects to have inherent 
physical features that make them a landmark, Presson and 
Montello (1988) emphasized the importance of visual 
contrast of an object to its immediate surrounding. Thus, 
visual aspects seem to play a major role in landmark and 
wayfinding research. Within this context Caduff and Timpf 
(2008) proposed the importance of @!"#$%&'"#(( )&*%&+,%C(
prominent or obvious features compared to other features- 
(p. 250). This leads to a competition between different 
objects to be chosen as landmarks. In other words, they need 
to draw our attention (extrinsically as well as intrinsically). 
Such competition will serve as basis for a) comparing 
different salience concepts and b) establishing our own 
salience model based on the previous concepts, empirical 
findings, and modeling. 

Our first assumption is based on the approach by Gärling, 
Böök, and Lindberg (1986). It is defined in more detail by 
Caduff and Timpf (2008) and means that there is a trilateral 
relationship between the observer, the object (that is 
potential a landmark) and the environment (figure 1). This 
implies that the object cannot be assessed without the 
context. 

Caduff and Timpf´s (2008) model includes the three 
concepts of salience: perceptual (the bottom-up perception), 

cognitive (top-down factor; wayfinders. experience and 
knowledge), and contextual (measure of attention that the 
wayfinder can render). Furthermore, they focus on the 
personal and cognitive aspects of a wayfinder in the context 
of wayfinding and landmarks as highlighted in the trilateral 
relationship (figure 1). 

 
Figure 1: Observer, object, and environment have a 

trilateral relationship (based on Caduff & Timpf, 2008). 
 
Sorrows and Hirtle (1999) proposed a concept which 

concentrates more on the physical aspects of the landmarks: 
visual (visual characteristics of the landmark), cognitive 
(meaning or prototypicality), and structural (location in 
space) salience. Based on this landmark salience concept, 
Klippel and Winter (2005) proposed a mathematical model 
and amended it with the concept of visibility (Winter, 2003). 
Each quality in their model is expressed by a normed 
measure of salience (with values in the interval [0, 1] ! "). 
These individual measures are combined to a joint salience 
of a landmark in a weighted sum (formula 1). This joint 
salience is moderated by the visibility (formula 2): 

 
s0 = wvsv + wsss + wusu with wv + ws + wu = 1 (1) 

 
st = v * s0 = vwvsv + vwsss + vwusu (2) 

 
s0 = joint salience; sv =visual salience;  
ss = semantic salience; su = structural salience,  
wv, ws, wu = weighting factors, 
st = total salience; v = visibility 
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We use this formula as a starting point but adapt the 
definitions of the components. In our model we combine 
cognitive and personal aspects similar to Caduff and Timpf 
(2008) with physical aspects similar to Sorrows and Hirtle 
(1999). We think that the following four major aspects 
constitute the salience of a landmark: 

 
1. perceptual salience (p), 
2. cognitive salience (c), 
3. structural salience (s), and 
4. visibility (v). 

Perceptual salience (p) 
We define the perceptual salience as the physical aspects 

of the object (color, shape, texture, orientation, height, 
weight; these are not the only ones, see Hamburger & 
Röser, 2011). One inherent aspect is the contrast to the 
surroundings as described by Itti and Koch (2001). Objects 
need to be highly noticeable in order to pop out from the 
surroundings (Presson & Montello, 1988; Janzen & van 
Turennout, 2004). 

Therefore, this salience type should reflect the setting at 
an intersection. A good landmark at one intersection can be 
a bad landmark at another intersection. A red house, for 
example, generally has a high perceptual salience but if it is 
located in a series of red houses, or if all houses at an 
intersection are red, than it has a low or insignificant 
perceptual salience. 

We assume that there is an absolute perceptual salience, 
but that this property is moderated by the context to judge 
the suitability of a landmark. Therefore, we need a measure 
of how much the salience level of a landmark stands out 
from the salience values of other landmarks. To achieve 
this, we compare how much the perceptual salience differs 
from the average salience values at an intersection and only 
consider salience values to be relevant which are higher than 
the average at the intersection. To achieve this, we subtract 
the average salience value of the other landmarks at the 
intersection from the salience value of the landmark in 
question. We use a maximum function to ensure the 
resulting value is at least zero. This looks as follows for an 
landmark A with a absolute perceptual salience #$% at an 
intersection i with a set of landmarks (L) &: '#$() * +,- .#$% / 0 1233456('786%7 9 :;, (3) 

where '#$()  is the intersection specific perceptual salience 
for landmark A. 

Cognitive salience (c) 
The cognitive salience is based on the personal, 

intellectual, and cultural background of the wayfinder. 
Again, the manifestation of this can only be considered 
within the direct context of the landmark (see above for the 
similar description of the perceptual salience). Imagine there 
is a gas station at an intersection. For a common car driver it 
could serve as a landmark with a high cognitive meaning. 

But, if there are two or three gas stations at this same place 
every single one has a low or insignificant cognitive 
salience. 

To express this, we used the same formula as for the 
perceptual salience. So for a landmark A with an absolute 
cognitive salience #<( at an intersection i with a set of 
landmarks (L) & we get: 

 #<() * +,- .#<( / 0 1=33456('786%7 9 :;,  (4) 
 

where #<() 'is the intersection specific cognitive salience 
for landmark A. 

If no object perceptually or cognitively contrasts the other 
objects at an intersection (that means if all objects are equal 
with regard to perceptual or cognitive concepts) then by 
definition the perceptual and cognitive salience values are 
zero. 

 
Structural salience (s) 
We define the structural salience as a local salience 

(Klippel & Winter, 2003) which reflects the position of the 
landmark at an intersection, and thereby the structure of the 
intersection where it can be found. We assume that 
structural salience has the same distribution for every four-
way, right-angled intersection (figure 2). Positions with a 
high structural salience can be viewed as places where 
people prefer to look for landmarks, which tend to be in the 
direction of the turn (see Röser, Hamburger, Krumnack & 
Knauff, in press). Or, in other words, the structural salience 
is based on the attention since it will be on the direction of 
the path. 

 

 
Figure 2: Four positions: two before and two after the 

intersection. Two directions: in direction of the turn or 
opposite to the direction of the turn (left, right). 

 
Visibility (v) 
Here, visibility is defined as a viewpoint based visibility 

which is based on the position at which the participant has 
to decide in which direction to move on (Röser, Hamburger, 
Krumnack & Knauff, in press). This is in contrast to the 
advanced visibility by Winter (2003). 

First of all, we assume that there is a visibility threshold 
for the perceptual and cognitive salience: if the visibility is 
so low that you cannot recognize the quality of the landmark 

83



that induces the salience, then that type of salience does not 
contribute to the total salience of the landmark. If the 
visibility is high enough for the observer to recognize the 
quality of the landmark that induces the salience, then that 
type of salience is not limited by visibility. For example, 
consider the identification of a train station. First, the 
wayfinder will only see a large building but there will be 
one point at which he could identify it as a train station even 
if he cannot see it clearly. On the other hand, if there is a red 
house in a haze so that the wayfinder could not identify it 
(or perceive it) than it is not usable as a landmark. 

Therefore we define specific visibility values vp and vc to 
be multiplied by the perceptual and cognitive salience: 

 >$ * ?@9 AB'CDEFCGHIJ'KIJL MB'GND'JIOPQIER'AK'OMGAFASJD:9 MGNDETAKD''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''U, 
 
and accordingly 
 >< * ?@9 AB'FMVOAGAWD''KIJL MB'GND'JIOPQIER'AK'OMGAFASJD:9 MGNDETAKD''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''U. 
 
However, visibility does not have this all or nothing effect 

on structural salience. 
Now we have all the necessary components for defining 

our model. Substituting our definitions in formula (2) we 
get: 

 #X * >$Y$#$() Z ><Y<#<() Z >Y1#1. (5) 
 

Experiments 
In the following experiments we will examine the 

influence of the visibility on the structural salience by 
eliminating the influence of the perceptual and cognitive 
salience (thus, we only investigate two factors). For this we 
use the combination of four colors and four shapes as 
landmarks. We assume that these landmarks have an equal 
perceptual and cognitive characteristic. By definition 
(formula 3 and 4), we assume that these aspects do not 
influence the results, leading to the following formula: 

 #X * >$Y$ [ : Z ><Y< [ : Z >Y1#1 * >Y1#1. (6) 
 
For a variation of the influence of the visibility we used 

different perspectives within our virtual environment 
SQUARELAND (Hamburger & Knauff, 2011): an allocentric 
and egocentric point of view (figure 3). In the allocentric 
condition the visibility is identical for all possible landmark 
positions at an intersection, while in the egocentric 
condition different visibilities emerge (e.g., amount of 
occlusion), depending on the position of the landmark at the 
intersection. 

 
Landmark material 
As landmarks we used four shapes (triangle, square, 

hexagon, and circle) that could have one of four colors 

(yellow, green, blue, and red), resulting in 16 landmarks. 
Each of the 16 landmarks was randomly distributed to the 
four positions at the 16 intersections in the maze and at each 
intersection no shape or color were presented twice. 
Depending on the direction of the turn (see figures 3 and 6), 
each of the shapes and colors were presented four times at 
each position. 

 
Experiment 1 2 A llocentric perspective 

Methods 
A total of 26 participants (18 females; 21 students) 

completed the online questionnaire. Participant´s mean age 
was 22.88 years (range: 19-38). All participants provided 
informed written consent. The students received course 
credit for participation. 

 
Mater ial 
A 2D maze consisting of 5 X 8 squares and orthogonal 

angles at each intersection was designed for this experiment 
(figure 2). For each decision there was a new map (image) 
with the route visualized up to the current position and 
decision point (figure 3). The maze with the paths and 
intersections was created in Word2007 (Microsoft Office) 
and LimeSurvey 1.85 was used to run the online 
questionnaire and for data recording. 

 
Procedure 
In the online questionnaire participants were presented 

with a short instruction to learn the given route with a map 
(16 intersections). Subsequently, they saw a short cover 
*%/!(( W0&1$2&+"( (/3( 13*%( )"*,!&4"( %5"( #"$!+")( !/3%"( %/(
someone who is unfamiliar with this route but needs to find 
the goal location of this route-X)(Then they were shown the 
path from the start point to the first intersection (allocentric 
perspective), and had to $+*6"!( %5"(73"*%&/+(065&,5(/8( %5"(
following descriptions (e.g., at the green hexagon to the 
right) appears to be most convenient for you-. This 
procedure was repeated for all intersections. 

 
Results 
Results for colors, shapes, and position at the intersections 

are visualized in figure 4. They revealed no differences 
between the four shapes (\2(3)=0.201, p=.976) and the four 
colors (\2(3)=.221, p=.974). Clear preferences of the 
participants for landmark positions were obtained: on the 
right hand side of an intersection in case of a right turn (with 
91.35%) and the left side in case of a left turn (88.91%). 
Such obvious preferences made any statistical analysis 
needless. Furthermore, for landmark positions in the 
direction of the turn, positions before the turn 9the object 
has to be passed before the turn is executed9 are selected 4.1 
times more often than the position after (behind) the 
intersection 9where the object is not physically passed. 
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Figure 3: Allocentric view of the maze (SQUARELAND) on the left. Egocentric perspective on the right (&+*%!3,%&/+:(0;&+<*(

$44&"2"+-(= 0;"8%(%3!+-X)(Landmarks are presented at the walls. 

 
Figure 4: Relative choices of the single landmark positions over all intersections, shapes, and colors in the allocentric 
perspective (left). Relative choices for single shapes and colors over all intersections and landmark positions (right). 

 
Figure 5: Relative choices of the single landmark positions over all intersections, shapes, and colors in the egocentric 

perspective (left). Relative choices for single shapes and colors over all intersections and landmark positions (right). 

Discussion 
For the allocentric perspective the visibility is the same 

for all intersections and positions and could therefore be 
ignored. Thus, we here only measured the inherent saliences 
of the landmarks, namely the structural salience (the other 
saliences assumed zero, see above). 

In summary, we could determine that the position in the 
direction of the turn, before the intersection is the optimal 
one for wayfinding/route descriptions. This is in line with 
the assumption of Klippel and Winter (2005). 

Experiment 2 2 Egocentric perspective 
We re-examined the structural salience of Experiment 1 

with an egocentric perspective within a virtual maze. Again, 
we had a learning phase in which the participants had to 
learn a route direction and decide/imagine at which position 
the landmark could/should ideally be located. 

Methods 
A total of 20 students from the University of Giessen (11 

females) participated in this experiment. They had a mean 
age of 22.9 years (range 19-29). They all had normal or 
corrected-to-normal visual acuity, provided informed 
written consent and received course credit for participation. 

 
Mater ial 
For this experiment we used the 3D version of the virtual 

environment SQUARELAND (Hamburger & Knauff, 2011) as 
described above. The walls and floor were light and dark 
gray and a neutral gray haze was implemented in the 
background, so that participants could only see the next 
intersection but no additional landmark information. 

A video led the participants passively along the path 
through the maze with 16 intersections. The route and 
positions of the landmarks (combinations of colors and 
shapes) were the same as in the allocentric experiment 
above; figure 3). The route direction and the video were 
presented by a Panasonic PT-F100NT projector. The full 
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image subtended 67 deg in height and 85 deg in width of the 
/4*"!'"!*.( '&*3$#( 8&"#))( >3?"!#$4( @)O( WA")!3*( A/!?/!$%&/+(
1991-2006) was used for running the experiment and for 
data recording (for more details see Röser et al., in press). 

Procedure 
The procedure was the same as for the allocentric 

experiment with the difference that the participants now saw 
a video (trail) (egocentric perspective) from the start point to 
the first intersection (where they had to decide which 
landmark they would prefer). Here the direction instruction 
was given in midair (figure 3). After each trial, the video 
started over until the next intersection was reached where 
participants again indicated the preferred landmark. 

Results 
The results for the colors, shapes, and positions at the 

intersections are visualized in figure 5. No differences 
between the four shapes (\2(3)=0.212, p=.976) and the four 
colors (\2(3)=.477, p=.924) were found. The participants 
preferred the positions in the direction of the turn with 
88.70%.  

Looking at the absolute frequency of the specific 
positions mentioned, we tested them for uniform 
distribution. Here we obtained a significant difference 
(\2(3)=209, p<.001). If we take the relative frequency for 
how often each position was mentioned across all trials by a 
single participant and across all participants, we calculated a 
one-factorial analysis of variance (ANOVA). This analysis 
revealed a significant difference (F(3)=9.72, p=.003). The 
post hoc t-test revealed the following for the different 
positions: 

Position T-values  P-values 
A ! B -3.432  .003 
A ! C   0.698  .494 
A ! D -4.276  <.001 
B ! C   3.617  .002 
B ! D -0.941  .358 
C ! D -4.753  <.001 

A = after intersection, opposite the direction of the turn 
B = after intersection, in the direction of the turn 
C = before intersection, opposite the direction of the turn 
D= before intersection, in the direction of the turn 
(compare to figure 6) 

Discussion 
There is no difference between the position before and 

after the intersection (independently, in the direction of the 
turn or opposite). This contradicts the general assumption 
that people prefer the position before an intersection (e.g, 
Klippel & Winter, 2005). 

Since in this experiment the visual and semantic salience 
may also be assumed to be zero (see above), thus, we only 
measured the influence of the structural salience moderated 
by the visibility. The straightforward follow-up question 

then is: What is the influence of these factors and can we 
predict the results of the egocentric experiment with the 
values from the allocentric experiment and the visibility? 

 
Modeling visibility measure 

To measure the visibility we first regard the visible parts 
of the landmarks at each decision point that is which 
proportion of the facades facing the intersection is visible 
(figures 6).  

 

 
Figure 6: Intersection with the decision point and the 

visible parts of the landmarks from this position. The gray 
highlighted area on the path is the field of view. The arrow 
gives the direction of the turn (summarized for a left and a 

right turn). 
 

Based on this we come to the following specific 
visibilities for the facades of the landmark: fA1 = fB1 = 1; fA2 
= fB2 = 0.48; fC1 = fD1 = 0.48; and fC2 = fD2 = 0. 

To calculate the visibility for one landmark we must 
average the visibilities of its two facades: 

 > * ' ]^_`]^_a  (7) 
 
This results in the following visibility values: 
 

vA = 0.74, 
vB = 0.74, 
vC = 0.24, 
vD = 0.24. 

 
With formula (6), the visibility and the results of the 

allocentric Experiment 1 can be used to predict the results 
for the egocentric Experiment 2 (figure 7). 

To do so, we multiply the results of Experiment 1 with the 
specific visibility. However, these calculated values cannot 
be compared directly to the results of Experiment 2 for the 
following reason: the measured structural salience of a 
single landmark position depends on the measured salience 
of the other landmark positions. Due to the fact that the 
participants always had to choose one position, the sum of 
all measured frequencies in our setups is always 1. The sum 
of our calculated values is less than 1. To adjust the 
prediction we divided each calculated value by the sum of 
all calculated values so that the resulting values add up to 1 
(compare to figure 7). This operation does not change the 
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ratio of the values for the different positions. The numbers 
obtained from these calculations indicate that the results 
from the allocentric experiment and the visibility are good 
predictors for the results of the egocentric experiment. 
Consequently, we may summarize that the interdependence 
between the visibility and the structural salience defined by 
Klippel and Winter (2005) and our new model could be 
empirically confirmed. 

Conclusion and further experiments 
Visibility seems to have the effect predicted by Klippel 

and Winter (2005) on structural salience. At the start we had 
five questions: 
! What determines the salience of a landmark? 
! What determines the distribution of landmarks chosen? 
! What is the influence of the surroundings on the above 

issues? Is this fully expressed in structural salience? 

! Is there an interaction between cognitive and structural 
salience or is the cognitive salience just influenced by 
the surrounding? 

! If there is an interaction, what does it look like? 
The first three questions can be answered with the model 

above. Currently we investigate the combination of the 
structural and cognitive salience. First results show that 
there is an interference between the four positions at an 
intersection and the influence of the cognitive 
characteristics. We hope to define this interaction and the 
weight factors in our formula (5) with this and further 
experiments. 

With these experiments and model we found a first 
empirical answer to the question which position should be 
used for a landmark (especially in route descriptions or 
navigation systems) to be in accordance with human spatial 
abilities. The remaining two saliencies and their influence 
on human wayfinding will be subject to further experiments. 

 

 
Figure 7: Calculation for the prediction of salience values for the egocentric experiment, based on the results of the 

allocentric experiment and the defined visibility. 
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:0i(.c-(3.ke2;.k.hd(h.i2e(.i(i:2(2c-(f3(2./:(ih0.k,(
Aceihm/i0fce( 0c3fhd2-(j.hi0/0j.cie(.3fmi(:fo( i:2b(ofmk-(

32( j.0-( 3.e2-( mjfc( i:20h( j2h3fhd.c/2,( E3i2h( j.hi0/0j.cie(
h2.-( i:2( 0ceihm/i0fce<( i:2b( ei.hi2-( i:2( 2qj2h0d2ci( o0i:( i:2(
30hei(ih.0c0c1(ih0.k,(Ei(i:2(2c-(f3(2./:(ih.0c0c1(ih0.k<(i:2b(o2h2(
.eg2-( if( oh0i2( -foc( i:2( eih.i21b( #A,#( 6H.'#'( #A#.'( #,#+#(-(
/k.ee030/.i0fc,( E3i2h( j.hi0/0j.cie( em3d0ii2-( i:20h( oh0ii2c(
2qjk.c.i0fce<( i:2b( o2h2( 0c3fhd2-( f3( i:2( cmd32h( f3( :0ie<(
d0ee2e<(3.ke2;.k.hde<(.c-(/fhh2/i;h2n2/i0fce(i:2b(d.-2(0c(i:2(
k.ei( ih0.kP( .kfc1( o0i:( i:20h( /mhh2ci( .c-( ifi.k( 2.hc0c1e(3.e2-(
mjfc( j2h3fhd.c/2,(@fo2l2h<( i:2b( o2h2( cfi( e:foc( o:0/:(
2q./i( 2l2cie( 0c( i:2( k.ei( ih0.k( o2h2( ./im.k( i:h2.ie( .c-( cfc;
i:h2.ie,( 4.hi0/0j.cie( o2h2( /fdj2ce.i2-( o0i:( QK( .e( 3.e2(
j.bd2ci,( Ac( .--0i0fc<( j.hi0/0j.cie( 2.hc2-( D( /2ci( 3fh( 2./:(
i:h2.i(.c-(cfc;i:h2.i(/fhh2/ikb(/k.ee0302-(.c-(kfei(D(/2ci(3fh(
2./:( i:h2.i( .c-( cfc;i:h2.i( 0c/fhh2/ikb( /k.ee0302-( -mh0c1(
ih.0c0c1,( >mh0c1( ih.ce32h<( j.hi0/0j.cie( 2.hc2-( N( /2cie( 3fh(
2./:( i:h2.i( .c-( cfc;i:h2.i( /fhh2/ikb( /k.ee0302-( .c-( kfei( N(
/2cie( 3fh( 2./:( i:h2.i( .c-( cfc;i:h2.i( 0c/fhh2/ikb( /k.ee0302-,(
E3i2h( j.hi0/0j.cie( :.-( /fdjk2i2-( i:20h( 2qj2h0d2ci<( i:2b(
o2h2(j.0-(.c-(i:.cg2-(3fh(i:20h(i0d2,(

3:CI;?C*
S2( 2qj2/i2-( emj2h0fh( j2h3fhd.c/2( 60,2,<( .( 1h2.i2h( :0i;h.i2(
.c-( .( ed.kk2h( 3.ke2;.k.hd( h.i2=( 0c( i:2( :01:( /fc-0i0fc(
/fdj.h2-( o0i:( i:2( kfo( /fc-0i0fc,( B01mh2( C( e:foe( i:2(
.11h21.i2-(:0i(.c-(3.ke2;.k.hd(
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(
(

B01mh2(CO(9:2(:md.c(:0i(h.i2(.c-(3.ke2;.k.hd(h.i2(0c(i:2(kfo(
.c-(:01:(/fc-0i0fce(-mh0c1(ih.0c0c1(.c-(ih.ce32h,(

(
h.i2e( 0c(3fi:( /fc-0i0fce(-mh0c1( ih.0c0c1( .c-( .i( ih.ce32h,(Ee(
/.c(32(e22c(0c(B01mh2(C<(-mh0c1(ih.0c0c1<(i:2(.l2h.12(:0i(h.i2(
0c( i:2( :01:( /fc-0i0fc( 6INM=( o.e( e01c030/.cikb(1h2.i2h( i:.c(
i:.i(0c(i:2(kfo(/fc-0i0fc(6RSM=<(@6NP=(H(;N,IT<(A(U(,..D,(9:2(
e.d2(h2k.i0fce:0j(2q0ei2-(3fh(i:2(:0i(h.i2(.i(ih.ce32h(32io22c(
i:2(kfo(/fc-0i0fc(6NSM=(.c-(i:2(:01:(/fc-0i0fc(6IDM=<(@6NP=(
H( ;R,TK<( A( U( ,..D,( Eki:fm1:( 3.ke2;.k.hd( h.i2e( 12c2h.kkb(
.jj2.h2-( if(32(1h2.i2h( 0c( i:2( kfo(/fc-0i0fc(/fdj.h2-(o0i:(
i:2(:01:(/fc-0i0fc<(i:2e2(-0332h2c/2e(o2h2(0ce01c030/.ci<(3fi:(
-mh0c1( ih.0c0c1( 6@6NP=(H(D,SR<(BC=(.c-(.i( ih.ce32h( 6@6NP=(H( ;
D,CN<( BC=,(Kl2h.kk<( i:2e2( h2emkie( .h2( 0c( .1h22d2ci( o0i:( fmh(
2qj2/i.i0fc(f3(emj2h0fh(j2h3fhd.c/2(0c(i:2(:01:(/fc-0i0fc,(

'??:=?<8=*?8*&<?ID?<8=D;*'??E<GI?:C*
Ac( fh-2h( if( 1.0c( -22j2h( mc-2hei.c-0c1( f3( i:2( fl2h.kk(
j2h3fhd.c/2( 0c( i:2( -2i2/i0fc( i.eg<( o2( .c.kbr2-( i:2(
2qjk.c.i0fce( i:.i( j.hi0/0j.cie( jhfl0-2-( .3fmi( i:20h(
/k.ee030/.i0fce( .i( i:2( 2c-( f3( 2./:( ih0.k,(Eki:fm1:( i:2h2( o.e(
-0l2he0ib( jh2e2ci( 0c( i:20h( 2qjk.c.i0fce( ./hfee( ih0.ke<( 30l2(
d.0c( /.i21fh02e( 2d2h12-( 0c( 2./:( /fc-0i0fc( 3fh( o:0/:( .(
d.nfh0ib(f3(2qjk.c.i0fce(/fmk-(32(/.i21fh0r2-(0cif(6RKM(.c-(
NKM( 0c( i:2( kfo( .c-( :01:( /fc-0i0fce=,(9.3k2( D( jhfl0-2e( .(
-2e/h0ji0fc( f3( i:2e2( /.i21fh02e( o0i:( ei.i0ei0/.k( -0332h2c/2e(
32io22c( i:2( iof( /fc-0i0fce,( S2( 32k02l2( j.hi0/0j.cieV(
2qjk.c.i0fce(mc-2h(-0332h2ci(/.i21fh02e(o2h2(3.e2-(mjfc(i:2(
-2e/h0ji0fce( f3( 2l2cie( .c-( /fhh2ejfc-0c1( .k2hie( i:.i( o2h2(
jh2e2ci2-( if( i:2d( -mh0c1( ih.0c0c1( .c-( ih.ce32h( ih0.ke( 6e22(
B01mh2(D(3fh(i:2(3fhd.i(f3(jh2e2ci.i0fc=,(Bfmh(fmi(f3(i:2(30l2(
$,##6)'.#(B( 5*)''( D1EF2FGHC( 6jh2e2ciL.<(#+#WBI( 5@.&#(#',#'(

$,##,$4#'R+)#( ,##,$4#'WBI( 5)%#',#.)+(
$(H$$#((@H&RH+(H$$#((@H&WBI( ,+'( 5H(#'( $.+(.'#R)H#(.'#W<I(
fl2hk.jj2-( 32io22c( i:2( iof( /fc-0i0fce,( 9of( /.i21fh02e<(
5,&#'#(( $%'#(#+#R,<(#+#WI( ,+'( 5@.&#(( $F,+.%H&,##'R+)#;
d.c0jmk.i2-=<I(*#'#( H+$)FF)+( ./hfee( /fc-0i0fce,(Bfh( i:2(
fl2hk.jj0c1( /.i21fh02e<( i:2( jhfjfhi0fce( f3( me.12( o2h2(
efd2o:.i( -0332h2ci( 3fh( i:2( iof( /fc-0i0fce,( @fo2l2h<( .(
e01c030/.ci( -0332h2c/2( o.e( 3fmc-( fckb( 3fh( i:2( 5ofh-(
D1EF2FGHCI(/.i21fhb<(0ie(jhfjfhi0fce(o2h2(1h2.i2h(0c(i:2(kfo(
/fc-0i0fc(/fdj.h2-(o0i:( i:2(:01:(/fc-0i0fc,(Ee( i:2( 5ofh-(
D1EF2FGHCI(/.i21fhb(-0-(cfi(.ko.be(/k.ee03b(i:h2.ie(/fhh2/ikb(
0c( i:0e( 2qj2h0d2ci<( i:2( -0332h2c/2( 0c( .ii2ci0fc( 32io22c( i:2(
iof( /fc-0i0fce( d01:i( j.hikb( 2qjk.0c( j.hi.$.%,+#(-( (H%#'.)'(
j2h3fhd.c/2(0c(i:2(:01:(/fc-0i0fc,(
Ee( e22c( 0c(9.3k2( D<( i:2( iof( k2.-0c1( /.i21fh02e( f3( hmk2e(

i:.i( j.hi0/0j.cie( me2-( 0c( i:2( kfo( /fc-0i0fc( o2h2( me2h(
kf/.i0fc(.c-( i:2(jh2e2c/2(f3( i:2(ofh-(D1EF2FGHC,(,0d0k.hkb<(
0c( i:2( :01:( /fc-0i0fc<( i:2( iof( /.i21fh02e( i:.i( j.hi0/0j.cie(
.ii2c-2-( if(dfei(o2h2(me2h( kf/.i0fc(.c-( i:2(jh2e2c/2(f3(.c(
.k2hi,(9:2( me2h( kf/.i0fc(.c-(.k2hie( h2jh2e2ci(/.i21fh02e( i:.i(
/fmk-( /fhh2/ikb( /k.ee03b( .c( 2l2ci( 0c( i:0e( i.eg,( Ac( i:2( :01:(
/fc-0i0fc<( j.hi0/0j.cie( j.0-( .ii2ci0fc( if( 3fi:( f3( i:2e2(
/.i21fh02e( .dfc1( i:2( ifj( 30l2P( 0c( i:2( kfo( /fc-0i0fc<(
:fo2l2h<( i:2b(fckb(j.0-(.ii2ci0fc( if( i:2( me2h(/.i21fhb(.c-(
01cfh2-( i:2( .k2hie( /.i21fhb,( 9:0e( -0332h2c/2( 0c( .ii2ci0fc(
k0g2kb( .//fmcie( 3fh( i:2( emj2h0fh( j2h3fhd.c/2( 0c( i:2( :01:(
/fc-0i0fc,(

'*4<=:DE*589:;-*6D;<9D?<=>*'??:=?<8=*?8*
&<?ID?<8=D;*'??E<GI?:C*

9:2( k0i2h.imh2( fc( :2mh0ei0/e( .c-( 30.e2e( e:foe( i:.i( k0c2.h(
df-2ke( :.l2( 322c( :01:kb( em//2ee3mk( 0c( 2qjk.0c0c1( :md.c(
32:.l0fh(.c-(k2.-e(if(.jjhfq0d.i2(/fhh2/i(h2ejfce2e(i:.i(.h2(
dfh2( .//mh.i2( i:.c( 2l2c( 2qj2hi( nm-1d2cie( 6>.o2e<( DTSTP(
?fk-32h1<(DTS.=,(Bfh( 2q.djk2<( o:2c(>.o2e( .c-(Xfhh01.c(
6DTSR=( .jjk02-( -0332h2ci( k0c2.h( df-2ke( if( 30l2( -0332h2ci(
-.i.e2ie( if( jh2-0/i( .( /h0i2h0fc<( .c( 2pm.k( o201:i0c1( k0c2.h(
df-2k( 6i:2( e0djk2ei( .eemdji0fc( f3( k0c2.h0ib=( fmij2h3fhd2-(
.kk( fi:2h( /fdj2i0c1( df-2ke,( A3( i:2( /.i21fh02e( .c-( o201:ie(
60,2,<( i:2( h2k.i0l2( jhfjfhi0fc=( h2jfhi2-( 0c( 9.3k2( D( .h2(
h2jh2e2ci.i0l2( f3( fmh(32:.l0fh.k( 30c-0c1e<( i:2c( i:2b( e:fmk-(
jhf-m/2(.(/kfe2(30i(if(i:2(:0i(.c-(3.ke2;.k.hd(h.i2e(f3e2hl2-(
0c( :md.c( -.i.( o:2c( i:2e2( /.i21fh02e( .h2( e0dmk.i2-( 0c( .(
k0c2.h(df-2k,(9f(2qjkfh2( i:0e( 0-2.( 3mhi:2h<(o2(-2l2kfj2-(.(
eif/:.ei0/(k0c2.h(df-2k(/fce0ei0c1(f3(-2h0l2-(/.i21fh02e(.c-(
.ii2ci0fc(o201:ie,(

&?8B@DC?<B*4<=:DE*589:;*
S2( h2jh2e2ci( i:2( 30c.hb( -2/0e0fc( jhf/2ee( f3( /k.ee03b0c1(
2l2cie(.e( i:h2.ie(.c-(cfc;i:h2.ie( 0c(.( ih0.k(.//fh-0c1( if( i:2(
3fkkfo0c1(hmk2O(
(
A3(i:2(df-2kVe(Kmi/fd2(Y(@IJ3CIGE4<(i:2c(/k.ee03b(i:2(2l2ci(
.e(i:h2.iP(fi:2ho0e2<(/k.ee03b(i:2(2l2ci(.e(.(cfc;i:h2.i,(6D=(
(
9:2* @IJ3CIGE4( 0e( .( 3h22( j.h.d2i2h( i:.i( 0e( /.k03h.i2-( 0c( i:2(
df-2k,(9:2(Kmi/fd2(0e(-230c2-(.//fh-0c1(if(.(k0c2.h(df-2kO(
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(
(

9.3k2(DO(9:2(ifj(30l2(.ii2ci0fc(/.i21fh02e(.c-(i:20h(-2e/h0ji0fce(0c(i:2(kfo(.c-(:01:(/fc-0i0fce,(

5G@3O(9:2(J*0e(i:2(2332/i(e0r2,(

(
Bfh(i:2(kfo(/fc-0i0fcO(Kmi/fd2(H(.,CN(Z(Sfh-*D1EF2FGHC([(
.,DK(Z(B0k2e2hl2h([(.,DD(Z(Kj2h.i0fc([(.,NR(Z(Re2h([(.,DS(Z(
B0k2e(

(
(
(

(
Bfh(i:2(:01:(/fc-0i0fcO(Kmi/fd2(H(.,.I(Z(Sfh-*D1EF2FGHC([(
.,.I(Z(B0k2e2hl2h([(.,DD(Z(Kj2h.i0fc([(.,KN(Z(Re2h([(.,C.(Z(
Ek2hie( ( ( ( ( ( 6C=(
(
S:2h2( i:2( 5Sfh-*D1EF2FGHC<I( 5B0k2e2hl2h<I( 5Kj2h.i0fc<I(

5Re2h<I(5B0k2e<I(.c-(5Ek2hieI(.h2(-mddb(l.h0.3k2e(6i.g0c1(.(
l.km2e( f3( .( fh( D=( /fhh2ejfc-0c1( if( i:2( 30l2( /.i21fh02e( 0c(
9.3k2( D,( 9:2( o201:ie( 60,2,<( /f2330/02cie=( i:.i( dmki0jkb( i:2(
-mddb( l.h0.3k2e( .h2( i:2( h2k.i0l2( jhfjfhi0fce( f3( i:2(
h2ej2/i0l2( /.i21fh02e( h2jfhi2-( 0c( 9.3k2( D,( 9:2( df-2k( 0e(
5(#)$A,(#.$I(32/.me2(i:2(2q./i(l.km2(f3(.(-mddb(l.h0.3k2(6.(
fh(D=(3fh(2./:(2l2ci(0c(.(ih0.k(-2j2c-e(mjfc(/fdj.h0c1(66.<(
LW( *.#A( #A#( 'HFF$( ,,'.,<&#-(( 1@@3B@FGB* AJG717FEF@K(
j.h.d2i2h,( 9:2( hmk2( 3fh( j.b0c1( .ii2ci0fc( if( .( -mddb(
l.h0.3k2(0c(i:2(df-2k(0e(i:2(3fkkfo0c1O(
(
A3( i:2( /.i21fhb( 0e( .jjk0/.3k2( 60,2,<( jh2e2ci( 0c( i:2( 2l2ciVe( .(
-2e/h0ji0fc=( if( i:2( c2iofhg( 2l2ci( .c-( 6$KB( LW( \( 'HFF$(
,,'.,<&#-(( 1@@3B@FGB* AJG717FEF@K<( i:2c( i:2( -mddb( l.h0.3k2(
2pm.ke(DP(fi:2ho0e2<(i:2(-mddb(l.h0.3k2(2pm.ke(.(( 6N=(
(
T,$A( 'HFF$( ,,'.,<&#-(( 1@@3B@FGB* AJG717FEF@K( 0e( .( 3h22(
j.h.d2i2h( i:.i( 0e( /.k03h.i2-( 0c( i:2( df-2k,( 9:0e( j.h.d2i2h(
h2jh2e2cie( o:2i:2h( .( df-2k( j.hi0/0j.ci( j.be( .ii2ci0fc( if( .(

/.i21fhb(o:2c( 0i( .((%'#(#+#( .+( #A#(#,#+#-(('#($'.%#.)+()'( .+(
i:2( .//fdj.cb0c1( .k2hi,( Bmhi:2hdfh2<( 03( i:2( /.i21fhb( 0e(
.ii2c-2-(if<(i:2c(i:2(Kmi/fd2(i.g2e(.(o201:i2-(/fcih03mi0fc(
f3(i:2(/.i21fhb(0cif(i:2(30c.hb(-2/0e0fc,(Ekef<(dfh2(i:.c(fc2(

/.i21fhb( /fmk-( 32( .ii2c-2-( if(
6-mddb( l.h0.3k2( H( D=( 3fh( .c(

2c/fmci2h2-( 2l2ci,( 9:2h23fh2<( i:2(
df-2k(/.jimh2e(i:2(jhfj2hib(i:.i(:md.c(
j.hi0/0j.cie( d01:i( eif/:.ei0/.kkb( j.b(
.ii2ci0fc( if( dmki0jk2( /.i21fh02e( 3fh( .c(
2c/fmci2h2-(2l2ci,(

2DEDH:?:E**D;<GED?<8=*
MA#(F)'#&-(( @'##(%,',F###'(B( .8#8B( #,$A(
'HFF$(,,'.,<&#-((1@@3B@FGB*AJG717FEF@K(
.c-( @IJ3CIGE4<( o2h2( /.k03h.i2-( if(
:md.c( -.i.( 0c( i:2( kfo( .c-( :01:(
/fc-0i0fce<( e2j.h.i2kb,( X.k03h.i0c1( i:2(
df-2k( if(:md.c(-.i.(d2.ce( hmcc0c1( 0i(
0c( i:2( e.d2( ih.0c0c1( /fc-0i0fce(
2qj2h02c/2-( 3b( :md.c( j.hi0/0j.cie( if(
30c-( i:2( j.h.d2i2he( l.km2e( o:0/:(
d0c0d0r2( i:2( emd( f3( d2.c( epm.h2-(
-2l0.i0fce(6,md(f3(&,>e=(32io22c(i:2(
F)'#&-(( A.#( ,+'( @,&(#;.k.hd( h.i2e( .c-(
:md.c( :0i( .c-( 3.ke2;.k.hd( h.i2e<(
h2ej2/i0l2kb,( 9:2( ed.kk2h( i:2( emd( f3(
&,>e<( i:2(32ii2h( i:2(F)'#&-((,<.&.#$( #)(
/.jimh2(:md.c(32:.l0fh( 0e,(9:2( df-2k(

o.e( /.k03h.i2-( e2j.h.i2kb( if( ih.0c0c1( ih0.ke( 0c( i:2( kfo( .c-(
:01:( /fc-0i0fce( me0c1( .( 12c2i0/( .k1fh0i:d( jhf1h.d,( 9f(
/.k03h.i2( i:2( df-2k<( o2( l.h02-( i:2( @IJ3CIGE4( .c-( 1@@3B@FGB*
AJG717FEF@K*j.h.d2i2he(32io22c(.,.(.c-(D,.(6i:20h(d0c0dmd(
.c-(d.q0dmd(l.km2e=,(9:2(df-2k(o.e( hmc(me0c1( i:2( e.d2(
cmd32h( f3( e0dmk.i2-( j.hi0/0j.cie( .e( i:2( cmd32h( f3( :md.c(
j.hi0/0j.cie(i:.i(j.hi0/0j.i2-(0c(i:2(iof(/fc-0i0fce,((
9.3k2(C(jh2e2cie(.( emdd.hb(f3( i:2(/.k03h.i2-(j.h.d2i2he(

,+'(#A#(F)'#&(-(%#'@)'F,+$#( 6&,>=(0c(i:2( iof(/fc-0i0fce,(
9:2(df-2k(j2h3fhd2-(h2.efc.3kb(o2kk(if(/.jimh2(i:2(:0i(.c-(
3.ke2;.k.hd(h.i2e(0c(3fi:(/fc-0i0fceP(:fo2l2h<(0i(o.e(ek01:ikb(
32ii2h(0c(/.jimh0c1(i:2(3.ke2;.k.hd(h.i2(i:.c(i:2(:0i(h.i2,(9:2(
/.k03h.i2-(l.km2(f3(i:2(@IJ3CIGE4*j.h.d2i2h(o.e(3fmc-(if(32(
e0d0k.h( 0c(3fi:(/fc-0i0fce( 6/kfe2( if(N.M=,(&fh2fl2h<(3.e2-(
mjfc( i:2( 1@@3B@FGB* AJG717FEF@K( j.h.d2i2he<( i:2( df-2k(
e22d2-(if(3h2pm2cikb(.ii2c-(if(i:2(/fhh2/i(/.i21fh02e<(5me2hI(
.c-(5.k2hie<I(0c(i:2(:01:(/fc-0i0fc(if(d.g2(-2/0e0fce,(Ac(3./i<(
#A#(F)'#&-((,###+#.)+(#)(#A#(H(#'($,##6)'$(*,((6'#,##'(.+(#A#(
:01:(/fc-0i0fc(6,SP=(i:.c(0c(i:2(kfo(/fc-0i0fc(6,K.=,(B01mh2(N(
e:foe( i:2(df-2k( 30ie( if(:md.c(-.i.( 0c(3fi:(/fc-0i0fce( 3fh(
ih.0c0c1(.c-(ih.ce32h,(
9:2(&,>e( 32io22c( i:2( df-2k( .c-( :md.c( :0i( h.i2e( .i(

ih.ce32h( 0c( i:2( kfo( .c-( :01:( /fc-0i0fce( o2h2( .,...N( .c-(
.,...C<( h2ej2/i0l2kb,( ,0d0k.hkb<( i:2( &,>e( 32io22c( i:2(
df-2k(.c-(:md.c(3.ke2;.k.hd(h.i2e(.i(ih.ce32h(0c(i:2(kfo(.c-(
:01:(/fc-0i0fce(o2h2(.,...D(.c-(.,..KC<(h2ej2/i0l2kb,(9:2e2(
&,>e( .h2( l2hb( ed.kk( .c-( i:2h23fh2( i:2( df-2k( jhfl0-2e( .(
1ff-(.jjhfq0d.i0fc(if(i:2(:md.c(ih.ce32h(j2h3fhd.c/2,(
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(
(

9.3k2(CO(,mdd.hb(f3(/.k03h.i0fc(f3(i:2(k0c2.h(df-2k(-mh0c1(ih.0c0c1,(

B01mh2(NO(9:2(df-2k(.c-(:md.c(:0i(h.i2(.c-(3.ke2;.k.hd(h.i2(0c(i:2(
kfo(.c-(:01:(/fc-0i0fce(-mh0c1(ih.0c0c1(.c-(ih.ce32h,(

9.3k2(NO(,mdd.hb(f3(:.k3(/.k03h.i0fc(k2c1i:(f3(i:2(k0c2.h(df-2k(
-mh0c1(ih.0c0c1,(

2E:9<B?<8=C*<=*(8J:;*0ED=CA:E**8=9<?<8=C*
9bj0/.kkb<(fc2(/fmk-(i:0cg(f3(/b32h;i:h2.ie((.e(h.h2(2l2cie(0c(
i:2( h2.k( ofhk-( 6J.nf-0.( 2i( .k,<(C.D.=,( A3( i:2e2( i:h2.ie( f//mh(
h.h2kb( .i( ih.ce32h<( i:2c( j.hi0/0j.cie( ih.0c2-( 0c( i:2( kfo(
/fc-0i0fc( d01:i( 32c230i( dfh2( 3hfd( i:20h( ih.0c0c1,( 9:.i( 0e(
32/.me2<(i:2(2qj2h02c/2e(1.0c2-(0c(i:2(kfo(3.e2;h.i2(ih.0c0c1(
/fc-0i0fc( .h2( k0g2kb( if( 32( dfh2( em0i2-( if( i:2( h.h2( ih.ce32h(
/fc-0i0fc(/fdj.h2-(o0i:(i:fe2(1.0c2-(0c(i:2(:01:(/fc-0i0fc,(
Kc2( o.b( if( i2ei( i:0e( 2qj2/i.i0fc( 0e( 3b( /h2.i0c1( .( h.h2h(
ih.ce32h(ih0.k(60,2,<(o:fe2(3.e2;h.i2(0e(k2ee(i:.c(i:.i(0c(i:2(kfo(
$)+'.#.)+-(( #',.+.+6( #'.,&(( ,+'( #A,#( .+( #A#( )'010c.k( ih.ce32h(
ih0.k=,(Kc2( em/:( h.h2( ih.ce32h( ih0.k(/fmk-(:.l2(.( i:h2.i(3.e2;
h.i2(f3(RM( 60,2,<(fckb(D(2l2ci(fmi(f3(CK(2l2cie( 0e(.c(./im.k(

i:h2.i(0c(i:2(ih0.k=,((
Ac( i:2( ih.ce32h( ih0.k( f3( fmh( 2qj2h0d2ci<(

i:2( :md.c( :0i( h.i2( 0c( i:2( :01:( /fc-0i0fc(
o.e( IDM( o:0k2( 0i( o.e( NSM( 0c( i:2( kfo(
/fc-0i0fc( 60,2,<( .( 1.j( f3( RRMP( e22( B01mh2(
C=,( Ac( i:2( ih.ce32h( ih0.k<( i:2( :md.c( 3.ke2;
.k.hd( h.i2( 0c( i:2( :01:( /fc-0i0fc( o.e( IM(
o:0k2(0i(o.e(RM(0c(i:2(kfo(/fc-0i0fc(60,2,<(
.( 1.j( f3( RM=,( 9:me<( o2( 2qj2/i( i:2(
.//mh./b( if( 32( 1h2.i2h( 0c( i:2( :01:(
/fc-0i0fc( i:.c( 0c( i:2( kfo( /fc-0i0fcP(
:fo2l2h<(3.e2-(mjfc(i:2(-0e/mee0fc(.3fl2<(
0i(0e(.kef(jfee03k2(i:.i(j2fjk2(ih.0c2-(0c(i:2(
kfo( /fc-0i0fc( o0kk( j2h3fhd( 32ii2h( 0c( i:2(
h.h2( ih.ce32h( ih0.k( 6o0i:( .( RM( i:h2.i( 3.e2;

h.i2=,(9:2h23fh2<(o2(2qj2/i( i:2(F)'#&-((:0i( h.i2(jh2-0/i0fce(
0c(i:2(kfo(/fc-0i0fc(if(0c/h2.e2(.c-(0c(i:2(:01:(/fc-0i0fc(if(
-2/h2.e2( .i( ih.ce32h<( /kfe0c1( i:2( fl2h.kk( 1.j,(@fo2l2h<( 3fh(
i:2( e.d2( h.h2( ih.ce32h( ih0.k<( o2( 2qj2/i( i:2( F)'#&-(( 3.ke2;
.k.hd(h.i2(jh2-0/i0fce( 0c( i:2( kfo(/fc-0i0fc( if(-2/h2.e2(.c-(
0c( i:2( :01:( /fc-0i0fc( if( 0c/h2.e2( .i( ih.ce32h<( o0-2c0c1( i:2(
fl2h.kk(1.j,((
4h2-0/i0fce(12c2h.i2-( 3hfd(fmh(/.k03h.i2-(df-2k(o2h2( 0c(

,6'##F#+#( *.#A( #A#(#( #7%#$#,#.)+(8( MA#( F)'#&-((
j2h3fhd.c/2(0c(i:2(h.h2(ih.ce32h(ih0.k(e:fo2-(.(:0i(h.i2(0c(i:2(
:01:(.c-( kfo(/fc-0i0fce( if(32(SPM(.c-(RPM<( h2ej2/i0l2kb,(
9:2h23fh2<( 0ie( fl2h.kk( j2h3fhd.c/2( 0c( i2hde( f3(:0i( h.i2( o.e(
emj2h0fh( 0c( i:2( :01:( /fc-0i0fc( /fdj.h2-( o0i:( i:2( kfo(
/fc-0i0fcP(:fo2l2h<(i:2(1.j(32io22c(i:2(:0i(h.i2e(0c(i:2(iof(
/fc-0i0fce( o.e( h2-m/2-( if( CTM,( *.F.&,'&$B( #A#( F)'#&-((
j2h3fhd.c/2( e:fo2-(.( 3.ke2;.k.hd(h.i2( 0c(i:2(:01:(.c-( kfo(
/fc-0i0fce( f3( i:2( h.h2( ih.ce32h( ih0.k( if( 32( DPM( .c-( RM<(
h2ej2/i0l2kb( 60,2,<( .c( 0c/h2.e2-( 1.j( f3( DDM( .e( 2qj2/i2-=,(
Kl2h.kk<(i:2(1.j(32io22c(:0i(.c-(3.ke2;.k.hd(h.i2e(0c(i:2(kfo(
.c-( :01:( /fc-0i0fce( dfl2-( 0c( i:2( -0h2/i0fc( .e( 2qj2/i2-(
.3fl2,((
Ecfi:2h( .ej2/i( if( /fce0-2h( 0e( i:2( k2c1i:( f3( ,+,&$(#(-(

ih.0c0c1( e2ee0fce,( Ac( i:2( h2.k(ofhk-<( k2c1i:b( ih.0c0c1(d01:i(
32/fd2( /feikb( 32/.me2( f3( h2efmh/2e( .c-( i0d2( 6L.c2kk0e<(
C..P=,( Ac( em/:( e0im.i0fce<( fc2( d2i:f-( if( e.l2( /feie( 0e( if(
h2-m/2( i:2( ih.0c0c1( k2c1i:( .c-( 2l.km.i2( /b32h;i:h2.i(
-2i2/i0fc( .//mh./b( .i( ih.ce32h,(@2h2<( o2(-2h0l2( jh2-0/i0fce(
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(

3hfd( i:2( k0c2.h( df-2k( 0c( .( e0im.i0fc( o:2h2( i:2( ih.0c0c1( 0c(
3fi:( i:2( kfo(.c-(:01:(/fc-0i0fce( 0e( h2-m/2-(3b(:.kl0c1( 0ie(
fh010c.k(k2c1i:(60,2,<(fckb(30hei(K(ih0.ke(kfc1=<(.c-(i:2(df-2k(0e(
i:2c(ih.ce32hh2-(if(i:2(h.h2(ih.ce32h(ih0.k(o0i:(.(RM(3.e2;h.i2,(
9.3k2(N(jhfl0-2e( i:2( emdd.hb(f3( i:2(/.k03h.i2-(j.h.d2i2he(
.c-(i:2(&,>e(if(i:2(:.kl2-(ih.0c0c1(k2c1i:,((
E1.0c( 0c( i:2( :01:( /fc-0i0fc<( i:2( 3h22( j.h.d2i2he( :.l2(

6'#,##'(,,&H#((.+(#A#(5H(#'I(,+'(5,&#'#I($,##6)'.#(($)F%,'#'(
if( i:fe2( 0c( i:2( kfo( /fc-0i0fc,( Bmhi:2hdfh2<( i:2(&,>e( 0c(
9.3k2(N(.h2(ek01:ikb(:01:2h(/fdj.h2-(o0i:(i:fe2(h2jfhi2-(3fh(
3mkk;k2c1i:( ih.0c0c1( 0c( 9.3k2( C,( Ei( ih.ce32h<( i:2( /.k03h.i2-(
F)'#&-((A.#(,+'(@,&(#;.k.hd(h.i2e(o2h2(PSM(.c-(CTM(0c(i:2(
:01:(/fc-0i0fc<(h2ej2/i0l2kbP(o:2h2.e<((i:2e2(h.i2e(o2h2(NSM(
.c-( DRM( 0c( i:2( kfo( /fc-0i0fc<( h2ej2/i0l2kb,(S:2c( i:2e2(
jhfjfhi0fce(.h2(/fdj.h2-(o0i:(i:fe2(h2jfhi2-(.3fl2(3fh(i:2(
h.h2(ih.ce32h(ih0.k(o0i:(3mkk;k2c1i:(ih.0c0c1<(o2(30c-(.(-hfj(0c(
:0i( h.i2( .e( o2kk( .e( .c( 0c/h2.e2( 0c( 3.ke2;.k.hd( h.i2( 0c( 3fi:(
/fc-0i0fce,( 9:me<( fmh( df-2k( jh2-0/i0fce( em112ei( i:.i(
h2-m/0c1( ih.0c0c1(/fc-0i0fce(3b(:.k3( i:20h(fh010c.k( k2c1i:( 0e(
k0g2kb(if(e.l2(i0d2(.c-(/feie<(3mi(.kef(k0g2kb(if(-2/h2.e2( i:2(
,+,&$(#(-('###$#.)+(,$$H',$$(,#(#',+(@#'8((

(

1<CBICC<8=*
Ac( i:0e( j.j2h<( o2( 2l.km.i2-( i:2( 2332/ie( f3( ih.0c0c1( e2/mh0ib(
.c.kbeie( 0c( /fc-0i0fce( o0i:( -0332h2ci( i:h2.i( 3.e2;h.i2e( 6kfo(
.c-( :01:=( .c-( ih.ce32hh0c1( i:2d( if( cfl2k( /fc-0i0fce( 6i:.i(
o2h2(20i:2h(0c;32io22c(i:fe2(2c/fmci2h2-(-mh0c1(ih.0c0c1(fh(
jfee2ee0c1( .( l2hb( kfo( 3.e2;h.i2=,( S2( 3fmc-( i:.i( i:20h(
ih.ce32h( j2h3fhd.c/2( 0e( emj2h0fh( o:2c( i:20h( ih.0c0c1(
2cl0hfcd2cie(jhfl0-2(i:2d(o0i:(k2c1i:b(ih.0c0c1(.c-(:01:2h(
i:h2.i( 3.e2;h.i2e,( 9:.i( 0e( k0g2kb( 32/.me2( :01:2h( 3.e2;h.i2e(
.kkfo( j.hi0/0j.cie( if( 3fhd( 0djhfl2-( :bjfi:2e2e( .3fmi(
i:h2.ie(i:.i(i:2b(/fmk-(i2ei(-mh0c1(i:20h(ih.0c0c1(.c-(ih.ce32h(
j2h3fhd.c/2(6>mii(8(?fcr.k2r<(0c(jh2ee=,(9:0e(h2.efc0c1(0e(
/k2.hkb( h23k2/i2-( 0c( i:2( 1h2.i2h( jhfjfhi0fce( f3( /.k03h.i2-(
.ii2ci0fc( jhf3.30k0ib( 3fh( i:2( 5me2hI( .c-( 5.k2hiI( .iih03mi2e(
60,2,<( i:2(.iih03mi2e( i:.i( h2l2.k( i:2(1hfmc-( ihmi:=( 0c( i:2(:01:(
/fc-0i0fc(/fdj.h2-(o0i:(0c(i:2(kfo(/fc-0i0fc,(
Kmh( h2emkie( em112ei( i:.i( .cb( ih.0c0c1( 0ci2hl2ci0fce( 3fh(

.c.kbeie( e:fmk-(j.b(/kfe2(.ii2ci0fc( if(:fo( i:2(3.e2;h.i2(f3(
i:h2.ie( /fdj.h2( if( i:20h( ./im.k( ofhg( /fc-0i0fce,(Ekef<( i:2(
k2c1i:(f3(ih.0c0c1(62,1,<(o22gkfc1(fh(:.k3(.(o22g=(0e(k0g2kb(if(
0c3km2c/2( ,+,&$(#(-( k2.hc0c1( .c-( j2h3fhd.c/2( .i( ih.ce32h,(
9:me<(i:2(ih.0c0c1(k2c1i:(0e(k0g2kb(if(.332/i(i:20h(j2h3fhd.c/2(
0c(./im.k(ofhg(/fc-0i0fce,(?2c2h.kkb<( 0i(ofmk-(32(.-l0e.3k2(
if( g22j( i:2( ih.0c0c1( 2qi2c-2-( 0c( k2c1i:<( .e( o2kk( .e( ih.0c(
.c.kbeie( fc( e/2c.h0fe( i:.i( d.g2e( i:2d( 2qj2h02c/2( .( :01:(
i:h2.i(3.e2;h.i2,( Ac( 3./i<( i:2( k0c2.h(df-2k( /fmk-(32( me2-( if(
-2h0l2( i:2( fji0d.k( k2c1i:( f3( ih.0c0c1( e2ee0fc( 3fh( .( -2e0h2-(
k2l2k(f3(.//mh./b,(Eki:fm1:(o2(/.c(fckb(ej2/mk.i2<(3mi(fmh(
h2emkie( .h2( .kef( k0g2kb( if( 32( l.k0-( 3fh( fi:2h( 2d2h12c/b(
e0im.i0fce( k0g2( ih.0c0c1( d0c2he( 3fh( .( kfo;jhf3.30k0ib( d0c2(
2d2h12c/b<( fh( ih.0c0c1( .0h;ih.330/( /fcihfkk2he( 3fh( kfo(
jhf3.30k0ib(.0h(.//0-2cie,((
Ac( i:0e( j.j2h<( o2( /fcih03mi2( if( i:2(1hfo0c1( k0i2h.imh2( fc(

/b32h( e2/mh0ib( 3b( 2l.km.i0c1( i:2( 32c230ie( .c-( /feie( f3(

ih.0c0c1(.c.kbeie(0c(e/2c.h0fe(i:.i(-0332h(0c(i:h2.i(3.e2;h.i2e,(
Eki:fm1:( 3.e2;h.i2e( o2h2( -0332h2ci<( fi:2h( .ej2/ie( f3( i:2(
e/2c.h0f( 60,2,<( i:2( e2pm2c/2( f3( .ii./g<( /fdjmi2he(
/fdjhfd0e2-<(2i/,=(o2h2( 0-2ci0/.k,(9:me<( 3mimh2( h2e2.h/:( 0e(
k0g2kb( if( 32c230i( 3hfd( fmh( h2emkie( 3b( d.c0jmk.i0c1( fi:2h(
.ej2/ie( f3(.ii./g( e/2c.h0fe(.c-(2l.km.i0c1( i:2( 0c3km2c/2( fc(
ih.0c0c1(.c-(ih.ce32h(0ci2hl2ci0fce,(Ekef<(.e(i:2(k0c2.h(df-2k(
d01:i( 32( dfh2( d.i:2d.i0/.k( i:.c( /f1c0i0l2( 0c( 0ie(
3fhdmk.i0fc<( 3mimh2( h2e2.h/:( 0e( .kef( k0g2kb( if( 32c230i( 3b(
/fdj.h0c1(:fo(fi:2h(/f1c0i0l2(df-2ke<(o:0/:(me2(d2dfhb(
.c-( ./i0l.i0fc( 60c/km-0c1( efd2( -.i.;d0c0c1( .k1fh0i:de=<(
j2h3fhd( /fdj.h2-( if( i:2( k0c2.h( df-2k,( B0c.kkb<( o2( .kef(
/fcih03mi2( .( d2i:f-( f3( 1f0c1( 3hfd( .c( 2qj2h0d2ci( .3fmi(
-2i2/i0c1( /b32h( i:h2.ie( if( -2l2kfj0c1( .( /f1c0i0l2( df-2k(
<,(#'( H%)+( %,'#.$.%,+#(-( (#&@;h2jfhi2-( eih.i2102e,( 9:0e(
5F)'#&( '.($),#'$I( ,%%'),$A( #A,#( H(#(( AHF,+( ',#,( #)(
/fceihm/i(/f1c0i0l2(df-2ke(d01:i(jhfl0-2(me23mk(0ce01:ie(3fh(
.ki2hc.i0l2(df-2k0c1(.jjhf./:2e(if(df-2k(-2l2kfjd2ci,((

'BL=8M;:9>:H:=?C*
9:0e(h2e2.h/:(o.e(.(j.hi(f3(.(&RJA(Eo.h-(fc(Xb32h(,0im.i0fc(Eo.h2c2ee(
6&RJAP(]STDDPB;.T;D;.KCK=(3hfd(EJK(if(Xk2fi0k-2(?fcr.k2r,(

3:A:E:=B:C*
K3.d.<(F(6C.DD<(&.b=,((J2d.hge(3b(i:2(4h2e0-2ci(fc(e2/mh0c1(fmh(c.i0fcVe(
/b32h(0c3h.eihm/imh2,(J2ih02l2-(3hfd(
:iijOLLooo,o:0i2:fme2,1flLi:2Ujh2eeUf330/2LJ2d.hge;3b;i:2;4h2e0-2ci;
fc;,2/mh0c1;Kmh;P.i0fce;Xb32h;Ac3h.eihm/imh2L(

%-"F.$)B("8B(2A.#&#$B(V8B(M#()+#B(%8B(IW?'.#+(?8B(J(:)#AB(T8($QKKSW8(
E/:02l0c1(/b32h(-232ce2(e0im.i0fc.k(.o.h2c2eeO(E(/f1c0i0l2(i.eg(
.c.kbe0e(f3(0c3fhd.i0fc(.eemh.c/2(.c.kbeie,(8JG2334FBLC*G9*@I3*!HD"B#
$"%@GJC#&B'#(JLGBGDF%C#)G%F*@K#&BBH"E#+**@FBL<(RT6N=<(CCT;CNN,(

>.o2e<(J,(&,(6DTST=,(9:2(hf3mei(32.mib(f3(0djhfj2h(k0c2.h(
df-2ke,(&D*JF%"B#,CK%IGEGLFC@<(NR<(KSD;KIC,(

>.o2e<(J,&,<(8(Xfhh01.c<(F,(6DTSR=,(G0c2.h(df-2ke(0c(-2/0e0fc(
d.g0c1,(,CK%IGEGLF%"E#-HEE*@FB<(./<(TKQD.P,(

>mii<(R,<(E:c<(R,(,,,<(8(?fcr.k2r<(X,( 6C.DD=,(Xb32h( e0im.i0fc(.o.h2c2eeO(
&f-2k0c1( i:2( e2/mh0ib( .c.kbei( 0c( .( /b32h;.ii./g( e/2c.h0f( i:hfm1:(
Acei.c/2;F.e2-( G2.hc0c1,( 0*%@HJ*# 1G@*C# FB# 2GDAH@*J# )%F*B%*<( 3./.<(
CI.;CTC,(-f0O(D.,D..SLTSI;N;PRC;CCNRI;IUCR,(

>mii<(R,<(8(?fcr.k2r<(X,( 60c(jh2ee=,(Xb32h( e0im.i0fc(.o.h2c2eeO(&f-2k0c1(
i:2( e2/mh0ib( .c.kbei( 0c( .( /b32h( .ii./g( e/2c.h0f( i:hfm1:( Acei.c/2;3.e2-(
G2.hc0c1,(Ac(X,(Kcom30gf(8(9,(Ko2ce(6J-e,=<()F@H"@FGB"E#&M"J*B*CC#FB#
2GDAH@*J# 1*@MGJN# 4*5*BC*6# ,JFB%FAE*C7# +*@IG'C# "B'# &AAEF%"@FGBC,(
@2he:2b<(4EO(A?A(?kf3.k,(

?fk-32h1<( G,(J,( 6DTS.=,(&.c( le,( df-2k( f3( d.cO(E( h.i0fc.k2<( jkme( efd2(
2l0-2c/2( 3fh( .(d2i:f-( f3( 0djhfl0c1( /k0c0/.k( 0c32h2c/2e,(,CK%IGEGLF%"E#
-HEE*@FB<(896P=<(RCCQRNC,(

?fcr.k2r<( X,<( 8( >mii<( R,( 6C.DD=,( Acei.c/2;3.e2-( k2.hc0c1O( Aci21h.i0c1(
-2/0e0fce( 3hfd(2qj2h02c/2( 0c( e.djk0c1(.c-( h2j2.i2-(/:f0/2( j.h.-01de,(
,CK%IGEGLF%"E#:*OF*M<(//.6R=<(KCN;KKD,(

@2hio01<(J,<(8( Jh2l<( A,( 6C..T=,( 9:2( -2e/h0ji0fc;2qj2h02c/2( 1.j( 0c( h0egb(
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Problem Description
Motivated by object representation in psychology, we present
a binary feature classifier for the purpose of semantic concept
category identification/classification by incorporating feature
distribution. We propose the classification algorithm based on
the variant of l1 norm regularized sparse classifiers, where the
features are weighted according to their distribution, which is
estimated by “maximum collocation”. This method achieves
high accuracy in identifying semantic concepts, outperform-
ing standard benchmark methods on a large database of ani-
mal and artifact features.

Suppose your friend tells you they are thinking of a par-
ticular mammal animal, asks you what type it is, and starts
listing its features: it has a tail, has four legs, can’t swim,
and so on. You are now faced with a category identification
problem, which requires you to infer the most likely cate-
gory of an instance given knowledge of some of its features
(Kemp, Chang, & Lombardi, 2010). Category identification
offers an interesting window onto the structure of mental rep-
resentations, since it involves the relationship between cat-
egories and features, and so requires the representation of
both what makes instances different, and what makes them
the same. One of the main shortcomings of existing clas-
sification work is that feature importance has not been well
investigated (Zhang, Yu, Lee, & Xin, 2011). Features are
often preselected from the beginning which actually do not
equally or positively contribute to the performance of classi-
fication. However, not all of the features will be important to
an object’s representation. Thus, weighting features without
adversely affecting the performance is an important task for
classification.

Feature Distribution and Weighting
We propose to weight the features such that categories can
be differentiated more efficiently according to the binary fea-
ture’s distribution1. This is motivated by stimuli represen-
tation in psychology (Jones, 1983) since it was studied that
people identify the semantic concepts by choosing features in
a systematic way. One task is to choose important features by
how useful they are in distinguishing categories. For exam-
ple, in mammal domain, feature “is pregnant” is less impor-
tant than “has long neck”. This empirical motivation becomes
the principle for feature importance measure.

Maximum collocation is described here for measuring the
feature importance based on two heuristics (Zeigenfuse &

1Feature value is “yes” or “no”

Table 1: Representative features illustrating behavior of the
usefulness measures. Black dot means that the instance has
the corresponding feature.

C 1 C 2 C 3 Cue Cat. Colloc.
f 1 • • • 1 1 1
f 2 • • • • 3/4 1 3/4
f 3 • • 1 2/3 2/3
f 4 • 1 1/3 1/3
f 5 • • • • • • • 3/7 1 3/7
f 6 • • • • • • 1/2 1 1/2

Lee, 2010). The first of these is maximum cue validity, de-
fined as the maximum over categories c j ( j = 1,2, ...,nc

2) of
cue validity, the probability an instance belongs to c j given
that it has a feature f , p(c j| f ). We also look at maximum
category validity, defined similarly as the maximum over cat-
egories c j of the category validity, the probability an instance
has a feature f given that it belongs to c j, p( f |c j). Finally, the
maximum collocation is the maximum over categories c j of
the collocation, the product of a feature’s cue and category va-
lidities, p(c j| f )p( f |c j). Maximum collocation is a measure
of how simultaneous concentrated in and diffuse across a cat-
egory a feature is. Features with high maximum collocation
are associated with most instances within a category and few
outside it, as illustrated by Feature 1 in Table 1. Alternatively,
Features 4 and 6 show why it is necessary for both of these to
be true. Those features associated with only a small fraction
of instances within a single category will have high maximum
cue validity but low maximum category validity (Feature 4).
Those features possessed by most instances in more than one
category will have high maximum category validity but low
maximum cue validity (Feature 6).

Collocation Weighted Classifiers
The motivation for using sparse representation (SR) for cate-
gory identification is that SR adaptively selects the relevant
support data points from the training data, allowing us to
identify the semantic concept using a few relevant examples
from the training dataset, and alleviating adverse effects of
instances variability in the training dataset. Mathematically,
in a typical SR formulation, a dictionary D is constructed as
D = [d1,d2, ...,dn], where each di ∈ Rm is a feature vector of
ith instance. To represent a test instance in terms of its fea-
ture vector y, SR solves the equation y = Dθ, where a reg-
ularization is enforced on θ, such that only a small number

2nc is the number of categories.
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of instances from the dictionary D are selected to describe y.
Sparsity regularization helps the representation to rule out ir-
relevant instances and be insensitive to within-category vari-
ability in the dictionary. The test instance is assigned to the
category with the smallest residual in representing y as a lin-
ear combination using all instances from that category.

With the feature importance measure, features are
weighted by maximum collocation. Denote Ucol as the diago-
nal matrix with ucol( f ) as the diagonal entries, where ucol( f )
is the maximum collocation for feature f . The weighted
dictionary and test instance become UcolD and Ucoly respec-
tively. We developed three SR variants for the classification.
Then, as a result, all the features contribute unequally in the
sparse representation. The conventional SR optimization is
given by

θ∗ = argmin
θ

1
2
||Ucoly−UcolDθ||22 +µ||θ||1, (1)

where µ is the trade-off parameter.
Due to the non-negativity of the features, the above l1 reg-

ularized unconstrained convex optimization (1) becomes a
non-negative penalized l1 regularized constrained convex op-
timization (2) as below. The non-negative weights in θ indi-
cate the importance of an instance with the natural interpreta-
tion that this constraint forces representations that include on
instances that provide evidence for a category identification
decision.

θ∗ = argmin
θ

1
2
||Ucoly−UcolDθ||22 +µ||θ||1 s.t. θ ≥ 0

Eventually, since we expect sparse representation errors,
for which l1 norm regularization seems to be more appropri-
ate. The optimization (1) is re-formulated as

θ∗ = argmin
θ

||e||1 +µ||θ||1 s.t. Ucoly =UcolDθ+ e. (2)

Dataset and Evaluations
Our data come from the Leuven Natural Concept Database
(DeDeyne, et al, 2008), involving 295 words (i.e. categories),
distributed over 11 semantic domains: five animal domains
(30 mammals categories, 30 birds categories, 23 fish cate-
gories, 26 insects categories, and 20 amphibians&reptiles cat-
egories) with 764 animal features, and six artifact domains
(31 kitchen utensils categories, 30 clothing categories, 27
musical instruments categories, 29 vehicles categories, 19
weapons categories and 30 tools categories) with 1295 ar-
tifact features. Features used to describe those words in-
clude perceptual, functional characteristics and any other
background information that applies. Most importantly for
our modeling, the words (i.e. semantic concept categories)
and features were combined in a feature verification task, in
which four participants judged whether or not each of the fea-
tures belonged to each of the words. In the experimental eval-
uations, we split the data into training and test sets for a 4-fold

cross-validation. In each validation, we train the classifier us-
ing data from three participants and test on the participant that
is left out, i.e. a leave-one-out cross-validation. We use the
set of features a participant assigned to a word — “can fly”,
“is small”, and so on — as the input to a category identifi-
cation problem, for which the task is to identify the category
associated with that list of features.

The identification accuracy for the proposed variants of
weighted sparse representation methods achieves 84 per-
cent in average, outperforming typical classification methods,
such as k nearest neighbor, logistic regression and decision
tree. To examine the performance variation of the proposed
feature collocation based classifiers on different categories
and domains, we compute an overall rank of average resid-
ual for each category, shown in Fig. 1 as an example. Large
magnitudes suggest ambiguities in semantic category identi-
fication.The identification errors for mammals is very small,
but large for amphibians&reptiles domain. We believe the
proposed approach constitutes a useful starting point for un-
derstanding how people do semantic concept category induc-
tion.
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Figure 1: Performance variation for semantic concepts in an-
imal domains.
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Abstract 
 
Classical conditioning is at the heart of most learning 
processes. It is thus essential that we develop accurate 
models of conditioning phenomena and data. In this paper 
we review the different uses of computational models in 
exploring conditioning, as simulators and as psychological 
models by proxy. 

 
Keywords: Classical conditioning; computational models; 
psychological models; simulation. 

 
Introduction  

It is universally accepted that conditioning is at the basis 
of most learning phenomena: indeed, models of classical 
and instrumental conditioning have proved to be relevant 
to human and non-human learning both theoretically and 
in practice (Wasserman & Miller, 1997; Pearce & Bouton, 
2001; Hall, 2002; Schachtman & Reilly, 2011). In this 
enterprise, collaboration between computer scientists and 
psychologists has enjoyed considerable success 
(Schmajuk, 2010a; Alonso & Mondragón, 2011): 
connectionist models have been used to better predict 
discrimination and categorization phenomena (Shanks 
1995); in addition, it has been argued that classical 
conditioning rules can be naturally interpreted as an 
instance of more comprehensive computational 
neuroscience models (Dayan & Abbott, 2001; Schmajuk, 
2010b).  

This collaboration is sustained on various arguments: 
expressing models in the form of algorithms provides us 
with formal ways of representing psychological insights 
and of calculating their predictions accurately and quickly; 
from computational models we also borrow a view on 
how information is processed, a computer analogy that has 
proved useful in understanding cognition; moreover, the 
underlying architectures of computational models, for 
instance the hidden units of an artificial neural network or 
the way feedback is computed in recurrent networks, 
resemble the mechanics of associative learning at both the 
neural and conceptual levels; finally, machine learning 
models, such as  temporal difference learning and 
Bayesian learning, can be understood as effective 
abstractions of the way associations are formed and 
computed.  

In this paper we analyse critically the assumptions upon 
which such arguments are built. We identify two main 
trends in so-called computational psychology, more in 
particular in the use of computational models in the study 
of conditioning, namely, as simulators and as 

psychological models in themselves, and evaluate their 
respective merits. 
 

Computational Models as Simulators  
Firstly, a computational model can be understood to be an 
implementation of a (pre-existing) psychological model. 
Simulations serve two main purposes: On the one hand, 
implementing a model requires precise definitions –be it 
in the form of a specific programming language or as a 
formal model, that in turn makes the original 
psychological model “accountable”. On the other hand, 
algorithms allow us to execute calculations rapidly and, 
most importantly, accurately. Automation is critical, 
particularly when the models are described in non-linear 
equations that can only be solved numerically as it is the 
case of recent psychological models of conditioning 
(Balkenius & Morén, 1998; Vogel et al., 2004; Mitchell & 
Le Pelley, 2010; Alonso & Schmajuk, 2012). Crucially, 
the outputs of a simulation feedback the psychological 
models –thus becoming an essential part of the cycle of 
theory formation and refinement.  

It is worth noting though that the benefits derived from 
using implementations do not spring exclusively from the 
formal specification of the psychological models in 
equations and algorithms. Per se, such descriptions 
constitute a mathematical model, a necessary yet no 
sufficient condition for a formal model to be 
computational. The essence of a computational model lies 
in the fact that it is implemented. According to this view, 
in psychology, the same as in computational physics and 
in computational biology, a computational model is a 
model that has been simulated.  

This view is not without detractors: It has been argued 
that a model is computational if it is “implementable” –
even if it was not originally described as a full-bodied 
computational model. We think that this is an abuse of the 
term computational since any psychological model of 
conditioning would fit this definition. To use a 
parallelism: this use of the term “computational” would 
make all models in Physics since Galileo’s computational. 

This brings up a subtler issue: We are using the term 
computational model in a “modern” sense. Indeed, a 
computational model is just a formal model of 
computation and “computation” does not necessarily 
require its implementation in a computer. Mathematically, 
the notion of computation is a formalization of the concept 
of algorithm, a mechanical or automated procedure to 
prove theorems proposed by Alan Turing to attack 
Hilbert’s Entscheidungsproblem (Turing, 1937). Modern 
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computers are mere physical instantiations of the abstract 
machines that would compute such procedures. But they 
don’t play a fundamental part in the definition of 
computation. Indeed, such definition was proposed well 
before the first digital general-purpose computers had 
even been designed. Contrarily, our position is that a 
computational model needs to be implemented in a 
computer. Otherwise, a computational model does not add 
anything to what constitutes a mathematical model in its 
own right. 

We would also like to comment on a second potential 
source of confusion about the term computational –that 
comes from cognitive science rather than from 
mathematics. The term “computational” has been linked 
to David Marr’s Tri-Level Hypothesis on vision where the 
“what” refers to the computational level, the “how” to the 
algorithmic level and the “where” to the implementational 
level (Marr, 1982). However insightful such analysis may 
be, clearly what Marr referred to as “computational” is 
“psychological” –when applied to cognition. Insisting on 
talking about psychological models as if they were 
computational based on such taxonomy is, in our opinion, 
a source of misunderstanding. 

 
Computational Models as Psychological 

Models  
The second use of the term “computational” is more 
controversial: it is claimed that a computational model can 
be considered a psychological model in itself. We argue 
that this position, a milestone in cognitive science and 
artificial intelligence, is a misuse of the term. Let’s 
illustrate our contention using a paradigmatic example: 
The use of Artificial Neural Networks (ANNs) in the 
study of conditioning has been advocated at several, inter-
related levels that we are now analyzing. 

 
Ontological Level  
ANNs are considered material models of conditioning. 
The underlying reasoning is that (a) ANNs model by 
analogy natural neural networks and that (b) psychological 
processes, including conditioning, are ultimately 
embedded in natural neural networks; hence, indirectly, 
ANNs model conditioning.  

Notwithstanding the popularity of this line of 
argumentation, it is widely acknowledged that ANNs do 
not resemble natural neural networks in any fundamental 
way (Enquist & Ghirlanda, 2005); besides, there is no 
strong evidence suggesting that electrical or chemical 
neural activity and conditioning are related (Morris, 1994) 
–or for that matter, that psychological processes can be 
localized in specific brain regions as recently exposed in 
(Vul et al., 2009), but already advanced in (Uttal, 2001).  

Even if it did, a neural analysis would not necessarily be 
the right level to study learning phenomena. In the words 
of Burruhs F. Skinner “The analysis of behavior need not 
wait until brain scientists have done their part. The 
behavioral facts will not be changed (…). Brain scientists 
may discover other kinds of variables affecting behavior, 
but they will turn to a behavioral analysis for the clearest 
account of the effects of these variables” (Skinner, 1989, 
pp. 18). Regardless of the antipathy that Skinner’s radical 

behaviorism provokes among neuroscientists such an 
statement does not contradict a version of reductionism 
that most of them would endorse, namely, Richard 
Dawkin’s hierarchical reductionism (Dawkins, 1986).  
 
Formal Level  
Relatedly, that a version of Dirac’s rule can be taken as a 
model of both neural plasticity and long-term potentiation 
effects –the Hebbian rule (Hebb, 1949)– and association 
formation –for example, Rescorla and Wagner’s rule 
(Rescorla & Wagner, 1972)– cannot be considered as 
proof of any common underlying structure and should not 
be used as an argument to reduce psychological 
phenomena to their alleged neural substratum.  

Likewise, that Rescorla and Wagner’s rule is essentially 
identical to the Widrow-Hoff rule (Widrow & Hoff, 1960) 
for training Adeline units and that, in turn, such a rule can 
be seen as a primitive form of the generalized delta rule 
for backpropagation only tells us that, computationally 
speaking, associative learning follows an error-correction 
algorithm1. What a computational model does not tell us, 
however, is which underlying psychological processes 
(attention, motivation, etc.) intervene in conditioning or 
how the physical characteristics of the units involved (e.g., 
the salience of the stimuli) affect such processes. 

Clearly, sharing a common formal expression does not 
imply that the phenomena so expressed are of the same 
nature: for instance, power functions can be used to 
express the relationship between (1) the magnitude of a 
stimulus and its perceived intensity (Stevens’ law), (2) the 
metabolic rate of a species and their body mass (Kleiber’s 
law), and (3) the orbital period of a planet and its orbital 
semi-major axis (Kepler’s third law). Stressing this point, 
allow us to quote Richard Shull: “The fact that an 
equation of a particular form describes a set of data does 
not mean that the assumptions that gave rise to the 
equation are supported. The same equation can be derived 
from very different sets of assumptions” (Shull, 1991, pp. 
246). 

Put it another way, if the meaning of a 
mathematical/formal model is in the linguistic expression 
it takes (that is, if there is a unique isomorphism between 
phenomena and algorithms) then either (a) we cannot 
explain how a theory can be expressed in different sets of 
equations or (b) we will not be sure about the effect the 
addition or the removal of a simple parameter may have. 
Paraphrasing (Chakravartty, 2001), theories and models 
can be given linguistic formulations but theories and 
models should not be identified with such formulations.  
 
Representational Level  
ANNs are connectionist models according to which 
information is not stored explicitly in symbols and rules 
but rather in the weights (strengths) of the connections; 
learning would consist of changes in such weights. It is 
claimed, rightly, that these are precisely the assumptions 

                                                
1 Incidentally, backpropagation is merely a mathematical 
procedure to deriving partial derivatives –that was originally 
proposed to model nationalism and social communications not 
neural networks (Werbos, 1974). 
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on which models of conditioning are based and hence, 
wrongly, that ANNs are an ideal candidate to model 
conditioning phenomena. This quite straightforward 
argument is, in fact, a fallacy: As connectionists (at least 
implementational connectionists) themselves concede the 
way we represent learning, either as continuous changes 
of weighted connections or as the result of discrete 
symbolic processing, is a matter of convenience and 
therefore irrelevant to the study of the structures involved. 

Interestingly, this debate has centered in the difference 
between associative models and computational models of 
conditioning (Leslie, 2001): It is understood that 
associative models are historically and conceptually 
linked to connectionism (Medler, 1998) whereas 
computational (aka symbolic) approaches take their ideas 
from information processing (Gallistel & Gibbon, 2001). 
We don’t think that such technical distinction is fruitful 
and rather agree with Peter R. Killeen in identifying both 
approaches as formal (Killeen, 2001): Turing machines 
and ANNs (as well as RMA machines, the Game of Life, 
and any programming language) are both computational 
models2; in particular, Turing machines and ANNs are 
equivalent in their input/output behaviour, that is, they 
compute the same problems and accept the same 
languages (in terms of the Chomsky hierarchy (Chomsky, 
1956))3.  

 
Functional Level  
ANNs typically approximate solutions by iteratively 
minimizing an error function. And this can be understood 
as a type of learning that resembles learning by “trial and 
error” of which associative learning is an example. 
However, it is worth emphasizing that ANNs merely 
implement numerical methods. Under a misleading name, 
they are just statistical tools –and, for that matter, certainly 
not the simplest, fastest or most efficient ones (see, e.g., 
Mitchie et al., 1994). On the other hand, conditioning 
models such as Rescorla and Wagner’s express dynamic 
laws: Against public opinion, animals do not make 
predictions and iteratively update an associative value 
through error minimization towards an optimal one. The 
associative value at a given time is the right associative 
value –that exactly describes to which extend the CS has 
become associated to the US. Let’s put it another way: in 
standard conditions, if the animal “learned” a CS-US 
association after one single exposure then the animal 
would be wrong and its corresponding behaviour un-
adaptive (unless, of course, we exposed it to a very salient 
US like in flavour-aversion learning). That the system 
described by Rescorla and Wagner’s rule is limited by an 
asymptote (the reinforcing value of the US) does not 
confer any special status to such value –rather it defines a 
constraint of the system. 
 

                                                
2 It should be noticed moreover that the first mathematical 
models of (A)NNs, in particular McCulloch and Pitts’s 
(McCulloch & Pitts, 1943) and Turing’s B-type machines 
(Turing, 1948) were intended to formalize logically, i.e., 
symbolically,  the notion of learning.  
3 Provided that the values of the weights are restricted to rational 
numbers (Orponen, 1994). 

Structural Level  
We are told that the layout of an ANN, the way units are 
connected between layers, can be seen as a cognitive 
architecture and, as such, as a psychological model. Let’s 
take a computational example to counter-argue this point: 
in computer science network communication is modeled 
according to the so-called Open Systems Interconnection 
model (OSI) (Zimmerman, 1980), moving from the 
physical layer that describes the electrical specifications of 
the devices the networks consist of up to the application 
layer that describes how the user interacts with a given 
piece of software. The question is: Why don’t we use the 
OSI model as a psychological model? At the end of the 
day, structurally, OSI would make as good a 
psychological model as an ANN. In fact, the OSI model 
implements a hierarchical and integrated architecture, that 
is, the type of cognitive architecture that a computational 
model should allegedly support (Sun, 2008). Thus that 
ANNs are networks implemented in architectures that take 
advantage of massive computational parallelism – not 
surprisingly, the new connectionism landmark paper 
introduced the Parallel Distributed Processing paradigm in 
cognition (Rumelhart & McClelland, 1986), does not 
confer them any psychological advantage: Any complex 
network would do (Newman et al., 2006).  
 

Philosophical Issues   
A final more general reason to explain the appeal of 
computational models in psychology rests on the idea that 
both computers and the brain are information processing 
systems, instantiations of a universal Turing machine or 
any other model of computation. But this alone does not 
justify the support the “computer metaphor” enjoys. After 
all, any phenomena can be expressed in terms of some sort 
of computation. If this analogy is such a powerful 
metaphor is because it is deeply rooted in Western 
philosophy and the mechanization of (formal) reasoning, 
reformulated in the twentieth century in terms of 
computation. That computation has been effectively 
embedded in computers has reinforced the idea that so it is 
in the brain, that the study of the former will help 
understand the latter and, in a tour the force, that 
computers may be capable of displaying intelligence. 
Indeed, every scientific theory is shaped in the context of 
its Age's achievements and prejudices: Like Newton's 
laws of mechanics strengthened the view of a 
deterministic Universe that worked as the sophisticated 
clocks popular at the time our conception of the mind as 
an information processing machine has certainly been 
influenced by the development of computing technology.  

And precisely because of its generality the information 
processing model is not necessary or sufficient: working 
physicists do not model electrons, atoms or galaxies as 
information processing entities –be it in the form of a 
cellular automaton as envisaged in (Zuse, 1969) or as a 
participatory universe (Wheeler, 1990). On the other hand, 
neither (computational) physicists nor the public would 
presume that the simulation of a nuclear reaction 
generates real energy or that a flight simulator really flies. 
Of course, this does not preclude physicists from 
theorizing about what type of information is contained in a 
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physical system (see, for example, literature on quantum 
entanglement or black holes) or about exploring the 
physical limits of computers (pioneered by Richard 
Feynman (Hey & Allen, 2000) and followed up in 
contemporary theories of quantum computing (e.g., 
Vedral, 2006)). 
 

Model Selection  
The discussion on what a computational model of 
psychology constitutes affects how we select models and 
in turn may help us determine what a computational 
model “truly” is.  

Selecting a model, psychological or otherwise, 
described in natural language or mathematically, is a 
difficult task that relies in formal definitions and methods 
as well as on scientific practice and common sense (Kuhn, 
1962; Feyerabend, 1975). Indeed, quantitative formulas 
have been proposed to compare models based on the 
average size of the deviations from predicted values, the 
number of data points and the number of free parameters 
(Akaike, 1974; Schwarz, 1978). However, relying 
exclusively on such formalisms or applying blindly 
Occam’s razor is not advisable –evaluating a model 
requires good judgment based on careful consideration of 
many factors, both technical and logical (Baum, 1983). 
The very essence of a model refers to the choices 
scientists make –choices that reflect what they consider 
relevant beyond the mere quantitative.  

Nonetheless, this analysis begs the question: when we 
assess computational models of psychology, what do we 
assess?  

If computational models are simulators we would need 
to select amongst them according to their computational 
complexity, that is, according to the time and space they 
take to make computations –complexity that is related to 
but not reducible to the algorithms they implement. In 
addition, computing tools must be tested for reliability and 
dependability against failures –which, in turn, depends on 
various factors such as programming languages, operating 
systems, memory capacity, processing speed, as well as on 
software engineering and management requirements. 
Computational models as simulators add a new level of 
sophistication. But this sophistication comes at a price: a 
computer program is not as “aseptic” as a mathematical 
description. A computer program comes to life in 
algorithms and data structures that must comply with 
software and hardware specifications.  

On the other hand, if computational models are 
considered as a valid alternative to psychological models, 
which criteria should we use to evaluate them and to 
choose amongst them? Psychological criteria? There is no 
clear answer to this question. 
 

Conclusions  
To sum it up, although the need to get influx from 
“outsiders” is recognized within the psychological 
community (see Townsend, 2008) computational models 
should be taken with caution. Computational models may 
provide us with complementary idealized models of 
psychological phenomena and with powerful statistical 
tools to construct models of psychological data but they 

alone are not the appropriate instruments to answer 
psychological questions. This is an obvious, hardly 
original, conclusion –and yet more often than not we read 
flamboyant news about robots that learn, think and 
experience emotions and about ANNs that can do 
anything psychological models can do only better. On the 
other hand, given the increasing complexity of 
psychological models developing accurate and rapid 
simulators to test their predictions is, in our opinion, a 
must that should take a prominent place in the psychology 
curriculum. 

An extreme case of the use of computational models as 
psychological models is exemplified in what we call the 
“engineering” approach: We take psychological data and 
build a program that fits it. Since the data is 
psychological, it is argued, the program must constitute a 
psychological model –confounding subject and method. 
Another variant of this approach is to propose models of 
machine learning as psychological models of learning. As 
an illustration, simple programs that, under very specific 
conditions, learn mundane tasks by maximizing a reward 
signal by trial and error have been presented as a “theory 
of mind” (Sutton, 2003). History has taught us that this 
kind of hype does not make any good. 

To summarize: The adjective "computational" in 
computational physics or computational biology refers to 
the use of computational tools, typically simulators and 
numerical processors but also data mining and data 
analysis techniques, to study data and phenomena as well 
as to assess the predictive power of theories and models. 
We suggest we separate the wheat from the chaff and 
“limit” the use of the term “computational” the same way 
when applied to psychology. 
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Introduction 
We have implemented a computational model to investigate 
how WM capacity can influence the interpretation of 
pronouns in a linguistic context. From our cognitive model 
the prediction follows that adults’ comprehension of 
pronouns can decrease with WM load. We performed an 
experiment to test this prediction. 

How do listeners determine the referent of a pronoun? 
Generally, pronouns (he) are used when reference is 
intended to the topic, which is the most salient character in 
the linguistic context. More specific forms such as full noun 
phrases (the soccer player) or proper names (Eric) are used 
when reference is intended to less salient or new characters. 
Different factors have been found to affect the saliency of 
characters in the linguistic context, such as the grammatical 
role.  The subject of the previous sentence is likely to be the 
current topic (Grosz, Weinstein, & Joshi, 1995). As a result, 
listeners will often interpret a pronoun as referring to the 
previous subject (a.o., Stevenson, Crawley, & Kleinman, 
1994). However, for children up to the age of 7, the 
grammatical role seems to be a less important cue than for 
adults (Koster, Hoeks, & Hendriks, 2011). Children’s use of 
grammatical information in pronoun comprehension seems 
to increase with a higher working memory (WM) capacity 
score (Koster et al., 2011). 

Cognitive model 
Within the cognitive architecture ACT-R (Anderson, 2007), 
we implemented a computational model to simulate the 
production and comprehension of referring expressions. The 
model’s task is to find the interpretation of a referring 
expression given the preceding linguistic context. 

To find the interpretation of a pronoun, the model needs 
to know which referent is the current discourse topic. The 
discourse topic is modeled as the referent with the highest 
saliency, i.e., with the highest activation in declarative 
memory. The activation of referents is dependent on the 
preceding discourse (i.e., frequency and recency), but is also 
influenced by the model’s working memory (WM) capacity 
(cf. Daily, Lovett, & Reder, 2001). With a high WM 
capacity, the activation of the discourse referent that was 

mentioned as the subject of the previous utterance remains 
high. This boost of activation implements the idea that the 
subject of the previous utterance is likely to be the current 
topic (Grosz et al., 1995; Stevenson et al., 1994). Thus, only 
when WM capacity is sufficient will grammatical function 
be used in determining the discourse topic. 

A new empirical prediction following from our model is 
that adult listeners will show difficulties comprehending a 
topic shift if their WM capacity is limited. For example, if 
their WM is taxed by another task, they will be less likely to 
use the grammatical function of the referents in the 
discourse to determine the discourse topic. Rather, they will 
solely rely on the frequency and recency of the referents. 
 

Experiment 
Using a dual-task experiment, we have investigated the 

effect of additional WM load on the interpretation of 
pronouns in different discourse contexts. Participants had to 
memorize a sequence of either three (low WM load 
condition) or six digits (high WM load condition) for recall 
at the end of the trial. While memorizing the digits, 
participants had to read short stories with or without topic 
shift (indicated by new or same subject). The final sentence 
of the stories started with an ambiguous pronoun. The story 
was followed by a comprehension question to elicit the 
referent of the ambiguous pronoun.  

The data of 52 participants was analyzed. As predicted, 
WM load affected adults’ interpretation of subject pronouns 
in stories with a topic shift (Figure 1): with high WM load 
adults less often selected the subject of the previous 
sentence as referent of the pronoun, but more often selected 
the firstly introduced referent (which was also more 
frequently mentioned). No significant effect of WM load 
was found in the stories without a topic shift, were the 
firstly introduced character was the subject in all sentences.  

These results support the prediction following from our 
cognitive model that the interpretation of pronouns in 
discourse is dependent on the amount of WM capacity 
available for interpretation. 
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Figure 1: The percentage (±SE) that the previous subject was selected as referent of the pronoun (left) and the percentage 
correct answers on the filler questions (right) following stories with and without topic shift. The filled bars show the answers 
in the low WM load condition, the striped bars show the answers in the high WM load condition.. 

 
 

 

References 
Anderson, J. R. (2007). How Can the Human Mind Occur in 

the Physical Universe? New York: Oxford University 
Press, USA. 

Daily, L. Z., Lovett, M. C., & Reder, L. M. (2001). 
Modeling individual differences in working memory 
performance: A source activation account. Cognitive 
Science, 25(3), 315. 

Grosz, B. J., Weinstein, S., & Joshi, A. K. (1995). 
Centering: a framework for modeling the local 
coherence of discourse. Computational Linguistics, 
21(2), 203-225.

Koster, C., Hoeks, J., & Hendriks, P. (2011). 
Comprehension and production of subject pronouns: 
Evidence for the asymmetry of grammar. In A. Grimm, 
A. Müller, C. Hamann & E. Ruigendijk (Eds.), 
Production-comprehension asymmetries in child 
language. Berlin: De Gruyter. 

Stevenson, R. J., Crawley, R. A., & Kleinman, D. (1994). 
Thematic roles, focus and the representation of events. 
Language and Cognitive Processes, 9(4), 519-548.. 

Test questions

0
25

50
75

10
0

%
 S

u
b

je
c
t 

a
n

s
w

e
rs

Shift No shift

79
68

76 72

Low WM load
High WM load

Fillers

0
25

50
75

10
0

%
 C

o
rr

e
c
t 

a
n

s
w

e
rs

93 92

102



An A C T-R Model of C redibility Judgment of Micro-blogging Web Pages 
 

Q . Vera L iao (liao28@Illinois.edu) 
Department of Computer Science, University of Illinois, 201 N. Goodwin Ave 

Urbana, IL 61801 USA 
 

Peter Pirolli (pirolli@parc.com) 
Palo Alto Research Center, 3333 Coyote Hill Rd. 

Palo Alto, CA 94304 
 

Wai-Tat Fu (wfu@illinois.edu) 
Department of Computer Science, University of Illinois, 201 N. Goodwin Ave 

Urbana, IL 61801 USA 
 

Abstract 

In this paper, we propose an ACT-R cognitive model for 
making credibility judgments about the credibility of Twitter 
authors. We abstracted the cognitive processes involved in 
three levels: attending to information on Web page, 
comprehending information to identify credibility cues, and 
integrating credibility cues to make a judgment. We represent 
basic knowledge required for making credibility judgment 
using declarative memory in ACT-R which is seeded with 
experiences of Twitter messages that have been passed 
through a Latent Dirichlet Allocation topic modeling process. 
Comparisons of model credibility judgments to human 
credibility judgments from controlled experiments show weak 
to strong correlations that range from r = 0.31 to r = 0.83 
depending on the specific task. 

K eywords: Web credibility judgment, ACT-R 

 
When people make credibility judgments about Web-based 
content and its sources, people must perceive, comprehend 
and deliberate on the merits and flaws of available cues to 
make the judgment. Complexity arises from the fact that the 
judgment is rarely based on a single cue, but requires the 
integration of multiple cues. These cues may interact with or 
contradict each other, and accumulate over the course of 
interaction with the Web content. We present a cognitive 
modeling approach to investigate multi-cue Web credibility 
judgment. 

Cognitive models have been applied to explain and 
predict human interaction with Web-based content, 
primarily focusing on relevance-based browsing or search. 
For example, MESA (Miller & Remington, 2004) and 
SNIF-ACT (Fu & Pirolli, 2007) are models that simulate 
how users navigate through websites to search for 
information relevant to a given task. Web credibility 
judgment is a complex high-level cognitive process that 
may be highly dependent on the goal of the user. Therefore, 
instead of building a universal model, our goal is to propose 
a framework that can be easily modified for different 
contexts, and demonstrate it with a specific task. In this 
study, we attempt to build an ACT-R model of credibility 
judgment when processing Twitter micro-blogging content. 

Website credibility models are often conceptualized along 
two dimensions. One dimension, represented by stage 

models (Wathen & Burkell, 2002), focuses on the iterative 
process of credibility evaluation, i.e., how the assessment 
takes place when users open a page, read the contents, and 
are further involved with the site. The other dimension, 
following a bottom-up approach, seeks to examine what 
elements on a Web page, and to what extent, impact users! 
credibility judgments. Detailed cognitive models have the 
potential to model the iterative processes of stage models 
and the impact of specific Web cues in different task and 
content contexts. 

We chose to analyze a task with simplified Twitter page, 
which allows us to ignore the complex interactions between 
multiple types of information cues but focus on the iterative 
process of attending to, processing and evaluating 
information on a Web page. This study was also motivated 
by the potential value of building predictive models for 
evaluating information credibility of micro-blogging, and 
more broadly, user generated contents on Internet.  

In the following section, we will first introduce the 
modeling task and a preliminary study conducted with the 
task. Conclusions drawn from the preliminary study are 
incorporated into the ACT-R model. In the second part we 
will describe the ACT-R model. Lastly, we will present a 
model validated by human data from a second experiment 
with the same credibility judgment tasks.   

Modeling Task and Preliminary Study 
The modeling task was based on a Twitter study 

conducted by Canini et al.(2011). Twitter is the popular 
micro-blogging service that enables users to add text-based 
posts of up to 140 characters, known as "tweets", on their 
own page. The goal of the study was to explore what factors 
"#( $(%&'(()*( +$,)(-$.( '-+$/(( 01)*1!( /*)2'3'4'(.( 502,-)#((
about the Twitter author. Understanding this process is 
important because it may help improve the design of micro-
blogger recommendation systems and user interfaces to help 
users to discover credible sources and content.  

In the Canini et al. (2011) experiment, participants were 
presented with a page generated to represent individual 
Twitter users. Each of these pages included a user name and 
icon, a set of social status statistics (number of following, 
followers and tweets), 40 latest tweets by the user, and a 
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word cloud summarizing all his/her previously generated 
content (Figure 1). Among other things, each participant 
was asked to rate presented Twitter users!( /*)2'3'4'(.( '#(
making judgments in the specific domain of car purchases. 
Three variables were manipulated in Canini et al (2011) in 
constructing the Twitter pages representing users:  

(1) Content domain. The top 10 experts suggested in 
the WeFollow directories of car, investing, wine, 
fantasy football, dating plus 10 random accounts 
were selected. WeFollow is a popular Twitter user 
recommendation system. It has topic directories 
such as car, football, etc, where users can sign up if 
they are experts or interested in the topic. Wefollow 
ranks all users based how many users in the same 
directory are following him/her. Experts from the 
car domain were considered on-topic with respect to 
the target task of judging recommendations for car 
purchases, the other domains were cross-topic. 

(2) Social status. For each page, the social status was 
randomly set to be high or low. For a high social 
status, the presented user had a large number of 
following/followers (more than 1000) and a large 
number of tweets (more than 100). 

(3) Visualization. The page was randomly set to be 
tweets only, word cloud+ tweets, and word cloud 
only. 

 
Figure 1. Modeling Task Interface in the tweets only 

condition, which is used for modeling task 

The Canini et al (2011) results showed that the directory 
from which the Twitter author was selected had strong 
influence on perceived credibility. Not surprisingly, those 
selected from the car directory (on-topic) led to significantly 
higher credibility ratings than those from other directories 
(cross-topic). It was also found that users considered 
someone who talked a lot about dating  were the least 
credible in giving car price suggestion, while experts in 
investing had a credibility rating in between the dating and 
car directories, possibly because the task of suggesting car 
price is related to financial decisions. It was also found that 
social status and visualization factors had smaller but 
statistically significant influences on credibility judgment.  

We built an ACT-R model for this credibility judgment 
task. The credibility ratings given by the model are 
positively influenced by on-topic contents and negatively 
influenced by certain cross-topic contents. The model also 
has the capacity to process other contextual features on the 
Web page, such as social status. 

Model F ramework 
We now present the general framework of the cognitive 
model for Web credibility judgment, and how this is 
implemented in ACT-R. Representations of knowledge are 
stored in declarative and procedural memory modules in 
ACT-R. Declarative memory, consisting of facts is 
represented by memory chunks built into the model. 
Procedural memory, representing knowledge about how we 
do things is represented as productions.  

As shown in Figure 2, the model framework assumes a 
process consisting of three phases. First, the model attends 
to information on the page. The first phase includes 
processes that mostly involve attention and perception, such 
as fixing attention on tweets and initiating reading. For the 
ACT-R model, by attending to a tweet, e.g., 67$++.(2*'8'#,(
$#2( /$*( 17"++'#,9:( (7)( -"2)4( &'44( *)/",#';)( (7)( &"*2(
67$++.9:(6driving9:(6/$*9($#2(617"+ping9(3.(-$<'#,(01)("=(
its vocabulary knowledge in declarative memory. 

In the second phase, the model comprehends information 
it has attended to, which leads to the identification of 
information cues that may potentially impact the credibility 
judgment. We use the spreading activation mechanism of 
ACT-R to implement this process. Retrieval of each chunk 
in declarative memory in ACT-R is determined by a /70#<!1(
activation. Activation reflects the degree to which a chunk is 
likely to be needed or relevant in the current context. The 
chunk with highest activation and above a set threshold is 
most likely to be retrieved. In addition to the base level 
activation which reflects the prior use of the chunk itself, the 
chunk will also receive activation spread from related 
chunks currently attended by the model. For example, when 
the model reads the t&))((67$++.(2*'8'#,($#2(/$*(17"++'#,9:(
each of the word spreads activation to potentially related 
topics. Both t7)(&"*2(6/$*9($#2(62*'8'#,9(spread activation 
("( (7)( 6/$*9( ("+'/, making its activation higher than other 
topics, e.g., 617"+9:(&hich only receives activation from the 
&"*2(617"++'#,9>(%7)#((7)(("+'/(6/$*9(&'44(3)(*)(*')8)2:($1(
being identified to be the topic of this particular tweet. 
Optionally, this phase may also involve inferences made 
based on the perception of other features on the Website. 
For example, if the model reads a large number of 
followers, it may identify it as a cue of high social status. 

In the third phase, the model will deliberate on the 
information cues it identified and integrated them to make a 
credibility judgment. In the ACT-R model, we use the 
blending mechanism (Lebiere, 2005) to implement this 
phase. When using blending, if there are multiple candidate 
chunks satisfying the retrieval request specification but with 
different values in certain slots, the model will construct a 
same type of chunk containing 14"((8$40)1((7$((634)#29("8)*(
those multiple values. More specifically, ACT-R will 
retrieve a chunk that contains a compromise value, V, in the 
target slot that is determined by: 

" #$
i

iVVSimPMinV 2)),(1(  

where Vi is the value held in the target slot of the existing 
chunks i. Pi is the probability of retrieving existing chunk i, 
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which is determined by the activation of chunk i. When 
making a credibility judgment, we assume that the model 
utilizes knowledge of previously stored instances of 
credibility judgments, i.e., prior knowledge that a certain 
cue is an indication of being credible or non-credible, and 
strength of that indication varies. The model blends all the 
instances it retrieves based on cues identified from the Web 
page to make the judgment. For example, the model will 
identify that topics concerned with 6/$*9:(6,$19($#2(62$('#,9(
are discussed in the tweets. It will then decide that 
mentioning of 6/$*9 related information is a strong indicator 
of credibility for giving car price suggestion, which is 
*)+*)1)#()2(3.($(1(*"#,($/('8$('"#(1+*)$2(=*"-(/70#<(6/$*9(
("(/70#<(6/*)2'34)9. Similarly, it may decide mentioning of 
6,$19 related information is a less strong indicator of 
credibility, while mentioning of 62$('#,9 related information 
may be an indicator of non-credibility and thus spread 
activation to (7)( /70#<( 6#"#-/*)2'34)9>( %he model will 
integrate the credibility indications of all cues according to 
the total activation received by the credible chunk and non-
credible chunk to make the credibility judgment. 

 
Figure 2. Model Framework 

A C T-R Model for Twitter Author C redibility 
Judgment 

The ACT-R model for Twitter page credibility judgment 
uses two buffers in addition to the basic ACT-R buffers: a 
word buffer and a credibility cue buffer. The content of the 
word buffer reflects the text that the model attends to and 
holds in a short-term memory. The credibility cue buffer 
contains cues identified by the model which may potentially 
have impact on credibility judgment. In the following 
section we will describe how we construct the declarative 
and procedural memory to work with the two buffers.   

Declarative M emory 

The declarative memory of this ACT-R includes word 
chunks, topic chunks and credibility chunks, and optionally, 
contextual cue chunks. Because Web credibility judgment 
process may involve frequent use of declarative knowledge, 
it is important to build declarative memory that allows 
adequate knowledge for such process. Therefore, to enable 
the model to process Twitter pages, we built a corpus by 
collecting all retrievable tweets from 1800 individual 

Twitter accounts (maximum=3000 tweets each) randomly 
chosen from different WeFollow directories, and 
constructed the declarative memory from this large dataset. 

Word Chunk 
We identified the 3000 stemmed words (which are not 

stop words such as a, the, of, etc) with the highest frequency 
from the Tweets corpus. Word chunks to represent each of 
the 3000 words were added into the declarative memory. 
These represent the vocabulary knowledge the model has to 
process the Twitter contents. 

Topic Chunk 
We used Latent Dirichlet Allocation (LDA) topic 

modeling (Blei et al., 2003) to identify topics that can be 
used to comprehend Twitter message content. LDA is a 
generative model which posits that a document, i.e., the 
collection of observed words, is a mixture of unobserved 
("+'/1($#2( (7$(()$/7(&"*2!1(/*)$('"#( '1($((*'30()2( ("("#)("*(
1)8)*$4( "=( (7)( 2"/0-)#(!1( ("+'/1>( We exploited an LDA 
topic model produced in Canini et al. (2011) that used 
documents constructed by aggregating all the tweets in the 
same corpus as described above. Following Canini et al. 
(2011), we selected 500 topics with the highest frequency to 
be the topic chunks in declarative memory. They represent 
the knowledge for processing and comprehending Tweets. 
Each word chunk is associated with one or multiple topics.  

Contextual Information Cue C hunk 
All the contextual information cues, if any, could be 

added into declarative memory as contextual cue chunks. 
For example, to process social status in the task, we could 
$22(67',7(1"/'$4(1($(01(/70#<9($#2(64"&(1"/'$4(1($(01(/70#<9 
into the declarative memory.  

C redibility Chunk 
We built two credibility chunks, a 6/*)2'34)9(/70#<($#2(a 

6#"#-/*)2'34)9( /70#<(which have a value slot to represent 
the two extreme values (rating 1 and rating 7) of credibility 
judgment ratings. Each credibility cue chunk (including 
topic chunk and contextual information cue chunk) is 
associated with either the credible chunk or non-credible 
chunk, and the strength of association varies. 

Procedural Memory 

The procedural memory was built to execute the 
credibility judgment process as shown in Table 1. The 
model will start by reading the textual content in sequence 
(i.e., from left to right, top to bottom). When the model 
attends to a word, and it has a corresponding word chunk in 
the declarative memory, the chunk will be retrieved and 
placed in the word buffer. With the limitation of short term 
memory, only a limited number of words will be stored in 
the buffer. When the word buffer reaches its capacity, if a 
new word chunk is retrieved, the earliest word attended will 
be removed, and each existing cue in the buffer will be 
moved to the earlier slot. Hence the model will iteratively 
hold the latest words it attends to in the word buffer. 

When processing the contents, the model attempts to 
identify topics based on what it has just read. At any 
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moment, the word buffer contains a list of words. Each of 
the word chunks is associated with one or multiple topic 
chunks in the declarative memory. All these words will 
collectively decide the strength of association spreading to 
the topic chunks. The topic that is above retrieval threshold 
and receives highest activation will be placed into the 
credibility cue buffer. Since the list of words in the word 
buffer will continuously change, the model may identify 
multiple topics as the model reads through the page. For the 
current model, we only allow topics that are not currently in 
the credibility cue buffer to be retrieved. Optionally, the 
credibility cue buffer has slots to hold contextual credibility 
cues. Similar to the word buffer, the credibility cue buffer 
also has limited number of slots, and will only keep the 
latest credibility cues. 

Resembling human behavior, the model may stop before 
it finishes processing all infornation. Anytime the model 
identifies a new credibility cue, it chooses between the 
production that halts further reading and a production to 
continuing processing. In ACT-R, when there are multiple 
productions wating to be fired, the chances that production i 
will be fired is decided by: 
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where Ui represents the utility value set for production i and 
s is a utility noise parameter,. We set the utility of the 
production for continuing processing to be higher than the 
production to halt reading. Therefore at different points of 
processing the Web content, the model has chance to stop, 
but the chance is still lower than that of continuing reading.  

When either the model chooses to stop or it reaches the 
end of the page, the production for making the credibility 
judgment will be fired. As discussed in the previous section, 
there is a credible chunk with a rating slot of value 7, and a 
non-credible chunk with a rating slot of value 1. They 
receive activation spread from the credibility cue buffer, as 
positive credibility cues are associated with the credible 
chunk, and negative ones are associated with the non-
credible chunk. The model uses the blending mechanism to 
blend the rating values of credibility chunk and non-
credibility chunk based on the activation of the two chunks.  

 
Table 1. Model Procedural 

Attend to word 
IF there is corresponding chunk in 
declarative memory 
THEN push the chunk into word buffer 

 
IF NOT 
THEN attend to next word 

Hold word in word buffer 
IF there is open slot in word buffer 
THEN hold the word chunk in the latest 
open slot 

 
IF NOT 
THEN remove the earliest word 
and move each word chunk to an 
earlier slot to open the latest slot  

Understand topic 
IF there is topic(s) above retrieve 
threshold 
& the topic(s) is not held in the 
credibility cue buffer 
THEN retrieve a topic 

 
IF NOT 
THEN attend to next word 

Hold topic in credibility cue buffer 
IF there is open slot in credibility cue 

 
IF NOT 

buffer 
THEN hold the topic in credibility cue 
buffer 

THEN remove the earliest cue 
and move each cue to an earlier 
slot to open up the latest slot  

Decide to stop of continue 
IF stop production is fired 
THEN start to make credibility 
judgment 

 
IF NOT 
THEN attend to next word 

Make credibility judgment 
IF model stops reading or no more content left for processing 
THEN make credibility judgment blending credibility chunks  

Strength of Association 

ACT-R calculates the activation of each chunk by: 
"" %%$

k j
jikjii SWBA &

 
Bi is the base-level activation, which reflects the recency 
and frequency of practice of chunk i. The component WkjSji 
reflects spreading of activation from retrieved chunks to 
related chunks in the declarative memory. S represents the 
strength of association. W can be set to decide the weighting 
of different slots in a buffer to spread activation to the 
declarative memory.!" is the system noise value.   

There are two phases in the model where the activation 
spreading plays a role: 1) the emergence of topic is 
determined by the collective activation spread from the 
words held in word buffer, and 2) the activation of 
credibility chunks is determined by the collective activation 
spread from the credibility cues held in the credibility cue 
buffer. We will describe the rules we used to set the strength 
of spreading activation below. 

Strength of association from word to topic  
By using the LDA topic model for the tweets corpus 

described above, we calculate the strength of association 
from word to topic by: 

))(/)|(log( wPtwPSwt #  
where  P(w |t) is the LDA-estimated +*"3$3'4'(.("=(&"*2(? 
given the occurrence of topic t and  P (w) is an estimated of 
the probability of word occurrence. 

 
Figure 3. Distribution of strength of associations from 

word to topic 

For the model, we set the limit of number of word slots 
for each topic chunk to be 10. It means we only identify the 
strength of association of the top 10 words for each topic, 
and overall we identified 5000 strength of associations (10 
for each of the 500 topics). The distribution of the strength 
of association (number of associations falling in each range 
of strength) is shown in Figure 3. This approach enables the 
model to have the knowledge to infer the potential 
explanations (i.e., topics) of each word that it attends to. 
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Strength of association from credibility cue to 
credibility 

Strength of association from topic chunks to credibility 
chunks indicates the extent to which the particular topic is 
regarded as an indicator of credibility or non-credibility by 
the model. The model reads the task description and attends 
to key words of the task (e.g., for the car price suggestion 
task:( (7)(<).(&"*21($*)(6/$*9($#2(6+*'/)9@>(For each of the 
key words, the model attempts to identify topics that are 
highly related to the key words. We set the current model to 
select the top 30 topics, with which the attended key word 
chunk has the highest strengths of association. Then the 
model increases the strength of association from the topic to 
credibility chunk by the same amount of strength. It allows 
the model to use a bottom up approach to identify topics 
that are associated with the task goal and that may have 
positive impact on credibility judgment. 

According to the results of our preliminary study, there 
seemed to be topics with negative effects on the credibility 
rating (e.g., dating related topics). While it is difficult to 
exhaustively identify all the negatively associated topics, 
since we only intend to test the model with directories of 
car, dating and investing at the current stage, we manually 
selected a few topics that are strongly associated with words 
frequently used by authors in dating directory (e.g., dating, 
sex, etc), and set strength of associations from these 
negative topics to the non-credible chunk. 

Similarly, contextual cue chunks in the credibility cue 
buffer, if any, will spread activation to either of the two 
credibility chunks. For example, the high social status 
chunk, if held in credibility cue buffer, will spread 
activation to credible chunk.  

Pilot Validation 
We used the same setup and procedure as in the Canini et 

al. (2011) experiment, which asks participants to rate a 
%&'(()*($0(7"*!1(/*)2'3'4'(.(="*(,'8'#,(/$*(+*'/)(10,,)1('"#s. 
However, instead of manipulating multiple features on the 
page, we focused on only 01)*1!((&))((contents. We selected 
the latest 40 tweets from the top 10 users recommended in 
the WeFollow directories for cars, investing and dating. We 
recruited N = 7 participants to complete the credibility 
rating task. Each participant judged all the 30 pages in 
random order. 

We first performed a repeated measure ANOVA on 
+$*('/'+$#(1!( /*)2'3'4'(.( *$('#,s, with author domain (car, 

dating, investing) as the independent variable. The result 
showed that the main effects of directory is significant 
(F(2,12)=4.82, p=0.03), meaning credibility ratings given 
to the authors from the three directories are different. Post-
hoc analysis showed that the ratings given to authors from 
car directory are significantly higher than those from dating 
directory (F(1,6)=12.05, p=0.01). The model results 
showed the same pattern. As the model results may vary if it 
stops reading at different parts of the page, we ran the model 
for 10 times and calculated the mean ratings for each page. 
We performed t-test between each pair of author directories 
for the mean rating of each page given by the model. It 
shows the ratings given to Twitter author selected from car 
directory are significantly higher than those from dating 
directory (t(18)=5.46, p<0.01), and those from investing 
directory (t(18)=4.62, p<0.01). The results suggest that, the 
model, like human participants, is able to infer the source 
credibility for the task goal (i.e., car price suggestion) based 
on the micro-blogging content created by the person. 

We are aware that the perceived credibility varies even 
for Twitter authors selected from the same directory. For 
example, some car experts may not necessarily talk about 
cars in their tweets, while others may tweet about it 
frequently. Potentially, one practical use of a cognitive 
model for Web credibility judgment is the capability of 
predicting perceived credibility for individual pages. We 
therefore looked into the correlations between human 
judgment and model judgment for individual pages. 
Specifically, we expect the model to be able to differentiate 
higher credibility from lower credibility Twitter sources as 
judged by humans. 

Figure 4 shows the human results and model results for 
credibility ratings about 10 users chosen from the WeFollow 
directories of cars, investing and dating. The fit for all the 
30 pages between human and model results is R2=0.69. The 
fit for the 10 authors from car directory is R2=0.56, 
correlation for investing directory is R2=0.30, correlation for 
dating directory is R2=0.10. Although the results do not 
show a good fit for investing and dating directory, we are 
aware that the current model may not be able to 
exhaustively identify information cues that negatively affect 
credibility judgments.  

At a broader level of analysis we tested to what extent the 
model could predict the valence (i.e., low vs high) of the 
credibility judgment. To this end, for the 30 pages with 
authors from the car, dating and investing directories, we 
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Figure 4. Human and model results
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performed a median split analysis of Twitter user credibility 
rating. Each Twitter user was coded as being (1) high-
credibility or low-credibility based on whether it was above 
median or below median in terms of average human rating 
and (2) high-credibility or low-credibility based on whether 
the Twitter user was above median or below median on 
model ratings. The results showed that, for 26 out of 30 
pages, human results and model results fall into the same 
bucket (with the exception of 2 high-credibility and 2 low-
credibility pages). The Chi-square test on this 2×2 median 
split showed they are dependant (X2=16.13, p<0.01). 

We further tested the prediction of valence within each 
author directory. We performed the same median split 
analysis for the 10 pages with authors from car directory. 
The results showed that, for 8 out of 10 pages, human 
results and model results fall into the same bucket (with the 
exception of 1 high and 1 low credibility page, X2=5.33, 
p=0.02). To further verify these pages are perceived to have 
different valence of credibility, we performed repeated 
measure ANOVA with human ratings for the 8 pages which 
fall in same bucket for both human and model results, with 
the valence (high/.low) as independent variable. It shows the 
ratings are significantly different (F(1,6)=10.52, p=0.02). 
We performed the same analysis for authors selected from 
investing directory. We also found, for 8 out of 10 pages, 
human ratings and model ratings fall into the same high or 
low bucket (with the exception of 1 high and 1 low 
credibility page, X2=5.33, p=0.02). The ANOVA verified 
the ratings given to the two groups of pages is marginally 
significant (F(1,6)=4.52, p=0.07). We did not look into the 
dating directory because of the lack of knowledge about 
negative cues as discussed earlier. These results proved that 
the model was able to predict the valence of credibility for 
individual pages. 

Discussion 
In this study, we proposed a framework for a cognitive 

model for making credibility judgments of Web content or 
its sources, and implemented it in ACT-R. We exploited 
Twitter content to induce an LDA topic model that was used 
to seed declarative memory and support an instance-based 
judgment process based on the ACT-R blending 
mechanism.  In general, the model is able to infer the level 
of credibility of Twitter authors by differentiating authors 
with on-topic content for the task goal and those without. It 
is also able to predict the perceived credibility of individual 
users with on-topic contents. 

The model performs three phases of cognitive process to 
make a credibility judgment of Web content or sources: 
attending to information on the page, comprehending the 
information to infer credibility cues, and making credibility 
judgment by integrating these credibility cues. During the 
comprehending phase, the spreading activation mechanism 
of ACT-R is used to identify the most likely explanation 
when there are multiple pieces of observed information and 
each may have multiple explanations. The blending 
mechanism is used to generate a judgment by integrating 

credibility cues, each of which may indicate a different level 
of credibility. Although we built the model with a Twitter 
author judgment task in this paper, by changing the model 
knowledge for processing information on a Web page, and 
knowledge about credibility of different cues, the model 
could be modified to apply to different media, content, or 
sources. 

The major limitation of current model is its lack of 
complete knowledge about the credibility indications of 
various information cues, especially those that may 
negatively impact credibility judgments.  Future research is 
needed to explore this research question.  
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Introduction 
As we apply cognitive models to complex, temporally 
extended tasks, removing declarative knowledge from 
memory, or forgetting, will become important both to model 
human behavior, as well as to scale computationally. The 
base-level activation (BLA) model predicts that the 
availability of specific memories is sensitive to frequency 
and recency of use. Memory decay based on this model has 
long been a core commitment of the ACT-R theory 
(Anderson et al., 2004), as it has been shown to account for 
a class of memory retrieval errors (Anderson, Reder, & 
Lebiere, 1996), and has been used in Soar (Laird, 2012) to 
investigate task-performance effects of forgetting short-term 
(Chong, 2003) and procedural (Chong, 2004) knowledge. 
Prior work has addressed many of the computational 
challenges associated with retrieving a single memory 
according to the BLA model (Petrov, 2006; Derbinsky, 
Laird, & Smith, 2010; Derbinsky & Laird, 2011). However, 
efficiently removing items from memory, while preserving 
BLA-model fidelity, is a different problem, which we 
address here. We formally describe the computational 
problem; present a novel approach to forget according to 
BLA in large memories; and evaluate using synthetic data. 

Problem Formulation 
Let memory M be a set of elements, {m1, m2, …}. Let each 
element mi be defined as a set of pairs (aij, kij), where kij 
refers to the number of times element mi was activated at 
time aij. We assume |mi| ≤ c: the number of activation events 
for any element is bounded. These assumptions are 
consistent with the ACT-R declarative memory when 
bounding chunk-history size (Petrov, 2006). This is also 
consistent with the semantic memory in Soar (Laird, 2012). 

We assume that activation of an element m at time t is 
computed according to the BLA model (Anderson et al. 
2004), where d is a fixed decay parameter: 

B(m, t,d) = ln( kj ⋅[t − aj ]−d )
j=1

|m|
∑  

We define an element as decayed, with respect to a 
threshold parameter θ if B(m,t,d) < θ. Given a static element 
m, we define L as the fewest number of time steps required 
for the element to decay, relative to time step t: 

L(m, t,d,θ ) := inf{td ∈ℵ:B(m, t + td,d)<θ}  

For example, element x = {(3, 1), (5, 2)} was activated once 
at time step three and twice at time step five. Assuming 
decay rate 0.5 and threshold -2, x has activation about 0.649 
at time step 7 and is not decayed: L(x,7,0.5,-2) = 489. 

During a model time step t, the following actions can 
occur with respect to memory M: 

S1. A new element is added to M. 
S2. An existing element is removed from M. 
S3. An existing element is activated y times. 

If S3 occurs with respect to element mi, a new pair (t, y) is 
added to mi. To maintain a bounded history size, if |mi| > c, 
the pair with smallest a (i.e. the oldest) is removed from mi. 

Thus, given a memory M, we define that the forgetting 
problem, at each time step, t, is to identify the subset of 
elements, D ⊆ M, that have decayed since the last time step. 

Efficient Approach 
Given this problem definition, a naïve approach is to 
determine the decay status of each element every time step. 
This test requires computation O(|M|), scaling linearly with 
average memory size. The computation expended upon each 
element, mi, will be linear in the number of time steps where 
mi ∈ M, estimated as O(L) for a static element. 

Our approach draws inspiration from the work of Nuxoll, 
Laird, and James (2004): rather than checking memory 
elements for decay status, “predict” the future time step 
when the element will decay. First, at each time step, 
examine elements that either (S1) weren’t previously in the 
memory or (S3) were activated. The number of items 
requiring inspection is bounded by the total number of 
elements (|M|), but may be a small subset. For each of these 
elements, predict the time of future decay (discussed 
shortly) and add the element to a map, where the map key is 
the predicted time step and the value is a set of elements 
predicted to decay at that time. If the element was already 
within the map (S3), remove it from its old location before 
adding to its new location. All insertions/removals require 
time at most logarithmic in the number of distinct decay 
time steps, which is bounded by the total number of 
elements (|M|). At any time step, the set D is those elements 
in the set indexed by the current time step that are decayed. 

To predict element decay, we perform a novel, two-phase 
process. After a new activation (S3), we first employ an 
approximation that is guaranteed to underestimate the true 
value of L. If, at a future time step, we encounter the 
element in D and it has not decayed, we then compute the 
exact prediction using a binary parameter search. 
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We approximate L for an element m as the sum of L for 
each independent pair (a, k) ∈ m. Here we derive the closed-
form calculation: given a single element pair at time t, we 
solve for tp, the future time of element decay… 

ln(k ⋅[tp + (t − a)]−d ) =θ
ln(k)− d ⋅ ln(tp + (t − a)) =θ  

tp = e
θ−ln(k )
−d − (t − a)  

Since k refers to a single time point, a, we rewrite the 
summed terms as a product. Furthermore, we time shift the 
decay term by the difference between the current time step, 
t, and that of the element pair, a, thereby predicting L. 

Computing this approximation for a single pair takes
constant time (and common values can be cached). Overall 
approximation computation is linear in the number of pairs, 
which is bounded by c, and therefore O(1). The computation 
required for binary parameter search of an element is 
O(log2L). However, this computation is only necessary if 
the element has not decayed, or removed from M. 

Evaluation 
This approach has been empirically evaluated for long-term 
tasks in the procedural and working memories of Soar
(Derbinsky & Laird, 2012). In this paper, we focus on the 
quality and efficiency of our prediction approach and utilize
synthetic data. Our data set comprises 50,000 memory 
elements, each with a randomly generated pair set.  The size 
of each element was randomly selected from between 1 and 
10, the number of activations per pair (k) was randomly 
selected between 1 and 10, and the time of each pair (a) was 
randomly selected between 1 and 999. We verified that each 
element had a valid history with respect to time step 1000, 
meaning that each element would not have decayed before 
t=1000. Also, each element contained a pair with at least 
one access at time point 999, which simulated a fresh 
activation (S3). For all synthetic experiments we used decay 
rate d=0.8 and threshold θ=-1.6. Given these constraints, the 
largest possible value of L for an element is 3332. 

We first evaluate the quality of the decay approximation. 
In Figure 1, the y-axis is the cumulative proportion of the 
elements and the x-axis plots absolute temporal error of the 
approximation, where a value of 0 indicates that the 
approximation was correct, and non-zero indicates how 
many time steps the approximation under-predicted. We see 
that the approximation was correct for over 60% of the 
elements, but did underestimate over 500 time steps for 20% 
of the elements and over 1000 time steps for 1% of the 
elements. Under the constraints of this data set, it is possible 
for this approximation to underestimate up to 2084 time 
steps. We also compared the prediction time, in 
microseconds, of the approximation to an exact calculation 
using binary parameter search. The maximum computation 
time across the data set was >19x faster for the 
approximation (1.37 vs. 26.28 µsec./element) and the 
average time was >15x faster (0.31 vs. 4.73 µsec./element). 

We did not compare these results with a naïve approach, as 
results would depend upon a model of memory size (|M|).  

In conclusion, we presented a novel, two-phase forgetting 
approach that maintains fidelity to the base-level activation 
model and scales to large memories. The experimental 
results show that the first phase is a high-quality 
approximation and is an order of magnitude less costly than 
the exact calculation in the second phase. 
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Abstract
The ability to re-represent information—i.e., to see things in
new ways—is essential for human reasoning, creativity, and
learning. It forms the foundation of insight problem solving
and scientific explanation, and is hypothesized to play a pivotal
role in concept development in children. Re-representation is
useful because it allows a cognizer to make sense of things
in ways that were previously impossible. Yet, invoking this
operation can quickly become computationally intractable in
light of the combinatorial explosion of re-representation op-
tions to consider. Although this intractability may explain
why discovering useful ways of re-representing information
can be cognitively challenging at times (as in insight puz-
zles and creativity), it seems difficult to reconcile with au-
tomatic and apparently effortless forms of re-representation
(as in everyday analogizing and children’s development of
concepts). To get more insight into the conditions that can
make re-representation tractable, we performed computational
complexity analyses of a formal model of re-representation
as invoked in analogy derivation. We will discuss how
our complexity results can help explain when and why re-
representation can be invoked effectively and efficiently.
Keywords: Re-representation; Analogy; Structure Mapping;
Computational Complexity; Fixed-Parameter Tractability

Introduction
Many theories of cognitive abilities operate on mental repre-
sentations of information, each of which assumes a particular
encoding of relevant situations and concepts. As there are
typically many possible encodings, one’s initial representa-
tion may in fact be inappropriate for the task at hand, slowing
down or even stopping the ability from functioning. In such
cases, it is hypothesized that humans change encodings and
re-represent stored information.

Re-representation has been invoked in many cognitive the-
ories. It allows natural analogies that rely on semantic rather
than syntactic matching (e.g., “Bob running into the cave”
is like “Alice walking into a room” ⇒ “Bob moves into the
cave” is like “Alice moves into the room” (Gentner & Kurtz,
2006)). The powerful abstractions generated by such re-
representation in turn have been hypothesized to underlie cer-
tain types of concept development in children (e.g., the emer-
gence of abstract relations and attributes: “X is hotter than Y”
⇒ “temperature(X) is greater than temperature(Y)” (Gentner,
Rattermann, Markman, & Kotovosky, 1995)). More radi-
cal types of re-representation can in turn lead to totally new
ways of envisioning particular situations and concepts, and
thus have been invoked in theories of insight problem solving
(Ohlsson, 1992), scientific discovery (Gentner et al., 1997),
and creativity (Welling, 2007).

Investigating re-representation experimentally is difficult,
but there is increasing evidence for its psychological reality
(Gentner & Kurtz, 2006; Kurtz, 2006). This has motivated the
development of computational theories of re-representation
(e.g., Ohlsson (1992); Yan, Forbus, and Gentner (2003);
Krumnack, Gust, Kühnberger, and Schwering (2008)), which
has raised the following conundrum: The combinatorial ex-
plosion of re-representation options that must be considered
in such theories seems to be computational intractable. This
intractability may explain why certain cognitive activities in-
voking re-representation like insight problem solving and cre-
ativity are challenging, but is at odds with how other forms of
re-representation invoked in everyday reasoning or cognitive
development seem so effortless and automatic.

In this paper, we assess the computational difficulty of a ba-
sic type of re-representation, namely individual predicate re-
representation within Gentner’s Structure Mapping Theory of
analogy derivation (SMT) (Gentner, 1983; Yan et al., 2003).
We give the first proof that such re-representation is compu-
tationally intractable, even when invoked in the context of
incremental rather than general analogy derivation. This find-
ing indicates that constraints on both the re-representation
process and its inputs must be exploited to yield tractability.
In the second part of this paper we illustrate a methodology
suitable for identifying such constraints. We also discuss how
our results can help explain when and why re-representation
can be invoked effectively and efficiently.

Computational-level Models
Analogies are defined over concepts, which are repre-
sented in SMT by predicate-structures composed of enti-
ties (e.g., SUN, PLANET) and predicates relating those en-
tities (as well as other predicates) (e.g., ATTRACTS(SUN,
PLANET)). Predicate-structures are naturally represented as
vertex-labelled directed acyclic graphs in which entities are
leaves, predicates are internal vertices, and predicates are
linked to their arguments by arcs (see part (a) of Figure 1).

An analogy “T is (like) a B”, where B and T are predicate-
structures, is a mapping from a portion of B to a portion of T
that satisfies the following three conditions:

1. The mapping is structurally consistent, i.e., match-
ing relations must have matching arguments and any
element in one predicate-structure matches at most
one element in the other.

111



Attracts Revolve

Mass

Greater Attracts Revolve

nucleus electron

ChargeCharge

sun

Mass

Cause

Greater Attracts Revolve

And

Cause

Mass Mass

sun planet

Cause

Opposite−Sign Greater Attracts RevolveGravity

nucleus electron

ChargeCharge

Greater

planet

a) 

b) 

Figure 1: Analogy Derivation in Structure-Mapping Theory.
(a) Two graph representations of predicate structures encod-
ing descriptions of the solar system (left) and the Rutherford
model of the atom (right). (b) An optimal analogy between
the structures in (a), where dotted arrows indicate the map-
pings between corresponding pairs of predicates and objects.

2. Relational focus: The mapping must involve com-
mon predicates but need not involve common objects,
i.e., matched predicates must have the same type, ar-
gument, number and order but matched objects need
not have the same name.

3. Systematicity: The mapping tends to match inter-
connected, deeply-nested predicate-substructures.

Let val(A) be the systematicity of an analogy A. The most
systematic analogy between a pair of predicate-structures is
an optimal analogy (see part (b) of Figure 1).

Under SMT, re-representation of predicates is only invoked
to better the analogical match between two given predicate-
structures. As such, it relaxes identical-only predicate-type
matches (e.g., ATTRACTS → ATTRACTS) to allow selected
non-identical matches (e.g., WALK → MOVE). There are two
classes of mechanisms for performing re-representations:

1. Rule-guided (part (a) of Figure 2): A predicate of type
x can be re-represented as a predicate of type y if there
is a rule x → y. Collections of rules can be encoded
as predicate-type similarity tables (represented explicitly
(Holyoak & Thagard, 1989) or generated implicitly by
predicate decomposition (Gentner et al., 1995)) or gen-
eralization lattices (in which the most specific predicate-
types are at the bottom of the lattice and the most abstract
predicate-types are at the top) (Winston, 1980).

2. Context-guided (part (b) of Figure 2): A predicate p of
type x can be re-represented as a predicate of type y if p
appears in a structural context immediately “outside” an

(a)

(b)

Figure 2: Re-Representation Mechanisms in Structure-
Mapping Theory. (a) Rule-guided. (b) Context-guided.
Analogically-matched regions are enclosed by dashed boxes.

existing analogy between two predicate-structures which,
if p’s type is changed, will allow an incremental addition
to that analogy which increases its systematicity. The most
basic type of context is a “hole”, in which a pair of pred-
icates in B and T have different types but both their argu-
ments and parents have the same types and can be matched.

Analogy derivation alternates with such re-representation un-
til a satisfactory analogy is reached. In any one round of re-
representations, it is assumed that each predicate in the given
predicate-structures can change at most once. Though we
focus here on single-predicate re-representation, more com-
plex re-representations involving larger changes in structure
are also possible (Yan et al., 2003).

Acting on all available re-representation opportunities can
both be computationally expensive and potentially result in
analogies that are meaningless or misleading, e.g., “ana-
logical hallucinations” (Gentner & Kurtz, 2006, Page 616).
There are many possible strategies for selecting which re-
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representations to perform. Two general principles underlie
all such strategies (Yan et al., 2003, Page 1269):

1. Systematicity: All else being equal, re-representation
suggestions that lead to increases in the systematicity
of the derived analogy will be preferred.

2. High Selectivity: The selection process should be
tightly controlled, so that very few of the possible op-
portunities are selected for consideration.

The above considerations yield the following
computational-level models of representation under SMT.
All three models assume that re-representation is done to
improve on a given optimal analogy. The first of these
models is general, in that it does not require that the created
analogy be an extension of the given analogy.

ANALOGY DERIVATION WITH RE-REPRESENTATION
(ADR)

Input: Predicate-structures B and T , an optimal analogy
A(B,T ), a rule-set R, and integers k and c.
Output: Predicate-structures B′ and T ′ and an analogy
A′(B′,T ′) such that (i) B′ and T ′ are derivable from B
and T by at most k applications of rules from R and (ii)
val(A′)− val(A) ≥ c.

The second and third models are restrictions of the first, as
they are required to extend the given analogy.

ANALOGY IMPROVEMENT WITH RULE-GUIDED
RE-REPRESENTATION (AIR[R])

Input: Predicate-structures B and T , an optimal analogy
A(B,T ), a rule-set R, and integers k and c.
Output: Predicate-structures B′ and T ′ and an analogy
A′(B′,T ′) such that (i) A⊂A′, (ii) B′ and T ′ are derivable
from B and T by at most k applications of rules from R,
and (iii) val(A′)− val(A) ≥ c.

ANALOGY IMPROVEMENT WITH CONTEXT-
GUIDED RE-REPRESENTATION (AIR[C])

Input: Predicate-structures B and T , an optimal analogy
A(B,T ), and integers k and c.
Output: Predicate-structures B′ and T ′ and an anal-
ogy A′(B′,T ′) such that (i) A ⊂ A′, (ii) B′ and T ′ are
derivable from B and T by at most k context-guided re-
representations, and (iii) val(A′)− val(A) ≥ c.

For simplicity, we will assume that all context-guided re-
representations in the third model are of the basic “hole” type
shown in part (b) of Figure 2.

It is possible that the act of analogy derivation rather than
re-representation may artificially boost the difficulty of the
models described above. To this end, we will also ana-
lyze a fourth model of re-representation, whose goal is to
re-represent a given predicate-structure in order to satisfy a
polynomial-time computable function Prop that returns ei-
ther True or False, e.g., does the re-represented T contain a
particular type of easily-recognizable structure?

GENERAL DERIVATION WITH RE-REPRESENTATION
(GDR)

Input: Predicate-structure T such that Prop(T ) =
False, rule-set R, and integer k.
Output: Predicate-structure T ′ such that (i) T ′ deriv-
able by at most k applications of rules from R and (ii)
Prop(T ′) = True.

The four models above are those that will be considered
below. However, as will be explained later in the paper, re-
sults derived relative to these models have implications for a
broad range of cognitive theories invoking re-representation.

Re-representation is Intractable
To investigate the computational (in)tractability of the mod-
els of re-representation given in the previous section, we have
adopted standard complexity-theoretic proof techniques from
Computer Science (Garey & Johnson, 1979). Using these
techniques, we have proven the following (see the supple-
mentary materials for proofs1):

Result 1 ADR, AIR[R], AIR[C], and GDR are NP-hard.

These results imply that there do not exist any algorithms for
performing basic re-representation in the sense of the models
considered here in polynomial time for all inputs (i.e., time
upper-bounded by some function nc where n is a measure of
input size and c is some constant).2 In other words, all algo-
rithms for these models will run in exponential time or worse
(i.e., time upper-bounded at best by some function cn for c
and n as above). As exponential-time algorithms have unre-
alistically long runtimes for all but very small inputs, they
are generally considered to be computationally intractable
(Garey & Johnson, 1979).

Given that it is NP-hard to derive analogies of a specified
systematicity (van Rooij, Evans, Müller, Gedge, & Wareham,
2008; Veale & Keane, 1997), the NP-hardness of ADR is
not unexpected. The NP-hardness of AIR[R] and AIR[C] is
surprising, as deriving analogies that must be built on and in-
clude given analogies (Forbus, Ferguson, & Gentner, 1994)
was not previously thought to be intractable. This suggests
that the act of re-representation all by itself is intractable,
which is confirmed by the NP-hardness of GDR. That all
of these results hold in the most basic case as well – that
is, re-representation of individual predicates — has addi-
tional power, as this means that these results may actually
under-estimate the complexity of more complex types of re-
representation invoking larger scale structural changes such
as those proposed in Yan et al. (2003).

All this being said, the above does not say that re-
representation is impossible – rather, it suggests that re-
representation in practice may require one or more additional
constraints on the inputs and/or the re-representation process

1http://www.cs.mun.ca/∼harold/Papers/ICCM12supp.pdf
2This assumes that the conjecture P (= NP is true, which is widely

believed within the Computer Science community on both theoreti-
cal and empirical grounds (Fortnow, 2009).
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not considered so far in order to be computationally practical.
In the next section, we describe a methodology that can be
used to both model such specific constraints and investigate
their computational effects.

A Method for Identifying
Tractability Conditions

A computational problem that is intractable for unrestricted
inputs may yet be tractable for non-trivial restrictions on the
input. This insight is based on the observation that some
NP-hard problems can be solved by algorithms whose run-
ning time is polynomial in the overall input size and non-
polynomial only in some aspects of the input called parame-
ters. In other words, the main part of the input contributes to
the overall complexity in a “good” way, whereas only the pa-
rameters contribute to the overall complexity in a “bad” way.
In such cases, the problem Π is said to be fixed-parameter
tractable (Downey & Fellows, 1999) for that set of parame-
ters. The following definition states this idea more formally.

Definition 1 Let Π be a problem with parameters k1,k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable
for parameter-set K = {k1,k2, . . . ,kc} if there exists at least
one algorithm that solves Π for any input of size n in time
f (k1,k2, . . . ,kc)nc, where f (·) is an arbitrary function and c
is a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-set
K if all superpolynomial-time complexity in solving Π can be
confined to the parameters in K. In this sense the unbounded
nature of the parameters in K can be seen as a reason for
the intractability of the unconstrained version of Π. For any
given fixed-parameter (in)tractability result, other results may
be implied courtesy of the following lemmas:

Lemma 1 If Π is fp-tractable for K then Π is fp-tractable
for any K′ such that K ⊂ K′.

Lemma 2 If Π is fp-intractable for K then Π is fp-
intractable for any K′ such that K′ ⊂ K.

It follows from the definition of fp-tractability that if an in-
tractable problem Π is fp-tractable for parameter-set K, then
Π can be efficiently solved even for large inputs, provided
only that all the parameters in K are relatively small. In the
next section we report on our investigation of whether or not
parameters may be used in this way to render the models
ADR, AIR[R], AIR[C], and GDR tractable.

What Does (and Doesn’t)
Make Re-representation Tractable?

Table 1 lists the parameters that we will consider in our fixed-
parameter analyses of re-representation. Each of these pa-
rameters is of interest for different reasons. Parameters o and
p are already known to individually render analogy deriva-
tion fp-tractable (van Rooij et al., 2008; Wareham, Evans,

Table 1: Overview of Parameters Considered.
Name Description

o Maximum number of objects over B and T
p Maximum number of predicates over B and T
k Amount of allowed re-representation
|R| Rule-set size
a Total number of re-representation

opportunities in B and T

& van Rooij, 2011) and may in turn make analogy deriva-
tion with re-representation fp-tractable. Parameters k and |R|
explicitly and implicitly, respectively, encode the High Se-
lectivity principle for re-representation selection strategies,
and should thus be small in practice. Finally, in addition
to considering parameters that separately characterize the in-
puts (o, p) and the re-representation process (k, |R|), we will
investigate parameter a, which in a sense encodes the de-
gree of interaction between the given predicate-structures and
the re-representation mechanisms (either rules in R or hole-
contexts) in terms of the number of opportunities that these
inputs provide for the application of these mechanisms.

The results of our analyses relative to these parameters are
given below (see the supplementary materials for proofs). As
we are still in the early stages of our investigation, these re-
sults in tandem with Lemmas 1 and 2 do not yet fully charac-
terize the parameterized complexity of our models relative to
all possible combinations of the considered parameters. How-
ever, even at this initial stage, we can still draw some inter-
esting conclusions and conjectures.

Let us start with the fp-intractability results:

Result 2 ADR and GDR are fp-intractable for parameter-
sets {o,k,a} and {k, |R|}.

Result 3 AIR[R] is fp-intractable for parameter-set {o,k,a}.

Result 4 AIR[C] is fp-intractable for parameter-set {o,k}.

Though there are still some open questions (in particular, the
parameterized status of AIR[R] relative to {|R|}, AIR[C] rel-
ative to {a}, and GDR relative to {p}), these results in tan-
dem with Lemma 1 establish that almost none of the param-
eters considered here can, if individually restricted to small
values, render any of our models computationally feasible.
The same also holds for any combinations of the parameters
within the parameter-sets mentioned in these results. Of par-
ticular note is the fact that neither of the four models consid-
ered here can be made feasible by restricting k alone. This
suggests that other principles in addition to High Selectiv-
ity must underlie re-representation selection strategies if re-
representation is to be made feasible. These principles may
have to be model-specific; for example, the current scarcity
of fp-intractability results for AIR[R] and AIR[C] suggests
that requiring derived analogies to build on given analogies
may provide model-specific opportunities for restrictions that
yield fp-tractability.

114



Consider now the fp-tractability results:

Result 5 ADR, AIR[R], and AIR[C] are fp-tractable for
parameter-set {p}.

Result 6 GDR is fp-tractable for parameter-set {p, |R|}.

Result 7 ADR and AIR[R] are fp-tractable for parameter-set
{o, |R|,a}.

Result 8 AIR[C] is fp-tractable for parameter-set {o,a}.

Result 9 GDR is fp-tractable for parameter-set {|R|,a}.

Each of these results implies that if all parameters in that re-
sult’s parameter-set have small value, then the model men-
tioned in that result can be computationally feasible on in-
puts of arbitrary size. For example, Result 8 says that if o
and a are simultaneously of small value, then AIR[C] may be
computationally feasible. Results 7, 8, and 9 are of partic-
ular interest. The constraint on predicate-structure size im-
posed by o is not overly onerous, as many kinds of predicate-
structures are based on a relatively small number of objects
(Schlimm, 2008); moreover, it seems reasonable to conjec-
ture that for certain applications (e.g., those involving large-
scale re-representation rules), a and |R| may be suitably small.

Generality of Results
All of the intractability results reported in this paper, though
defined relative to a specific theory of analogy derivation,
have broad applicability. This is because the models exam-
ined here are restricted versions of models for other cognitive
theories that invoke re-representation, e.g.,

• The re-representation modes encoded in our models are
used in many cognitive theories (e.g., GDR’s single-
structure re-representation parallels re-representation in
insight problem solving (Ohlsson, 1992)).

• The predicate-structures on which our models are based are
a powerful but basic form of representation, and it seems
reasonable to conjecture that these other theories can be
phrased in terms of predicate-structures.

• The basic single-predicate-change rules and hole-contexts
used in our models are special cases of the more complex
re-representation invoked in these other theories.

Results for models of other theories that satisfy the above then
follow from the well-known observation that intractability re-
sults for a problem Π also hold for any problem Π′ that has
Π as a special case and can hence solve Π (suppose Π is in-
tractable; if Π′ is tractable, then it can be used to solve Π
efficiently, which contradicts the intractability of Π – hence,
Π′ must also be intractable).

Our fp-tractability results are more fragile, as innocuous
changes in the form of the inputs or the re-representation rules
and contexts may in fact violate assumptions critical to the
operation of the algorithms underlying these results. For now,
we can say that as the parameters mentioned in Results 7, 8,

and 9 encode only the combinatorics of re-representation pos-
sibilities (via |R| and/or a) and require only that the structures
generated by each such possible set of re-representations can
be evaluated to determine if they comprise a viable solution in
a reasonable amount of time, these results apply to all models
whose input-types and re-representation mechanisms satisfy
these conditions.

Discussion
Our research was motivated by the question of how the com-
putational difficulty of re-representation in general can be
reconciled with the ease of many instances of everyday re-
representation. To address this question, we first set out
to assess using formal methods whether re-representation as
proposed in one such instance, namely analogy derivation,
was computationally tractable. We found that this is not the
case. In contrast, even these models of analogy derivation
that only allow the simplest forms of re-representation can
be proven NP-hard (Result 1). This means that no practi-
cal (read: polynomial time) algorithm can exist that perform
such re-representation for all representations. To our knowl-
edge, this is the first formal proof of the intractability of re-
representation in the context of analogy derivation.

As this left the questions of how and under what condi-
tions re-representation can become tractable, we performed
complexity analyses to identify parameters that when re-
stricted to small values render re-representation tractable (see
Table 1 and its associated section for results). We believe that
the following two of our findings are of particular interest:

1. Limiting the amount of re-representation (i.e., small k)
does not by itself (nor when combined with many other pa-
rameters) make re-representation tractable (Results 2–4).

2. What does make re-representation tractable in the case of
analogy (and, as noted above, many other more complex
models) is when all of the parameters in the sets {p} (Re-
sult 5) or {o, |R|,a} (Results 7 and 8) are simultaneously
restricted to take small values.

The latter set in (2) may be applicable to re-representation
in everyday analogy derivation (especially those cases apply-
ing large-scale re-representations) and the former set may be
reasonable for re-representation in concept development, as
it is strongly hypothesized that children’s representations are
object- and attribute-rich and relationally poor (i.e., small p)
(Gentner et al., 1995). The question now is whether these
properties actually hold in these and other observedly fast
forms of re-representation. If empirical evidence of these
properties can be found, then our tractability results provide a
psychologically plausible explanation of how the modelled
forms of re-representation can be tractable despite the in-
tractability of re-representation in general.

To summarize, in this paper we have given the first for-
mal proofs not only that re-representation is computation-
ally difficult even by itself, but that there are restrictions that
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may allow it to operate quickly in practice. Promising direc-
tions for future work include extending parameterized anal-
yses of the models defined here to other parameters (in par-
ticular, parameters like a that describe interactions between
the given input and the re-representation process), developing
good fixed-parameter algorithms for re-representation within
analogy derivation for implementation in large-scale AI sys-
tems like the Companions architecture (Forbus & Hinrichs,
2006), and investigating in detail the extent to which results
and conclusions presented here apply to other models of re-
representation-assisted analogy such as AMBR (Kokinov &
Petrov, 2000) and HDTP (Krumnack et al., 2008) as well as
models of insight problem solving and creativity.
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Abstract
We examine how several environmental factors influence cog-
nition and the emergence of social networks in artificial soci-
eties. Using a large-scale socio-cognitive simulation (VIPER),
we generated social networks consisting of 20, 40, and 60
agents. We tested the impact that environmental factors such as
population size, map configuration, and run time, particularly
on the formation of social ties in memory. We analyzed 1,080
ego-nets across 27 conditions, measuring the number of links
and average degree of each network. While all these factors in-
fluenced these network measures, our results suggest that pop-
ulation size has the largest influence. In addition, we examined
what impact activation values and retention parameters have on
the construction of social networks in memory, finding that a
shift in activation values resulted in a loss of links, thus indi-
cating a cognitive foundation for Dunbar’s Number (Dunbar,
1998) for the maximum number of social ties stored in mem-
ory.
Keywords: ACT-R; socio-cognitive network; memory; net-
work formation

Introduction
We seek to show two things here: first, that several commonly
used parameters in network science have an impact and need
to be reported, but which are currently under-reported; and,
secondly, that cognitive architectures used in network science
will have different results than intelligent agents lacking cog-
nitive plausibility. So, in this paper, we examine three com-
mon environmental factors that influence the construction of
social networks: population size, environmental configura-
tion, and run duration. Later work uses these results to ex-
amine how these factors influence specific network relations
such as Dunbar’s Number (Dunbar, 1998) in (Zhao, Kaulakis,
Morgan, Hiam, Sanford, et al., 2012; Zhao, Kaulakis, Mor-
gan, Hiam, & Ritter, 2012).

This work is motivated by a desire to better understand
how socio-cognitive processes influence the development of
persistent patterns of relations, represented in this paper as
network topologies. By socio-cognitive processes, we refer
to both those cognitive resources and mechanisms necessary
to create and sustain social ties, as well as those group-level
factors known to moderate human decision-making as mod-
eled by (Morgan, Morgan, & Ritter, 2010). We, also exam-
ine memory retention because it seems foundational to under-
standing the construction and maintenance of social networks
within cognitive architectures.

We refer to these networks as socio-cognitive networks.
We differentiate socio-cognitive networks from other social
networks by their means of interaction, or the degree to which
the networks structure, modes of communication, and re-
sources derive from an external medium (e.g., cell phone net-
works or web-based friend networks). We believe a deeper

understanding of the constraints imposed by memory decay
on network formation is important because such an under-
standing may allow us to refine our predictions regarding the
likely structures and capabilities of socio-cognitive networks.
In particular, we believe an agent-based approach can allow
us to deepen our understanding of the relationship between
the carrying capacity (in this case an agents ability to recall
its friends network) of a networks nodes and its topology.

To explore these questions, we introduce a set of cognitive
models and experiments that vary across three factors. The
outputs of this model are ideal networks (whole networks
representing the total number of agent interactions that oc-
curred within a single run) and ego-nets (declarative repre-
sentations of the agents friends network). For any one run,
there is then a single ideal network and as many ego-nets
(networks from egocentric points of view) as there are agents.
We tested the effects of environmental conditions on the con-
struction of the agents ego-nets by comparing multiple ideal
networks with their related ego-nets. We also analyzed to
what extent these factors (coupled with memory constraints)
influenced the constructed networks, measured by differences
in the number of links and average node degree.

Our model is unusual in that we model social processes
using a full cognitive architecture (ACT-R). To our knowl-
edge, (Carley, 1991, 1992; Carley & Newell, 1994) were the
first to implement social network models using a cognitive
architecture (Plural Soar) to study organizations. More re-
cently, (Gonzalez, Lerch, & Lebiere, 2003), (Lebiere, Gonza-
lez, Dutt, & Warwick, 2009), (Reitter & Lebiere, 2010), and
(Juvina, Lebiere, Martin, & Gonzalez, 2011) have used cog-
nitive architectures to model human decision making in col-
laborative tasks. While our work builds upon these efforts, we
focus here on the formation of social networks. Further, while
cognitive architectures bring great power, they are computa-
tionally expensive. We thus, must address both questions of
utility and theoretical subsumption. In other words, what do
these architectures uniquely bring to the table that we need?
In the next section, we will address these questions by ori-
enting ourselves with respect to past work in social modeling
before describing our model more fully.

Computational Social Models
We briefly describe a cross-section of related work. We will
move from simple non-cognitive models to models that center
on cognition and cognitive modeling. All of these approaches
are agent-based, or refer to predictions based on individual
decision-making.

In many models, the role of actors is often described us-
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ing closed-form mathematical formulas that offer parsimony,
but often prove difficult when modeling complex stochastic
systems. In contrast, computational models typically try to
model the effects of a wider range interrelated factors using
more complex but bounded actors (Axelrod & Hammond,
2003). These effects often include both environmental, as
well as cognitive factors.

Drawing from work in environmental and social psychol-
ogy (Kraut, Fussell, Brennan, & Siegel, 2002; Allen, 1977),
we found that actor proximity fundamentally influenced the
evolution of network topologies by determining the interac-
tion frequencies of actors across the network. Allen (Allen,
1977) demonstrated that the probability of two people com-
municating in an environment could be defined by a decreas-
ing hyperbolic function of the distance between them. After
a certain distance, the probability that two people will com-
municate decreases rapidly, making link formation unlikely.
We thus choose to focus on factors that directly affect agent
proximity or inter-agent distance: population size, run dura-
tion, and map configuration.

We expect that larger populations acting over longer peri-
ods in fully connected rooms will result in the richest declar-
ative network structures. We also expect that layouts that
afford greater distances will result in interaction networks
that consist of multiple components, leading to smaller ego-
nets. We also expect that map configurations characterized
by nexus points will exhibit behaviors similar to the water-
cooler effect. We, however, are less certain where we might
see thresholds in network formation, where for instance pop-
ulation growth no longer has an effect or run time is no longer
relevant. We expect these thresholds will provide us a better
understanding of the cognitive dimension behind the shifts in
group behavior associated with changes in group size.

Drawing from previous work in cognitive science (Simon,
1984; Prietula & Carley, 2001), we were interested in how
bounded rationality influenced network formation by con-
straining network construction in memory. We believe that
these constraints will result in interesting and sometimes un-
expected aggregate behaviors that may provide insights for
future efforts in multi-level modeling. In particular, we be-
lieve the concept of nodal carrying capacity, or the number of
agents any one agent can retain in its social declarative rep-
resentation, may be helpful for predicting the capabilities and
structure of a network of interest. To that end, we examine
how shifts in activation values and retention parameters, as
well as differences in environmental factors contribute to the
consolidation and retention of social ties in memory. This
concept is similar to those of Dunbar (Dunbar, 1998) and
the Bernard-Killworth median (McCarty, Killworth, Bernard,
Johnsen, & Shelley, 2001). Dunbar’s number arises from the
limitations associated with the neocortex. Because maintain-
ing a stable relationships requires repeated memory activa-
tions in the human neocortex to identify not only one-on-
one relationships but also third party relationships (i.e., the
knowledge that my friend is also friends with other actors

who I, in some senses, monitor), the cognitive load asso-
ciated with maintaining this set of relationships in memory
rises exponentially as group size increases (Dunbar, 1998,
p.63). Based on retrospective empirical studies, (Dunbar,
1998, p.65–78) argues that this ratio between cognitive load
and group size underlies the small-world effect observed by
Milgram and others.

Nodal carrying capacity: The effect of agents
memory and space

Thus far, we have categorized the factors that influence the
construction of social networks into two groups: factors that
influence interaction frequency and factors that influence re-
tention. In this section, we will discuss each of these cate-
gories, and give a general prediction on how the factors asso-
ciated with each effect the construction and retention of cog-
nitive ego-nets.

Interaction Frequency
We examine three factors that influence the interaction fre-
quencies associated with a given social network. These fac-
tors include: population size, duration of contact (run time),
and environment map connectivity (defined by a grid ratio, or
the number of links over the total number of links possible in
a similar grid).

Population size: We suspect that population density is the
most influential factor governing interaction frequency. Be-
cause we are comparing map configurations consisting of the
same number of rooms, we manipulate population density
by testing three different population sizes (20, 40, and 60
agents).

Length of simulation: The time period that agents inter-
act directly influences the structure of the simulated social
network because more time allows for more interaction op-
portunities, making it more likely that agents will establish
a stable network. Consequently, determining the run times
necessary for a network to reach a stable state under a given
set of conditions is important for accurately representing the
formation of a group of interest. We use total degree with
respect to time as a measure of network stability. Modeling
memory decay, however, seems essential for determining a
meaningful notion of network stability. Otherwise, we sus-
pect simulated networks will tend to achieve arbitrary and in-
flated levels of connectivity ending with complete connectiv-
ity at infinite time.

Environment configuration: We believe that the configura-
tion of the rooms of the environment influences the structure
of the simulated social network. We measure the relative con-
nectivity of our three map configurations by defining its grid
ratio. The grid ratio is the ratio of the number of edges over
the total number of edges possible for a rectangular grid con-
taining the same number of rooms.

We tested three map configurations. The first configuration
is a full 5x5 grid with grid ratio 1.0. We expect this environ-
ment will result in relatively high connectivity. The second
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configuration (shown in Figure 1a) is a two-hallway config-
uration with grid ratio 0.6. This configuration should lead to
low connectivity due to the large distances between agents.
The third configuration (shown in Figure 1b) has a central
area with grid ratio 0.75. We believe this central meeting
point will lead to agent behavior between 1 and 2.

Figure 1: a: Full Grid, b: Central Area, c: Hallway

Cognitive factors
To better simulate the construction of social networks, it is
necessary to consider the behavior patterns of agents at the
cognitive level. In this paper, we particularly focus on mem-
ory decay. We examine memorys effect on tie formation by
using Anderson’s activation theory (Anderson et al., 2004)
to model the construction of social knowledge in declarative
memory. In our model, the number of friends depends on
the number and size of active long-term memory chunks as-
sociated with the agents social relationships. The number of
active memory chunks can be influenced by several factors,
including initial memory activation, retrieval threshold, mem-
ory decay speed, time of retrieval, and practice time.

Experiment Environment
To model multi-agent social behavior using cognitive ar-
chitectures, we constructed a simulation environment called
VIPER.

The VIPER Server
VIPER is a lightweight, extensible, text-based simulation
environment. It uses the telnet protocol to handle plain
text communication between agents and the simulation en-
vironment and forces a separation of environment and agent.
VIPER records agent behaviors within the environment using
a logging system that provides a detailed list of every action
taken by all agents chronologically ordered to the tenth of a
second. VIPER resolves events in either real or accelerated
time: the networks speed and frequency of communication is
determined by its component agents with no queue of events
being enforced within the environment.

Within VIPER, agents are situated in maps of intercon-
nected rooms. In each room, the agents can see and com-
municate locally. Agents can walk freely around the rooms,
and can interact with objects in their environment.

To connect ACT-R to VIPER, we implemented a VIPER
client, the Telnet Agent Wrapper (TAWA) for ACT-R, in

Common Lisp. It handles everything from logging in, wait-
ing for synchronization, logging, halting, and writing results
to CSV files automatically. Additionally, it provides func-
tions to examine the environment, speak, listen, move, and
otherwise control virtual bodies in VIPER.

When an ACT-R model is wrapped by TAWA, any execu-
tion of model code is delayed until a privileged administrator
actor inside of VIPER signals synchronization. Additionally,
any error conditions are caught by TAWA and used to return
standard UNIX error codes instead of dropping into the de-
bugger. For example, a successful run returns zero to the
parent process, while any error (e.g., network errors like the
server being unreachable) causes a non-zero return value. Re-
turning error codes allows automated error checking in large
scale experiments.

All of our experiments were conducted on a 2GHz eight-
core Linux 2.6.31 under Ubuntu 11.04 server with 8GB of
RAM, with SBCL 1.0.52 as our Lisp run-time. We use ACT-
R 6 described in (Anderson et al., 2004).

Synchronization
Because memory decay and networks are strongly temporal,
we paid special attention to time. When designing our exper-
iments, we developed VIPER and TAWA to use a synchro-
nization process. During an experimental run, TAWA delays
the evaluation of the model code until synchronization, this
means that no Agent experiences time before the synchro-
nization signal. Further, all ACT-R models are set to run in
real-time, and for the full time, using the run-full-time func-
tion from standard ACT-R with :real-time enabled. All agents
run for the same amount of real time, so they all halt after the
same perceived period after starting. Thus, the total time ex-
perienced is the same for all agents.

Scalability
Early benchmarks showed that ACT-R processes took up
about 80MB per process. Because we had only 8GB of
RAM, we would only have been able to run about 100 pro-
cesses on a single machine before swapping. To reduce the
per-process footprint, a number of optimizations were imple-
mented. Basic space reductions were achieved by using the
DECLARE operator, as well as by compiling all libraries, re-
moving the debugger, and saving the whole system (sans the
ACT-R agent model) as a system image. This reduced our
per-process memory footprint somewhat, but they were not
the biggest contributions towards memory usage reduction.

In SBCL version 1.0.52, the –merge-core-pages flag was
recently added. This flag enables Kernel SamePage Merg-
ing (Arcangeli, Eidus, & Wright, 2009) under recent versions
of Linux. This optimization flags shared areas of memory
as merge-able unless modified. Because a significant per-
centage of our agents were replicated, we could reduce the
per-process memory footprint as low as 8MB per process in
benchmarks. Thus, the only things that increase the size of
this footprint during run-time are changes to memory done
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by the ACT-R agent model. Benchmarks have shown reason-
able performance with 700 test ACT-R agents.

ACT-R Agents
We built an ACT-R model to conduct a random walk in
VIPER. The model contains two declarative memory types:
a goal type containing current location, remaining steps, to-
tal friends counts; and a friend type to store a friends name.
The model consists of four basic components with 9 produc-
tions. First, the walking component selects an available direc-
tion randomly, and moves itself through VIPER. Second, the
waiting component utilizes temporal buffer of ACT-R to wait
two real-time seconds when the agent comes into a new room,
to simulate how long it might take a normal person to enter
a room. Third, the checking component (with 3 productions)
checks if the current room is empty. Finally, the memoriz-
ing component (with 3 productions) will check its declarative
memory first to check if it can recall the fact that the agent it
has encountered is a friend. If it is not, the model will create
a new friend chunk, and store the encountered agents name in
it using the imaginal buffer.

Experiment and Results
In this section, we discuss the results of our analysis of 27
system logs and 1,080 ego-net logs.

Experiment Parameters
In the first experiment, we have 27 runs of our simulation to
test three environmental factors: population size, run time,
and map configuration. To manipulate room configuration,
we use a 5x5 grid map and two other maps shown in Figure
1. All parameters are shown in the Table 1.

Table 1: Experiment Parameters

Factors Testing Values
Population Size 20, 40, 60
Running time (seconds) 125, 250, 500
Map Configuration (grid ratio) Full Grid (1.00), Central

(0.75), Hall (0.60)

To test cognitive parameter, we make all agents output the
activation value of each friend chunks as a ego-net log file,
which contains friend name and location of the last meeting.
In ACT-R, the activation value represents the memory reten-
tion of an object or an event. With the activation value of each
relation chunk, we could easily find the weight of each friend
tie in memory.

Results
As noted in section 4, our simulation generates two types of
network data: log data extracted from Viper directly, and ego-
centric data stored in the agents declarative memory. In this
section, we will present samples of the data and some related
network measures.

Ideal Network Figure 2 shows a sample interaction-
network. The nodes in the figure are the agents in the sim-
ulation (20 in total); the links in the figure are unweighted,
only representing the co-occurrence of two agents in a given
room during the run.

Figure 2: The network of log data for 20 agents running 125s in the Hallway.

Table 2 shows the measure comparison between 7 runs.
We found that the population size and running time influence
the network measures, reflected in Average Node Degree and
Degree Centrality. We find that the Total Links and Average
Degree increase when population size increases. Total Links
and Average Standard Degree also increase when doubling
run-time.

Table 2: Measurements of seven sample runs, grouped by variable (italicized); N is
Population Size, T is Run-time is in seconds, R is Grid Ratio, Links is Total Links,
Degree is Average Node Degree, Centrality is Degree Centrality.

N T R Links Degree Centrality
20 125 0.60 324 0.436 0.627
40 125 0.60 1410 0.784 0.227
60 125 0.60 3801 0.370 0.651
20 125 0.60 324 0.436 0.627
20 250 0.60 357 0.503 0.490
20 500 0.60 360 0.555 0.481
20 125 0.60 324 0.436 0.627
20 125 0.75 354 0.507 0.546
20 125 1.00 360 0.569 0.476

Table 2 shows that all three factors influence measures of
the network. As each factor increases, the total links and av-
erage node degree increase correspondingly, but, the degree
centrality decreases. Of the three factors, the population size
has the most influence on these measures.

Egocentric Network The egocentric network is extracted
from the declarative memory of each ACT-R agent. Figure
3 shows Agent-0s egocentric point-of-view. All relationships
are weighted based on the agents activation values. Figure 4
shows a combined egocentric network of all the agents ego-
centric networks. We considered either a tie of ni → n j or
n j → ni sufficient for inclusion in the combined network. We,
thus, expect that the activation values found in each ego-net
for ties ni → n j and n j → ni to differ. Nevertheless, when we
compare Figure 2 and Figure 4, they have similar structures.

When we increase the activation threshold, we do see that
links are eliminated as the minimal activation value neces-
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Figure 3: Egocentric network of and individual agent (name = Agent-0, population size
= 20, running time = 125, configuration = Hallway)

Figure 4: Egocentric network of all agents (population size = 20, running time = 125,
configuration = Hallway)

sary for inclusion in the network increases, i.e. we see a lay-
ered network consisting of a strong set of relationships at its
core and more casual ones at the periphery. Figure 5 shows
the changes to the network when we increase the activation
threshold. It appears that Figure 5 part c has a smaller but
strong network because the memory retention between the
existing nodes are relatively high.

Figure 5: Egocentric networks with applied filters of a: −3.5, b: 0.0, c: 1.0

Example Pairwise Comparison
To examine the effect of cognitive constraints, we compared
the activation levels of declarative memory chunks represent-
ing other agents in memory.

In a simple case (from a test run), Agent-0 remembers
Agent-1 at about 0.2466, while Agent-1 remembers Agent-
0 at about 0.5342. The higher the activation value, the bet-
ter one agent remembers another, and here, we can see that
Agent-0 does not remember Agent-1 as well as Agent-1 re-
members Agent-0. This asymmetry can be due to Agent-0
not really paying attention to Agent-1, despite the simple fact
that they had met.

In fact, looking at the ground truth from the system logs,
Agent-0 and Agent-1 met each other 32 times in 125 seconds.
Thus, despite meeting about once every four seconds, Agent-

0 did not remember Agent-1 as well as it might have. As
a matter of fact, when a minimal memory threshold of 0.0
was applied (n.b. activation values can be negative), Agent-0
had no memory of Agent-1. A threshold analysis, which we
discuss next, clearly shows the asymmetry of ties in memory
(in this case, “A knows B but B does not know A”).

Based on this kind of asymmetric behavior, we suggest that
the main impact of this kind of analysis on social network
research will be in the realm of asymmetric relations. Ulti-
mately, we expect to see that there is a distinction that needs
to be made between knowledge of a relationship (among
many possible relationships) and the attentional importance
of that relationship.

Example Activation Cutoff
In Figure 5, we find another interesting story. When we set
the threshold at 0.0, Agent-10 loses many of its connections
between other agents. When the threshold is equal to −3.5,
Agent-10 has relations with all other agents (19 relations in
total); but Agent-10 agent only has 9 relations left after the
threshold was applied. After checking the log file, we found
that the Agent-10 had multiple interactions (at least 13 times)
with every agent. Most of these interactions, however, took
place at the beginning of the simulation after this initial pe-
riod Agent-10 was isolated at end of a hallway. The activa-
tion value between Agent10 and the other agents continued
to decay to values frequently below 0.0, with values ranging
between −1.07 and 0.11. This case directly illustrates that
not only does the frequency of interaction influence memory
activation or the ties strength in memory but also the time and
sequence of interactions.

Discussion and Conclusions
These results show how several common effects of cognition
often influence network growth and shape. In this study, we
created a multi-agent social network simulation that provides
us a very flexible platform to examine factors that influence
the development and maintenance of social networks in mem-
ory. Based on a review of the literature, we identified and
modeled ecological (population size, map configuration, and
run time) and cognitive factors, with the cognitive factors rep-
resented using memory activation parameters.

We conducted 27 runs of our simulation to test our model.
The results indicate that all three factors influence the net-
works total links, average degree, and degree centrality. As
each factor increases, the total links and average node degree
increase correspondingly, but the as expected, the networks
degree centrality decreases. Of these three factors, the pop-
ulation size has the most influence on the network measures.
The effect of running time is not as significant as we expected,
and shows plateauing after the 250s run. The large running
time also weakens the effect of map configuration, because it
provides agents enough time to travel around the whole map.

Taking advantage of the ACT-R memory mechanism, we
were able to model the ego-nets of 1080 agents, and combine
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those networks to compare the agents declarative representa-
tion of their friends network to the ideal network (or ground
truth) generated from VIPERs log. We found the structure of
ideal network and merged egocentric network to be similar
(see 2 and 4). However, this similarity ends when we apply
thresholds to the link weights in the merged egocentric net-
works (see Figure 5), where higher thresholds result in less
connected networks that bear little resemblance to the ideal
network. Semantically, this difference shows that memory
limits how much of the ideal network an agent can remember
well.

Future avenues of work will build upon some of the more
interesting issues. First, we would do further analysis of nor-
malized activation thresholds to see if these reliably effect
either the network topology of the interaction network, or the
topology of the agents declarative representation. Second, we
would run more agents, because our test systems were kept
deliberately small. Finally, we would analyze the effects of
cognition on network measures analogous to Dunbar’s Num-
ber.
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Introduction 
A very important and challenging task in cognitive science 
is the detection and modeling of human emotions. On the 
one hand, computers could benefit from that, because 
emotions play a significant role in rational decision making, 
perception, learning, and a variety of other important 
cognitive functions. On the other hand there is a need for 
genuinely intelligent computers that adapt and interact with 
human users in a natural way. To achieve this goal, 
computers need the ability to recognize and to express 
emotions (Picard, 1997). 

Even for humans it is difficult to recognize the emotions 
of other persons. But this is not always evident because we 
use knowledge about the situational circumstances. For 
example, if a person is getting failure messages for a long 
time while using a computer program, it will be obvious that 
the facial expression is anger. Without this situational 
knowledge it is much more difficult to be empathetic. 
Therefore, computers should also use knowledge about the 
situation or the event to detect human emotions. 

The appraisal theory is an emotion theory providing a 
model for evaluating a situation or an event in terms of 
relevant variables. In this work we present a framework 
which maps the evaluation process from appraisal theory to 
a fuzzy model in order to derive the emotions of a user in a 
specific situation/event. 

At first we give a short introduction to appraisal theory. 
Then we introduce our fuzzy model of appraisal theory. 
Finally the model is evaluated on recorded data of a human-
computer interaction in a Wizard-of-Oz scenario. 

Appraisal Theory of Emotion 
Almost all emotion theories assume that the specific kind of 
emotion experienced depends on the result of an evaluation 
process of relevant events (Scherer, Schorr & Johnstone, 
2001). Thereby it is evaluated how these events affect the 
well-being of the organism. Appraisal theories attempt to 
specify the nature of criteria used in evaluation in terms of 
different appraisal variables or dimensions. Examples for 
these dimensions are !"#$%( &'"(')'*$(*+,( representing the 
goals and needs that are of high priority at the moment (e.g. 

the goal of survival, maintaining social relationships or win 
$("$-+XC(#.(!/."+(*0,(representing the need for an action. 

In Ellsworth and Scherer (2003) it is suggested, that the 
given appraisal variables allow to deduce an emotion as the 
most probable emotional reaction to a certain event. For 
example, joy or happiness will occur, if the appraisal values 
for the 1$.'$2%+(!"#$%(&'"(')'*$(*+,($.+(3'"3C(43'%+(53+(1$%/+(
)#.(!/."+(*0,('&(%#4(+5*) 

Implementation of Appraisal Theory 
In this section it is described how the model has been 
developed and how it works using a fuzzy model (Kahlert & 
Frank, 1993; Michels et al., 2006) 

Appraisal Variables as Fuzzy Sets 
In this implementation ten different appraisal variables are 
used (cf. table 29.2 in Ellsworth & Scherer, 2003). To 
operationalize the appraisal variables and their linguistic 
values, each appraisal variable is modeled as a fuzzy set. 
The fuzzy sets consist of several fuzzy variables, depending 
on the number of postulated values of the appraisal variable. 
6#.( +7$-8%+C( !/."+(*0,( *$(( have five different values 
W!1+.0( %#4,C( !%#4,C( !-+9'/-,C( !3'"3,C( !very 3'"3,X and 
thus it is modeled by five corresponding fuzzy variables. 
Each appraisal variable is mapped to a uniform number 
range from 0 to 100. The corresponding fuzzy variables are 
distributed uniformly in this range. For simplicity we use a 
triangle function to model a fuzzy variable. 

Using all ten fuzzy sets, we are able to model both the 
emotional state of the user and a possible evaluation of an 
arising event in terms of appraisal variables. In Figure 1 a 
systematic overview of the framework is given with an 
event and the user state with ten appraisal variables (av). 

 
Figure 1: Conceptual view of the framework 
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Adapting the Emotional State 
According to appraisal theory, the emergence of an event 
triggers an evaluation process. To model this process, the 
fuzzified appraisal variables of an event can be used to 
adapt the corresponding variables in the user state. For 
example, an event with high !goal significance, should 
affect the /&+.:&(*#(9'5'#(()#.(!goal significance, positively. 
In which m$((+.( 53+( +1+(5&( $))+*5( 53+( /&+.:&( &5$5+( '&( (#5(
trivial because humans interpret events and their relevance 
differently. In the simplest way, the appraisal variables of an 
+1+(5( *$(( $))+*5( 53+( /&+.:&( +-#5'#($%( &5$5+ directly by 
overwriting it (cf. left hand side of Fig. 1). 

Der ivation of Emotions 
As stated above, the appraisal variables can be used to 
deduce an emotion as the most probable emotional reaction 
to a certain event. Each emotion is described by appraisal 
variables with specific values. From this specification one 
can generate a rule base for each emotion. To derivate an 
emotion, the postulated emotion profile and the user state 
can be compared to calculate the fulfillment of the emotion 
rule base (cf. Fig. 1). 

Experimental Evaluation 
To test our framework, we use a dataset of 18 test persons 
playing the popular game !*#(*+(5.$5'#(, $;$(!-+-#.0, on 
a computer. While playing, the test person is supported by a 
computer assistant, imitated by the investigator (Wizard-of-
Oz experiment). Each test person plays six games, also 
called experimental sequences (abbr.: ES). The ES are 
designed to provoke different emotional states. We focus on 
the ES2 and ES5, because they represent emotional extrema: 
In ES2 a simple card set, low time constraint and positive 
feedback by the assistant provoke a pleasant or positive 
feeling i.e. happiness. ES5 includes a difficult card set and 
the assistant gives negative feedback to provoke negative 
feelings, i.e. anger. For more details concerning the dataset, 
see (Walter et al., 2011). 

To apply the model, all possible events (like a hit or neg. 
feedback) were extracted and possible evaluations regarding 
the corresponding appraisal variables were formulated. For 
example, it is plausible that turning over a pair of matching 
cards is considered as goal significant while receiving neg. 
feedback is considered as unpleasant. For simplicity it is 
assumed that an event affects the emotional state of the user 

 
Figure 2: Rule fulfillment over ES2 up to ES5 

 
Figure 3: Average rule fulfillment over all test persons 
 
directly. Since emotions have a short duration, a decay 
process is implemented W*))( !/&+.( &5$5+,( '((6ig. 1). At this 
point it is assumed 53$5($(!(+/5.$%, user state will be reached 
if all appraisal variables receive the value !medium,. 

In figure 2 the results for the ES2 up to ES5 of one test 
person are illustrated. In this experiment we only use the 
rule base to derive happiness and anger. The values in the 
diagram represent the fulfillment of the two emotion rules, 
calculated by the model, based on the events that occurred 
in the sessions. In comparison to ES5 the values in ES2 for 
happiness are higher and anger occurs only slightly. In ES5 
the values for happiness are reduced and anger is increased. 
Figure 3 shows the average values of rule fulfillment for 
each ES over all test persons. Here one can discover the 
same pattern for emotions as in Fig 2. These results confirm 
that the appraisal theory is applicable in terms of the 
presented model. 

Outlook 
Humans interpret events and their relevance differently. For 
that reason the focus of future work lies in event evaluations 
via appraisal variables and whose derivation from available 
data. Possible sources can be audio, video and 
psychobiological data. Further the dialog between the user 
and the application, as well as the environment and the 
personality or the user:s mood should be considered, too. 

Other important issues are the decay process of emotions 
and the occurrence of multiple events. 
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Abstract 
Airport infrastructure is often unable to grow at the same 

rate as the steadily growing volumes of air traffic and 
ground controllers face increasing workloads, because they 
have to deal with more aircraft in the same time. This can be 
counteracted by making changes to the system or system 
conditions, e.g. by implementing computerized supporting 
systems. Simulations are needed to investigate the impact of 
changing system conditions on the human operator. In 
addition to modeling the airport traffic control system in 
general, it is also necessary to model the cognitive processes 
and behavior of the ground controller. Based on basic 
guidelines for the development of cognitive simulation, an 
approach for the development of a coloured Petri net model 
of aerodrome air traffic control is presented. 

 
Keywords: Task Analysis, Aerodrome Air Traffic Control. 
Coloured Petri Nets. 

Introduction 
Facing steadily growing volumes of air traffic, ground 
controllers encounter increasing efficiency demands and 
excessive workloads as they have to deal with more aircraft 
in the same time. At the moment the aviation industry is one 
of the safest modes of transport. Following Hollnagel, 
Woods and Leveson (2006) it is the inherent resilience of 
the system that makes it safe. In aviation it is the variability 
of human performance which enables air traffic controllers 
(ATCOs) and pilots most of the time to act in a safe way 
and to take the right action at the right time (Stroeve, 
Everdij & Blom, 2011). Above all ATCOs are responsible 
for the safe and efficient handling of air traffic where they 
regularly have to reach a tradeoff between efficiency and 
thoroughness if they are to be successful (Hollnagel, 2009). 
With increasing air traffic this tradeoff has to be shifted 
towards efficiency, which can lead to erroneous actions and 
increasing numbers of incidents and accidents. This effect 
can further be influenced by so called performance 
conditions, which are by definition a set of environmental, 
personal and systemic variables which can alter the 
possibility of erroneous actions (Center for Chemical 
Process Safety, 1994). To help ATCOs conduct their tasks  
safely and efficiently, changes to the system or system 
conditions will be introduced, e.g. by implementing 
computerized supporting systems like A-SMGCS 
(Advanced Surface Movement Guidance and Control 
System; EATMP, 2005). For the investigation of the impact 

of changing system conditions on the human operator a 
model of the human behavior and performance is needed. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Basic guidelines for the development of 
cognitive simulation (Cacciabue, 1998). 

Development of cognitive simulation 
Following the basic guidelines for the development of 
cognitive simulation given by Cacciabue (1998) shown in 
Figure 1, the first step is the definition of the problem 
boundaries and aim of the simulation. For modelling 
purposes it is not only necessary to model the airport traffic 
control system in general, it is also necessary to model the 
cognitive processes and behavior of the ground controller. 
An essential requirement for this is exact knowledge about 
the tasks of ground controllers. 

Cognitive task analysis and field study of working 
context 
The second and third steps are a (cognitive) task analysis 
and a field study of the working context. Existing task 
analyses were reanalyzed in terms of their focus and 
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methods for several sites across Europe, including analyses 
by EUROCONTROL (Buck, Biemans, Hilburn & Van 
Woerkom, 1996; Tavanti & Bourgois, 2006), German Air 
Navigation Services (DFS; Human-Factors-Consult, 2009) 
and Royal Air Force Institute of Aviation Medicine (Cox, 
1994). Through these analyses, a widespread illustration of 
the tasks of the ground controllers has been generated and a 
model of the action phases of the ground controller based on 
action regulation theory has already been introduced 
elsewhere (Smieszek, Huber & Jürgensohn, 2011). Several 
main tasks and sub-tasks are described in further detail and 
a prototypical action sequence is created which will form 
the basis for the model construction. The review of task 
analysis will be validated with the help of expert interviews 
and field studies in two airport control towers of the Berlin 
airports. 

Theoretical Model 
The fourth step, as proposed by Cacciabue (1998), is the 
selection of a theoretical model, which in this case will be 
the contextual control model (COCOM) developed by 
Hollnagel (1993). Within this framework it is assumed that 
all human behavior is essentially influenced and the choice 
of the next action is determined by the actual context as it is 
also proposed by the situated cognition approach (e.g. 
Brown, Collins & Duguid, 1989). 

Selection of numerical algorithms and 
implementation in programming language 
To gain a numerical simulation, the final two steps are the 
selection of numerical algorithms and the implementation in 
programming language. For this purpose the framework of 
Coloured Petri Nets is chosen. Coloured Petri Nets is a 
language for the modeling and validation of concurrent and 
distributed systems and other systems in which concurrency 
plays a major role (Jensen & Kirstensen, 2009). It provides 
both a graphical representation and a mathematical 
description of the modelled system. Firstly a Coloured Petri 
Net will be constructed which models the normal process of 
aerodrome air traffic control. Afterwards Fuzzy Logic 
(Zadeh, 1965) terms will be introduced to include the 
influence of several performance conditions on the 
operation of the system. With the help of the Petri Net 
model the investigation and evaluation of the impact of 
system changes on human behavior and performance will be 
possible. 

Conclusion 
Due to the dramatic changes in the air traffic control sector 
especially the growing traffic levels it is necessary to study 
the effects of changing system conditions on cognitive 
processes and the behavior of aerodrome air traffic 
controllers. This can be done by using models and 
simulations. An approach has been presented which will 
provide a model and simulation both of the airport control 
system and cognitive processes and the behaviour of the 
tower controller based on Coloured Petri Nets. The 

theoretical framework is provided by the contextual control 
model (Hollnagel, 1993). This describes how the context 
influences the behavior of the individual. This framework 
will be the basis for the Coloured Petri Net model which 
will provide the insight to the question how controllers will 
behave under changing system conditions. 
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Motivation
Modern business concepts, like Industrial Product-Service
Systems (IPS²) (Meier, Roy, & Seliger, 2010), pose greater
demands on human operators for managing and maintaining
the involved technical systems. A missing assistance applica-
tion to counteract this change leads to an increase in operator
errors and a decrease of the overall robustness of the socio-
technical system.

Cognitive architectures, like ACT-R (Anderson et al.,
2004), provide the possibility of a human centered and perfect
modeling of task accomplishments. This allows the predic-
tion of steps in a process with high risks for human mistakes,
as well as the recognition of human mistakes. Furthermore
motion capture systems (Bregler, 2007) and advances in the
field of machine learning and action recognition can provide
additional (real-time) information about human interaction.
To ensure an optimal production cycle the factory machinery
is equipped with additional sensors. The sensory information
is used to predict machine failure to schedule maintenance
task in advance, before the machine breaks down.

Thus, real-time simulation of a cognitive model with ac-
cess to the state space of the technical system and knowledge
about human action can predict risks within a task and is able
to recognize invalid execution paths. The description of the
observed mistake or of a high risk situation allows an increase
of the robustness of the overall system, which is the goal of
subproject B5 of the Collaborative Research Center Transre-
gio 29.

In this article we introduce a simple and effective realiza-
tion of a more complicated interactive warning framework, in
order to avoid operator mistakes during maintenance.

Framework
To optimize the robustness of socio-technical systems the
framework consists of a module for the cognitive model
(ACT-R), which enables real-time simulation of the accom-
plishment of a task with respect to human parameters. This
module receives information about the state space of the in-
volved technical systems from a technical module. Informa-
tion about human actions is provided by a gesture module.
The cognitive module evaluates the information of the other
data sources to determine valid execution paths. If a devia-
tion from expected human actions is observed and for each a
report is generated.

Figure 1: Overall system setup

This article describes an initial version of the framework.
The modeled task is to reach a given target weight by putting
several interaction objects with different shapes and weights
on an electronic scale. This task is based on the experiment
by Lovett, John, and Anderson (1996).

Data and Input
The three input sources of the test setup are illustrated in Fig-
ure 1: a scale, a data glove and an expert to validate the ges-
tures of the participants in a Wizard-of-Oz manner. The scale
is a PCE-TS platform scale that has an RS-232-interface and
a capacity of 60kg x 5g (PCE Instruments UK Ltd., 2011).
The current object put on the scale is recognized by a linear
mapping procedure using the known real weights of the ob-
jects. The real weight of the object is then mapped to a virtual
weight the participant sees on his screen. The objects under
consideration and the appropriate gesture for holding these
objects are shown in Figure 2.

Figure 2: Objects, their weights and the corresponding hand
gestures while holding each one of them
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Hand movements are recorded using an X-IST Wireless
DataGlove that is equipped with tilt and bend sensors (X-
IST Data Glove, 2008): two sensors on the thumb and three
on each of the remaining fingers. Hand gestures are then de-
tected by measuring the relative bend of these sensors at the
finger joints. The gesture recognition module normalizes the
data from the data glove to account for inter-individual dif-
ferences. Afterwards the module classifies the data using a
supervised machine learning algorithm into one of the three
hand gestures each of which corresponds to the grabbing of a
weight (See Figure 2).

Simulation
The ACT-R simulation enables the identification of operator
mistakes during a task. It incorporates state space information
of the technical system and gestures by the subject for rule
selection. The simulation displays a warning only when a
subject executes an invalid gesture during the experiment in
order to be less intrusive.

The simulation considers all non-circular valid execution
paths for solving the task up to the next expected gesture. All
these paths are in a conflict set until the gesture module re-
solves the conflict by providing information about the next
gesture performed by the subject. When the observed gesture
is in the conflict set the simulation continues, otherwise an er-
ror report is generated and the simulation waits for a correc-
tion by the subject. The incorporation of preparatory gestures
enables the recognition of an invalid action before it impacts
the system state. In this case the preparatory gesture is the
grasping of a weight and the system state equals the weight
on the scale.

In our setup, the overall task is subdivided into three
phases, as illustrated in Figure 3. The first phase deals with
the identification of the weight of each interaction object. In
this stage, both the human and the model try to identify the
weight of each interaction object. In the second phase, sub-
jects are asked to select one out of two strategies to reach
the given target weight. In the “overshoot” strategy, the tar-
get weight can be achieved by starting with a bigger weight
and subtracting all following weights from it. The second
strategy is referred to as “undershoot” strategy, in which the
subject starts with a weight smaller than the desired one and
add all following interaction objects, so that the sum of them
matches the given target weight. In the third phase, the sub-
jects place the remaining interaction objects on the scale ac-
cording to their chosen strategy to reach the target weight. An
improper action in the sense of this simulation is the selection
of a strategy or weight which does not lead to the solution of
the task.

Conclusions and Future Work
In this article we described an interactive warning framework.
With this framework operator mistakes are detected online
and task accomplishment is ensured. Participants are asked
to reach a given target weight on an electronic scale using
different interaction objects. Gestures of the participants are

Figure 3: ACT-R tree diagram of the human events

detected using a data glove. These actions are validated by
an ACT-R simulation that raises warnings in case of invalid
execution paths.

A next step in the development of the framework is to test
more complex technical systems and user interactions found
in IPS² scenarios. The consideration of all valid execution
paths is a deviation from the human decision making and
poses a problem when the simulation should consider errors
due to memory degradation. In this case all valid execution
paths can be calculated by cloning the simulation when sev-
eral rules can be selected which do not contain observable
actions. The conflict resolution set is constructed from all
concurrent simulations. Simulations which are not consistent
with observed user behavior are discarded. An incorporation
of the machine learning module into an ACT-R motor mod-
ule enables the simulation to incorporate execution times for
various actions. This allows the simulation to generate re-
ports when no activity is observed, which can be interpreted
as uncertainty of the operator.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004, October). An integrated
theory of the mind. Psychol Rev, 111(4), 1036–1060.

PCE Instruments UK Ltd. (2011). Platform bal-
ance pce-ts series. Retrieved February 21, 2012,
from http://www.industrial-needs.com/technical
-data-scales/platform-balance-pce-ts.htm

Bregler, C. (2007, nov.). Motion capture technology for en-
tertainment [in the spotlight]. Signal Processing Magazine,
IEEE, 24(6), 160 -158.

Lovett, M. C., John, & Anderson, R. (1996). History of
success and current context in problem solving: Combined
influences on operator selection. Cognitive Psychology, 31,
168–217.

Meier, H., Roy, R., & Seliger, G. (2010). Industrial product-
service systems - ips² . CIRP Annals - Manufacturing Tech-
nology, 59(2), 607 - 627.

X-IST Data Glove. (2008). X-ist data glove - virtual re-
ality glove. Retrieved February 21, 2012, from http://
www.vrealities.com/x-ist.html

128



+37897:,;-3*.943<<=;>*98*,;?378,-3*!"#$%&'%*&#*()*)+*,-&..'*/012&'&*&)#*
*

3.2+)*&%&*45*/-&#.)6$*7)5+5$-&#.)6$8+925$052-:*
!"+#$%*&'(#$")**+,+*-./0+,+1#23/"4/3%5*

;6$<*;76$8*-=/=76$889:;/$</;=5*
XYZM<(=>?>@ABC(XD?EFEGE>B(=HI>AE(!"#$"%(&%'()#*'+,(

-+(.%$#)/(-+#))+0(.1)#$))%0(.234(56!0(&7(
(
(

>=6>?9<@?*-8'99(.:;<'*'+'"%0(=)>#%'%?0(@%+)#A>:)(B)*'?%C(

@8A9?<;<AB?8*
@%*+#<:+'"%*( >#)( :)%+#>9( +"( D>%,( E<D>%( *8'99( >:;<'*'+'"%(
F#":)**)*( )C?C( 9'8)( +E"*)(<*)$( A"#(F'9"+( +#>'%'%?( GB)%%'*(H(
6>##,0( 5IIJKC(L):)%+( >$(>%:)*( '%( :"DF<+'%?( +):E%"9"?')*(
E>()( )MF>%$)$( +E)( *:"F)( "A( :"DF<+)#( 1>*)$( '%*+#<:+'"%>9(
$)9'()#,()*F):'>99,(/E)#)(*>A)+,(>%$(:"*+(D>,(F#):9<$)( +E)(
<*)("A(+#>$'+'"%>9(+#>'%'%?(*,*+)D*C(NE)()AA):+'()%)**("A(*<:E(
O2N( *,*+)D*( E>*( 1))%( *<1P):+)$( +"( :"%*'$)#>19)( #)*)>#:E(
G6QAA9)#(H(=)<+%)#0(3RRSKC(.%('DF"#+>%+(>*F):+("A(#)*)>#:E(
'%+"( +E)()AA):+'()%)**("A(*<:E( '%*+#<:+'"%>9(D)+E"$*0(/E':E(
'*( #)9)(>%+( +"( +E)( *+<$,( #)F"#+)$( E)#)0( '*( +E)( 1)%)A'+( "A(
$,%>D':( "()#( *+>+':( :"DF"%)%+*( "A( '%*+#<:+'"%>9( '%+)#A>:)*(
<*)$('%(+E)(>:;<'*'+'"%("A(F#":)$<#>9(D"+"#(*8'99*(>*(+,F':>9(
'%(>('>+'"%()%?'%))#'%?(+#>'%'%?(*'D<9>+"#*C((
.8'%9"A>0( 6"9+0( >%$( T9,>%0( G<%$)#( #)('*'"%K0( F#"F"*)( >(

D"$)9( GU'?<#)C( 5K( +"( )MF9>'%( +E)( "1*)#()$( 1)%)A'+( "A(
$,%>D':( ('*<>9'*>+'"%*( :"DF>#)$( /'+E( *+>+':*( A"#( 9)>#%'%?(
%"()9( F#":)$<#>9( D"+"#( *8'99*( 1,( >('>+'"%( )%?'%))#'%?(
+#>'%))*C( U"99"/'%?( "%0( >( #)F#)*)%+>+'()( *<1V*+)F( A#"D( +E)(
*+<$,( '*( D"$)99)$( <*'%?( +E)( .ONVL( WCR( >#:E'+):+<#)( +"(
)M>D'%)(+E)(F"*+V9)>#%'%?(+>*8(F)#A"#D>%:)*("A(+E)($'AA)#)%+(
9)>#%)#(?#"<F*C(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

A?:8BABC=*(?<=77B8:*
@+( '*( >**<D)$( +E>+( $'AA)#)%+( $):9>#>+'()( 8%"/9)$?)(
*+#<:+<#)*0( $)F)%$)%+( "%( +E)( '%*+#<:+'"%>9( A"#D>+*0( >#)(
:#)>+)$( A"#( +E)( *);<)%:)( "A( :"DF"%)%+( *F>+'>9( *+>+)*( '%( >(
#"+>+'"%( D"()D)%+C( -+>+':( $'>?#>DD>+':( '%*+#<:+'"%*( :>%(
"%9,( >AA"#$( +E)( '%'+'>9( >%$( A'%>9( *+>+)*( "A( +E)( #"+>+)$(
:"DF"%)%+(/E'9)( $,%>D':0( ('$)"( '%*+#<:+'"%*(/'99( F#"('$)(

8%"/9)$?)("A(+E)(*+>#+(>%$()%$(*+>+)*(>*(/)99(>*(>99(+#>%*'+"#,(
*+>+)*( '%(1)+/))%C(-<1*);<)%+(D"+"#(F)#A"#D>%:)( '*($#'()%(
1,( >( *);<)%+'>9( #)+#')(>9( "A( +E)( *+>+)*0( '%+)#*F)#*)$(/'+E( >(
#>%$"D( *+#>+)?,( 'A( #)+#')(>9( A>'9*C( U'?<#)( 3( *E"/*( +E>+( +E)(
#)F#)*)%+>+'()(D"$)9( A"#( +E)( *+>+':( :"%$'+'"%( '*( :"%*+#>'%)$(
+"( >( #>%$"D( *+#>+)?,( /E'9)( +E)( $,%>D':(D"$)9( <+'9'*)*( >(
D'M)$(*+#>+)?,C(
(
(
(
(
(
(
(
(
(
(
(
X"+"#( F)#A"#D>%:)( A"#( +E)(D"$)9*( '*( 'DF9)D)%+)$( >*( >(

:E>'%)$( *);<)%:)("A(<%'+(D"()D)%+(():+"#*( *'D<9>+'%?( +E)(
+#>%*'+'"%( "A( >( *)9):+)$( #)A)#)%:)( F"'%+( "A( +E)( #"+>+)$(
:"DF"%)%+( '%( 3VB( *F>:)C( NE)( %<D1)#( "A( <%'+( D"()D)%+(
():+"#*('%(+E)(D"()D)%+(*);<)%:)(>*(/)99(>*(+E)'#('%$'('$<>9(
$'#):+'"%*('*(*+":E>*+':>99,($)F)%$)%+("%(+E)(:<##)%+(F"*'+'"%(
'%(+E)(+#>P):+"#,(>%$(+E)(*)9):+)$(F#"$<:+'"%*(A'#'%?(F)#(:,:9)(
"A(:"?%'+'()(F#":)**'%?C((
NE)( $)A><9+(D):E>%'*D( "A( +E)(D"+"#(D"$<9)( "A(.ONVL(

WCR(/>*(%"+(*<'+>19)(A"#("<#(D"$)9($)*'?%(DY('Z(EZ'!"#$#(%"&&#'#(
()*( +,( -)(-.()+/( 0,1/0/2+( /3/-.+4,2( +40/( +,*)567( )(
78/-494/6( +)5:/+;( <664+4,2)((=>( 4+( -)(-.()+/7( 42-5/0/2+)((
8,74+4,27()(,2:()(0,1/0/2+(8)+?(9,5(78/-494/6(7+)5+()26(/26(
8,74+4,27( ,2(=@( AEA( BCD$!'#( BCE$B$F&( #&AD&$GH( ICJ$1/5(
78/-494/7( ,2(=( )( 7+)5+( 8,74+4,2>( *?4(/( +?/( /26( 8,74+4,2( 47(
7+,-?)7+4-)((=( 6/+/5042/6( K=( )( 943/6( 0):24+.6/>( 1)54)K(/(
645/-+4,2>(.24+(0,1/0/2+(1/-+,5;(U.5+?/50,5/>()7(0,1/0/2+(
47(408(/0/2+/6(K=()(7/L./2-/(,9(.24+(1/-+,57>(+?/(+5)274+,5=(
8,42+(95,0(1/-+,5( +,(1/-+,5(0.7+(K/(0,6/((/6()--.5)+/(=( +,(
/27.5/(.249,50( )26( -,2+42.,.7( )--/(/5)+4,2( +?5,.:?,.+( +?/(
+5)M/-+,5=;(N?/5/9,5/>(+?/(6/9).(+(0,+,5(0,6.(/( 47(5/6/942/6(
+?5,.:?( )2( )6)8+)+4,2( ,9( +?/( 6=2)04-( -,7+( ,8+4047)+4,2(
)885,)-?( 9,5( +?/(0)+?/0)+4-)((0,6/((42:( ,9( ?.0)2( ?)26(
0,1/0/2+7( OU()7?( H( P,:)2>( 5IJ4Q;( 2=( .742:( +?/(
0424047)+4,2(,9(+?/(+40/(42+/:5)((,9(+?/(7L.)5/(,9(M/5R(,2(+?/(
-.51/6( -,08,2/2+( 5,+)+4,2( +5)M/-+,5=>( 8,42+S+,S8,42+(
0,1/0/2+( 47( 5/85/7/2+/6( K=( +?/( 427/5+4,2( ,9( 42+/50/64)+/(
8,42+7( O)+( +40/7( ?!"# $%"&&&"$'Q( K/+*//2( +?/( 7+)5+( )26( /26(
8,74+4,27;(N?/( /2+45/( +5)M/-+,5=( 47( +?/2(0,6/((/6( +?5,.:?( )(
7?49+42:(K,.26)5=(-,264+4,2(0/+?,6()-5,77( +?/(5)2:/(,9(14)(

U4:.5/( 5T( U29,50)+4,2S85,-/7742:( 0,6/(( 9,5( (/)5242:( )(
85,-/6.5)((0,+,5(+)7R(

%"GEA$(JK(FVI$BD&"V(CE&!"F$(CW(BCD$!'#([ACDEV&"CF#(

(

!

&!":#$!
%&'(&%;!

)*;*'!
*:;%:;!

+:,!;*'<!
%&'(&%;!

+:,!;*'<!

-*.#;*"&/"*'<!

0!":#$!

)&/;#$!;#"1!
.*,&$!

2*/3!;&'.!
.&.*'<!

"#$%&'(!)*)#$+!

,*$-*./&#'01-/&#'!#2*$$&3*!
4##.!1--#5'/&'(!6#$!*7.*$/!
/18%!*7*-5/&#'!

-*.#;*=
"&/"*'<!
%&'(&%;!!

>!

>!

!

!

(

!

4#!$!

";#';!

'&;'!&5&=/&?;=
$*(#;!*/!

!/!;!#$='#/,*.=
$*(#;&!

(*''&(;=
,&5!#;!*/!

5#$!,#;&=
$*(#;!*/!

$#";=$*(=
&/,=;#"1!

4!/,=/&?;=
'#/,*.!!

.*5&=6#/,=;*=
$*(#;!*/!

-=)*,&$!*/$<!
7=)*,&$!*/$<!

8*;6!.*,&$"!@891$*3A!

129



8,42+7(K,.26/6(K=( $SR( )26( $S$(( )--,5642:( +,( +?/( 9,((,*42:(
/L.)+4,27T((
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
N?47( )99,567( )--.5)+/( )26( -,2+42.,.7( 408(/0/2+)+4,2( ,9(

?)26( )--/(/5)+4,2( +?5,.:?( +?/( +5)274+4,2( 8,42+7( 42( +?/(
0,1/0/2+( 1/-+,5( 7/L./2-/;( N?/( 8)5+4)(( 0)+-?42:(
0/-?)2470( ,9( +?/( 5/+54/1)(( 0,6.(/( 47( 9.5+?/5( .+4(47/6( +,(
740.()+/(+?/(42)--.5)-=(,9(5/-)((42:(-,08,2/2+(42+/50/64)+/(
8,74+4,27( )(,2:( +?/( +5)M/-+,5=( ,9( 5,+)+4,2;( <7( +?/( 0,6/((
0,1/0/2+( 47( 408(/0/2+/6( 42( 3SB(O)5+/74)2( 78)-/>( )( 740S
?,,R(9.2-+4,2(47(.7/6(+,(6/942/(0)+-?42:(42)--.5)-4/7(,2(+?/(
)S-,,5642)+/7;(<664+4,2)((=>( )2( /3+/274,2( ,9( +?/( )-+41)+4,2(
/L.)+4,2(47(.7/6(+,(6/942/(0)+-?42:(,2(+?/(*S-,,5642)+/()26(
)(7.00)+4,2(,9(+?/(0)+-?42:(9.2-+4,27(,.+8.+7(47(-,08.+/6(
)7( +?/( ,1/5)((( 0)+-?( 7-,5/( ,9( )( 78/-494-( (,-)+4,2( 42( +?/(
0,1/0/2+( 78)-/;( N?47( 6/74:2>( )7( 6/84-+/6( 42( U4:.5/( \>( 47(
1/5=( 9(/34K(/()26(-,.(6(K/()(7+)5+42:(8,42+( 9,5(/3+/2642:( +,(
\SB(78)+4)((0,1/0/2+;(
(
(
(
(
(
(
(
(
(
(
(
(

4=@;7A@*$8<*B;9AD=9*C?9=*
O,08)547,2( J"&I( IEBDF( DD&D( #ICJ#( &ID&( &I$( BCD$!'#(
L.)2+4+)+41/(85/64-+4,27(*/5/()--.5)+/(,2(()+/2-4/7(O+%,&-."#
+/01,&2%Q()26( +5)M/-+,5=( +5)-R42:;(N?47(5/7.(+(7.88,5+7()2(
)61)2+):/( ,9( 6=2)0470( 42( +?/( 427+5.-+4,2)(( 42+/59)-/( 9,5(
85,-/6.5)(( 7R4((( )-L.474+4,2;( U+( 9.5+?/5( 7.88,5+7( ,.5(
?=8,+?/747( ,2( +?/( ?=K546( 5,(/( ,9( -,:24+4,2( 42( 85,-/6.5)((

0,+,5(8/59,50)2-/( )26(1)(46)+/7( +?/( )77.0/6( 7+5)+/:4/7(,9(
+)7R(/3/-.+4,2(,9(424+4)((=()++/08+42:(+,(5/-)((()(0/2+)((+)7R(
40):/()26(5/7,5+42:(+,()(-,2+5,((/6(7+,-?)7+4-(0/+?,6(42(+?/(
/1/2+(,9()(5/+54/1)((9)4(.5/;(P,*/1/5>(+?/5/()5/(,+?/5(9)-+,57>(
7.-?( )7( +?/( -,:24+41/( )K4(4+4/7( ,9( +?/( (/)52/57>(*?4-?(*/5/(
-,2+5,((/6( 42( +?/( ()5:/5(/08454-)((7+.6=( 42(-,2+5)7+(*4+?( +?/(
408(/0/2+)+4,2(,9( +?/( -,08.+)+4,2)((0,6/(7;(X.5( 5/7.(+( 47(
9.5+?/5( (404+/6(K/-).7/(+?/(0,6/(7(5/9(/-+()(742:(/(7+/8(,9()(
85,-/6.5)((0,1/0/2+()26(408(/0/2+7(+?/(0,1/0/2+(42(3SB(
78)-/( ,2(=;( U.5+?/5( -,(()K,5)+41/( *,5R( *4((( /3+/26( +?/(
0,6/(( +,( -,1/5( +?/( /2+45/( 0,1/0/2+( 7/L./2-/( ,9( +?/(
/38/540/2+)(( +)7R( 5/8,5+/6( 42(Y)+7,2>(2.++/594/(6>(O.55)2>(
)26( O5)4:( O3R5RQ;( X.5( 9.+.5/( *,5R( *4((( )(7,( /38(,5/( +?/(
/3/-.+4,2(,9( +?/( +)7R(*4+?(\SB(78)+4)((0,1/0/2+(.742:( +?/(
)885,)-?( ,9( /3+/2642:( +?/( )-+41)+4,2( /L.)+4,2( 9,5( 78)+4)((
0)+-?42:()7(,.+(42/6()K,1/;(

/<=8?>7=<:E=8A@*
N?47( 7+.6=( *)7( 7.88,5+/6( K=( +?/( Z/+5,(/.0( N/-?2,(,:=(
B/1/(,80/2+( U.26( OZNBUQ>( [4:/54)( \5)2+T(
ZNBU]N]]Z?B]<X]]3RW]RI;(

4=F=9=8<=@*
<R42(,9)>( X;];>( P,(+>( Z;X;>(H( ^(=)2>( ^;( O.26/5( 5/1474,2Q;(
1((34$# 5(# 6'$37(843# 9*'8:6;:# 5'# <387'6'=# >75439?78<#
:5$57#;@6<<;;(

B/2247>( _;<;>( H( P)55=>( B;( O5IIJQ;( O,08.+/5S2)7/6(
`40.()+4,2( )7( )2( )6M.2-+( +,( )KS424+4,( 9(4:?+( +5)4242:;(AB3#
C'$37'8$65'8<# D5?7'8<# 5(# EF68$65'# G;*4B5<5=*"# ."( 3W5T
3SW;(((

U()7?>( N;>(H( P,:)2>( [;( O5IJ4Q;( N?/( -,,5642)+4,2( ,9( )50(
0,1/0/2+7T( )2( /38/540/2+)((=( -,29450/6( 0)+?/0)+4-)((
0,6/(;(D5?7'8<#5(#H3?75;463'43#2"(5WJJT5SR\;(

Pa99(/5>(N;>(H(b/.+2/5>(B;( O3RRSQ;( U27+5.-+4,2)(( )240)+4,2(
1/57.7( 7+)+4-( 84-+.5/7T( <( 0/+)S)2)(=747;( I387'6'=# 8'9#
C';$7?4$65'#!J"(S33TS\J;((

Y)+7,2>(\;>(2.++/594/6>( c;>(O.55)2>(];>(H(O5)4:>(O;( O3R5RQ;(
B,(6=2)04-(*,5R(427+5.-+4,27(85,146/()2()61)2+):/(,1/5(
7+)+4-( 427+5.-+4,27( 42( )( 70)((( 7-)(/( )77/0K(=( +)7RU;(
I387'6'=#8'9#C';$7?4$65'#%K"(J^SI\;((0)+-?()( 0)+-?(*(

)-+41)+4,2(
/3+/274,2(

_( _( S( /G6(0)+-?(L(

)-+41)+4,2(
/3+/274,2(
9,5(\SB(
9.+.5/(*,5R(

U4:.5/( \T( `8)+4)(( (,-)+4,2( 8)5+4)(( 0)+-?42:(

!"#$% & '()*+, #-.#$/0#12$0 3 4,$5% 6 $/5#7,$5 3 4,$0%(
8"#$% & '()*+, #-9#$/0#12$0 3 4,$5% 6 $/5#7,$5 3 4,$0%(

!:#$% & '()*+, #-.#$/0#12$0 3 4,$5 6 4,$ 3 12%(

8:#$% & '()*+, #-9#$/0#12$0 3 4,$5 6 4,$ 3 12%(

!"#U $%% U &'()*U + , +- U
(

( .;,/0/-1 2 4,/3/- . ;/45 2 67819/3 . 1,/0 . ;/455 2 :;(
(

( .;,/0/-1 2 4,/3/- . ;/45 2 6<819/3 . 1,/0 . ;/455 2 =;(
($!"U #$%U &'' U ()*+,U - . -/(
(

( 01/2344,15 0 7,12 4 ;,16 0 1,77 0 8934;1: 0 1915 4 1,12 0 177 0 ;<(
( = ;>317 0 ?@ABC3D>DE7CF6G (
(

( 01/2344,15 0 7,12 4 ;,16 0 1,77 0 8934;1: 0 1915 4 1,12 0 177 0 H<(
( = H>317 0 ?IABC3D>DE7CF6G (
(

*?/5/U 1 = -<-< U > U 1/ = -/<-< U (`(-/(47()(14)S8,42+`(JK= J9= 8K= >LM U 89 U ()5/(-,27+)2+7;(
(

130



/G@/015D20HA*2H*!"#$%*&'()**+',-.'-)*!,'/0(1(*2*3)4560*"7.,8*!9:1;':15,<*
%):61);'/*',**=)61>19':15,*?1:75.:*@,71A1:15,*

B)660*#C*&'//*DB)660C&'//E?F'>AC'>C41/G*
C[B(V!"#$(%$&$'"#(()'*!"'+!",-(.//+((012'3(4$"5!"2'3#$(6738(

2620 Q Street, Bldg 852, WPAFB, OH 45433(
( 
(
(

!A(:6'9:*
9(7&(:':$"($;:<!"$&( +($(*$3$57+&('3=(#('<<$38$&(!5(1&738( +($(
>?9@%(#!837+7A$('"#(7+$#+1"$( 73(+($(=$A$<!:2$3+(!5('(<'"8$@
&#'<$-( 513#+7!3'<-( #!837+7A$<,( 2!+7A'+$=( <'381'8$( '3'<,&7&(
2!=$<B( 9($(:':$"( 5!#1&$&(!3(>?9@LSW( =$#<'"'+7A$(2$2!",(
"$+"7$A'<( 2$#('37&2-( :"!:!&738( $;+$3&7!3&( +!( &1::!"+(
A$"757#'+7!3(!5("$+"7$A$=(#(13C&-(21<+7@<$A$<('#+7A'+7!3(&:"$'=(
'3=(#'"",(!A$"('#+7A'+7!3B(9($(:':$"('"81$&('8'73&+(+($(3$$=(
5!"(73(7*7+7!3(*$+D$$3(#!2:$+738(#(13C&(D(7#((7&(3$#$&&'"7<,(
+'&C(&:$#757#B(

H)0?56*(I* >?9@%E( '#+7A'+7!3E( "$+"7$A'<E( A$"757#'+7!3E(
73(7*7+7!3E(<'381'8$('3'<,&7&B(

(
Introduction1 

Our team has been working on the research and 
development of a language analysis model (Ball, 2011a; 
Ball, Heiberg & Silber, 2007) within the ACT-R cognitive 
architecture (Anderson, 2007) since 2002 (Ball, 2003). 
Currently, the model comprises ~950 productions and over 
58,000 declarative memory (DM) chunks. The model is 
capable of processing a broad range of English language 
constructions (www.doublertheory.com/ comp-grammer/ 
comp-grammar.htm; Ball, Heiberg & Silber, 2007) and is a 
component of a larger synthetic teammate model (Ball et al., 
2010). The model accepts written input from single words to 
entire documents, and processes the input incrementally, 
one word or multi-word unit at a time. On a 64-bit quad-
core Windows machine with 8 Gig RAM, the model 
incrementally processes ~130 words per minute (wpm) with 
the full 58,000 chunk mental lexicon and ~320 wpm with a 
smaller 22,000 chunk mental lexicon. The model processes 
~145 wpm in ACT-R cognitive processing time which 
compares to adult reading rates ranging from 200-300 wpm. 
We are working on ways to improve the analysis rate of the 
modelFwhich does not entail full comprehensionFto bring 
it into closer alignment with adult reading rates (Freiman & 
Ball, 2010).  

Our focus is on research and development of a general-
purpose, large-scale, functional model that adheres to well 
established cognitive constraints on human language 
processing (HLP) (Ball et al., 2010). Two important 
constraints that we adhere to are incremental and interactive 
processing (Just & Carpenter, 1987; Altmann & Steedman, 
1988; Tanenhaus et al., 1995; Gibson & Pearlmutter, 1998). 
                                                   
1 Thanks to Dan Bothell for pointing out several misconceptions 
about ACT-R in an earlier version of this paper 

Adherence to these constraints precludes the use of 
computational techniques like algorithmic backtracking and 
staged analysis (i.e., independent tokenizing, part of speech 
tagging, syntactic analysis, semantic analysis, and pragmatic 
analysis) and limits the use of techniques like lookahead, 
underspecification and parallel propagation of constructed 
alternativesFall of which are mainstays of many 
computational linguistic systems.   

ACT-R incorporates two architectural constraints, 
realized as serial bottlenecks, which largely determine 
incremental processing: 1) a single production can execute 
at a time, and 2) a single DM chunk can be retrieved at a 
time. In addition to these serial constraints which are the 
basis of incremental processing, ACT-R provides 
architectural support for parallel processing in the form of a 
parallel production selection mechanism based on utility, 
and a parallel DM retrieval mechanism based on activation. 
These parallel mechanisms are probabilistic and context 
dependent. The parallel/probabilistic/context dependent 
mechanisms provide the basis for interactive processing. 
They guide the processing of the language analysis model in 
directions that are likely to lead to a successful analysis 
given the current context and current input. The highly 
parallel retrieval mechanism is capable of selecting from 
existing DM chunks, but does not build any structure. The 
serial integration mechanism is responsible for building new 
structures, but is constrained to maintaining a small number 
of constructed representations, in parallel, in working 
memory which is composed of ACT-R buffers 
supplemented with specialized language analysis buffers 
(Ball, 2011b). 

Cognitive processing in ACT-R revolves around the 
selection and execution of a sequence of productions. The 
production with the highest utility that matches the current 
context provided by the ACT-R/language analysis buffers, 
is selected for execution. Production execution can result in 
a perceptual-motor action (e.g. visual attention shift, mouse 
movement), a modification to the contents of a buffer, or a 
DM retrieval. These actions change the context for selection 
and execution of the next production.  

When the executing production invokes a DM retrieval, 
the parallel spread of activation from chunks in buffers to 
associated chunks in DM (soft constraints or biases) 
combines with the base level activationFbased on prior 
history of use of the chunkFto determine total chunk 
activation. The single most highly activated chunk which 
matches a retrieval template (hard constraint) specified by 
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the executing production is retrieved. Chunks can either be 
associated by sharing a slot value or by explicit specification 
of an association using the !""#$%& function. For 
activation to spread, the activating chunk must be in a buffer 
(matching slot value) or in a slot in a chunk in a buffer 
(explicit specification via !""#$%&). 

The language analysis model makes extensive use of 
ACT-GGH( H\Ia!"( !#$( %!&!""'"( %&()'**+#,( -').!#+*-*/( 0.'(
model processes the linguistic input incrementally, one 
word or multi-word unit at a time, and uses all available 
information interactively to make the best choice at each 
choice point. The model also relies on a non-monotonic 
mechanism of context accommodation which is capable of 
making modest adjustments to the evolving representation 
when the current input, in combination with the current 
context, indicates the need for such accommodation. 
Context accommodation is part of normal processing1in 
the right context, a production capable of accommodating 
the input executes. For example, in incrementally processing 
23.'(!+&*%''$(&'*3&+)3+(#45(6.'#(2!+&*%''$4(+*(%&()'**'$, it is 
integrated as the head of the noun phrase projected during 
3.'( %&()'**+#,( (7( 23.'45( 893( 6.'#( 2&'*3&+)3+(#4( +*(
subsequently processed, the model accommodates 
2&'*3&+)3+(#4(8:(*.+73+#,(2!+&*%''$4(+#3((!(-($+7+'&( 79#)3+(#(
!#$(-!;+#,(2&'*3rict+(#4(3.'(.'!$. Context accommodation 
is not capable of handling the kinds of disruptive garden 
path sentences that are a mainstay of psycholinguistic 
research ('/,/(9'<'&=*( >?@ABC( 7!-(9*(23.'(.(&*'( &!)'$(%!*3(
3.'(8!&#( 7'""4C/(D9).( +#%93*( &'E9+&'( &'!#!":*+*(-').!#+*-*(
which have not yet been implemented. The focus of model 
development is on handling common English1inputs which 
humans process with ease, but which, nonetheless, present 
significant modeling challenges due to ambiguity. The 
combination of parallel/probabilistic/context dependent 
processing, and serial processing with context 
accommodation allows the model to pursue the single best 
analysis, but to adjust the analysis without backtracking or 
reanalysis, when needed. The overall result is a pseudo-
deterministic HLP which presents the appearance and 
efficiency of deterministic processing, despite the rampant 
ambiguity which makes truly deterministic processing 
impossible (Ball, 2011a).  

 
Activation 

In ACT-R, all DM chunks have an activation level which 
depends on the current context (source activation) and prior 
history of use (base level activation) of the chunk.  A key 
assumption is that the current context is captured in the 
contents of the ACT-R buffers which are sources of 
activation. The most basic form of the activation equation 
(ignoring partial matching which we do not use, and noise) 
is shown below where Ai = total activation of chunk i; Bi = 
base level activation of chunk i, and Si = spreading 
activation contribution to activation of chunk i: 

iii SBA !"  
The base level activation is a logarithmic function of the 
number of uses of a chunk over time combined with a 

negative exponential decay mechanism (assuming the 
default, optimized base level equation). Spreading activation 
is a weighted sum of activations from all the sources of 
activation in buffers which match the slot values of the 
chunk being activated or for which an explicit association 
has been specified (via !""#$%&). The amount of spreading 
activation to a chunk from each source decreases with the 
number of competing chunks which match the source. This 
proportional spreading activation is known as the fan effect. 
The fan effect does not apply to chunks for which an 
explicit association has been specified. 

The language analysis model makes extensive use of 
ACT-F=*(retrieval (activation and selection) mechanism. In 
the word recognition subcomponent, a perceptual span 
which encodes the visual contents of the current attention 
fixation spreads activation to DM and the word or multi-
word unit which is most highly activated is retrieved 
(selected) and compared to the perceptual input. If the 
comparison is close enough, the retrieved word or multi-
word unit is considered a match. Overall, the process 
involves four steps: 1) perceptual encoding of the input 
(encoding); 2) activation of declarative memory 
(activation); 3) retrieval of the most highly activated DM 
chunk which matches the hard constraints of the retrieval 
template (selection); and 4) comparison of the retrieved 
memory element against the perceptual input (verification). 
Completion of all but the third step presents challenges for 
ACT-R based modeling.  

ACT-F=*( 89+"3( +#( %'&)'%39!"( '#)($+ng mechanism 
assumes words are divided into units by spaces and 
automatically separates punctuation into separate perceptual 
units. While this typically succeeds in identifying words and 
%9#)39!3+(#5( +3((73'#($('*(#(3/(0.'&'( !&'(6(&$*( "+;'( 2'3)/4(
!#$( 2$+$#=34(6.+).( +#)(&%(&!3'( %9#)39!3+(#( !#$( 3.'&'( !&'(
6(&$*("+;'(2!(%&+(&+4(!#$(2#(#'(3.'("'**4(6.+).(.!<'(*%!)'*/(
In addition, the model includes multi-word units like 2.!<'(
8''#45(2,'3((934(!#$(2G'6(H(&;4(6.+).(!&'('#)($'$(+#(3.'(
mental lexicon as lexical items. Higher level knowledge 
from the mental lexicon is needed to decide what constitutes 
a word or multi-word unit. To support the integration of 
higher level knowledge with perceptual processing, we 
modified ACT-F=*( %'&)'%39!"( '#)($+#,( -').!#+*-( 3((
incorporate a perceptual span that does not automatically 
segment the input at spaces and punctuation (Freiman & 
Ball, 2010). Not only does the perceptual span mechanism 
support the integration of higher level knowledge, it speeds 
up processing significantly since 6(&$*( "+;'( 2$(#=34( !&'(
recognized as a single unit instead of three separate units 
2$(#45(2=4(!#$(234/(I+;'6+*'5(-9"3+-6(&$(9#+3*("+;'(2,'3((934(
are also recognized as a unit. Besides speeding up 
processing, the recognition of multi-word units reduces 
amb+,9+3:( *+,#+7+)!#3":/( 0.'( 6(&$( 23!;'4( +*( 'J3&'-'":(
ambiguous, whereas multi-6(&$(9#+3*("+;'(23!;'((9345(23!;'(
(774( !#$( 23!;'( +#4( !&'( 7!&( "'**( !-8+,9(9*/( 0.'( !8+"+3:( 3((
recognize multi-word expressions is an important tool for 
handling the ambiguity of natural language and for speeding 
up the model. We view the addition of multi-word 
expressions as the best way of achieving adult reading rates. 
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With a mental lexicon near 58,000 lexical items, the 
computation of activation presents a serious computational 
challenge. It is not possible to compute the activations of 
58,000 lexical items prior to each retrieval, in real-time, on 
existing hardware. (This is also the reason we are unable to 
use the partial matching subsystem, since all DM chunks are 
candidates for retrieval when partial matching is enabled.) 
As a workaround, we developed a capability to minimize 
the activation computations in the event of an exact match 
to the form of the input. If there is a lexical item in DM 
which is an exact match to the perceptual span, a hard 
constraint is added to the retrieval template to restrict the 
number of matching DM elements. When the full perceptual 
*%!#($('*#=3(-!3).5(3.'(-!3).(+*(8!);'$((77(3((3.'("!*3(*%!)'(
in the perceptual span and re-attempted. Prior spaces can 
also be backed off to. If there is no match (e.g. if the input is 
2*%%'$4C1as a computational compromise1the model 
attempts a retrieval requiring a hard constraint match on the 
first letter in the perceptual span. We call this mechanism a 
disjunctive retrieval capability. Except for this last 
compromise, the disjunctive retrieval capability retrieves the 
same lexical item as a soft constraint retrieval. Even with 
this last compromise, computation of activations is slower 
than real-time in the worst case where only a first letter 
match is required, since there may be thousands of matching 
lexical items whose activation must be computed. We are 
looking for ways to improve processing with minimal 
compromise compared to the preferred soft constraint 
retrieval mechanism. 

The verification step is also problematic from an ACT-R 
modeling perspective. ACT-R does not provide the kind of 
low level perceptual matching capability that is needed to 
implement this step. Instead, we have incorporated the 
Levenshtein Distance algorithm to perform this comparison. 
We view verification as a key element of the word 
recognition mechanism in accord with the Activation-
Verification model of Paap et al. (1987) and in contrast to 
the Interactive-Activation model of McClelland & 
Rumelhart (1985) which has no verification stage.  
Verification is crucial for identifying novel inputs. A novel 
input is one that is not a close match to any chunk in 
memory, although eJ!)3":(6.!3()(#*3+393'*(!(2)"(*'(-!3).4(
is an open research question.   

 
M ulti-L evel Activation Spread 
In ACT-R, activation spreads from the slots in chunks in 
buffers to chunks in DM with matching slot values or 
explicitly set associations (using !""#$%&). For example, 
we have a context buffer that encodes information about the 
context that has a s"(3(#!-'$(2,&!--pos-8+!*4(>grammatical 
part of speech bias). Following the processing of a word like 
23.'4(>a determiner), this slot will be set to the chunk '()'. 
During the retrieval of a lexical item, the '()' chunk will 
spread activation to all lexical items with a matching '()' 
chunk (i.e. all nouns)/(K7(3.'(6(&$(2%(+#34(7(""(6*(23.'45(3.+*(
bias will spread activation to the '()' chunk 7(&(2%(+#34(!*(
opposed to the *+,- chunk >+/'/(23((%(+#34C/(K#(3.+*(6!:(3.'(

grammatical context biases the selection of the part of 
speech (POS) of a word during retrieval.  

There is no mechanism in ACT-R to spread activation 
from slots in chunks in DM to other chunks in DM with 
matching slot values or to explicitly associated chunks. 
Once activation spreads from slots in buffers to DM chunks 
during a retrieval, activation spread stops and the final 
activation is computed to determine which DM chunk to 
retrieve. We refer to this as single level activation spread.   

Our model assumes that there are DM chunks which 
'#)($'(8(3.(3.'(7(&-((7(!(6(&$(>'/,/(2*%''$45(2*%''$*4C(!#$(
POS >'/,/(2#(9#45(2<'&84C. Originally, word form and POS 
information were encoded in distinct .(,"#/(,0 and 1($ 
chunks. The model first retrieved a .(,"#/(,0 chunk given 
the letters and trigrams in the input, then retrieved a 1($ 
chunk for the word form. In order to improve the analysis 
rate of the model (Freiman & Ball, 2010), word form and 
part of speech information was combined into a single 
.(,"#1($ chunk (i.e. word form + part of speech). While 
we were successful in eliminating a retrieval, the resulting 
.(,"#1($ chunks contain a mixture of word form 
information (e.g. the letters and trigrams in the word) and 
POS information (e.g. noun, verb, as well as grammatical 
features like number, animacy and gender for nouns, and 
tense and aspect for verbs). Note that this mixture of word 
form and POS information makes it possible to capture the 
interaction of word form and POS with single level 
activation spread. For example, retrieval of the POS for 
2*%''$4(>+/'/(#(9#((&(<'&8C(,+<'#(3.'(+#%93(L*%%'$L($'%'#$*(
(#(3.'(8+!*+#,()(#3'J3(>'/,/(#(9#(8+!*(7(""(6+#,(23.'4, verb 
8+!*( 7(""(6+#,( 23(4) as well as the letters and trigrams. 
However, the .(,"#1($ chunks do not (yet) contain any 
representation of phonetic, phonemic, syllabic or 
morphemic information. With just letter, trigram and POS 
information, .(,"#1($ chunks contain many slots. Adding 
phonetic, phonemic, syllabic and morphemic information 
will increase the number of slots substantially. Ideally, we 
would like to represent letter, trigram, POS, phonetic, 
syllabic etc. information independently of each other in 
separate chunks1allowing them to interact in retrieving a 
word (or letter, or POS, or phoneme), but given the single-
level activation spreading mechanism in ACT-R, there is no 
way to capture the interaction without including all the 
linguistic knowledge in a single chunk or using !""#$%& to 
establish links between chunks and retrieving and retaining 
chunks at all levels in buffers to spread activation.   

A negative consequence of the integration of word form 
and POS information is the need to redundantly encode 
information. If a given word form is associated with 
multiple POSs, then multiple .(,"#1($ chunks are needed. 
For example, the word 2*%''$4( )!#(8'(8(3.( !(#(9#( !#$( !(
verb. To represent this, two .(,"#1($ chunks are needed, 
one for the noun and one for the verb. In these two .(,"#
1($ chunks, the letters and trigrams in the word form are 
redundantly encoded. To minimize redundancy, it is 
desirable to factor out word form and POS knowledge. But 
to model adult human reading rates, it is important to 
minimize the number of retrievals. Both can be 
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accomplished with multi-level activation spread. For 
example, if the goal is to retrieve a POS, the letters and 
trigrams in the input can spread activation to a .(,"#/(,0 
chunk which can spread activation to a 1($ chunk. Then the 
1($ chunk can be retrieved without first retrieving the 
.(,"#/(,0 chunk.   

We are in the process of mapping the linguistic 
representations that are generated by our language analysis 
model into a situation model based semantic representation. 
We are trying to do this in a representationally reasonable 
way within ACT-R. The problem we face is the many-to-
many mapping between words and concepts. Individual 
words may map to multiple concepts >&+<'&( 28!#;4( <*/(
7+#!#)+!"( 28!#;4C, and individual concepts may map to 
multiple words >2$(,4( <*/( 2)!#+#'4C. Given this many-to-
many mapping, we would like to use 0!11&'2 chunks to 
map from words to concepts. The 0!11&'2 chunks would 
encode a single mapping relationship (e.g. a separate 
mapping chunk to map from the word "bank" to the 
financial institution concept; from the word "bank" to the 
river bank concept; from the concept dog to the word "dog"; 
from the concept dog to the word "canine"). When 
processing a word, a key goal is to retrieve the contextually 
relevant concept. We would like to accomplish this with a 
minimum number of retrievals since our model is already 
slower than adult humans even without the mapping into 
concepts. Since there is no direct link between a word and a 
concept if 0!11&'2 chunks are used (i.e. there is no slot in 
the 3('3+14 chunk that contains the word), the word will 
not spread activation to the concept. Instead, given the use 
of 0!11&'2 chunks, two retrievals are needed: 1) given a 
.(,"#1($ chunk, retrieve a 0!11&'2 chunk, and 2) given a 
0!11&'2 chunk, retrieve a 3('3+14 chunk. The use of 
0!11&'2 chunks can be eliminated is we use the !""#$%& 
function to establish direct links between .(,"#1($ chunks 
and 3('3+14 chunks. We are currently pursuing this option 
to avoid the need to retrieve an intermediate 0!11&'2 
chunk. Even with explicit links from .(,"#1($ chunks to 
3('3+14 chunks, a .(,"#1($ chunk must first be retrieved 
to spread activation to associated 3('3+14 chunks. With 
multi-level activation spread it would be possible to directly 
retrieve a 3('3+14 chunk, eliminating the need to retrieve a 
.(,"#1($ chunk.  

Alternatively, if we were to combine 3('3+14 chunks 
with .(,"#1($ chunks, then a single retrieval could be 
used to retrieve a .(,"#1($#3('3+14 chunk. However, 
there may be multiple concepts associated with a .(,"#1($ 
).9#;( >'/,/(2&+<'&(bank4(<*/(27+#!#)+!"(bank4C/( K7(6'()&'!3'(
separate .(,"#1($#3('3+145chunks for each alternative, 
the amount of redundancy is increased again. Further, it is 
questionable whether letter and trigram information should 
be directly associated with (non-linguistic) concepts.  

The main advantage of creating .(,"#1($#3('3+145
chunks is the reduction in the number of retrievals needed to 
go from the input to a concept. To see how problematic 
retrievals are for models of reading, consider the E-Z 
Reader model (Reichle, Warren & McConnell, 2009), a 

model of eye movements in reading which models lexical 
processing (not reading). E-Z Reader allows just 25 msec 
per word beyond lexical access for post-lexical processing 
to influence lexical processing. According to the authors, 25 
msec +*(23.'(-+#+-!"(!-(9#3((7(%(*3-lexical processing that 
(on average) is necessary to satisfy the language-processing 
system that comprehension is proceeding without difficulty 
and that it is not necessary to interrupt lexical processing 
and/or halt the pro,&'**+(#((7(3.'(':'*4(>ibid., p. 6). Since it 
requires 50 msec to execute a production in ACT-R which 
attempts a retrieval, plus the retrieval time, there would be 
insufficient time for a single retrieval in an ACT-R 
implementation of E-Z Reader to influence lexical 
processing and eye movements! However, the E-Z Reader 
model makes the simplifying assumption that words are 
space delimited and since our model is capable of 
recognizing multi-word units, the 25 msec limit can be 
relaxed somewhat. But there is still insufficient time for 
more than 1 or 2 retrievals (on average) beyond the retrieval 
needed to support word recognition itself.  

 
Carry Ove r Activation and Resonance 
Activations are computed in ACT-R as part of a retrieval 
attempt. The activation computation involves combining the 
base level activation and activation spread from all buffers 
which are sources of activation. The logarithmic nature of 
the default, optimized base level activation computation 
means that the base level of overused DM chunks does not 
vary much from use to use (i.e. the base level activation has 
reached asymptote). Words constitute very highly used DM 
chunks. Using estimates of the number of occurrences of a 
word over a lifetime results in a base level activation that 
varies little from use to use and decays very slowly. Since 
the spread of activation is computed independently on each 
retrieval, for a word that has been used recently, there is no 
contextual indication of this prior use (i.e. the base level 
.!*#=3( *+,#+7+)!#3":( ).!#,'$( !#$( !#:( %&+(&( *%&'!$( of 
activation is not retained). Yet there is clear evidence of 
priming effects from prior uses of words. According to Dan 
Bothell (p.c.), this is a limitation of ACT-F=* default 
optimized base level equation. We are exploring use of a 
hybrid version of the base level equation which does not 
suffer this limitation (Bothell, 2011, p. 213). Use of the non-
optimized base-level equation is not possible given the size 
of our mental lexicon and the large number of word uses.  

Another alternative is to retain the word in a buffer so that 
activation can continue to spread from the word to 
corresponding chunks in DM. We have tried this approach 
in the case of idiom processing. To see the basic challenge, 
)(#*+$'&( 3.'(%&()'**+#,((7( +$+(-*( "+;'(2;+);'$( 3.'(89);'34 
and verb-%!&3+)"'()(-8+#!3+(#*( "+;'(2%+);M9%4(as +#(2%+);(
3.'( 8!""( 9%4. We assume that idioms and verb-particles 
correspond to distinct chunks (i.e. multi-word units) in DM. 
These multi-word expressions exceed the size of the 
perceptual span and cannot be recognized in a single 
attention fixation. Instead, the model must somehow 
recognize the idiom 2;+);'$( 3.'( 89);'34( 6.'#( 3.'( 6(&$(
289);'34( +*( processed and the verb-particle combination 
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2%+);M9%4(6.'# 3.'(6(&$(29%4(+*(%&()'**'$. If there is no 
'<+$'#)'( 3.!3( 2;+);'$4( .!*( ())9&&'$( !3( 3.'( %&()'**+#,( (7(
289);'345( 3.'#( 3.'&'( +*( #(( 6!:( 7(&( 3.'( -($'"( 3(( &'3&+'<'(
2;+);'$( 3.'( 89);'34( +#*3'!$( (7( 289);'34/( Similarly for 
2%+);4( 6.'#( 29%4( +*( %&()'**'$/( Since the DM element 
289);'34( +*(!#('J!)3(-!3).( 3((289);'34(!#$(289);'34(.as a 
.+,.'&(8!*'( 7&'E9'#):( 3.!#(2;+);'$( 3.'(89);'34( >+/'/(*+#,"'(
words have a higher base frequency than multi-word units 
containing them), there must be some mechanism for 
%&'7'&&+#,(2;+);'$(3.'(89);'34(+#(3.+*()(#3'J3/(2N+);'$4(!#$(
23.'4()(9"$(8'(&'3!+#'d in the context to spread activation to 
2;+);'$(3.'(89);'34(3((.!#$"'(3.+*('J!-%"'5(8935(+#(,'#'&!"5(
this would mean retaining an arbitrary number of words in 
the context to spread activation. K#( 3.'()!*'((7(2%+);M9%45(
2%+);4(6(9"$(#''$(3((8'(&'3!+#'$ in a buffer for an indefinite 
%'&+($((7(3+-'(>'/,/(2pick the big red ball up45(2pick the ball 
that is on the table up4C/ 

Even with the hybrid base-level equation, relying on an 
+#)&'!*'(+#(8!*'("'<'"(7(&(2;+);'$(3.'(89);'34(6+""(#(3(6(&;(
in this example. Sinc'(3.'(%&()'**+#,((7(2;+);'$4(+*("+;'":(3((
&'3&+'<'(2;+);'$4(!#$(#(3(2;+);'$(3.'(89);'345(3.'(8!*'("'<'"(
!)3+<!3+(#((7( 2;+);'$( 3.'(89);'34(6+""(8'(9#!77')3'$( !3( 3.'(
%&()'**+#,((7(2;+);'$4( >i.e. 3.'( 2;+);'$( 3.'(89);'34().9#;(
must be retrieved and merged back into DM to constitute a 
use). Further, any temporary spreading activation from 
2;+);'$4( 3(( 2;+);'$( 3.'(89);'34(6+""(.!<'(8''#( "(*3( !3( 3.'(
%&()'**+#,((7(289);'34/( 

A possible solution is to introduce a carry-over activation 
)!%!8+"+3:/( O.'#( 2;+);'$4( +*( %&(cessed it will spread 
!)3+<!3+(#( 3(( 2;+);'$( 3.'( 89);'34( !*( 6'""( !*( 2;+);'$4/(
\'*%+3'( 3.'( 7!)3( 3.!3( 2;+);'$( 3.'( 89);'34( +*( #(3( &'3rieved, 
some of this activation will carry-over so that when 
289);'34( +*( %&()'**'$5( 2;+);'$( 3.'( 89);'34( 6+""( &')'+<'(
activation 7&(-( 289);'34( !*( 6'""( !*( )!&&:-over activation 
7&(-( 2;+);'$4( !#$( 23.'4/( 0.'( )(-8+#!3+(#( (7( )!&&:-over 
!)3+<!3+(#(7&(-(2;+);'$4(!#$(23.'45(%"9*(3.'(!)3+<!3+(#(7&(-(
289);'34(*.(9"$(!""(6(2;+);'$(3.'(89);'34(3((8'(&'3&+'<'$(+#(
this context. In general, this seems like a better solution than 
3&:+#,( 3(( &'3!+#( 2;+);'$4( !#$( 23.'4( +#( 3.'( )(#3'J3( 6.'#(
289);'34(+*(%&()'**'$/ K#(3.'()!*'((7(2%+);M9%45()!&&:((<'&(
activation should handle cases where the gap between 
2%+);4(!#$(29%4(+*(*-!""(>'/,/(2pick the ball up4C5(8ut cause 
problems when the gap is large enough that any carry over 
activation will have decayed. This result might explain the 
preference for placing the particle before the object when 
3.'($'*)&+%3+(#((7(3.'((8P')3(+*("(#,(>'/,/(2pick up the big red 
ball (#(3.'(3!8"'4(+*(%&'7'&&'$((<'&(2pick the big red ball on 
the table up4C/ 

There are additional reasons for suggesting the 
introduction of carry-over activation. Carry-over activation 
corresponds to a short-term increase in the activation of a 
DM chunk that extends beyond the execution of a single 
chunk retrieval. This carry-over activation (i.e. neuron 
spiking) differs from increases in base level activation 
which we view as more permanent changes in long-term 
potentiation. The introduction of carry-over activation 
combined with multi-level activation spread, could support 
an ART-like adaptive resonance capability (Grossberg, 

1987)1although it is unclear how this could be done in a 
computationally tractable way. Note that ART uses 
resonance to distinguish novel from previously experienced 
inputs1previous inputs lead to resonance with memory 
whereas novel inputs do not. With carry-over activation, the 
verification stage of the word recognition subcomponent 
could be implemented within the architecture via resonance 
instead of using the Levenshtein Distance metric outside the 
architecture.   

 
Inhibition 
Inhibition is a winner-take-all mechanism that is commonly 
used in connectionist architectures to allow a network of 
nodes to settle into a solution (cf. McClelland & Rumelhart, 
1981; Kintsch, 1998). Over time, the most active node or 
co-activating nodes inhibit competing nodes. There is no 
equivalent in ACT-R1although it is possible to get 
inhibitory effects by explicitly setting the strength of 
association between two or more chunks to a negative value. 
But even here, there is no notion of settling into a solution 
in ACT-R.  

The need for inhibition as a mechanism for settling into a 
solution is obviated in ACT-R by the retrieval mechanism 
which results in selection of the single most highly activated 
chunk matching the retrieval template. This is ACT-F=*(
'E9+<!"'#3( (7( !( 26+##'&-take-!""4( #'36(&;/( 0.'( &'3&+'<!"(
mechanism picks out the most highly activated chunk which 
matches the hard constraints of the retrieval template.  

ACT-F=*(*%&'!$+#,( !)3+<!3+(#(-').!#+*-($('*#=3(8+!*(!(
model to any particular task. The same cannot be said of 
inhibition. For any inhibitory network, it is possible to 
define conflicting tasks that the inhibitory network cannot 
perform. For example, if both singular and plural forms of 
#(9#*( >'/,/( 2).+"$4( !#$( 2).+"$&'#4C( ())9&( +#( !( #'36(&;5(
should they inhibit each other? It depends on the task. If the 
3!*;( +*( !( "'J+)!"( $')+*+(#( 3!*;5( 3.'#( 6'( 6!#3( 2).+"$4( 3((
+#.+8+3(2).+"$&'#4(!#$(<+)'(<'&*!5(*((3.!3(3.':($(#=3(+#3'&7'&'(
>+/'/( +7( 2).+"$4( +*( 3.'(6+##'&(6.'#( 3.'( +#%93( +*( 2).+"$&'#45(
presumably the lexical decision response would be negative 
*+#)'(2).+"$4($('*#=3(-!3).(3.'(+#%93C/(Q#(3.'((3.'&(.!#$5(+7(
the task is to generate the singular form of the word in 
response to the plural word, or the plural in response to the 
singular, than we need facilitation rather than inhibition. As 
!#(3.'&('J!-%"'5()(#*+$'&(3.'(<'&8*(2,(4(!#$(26'#34/(R(&(!(
lexical decision task, these words should inhibit each other. 
Bu3( 7(&( !( 3!*;( (7( ,'#'&!3+#,( 3.'( %!*3( 3'#*'( (7( 2,(45( 3.':(
should facilitate each other.  

Not only are inhibitory links task specific, but in a large 
declarative memory, the number of such links will be 
explosive. If a word must inhibit all its competitors, with a 
58,000 word lexicon, the number of inhibitory links is 
computationally explosive/(K#.+8+3(&:("+#;*($(#=3(*)!"'/( 

Besides the task specificity of inhibitory networks, most 
inhibitory networks assume well-defined levels with 
inhibitory links typically constrained to occurring within a 
level and excitatory links occurring across levels. The 
recognition of multi-6(&$( 'J%&'**+(#*( "+;'( 2,'3( 9%4, 
+#7"')3'$(6(&$*( "+;'(28((;*4(and morphologically complex 
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6(&$*( "+;'( 2%&(,&'**+<+3:4( present a challenge for such 
networks? Are multi-word expressions >'/,/( 2,'3( 9%4C, 
inflected words >'/,/( 28((;*4C, morphologically complex 
words >'/,/(2%&(,&'**+<+3:4C, morphologically simple words 
>'/,/(2)!34C(and morphemes >'/,/(%"9&!"(2*4C(represented on 
the same level, in which case they compete, or on different 
levels, in which case they co-activate each other? It depends 
on the task. K7(2,'345(29%4( !#$(2,'3(9%4(!&'( !""( &'%&'*'#3'$(
on the same lexical item level where they inhibit each other, 
.(6( $((6'( &')(,#+S'( 2,'3( 9%4( !*( !( lexical unit (i.e. how 
$('*( 3.'(-($'"( *'33"'( +#( 3(( 2,'3(9%4C? Even if multi-word 
expressions are represented on a different level from words, 
the words in the multi-word expression will inhibit each 
other, making it difficult to distinguish the multi-word 
expression from the word which wins the word level 
competition, unless the task is specifically to recognize 
multi-word expressions. Similar questions arise for 
inflected, morphologically complex, and morphologically 
simple words, and morphemes. In short, multi-word 
expressions, inflected words, morphologically complex 
words and morphemes call into question the typical 
assumption that there is a well defined word level. In a 
model restricted to four letter words without inflectional 
variants where the task is word recognition (e.g. McClelland 
& Rumelhart, 1981), well-defined levels can be established. 
When we consider real language, there is no well-defined 
word level with inhibitory links that is task independent.  

In sum, inhibition is not a viable alternative to ACT-F=*(
task general spreading activation mechanism combined with 
a winner-take-all retrieval mechanism that depends on the 
current task. 

 
Conclusions 

The use of ACT-R for language analysis provides several 
benefits. ACT-R solves the problems of how to integrate 
symbolic and probabilistic processing combined with serial 
and parallel processing in an effective and elegant manner. 
For the most part, the capabilities provided by ACT-R have 
proved useful for the development of our language analysis 
model, and much of the success of our model is attributable 
to the capabilities and constraints of ACT-R.  

However, there is room for improvement of ACT-R. 
Interestingly, the suggestions presented in this paper are 
consistent with 7#$'&*(#=*( *'-+#!"( %!%'&( (#( *%&'!ding 
activation (Anderson, 1983a) and the ACT* architecture 
(Anderson, 1983b). Multi-level activation spread is capable 
of spreading activation to indirectly related DM chunks, 
obviating the need to specify indirect links or to add slots to 
directly model the associations, and keeping the capability 
to model interactions and minimize retrievals. Carryover 
activation allows the effects of multi-level spreading 
activation to be retained until needed. Of course, the 
computational costs of multi-level activation spread and 
carry-over activation are potentially explosive and it will be 
a challenge to figure out how to extend ACT-F=*(
capabilities in the ways suggested in this paper in a 
computationally tractable manner.  
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Prospective Memory and Working Memory 
Prospective memory (PM), remembering to perform an 
action in the future, is an important ability in everyday life. 
It involves a prospective component, remembering that you 
have to do something, and a retrospective component, 
remembering what action to perform and when to perform 
it. Researchers have pointed to a role of cognitive factors, 
such as individual differences in working memory (WM), in 
determining PM performance. Previous studies have found a 
positive relationship between WM span and PM (e.g., R.E. 
Smith, Persyn, & Butler, 2011). The goal of the present 
study is to apply a hierarchical modeling approach to 
investigate how WM is related to the prospective and 
retrospective components of PM. 

The Multinomial Model of Event-Based PM 
PM tasks often involve interrupting an ongoing activity. 
Therefore, laboratory PM tasks are often embedded in an 
ongoing task. Smith and Bayen (2004) introduced a 
multinomial model of event-based PM that can be applied to 
PM tasks that are embedded in an ongoing task with two 
response options, such as a lexical decision task. While 
participants are engaged in the ongoing task, they are 
supposed to execute a specific action when a PM target 
occurs. The model (Figure 1) includes parameter P which 
measures the prospective component and parameter M 
which measures retrospective recognition memory processes 
for discriminating PM targets and nontargets. Parameter g 
defines the probability of guessing that a PM target is 
present. C1 and C2 measure processes related to the ongoing 
task. For example, in a lexical decision task, C1 is the 
probability of correctly detecting that a letter string is a 
word and C2 is the probability of correctly detecting that a 
letter string is a non-word. If a participant does not detect 
that a string is a word or a non-word, he or she guesses with 
probability c that it is a word. It is assumed that participants 
adjust their responses to the perceived ratio of items in a 
task, that is c = the ratio of word trials to total trials and g = 
the ratio of PM target trials to total trials. The resulting 

model has four free parameters P, M, C1, and C2, and is 
identifiable. 

 

 
Figure 1: The Multinomial Model of Event-Based PM. 
AdaMd&-()NH;(O7(;bXdY$H;Y,X(;H-&X(H)(&c&$d-based 
MNHPM&NdYc&(;&;HNJe(6J(!)")(#$%&'(()*(+),)(9(-.)C(UOO/C(
Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 30, p. 758. 

Beta Multinomial Processing T ree Models 
Since multinomial models are often applied to data that have 
been aggregated over participants and items, they assume 
that all observations are independent and identically 
distributed and ignore differences between participants and 
items (Riefer & Batchelder, 1988). However, J.B. Smith and 
Batchelder (2008) showed that this assumption is often 
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violated even for a carefully constructed item pool and 
relatively homogeneous groups of participants. This can 
result in biased parameter estimates. 

The beta MPT (J. B. Smith & Batchelder, 2010) assumes 
that each participant´s parameters are drawn independently 
from a multivariate distribution consisting of independent 
marginal beta-distributions. The advantage of the beta 
distribution is that it lies in the interval [0,1] and thus in the 
natural parameter space of the model parameters because 
they represent probabilities. Beta-MPT models are 
computed using Markov Chain Monte Carlo (MCMC) 
methods. This analysis is possible without having to solve 
the integrals which can be computationally very expensive. 
It can be easily applied using software like WinBUGS 
(Spiegelhalter, Best, & Lunn, 2003). 

Study by R . E . Smith, Persyn, & Butler (2011) 
413 participants took part in this experiment. The ongoing 
task was a lexical decision task. The PM task was to press 
&'.( 0N( 1.-( 2'.)( 3-44(54.3( 64728( ()*( 69.:8( (99.(:.*) 
Participants completed a symmetry span task as a measure 
of WM span. Participants whose WM score fell within the 
lowest 25% were placed into the lower WM group and those 
whose WM score was in the top 25% were placed in the 
higher WM group. In R. E. #$%&'(.&((4);3( WUONNX(()(4-3%3C(
participants in the higher WM group had a higher 
probability of remembering that something needed to be 
done (the prospective component measured by model 
parameter P), but the two WM groups did not differ on the 
retrospective component as measured by parameter M. 

Reanalysis 
The extreme-group analysis is limited in that half of the data 
were omitted. By using the beta-MPT approach we are able 
to incorporate data from all participants to address the 
question whether and how individual differences in working 
memory span contribute to successful PM. 

For each Beta-MPT we used a uniform distribution 
5.&2..)( N( ()*( <OOO( (3( 9:%7:( =7:( >( ()*( ?)(@'%3( %3( (( A.:-(
vague prior because of its wide range, 5B&(5.C(B3.(>(()*(?(
are greater than 1, it ensures that the beta-distribution is 
bell-shaped. We used 100,000 iterations and discarded the 
first half of the iterations as burn-in period. 

With the resulting individual parameter estimates, we 
computed correlations and a regression analysis. The 
correlation of WM span and the prospective component P 
was significant, r = .15, p < .01, but WM span and the 
retrospective-memory component M were not associated 
with one another, r = .01, despite sufficient power to detect 
even a small effect. In the regression analyses, when only 
WM span was entered as predictor variable for PM 
performance it was a significant predictor. When P was 
entered as an additional predictor variable, WM span was 
not a significant predictor. The inclusion of M as predictor 
had no influence on the predictive value of WM span. 

 

Table 1: Results of regression analyses for criterion 
variable PM performance. 

Parameter b SE ? t p R² 
Constant* 0.41 0.07  6.24 <.01 .01 
WM* 0.01 <0.01 .11 2.32 .02  
Constant* -0.24 0.03  -8.10 <.01 .85 
WM <0.01 <0.01 -.02 -1.15 .25  
P* 1.22 0.03 .92 47.24 <.01  
Constant* -0.63 0.01  -53.93 <.01 .98 
WM <0.01 <0.01 .01 0.79 .43  
P* 0.93 0.01 .70 94.78 <.01  
M* 0.72 0.01 .43 58.43 <.01  
Constant* -0.59 0.06  -10.56 <.01 .62 
WM* 0.01 <0.01 .11 3.45 <.01  
M* 1.31 0.05 .78 25.80 <.01  
 

Thus, the results match previous findings. WM span is 
related to the prospective component of PM, but not to the 
retrospective-memory component. Beta-MPT models 
enabled us to incorporate data from all participants, to look 
at the data on an individual basis, and to avoid biased 
parameter estimates. They provide information about the 
relationship between individual differences in WM span and 
cognitive processes underlying PM. Regression analyses 
showed that the relationship between WM span and PM 
performance was fully accounted for by the prospective 
component P. 
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We propose a model for three judgments involving a mea-
sure of similarity and dissimilarity between faces: the simi-
larity judgment (Sj), the dissimilarity judgment (Dj), and the
kinship judgment (Kj), which has been demonstrated to be
strongly related to the Sj (Lorusso et al., 2011; Maloney &
Dal Martello, 2006).
A previous model for Sj and Kj between faces (see i.e., Mal-
oney & Dal Martello, 2006) suggests a common visual path-
way for both the judgments where a similarity measure of
similarity cues also named “kin signals” is required as a nec-
essary step to judgment of both similarity and kinship. De-
Bruine et al. (2009) found that the observed correlation be-
tween Sj and Kj depends on the face stimulus presented:
whenever face-pairs differ in age or sex, a similarity measure
is not found as a criterion of kinship evaluation. The model
we present here is based on the results obtained in a recent
work (Lorusso et al., 2011). These results showed significant
differences in response time for Sj, Dj, and Kj on different
face-pairs categories previously defined on the base of an ex-
periment of similarity ratings. Participants took on average
about half a second less to respond to stimulus pairs rated as
dissimilar than to either those rated as similar or those exhibit-
ing kinship. Moreover, on average participants took about a
third of a second longer to judge kinship than to judge simi-
larity. A slight difference was also found between Kj and Dj.
Finally, a priming study showed a strong priming of Sj on Kj
and vice versa. A strong priming was also observed of Dj on
both Sj and Kj. However, the priming effect was suppressed
whenever Sj and Kj were given before Dj: in this case, for
example, a positive Dj followed a negative Sj and Kj with a
chance level frequency. These results suggest a new scenario
in which judgments of similarity, dissimilarity and kinship of
faces are modulated by both the task and the stimulus and
where different visual and cognitive pathways are involved
during each of them. Moreover, Sj and Dj cannot be consid-
ered in a logical opposition between each other. Our model
- sketched in Figure 1 - suggests that any specific task leads
the observer to process specific pools of facial features and
use that information in order to complete the judgment. The
fact that Sj and Dj show a non inversion is explained in the
model by hypothesizing that they rely on a processing of dif-
ferent pools of visual information, respectively the similarity
and dissimilarity pools in Figure 1.

Figure 1: The new model for similarity, dissimilarity and kin-
ship judgments of faces.

The model assumes that Sj and Dj occur sooner than Kj
since they only require a very simple processing of the two
pools: they may be therefore reduced to elementary similar-
ity/dissimilarity measures. Kj is the slowest since it involves
a more complex processing of the two pools, and therefore it
cannot be reduced to a simple similarity measure of similar-
ity cues. In the model the similarity measure represents only
one of the possible strategies used in a complex judgment as a
Kj - likely the strategy adopted in the case of faces perceived
as highly alignable like faces matching for sex and age. Fi-
nally, the strong correlation between Kj and Sj observed in the
priming study may be explained to be part of a cultural mod-
ulation that we express through our anecdotal association of
the concept of kinship with similarity.
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Introduction 
Multitasking typically requires people to make performance 
trade-offs: paying more attention to one task can improve 
performance there, but might lead to performance 
decrements on other unattended tasks. In our work we try to 
gain a better understanding of how people make such trade-
offs. One difficulty in this effort is that performance is 
typically expressed in different units across tasks (e.g., 
“accuracy” of keeping a car inside a lane and “speed” of 
performing a secondary task such as dialing). How do 
people trade-off these different units?  

Explicit payoff functions have been proposed as a way to 
achieve the desired trade-off (e.g., Howes, Lewis, & Vera, 
2009; Janssen, Brumby, Dowell, Chater, & Howes, 2011; 
Payne, Duggan, & Neth, 2007; Schumacher, et al., 1999). 
They can be used to translate performance on multiple tasks 
into a single score. The participant and the modeler can then 
use this feedback to objectively compare performance for 
different strategies (Howes, et al., 2009; Janssen, et al., 
2011). If successful, payoff functions can be used as a 
formal way to manipulate a user’s priorities. Different 
strategies can be made optimal through changes of the 
payoff function. In ongoing work we are exploring under 
what conditions such “ideal payoff manipulations” can be 
made. We report some of our intermediate findings here. 

Ideal payoff functions and manipulations 
A payoff function is a function that translates performance 
on one or multiple tasks into a single, explicit, objective 
currency in a consistent manner. As a rule-of-thumb, the 
output of the function should be meaningful to the 
participant. Participants can then use the output of the 
payoff function to assess how well they are performing by 
comparing payoff values across trials and strategies. 
Similarly, a model can be used to compare payoff values of 
different strategies (e.g., Howes, et al., 2009; Janssen, et al., 
2011). In this way, a payoff curve can be generated that 
captures how payoff fluctuates as a function of the possible 
strategies. An ideal payoff curve has four properties: 
1. It has one global maximum.  
2. It has no local maxima other than the global maximum. 

3. The set of strategies that has a payoff value close to the 
maximum is narrow and these strategies are very 
similar in nature to the “optimum” strategy.  

4. The distribution of possible payoff values is consistent 
and narrow, such that the mean payoff value of a 
strategy is representative of the distribution of values.  

In essence, these properties guarantee that there is a 
unique, consistent, clear optimum strategy. This makes it 
easier for the participant and the modeler to identify the 
optimum strategy and to assess whether participants 
performed optimally. The black line in Figure 1 is an 
example of how payoff score (vertical axis) changes as a 
function of strategy (horizontal) in an ideal payoff curve.  

If payoff is successful in manipulating performance, then 
in an ideal setting this can be used to make any arbitrary 
strategy “optimal” for at least one payoff function. In Figure 
1 multiple alternative payoff curves are plotted in grey lines, 
as generated by hypothetical alternative payoff functions. 
This is considered an ideal payoff manipulation, because: 
1. Each curve is an ideal payoff curve. 
2. Across curves, each strategy is the optimum of at least 

one ideal payoff curve.  
With this definition of an ideal payoff manipulation, we 

are currently exploring under what conditions (e.g., what 
types of tasks) such ideal manipulations are possible.  

A mathematical model of interleaving 
Inspired by our previous work on a tracking-while-typing 
task (Farmer, Janssen, & Brumby, 2011; Janssen, et al., 
2011), we developed a mathematical model of this task. The 
model had to keep a one-dimensional first-order moving 
cursor inside a target area. The movement of the cursor was 
modeled using Pascal’s triangle, which can be used to give 

Figure 1: An ideal payoff manipulation (see text) 
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exact predictions of the probabilities of the position of the 
cursor at each timestamp. The model could exert active 
control of the cursor to overwrite the random movement. In 
addition a simple secondary task was included, which solely 
involved opening a task window.  

The model could only attend to one task at a time and 
experienced switch costs when switching between tasks. 
Both tasks were kept extremely simple on purpose, as this 
allowed us to focus on the role of payoff functions and 
whether an ideal payoff manipulation was possible, without 
having to worry about the correctness of each constraint and 
about the effects of constraints on performance. 

Performance on both tasks was encapsulated in the payoff 
function. For the tracking task, the model gained points on 
every sample when the cursor was inside its target area; it 
lost points otherwise. For the secondary task, the model 
gained points whenever the window of this task was open; it 
lost points otherwise. The values of these four gain and loss 
components were systematically manipulated to explore 
whether ideal payoff manipulations were possible. We also 
explored the effects of using a log or exponential 
transformation to the functions. The general pattern of 
results was similar across these simulations. 

Results and Discussion 
As a first step to identify ideal payoff manipulations, we 
explored whether the location of the global maxima differed 
across payoff functions. In contrast to the definition of an 
ideal payoff manipulation, the strategy required to achieve 
the maximum payoff did not vary much as the payoff 
function varied. Only specific points emerged as maxima. 
These maxima were for strategies of which the performance 
of at least one of the underlying tasks (i.e., how many time 
units was the cursor inside the target area, how many time 
units was the secondary task window open) had a local 
maximum. These local maxima were themselves the result 
of the constraints imposed by the task environment (e.g., 
boundary of the tracking task target) and cognition (e.g., 
switch costs). That is, global maxima in the payoff curve 
emerged at positions where the interaction of the constraints 
led to beneficial performance trade-offs.  

Looking at individual curves, many also violated the 
characteristics of an ideal payoff curve. Figure 2 shows 
three example curves. For each curve (different color lines), 
the strategy with the highest payoff is highlighted with an 
open circle. As can be seen, the curves violate the properties 
of an ideal payoff curve. There are local maxima and there 
are many strategies that achieved values close to the 
maximum value. This implies that fine tuned attentional 
strategies are not always required. We are therefore making 
further efforts to find task variants in which more subtle 
strategy choices are required. 
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Problem Solving by Insight
Much of human problem solving can be accounted for by
Newell and Simon’s classic state-search model, in which a
representation of a problem is chosen based on previous ex-
perience and search is then performed within the space of
problem-states associated with this representation until a state
is encountered that satisfies the problem’s goals, i.e., a solu-
tion. This assumes that the representation chosen is correct,
in that there are solutions that can be reached by search within
that representation’s problem-state space. If this is not so, in-
sights are necessary to modify the initial representation such
that search can succeed (Duncker, 1945).

Problem solving by insight can be construed as cycles of
search alternating with applications of special representation
restructuring operators until a solution is reached. Within the
most formally-stated such theory, the Representation Change
Theory (RCT) of Knoblich et al. (1999), a problem represen-
tation additionally consists of a set of constraints encoding
both restrictions on the search process and the characteris-
tics of those problem-states that are solutions. The entities
comprising a problem-state are grouped into chunks, where
each chunk corresponds to a pattern that has proven useful
in previous instances of problem solving. At any given time,
only one set of chunks (whose members may not be nested) is
considered active. RCT proposes two representation restruc-
turing operations, namely, the removal of a particular con-
straint (Constraint Relaxation) or the replacement of an active
chunk by its immediately-nested chunks (De-Chunking). The
classical application by Knoblich et al. of RCT to matchstick
arithmetic problems is shown in Figure 1.

Problem solving by insight is widely viewed as being more
difficult than search-based problem solving (Chu & MacGre-
gor, 2010). Within RCT, it has been conjectured that prob-
lems whose solutions violate smaller numbers of constraints
(Knoblich et al., 1999, p. 1535) or with fewer constraints
in total (MacGregor & Cunningham, 2009, p. 133) should
be easier to solve. Though consistent with empirical obser-
vations, the question remains whether such explanations are
complete, in the sense that the increases in solution-frequency
and/or speed are due to these factors by themselves or by
these factors in collaboration with other so-far unnoticed lim-
itations. In this poster, we investigate these claims using
the methodology for analyzing computational-level models of
cognitive theories described in van Rooij & Wareham (2008).

a)

b)

c)

d)

TC, OC

VC, OC

VC

VC

.

Figure 1: Solving Matchstick Arithmetic Problems within
Representation Change Theory. In each problem, a single
matchstick must be moved to make a mathematical formula
correct. De-chunked chunks are denoted by dashed boxes. To
the right of each problem are the constraints that were relaxed
(VC: Value; OC: Operator; TC: Tautology).

Computational-level Model
A problem representation consists of a collection of enti-
ties and their relationships, a collection of chunks imposed
on this collection, and a subset of those chunks comprising
the currently active chunks. We model entity-relationship
collections as predicate-structures, chunks as sub-predicate-
structures, i.e., a subset of the objects in a predicate-structure
and all relationships in that structure that are based on the
objects in this subset, and active chunks as non-nested collec-
tions of chunks that cover all objects (though not necessarily
all predicates) in a predicate-structure. Given this, search op-
erators are rules of the form X →Y that operate on predicate-
structures, constraints are logic formulas which operate over
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Table 1: Overview of parameters considered.

Name Description
|kC| Maximum # of constraint relaxations
|kD| Maximum # of de-chunkings
|kS| Maximum # of search operator applications
|T | Number of available chunk-types
|C| Number of constraints
|O| Number of available search operators
a Maximum # of search-operator opportunities

|TA| Maximum # of active chunks

the objects, predicates, and chunks in a problem representa-
tion. and the constraint relaxation and de-chunking operators
are the deletion of a constraint and the replacement of an ac-
tive chunk c by one or more non-overlapping chunks that are
nested inside and cover all objects in c, respectively. This
yields the following input-output mapping:

PROBLEM SOLVING BY RCT-INSIGHT (PSRI)
Input: Chunk-type set T , search-operator set O, problem
representation p with active chunk-set D, constraint-set
C, and integers kC, kD, and kS.
Output: A solution s for p that is derived by applying
≤ kC constraint relaxation and kD de-chunking operators
followed by ≤ kS search operators from O, if such an s
exists, and special symbol ⊥ otherwise.

Complexity Results and Discussion
Following convention in Computer (Garey & Johnson, 1979)
and Cognitive (van Rooij, 2008) Science, we consider a cog-
nitive theory tractable if its associated input-output mapping
can be computed in polynomial time, i.e., computed by an al-
gorithm that runs in time upper-bounded by nc where n is the
input size and c is a constant.

Theorem 1 PSRI is NP-hard when either kC = 0 or kD = 0.

Theorem 1 establishes that, modulo the widely-believed con-
jecture that P (= NP (Fortnow, 2009), insight problem solving
under RCT cannot be done in polynomial time. Note that this
holds whether re-structuring consists purely of constraint re-
laxation or de-chunking, which implies that the focus to date
on restricting only the amount of constraint relaxation to ease
the difficulty of solving insight problems is in error.

This result also means that strong restrictions must be as-
sumed to apply to the input domain of PSRI for RCT to be
able to explain solution of insight problems by human be-
ings. Let us formulate such restrictions in terms of the values
of selected parameters, which are aspects of problem inputs.
We say that a set K of one or more parameters renders an
input-output mapping Π fixed-parameter (fp)) tractable if
there is an algorithm for Π that runs in time upper-bounded
by f (K)nc, where f is an arbitrary function (Downey & Fel-
lows, 1999; van Rooij, 2008). To investigate which restric-

tions suffice for rendering PSRI tractable, we performed fp-
tractability analyses relative to the parameters in Table 1.

Theorem 2 PSRI is not fp-tractable for
{kC,kD,kS, |T |, |C|, |O|,a},

Theorem 3 PSRI is fp-tractable for {kD,kS, |C|,a, |TA|},

Theorem 2 establishes that PSRI cannot be made easy even
if the parameters in both published conjectures (kC and |C|)
are bounded simultaneously with a number of other plausible
parameters. Theorem 3 provides the first provably complete
explanation of the tractability of PSRI. This explanation is
not totally satisfactory because (1) there is no empirical evi-
dence that |C| and a are small in practice and (2) the invoked
parameter-set is not provably minimal, as it is possible that
restricting some subset of these parameters in combination
with |TA| may give fp-tractability. That being said, whether
or not either of these objections are substantive can be settled
by further experimental and theoretical research. Future re-
search should also investigate whether additional parameters
not considered here yield alternate complete explanations of
the precise circumstances under which problem solving by
insight is and is not possible, both under RCT and other pro-
posed theories of restructuring-assisted problem solving (see
Ash et al. (2009) and references).
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Abstract
Inspired on natural selective attention studies, we propose
a computational model of selective attention that relies on
the assumption that uncertain, surprising and motive congru-
ent/incongruent information demands attention from an intelli-
gent agent. This computational model has been integrated into
the architecture of a Belief-Desire-Intention artificial agent so
that this can autonomously select relevant, interesting infor-
mation of the (external or internal) environment while ignoring
other less relevant information. The advantage is that the agent
can communicate only that interesting, selective information to
its processing resources (focus of the senses, decision-making,
etc.) or to its human owner’s processing resources so that these
resources can be allocated more effectively. We illustrate and
provide experimental results of this role of the artificial, selec-
tive attention mechanism in the time-critical, risky situation, of
driving a vehicle, by showing that it prevents both the personal
traffic assistant agent’s and its human owner’s decision-making
resources of receiving unnecessary traffic information.
Keywords: Selective attention; Interest; Value of informa-
tion, Surprise; Uncertainty; Information overload; Resource-
bounded agents; Personal agents.

Introduction
In many ways, the advent of information technology is a pri-
mary reason for the abundance of information with which
humans are inundated, due to its ability to produce more in-
formation more quickly and to disseminate this information
to a wider audience than ever before. Contrary to what in
general could be expected, a lot of recent studies confirmed
what Alvin Toffler (1970) predicted a few decades ago: the
overabundance of information instead of being beneficial is a
huge problem having many negative implications not only in
personal life but also in organizations, business, and in gen-
eral in the world economy. Research proves that the brain
simply does not deal very well with this multitasking pro-
cess: there is a waste of time as the brain switches from one
task to another and back again (Klingberg, 2008). This ex-
plains why decision quality and the rate of performing tasks
degrades with increases in the amount of information being
considered.

A fundamental strategy for dealing with this problem of in-
formation overload (O’Connell, 2008) should include making
devices that incorporate themselves selective attention agents
in order to decrease the amount of information considered in
their own reasoning/decision-making processes or decrease
the amount of information provided by them to humans, pre-
venting these from a number of interruptions.

But how to model selective attention in artificial agents?
The problem starts at the human level. Although selective
attention has been thoroughly researched over the last 100
years in psychology and more recently in neuroscience (e.g.,

Kahneman, 1973; Wright & Ward, 2008), at present there
is no general theory of selective attention. Instead there are
specific theories for specific tasks such as orienting, visual
search, filtering, multiple action monitoring (dual task), and
multiple object tracking.

In spite of this, a number of models of selective attention
has been proposed in Cognitive Science (e.g., Horvitz, Ja-
cobs, & Hovel, 1999). Particularly related with these models
is the issue of measuring the value of information. A con-
siderable amount of literature has been published on these
measures, especially from the fields of active learning and ex-
perimental design. Most of those measures rely on assessing
the utility or the informativeness of information (e.g., Horvitz
& Barry, 1995; MacKay, 1992; Lindley, 1955; Settles, 2008)
However, little attention has been given to the surprising and
motive congruence value of information, giving the beliefs
and desires of an agent.

Opposed to other approaches (e.g., Itti & Baldi, 2006; Pe-
ters, 1998; Schmidhuber, 2006; Oudeyer, Kaplan, & Hafner,
2007) relying on low-level, raw information, Macedo, Car-
doso, and Reisenzein (2001; 2004), and Lorini and Castel-
franchi (2007) proposed, independently, computational mod-
els of surprise that are based on the mechanism that compares
newly acquired beliefs to preexisting beliefs. Both models of
artificial surprise were influenced by psychological theories
of surprise (e.g., Meyer, Reisenzein, & Schützwohl, 1997),
and both seek to capture essential aspects of human surprise
(see Macedo, Cardoso, Reisenzein, Lorini, & Castelfranchi,
2009, for a comparison). In agreement with most theories of
human surprise, both models of artificial surprise conceptu-
alize surprise as a fundamentally expectation- or belief-based
cognitive phenomenon, that is, as a reaction to the disconfir-
mation of expectations or, more generally, beliefs. Further-
more, in both models, beliefs are understood as propositional
attitudes (e.g., Searle, 1983), and a quantitative belief con-
cept (subjective probability) is used. Both artificial surprise
models draw a distinction between two main kinds of expec-
tations or beliefs whose disconfirmation causes surprise (see
also Ortony & Partridge, 1987): Active versus passive ex-
pectations. Although Macedo and Cardoso initially used the
same surprise intensity function, according to which the in-
tensity of surprise about an event is proportional to its unex-
pectedness, Macedo, Reisenzein and Cardoso subsequently
opted for a ”contrast model” of surprise intensity. This model
assumes that the intensity of surprise about an event reflects
its probability difference to the contextually most expected
event (see also Teigen & Keren, 2003).
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In this paper we describe an artificial selective attention
mechanism that may be used by artificial agents so that
only cognitively and affectively, interesting/relevant informa-
tion is selected and forwarded to reasoning/decision-making
units. Our approach relies on the psychological and neuro-
science studies about selective attention which defend that
variables such as unexpectedness, unpredictability, surprise,
uncertainty, and motive congruence demand attention (e.g.,
Berlyne, 1960; Kahneman, 1973; Ortony & Partridge, 1987).
One of the features of the selective attention mechanism is
that it should work in the absence of a model of decision-
making of the artificial agent, or of its designer, owner or user
for whom the artificial agent might act on his/her behalf.

The next section describes the computational model of se-
lective attention, focusing on how the multidimensional value
of information is computed, which will be illustrated with an
example in Section 3 . Section 4 examines the performance
of the selective attention mechanism as well as its role on the
decrease of unnecessary information while not affecting sig-
nificantly an agent decision-making performance. Finally, in
Section 5 we present conclusions.

A Computational Model for Forms of Selective
Attention

Selective attention may be defined as the cognitive process
of selective allocation of processing resources (focus of the
senses, etc.) on relevant, important or interesting informa-
tion of the (external or internal) environment while ignoring
other less relevant information. The issue is how to measure
the value of information. What makes something interesting?
In cognitive science, attentional focus is linked with expec-
tation generation and failure, i.e., with surprise (Ortony &
Partridge, 1987). Therefore, it is reasonable to consider that
any model of selective attention should rely on a cognitive
model of surprise. However, surprise is not enough. Hap-
piness/pleasantness, which according to cognitive theories of
emotion and specifically to belief-desire theories of emotion
(Reisenzein, 2008) is directly related to congruence between
new information and the human agent’s motives/desires, may
also play also a fundamental role on attention. For this reason,
the system must also incorporate a measure of the expected
satiation of the desires.

In order to accomplish all those requirements, we devel-
oped an architecture for a personalized, artificial selective at-
tention agent (see Figure 1). We assume: (i) this agent in-
teracts with the external world receiving from it information
through the senses and outputs actions through their effec-
tors; (ii) the world is described by a large amount of sta-
tistical experiments; (iii) the agent is a BDI agent (Rao &
Georgeff, 1995), exhibiting a prediction model (model for
generating expectations, i.e., beliefs about the environment),
a desire strength prediction model (a model for generating
desire strengths for all the outcomes of the statistical experi-
ments of the world that are know given the desires of the agent
– profile of the agent which include basic desires), as well as
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Figure 1: Architecture of an artificial selective attention
agent.

the intentions (these define the profile of the agent); (iv) the
agent contains other resources for the purpose of reasoning
and decision-making.

While the belief strengths are inferred from data using a
frequentist approach and updated as new information is ac-
quired, the desirability of the outcomes is previously set up
although they depend on the intention of the agent, suffering
changes whenever the agent is committed with a new inten-
tion.

The first of the modules of the architecture (module 1 in
Figure 1) is concerned with getting the input information. The
second is the computation of the current world state. This is
performed by generating expectations or assumptions (mod-
ule 2), based on the knowledge stored in memory, for the
gaps of the environment information provided by the sensors
(module 1). We assume that each piece of information re-
sulting from this process, before it is processed by other cog-
nitive skills, goes through several sub-selective attention de-
vices, each one evaluating information according to a certain
dimension such as surprise (module 4), uncertainty (module
5), and motive-congruence/incongruence – happiness (mod-
ule 6). For this task the selective attention mechanism takes
into account some knowledge container (memory — preex-
isting information (module 7)), and the intentions and desires
(motives — module 8). There is a decision-making module
(module 9) that takes into account the values computed by
those sub-selective attention modules and decides if a piece of
information is relevant/interesting or not. Then, this module
of decision-making selects the higher relevant pieces of infor-
mation so that other resources (reasoning, decision-making,
displaying, communication resources, etc.) (module 10) can
be allocated to deal with them.

The representation of the memory contents (beliefs) re-
lies on semantic features or attributes much like in semantic
networks (Russell & Norvig, 2010) or schemas (Rumelhardt
& Ortony, 1977). Each attribute, attri, viewed by us as a
statistical experiment, is described by a probabilistic distri-
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bution, i.e., a set Ai = {< value j, prob j,desireStrength j >:
j = 1,2, . . . ,n}, where n is the number of possible values of
the attribute, P(attri = value j) = prob j, and desireStrength j
is the desirability of attri = value j (for a related work see
(Reisenzein, 2008)).

The next sub-sections describe each one of the dimensions
for evaluating information, namely surprise, uncertainty, and
motive congruence/incongruence. While the dimensions of
surprise and uncertainty are related to the value of informa-
tion to the belief store of the agent, the dimension of motive
congruence/incongruence is related to the value of informa-
tion to the goals/desires of the agent (these dimensions are
related to the concepts of cognitive and affective feelings of
(Clore, 1992) and belief-belief and belief-desire comparators
of (Reisenzein, 2008)).

Surprise Value of Information
We adopted the computational model of surprise of (Macedo
& Cardoso, 2001; Macedo et al., 2004) which is formally
defined in Definition 1 (for related models see Macedo et
al., 2009). Macedo, Cardoso and Reisenzein computational
model of surprise suggests that the intensity of surprise
about an event Eg, from a set of mutually exclusive events
E1,E2, . . . ,Em, is a nonlinear function of the difference, or
contrast, between its probability and the probability of the
highest expected event Eh in the set of mutually exclusive
events E1,E2, . . . ,Em.

Definition 1 Let (Ω,A,P) be a probability space where Ω
is the sample space (i.e., the set of possible outcomes of the
experiment), A=A1,A2, ..,An is a σ-field of subsets of Ω (also
called the event space, i.e., all the possible events), and P is
a probability measure which assigns a real number P(F) to
every member F of the σ-field A. Let E = {E1,E2, . . . ,Em},
Ei ∈A, be a set of mutually exclusive events in that probability
space with probabilities P(Ei) >= 0, such that ∑m

i=1 P(Ei) =
1. Let Eh be the highest expected event from E. The intensity
of surprise about an event Eg from E is given by:

S(Eg) = log(1+P(Eh)−P(Eg)) (1)

The probability difference between P(Eh) and P(Eg) can
be interpreted as the amount by which the probability of Eg
would have to be increased for Eg to become unsurprising.

Proposition 1 In each set of mutually exclusive events, there
is always at least one event whose occurrence is unsurprising,
namely, Eh.

Uncertainty-based Value of Information
Information is a decrease in uncertainty which, according to
information theory, is measured by entropy (Shannon, 1948).
When new information is acquired its amount may be mea-
sured by the difference between the prior uncertainty and the
posterior uncertainty.

Definition 2 Let (Ω,A,Pprior) be a probability space where
Ω is the sample space (i.e., the set of possible outcomes of
the experiment), A = A1,A2, ..,Am is a σ-field of subsets of
Ω (also called the event space, i.e., all the possible events),
and Pprior is a probability measure which assigns a real num-
ber Pprior(F) to every member F of the σ-field A. Let E =
{E1,E2, . . . ,Em}, Ei ∈ A, be a set of mutually exclusive events
in that probability space with probabilities Pprior(Ei) >= 0,
such that ∑m

i=1 Pprior(Ei) = 1. Let Ppost be the posterior prob-
ability measure, after some data is acquired, which assigns
a real number Ppost(F) to every member F of the σ-field A
such that it assigns Ppost(Ei) >= 0 with ∑m

i=1 Ppost(Ei) = 1.
According to information theory, the information gain of an
agent after some data is acquired, IG(E), is given by the de-
crease in uncertainty:

IG(E) = Hprior(E)−Hpost(E)

= −
m

∑
i=1

Pprior(Ei)× log(Pprior(Ei)−

(−
m

∑
i=1

Ppost(Ei)× log(Ppost(Ei)) (2)

Hpost = 0 if and only if all the Ppost(Ei) but one are zero,
this one having the value unity. Thus only when we are cer-
tain of the outcome does Hpost vanish, otherwise it is positive.

IG is not normalized. In order to normalize it we must
divide it by log(m) since it can be proved that IG ≤ log(m):

IG(E) =
Hprior(E)−Hpost(E)

log(m)
(3)

Motive Congruence/Incongruence-based Value of
Information
While the measure of surprise takes into account beliefs that
can be confirmed or not, the pleasantness function that we de-
scribe in this subsection takes as input desires that, contrary
to beliefs, can be satisfied or frustrated. Following the belief-
desire theory of emotion (Reisenzein, 2008), we assume that
an agent feels happiness if it desires a state of affairs (a propo-
sition) and firmly beliefs that that state of affairs obtains. The
intensity of happiness about an event is a monotonically in-
creasing function of the degree of desire of that event as for-
mally defined in Definition 4.

Definition 3 Let (Ω,A) be a measurable space where Ω is
the sample space (i.e., the set of possible outcomes of the
experiment) and A = A1,A2, ..,Am a σ-field of subsets of Ω
(also called the event space, i.e., all the possible events). We
define the measure of desirability of an event on (Ω,A) as
D : A → [−1,1], i.e., as a signed measure which assigns a
real number −1 ≤ D(F) ≤ 1 to every member F of the σ-
field A based on the profile of the agent, so that the following
properties are satisfied:
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• D( /0) = 0, −|Ω|≥ D(Ω)! |Ω|

• if A1,A2, . . . is a collection of disjoint members of A, in that
Ai ∩A j = /0 for all i -= j, then

D(
∞⋃

i=0
Ai) =

∞

∑
i=0

D(Ai) (4)

The triple (Ω,A,D) is called the desirability space.

Definition 4 Let (Ω,A,P) and (Ω,A,D) be the probability
and the desirability spaces described, respectively, in Defi-
nition 1 and Definition 3. Let E = {E1,E2, . . . ,Em}, Ei ∈ A,
be a set of mutually exclusive events in that probability space
with probabilities P(Ei)>= 0, ∑m

i=1 P(Ei) = 1. If P(Eg) = 1,
the intensity of happiness, i.e., motive congruence, about an
event Eg from E is given by:

MC(Eg) = D(Eg) (5)

The Principle of Selective Attention
Having defined the motive, the uncertainty-based, and
surprise-based selective attention modules, we are now in a
position to formulate, in a restricted sense (without the inclu-
sion of other information measures such as complexity), the
principle that a resource-bounded rational agent should fol-
low in order to avoid an overabundance of information and
interruptions in the absence of a model for decision-making.
Note that if this model is known, the problem is reduced to
the classical computation of the value of information that has
been extensively studied (e.g., Horvitz & Barry, 1995; Rus-
sell & Norvig, 2010).

Definition 5 A resource-bounded rational agent should fo-
cus its attention only on the relevant and interesting informa-
tion, i.e., on information that is congruent or incongruent to
its motives/desires, and that is cognitively relevant because it
is surprising or because it decreases uncertainty.

We may define real numbers α, β, and γ as levels above
which the absolute values of motive congruency, surprise,
and information gain (decrease of uncertainty), respectively,
should be so that the information can be considered valuable
or interesting. These are what we called the triggering lev-
els of alert of the selective attention mechanism. Note that,
making one of those parameters null is equivalent to remov-
ing the contribution of the corresponding component from the
selective attention mechanism.

Practical Application
Advanced Travel Information Systems (ATIS) are designed
to assist travelers in making pre-trip and en-route travel de-
cisions by providing them pre-trip and en-route information.
However, while these information systems can undoubtedly
help humans perform better in these complex traveling sce-
narios, they might provide an unhandled amount of informa-
tion to humans that may compromise their performance.

It is contended that while many traveler information sys-
tems are innovative and make use of cutting edge technolo-
gies, they lack real machine intelligence and therefore may
be limited in their ability to service the traveling public over
the long-run. On the one hand, a wave of technological devel-
opments, in particular the increasing deployment of GIS and,
on the other hand, the introduction and rapid market pene-
tration of mobile devices such as cell phones boosted the de-
velopment of ATIS towards what has been termed Intelligent
Traveler Information Systems (ITIS) (Adler & Blue, 1998),
in which artificial intelligence techniques are drawn upon to
create systems capable of providing travelers with more per-
sonalized planning assistance. This is the goal of integrat-
ing selective agents in personal devices that receive informa-
tion from the ATIS to act as personal assistant selective atten-
tion agents in order to avoid unnecessary interruptions to their
users by enabling that only interesting information (i.e., with
a value above a threshold defined by the user) is provided to
them.

We are developing an ITIS that receives information about
the traffic conditions and sends it to the mobile devices of
the travelers. All that collected information is stored in the
knowledge base/memory of the ITIS. There is a personal se-
lective attention agent for each registered traveler. Each one
of these personal agents has information about the expecta-
tions of its owner based on their travel history.

Let us illustrate how the value of information is computed
by the selective attention mechanism. Suppose that a trav-
eller’s navigation system provided the pre-route path contain-
ing a road A for an agent (a driver) based on its profile (e.g.,
preference for shortest routes). Suppose the agent has the fol-
lowing expectations for the traffic conditions of road A, for a
certain period/time of the day for a certain day of the week:
60% of probability of ”good traffic conditions” (event E1),
30% of probability of ”moderate traffic conditions” (event
E2), and 10% of probability of ”bad traffic conditions” (event
E3). Suppose the desire strengths of these events are 1, -0.5,
and -1, respectively. Given that the agent plans to go trough
that route, suppose its module for generating/managing de-
sires assigns a null desire strength for the other routes as it
does not care about the traffic conditions of the other roads
that are not part of its planned route. What is the relevance
of becoming aware that the current traffic conditions of road
A are good (event E1)? Considering solely the motive-based
component, the outcomes (events E1, E2, and E3) elicits hap-
piness (motive congruence) with intensity 1, -0.5 and -1, re-
spectively. E1 is congruent/consistent with the goals of the
agent, while E2 and E3 are incongruent with the goals of the
agent.

According to Equation 1, the surprise value of E1, E2, and
E3 are, respectively, 0, 0.38, and 0.58. Illustrating for the case
of E3:

Surprise(E3) = log(1+P(E1)−P(E3))

= log(1+0.6−0.1) = 0.58 (6)

148



According to Equation 3, the normalized information gain
value of E1, E2, or E3 is:

IG(E) =
Hprior(E)−Hpost(E)

log(m)
=

Hprior(E)−0
log(3)

=
−∑3

i=1 Pprior(Ei)× log(Pprior(Ei))

log(3)
= 0.82(7)

Assume the Principle of Selective Attention described
above, with parameters α = 0.3, β = 0.5, and γ = 0.6. Are
all these events interesting? Considering the motive-based
component all those events are interesting. However, from
the perspective of the surprise-based selective attention com-
ponent, the answer is ”no” to the question related with the
events E1 and E2 in that their surprise values, 0 and 0.38, re-
spectively, are below β. With respect to E3 the answer is ”yes”
given that its surprise value is 0.58. Taking the uncertainty-
based component into account, the answer is ”yes” for all the
events because their occurrence gives a normalized informa-
tion gain of 0.82 which is above γ.

Experiment
We conducted an experiment to evaluate the performance and
the potential benefits of the personal selective attention model
for filtering unnecessary information for human travelers. To
do that we assessed its performance considering the opinions
of the human travelers, comparing their classifications about
whether some information is relevant or not and the classifi-
cations of the selective attention agent. The selective atten-
tion agent is considered to perform erroneously if it filters a
relevant information or if it does not filter an irrelevant in-
formation. The environment considered was Bissaya Barreto
Avenue of the city of Coimbra, Portugal. We configured a se-
lective attention agent to provide real time information about
the traffic conditions in that street to 5 volunteer travelers
whose path include that street. We collect information about
the relevance of the information the agent delivered during
10 days at the same time (9h:00m) and always concerning
the same street . In addition, after the trip, the information
the agent didn’t delivered, when the value computed by its
selective attention mechanism was below the triggering level
of alert, was shown to the travelers and these were asked to
rate the relevance they would had assigned that information
if it was delivered. All these data were used to compute the
true and false positives. In each situation, the human agent,
if prevented from receiving information, maintains the plan
suggested by the navigation system, otherwise, if informed,
he/she may consider alternative routes and change its mind
by planning to proceed through one of those alternative route.

The parameters considered were α = 0.3, β = 0.3, γ = 0.6.
These are average values obtained from a questionnaire pre-
sented to human drivers in which they were asked to spec-
ify reasonable values for those parameters. Table 1 presents
the confusion matrix for this model. We found evidence in-
dicating that the selective attention mechanism (with those

Table 1: Confusion matrix of the selective attention mecha-
nism for α = 0.3, β = 0.3, and γ = 0.6.

Prevented Not Prevented
Not relevant 64.55% 9.09% 73.64%

Relevant 19.09% 7.27% 26.36%
83.64% 16.36% 100%

parameters) contributes significantly to decrease the amount
of irrelevant information by an average of 83.64% (p=0.000).
Furthermore, and not less important, we found evidence in-
dicating that, preventing the human agent from receiving
that amount of irrelevant information, the performance of the
agent was not affected significantly. In fact, we found that
from these there is only an average of 22.83% (correspond-
ing to 19.09% of all the information) of false negatives, which
indicates those means are statistically different (p=0.000).
However, with respect to the false positives, we found that
from the 16.36% of interruptions, an average of 55.56% (cor-
responding to 9.09% of all the information) was not relevant,
which are not significantly different (p=0.146) and, therefore,
we can not reject the null hypothesis in this case.

The accuracy of this specific model is 0.72, while the re-
call (true positive rate) and the precision are 0.28 and 0.44,
respectively. The F1 measure is 0.34.

Discussion and Conclusions
We presented a computational model for selective attention
based on cognitive and affective feelings. We found evi-
dence indicating that the mechanism contributes for decreas-
ing the amount of unnecessary information while maintaining
acceptable the performance of the owner (a human).

The advantages of reasoning correctly with less informa-
tion include spending less time in processing information
which is important in time-critical, high-risk situations. Be-
sides, agents equipped with a selective attention filter can be
successful personal assistants of humans, integrated for in-
stance in mobile devices, so that their human users are pre-
vented from unnecessary interruptions. This may be of high
value in critical situations such as driving a car in that, as
reported by (Horvitz & Barry, 1995), numerous cognitive
studies have provided evidence of the problems in informa-
tion processing exhibited by humans when dealing with large
amounts of information such as that the speed at which hu-
mans perform tasks drops as the quantity of information be-
ing considered increases, and that the rate of performing tasks
can be increased by filtering irrelevant information. In this
particular case of transportation systems, the ultimate advan-
tage may be less vehicle accidents and less deaths, while in
organizations the advantage may be an improvement in their
workers productivity and therefore less costs.

An hypothesis that might be risen is that taking other sub-
selective attention modules such as those based on other cog-
nitive or affective feelings (Clore, 1992) (e.g., familiarity,
complexity) into account improves the performance of the
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mechanism. More experiments should be done with this aim.
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wards a process analysis of emotions: The case of surprise.
Motivation and Emotion, 21, 251-274.

O’Connell, N. (2008). Interruption overload. Strategic Di-
rection, 24(10), 3-5.

Ortony, A., & Partridge, D. (1987). Surprisingness and ex-
pectation failure: what’s the difference? In Proceedings of
the 10th international joint conference on artificial intelli-
gence (p. 106-8). Milan, Italy: Morgan Kaufmann.

Oudeyer, P., Kaplan, F., & Hafner, V. (2007). Intrinsic moti-
vation systems for autonomous mental development. IEEE
Transactions on Evolutionary Computation, 11(2), 265–
286.

Peters, M. (1998). Towards artificial forms of intelligence,
creativity, and surprise. In Proceedings of the twentieth
annual conference of the cognitive science society (p. 836-
841). Madison, Wisconsin, USA: Erlbaum.

Rao, A., & Georgeff, M. (1995). Bdi agents: from theory to
practice. In Proceedings of the first international confer-
ence on multiagent systems (p. 312-319). San Francisco,
CA, USA: MIT Press.

Reisenzein, R. (2008). Emotions as metarepresentational
states of mind: Naturalizing the belief-desire theory of
emotion. Cognitive Systems Research, 9.

Rumelhardt, D., & Ortony, A. (1977). The representa-
tion of knowledge in memory. In R. Anderson, R. Spiro,
& W. Montague (Eds.), Schooling and the acquisition of
knowledge (p. 99-135). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Russell, S., & Norvig, P. (2010). Artificial intelligence - a
modern approach (3rd ed.). Englewood Cliffs, NJ: Prentice
Hall.

Schmidhuber, J. (2006). Developmental robotics, optimal
artificial curiosity, creativity, music, and the fine arts. Con-
nection Science, 18, 173-187.

Searle, J. (1983). Intentionality. Cambridge: Cambridge
University Press.

Settles, B. (2008). Curious machines: Active learning with
structured instances. Unpublished doctoral dissertation,
University of Wisconsin, Madison, USA.

Shannon, C. (1948). A mathematical theory of communi-
cation. Bell System Technical Journal, 27, 379-423 and
623-656.

Teigen, K. H., & Keren, G. B. (2003). Surprises: Low prob-
abilities or high contrasts? Cognition, 87, 55-71.

Toffler, A. (1970). Future shock. Bantam Book.
Wright, R. D., & Ward, L. M. (2008). Orienting of attention.

Oxford, UK: Oxford University Press.

150



A process model of immediate inferences 
 

Sangeet Khemlani1, J. Gregory Trafton1, Max Lotstein2, and P. N. Johnson-Laird2 
khemlani@aic.nrl.navy.mil, trafton@itd.nrl.navy.mil, lotstein@princeton.edu, phil@princeton.edu 

 
1NCARAI, Code 5515, Naval Research Laboratory, Washington, DC 20375 USA 

2Department of Psychology, Princeton University, Princeton, NJ 08540 USA 
 

Abstract 
Individuals can make inferences from a single quantified 
premise. For instance, if you know that all of the Virginians 
are students, you might infer that some of the students are 
Virginians. We describe a computational system, mReasoner, 
of the cognitive processes that underlie these so-called 
‘immediate’ inferences. The account is based on the 
assumption that when individuals understand discourse, they 
construct discrete mental simulations, i.e., mental models, of 
the assertions in the discourse. To draw conclusions, 
reasoners describe the relation between the individuals in the 
models and, if they are prudent, they search for alternative 
models to corroborate or refute a conclusion. We describe an 
experiment in which participants’ carried out a series of 
immediate inferences, and present a simulation that predicts 
the accuracy and latency of their responses. 

Keywords: quantifiers, mental models, mReasoner, 
immediate inferences 

Introduction 
Reasoners can make immediate, rapid inferences from a 

single quantified assertion such as, None of the Xs are Ys. 
For instance, if they know that none of the lawyers in the 
room are men, they might refrain from asking any of the 
men in the room for legal advice, because they can infer:  

1. None of the lawyers are men. 
2. Therefore, none of the men are lawyers.  

The inference is valid because its conclusion must be true 
given that its premise is true (Jeffrey, 1981, p. 1). It is also 
easy to make in comparison with more complex reasoning 
problems, such as syllogisms based on two quantified 
premises (for a review, see Khemlani & Johnson-Laird, in 
press a). Psychologists have investigated immediate 
inferences for many years (e.g., Begg & Harris, 1982; 
Newstead & Griggs, 1983; Wilkins, 1928), but have yet to 
resolve how logically untrained individuals make them. We 
have accordingly formulated a theory based on mental 
models and implemented it computationally in a unified 
model-based reasoning system called mReasoner.  

In the present paper, we outline the theory and derive 
some novel predictions from it. We then report the results of 
a study that tested these predictions, and we show how the 
theory provides an satisfactory process model of individual 
performance.  

Immediate inferences 
In immediate inferences based on singly-quantified 

assertions, we studied 4 different moods for the premise: 
 

 All the Xs are Ys 
 Some of the Xs are Ys 
 None of the Xs are Ys  
 Some of the Xs are not Ys 
 
and 8 different sorts of conclusion (4 moods by 2 figures, 
i.e., arrangements of terms ‘X’ and ‘Y’). Therefore, there 
are 32 possibly immediate inference problems based on 
these premises. The reasoner’s task was to assess a given 
conclusion’s status with respect to the premise, i.e., whether 
the conclusion must be true or whether it might possibly be 
true. Hence, it must be the case that some of the students are 
Virginians given than All the Virginians are students. And, 
it is possible but not necessary, that some of the students are 
not Virginians. 

A robust theory of immediate inference should specify an 
algorithm that accounts for how individuals represent 
quantified assertions, how they assess whether a conclusion 
is at least possible, and how they decide whether it holds of 
necessity. It should also explain the relative difficulty of the 
various sorts of immediate inference, i.e., both the accuracy 
of participants’ conclusions and the latency of the correct 
conclusions. We developed such a theory as part of a 
general account of quantificational reasoning, and describe 
its assumptions below. 

Mental models and quantifiers 
Quantified assertions such as None of the Xs are Ys are 

can be treated as referring to relations among the set of Xs 
and the set of Ys (see, e.g., Cohen & Nagel, 1934, p. 124-5). 
Psychological theories of how quantifiers are interpreted 
follow suit (but cf. Braine & O’Brien, 1998; Rips, 1994), 
though they differ in the way they treat the relations 
between the sets. For instance, some theorists make use of 
diagrammatic representations to handle relations (Ceraso & 
Provitera, 1971; Erickson, 1974; Ford, 1995; Newell, 1981), 
others rely on formal rules of inference (Geurts, 2003; 
Guyote & Sternberg, 1981; Politzer, van der Henst, Luche, 
& Noveck, 2006; Stenning & Yule, 1997); and yet others 
analyze sets in terms of simulated possibilities, i.e., mental 
models (Bucciarelli & Johnson-Laird, 1999; Johnson-Laird 
& Byrne, 1991; Polk & Newell, 1995). The psychological 
systems can all account for how individuals make valid 
deductions, however few of them can account for the 
differences in relative difficulty between various reasoning 
problems. The present theory relies on mental models to 
explain the processes that give rise to valid and invalid 
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responses, as well as the differences in difficulty between 
various sorts of immediate inference.  

The mental model theory proposes that when individuals 
comprehend discourse, they construct simulations of the 
possibilities consistent with the contents of the discourse 
(Johnson-Laird, 2006). The theory depends on three main 
principles: 1) Individuals use a representation of the 
meaning of a premise, an intension, and their knowledge, to 
construct mental models of the various possibilities to which 
the premises refer. 2) The structure of a model corresponds 
to the structure of what it represents (see Peirce, 1931-1958, 
Vol. 4), and so mental models are iconic insofar as possible. 
3) The more models a reasoner has to keep in mind, the 
harder an inference is. On a model-based account, a 
conclusion is necessary if it holds in all the models of the 
premises and possible if it holds in at least one model of the 
premises. 

Inferential processes 
The theory proposes that the reasoning system can carry 

out three processes whenever individuals reason about 
whether a given conclusion follows from premises. First, the 
parser constructs a representation of the meaning of each 
premise (an intensional representation) based on a linguistic 
analysis. Second, the system uses the intension to construct 
a model of the situation to which the assertion refers (an 
extensional representation). Third, the system checks 
whether the given conclusion holds in the model. These 
three processes are carried out in “system 1” (see, e.g., 
Evans, 2003, 2007, 2008; Johnson-Laird, 1983, Ch. 6; 
Kahneman, 2011; Sloman, 1996; Stanovich, 1999; 
Verschueren, Schaeken, & d’Ydewalle, 2005) because they 
yield rapid responses from a single mental model. 

The theory also postulates an advanced set of “system 2” 
processes, which are used to evaluate and, if necessary, to 
correct initial inferences. They search for alternative models 
of the premises in which both the premise and the 
conclusion are true. We explain how these processes work 
in the following section. 

mReasoner: A computational theory of reasoning 
mReasoner v0.9 is a new, unified computational 

implementation of the mental model theory of reasoning. It 
implements three general systems: 

 
a) A linguistic system for parsing premises and building 

up intensional representations. This system’s purpose is 
to map an assertion’s syntax to an underlying semantic 
form (the intension). 

b) An intuitive system (1) for building an initial 
extensional representation, and drawing rapid 
inferences from that representation. 

c) A deliberative system (2) for more powerful recursive 
processes that search for alternative models. This 
system can manipulate and update the representations 
created in System 1, and it can modify conclusions, but 

it too can fall prey to systematic errors (Johnson-Laird 
& Savary, 1999; Khemlani & Johnson-Laird, 2009). 

 
System 1 is faster than system 2, and as a result it is more 
prone to errors. Below, we describe the various processes 
that each system implements. 

The linguistic system 
Parsing statements into intensions. An intensional 
representation is composed from the meanings of words and 
the grammatical relations amongst them.  The first process 
in mReasoner is a shift-and-reduce parser (Hopcroft & 
Ullman, 1979) that uses a context-free grammar and a 
lexicon to compose the intensional representations of a 
sentence. We make no claims about the psychological 
reality of a shift-and-reduce parser or a context-free 
grammar, which we adopt for convenience. The 
grammatical rules and lexical entries consist of a word (such 
as “all”), its part of speech (“determiner”), and a 
specification of its semantics. The parser applies the 
appropriate semantic rule, which matches the syntactic rule 
it has used, to construct an intension of the current 
constituent of the sentence. A key assumption is that the 
semantics of a quantified assertion sets the values of 
parameters that constrain the construction of models.  

The present set of parameters is presented in Table 1 for 
the assertions that occur in the immediate inferences under 
investigation, and for two representative examples of other 
sorts of quantified assertions: Neither A is a B, and Five A 
are B. In sum, intensions are collections of parameters that, 
as a whole, specify the semantics of an assertion. 

 
 

Table 1: A summary of mReasoner’s parameters in the intensions 
of different sorts of singly-quantified assertion. The parameters are 
as follows: i) the cardinality of the overall set of entities and its 
boundary conditions; ii) the cardinality of the set referred to by the 
quantifier (e.g., the As); iii) the boundary on the two sorts of 
cardinality as specified in (i) and (ii); iv) the polarity of the 
determiner; and v) the universality of the quantifier. Where 
relevant, ‘?’ signifies a default value that can be modified provided 
it meets the boundary conditions in (i) and (iii). A sixth parameter 
specifies the set-theoretic relation between the As and the Bs, and 
for all the examples below, the parameter is set to the inclusion 
relation, which specifies that the As are included within the set of 
Bs in the manner described by the other parameters. 
 
 The five parameters in singly-quantified intensions 

Assertion i ii iii iv v 

All As are Bs ?4 ≥ 1 ?4 ||ii|| = ||i|| positive universal 

Some As are Bs ?4 ≥ 1 ?2 0 < ||ii|| ≤ ||i|| positive particular 

No As are Bs ?4 ≥ 1 ?4 ||ii|| = ||i|| negative universal 

Most As are Bs ?4 ≥ 1 ?3  ½||i|| < ||ii|| < ||i|| positive particular 

Neither A is a B 2 2 ||ii|| = ||i|| positive universal 

Five As are Bs 5 5 ||ii|| = ||i|| positive universal 
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System 1 
Model building. The system uses the intension of a premise 
to build an initial model, and it updates that initial model if 
additional premises occur. The model is built in accordance 
with the parameters of the intension. The system begins by 
building a model with a small set of individuals. For 
example, the model of All the artists are bohemians is built 
by first constructing a set of artists: 
 
 artist 
 artist 
 artist  
 artist 
 
In the diagram above, each row represents an individual 
with the property of being an artist, and so the model as a 
whole represents a finite number of individuals. Mental 
models are representations of real individuals, not letters or 
words, which we use here for convenience. The inferential 
system in mReasoner is able to treat the model above as 
representing “all artists” and not, say, “exactly four artists” 
because it has access to the intension of the premise, which 
constrains the possible interpretations of models and 
therefore the possible modifications to models.   

The intension of all the artists are bohemians also 
specifies the number of artists that are also bohemians. The 
model is updated accordingly: 

 
 artist bohemian 
 artist bohemian 
 artist bohemian 
 artist bohemian 
 
At this point, the premise has been represented, and so the 
system assesses whether the given conclusion is true in the 
initial model. 
 
Assessing initial conclusions. When reasoners have to assess 
a given conclusion, the system inspects the initial model to 
verify that the given conclusion holds or does not hold. For 
instance, suppose that reasoners are asked to decide whether 
it is possible that some bohemians are not artists given the 
previous premise. From the model above, the system 
initially responds in the negative, i.e., the putative 
conclusion is impossible. The process is simple, and the 
response is rapid. But, as we show in the next section, it is 
also fallible. 

In many experiments and in daily life, reasoners have to 
draw their own conclusions. mReasoner accounts for this 
process too. The model above appears to support any of the 
following conclusions: 

 
All the artists are bohemians 
All bohemians are artists 
Some artists are bohemians 
Some bohemians are artists 
Four artists are bohemians 

But, the theory assumes that reasoners prefer to scan their 
initial model in systematic ways, and the computational 
system implements several heuristics that explain the 
general biases reasoners exhibit when they draw conclusions 
from inspecting a model of two quantified premises. 
Researchers often place heuristics at the forefront of 
theories of reasoning (e.g., Chater & Oaksford, 1999), but 
until now proponents of the model theory have downplayed 
their application. To unify model-based accounts of 
reasoning with heuristic-based systems, heuristics play a 
central role in inferring an initial conclusion (see Khemlani, 
Lostein, & Johnson-Laird, in press b, for an extended 
discussion). 

The system’s ability to assess and generate initial 
conclusions is fallible. For instance, one can indeed show 
that some of the bohemians are not artists is possible, 
though the system infers initially that it is impossible. To 
revise its initial conclusion, the system needs to find an 
alternative model in which both the premise and conclusion 
hold. We turn to the final process in mReasoner to explain 
how such a model is found. 

System 2 
Searching for alternative models. In the preceding section, 
we focused on how mReasoner assesses conclusions based 
on an initial model. However, the conclusions it draws can 
be invalid. System 2 attempts to revise initial conclusions by 
searching for alternative models. To do so, it uses three 
separate operations: adding properties to individuals, 
breaking one individual into two separate individuals, and 
moving properties from individual to another (see Khemlani 
& Johnson-Laird, under review). These operations 
correspond to those that naïve participants spontaneously 
adopt when they reason about syllogisms (as evidenced by 
their manipulations of external models, see Bucciarelli & 
Johnson-Laird, 1999). In the earlier example, the system 
finds an alternative model by adding a new individual to the 
initial model to yield: 
 
 artist bohemian 
 artist bohemian 
 artist bohemian 
 artist bohemian 
  bohemian 
 
The new individual, who is bohemian but not an artist, and 
the resulting model refutes the conclusion, All the 
bohemians are artists. But, the conclusion, Some of the 
bohemians are artists, still holds, and no model refutes it.  
 
Predictions. The theory and its computational 
implementation distinguish between the relative difficulty of 
three sorts of immediate inference:  
 

a) zero-model inferences 
b) one-model inferences 
c) multiple-model inferences 
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Zero-model inferences are those in which the conclusion is 
identical to the premise, and so individuals needn’t even 
build a model to be able to solve the problem. For instance, 
consider the following problem: 
 

All the aldermen are barters. 
Is it possible that all the aldermen are barters? 

 
The reasoner should realize that the answer is true 
immediately; however, individuals should nevertheless need 
to build intensions out of the assertions, and they need to 
establish a set of goals in order to infer a conclusion. 

One-model inferences are those in which the conclusion 
holds in the initial model of the premise, and so individuals 
can rapidly determine that an assertion is possible. For 
example: 

 
All the aldermen are barters. 
Is it possible that some of the barters are aldermen? 

 
Reasoners have to construct intensions, use them to build a 
model, and to evaluate the truth of the conclusion in the 
model. 

Finally, multiple-model inferences are those in which the 
conclusion holds in an alternative model of the premise. For 
instance: 

 
All of the aldermen are barters. 
Is it possible that some of the barters are not aldermen? 

 
The theory predicts that zero-model inferences should be 
easier than one-model inferences, and one-model inferences 
should be easier than multiple-model inferences. Likewise, 
the computational model predicts that individuals should 
respond faster to zero-model than one-model than multiple-
model inferences. The predictions are unique to mReasoner 
and the model theory, because the theory proposes that one 
of the most important factors in judging the relative 
difficulty of different inferences is the number of models 
people have to construct. We ran an experiment to test these 
two rank-order predictions. 

Experiment 
A typical trial in the experiment was: 
 
All the artists are bakers. 
Is it possible that all of the bakers are artists? 

 
The experiment examined all 32 possible sorts of problem, 
but we focused our analysis on only the 22 logically valid 
inferences. The inferences comprise 4 zero-model problems, 
12 one-model problems, and 6 multiple-model problems. 

Method 
Participants. 26 participants completed the study for 
monetary compensation on Mechanical Turk, an online 
platform hosted by Amazon.com. None of the participants 

reported having had any training in logic, and they were all 
native speakers of English. 

 
Design and materials. The participants carried out all 32 
problems (4 sorts of premise x 8 sorts of conclusion), and 
they responded “yes” or “no” to a conclusion about a 
possible conclusion to each problem. The contents of the 
problems were based on nouns referring to common 
vocations. We devised a list of 32 pairs of such vocations, 
which we assigned at random to the problems to make two 
separate lists. The problems were presented to each 
participant in a different random order. 
 
Procedure. The study was administered using an interface 
written in PHP, Javascript, and HTML. On each trial, 
participants read the premise, and, when ready, they pressed 
a button marked “Next”, which replaced the premise with a 
question concerning the immediate inference, e.g., “Is it 
possible that all the bakers are artists?”  They responded by 
pressing one of two buttons labeled, “Yes, it’s possible” and 
“No, it’s impossible”. The program recorded whether or not 
their response was correct, and its latency (in s). The 
instructions stated that the task was to respond to questions 
about a series of assertions concerning what was possible 
given the truth of the assertion.  The participants carried out 
three practice trials in order to familiarize themselves with 
the task before they proceeded to the experiment proper. 

Results and discussion 
The results corroborated the theory’s predictions of 

difficulty, and they yielded the following trend: reasoners 
were 98% correct for zero-model problems, 84% correct for 
one-model problems, and 70% correct for multiple-model 
problems (Page’s trend test, L = 340.0, z = 3.88, p < .0001). 
mReasoner predicted the participants’ accuracy well,  R2 = 
.98. 

The mean latencies also corroborated the predicted trend: 
4.30 s for zero-model problems, 5.17 s for one-model 
problems, and 5.41 s for multiple-model problems (Page’s 
trend test, L = 336.0, z = 3.33, p < .0005). mReasoner’s 
predictions of accuracy likewise explained a significant 
portion of the latency variance, R2 = .76.  

We found a good fit between mReasoner’s predictions 
and the data from the 22 individual problems, where any 
significant correlation suggests a good fit. The number of 
models correlated with participants’ accuracy, R2 = .36. And 
the system’s latency predictions adequately fit the latencies 
across the problems, R2 = .24. The fit could be improved 
further, however, and we suggest several ways of 
proceeding in the General Discussion. 

General Discussion 
The computational theory, mReasoner, simulates the 

construction of mental models in order to draw immediate 
inferences from singly-quantified premises. The theory 
uniquely predicts that individuals should be faster and more 
accurate when an inference can be drawn from an identity in 
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intensions. They should be next fastest and accurate when 
an inference can be drawn from the initial model 
constructed in system 1.  And they should be slowest and 
least accurate when an inference can be drawn only from the 
discovery of an alternative model constructed in system 2. 
The predictions are a result of assumption of the mental 
model theory of reasoning: the more models you need, the 
more difficult a problem becomes. These rank-order 
predictions were borne out in the data from an experiment 
that tested all 22 valid inferences about possible conclusions 
in the set of 32 inferences. The immediate inferences were 
easy: people answered correctly 83% of the time. Yet they 
also revealed subtle differences in the difficulty between the 
various sorts of problems along the lines predicted by the 
theory. 

The system we describe is limited, however, and it can be 
improved to yield a more fine-grained processing account of 
the data. We suggest two separate ways of proceeding. One 
way to improve the fit of the system is to make the system 
sensitive to the direction in which it scans models. For 
instance, if reasoners read a particular premise, e.g., all 
artists are bohemians, they may be biased to scan the model 
in the opposite directions by considering bohemians before 
artists. This figural bias is widely documented in syllogistic 
reasoning (Khemlani & Johnson-Laird, in press a) and it is 
likely to make a difference when reasoning about immediate 
inferences as well. 

mReasoner could also place differential costs on the 
underlying processes of each of its three systems. The 
linguistic system, system 1, and system 2 are groups of 
interrelated processes, and for simplicity, mReasoner treats 
each of the processes as though it should place the same 
temporal cost on the inference as a whole. The processes are 
likely to place different costs on the system, however, and 
future versions of the theory might investigate the low-level 
mechanisms that give rise to such costs (cf. Khemlani & 
Trafton, under review). 

Immediate inferences have been restricted to the study of 
syllogistic assertions, e.g., those that make use of the 
determiners all, some, and none. However, one major 
advance of the system we describe is that it can be used to 
make predictions if a broader range of inferences. Consider 
the following inference: 

 
Most politicians are wealthy. 
Is it possible that most wealthy people are not politicians? 

 
The answer, like many of the inferences above, is easy: 
given the first premise, it is indeed possible that most 
wealthy people are not politicians. However, the inference 
likely engaged a search for alternative models, and so it 
should take reasoners longer to make it than a problem in 
which the conclusion follows straight from the premise: 
 

Most politicians are wealthy. 
Is it possible that some wealthy people are politicians? 

Indeed, the former inference might have required a little 
thought, whereas the latter one may have felt “obvious.” A 
viable theory of immediate inferences should be able to 
account for any difficulty between the two problems, and at 
present, mReasoner is the only system that can do so. In the 
same vein, the system can be used to make predictions about 
problems that make use of statements such as: 
 
 Neither of the Xs is a Y 
 At most five of the Xs are Ys 
 More than a third of the Xs are Ys  
 Five of the Xs are not Ys 
 
and so it is more general than theories restricted to 
Aristotelian syllogisms. 

In sum, mReasoner is a new, unified computational 
cognitive model of deductive reasoning. It is based on the 
mental model theory of human reasoning, and so its primary 
prediction is that problems that require multiple models are 
difficult and take longer than problems that require only one 
model. 
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Abstract

Cognitive robotics is a fascinating field in its own right and
comprises both key features of autonomicity and cognitive
skills like learning behavior. Cognitive architectures aim at
mirroring human memory and assumptions about mental pro-
cesses. A robot does not only extend the cognitive architecture
regarding real-world interaction but brings new and important
challenges regarding perception and action processes. Cog-
nitive robotics is a step towards embodied cognition and may
have influences not only on cognitive science but on robotics as
well. This paper presents an integration of the cognitive archi-
tecture ACT-R on a simple but programmable robotic system.
This system is evaluated on a navigation experiment.
Keywords: Cognitive Science; Robotics; Mindstorms; ACT-
R; Navigation

Introduction
From the early beginning of robotics one line of research has
tried to bring human cognition and robotics closer together
Brooks et al., 1999. Nowadays, technological progress in the
field of robotics and the development of cognitive architec-
tures allows for a leap forward: A robot able to navigate an
environment, with the ability to learn and a human-like atten-
tion shift.

This new and exciting field is sometimes referred to as
Cognitive Robotics 1. This combination of two fields leads to
a number of important research questions: What are the im-
mediate advantages of cognitive robotics (a term we will use
in the following for a robot controlled by a cognitive archi-
tecture) over classical robotics? Is the cognitive architecture
(which partially is able to simulate human learning processes)
restricting or improving navigation skills? In cognitive sci-
ence new research focuses on embodied cognition.

Embodied cognition claims that understanding (especially
of spatial problems) is derived from the environment Ander-
son, 2003. In other words, cognition is not independent on its
physical realization. The study described in Buechner et al.,
2009 used a virtual reality environment. Participants had to
navigate through a labyrinth in the ego-perspective and had
to find an initially specified goal (red dot). The study identi-
fied recurrent navigation strategies (which we introduce later)
used by the subjects.

1”Towards a Cognitive Robotics”, Clark, Andy https://www.
era.lib.ed.ac.uk/handle/1842/1297

Figure 1: Layouts of two mazes: The task is to find the target
object (red dot) at the edge or center Buechner et al., 2009.

Modeling navigation tasks, for instance in labyrinths, still
poses a challenge for cognitive architectures: Although they
can model decision processes they typically abstract from
metrical details of the world, from sensor-input, and from the
integration processes of environmental input to actions (like
move operations). Robotics, on the other hand, has typically
captured all of these aspects, but does not necessarily make
use of human-like learning and reasoning processes or even
try to explain human errors or strategies.

Compared to humans a robotic agent has limited percep-
tions and capabilities. On the other hand, it can teach us
something about the relevant perceptions that are already suf-
ficient for the robotic agent to perform successfully. For in-
stance, in the navigation task above (e.g., cp. Fig. 1), the
distance from the wall (in the direction it is facing) and the
color of the floor the robot is standing on are sufficient.

Much research is being done in the field of the cognitive
robotics; some prototypes of cognitive robots have already
been built 2. This research concentrates on the human-robot
and robot-environment interaction, allowing the robots to rec-

2e.g., Cognitive Robotics with the architecture ACT-R/E http:
//www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php
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ognize and interact with objects and people through their vi-
sual and auditory modules Sofge et al., 2004. The architec-
ture proposed contains Path Planning and Navigation rou-
tines based on the Vector Field Histogram Borenstein and Ko-
ren, 1991 that allow the robot to navigate avoiding obstacles
and explore the environment. Unlike the architecture pro-
posed, the objective of this paper is to implement a Cognitive
Navigation System which is completely based on ACT-R and
takes advantage of its cognitive features like Utility Learn-
ing, that allows Reinforcement Learning Russell and Norvig,
2003, p.771 on productions. No other softwares than ACT-R
will be used to control the robot. That experiment has the
merit of have taken the first steps towards interfacing ACT-R
with a mobile robot, but the data is still incomplete and tries
to combine as many different abilities as possible (from nat-
ural language processing, to parallel computing) in a manner
that is likely more complex than necessary. Our approach
starts at the other end, taking only those aspects and sen-
sor data into account that are necessary to perform the task
– the most simple robot. Other research studied the possi-
bility of interfacing ACT-R with a robot and giving it direct
control over the robot’s actions. That effort produced an ex-
tension of ACT-R called ACT-R/E(mbodied) Trafton, 2009;
Harrison and Trafton, 2010. ACT-R/E contains some new
modules that act as an interface between the cognitive model
and the Mobile-Dexterous-Social (MDS) robot Breazeal et al.,
2008, allowing it to perceive the physical world through a
video camera. However, no navigation was investigated, as
the robot did not navigate an environment. In both this and
our implementation ACT-R has been extended. The vast dif-
ference between the two is the smaller amount of changes
made to the standard ACT-R by our implementation, due to
the sensors’ higher complexity in the MDS.

Consequently this article investigates, first, how to control
a robot through ACT-R and, second, if this cognitive robot
shows human-like behavior while navigating and searching
for a goal, e.g., an exit from the maze. The paper is structured
in three parts: The first part – The Elements – contains a brief
description of ACT-R, the robot and its features. The second
part – the Integration – describes the software that connects
ACT-R with the robot, through which perceptions can reach
the cognitive architecture and actions the actuators. The third
part – the Evaluation – tests the robot on a navigation task and
analyzes the results.

The Elements

The Robotic System

Our device of choice is a standard Mindstorms3 class robot
(cf. Fig. 2). It consists of a central “brick” that contains the
processor and the batteries. At this core component several
peripherals can be attached. It supports up to three step-to-
step engines and up to four sensors.

3This type of robot is produced by The Lego Group

Figure 2: The Mindstorms class robot. It is equipped with a
color, ultrasonic and two touch sensors.

Chassis design. The chassis is the structure to which the
central brick, the motors and the sensors are attached. To limit
odometry errors two fixed, independent driving wheels have
been used, instead of caterpillar tracks. A third central fixed
idle wheel allows the robot to keep its balance. The struc-
ture resembles a differential drive robot, with the exception
that the third wheel cannot pivot. Removing the tire from the
wheel allows the robot to turn without too many difficulties.
Sensors. A robot can be equipped with several kinds of sen-
sors: from a simple sound or light sensor, to more complex
ones like a compass or webcam. Our design makes use only
of the most basic sensors: a touch sensor activated by pres-
sure, a color sensor capable of recognizing light intensity or
six tonalities of color, and an ultrasonic sensor for distance
measurements. The color sensor and the ultrasonic sensor
are fixed to the front, while a touch sensor is placed on each
side. Both touch sensors are linked to a structure that covers
the front of the robot on that side. They are not used during
navigation but to stop the robot when it touches a wall.

Integrating Architecture and Robot

The first step towards a cognitive robot is to create a working
interface between the ACT-R framework and the NXT plat-
form. This interface allows an ACT-R model to control the
robot and to receive sensor inputs from the robot. Due to the
modular structure of ACT-R, this interface is composed of
modules.

Low level lisp function. On the basis of these modules
there is a library called nxt-lsp Hiraishi, 2007 that provides
low-level lisp functions to execute simple tasks like interro-
gate a sensor or move a motor. The capabilities of this library
are the following: it can read information about the environ-
ment from the light sensor, the distance sensor and the touch
sensor; it can make the robot perform some actions, like move
its motors, turn on and off the light and play some sounds; it
can also check the robot’s internal state, querying the battery
or the motors about their states. The library did not have the
support for the color sensor, so it has been extended to sup-
port that sensor, necessary for our purposes, as well.
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Extending ACT-R

The interface is composed by several modules with different
functions, this step has been taken to keep things simple and
to follow the general design of ACT-R. The lisp library has
been bundled in the code and its functions are called by these
modules to control the robot.

Figure 3: The ACT-R modules.

Motor module. This module controls the engines, when a
request is made to its buffer the module responds, activating
or deactivating the specified motors.

Touch module. This module controls the touch sensors, it
can control up to four sensors but the default value is two.
This module has a buffer called nxt-touched, but it is only
used to query the module. If the nxt-touched buffer receives
a query on the touched slot, with value true, the query returns
true if the sensor reports a pressure.

Vision module. This module controls the color sensor. It
has a buffer called nxt-visual, but it does not have any other
purpose than querying the module. If the nxt-vision buffer
receives a query on the touched light, with value on, it will
turn the sensor on and schedule a polling of the sensor every
50ms. If the value is off, the sensor will be turned off and the
polling stopped. When the sensor identifies a change in color,
or the color blue, it draws on the visicon, the standard ACT-R
visual input, a letter of the same color. This action triggers a
standard ACT-R procedure that will allow the model to realize
that a change has happened.

Distance module. This module controls the ultrasonic sen-
sor. It has a buffer called nxt-distance. When a request is
made to this buffer, with a chunk of type obstacle, the mod-
ule reads the distance from the sensor and updates the chunk
in its buffer with the read value. It uses two productions to
obtain the value, the first production fires a request and the
second reads the results from the nxt-distance buffer.

Evaluation: Navigation in a Labyrinth
We decided to test the cognitive robot on several self-built
labyrinths. The environment is perceived by the robot
through its sensors, the robot can perceive the presence of
an obstacle, the color of the ground that is used to discrimi-
nate between obstacles (a wall, a junction, the goal, or a clear
way), and the distance to the next wall. It is important to
keep in mind that the robot has no a priori knowledge of the
environment it is operating in. It will explore the labyrinth
like humans would – this is a classical example of contin-
gency problem Russell and Norvig, 2003, p.80. The only two
types of information that the robot can obtain from its sensors
are the presence/absence of an obstacle close by, and its dis-
tance from the next wall. With this information the robot must
avoid walls and be able to choose in which direction to turn
when it finds a junction. A human being can approximately
measure this distance in two ways: looking at the walls a per-
son can guess its distance from it, like the robot does with its
ultrasonic sensors, and through his sense of touch, the same
as the touch sensors equipped on the robot.

The Model
The model implements the Active Reinforcement Learning al-
gorithm Russell and Norvig, 2003, p.771, that uses the feed-
back on its performance to learn what actions are to be pre-
ferred. In case the available information is not enough to
decide what is the best way, the model follows the perime-
ter strategy to navigate. An aleatory component can favour
a known way over the entrance in a not jet explored branch.
Thanks to its internal representation of the environment, the
model is able to recognize the junctions it has visited before
and remember their performance.

The internal representation
While exploring, the cognitive robot develops an internal rep-
resentation of the environment in declarative memory . This
representation contains all of the information that it knows
about the already explored environment. For every step or
turn the robot takes, information is stored in declarative mem-
ory in a chunk of type “movement,” those chunks have a
slot called “direction” that encodes the direction of the very
movement: This slot has the value “forwards”, unless the
robot turns itself. In that case the slot will contain the name
of the new orientation. Every movement chunk has another
slot called “counter”, where a progressive number is stored.
The numbers detail the sequence of movements of the cur-
rent run. Through this trace, it is always possible to retrieve
the direction it is currently facing. This is the only purpose
of using these chunks during navigation. The maze is rep-
resented in declarative memory as a graph, whose nodes are
the junctions. The model does not care about how long and
how twisted the road from JunctionA to JunctionB is, that is
unimportant during the decision process because it does not
involve decision making. The only relevant information is the
expected performance in taking a specific way, which is rep-
resented in declarative memory by a chunk of type “junction.”
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This chunk identifies a specific junction by the values in four
of its slots (north, east, south and west) and a direction by its
“turn” slot. For every turn the model must know its goodness,
this value is encoded in the “performance” slot. A smaller
number implies a better performance, the number “-1” means
that this direction was taken but not yet rated. Recognizing
a junction allows the model to remember which routes it has
already explored and the current best. With such a complete
knowledge the model is able to find a shortest way to the
goal. These two chunk types form the model’s Knowledge
Base, through which the previous explorations can be recon-
structed. The “movement” chunks contain the path history:
They save, for every step, the direction in which the model
was going; while the “junction” chunks compose the deci-
sional history and save the order in which the junctions were
taken and the performance value’s updates of every junction.

Algorithm
The robot uses a local search algorithm (cf. Fig. 4). The
robot moves forward until a chunk is present in the visual-
location buffer, then it reads the color and discriminates if it
is an obstacle, a junction, the goal or a false alarm. In case
of a false alarm it keeps going forwards. If a wall is detected
there could be a curve right or left, or a dead-end. Special
productions are called for a quicker response and the robot
will follow the curve or, in case of a dead-end, go back. If
a dead-end is encountered, the last junction is marked with
a low performance value, so that in future the model will
avoid that direction. When a junction is detected, with or
without a wall on the front, the robot turns itself in the four
directions and measures the distance with its ultrasonic sen-
sor. Once the distances are retrieved, it tries to recognize this
junction among the ones it has seen before. Many retrieval
requests to the declarative memory are issued, by calling the
same production many times, until the retrieval process fails.
For every direction that is not retrieved, the model checks the
corresponding distance. If it is less than a certain threshold
it detects a wall and marks that direction as not selectable.
Now, if there is still at least one direction that has not been
tried yet, the model has two possibilities: The first possibil-
ity is to select that direction and explore a new branch of the
labyrinth; if there is more than one, the model follows the
perimeter strategy. In this way the maze, in the first stage
of the exploration, is covered following the perimeter strat-
egy. The second possibility is to select the way with the best
performance among the directions that matched in declara-
tive memory and go on a safe path. The decision between an
enterprising and a conservative approach is taken randomly,
with a probability of taking a conservative path proportional
to the performance rating: The better the performance, the
more likely the conservative approach is to be selected. This
solution incentivizes the exploration in the first stage, when
it is more likely that a shorter way can be found; and is more
conservative in the end, when exploration will bring a min-
imal increment of performance. If all the selectable direc-
tions matched in declarative memory, the model chooses the
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Figure 4: The local search algorithm implemented in ACT-R.

way with the best performance. If the junction does not have
any selectable direction, because there are only walls or dead-
ends, the branch is purged: the last junction, that brought the
model to this dead-end, is selected and marked with a very
poor performance value. In the particular case in which the
only selectable direction has already been taken during the
current run, the robot retraces its steps, a loop is detected.
The last unrated junction that the robot took is marked as a
dead-end, so that the next time it will not turn in that direc-
tion again, interrupting the loop. If a goal is detected all the
junction chunks used in the last run are rated by a rating func-
tion that implements the Policy-Iteration routine Russell and
Norvig, 2003, p.624. For every junction the rating function
calculates the new performance value as the time difference
between the goal discovery and the last use of the junction’s
representation in declarative memory. If the old performance
value is higher, or that junction had not been rated yet, the
function updates the performance with the current value. Af-
ter that the model starts again from the beginning, but this
time it uses the accumulated experience during the previous
explorations leading to better choices.

Distance computation
The Act-Rientierung Project Dietrich et al., 2011 imple-
mented an algorithm that reconstructs the distance between
non-adjacent waypoints, using the information about adjacent
waypoints gleaned from exploration. It has been integrated in
our model. We used junctions as waypoint because the envi-
ronment and the perceptions did not leave other choice. The
computation is made using chunks that represent numbers,
adjacent numbers have high similarity and that leads to count-
ing errors (reproducing human behavior). The model, during
exploration, stores distance in steps of adjacent junctions in
specific “waypoint” chunks. When the model finds the goal,
it goes through the list of known junctions and calculates the
distance to the goal for every pair of junctions. With con-
secutive runs the distance values may change, because of the
retrieval errors in the counting process.
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Figure 5: Left: An example of a test labyrinth. Right: Decision process for corridor, new and known junctions.

Evaluation
Several tests have been executed to evaluate the differences
in performance that this new implementation brings. Those
tests have been run in a simulated environment that repro-
duces exactly a real robot going through a real maze, with the
advantages of being faster and not having to deal with odom-
etry or measurement errors. To be able to compare the results
the test has been set up as a replica of the Büchner exper-
iment Buechner et al., 2009, recreating the same labyrinths
inside the simulator (cf. Fig. 1); in both the configuration
with the goal on the edge and in the center. The performance
was measured in PAO (Percentage Above Optimum).

PAO = ((dwalked −dshortest)/dshortest)×100

The same unit of measurement was used in this experiment
as well, so that the results of both can be easily compared.
During every simulation, for each of the four environments,
the model had a time limit of 4000 units of ACT-R’s virtual
time. Within this time constraint the model could find a stable
suboptimal solution was found 84% of the time. The diagram
in Fig. 6 shows the mean quality of the consecutive solutions.

Figure 6: Behaviour of the model, showing a learning curve
similar to the humans’ Buechner et al., 2009.

The curves in Fig. 6 show similar learning behavior for all
four labyrinths: The model starts with an uninformed explo-
ration, according to the actual strategy, until it finds the goal.
Then it starts an exploration phase that will complete when
all possibilities have been tried and rated. During this phase

the model tries unexplored ways, needing in average more
time to find the goal than the human counterpart. After less
than 4 runs, on average, the model has gathered enough infor-
mation about the environment and stabilizes on a suboptimal
solution that is covered until the time elapses. In the experi-
ment done by Büchner the participants shown a preference for
the perimeter strategy to navigate in the maze and search for
the goal. In the current experiment different strategies were
tested:

Deterministic perimeter strategy. The first strategy uses a
right-preference perimeter strategy. Each application of turn-
right production rules yields a utility bonus, a smaller bonus is
given for go-straight production while for turn-left no bonus
is assigned. The test showed that the first run is completely
deterministic and in every run the agent always take the same
path, that implies a much smaller degree of choice during the
rest of the exploration. Even if some differences can be seen
during the exploration phase, every run leads to the same sub-
optimal solution. In conclusion the tests demonstrated that
this strategy is too deterministic and dependent on the spe-
cific maze to be suitable for a real exploration task.

Random walk. Another strategy was a random strategy
with utility learning, in the beginning all the productions have
the same utility, which can change during the run according
to the utility rewards gathered during the exploration. A pos-
itive utility reward is given by the action of finding the goal,
with a negative reward for each dead-end. As expected from
a random walk strategy, the performance is nearly identical
for all four environments.

Gaussian perimeter strategy. The last strategy uses a ran-
dom gaussian utility bonus, instead of fixed one. The more
desirable is the action to perform, the higher the center of the
gaussian will be. This bonus is added to the standard pro-
duction’s utility by the mean of the :utility-offsets function
Bothell, 2004, p.187. The gaussian functions are calculated
by the act-r-noise function Bothell, 2004, p.138 with param-
eter s = 0.5, that correspond to a variance σ2 = 0,82246.
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Figure 7: Human (left) and model performance (right) with random walk, the curves have a correlation of 0,962 and 0,954.

The three curves, identifying the action of turning left, go-
ing straight on and turning right, are centered respectively in
0, 2 and 4, the higher the center the more likely to happen.
This method models well the human concept of perimeter
strategy, not mere deterministic but a good compromise be-
tween following the rules and taking own initiative. The tests
report that the perimeter strategy is chosen 47% of the time
in the first maze and the 43% in the second, and that initial
value and solution quality are close to the human’s. Some
differences are present in the execution, due to the model’s
intensive exploration, unlike the human subjects who prefer
to travel along a safe path.

Conclusions & Future work
This experiment demonstrated that ACT-R can be success-
fully used in conjunction with a Mindstorms robot. We ap-
plied a bottom-up method starting with a restricted number of
sensors and computational power, relying more on the cogni-
tive aspects of ACT-R. Our cognitive model, implemented in
ACT-R, successfully simulates the human behavior and learn-
ing strategies while navigating in a labyrinth, and shows hu-
man performances. The cognitive model could be further en-
hanced by implementing a better simulation of human mem-
ory, for example adding a utility threshold under which a
chunk is not retrieved. If the model is able to forget the
less used junctions it would behave more like a human be-
ing. Some tests in this direction have been executed, but to
get valuable results more work is needed on the parameter’s
tuning. At the moment the model has a perfect memory and
the only source of error is the ambiguity between junctions.
Another interesting enhancement is to allow the model to ran-
domly forget or switch junction performances, as well as the
user direction, like humans tend to do when the quantity of
information they have to remember is too great. This feature
could be implemented using the similarity function embed-
ded in ACT-R.
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Introduction
Collective sensemaking is a form of socially-distributed cog-
nition (see Hutchins, 1995) in which multiple agents attempt
to interpret (make sense of) specific bodies of environmental
information. In order to optimize performance at the collec-
tive level, agents often need to share information about the
results of their own processing activity, and this raises ques-
tions about how the structure of communication networks af-
fects collective sensemaking abilities. In the current study,
we used a computational model of collective sensemaking in
which individual agents are implemented as constraint satis-
faction networks (CSNs) (see Smart & Shadbolt, 2012). We
then investigated how the cognitive responses of agents were
affected by different kinds of communication network struc-
ture.

Method
In order to explore the effect of communication network
structure on the dynamics of collective sensemaking, we
used a multi-agent computational model in which individual
agents were implemented as CSNs. The computational archi-
tecture of the CSNs is the same as that described in Smart and
Shadbolt (2012). Each agent consisted of 6 cognitive units,
which represented various kinds of beliefs that agents could
have about two types of object, namely cats and birds. The
net activation of each cognitive unit represented the extent to
which an agent held a specific belief about an object. Thus,
if the net activation of the ‘Cat’ unit was high then the agent
could be said to hold the belief represented by the ‘Cat’ cogni-
tive unit. The cognitive units were connected together in such
a way as to yield two kinds of interpretive response to envi-
ronmental information. On the one hand, agents could inter-
pret environmental information as indicating the presence of a
cat, and, on the other hand, they could interpret environmental
information as indicating the presence of a bird. Across the
course of each simulation, one of these cognitive responses
will tended to predominate due to the pattern of excitatory and
inhibitory links between cognitive units. The way in which
the activation of each cognitive unit was updated at each pro-
cessing cycle is described in Smart and Shadbolt (2012).

Each of the agents within the computational model can be
connected to other agents in order to create a communication
network. Agents can share information about their beliefs
at each cycle of a simulation in order to influence the kinds

of beliefs that their network neighbors have at the next pro-
cessing cycle. The way in which the information is shared
and processed by agents is described in Smart and Shadbolt
(2012).

The current study examined the effect of four types of
communication network structure on collective sensemaking
performance. In the ‘Disconnected Network’ condition, all
agents operated autonomously and no communication was al-
lowed between the agents at any stage of the simulation. In
the ‘Random Network’ condition, agents were connected to-
gether using a random network topology. The random net-
works, in this case, were generated following the procedure
described in Mason, Jones, and Goldstone (2005). Bidirec-
tional links between agents were added at random between
the agents until a specific number of links (i.e. 1.3 times the
number of agents) had been created (given that all our simula-
tions involved 10 agents, the number of links added to random
network configurations was 13 (1.3 * 10) links). In the ‘Small
World Network’ condition, agents were connected together
using a small world network topology. As with random net-
works, small world networks were generated using the proce-
dure described in Mason et al. (2005). Agents were initially
connected into a ring structure. Three agents were then se-
lected at random and each of these randomly selected agents
was connected to another randomly selected agent subject to
the constraint that connected agents were at least 3 agents
apart in the ring topology. Finally, in the case of the ‘Fully
Connected Network’ condition, all agents were connected to
all other agents using a fully-connected network topology.

Each simulation started with the creation and configuration
of CSNs corresponding to individual agents. Ten agents were
created for every simulation, and all agents were identical to
one another in terms of their constituent architecture. Agents
were then organized into one of four types of network struc-
ture as described above. It should be noted that a new network
structure was created for each simulation, thus the structure
of some networks (namely, the random and small world net-
works) was not invariant across the experimental conditions.

Table 1: Activation vectors used in the experiment.
Fur Meows Cat Feathers Sings Bird

Ambiguous 0.1 0.1 0.0 0.2 0.2 0.0
Unambiguous 0.5 0.5 0.0 0.0 0.0 0.0

Once the network structure had been created, the activa-
tion levels of cognitive units within each agent were initial-
ized using one of two types of activation vector (see Table 1).
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Figure 1: Mean responses of Cat and Bird cognitive units in each of the four network structure conditions.

At the start of each simulation, 4 agents were selected at ran-
dom and were initialized with the ‘Unambiguous’ activation
vector; the remainder of the agents were initialized with the
‘Ambiguous’ activation vector.

After the initial activation levels had been established, the
simulation commenced and processing occurred in a series
of processing cycles. Within each cycle, the activation of all
cognitive units was updated as per the procedure described in
Smart and Shadbolt (2012). The simulation continued for 20
processing cycles, and, at the end of each simulation (i.e. at
the 20th processing cycle), the activation level of the ‘Cat’ and
‘Bird’ cognitive units was recorded for subsequent analysis.
A total of 50 simulations were run in each of the four network
structure conditions.

Results
The results are shown in Figure 1. ANOVA revealed a signifi-
cant main effect of Cognitive Unit (i.e. activation of the ‘Cat’
and ‘Bird’ cognitive units) (F(1,3992) = 121.446, P < 0.001)
and a significant two-way interaction between the Network
Structure and Cognitive Unit factors (F(3,3992) = 115.561, P
< 0.001). There was no significant main effect of Network
Structure. Post hoc comparisons using Tukey’s HSD were
performed at each level of the Cognitive Unit factor. These
analyses revealed that cognitive responses in the random and
small world network conditions were not significantly differ-
ent from each other for either of the ‘Bird’ or ‘Cat’ cognitive
units. The activation level of the ‘Cat’ cognitive unit was
higher in both the random and small world network condi-
tions as compared to the disconnected network condition, and
the activation of the ‘Bird’ cognitive unit was lower in the
random and small world network conditions as compared to
the disconnected network condition. Activation of the ‘Cat’
cognitive unit was higher in the fully connected network as

compared to all other networks, and activation of the ‘Bird’
unit was lower in the fully connected network as compared
to all other networks. Post hoc comparisons of the cognitive
responses for each of the network structures revealed signif-
icant differences between the activation of ‘Cat’ and ‘Bird’
cognitive units for all network conditions. Activation of the
‘Cat’ cognitive unit was higher than ‘Bird’ cognitive units for
all networks, with the exception of the disconnected network
condition (see Figure 1).

Conclusion
The results of this study suggest that collective sensemaking
is influenced by network structure under certain informational
conditions. In all of the conditions in which agents were al-
lowed to communicate information, a particular kind of cog-
nitive response emerged in which cat-related beliefs predom-
inated. This differed from the situation in which agents were
not allowed to communicate (i.e. the disconnected network
condition). The cognitive responses of agents that were orga-
nized into random and small world network topologies were
very similar; however, they were less extreme than those of
agents organized into fully-connected network topologies.
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Introduction 
Most theories on categorization agree on a main principle: 
category learning involves creating a category 
representation, and categorizing an item involves comparing 
that item to the representations of different categories. The 
theories, however, disagree on the nature of these category 
representations. There are two main competing lines of 
thought on category representations: exemplar-based 
theories and prototype-based theories (Valentine, 1991).   

Prototype-based theories argue that objects are 
stored based on how similar they are to a central prototype 
(Rosch, 1973).  In contrast, exemplar-based theories reason 
that objects are encoded in their absolute structure, defined 
by their own properties only and unrelated to any abstract 
summary representation (Medin & Schaffer, 1978). Years of 
research on the nature of categorization has resulted in 
mixed results, with evidence for both approaches.  

One example of an issue on which exemplar- and 
prototype based theories make different predictions is linear 
separability. Two categories are considered linearly 
separable if a linear function of attributes exists that 
perfectly separates their exemplars (Ruts, Storms, & 
Hampton, 2004).  

According to prototype-based models, for any pair 
of linearly separable categories represented in a geometrical 
space, that space is divided into two half spaces by a linear 
function that defines the points which are equidistant 
towards both prototypes. An item is then categorized in the 
category with the closest prototype (in that geometrical 
space). Thus, category membership can be determined 
simply by looking at the distance to the prototype, making 
linearly separable categories relatively easy to learn. On the 
other hand, categories that are not linearly separable would 

take considerably longer to master, as this simple strategy of 
deciding on the closest prototype would not be sufficient to 
determine category membership.  

According to exemplar-based models, on the other 
hand, proximity to the center of the category plays no role 
of any kind (Ruts, Storms, et al., 2004). Thus, exemplar-
based models predict that, all other factors kept constant, 
linearly separable categories are not easier to master than 
other categories. 

As prototype-based and exemplar-based models 
make different predictions regarding linearly separable 
categories, we can use those categories to shed light on the 
mechanisms that underlie categorization. In order to do so, 
however, we have to determine which categories are linearly 
separable, and which are not. There has been surprisingly 
little research into this issue. Studies that do investigate this 
tend to assess linear separability by first obtaining a 
geometric representation of the exemplars using 
multidimensional scaling, and then analyzing this 
representation with visual inspection (Malt, Sloman, 
Gennari, Shi, and Wang, 1999) or log linear analysis (Ruts, 
Storms, et al., 2004). 

The current research intends to expand on these 
previous studies in investigating which semantic categories 
are linearly separable and which are not. Compared to these 
existing studies, however, we will use a fundamentally 
different technique to assess linear separability: linear 
support vector machines (LSVMs).  

A support vector machine (SVM) is a mathematical 
concept used for supervised pattern learning (Vapnik, 1982; 
Cortes & Vapnik, 1995). Presented with a set of input data 
and their corresponding classes, an SVM learns which data 
correspond to which class. Once trained, the machine can be 
used for classification; for any given input, it predicts the 
corresponding class.  

SVMs transform the input vectors into a (usually) 
high dimensional feature space with the help of a kernel 
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function, and look for the hyperplane that separates the 
classes optimally in that feature space (Cortes & Vapnik, 
1995). SVMs put no restrictions on the nature of the kernel, 
allowing both linear and nonlinear functions. As the goal of 
our study is to assess the extent of linear separability of 
categories, we need a classifier that produces linear 
boundaries; as such, we can only apply linear kernel 
functions.  

Compared to assessing linear separability by 
analyzing a geometric representation obtained with 
multidimensional scaling, LSVMs hold several advantages. 
For one, there is no issue of choosing the optimal 
dimensionality, as LSVMs always use the maximal number 
of dimensions present in the data. Secondly, LSVMs make 
no assumptions about the nature of the distribution of the 
items. This is in contrast to many statistical criteria used to 
analyze the geometric representation obtained with 
multidimensional scaling, which do put restrictions on the 
distribution. 

Method and Results 
In a first study, we examined the linear separability of 
natural and artifact concepts. The idea was to teach a LSVM 
to use feature values to predict category membership, and 
then to examine which categories the LSVM could linearly 
separate from one another. We looked at six pairs of natural 
categories and five pairs of artifact categories. Each pair 
consisted of 61 to 85 exemplars, which were rated on 30 to 
51 features. We found that LSVMs are very efficient at 
using feature values to predict to which class an item 
belongs. Prediction accuracy was high both for natural 
classes (up to 100% accuracy) and for artifact classes (up to 
97.07% accuracy). Additionally, we found that some of the 
natural categories were linearly separable and some were 
not, and that none of the artifact categories could be 
considered linearly separable. 
 A second study again examined the linear 
separability of natural and artifact concepts, but this time in 
a multiclass environment. We made use of two datasets, one 
comprising 129 animals divided over five natural categories, 
described by 764 features, and the other containing 166 
artifacts divided over six artifact categories, described by 
1295 features. We found that multiclass LSVMs could 
efficiently use these feature values to predict category 
membership: Prediction accuracy was high for both natural 
classes (up to 98.78% accuracy) and artifact classes (up to 
99.29% accuracy). We found that all natural categories were 
linearly separable from one another, except for the fish and 
mammal categories, and that most of the artifact categories 
were linearly separable from one another as well. 

In our third study, we investigated whether LSVMs 
can use similarity ratings to linearly separate the different 
names people give to types of movement. We examined two 
datasets: one with data from English-speaking students, and 
one with data from Dutch speaking students, each 
containing the dominant name and similarity ratings for 24 
video clips depicting movement. We found that LSVMs 

could use similarity ratings to predict the name participants 
give to a type of movement, with a maximal predictive 
accuracy of 95.25% for the English dataset, and 79.7% for 
the Dutch dataset. Additionally, we found that for both 
datasets, some of the categories were sufficiently linearly 
separable from one another, and some were not. 

Conclusion 
We demonstrated that linear support vector machines can be 
used efficiently to determine the relative linear separability 
of semantic concepts. We showed how LSVMs can use 
feature values or similarity ratings to predict category 
membership, and how we can use the LSVMs 
misclassifications to determine the extent of the linear 
separability of the tested categories. 
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,L11",&,( &/$&( &/","( ');"0,( -2"0;( &)&$0( &2'"( #%";2.&2)(,K(
U792)L,0-4(;2**"%"(&(,&)##2(1(%L0",(J200(-2"0;(;2**"%"(&(&)&$0(
&2'"(#%";2.&2)(,4(7L&()(($((2(&L2&29"(0"9"0()("(J)L0;("O#".&(
&)&$0( &2'"( &)( 7"(')()&)(2.$00-( %"0$&";( &)( &)&$0( (L'7"%( )*(
2&"',(%"&%2"9";N(R)&$0(&2'"(,/)L0;(2(.%"$,"(J2&/(&/"((L'7"%(
)*(2&"',(%"&%2"9";K(
R/"(,".)(;(%",#)(,"(&2'"('"$,L%"(2,(J/$&(!)L1/"%&-($(;(

B$%72,)((PEFFAQ(.$00";(&/"("O2&(0$&"(.-K(@O2&(0$&"(.2",(2(;"O(
&/"( $')L(&( )*( &2'"( 7"&J""(( &/"( *2($0( ,L..",,*L0( %"&%2"9$0(
$(;( &/"(;".2,2)(( &)( &"%'2($&"()*(,"$%./K(V((.)(&%$,&( &)( &)&$0(
&2'"4(&/"%"(2,(()()792)L,4(2(&L2&29"(#%";2.&2)((%"1$%;2(1(/)J(
0)(1( #$%&2.2#$(&,(J200( #"%,2,&( 2(( %"&%2"9$0( $,( $( *L(.&2)(( )*(
(L'7"%()*(,L..",,*L0(%"&%2"9$0($&&"'#&,K(R/L,4("O2&(0$&"(.2",(
#%)92;"( $( #)&"(&2$00-( ;2$1(),&2.( ,)L%."( )*( ;$&$( *)%(
"9$0L$&2(1( ,&)##2(1( %L0",4( #$%&2.L0$%0-(J/"(( .)(,2;"%";( 2((
.)(SL(.&2)((J2&/(&/"(&)&$0(&2'"('"$,L%"K(
^"J( #L702,/";( ,&L;2",( %"#)%&( ;$&$( )(( &/"( &J)( &"'#)%$0(

9$%2$70",( %"0"9$(&( *)%( '"$,L%2(1( &"%'2($&2)(( ;".2,2)(,(
P!)L1/"%&-( Z( B$%72,)(4( EFFAT( B$%72,)(4( "&K( $0K4( EFFWT(
8(,J)%&/4( 5%"J"%( Z( 3#200"%4( EF??QK( V(( &/"( ,&L;-( 7-(
!)L1/"%&-($(;(B$%72,)(( PEFFAQ4(#$%&2.2#$(&,(J"%"(92,L$00-(
#%","(&";(J2&/($(.L"(J)%;($(;(?F(&$%1"&(J)%;,(PHIC?4(HICE4(
z4(HIC?FQK(R/"-(J"%"( &)0;( &)( %"'"'7"%( &/"( &$%1"&(J)%;,(
&/$&( J"%"( #%","(&";(J2&/( "$./( .L"( J)%;K( @$./( 02,&( )*( ?F(
&$%1"&(J)%;,(/$;($(L(2YL"(.L"(J)%;K(RJ"09"(,L./(02,&,(J"%"(
#%","(&";( 2((70).6,()*( &/%""K(H*&"%("$./(70).6()*( 02,&,(J"%"(
#%","(&";4( #$%&2.2#$(&,(J"%"( 129"(( $( .L"(J)%;( $(;( /$;( &)(
%"#)%&(9"%7$00-( $,('$(-(J)%;,( ,&L;2";(J2&/( &/$&( .L"(J)%;(
PHIbQ( $,( &/"-( .)L0;K( M",#)(,",( J"%"( %".)%;";( $(;(
#$%&2.2#$(&,(#%",,";(&/"(,#$."I7$%(&)(2(;2.$&"(&/$&(&/"-(.)L0;(
()&( 1"("%$&"( $;;2&2)($0(J)%;,K( R/"( &)&$0( &2'"( #$%&2.2#$(&,(

,#"(&( 2(( ,"$%./( J$,( '"$,L%";( $,( &/"( &2'"( 7"&J""((
#%","(&$&2)(( )(,"&( )*( &/"( .L"( *)%( %"&%2"9$0( $(;( &/"( &2'"( )*(
#%",,2(1(&/"(,#$."I7$%K(R/"("O2&(0$&"(.-(J$,('"$,L%";($,(&/"(
&2'"(2(&"%9$0(7"&J""((&/"(0$,&(%"&%2"9";(2&"'($(;(&/"(&2'"()*(
#%",,2(1(&/"(,#$."I7$%K(
^21L%"( ?( #%","(&,( &/"( #$&&"%(( )*( %",L0&,( %"1$%;2(1( &/"(

,&)##2(1( $(;( "O2&( 0$&"(.2",( $,( $( *L(.&2)(()*( &/"((L'7"%()*(
J)%;,( %"&%2"9";( 2(( &/$&( &%2$0K( R/"( ,)02;( 02(",( $%"( &/"( 7",&I
*2&&2(1( .L%9",( *%)'( &/"( %$&2)($0( $($0-,2,( 2(&%);L.";( 0$&"%K(
^21L%"(?( ,/)J,( &/$&( &)&$0( &2'"( 2,($(( 2(.%"$,2(1( *L(.&2)(()*(
&/"((L'7"%()*(J)%;,(%"&%2"9";(2((&/$&(&%2$04(J/"%"$,(&/$&("O2&(
0$&"(.-( 2,($(("1$&29"0-(;"."0"%$&2(1(*L(.&2)(()*( &/"((L'7"%(
)*(J)%;,(%"&%2"9";(2((&/$&(&%2$0K(

 Evaluating Stopping Rules 
B$%72,)(( "&( $0K( PEFFWQ( .)(;L.&";( $( ,2'L0$&2)(,( ,&L;-( &)(
.)'#$%"( ,"9"%$0( )*( ,&)##2(1( %L0",( ,L11",&";( 7-(H&62(,)((
$(;(3/2**%2((P?WX[QK(U*(&/","(%L0",4()(0-(&/"(&)&$0((L'7"%()*(
*$20L%",( %L0"( *2&&";( &/"( ;$&$( 7)&/( YL$02&$&29"0-( $(;(
YL$(&2&$&29"0-K(R/"(&)&$0((L'7"%()*(*$20L%",(%L0"(2,($(,#".2$0(
.$,"( )*( $(( 2&"%$&29"( %L0"( &/$&( 2,( )(0-( .)(."%(";( J2&/( &/"(
.L%%"(&( ,$'#0"( *%)'( '"')%-( $(;( &/"( &)&$0( $..L'L0$&";(
(L'7"%()*(*$20L%",K(R/2,(0"(;,(2&,"0*(&)($(%$&2)($0($($0-,2,()*(
&/"(,$'"(%L0"(J/2./(.$(('$6"(()9"0(#%";2.&2)(,K(
="( ,""( '"')%-( %"&%2"9$0( $,( $( *)%'( )*( 2(*)%'$&2)((

,$'#02(1( *)%(J/2./($(.),&( 2,( 2(.L%%";(J2&/("9"%-(,$'#02(1(
$&&"'#&( $(;( $( 7"("*2&( 2,( )7&$2(";( *)%( ,L..",,*L0( %"&%2"9$0,K(
="(;"*2("(&/"('"')%-(9$0L"(*L(.&2)((2((J/2./(&/"(&)&$0(("&(
9$0L"( ;L%2(1( &/"( %"&%2"9$0( #/$,"( 2,( $( *L(.&2)(( )*( &/"( &)&$0(
(L'7"%()*(2&"',(%"&%2"9";($&(&/"("0$#,";(%"&%2"9$0(&2'"K(
="(,"&()L&(&)(;"%29"($(.0),";I*)%'("O#%",,2)((*)%(&/"("O2&(

0$&"(.-4(J/"%"(&/"(;".2,2)((&)(&"%'2($&"(,"$%./(;"#"(;,()(0-(
)(( &/"( 2(*)%'$&2)(()*( &/"( 0$,&( &2'"I,&"#K(="(.)(9"%1";()((
&/"(*)00)J2(1(%L0"N(
(

Terminate search when the additional cost of retrieving 
the next item starts to outweigh the relative benefit of having 

retrieved that item (akin to a Weber fraction). 
(
R/"(;"%29$&2)(()*(&/"(.0),";I*)%'("O#%",,2)(,(2,(7$,";()(($(
9$0L"( *L(.&2)(K(="( $,,L'"( &/$&( $( .),&4( $4( 2,( 2(.L%%";(J2&/(
"9"%-(,$'#02(1($&&"'#&4(&4($(;($(7"("*2&4(74(2,()7&$2(";(J2&/(
"9"%-( ,L..",,*L0( %"&%2"9$0K( R/2,( $,,L'#&2)(( '2%%)%,( &/"(
%$&2)($0( $($0-,",( )*('"')%-( PH(;"%,)((Z(<20,)(4( ?W[WQ(
$(;(#%)70"'(,)092(1(P+$-("(Z(!L11$(4(EF??Q4(J/2./($%"(2((
&L%((1%)L(;";(2((&/"($(2'$0(*)%$12(1(&/")%-K(="(;"*2("(&/"(
'"')%-(9$0L"(*L(.&2)(($,N(
(

c&(d(e(f(7_P&Q({($&( ( P?Q(
(

J/"%"(7($(;($($%"(&/"(7"("*2&($(;(.),&(#$%$'"&"%,K(_P&Q(2,(&/"(
&)&$0((L'7"%()*(2&"',(%"&%2"9";($&(&2'"(&K(B"%"(J"(L,"N(
(

(( Q?PQP QP #$ $$$% teLtN ( ( PEQ(
(

J2&/(02,&0"(1&/4(:4(%$&"()*(.L'L0$&29"(%"&%2"9$04(Q4($(;()**,"&(
*)%( ,&$%&2(1( %"&%2"9$04( gK( R/2,( "YL$&2)(( /$,( 7""(( ,/)J(( &)(
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#%)92;"( 1));( $##%)O2'$&2)(,( &)( )7,"%9";( ;$&$( P=2O&";(Z(
M)/%"%4( ?WWGQ( $(;( *)00)J,( *%)'( $( ,$'#02(1IJ2&/I
%"#0$."'"(&(');"0(PV(;)J(Z(R)1$()4(?WAFQK(R)(.)'#$%"4($(
,$'#02(1IJ2&/)L&I%"#0$."'"(&( ');"0( J)L0;( %"&%2"9"( $00(
2&"',(2(($(*%""(%".$00(&$,6(2%%",#".&29"()*(&/"((L'7"%()*(2&"',(
&)( 7"( %"&%2"9";K( R/2,( .)L(&"%,( $.&L$0( )7,"%9";( ;$&$K( R/"(
("&h9$0L"4( c&4( /$,( $( .)(,&$(&4( e4( J/2./( 2,( $( P.L%%"(&0-(
L(.)(,&%$2(";Q( *%""( #$%$'"&"%( &/$&( $00)J,( &/"( 2(2&2$0( ei$(
,".)(;,(&)(7"(J2&/)L&(%"&%2"9$0($(;(2,(&/"%"*)%"(%"0$&";(&)(&/"(
'$O2'L'(*2%,&(%".$00(0$&"(.-K(
V&( 2,( $,,L'";( &/$&( &/"( #$%&2.2#$(&( $2',( &)( )7&$2(( &/"(

'$O2'$0( #),,270"( ("&h9$0L"K( R/$&( 2,( &/"( #$%&2.2#$(&( ,&)#,(
,"$%./(J/"((c&(2,('$O2'$04(2K"K4(;c&i;_P&Q(d(FK((

(
;c&i;&(d(7:Q"IQP&IgQ({($(
(
&,&)#(d(IQI?:(P$i7:QQ(f(g( ( P]Q(

(
3L7,&2&L&2(1(&,&)#(*)%(&(2((PEQ($(;(,)092(1(*)%(_,&)#(129",N((

(
_,&)#(d(:({($i7Q(

(
R/"(;"%29$&2)(()*( &/"("O2&( 0$&"(.-( *L(.&2)(( 2,(7$,";()(( &/"(
$;;2&2)($0(.),&()*( %"&%2"92(1( &/"(("O&( 2&"'(.)'#$%";( &)( &/"(
%"0$&29"(7"("*2&()*(/$92(1(%"&%2"9";(&/$&(2&"'N(

(
.),&P&(f(T&Q({(.),&P&Q(d(7ic&(
(
$P&(f(T&Q({($&(d(7iPe(f(7_,&)#({($&,&)#Q(

((

QQQ?PPP

QP

? #$ $$!!
%

$!
%

L
N

stop
exit

stopstop
exit

stopLnabNQa
bt

atbNQa
bt

(

(
^21L%"(?K(@'#2%2.$0(;$&$(*%)'(!)L1/"%&-($(;(B$%72,)((

PEFFAQ(J2&/(*2&,()*(&/"(7",&(*2&&2(1(');"0(PME(d(KWGXQK(@%%)%(
7$%,(%"#%","(&(&/"(,&$(;$%;("%%)%()*(&/"('"$(,K(

^21L%"(?(,/)J,(&/"(*2&,()*(&/2,(');"0(&)(&/"(;$&$(7-(B$%72,)((
"&( $0K( PEFFWQK( R/"( ');"0( #%";2.&,( &/$&( J/"(( &/"( .),&(
2(.%"$,",( P)%( 7"("*2&( ;".%"$,",Q( &/"( ,"$%./(J2&/( &"%'2($&"(
,))("%K( R/","( #%";2.&2)(,( $%"( &",&";( 2(( &/"( "O#"%2'"(&(
;",.%27";(("O&K(

Experiment 

Methods 
Participants 
^)%&-I*29"(#$%&2.2#$(&,(J"%"(%".%L2&";(*%)'(&/"(8(29"%,2&-()*(
<$%-0$(;( ,L7S".&( #))0( $(;( %"."29";( #"%*)%'$(."I7$,";(
.)'#"(,$&2)(( P\?`( )%( \EFQ( *)%( #$%&2.2#$&2)(( 2(( &/"( ,&L;-K(
RJ)( #$%&2.2#$(&,(J"%"( %"')9";( *%)'( $($0-,2,( ;L"( &)( ;$&$(
.)00".&2)(("%%)%,K(
(
Design and materials 
R/"( ;",21(( L,";( $( ;"0$-";( *%""( %".$00( #$%$;21'( J/"%"7-(
#$%&2.2#$(&,( ,&L;2";( J)%;( 02,&,4( .)'#0"&";( ;2,&%$.&)%('$&/(
#%)70"',4($(;(9"%7$00-(%".$00";(J)%;,(*%)'(&/"('),&(%"."(&(
02,&( L,2(1( $( +>I7$,";( '2.%)#/)("K( R/"( ,",,2)(( J$,(
#%","(&";(2((&J)(70).6,K(R/"(*2%,&(J$,($(7$,"02("(70).6()*(?X(
&%2$0,( J2&/( &/"( ,$'"( #$-)**( ,&%L.&L%"( $.%),,( #$%&2.2#$(&,(
Pf?FF( *)%( $( .)%%".&( %".$004( I?FF( *)%( "$./( ,".)(;( ,#"(&( $(;(
2(.)%%".&(%".$00QK(V((&/"(,".)(;(70).64(.),&($(;(%"J$%;(J"%"(
9$%2";( 7"&J""(( #$%&2.2#$(&,N( )("( 1%)L#( J$,( 129"(( $((
2(.%"$,"( 2(( %"J$%;( Pf?`FQ( *)%( $( .)%%".&( %".$00( $(;( $(
,2'L0&$(")L,(;".%"$,"(PI`FQ( 2(("$./(,".)(;(,#"(&($(;("$./(
2(.)%%".&(%".$00T(&/"()&/"%(1%)L#(J$,(129"((&/"(2(9"%,"(Pf`F(
%"J$%;,4(I?`F(.),&QK(R/"(%"&%2"9$0(#%)&).)0(*)00)J";(&/"(,"0*I
&"%'2($&";( ,"$%./( #$%$;21'( L,";( 7-( !)L1/"%&-( $(;(
B$%72,)((PEFFAQN(#$%&2.2#$(&,(J"%"( 2(,&%L.&";( &/$&( &/"-(/$;(
L(02'2&";( &2'"( &)( %".$00( J)%;,( $(;( .)L0;( "(;( &/"( %".$00(
#"%2);( $&( $(-( &2'"( 7-( #%",,2(1( &/"( ,#$."7$%K( R/"(
"O#"%2'"(&"%(')(2&)%";( &/"(#$%&2.2#$(&j,(%".$00($(;(L#;$&";(
&/"( #$%&2.2#$(&j,( ,.)%"( 2(( %"$0I&2'"4( #%)92;2(1( *"";7$.6( &)(
&/"( #$%&2.2#$(&( )(( ,.%""(K(R/2%&-I&J)( 02,&,( )*(')(),-00$72.(
J)%;,( J"%"( %$(;)'0-( .%"$&";( *)%( "$./( #$%&2.2#$(&K( :2,&(
0"(1&/( J$,( 9$%2";( 7"&J""(( `4( A4( W4( $(;( ??( J)%;,( $(;(
#%","(&$&2)(()%;"%(J$,(%$(;)'2w";(&)(#%"9"(&(,&%$&"1-(L,"K(
(
Procedure 
+$%&2.2#$(&,(J"%"( 2(*)%'";( &/"-(J)L0;( .)'#0"&"( $( 9"%7$0(
%".$00( &$,6K(R/"(,&L;-(J)%;,(J"%"(,"YL"(&2$00-(#%","(&";( 2((
&/"(."(&"%()*( &/"(.)'#L&"%(')(2&)%(*)%(E(,("$./K(^)00)J2(1(
"$./( ,&L;-( 02,&4( $( ;2,&%$.&)%( &$,6( J$,( #%","(&";4( J/2./(
.)(,2,&";( )*( &J)( ,2'#0"4( &2'";('$&/( #%)70"',K( +%)70"',(
.)(&$2(";(&/%""(;212&,($(;(&J)()#"%$(;,(P"K1K4(](k(E(f(?(d(b(Q(
$(;($0J$-,(%",L0&";( 2(($(,2(10"I;212&($(,J"%(P;212&,(FIWQK(H(
YL",&2)(('$%6(#%)'#&";( &/"(#$%&2.2#$(&( &)("(&"%($(($(,J"%K(
>)'#)("(&,( )*( &/"( '$&/( #%)70"'( J"%"( #%","(&";(
,"YL"(&2$00-( *)%( ?( ,( "$./K( H*&"%( &J)( '$&/( #%)70"',4(
#$%&2.2#$(&,( J"%"( #%)'#&";( &)( 7"12(( 9"%7$00-( %".$002(1(
J)%;,(*%)'(&/"('),&(%"."(&(,&L;-(02,&($(;(#%",,(&/"(,#$."7$%(
J/"(( &/"-( J"%"( *2(2,/";( %"&%2"92(1K( H*&"%( &/"( ,#$."7$%(
#%",,4( #$%&2.2#$(&,( J"%"( #%)'#&";( &)( #%",,( &/"( ,#$."7$%(
$1$2((&)(7"12((&/"(("O&(,&L;-(02,&(J/"((&/"-(J"%"(%"$;-K(
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^21L%"(EK(R)&$0(&2'"($(;("O2&(0$&"(.-(*L(.&2)(,(*)%(&/"(7$,"02("(70).6(P7)&/(1%)L#,(.)'72(";Q($(;(&/"(,".)(;(70).6(P"$,-(
$(;(/$%;(.)(;2&2)(QK(U(0-(&/"(0$,&([(&%2$0,()*("$./(70).6(J"%"(L,";K(:2(",(%"#%","(&(&/"(7",&I*2&&2(1(');"0(PME(d(KWAQ(

(
(
Coding 
8,2(1( +"((R)&$0M".$00( $L;2)I$($0-,2,( ,)*&J$%"4( 9"%7$0(
%"&%2"9$0( ;$&$( J"%"( %"&%),#".&29"0-( $($0-w";( J2&/(
'2002,".)(;($..L%$.-K(RJ)(.);"%,( 2(;"#"(;"(&0-(.);";N(?Q(
$00(J)%;,( &/$&(J"%"( #%);L.";( 7-( "$./( #$%&2.2#$(&( )(( "$./(
&%2$04(EQ(&/"(&2'"(,&$'#,()*(&/"(9"%7$0()(,"&()*($00(1"("%$&";(
J)%;,4($(;(]Q(&/"(&2'"(,&$'#,()*(%"&%2"9$0(&"%'2($&2)((P2K"K4(
&2'",( $,,).2$&";(J2&/( ,#$."7$%( #%",,",QK( ^%)'( &/","( ;$&$4(
(L'7"%( )*( 2&"',( %"&%2"9";4((L'7"%( )*( 2(&%L,2)(,( 2(.0L;2(1(
%"#"&2&2)(,( $(;( 2(&%$I( $(;( "O&%$I02,&( *$0,"( $0$%',4( 2(&"%I
%"&%2"9$0(&2'",4($(;("O2&(0$&"(.2",(P2K"K4(&2'"(7"&J""(("(;()*(
*2($0( J)%;( %"&%2"9";( $(;( %"&%2"9$0( &"%'2($&2)(Q( J"%"(
.$0.L0$&";K( @$./( ,L7S".&v,( &%2$0,( J"%"( $9"%$1";( 7"*)%"(
,L''$%2w2(1($.%),,(,L7S".&,K(

Results 
H( EOE( '2O";( ;",21(( 2(.0L;";( $(( 2(2&2$0( 7$,"02("( .)(&%)0(
"(92%)('"(&( Pf?FF( .)%%".&( %".$004( I?FF( ,".)(;( ,#"(&( )%(
2(.)%%".&( %".$00Q( $(;( $( ,".)(;( #$-)**( "(92%)('"(&( 9$%2";(
7"&J""((,L7S".&,(P"$,-N(f?`F4(I`FT(/$%;N(f`F4(I?`FQK(!L"(&)(
,&""#(0"$%(2(1(.L%9",(2(("$./(("J("(92%)('"(&4()(0-(&/"(0$,&(
[( )*( &/"( ?X( &%2$0,( 2(( "$./( 70).6( J"%"( 2(.0L;";( 2(( &/"(
*)00)J2(1(%"#"$&";('"$,L%",(H_UcH($($0-,",K(
R/"( ("&( #)2(&,( P%"J$%;,( *)%( .)%%".&( %".$00,( 0",,( &/"(

#"($0&2",(*)%(2(.)%%".&(%".$00,($(;(&2'"(,#"(&Q(J"%"(L#;$&";(
2(( %"$0I&2'"( *)%(#$%&2.2#$(&,( &)(L,"( $,( *"";7$.6( &)(')(2&)%(
&/"2%( )J(( %"&%2"9$0( #"%*)%'$(."K( H,( #%";2.&";4( ("&( #)2(&,(
"$%(";(2(("$./(70).6(2(.%"$,";()9"%(&2'"(l^P?4G?Q(d(XKAAE4(#(
m( KF?]4( C#E( d( K?GEn( $(;( &/"( #$%&2.2#$(&,( *)%( J/)'( &/"(
%"J$%;,( 2(.%"$,";( $(;( .),&,(;".%"$,";( "$%(";(')%"( #)2(&,(

)9"%$00( l^P?4G?Q(d(?`KE]F4(#(m( KFF?4(C#E(d( KEA?nT(J/20"(("&(
#)2(&,( 2(( &/"( 7$,"02("( 70).6( J"%"( "YL29$0"(&( $.%),,(
.)(;2&2)(,( P"$,-N(<(d( IE]KE?G4(3@(d(G?KFGFT(/$%;N(<(d( I
]`KAW`4(3@(d(GFKFWAQ4(#"%*)%'$(."(,#02&,(;%$,&2.$00-( 2(( &/"(
,".)(;( 70).6( P"$,-N(<( d( E[?K[G`4( 3@( d( `GKWX`T( /$%;N( I
?X?KF[F4(3@(d(`]KAFXT(.)(;2&2)((O( &2'"N(][K[F]4(#(m( KFF?4(
C#E(d(KG[XQK((
R)&$0( (L'7"%( %".$00";4( 2(.0L;2(1( 2(&%L,2)(,( $(;(

%"#"&2&2)(,4(;2;(()&(9$%-(;L"(&)(&2'"4(#$-)**("(92%)('"(&4()%(
$((2(&"%$.&2)(()*(&/"(&J)(l.)(;2&2)(,N(^P?4G?Q(d?KX??4((,4(C#E(
d( KF][T( &2'"N(^P?4G?Q(d( ]K]X?4( (,4(C#E(d( KFAXT( .)(;2&2)((O(
&2'"N(^P?4G?Q(d(]K[G]4((,4(C#E(d(KF[XnK(
R"'#)%$0('"$,L%",(J"%"(,"(,2&29"( &)( 0"$%(2(1($.%),,( &/"(

"O#"%2'"(&N( &)&$0( &2'"( $(;( "O2&( 0$&"(.-( 7)&/( 2'#%)9";(
,21(2*2.$(&0-( *)%( $00( #$%&2.2#$(&,( l&)&$0( &2'"N( ^P?4( G?Q( d(
EEK?[X4(#(m(KFF?4(C#E(d(K]`?T("O2&(0$&"(.-N(^P?4G?Q(d(?EKW`4(#(
m( KFF?4( C#E( d( KEGFnK(R/2,( #"%*)%'$(."( 2'#%)9"'"(&( .$'"(
#%2'$%20-( *%)'( &/"( #$%&2.2#$(&,( *)%( J/)'( &/"( %"J$%;,(
;".%"$,";( $(;( &/"( .),&,( 2(.%"$,";N( &/"( 2(&"%$.&2)((7"&J""((
&2'"($(;(#$-)**(,&%L.&L%"(J$,(,21(2*2.$(&(*)%(7)&/('"$,L%",(
l&)&$0( &2'"N( ^P?4G?Q( d( EWKFFW4( #( m( KFF?4( C#E( d( KG?GT( "O2&(
0$&"(.-N(^P?4G?Q(d(WKW[E4(#(m(KFF]4(C#E(d(K?WXn4(7L&(&/"('$2((
"**".&,()*(.)(;2&2)((J"%"(()&(,21(2*2.$(&(l&)&$0(&2'"N(^P?4G?Q(
d(?K?][4((,4(C#E(d(KFEAT("O2&(0$&"(.-N(^P?4G?Q(d(EK`]A4((,4(C#E(
d(KF`[nK(
^21L%"(E(,/)J,( &/"(;$&$()(( &/"(%"&%2"9$0( 0$&"(.2",(7%)6"((

;)J((7-(70).6( $(;( .)(;2&2)(K(R/"( ,)02;( 02(",( $%"( &/"(7",&(
*2&,()*(&/"(');"0K(R/"(#%";2.&2)((J$,(&/$&(2(.%"$,"(2((.),&()%(
;".%"$,"(2((7"("*2&(J)L0;(0)J"%(&/"(0$&"(.2",K(>)'#$%";(&)(
&/"(7$,"02("(.)(;2&2)(4('$62(1(&/"(&",&(/$%;"%(7-(2(.%"$,2(1(
&/"( .),&( $(;( ;".%"$,2(1( &/"( 7"("*2&( ;2;( 2(;"";( 0)J"%( $00(
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%"&%2"9$0( 0$&"(.2",K(_"9"%&/"0",,4( &/"()##),2&"('$(2#L0$&2)(4(
;".%"$,2(1( &/"( .),&( J/20"( ,2'L0&$(")L,0-( 2(.%"$,2(1( &/"(
7"("*2&4(;2;(()&(./$(1"( &/"( 0$&"(.2",(.)'#$%";( &)(7$,"02("K(
="($;;%",,(&/2,($,-''"&%-(2((&/"(1"("%$0(;2,.L,,2)(K(

General Discussion 
R/"(#L%#),"()*(&/2,(#$#"%(J$,(&)(;"%29"($(;(&",&($(,&)##2(1(
'"./$(2,'( &/$&( J$,( ')&29$&";( 7-( $( %$&2)($0( $($0-,2,( )*(
;".2,2)(('$;"( J2&/( "9"%-('"')%-( ,$'#0"K( R/"( %",L0&2(1(
.0),";I*)%'("O#%",,2)(()*( &/"("O2&( 0$&"(.-( *L(.&2)(( *2&,( &/"(
;$&$( #%","(&";( 7-( !)L1/"%&-( $(;( B$%72,)(( PEFFAQ( $(;(
'$6",( &",&$70"(#%";2.&2)(,($7)L&( &/"( 2(*0L"(."()*(')("&$%-(
#$-)**( ,&%L.&L%"( )(( %"&%2"9$0( 0$&"(.2",( $(;( &/"( ;".2,2)(( &)(
,&)#('"')%-(,"$%./K(
R/"( #%";2.&2)((J$,( &/$&('$62(1( 2&( /$%;"%( &)( 1$2(( #)2(&,(

J)L0;(0)J"%(&/"(%"&%2"9$0(0$&"(.2",(;L"(&)(/21/"%(#%)7$7202&-(
)*(,&)##2(14(J/"%"$,(&/"(%"9"%,";(J)L0;(7"(&/"(.$,"(J/"((2&(
J$,( "$,2"%( &)( 1$2(( #)2(&,K( V(&"%",&2(10-4( )(0-( &/"( *)%'"%(
#%";2.&2)((J$,( 7)%("( )L&( 7-( &/"( ;$&$( $(;(');"0( *2&,K(R/"(
%",L0&,('21/&( 7"( ,""(( $,( $(( 2(,&$(."( )*( 0),,( $9"%,2)(( 7-(
,L11",&2(1( J/$&( .)L0;( 7"( .$00";( $(( x2&I$2(v&I7%)6"y(
/-#)&/",2,K(:)),"0-(#L&4(J/"(( 2&( 2,(/$%;"%( &)()7&$2((#)2(&,4(
&/"( .)1(2&29"( ,-,&"'( %"$;SL,&,( 2&,"0*( &)( $9)2;( 0),2(1( &))(
'L./K(B)J"9"%4(J/"(( &/"("(92%)('"(&(./$(1",( &)(,L./($((
"O&"(&(&/$&(2&(7".)'",("$,2"%(&)(1$2((#)2(&,4(&/"(,-,&"'(J200(
()&(.$027%$&"(2&,"0*(&)(&/"(('2(2'2w"(&/"(1$2(,K(B"(."4(2*(&/"(
.)1(2&29"(,-,&"'(2,(()&(0),2(1(7-(J/$&(2&(;)",(P2K"K4(2&I$2(v&I
7%)6"Q( &/"(( &/"%"( 2,( ()( %"$,)(( *)%( $;SL,&2(1( &/"( .)1(2&29"(
#$%$'"&"%(P2K"K4(;)(v&I*2OI2&QK(
H(;"%,)(( $(;( .)00"$1L",(#%)92;";( $( %$&2)($0( $($0-,2,()*(

&/"(*%""(%".$00(&$,6(PH(;"%,)((Z(<20,)(4(?W[WT(H(;"%,)((Z(
3./))0"%4(?WW?Q4( 2((J/2./("$./( 2&"'(/$,($(("";(#%)7$7202&-(
$,,).2$&";( J2&/( 2&K( U(0-( &/),"( 2&"',( $%"( %"&%2"9";( J/),"(
("";( #%)7$7202&-( 2,( 0$%1"%( &/$(( $( ."%&$2(( .%2&"%2)(4( J/2./(
2(.%"$,",( J2&/( &/"( &2'"( ,#"(&( 2(,#".&2(1( $(( 2&"'( 7"*)%"(
$.."#&2(1()%(%"S".&2(1(2&K(H(;"%,)(($(;(<20,)((P?W[WQ(J"%"(
$70"(&)(.$#&L%"($((L'7"%()*(7$,2.('"')%-(#/"()'"($(L,2(1(
&/"2%( $;$#&29"( #"%,#".&29"K( B)J"9"%4( &/"2%( $($0-,2,( )(0-(
#%)92;";( &/"( &2'"()*( &/"( 0$,&( %"&%2"9";( 2&"'($(;(()&()*( &/"(
"O$.&( &2'"( )*( &"%'2($&2(1( '"')%-( ,"$%./K( H( #),,27202&-(
J)L0;( 7"( &)( L,"( &/"( .%2&"%2)(( &)( ",&2'$&"( &/"( &"%'2($&2)((
&2'"4(7L&(&/2,(J)L0;(%"YL2%"(6()J2(1(&/"(*L(.&2)($0(*)%'()*(
/)J( &/"( .%2&"%2)(( ./$(1",( ;L%2(1( 2&"'( 2(,#".&2)(K(
_"9"%&/"0",,4( &/"( ,L..",,( )*( H(;"%,)(v,( %$&2)($0( $($0-,2,(
$(;()L%(.L%%"(&(%",L0&,(J$%%$(&,(2(9",&21$&2(1(/)J(&/","(.$((
7"(.)'72(";($(;(J)L0;($00)J($($0-w2(1( &/"(.)(,"YL"(.",(
)*(;2**"%"(&(%"&%2"9$0(#%).",,",()((,&)##2(1(%L0",K(="( 0"$9"(
,L./($(("(;"$9)%(*)%(&/"(*L&L%"K(
UL%( $($0-,2,( ,L11",&,( &/$&( ,&)##2(1( %L0",( ,/)L0;( #0$-( $(

')%"(."(&%$0(%)0"(2((&/"(;"9"0)#'"(&($(;(&",&2(1()*(');"0,(
)*('"')%-K(R/"( ./)2."()*( ,&)##2(1( %L0"(/$,('$S)%( 2'#$.&(
)(( &/"( )9"%$00( ');"0( 7"/$92)%K( U792)L,0-4( )("( )*( &/"(
L0&2'$&"(1)$0,()*('"')%-(&/")%-(2,(&)(./$%$.&"%2w"('"')%-(
%"&%2"9$0(2((1"("%$04(7)&/(2(($(;()L&()*(&/"(0$7K(5-(*).L,2(1(
')%"()((/)J(#")#0"(&"%'2($&"('"')%-(,"$%./4(J"(.$((7%2(1(
)L%(');"0,(')%"(2((02("(J2&/(&/"(&-#"()*(%"&%2"9$0(&$,6,(&/$&(

./$%$.&"%2w"( %"&%2"9$0( &$,6,( )L&,2;"( )*( &/"( *%""I%".$00(
#$%$;21'K(
^L&L%"(J)%6(.)L0;($;;%",,($((L'7"%()*(%"'$2(2(1( 2,,L",(

%"1$%;2(1( &/"(');"0K(^2%,&4( 2(()L%( "O#"%2'"(&(J"( &%"$&";( $(
,2(10"( 2(&%L,2)(( $,( "YL$00-( .),&0-( $,( )("( ,".)(;( 2(( &/"(
%"&%2"9$0(#/$,"K(V&('$-(%"YL2%"(')%"()%(0",,(&/$(()("(,".)(;(
&)(L&&"%($((2(&%L,2)((;"#"(;2(1()((J)%;(./$%$.&"%2,&2.,(,L./(
$,( J)%;( *%"YL"(.-( $(;( J)%;( 0"(1&/K( H0&/)L1/( 2(&%L,2)(,(
&"(;( &)( 7"( %$%"( 2(( *%""( %".$004( $,,",,2(1( &/"( .),&( )*( $((
2(&%L,2)((J)L0;(7"()("($%"$()*(*L%&/"%(2(YL2%-K(3".)(;4($(;(
%"0$&";(&)(&/"(*2%,&4(:$'2(1(PEFFWQ(,L11",&";(&/$&(*%""(%".$00(
&"%'2($&",(J/"((&/"(,$'"(J)%;(1"&,(%"&%2"9";K(B)J"9"%4($((
2'#0"'"(&$&2)(()*(&/2,(%L0"(;2;(()&(#%);L."(&/"("O2&(0$&"(.-(
.L%9"( ,""(( 2(( &/"( ;$&$K(H( *)%'$0(');"0( .)'#$%2,)(( .)L0;(
"0L.2;$&"( &/"( ,&$&L,( )*( $( %"#"&2&2)(( $,( "2&/"%( $(( 2(2&2$&)%( )*(
,"$%./( &"%'2($&2)(,()%($(.)9$%2$&"K(R/2%;4( 2(()L%(,L7S".&29"(
9$0L"( *L(.&2)(4( &/"( 9$0L"( )*(e( 2,( $%72&%$%-K( V(( )L%( .L%%"(&(
.)(."#&2)(4(J"(&/2(6(&/$&(e('21/&(7"(%"0$&";(&)(,L./(*$.&)%,(
$,(')&29$&2)(( &)( %"&%2"9"( )%( &2'"( #%",,L%"K( ^2($00-4( 2(( &/"(
$%"$( )*( &$,6( 2(&"%0"$92(14(+$-("4(!L11$(( $(;(_"&/( PEF??Q(
$;;%",,";( ,&)##2(1(7"/$92)%()(("$,-($(;(;2**2.L0&( &$,6,K(H(
*)%'$0( ');"0( J$,( ;"9"0)#";( 7$,";( )(( *)%$12(1( &/")%-4(
J/2./(*2&&";(&/"(;$&$(%"'$%6$70-(J"00K(UL%(%$&2)($0($($0-,2,(
.)L0;( 7"( .)'#$%";( &)( ,&)##2(1( %L0",( 7$,";( )(( *)%$12(1(
&/")%-(P.*K(=206"4(BL&./2,)(4(R);;(Z(>w2"(,6)J,624(EFFWQK(
V(9",&21$&2(1( ,&)##2(1( %L0",( /$,( 2'#)%&$(&( 2'#02.$&2)(,(

*)%(L(;"%,&$(;2(1(&$,6,()&/"%(&/$((*%""I%".$00K(^)%("O$'#0"4(
J2&/2((&/"('";2.$0(;".2,2)(('$62(1(02&"%$&L%"4(2&(2,(.0"$%(&/$&(
#/-,2.2$(,( "(&"%&$2(( .),&,( J/"(( ;"&"%'2(2(1( J/"(( &)(
&"%'2($&"( &/"2%( %"&%2"9$0( )*( ;2$1(),&2.( /-#)&/",",( *%)'(
'"')%-(P="7"%("&($0K4(?WW]QK(<)%"(%"."(&0-4(!)L1/"%&-($(;(
BL(&"%( PEFF]$T( EFF]7Q( ,/)J";( &/$&( &/"( #"%."29";(
#%)7$7202&-()*($(-(#$%&2.L0$%("9"(&(P$(/-#)&/",2,Q(2,(#$%&2$00-(
;"#"(;"(&( )(( &/"( (L'7"%( )*( $0&"%($&29",( %"&%2"9";( *%)'(
'"')%-4( J/2./( J$,( $**".&";( 7-( &2'"( #%",,L%"K( R/2,(
,L11",&,(&/$&(J/"(()("(;".2;",(&)(&"%'2($&"('"')%-(,"$%./(
J200( $**".&( /2,( )%( /"%( #"%."29";( #%)7$7202&-( )*( $( #$%&2.L0$%(
/-#)&/",2,K( =2&/2(( &/"( *%"YL"(.-( SL;1'"(&( 02&"%$&L%"4(
5%)J(( $(;( .)00"$1L",( P5%)J(4( ?WW`T( ?WWAT( 5%)J(( Z(
32(.0$2%4( ?WWWT( >)(%$;4( 5%)J(4( Z( >$,/'$(4( ?WW[Q( /$9"(
,/)J((&/$&(#$%&2.2#$(&,v(%",#)(,",(&)(,L%9"-(YL",&2)(,()*&"((
$%"($(')()&)(2.$00-( 2(.%"$,2(1( *L(.&2)(()*( &)&$0( &2'"(,#"(&(
%"&%2"92(1( ,"$%./2(1( '"')%-K( R/L,4( &/"( '$1(2&L;"( )*(
#$%&2.2#$(&,v( *%"YL"(.-( SL;1'"(&,( )(( 7"/$92)%$0( ,L%9"-(
YL",&2)(($2%",( ,/)L0;( 7"( $**".&";( 7-(J/"(( &/"-( &"%'2($&"(
,"$%./()*( 0)(1I&"%'('"')%-K(H0&/)L1/( &/"($7)9"( &$,6,($%"(
$00( YL2&"( ;2,&2(.&4( &/"-( ,"%9"( &)( L(;"%,.)%"( &/"( L72YL2&-( )*(
,&)##2(1( %L0",( 2(( %"$0IJ)%0;( %"&%2"9$0( &$,6,K( R/"%"*)%"4(
L(;"%,&$(;2(1( /)J( #")#0"( &"%'2($&"( '"')%-( ,"$%./4( $(;(
&/"(#,-./)0)12.$0(9$%2$70",(&/$&($**".&(,"$%./(&"%'2($&2)(4(2,(
#$%$')L(&(&)(&/"(;"9"0)#'"(&()*(.)'#%"/"(,29"(');"0,()*(
'"')%-( %"&%2"9$0( $(;( &)( L(;"%,&$(;2(1( &/"( ;-($'2.,( )*(
'"')%-(%"&%2"9$0()L&,2;"(&/"(0$7K(
V(( ,L''$%-4( 2(( &/2,( #$#"%(J"( )7&$2(";( *L%&/"%( "92;"(."(

*)%(&/"(92"J(&/$&(#$%&2.2#$(&,($%"('$62(1($;$#&29"(./)2.",(&)(
,"$%./(&"%'2($&2)((&/$&($%"(7$,";()(($(.),&I7"("*2&($($0-,2,K(
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Abstract 

On the basis of findings from an experiment with 6-year-old 
children we show a proposal for a cognitive model of 
representational shifts in learning the number line. The 
findings from the experiment provide information on 
number line estimation - that is, translating a number to a 
spatial position on a number line. Though the experiment is 
a replication of an experiment done by Siegler and Ramani 
(2008) where they concluded with a logarithmic to linear 
shift, we could not find logarithmic representation of the 
results from any of our subjects. What we find is anchor 
points as important for improvement on learning the number 
line.  

K eywords: Learning; numerical magnitudes; number line; 
dynamic decision making; memory; cognitive architectures; 
ACT-R. 

Introduction 
In this paper we present a model of the learning process 
involved when dealing with the estimation of what position 
a number value has on a number line. 

The learning sequence involved is the one that Siegler 
calls the logarithmic-to-linear shift in representations of 
numerical magnitude (Siegler, Thompson, & Opfer, 2009).  

Siegler et al (2009) show that children undergo parallel 
changes from logarithmic to linear representation on 
numerosity estimation tasks. 

 
Parallel Changes 

 
Figure 1. The logarithmic to linear shift. From Siegler, 
Thompson, & Opfer, (2009), Copyright 2009 Wiley. 
Reprinted with permission.  
 

The example we have reused from their article in figure 
1 shows long-term changes in estimation of whole number 
magnitudes. (A) On 0</TT( *'/U!"( #$%!&'( ($%)!"*+",%!"&-(
estimates were better fit by the logarithmic function than 
by the linear, whereas second-*"+)!"&-( !&,$.+,!&( /!"!(
better fit by the linear function than by the logarithmic; (B) 

On 001000 number lines, second-*"+)!"&-( !&,$.+,!&(/!"!(
better fit by the logarithmic function than by the linear, 
whereas fourth-*"+)!"&-( !&,$.+,!&( /!"!( 1!,,!"( 2$,( 13( ,4!(
linear function than by the logarithmic. 

The explanation by Siegler et al. was challenged by 
others (Barth & Paladino, 2011). They point out that one of 
the challenges of putting a number on the number line is to 
have a sense of proportion: what exactly is the length of a 
single unit? This is not a trivial question for children that 
do not yet have a sense of what division is.  

 Our own earlier work also showed that a simple Weber 
explanation of the learning sequence of the logarithmic to 
linear shift does not hold as a complete explanation (Lende 
& Taatgen, 2011). We proposed that a possible account for 
the transition towards a linear representation is that 
children learn the location of particular points on the 
number line. Schneider et al. (2008) showed that the 
distribution of fixations on the number line for all three 
groups of first grade, second grade and third grade children 
are concentrated around beginning, midpoint and ending of 
the number line, suggesting that at least these three points 
are represented separately (Figure 2). 

Distr ibution of fixations 
 

 
Figure 2: Distribution of fixations on the number line (left: 
first grade; middle: second grade; right: third grade). From 
Schneider et al. (2008), Copyright 2008 Elsevier. 
Reprinted with permission.  
 

In addition, their work shows that from grade 1 to 3 
children tend to increasingly focus on the correct positions 
on the number line while solving the estimation tasks. . 

Because of the mentioned challenges to the explanation 
of Siegler et al. and that it is hard to see from aggregated 
data what is going on with individuals; we have designed 
our experiment as a replication of Siegler and Ramani 
(2008) with the goal to look at individuals and the goal to 
build a model.  

The number line estimation task 
The experiment is a replication of a study by Siegler and 
Ramani  (2008) among preschool children from low 
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income families. Siegler and Ramani found a striking 
improvement in number-line performance in the children 
after they had played a board game involving counting, but 
not on a board game involving colors. 

The Outline of the exper iment 
The experiment consisted of four elements: a pretest, a 
training program of two weeks, a posttest and finally a 
second post test to measure long-term learning. We will 
not discuss the results of the second post test here. 
After the pretest, the sample group was provided with the 
same training program as Ramani and Siegler used for 
their test of preschoolers (Siegler & Ramani, 2008). 
Children met one-on-one with an experimenter for four 15-
minute sessions within a 2-week period. After the 2 weeks 
the first posttest was conducted. Then after seven new 
weeks a second posttest was conducted. All tests are the 
same. 

The Method of the three tests 
Participants 
Participants were 39 Norwegian children in their first year 
of school, so-called preschool, with no experience with 
number lines. All of them are born in 2004 and recruited 
from the same municipality, Gjesdal. 17 of them are 
recruited from Solås School, 7 from Dirdal School and 15 
from Bærland School. The population at these schools is 
mixed, but at Bærland with a larger representation of 
bilingual children, Norwegian not being their mother 
tongue. 21 of the participants participated in the 
experiment while the rest of them acted as a control group.  
 
Materials 
Stimuli for the number line estimation task were two stacks 
of 10 sheets of paper, each with a 25 cm long line arranged 
horizontally +5"6&&( ,4!( 7+*!'(/$,4( 89-( :;&,( 1!#6/( ,4!( #!2,(
!%)( 62( ,4!( #$%!'( +%)( 8<9-( :;&,( 1!#6/( ,4!( "$*4,( !%)=( >(
number from 1 to 10 inclusive was printed approximately 3 
cm above the center of the line, with each number printed 
on one of the 10 sheets in each stack. The order of the 
sheets in the stack was randomized.  
 
Procedure 
The test is conducted as a teacher to student task: 

 The teacher or student pulls a sheet from the stack. 
 The t!+54!"(&+3&?(@Here is the number [number that is 

on the pulled sheet]. And here you see a line that 
starts with 0 and ends at 10. Where on this line is the 
correct position for the number you see? Put a mark 
/$,4(36;"(7!%5$#A= 

 The student makes a mark where he or she thinks the 
number should be positioned. There is no time 
constrain for the subject to fulfill the task. 

The task is carried out with all the sheets in the first 
stack. Then the task is continued in the same way with the 
second stack. In this way the numbers from 1 to 10 
inclusive were presented twice in random order, with all 

numbers presented once before any number was presented 
twice. No feedback was given, only general praise and 
encouragement.  

Method of the Board Game 
In the training program between the pretest and the first 
posttest the subjects played a board game using a play 
button to move along a line of squares from square to 
square.  
 
Materials 
The board game for the experiment group shown in figure 
3 consists of a number line with numbers in colored 
squares from 1 to 10 with a blank square as starting 
position for the game.  
 

 
Figure 3. The Game board for the experiment group 
 
Beneath the number line there is a circle with a spinner. 
(The spinner is not shown on the figure) In each quarter of 
the circle the numbers one or two is printed. 
 
The board game for the control group consists of a similar 
line of squares, but with no numbers as shown in figure 4.
 

 
Figure 4. The Game board for the control group 
 
Beneath the line of colored squares there is a circle with a 
spinner. (The spinner is not shown on the figure) Each 
quarter of the circle is painted with different colors 
corresponding to the colors used in the line of squares. 
 
Procedure 
The subjects trained with their board games for 15 minutes 
twice a week for 2 weeks.  
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When a subject of the experiment group turns the 
spinner the player moves his play button as many squares 
as the spinner tells (1 or 2 steps) while saying out loud the 
numbers in the squares he steps on. 

When a subject of the control group turns the spinner the 
player moves his play button to the first square on the line 
of squares that is painted with the same color as given by 
the spinner. 
 
Result and discussion 
Figure 5 and 6 show the mapping between numbers and 
positions on the number line that we found in the pretest 
and the first posttest of the experiment. Performance is on 
average reasonably good.   

It is surprising that where the curve differs from linear, it 
is not towards a logarithmic curve, but in the opposite 
direction.. 

 
Figure 5. The figure shows the average result of the control 
group positioning the numbers on the number line. Points 
are plotted with error bars. 
 

 

 
Figure 6. The figure shows the average result of the 
experiment group positioning the numbers on the number 
line. Points are plotted with error bars. 

 

The fact that the results are neither linear nor logarithmic 
is surprising. Inspections of individual subjects (see Figure 
8 later in the paper) show that individual estimates have 
strong linear trends, only not with the right slopes. This 
suggests that subjects use some sort of counting strategy, 
but with a counting unit that is not a tenth of the whole 
line, but rather a smaller unit.  

Figures 5 and 6 suggest that the experimental 
manipulation was indeed successful. To analyze this we 
performed a two-way Anova with the summed error as the 
dependent variable and condition and pre- vs. posttest as 
independent variables. This produces an interaction effect 
between condition and test, F(1,1441)=6.02, p=0.014, and 
a main effect of test, F(1,1441)=7.84, p=0.005, but no 
main effect of condition, F<1. This means that the 
experimental group does indeed improve more on the 
posttest than the control group. Figure 6 shows that this 
improvement is mainly on the numbers 5 through 8.  

To have a better picture of individual differences in the 
learning process, we used the k-means clustering algorithm 
(MacQueen, 1967) with as input the difference between the 
pre- and post-test of the accuracies of each of the ten 
numbers. The result of the cluster analysis of this 
combined group of both experiment group and control 
group indicates that there are two different patterns of 
improvement: one for numbers around five and six, and 
one for the numbers around eight (Figure 7).  

Individuals in the first cluster (red circles) include six 
subjects from the experiment group and only two from the 
control group. This indicates that several more individuals 
in the experiment group have made improvement on the 
numbers 5-7 than those in the control group. The second 
cluster (green triangles) corresponds to no or little 
improvement, and includes 13 subjects from the control 
group and 8 subjects from the experiment group. And in 
the third cluster (black plus signs) there are three subjects 
from the control group and five from the experiment 
group.  

 

 
Figure 7. The graph shows the result of the cluster analysis 
on the improvement of distance from a true linear 
representation between pretest and posttest. Positive values 
indicate improvement and negative values the opposite.  
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To conclude, the data tell us a number of things. First, 
some sort of counting seems to be used to arrive at a point, 
but not with the correct counting unit. Second, 
improvements in performance seem to be centered around 
the middle point of the number line and towards the end of 
the number line, but hardly at the beginning. This suggests 
that subjects do not improve the length of their counting 
unit, but rather in the way they use it. Improvements 
around the middle of the number line suggest they learn 
that five is in the middle of the line and can be used as a 
starting point for counting. Improvements towards the end 
of the line suggests subjects learn that the higher numbers, 
7 and 8 in particular, are close to 10, so that counting back 
from 10 is a better strategy than counting up from zero.  

The model 
A possible model of progressing towards a linear time 

scale can therefore be one that increasingly learns the 
locations of particular points on the number line, and uses 
those as anchors to determine the points that it does not 
know. It therefore needs some sort of representation of the 
positions of anchor points, but also a method for 
determining points in between those anchors by counting.  

As a theory of how anchor points are stored in memory, 
we use ACT-R's declarative memory (Anderson, 2007). In 
order to determine positions between the anchor points, we 
use two mechanisms. The first one is a retrieve function 
that decides which anchor point will be the starting point. 
The second one is a count mechanism that uses a count 
unit to count up or down from the starting point to decide 
the position for the number on the number line. The initial 
size of the count unit is decided by average size from real 
data and randomly varies in size according to variation 
found between subjects in real data.  

  
The details of the model 

The basic assumption of the model is that the subjects 
already know how to count from 1 to 10, but that they have 
incomplete knowledge of how to put those numbers on the 
number line. An anchor point represents knowledge about 
putting numbers on the line and is expressed by 
associations between a number and a position on the line. 
In most cases this knowledge only consists of the number 
zero and the number ten on the extreme ends of the line, 
but may also consist of the middle point five. 

To represent the different levels of knowledge about 
numbers and anchor points, we vary the base-level 
activation of the chunks associated with them.  

If the model has to put a particular number on the 
number line, it tries to retrieve an anchor point from 
declarative memory for the number. If there is no direct 
match between any of the available anchors, to process of 
partial matching will retrieve the anchor point that has the 
highest activation. This activation depends on two aspects: 
the base-level activation of that anchor, and its similarity to 
the request number. So if the model tries to retrieve the 
number 6 and only 0 and 10 are available as anchors, the 

model might retrieve 10 because it is closer to 6, but also 0 
because that point has a higher base-level activation. 

Whenever the model retrieves an anchor that is not 
already the number that it is trying to retrieve, it will apply 
counting to reach the desired point on the line. However, 
the unit of counting, following our data, is smaller than an 
actual tenth of the length of the line (0.42 cm ± 20%). 
By simply varying the base-level activations of the 
anchors, we can reproduce most of the patterns of 
responses that we see in the data.  

The model has an activation baseline function and there 
are three functions dealing with the declarative memory.   

One function makes a reference list of numbers involved 
and their position on the number line. A chunk is 
represented as a list, with a number (what number is it 
about) and a position (where is it on the number line), and 
a reference list with moments in time the chunk has been 
accessed. 

The mismatch function $&(1+&!)(6%(B!1!"-&(#+/, and the 
result value is zero, a negative value or a positive value 
depending on whether the first number is similar, smaller 
than or larger than the second number. The mismatch 
assumes two numbers are more similar if they are closer 
and higher and is used to calculate the activation of a 
chunk. 

A retrieval function is performing the retrieval and adds 
noise. Because of that we do not use the regular ACT-R 
retrieval rule and noise activation function.  

Another function takes care of the counting procedure. 
The counting unit has an initial length correlating to the 
mean of the length of count units found in the real life data 
set from our experiment. The length of this unit is 
randomly shorter or longer for each individual simulation 
according to variation found in real life data. The same is 
done with the count unit for each count step.  

In this same function simple proportioning is 
implemented the way that proportioning is activated after 
&$.;#+,$6%(62(+%($%)$C$);+#-&(,"$+#(%;.1!"(150. 

Results from running the model and discussion 
When we run the model simulating a subject doing a 

certain number of trials, basic-level activation is not 
increased after every trial. The trials represent the training 
with the board game in real life. We assume that only after 
dozens of times of playing this game a subject obtains the 
kind of new crucial knowledge that makes a shift in 
numerical representation on the number line. This new 
knowledge could be that the position of a certain number is 
either at the beginning or at the end of the number line. In 
our experiment those numbers are 1 (or 0) and 10, the start 
point and the endpoint. So for the number at the endpoint 
there is no need for counting upwards from 0 anymore. We 
have got what we call a representational shift and the 
number at the endpoint has got a stronger activation as 
anchor point.  That is why we let the model also run 
dozens of trials before each increase of base-level 
activation. The increase of base-level activation is done by 
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adding entries in the chunk for the appropriate anchor 
point. 

Another example of such a representational shift is when 
a subject realizes that one or several numbers are close to 
10 and counting downwards from 10 is how to position 
those numbers on the number line.  

To what extent those shifts in knowledge represent 
different levels of knowledge is not clear, but we have 
made the assumption from our rather limited amount of 
real data that it could be that the first shift for children that 
have already learned to count, is to learn that the endpoint 
of the line is useful as an anchor point. In our experiment 
that is 10. Next is that some numbers are close to ten, then 
that five is an anchor point, and last, that the counting unit 
has to be adapted to a reasonable size. Plotted images show 
the relation and progress between these shifts. And we can 
easily find related and rather similar images to each of 
those steps from values of individuals from empirical data, 
when plotted (See figure 8).  
 

8 a)   

8 b)   

8 c)  

8 d)   

8 e)   
  
Figure 8 Model result from typical levels shown by model 
to the left and corresponding example from real data to the 
right: a): 1(or 0) is the only anchor point. b): Now knowing 
10 as anchor point, c): Now knowing 10 even better, d): 
also knowing 5 as anchor point. e): Proportioning is 
activated. 

 
When it comes to at what point a shift in knowledge 

should occur, in the model we have defined an amount of 
trials that we from our real data think is reasonably close to 
what we could find in real life. 

A prior level of knowing how to represent numbers on 
an empty number line is of course when a child does not 
know how to do it at all. Siegler and Ramani (2008) show 
that even those at this prior level learned to deal with the 
number line during training with the board game. But for 
our model we have defined as the initial level when 
children know where 1 (or 0) is at the number line, and use 
counting only as strategy for putting other numbers on the 
right position. 

The initial level, shown in figure 8 a),  is a level where 
only counting is involved and base-level activation only on 
the chunk for the number 1 as an anchor point with a value 
of 1,15. In this case the chunk for 10 only has a base-level 
activation of -0,458.  

At the next stage, shown in figure 8 b), which is after 60 
trials, the base-level activation for the chunk of the number 
1 is unchanged but for 10 it is increased to 0,640  The 
model now simulates where the anchor point 10 is, just like 
the subject GJ0030 at Pretest now knows where it is. .  

After 100 trials we assume that a new shift occurs, 
shown in figure 8 c), Now the base level-activation for 1 is 
increased to 1,333 and for 10 to 0,928. Just like the subject 
GJ0202 in Posttest1 now knows, the model now simulates 
that 8 and 9 is close to 10 and positions those numbers by 
counting down from 10 as anchor point. The next shift will 
occur in the model after 150 trials, shown in figure 8 d). 
Base-level activation for 1 is unchanged, for 10 it is 
increased to 1,151. The number 5 now, as a new anchor 
point, has a base-level activation of 1,151. And the model 
now simulates knowing the midpoint, which is five, as 
anchor point. In real life data we find a close case in 
subject GJ0039 at Posttest1.  

The last shift implemented in our model so far, shown in 
figure 8 e), is when a subject obtains knowledge about the 
need for, and how to, adapt the counting unit to the most 
suitable size, In this case the base level activation is 
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unchanged for all three anchor points, but proportioning of 
the counting unit is activated with some random errors.  

The proportioning function of the model is rather 
preliminary and simply divides the physical length of the 
number line with the amount of numbers on line, which is 
10 for this actual experiment, and adjusts it for error by 
randomizing according to what we find in real life data. 
Young children, as those in our experiment, do normally 
not obtain this level, and our experiment does not give us 
data for this. But we assume that what happens in real life 
is that finding a close to perfect size of the counting unit, is 
obtained either during training by trial and error or by 
dividing the line length in halves or thirds, one or several 
times.  

In our data it seems that all of the subjects who 
understand the task use counting as an important part of 
the strategies for estimation. As we can see, in the same 
way as the results of our collected data from 6 year old 
children showed, we obtain no logarithmic curve from 
running our model. If we investigate the physical size of 
the unit used by the subjects in counting up or down from 
an anchor point, it is for all of them much smaller than a 
tenth of 25 cm, which was the length of the number line 
used in the estimation task. But on the opposite, with a 
#+"*!"(&5+#!'(26"(!D+.7#!(;7(,6(<99'(,4!(54$#)-&(;%$,(/$##(1!(
too large, and counting will often lead to a logarithmic 
curve like Siegler and others has found.  

This shows that for the counting strategy, most of the 
subjects do not have a clear clue of what the size of a unit 
should be.  

A last comment to our model, is that obviously there are 
moments between those representational shifts that we 
have built our model on so far, where subjects in real life 
obtain brick stones of knowledge that prepare for the 
shifts. For example we assume that when playing the board 
game and moving from number to number, the subjects 
learn connections between numbers. And the activation of 
those connections may be strengthened almost every time 
they play the game. This issue is in focus for further 
development of the model. 

Conclusion 
From our findings in real data we have concluded that a 

logarithmic scale for a representation of the result of a 
number line task depends on the proportion between the 
counting units the individual uses and the length of the 
empty number line. In our experiment the unit is too small 
to lead to a logarithmic representation. 

We found that what they actually learn from training 
with the board game, are that higher numbers are close to 
10 and that 5 and 6 are approximately in the middle of the 
line. 

It does not make sense to show average data from the 
real life data set, because the individuals are so different. 
However, we can find shifts in learning levels in different 
individuals. 

Those different shifts are easily simulated by our model. 
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Abstract 

The paper presents a novel formal model of the active buffer 

of working memory. The model uses synchronic oscillations 

in order to bind an item and its corresponding context into one 

representation, while asynchronic oscillations allow the model 

to maintain several separate representations. Due to bindings, 

the model exerts proper control over the buffer’s contents, as 

demonstrated by effective rejection of distractors. Most 

importantly, the model predicts an inherent limitation in WM 

capacity that arises from the trade-off between the number 

versus the stability of representations bound by oscillations, 

which depends on the strength of lateral inhibition present 

among oscillating items. The systematic variation in inhibi-

tion leads to exact replication of the capacity distribution 

observed in a large sample of participants, as well as to pre-

diction of a few novel, capacity-related experimental effects. 

Introduction 
Working memory (WM) is a neurocognitive mechanism 
responsible for the active maintenance of information for 
the purpose of its ongoing processing. It plays a crucial role 
in many complex cognitive processes like relational 
reasoning, problem solving, language, and learning (Jarrold 
& Towse, 2006). One of the most important features of WM 
is its heavily limited capacity. Usually, a person can 
maintain two up to six items in WM, with a mean individual 
capacity equaling four items (Cowan, 2001). 
 Some theories (Cowan, 2001; Oberauer, Süß, Wilhelm, & 
Sander, 2007) predict that WM consists of two distinct 
structures: a highly active and accessible buffer called the 
focus of attention (or primary memory, PM), and a less 
accessible activated long-term memory (or secondary 
memory, SM). It is argued that only PM is capacity limited, 
while SM is not, and that this very limit influences human 
performance on various tasks. 
 The most promising theoretical approach to storage in PM 
explains it as some kind of a pattern of oscillations. Several 
oscillatory models describe in a neurally plausible way the 
PM mechanisms which use patterns of fast, repetitive 
changes in activity of stored representations (i.e., use more 
than one oscillation during retention time) for coding items 
(Edin et al., 2009; Horn & Usher, 1992; Jensen & Lisman, 

1998; Usher, Cohen, Haarmann, & Horn, 2001) and binding 
together different features of a maintained item (Hummel & 
Holyoak, 2003; Raffone & Wolters, 1998). Such models 
generated numerous predictions supported by neuroimaging 
data (e.g., Edin et al., 2009; Jensen & Lisman, 1998; 
Raffone & Wolters, 1998). They also showed that tem-
porary bindings are crucial for complex cognition because 
they allow for representing arbitrary relational structures 
(Hummel & Holyoak, 2003; Oberauer et al., 2007).  

Finally, oscillatory models (e.g., Hummel & Holyoak, 
2003; Jensen & Lisman, 1998; Raffone & Wolters, 1998; 
Usher et al., 2001) naturally explain capacity limits as an 
emergent property of PM, which results from the trade-off 
between the number of to-be-maintained representations 
versus the ability to distinguish among them. As brain uses 
temporal coding for separating representations in PM, and 
time is a very limited resource, brain is not able to pack too 
many oscillations into one interval, because they start to 
overlap and so they stop being distinctive (=informative).  

On the contrary, in models which do not rely on oscill-
ations, one has to set a limit on the number of PM’s slots 
(e.g., Kahana, 1996) or the amount of PM’s activation (e.g., 
Daily, Lovett, & Reder, 2001) in an arbitrary way, so no 
natural capacity limit is being explained. Similarly, models 
which use only one cycle of activation change to code an 
item (e.g., Botvinick & Plaut, 2006; Davelaar, Goshen-
Gottstein, Ashkenazi, Haarman, & Usher, 2005), seem to be 
less neurally and functionally plausible than the full-fledged 
oscillatory models.  

Although the oscillatory models nicely explain how 
brains handle maintenance in PM, and they give important 
insights into the nature of capacity limits, no such model has 
yet dealt with the fact that people differ in capacity. Though 
in principle we all could have had the maximum possible 
capacity, in fact capacity is hugely varied among humans.  

This paper presents a novel formal model of PM. It aims 
to demonstrate which features (i.e., parameters) of the 
model’s oscillatory mechanism are responsible for the 
observed individual differences in PM capacity. We test if a 
systematic manipulation to one such parameter, namely the 
strength of lateral inhibition applied among memory items, 
can replicate the distribution of capacity estimates in human 
population as well as a number of more specific effects.  
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Oscillatory model of primary memory 
The main part of the model is a buffer, which contains a 
certain number of elements. Each element roughly approxi-
mates a neuronal assembly representing one specific feature 
of the world (e.g., an object’s attribute, a concept, a word). 
As in many other models, a level of internal activation xi, 
which falls in [0, 1] range, is assigned to each element i.  

The external output y of the element i in time t has been 
defined using a commonly applied sigmoid function of xi, 
according to the following formula (1): 
 
 

 
 
 
Parameter ! controls the level of nonlinearity of the 

relation between y and x. For small ! values this relation for 
0 < x < 1 is almost linear. With increasing !, (1) gradually 
alters into a threshold function with the threshold at x = .5.  

In order to express the presumed mechanism responsible 
for binding the features of one item while keeping the 
different items disjoint, we introduced a completely new 
(i.e., in comparison to other existing oscillatory models) 
equation, which controls changes in levels of activation (2): 

 
 

 
 
 
 
 
Parameter ! controls how much element i is autoactivated 

by the recurrent connections feeding its output back into it, 
what reflects a commonly postulated self-recurrent nature of 
neuronal groups in brain structures underlying the focus of 
attention (e.g., O’Reilly & Munakata, 2000). Parameter ! 
primarily regulates the frequency of oscillations. 

Index k denotes elements which output just before 
element i does, namely those in [yi, yi + "] range. So, 
parameter # determines how much the outputs of elements, 
which oscillate close to element i, increase its activation. 
This accounts for the known fact that neurons which fire in 
synchrony with a given neuron strongly influence its poten-
tial. Such a mechanism of coactivation helps to maintain 
synchrony among items with similar outputs. Parameter " 
defines also the temporal resolution of bindings: the larger 
", the more distant (in terms of activation) elements will be 
considered by the model as bound within the same repre-
sentation, namely those in [yi – ", yi + "] range. 

Index j denotes elements which are not k nor i elements, 
namely those that fall out of the above range. These ele-
ments encode representations separate from a representation 
encoded by the elements i and k. Parameter $ controls the 
strength of inhibition exerted by elements j, which decreases 
the activation of element i. How much element j inhibits 
element i depends on a difference in the elements’ activity: 
a relatively more active element will inhibit element i more 
strongly than will do a less active one. The last part of 
equation (2) consists of a noise %, which is being drawn 

from the normal distribution with the mean equaling zero, 
and the variance dependent on parameter n. 

The activations and external outputs of elements are 
updated in discrete cycles. Each cycle represents a period of 
several milliseconds, though precise timings of the model’s 
operation were not reported in this paper. As soon as output 
of an element reaches unity (this reflects firing of a neuronal 
group), the parameter ! for that element is temporarily 
changed to a relatively large negative value, which makes 
this element quickly fall below a base level of activation (set 
in the model to .2). This is meant to reflect the phenomenon 
of refraction. Then, the value of ! is being reset to a default 
value and the element starts building up its activation above 
the base level. However, inhibition signals may be so strong 
that the activation may decrease below zero – a value 
adopted as a minimal activation necessary to stay in the 
buffer – and the element permanently falls out of it. 

Generally, the number of elements that can be bound 
together within one synchronic oscillation is not limited. 
However, in the following simulations we apply only pairs 
of synchronized elements (an item identity and its position).  

Workings of the oscillatory model 
The aim of the model is to maintain as many separate 

oscillations as necessary, for a given interval. Two elements 
making one oscillating pair (e.g., a letter and its temporal or 
spatial position, see below) are added to the buffer in the 
same time. The first pair is added with a random level of 
activation. Subsequent pairs can be added when activations 
of all other pairs ∀x < 1 – 4×". They are being added at a 
level of x = xmax + " + (1 – xmax) / 2, where xmax denotes x 
value of the most active pair. This mechanism checks if 
there is enough place in activation space for new elements, 
and grants that at least on entering the buffer new pairs will 
be sufficiently distinctive from all other pairs.  

In the model, the capacity limit arises because addition of 
consecutive pairs increases the strength of total inhibition 
that each pair receives. When this value surpasses the results 
of autoactivation (regulated by parameter !) and co-
activation (governed by parameter #), the elements with the 
lowest activation levels start falling out of the buffer. If one 
element from the pair falls out, then the coactivation is no 
longer possible, and the chance that the other element from 
that pair would also fall out drastically increases. Thus, the 
parameter $ is the main determinant of the model’s capacity. 
The higher $, the faster the elements start falling out of the 
buffer. So, the model predicts that a maximum capacity will 
be achieved when there is no inhibition at all ($ = 0). 
Indeed, in such a case, the model was able to maintain 
twelve pairs, surpassing human capacity, but only when the 
noise was switched off. In more realistic cases, a certain 
amount of inhibition is necessary because it secures that 
oscillations will evenly occupy a respective time interval, 
helping to separate them. So, the most appropriate values of 
$ reflect the trade-off between low (many elements can be 
maintained, but they are unbound) and high (less elements 
can be maintained, but they are properly bound) inhibition. 

By gradually increasing the moderate value of $, we 
replicated the highest capacity (around five items) observed 
among people (see the next section), mean capacity (around 
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three items), and – the lowest possible capacity (one item). 
Respective patterns of oscillations are presented in Fig. 1. 

Although $ is the most important determinant of the 
model’s capacity, we note that three other parameters can in 
principle modulate workings of the model. Firstly, the 
increase in parameter # would strengthen synchrony of 
bound elements. Such a mechanism may reflect a top-down 
boosting applied by the prefrontal cortex, which can pass 
additional activation to PM (see Edin et al., 2009). This 
extra boosting makes all elements more strongly activate 
each other. However, because we assume that a given 
element, when fires, can activate only elements firing in its 
temporal proximity, we expect that the boosting influences 
only the mechanism of coactivation. Another factor which 
impacts capacity is the level of noise (n). The higher noise, 
the higher is the probability that pairs get desynchronized. 
The noise may reflect numerous distinct factors, as fatigue, 
mental retardation, influence of drugs, etc. The last 
parameter related to capacity is the value of ". If " is large, 
then the pairs are stable, but there is little “room” for adding 
new pairs and the capacity is low. If " is very low, in theory 
many pairs could be added, but even tiny differences in 
paired elements’ activity make the pair desynchronize.  

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.1: Patterns of oscillations for the lowest (=one item; 
upper panel), medium (=three items; middle panel), and 
largest (=five items; bottom panel) capacity. When capacity 
was insufficient, addition of a new pair eliminated an 
existing pair (see upper panel). 

Measurement and simulation of individual 
differences in primary memory capacity 

In the following simulations, we set # parameter to a low 
arbitrary value of .0001. Regarding ", changing its values 
between .03 and .07 did not influence the model’s capacity, 
so we set the " value to .05. Parameter n was set to zero 
(i.e., noise was turned off). Parameter ! was drawn from a 
normal distribution which optimized the model’s capacity 
given the adopted range of parameter $. So, in total we 
adjusted four global parameters. In order to replicate the 
distribution of WM capacity as observed in a sample of par-
ticipants, we individually varied the values of $ (see below). 

We modeled two similar WM tasks. In the first one (the 
Sternberg task), the model attempted to add to its buffer 
several letter-position pairs, and then a probe in a particular 
position was presented. The model ran two processes which 
tested (a) whether the element identical to the probe could 
be found in the buffer and if a position bound to it (if any) 
matched the position of the probe or not, and (b) whether 
the element identical to the probe’s position could be found 
and if an element bound to it matched the probe’s identity or 
not. If either the identity or the position was found, and its 
binding matched either the probe’s position or identity, 
respectively, then the model generated a positive answer. If 
both elements were found, but one of them did not match 
the corresponding element, the answer was negative. If any 
of two elements were not found, the model guessed either 
the positive answer with probability & (a decisional bias) or 
a negative answer with a chance 1 – &. 

Basic effects regarding primary memory 

We started testing our model by checking if it is able to 

replicate the recency effect. When WM performance relies 

primarily on PM, as for example in the Sternberg task 

applied with fast presentation rate, an increased accuracy is 

observed for the most recent items in comparison to middle 

items, but there is no primacy effect (Chuderski, Stettner, 

Orzechowski, 2007). The simulated effect is shown in Fig.2.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Accuracy of the model in all serial conditions of 
the six-item Sternberg task. 
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A more interesting observation – in light of the aim of this 
paper – regards the fact that people quite effectively use 
positional information to reject distractors presented to 
them. For example, one of us (Chuderski & Stettner, in 
revision, Exp. 1, positive digit condition) used a modified 
Sternberg task, which was analogical to the standard version 
with one exception that a probe (a letter) was accompanied 
by a digit, which denoted the letter’s position in a memory 
set. The digit could match the target’s position or not, and 
the task of 47 participants and 47 corresponding simulations 
was to accept only matching digits. We observed that parti-
cipants correctly accepted more matching digits (M = .78, 
SD = .11) than incorrectly accepted non-matching ones (M = 
.26, SD = .17). This result indicates that they effectively 
maintained the positions of items in WM. Simulated results 
were close to observations: model accepted M = .67 of the 
matching digits, while it did not reject only M = .33 of the 
to-be-rejected digits. Slightly lower accuracy of the model 
resulted from the fact that it only used its PM, while people 
most probably relied their performance on both PM and SM. 
This result indicates that a proper PM model must account 
for binding of the representations with their contexts. An 
unbounded information may often be simply useless. 

The distribution of primary memory capacity 

The crucial simulation consisted of the replication of the 
distribution of PM capacity estimates, which had been 
observed in the sample of 168 young participants, who 
fulfilled a two-array comparison task (Luck & Vogel, 1997). 
The task is assumed to require maintenance of material in 
PM, while SM barely helps in doing this task due to the use 
of figural material and a fast presentation rate. Ten other 
participants were excluded from the original data because 
their results in the task suggested that they did not succeed 
to maintain even one item in their PM. 

The original task required memorizing an array of a few 
items. Then, after a retention interval, the array was 
repeated, but there was 50% chance that one item was 
changed. The task was to indicate if the item had changed or 
not. We used a version of the task consisting on a single-
probed recognition: one of the items in the second array was 
surrounded by a cue indicating that if any of the items had 
changed, it was only the surrounded one. The test included 
90 trials. Each self-paced trial consisted of a virtual, four by 
four array filled on random with four, five, or six  (i.e., set 
size) stimuli, being drawn from a pool of 16 simple black 
figures (e.g., a square, a circle, a rhombus, an arrow, a cross 
etc.), each approximately 2.5 × 2.5 cm in size. The array 
was presented for set size multiplied by 0.5 s.  
 An estimate of PM capacity uses the proportion of correct 
responses for arrays with one item changed (hits; H) and the 
proportion of incorrect responses for unchanged arrays 
(false alarms; FA). PM capacity is estimated to k items (out 
of N items of the set size), on the assumption that a parti-
cipant produces a correct hit or avoids a false alarm only if a 
cued item is transferred to his or her PM (with the k/N 
chance). If a non-transferred item is cued, then a participant 
guesses the answer. Thus, the sheer PM capacity is equal to 
k = N × (H – FA). The value of k is believed to closely 

approximate the actual number of items held in PM by an 
individual (Rouder, Morey, Morey, Cowan, 2011). 
 We used an analogous models as for the Sternberg task, 
with an exception that this time it encoded figures and their 
spatial positions. The value of $ = .0026 allowed us to 
replicate the mean k value in the sample (M ksim = 3.01, M 
kobs = 2.92). In order to simulate 168 individual results we 
varied values of parameter $ for each individual simulation, 
drawing it from the normal distribution with M = .0026 and 
SD = .0004. Histograms of the observed and simulated 
distributions of k values are presented in Fig. 3. Both 
distributions did not differ significantly ('2

 = 6.97, df = 7, p 
= .431). R2

 value for observed and simulated data was .93. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: A number (count) of observations (upper panel) 
and simulations (lower panel) yielding particular k values. 

Experimental effects related to capacity 

Next, we examined if there were any specific differences in 

performing the task related to differences in participants’ 

capacity and – if yes – whether the model was able to 

predict them. Analysis of observed data indicated that parti-

cipants more accurately responded to unchanged (congru-

ent) arrays than to changed (incongruent) ones. In the 

model, this was accounted for by setting & value to .43. As 

parameter & regards guesses, and as highly capacious parti-

cipants rarely guess (all necessary information is in their 

PM), the difference between accuracy in both conditions 

should diminish with increasing k value. This effect was 

found in both observed and simulated data (see Fig. 4). 

Consequently, the model predicted that the discrepancy in 

accuracy between the incongruent and congruent conditions 

would be increasing as N increases (here, from four to six 

items). Such a pattern have also been found in observed data 

(see Fig. 5). However, it appeared that the model overpre-

dicted accuracy in the four-items and five-items conditions, 

while it underpredicted accuracy in the six-item condition. 
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Figure 4: Accuracy in the congruent and incongruent condi-
tions, in a function of the k value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Accuracy in the congruent and incongruent condi-
tions, in a function of the set size (N). 
 
In search for a possible cause of the mismatch, we inve-
stigated if it can be related to the differences in capacity. We 
compared the k values for the respective item conditions 
between participants and between simulations yielding high 
versus low k estimates (k > 3.5 vs. k < 2.5). We found that in 
case of highly capacious participants, the k estimate signi-
ficantly increased with N, (k = 0.85, 95%CI = [0.58, 1.12], 
while in case of the low-capacity group the k value was 
significantly lower in the five-item condition than in the six-

item one, (k = -0.37, 95%CI = [-0.09, -0.64] (see Fig. 6, left 
panel). The former effect is a direct consequence of the fact 
that k estimates of some participants equaled or surpassed 
four, so k value in the four-item condition underestimated 
their capacity. In fact, when only the six-items condition 
was considered, the maximum human capacity was k = 5.6, 
and was accounted for by the model. The latter effect is 
much more interesting: it indicates that PM of low capacity 
persons was even less effective than usual if the discrepancy 
between their actual capacity and the imposed requirements 
increased. This result is coherent with other behavioral and 
neuroimaging data (e.g., Todd & Marois, 2004).  

The analysis of how the model coped with increasing N 
depending on adopted value of $ determining its capacity, 
indicates that it showed qualitatively similar pattern of data 
(see Fig. 6, right panel, black lines), though there were 
substantial quantitative differences in comparison to obser-
vations. Increasing N value was on average not disruptive 
for the model’s capacity in case of low values of lateral 
inhibition, why it dramatically decreased its capacity when 
the level of inhibition was high (i.e., when k was low). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Mean values of k in a function of set size, for low-
capacity (total k < 2.5) and high-capacity (total k > 3.5) 
participants/simulations. 
 
What could be responsible for the model’s more profound 
effect of the discrepancy between applied N value and 
individual k value? Edin et al. (2009) suggested that when 
such a discrepancy occurs, an additional top-down 
activation is recruited by the brain in order to counteract the 
lateral inhibition surpassing the brain’s capability of dealing 
with it. We tested this hypothesis by re-running the six-item 
condition with twice as large # value (.0002) as in the 
original simulation. In result, the model’s accuracy highly 
increased and our data better fitted human data (see Fig. 6, 
right panel, gray point). So, most probably our initial setting 
of # value underestimated the role of autoactivation in PM. 
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Discussion 
Using a novel oscillatory model, which was aimed to reflect 
the mechanisms of active (attentional) maintenance of 
information in PM, the presented study has shown that 
variation in the strength of lateral inhibition among 
oscillating representations, which is necessary for formation 
and temporal separation of bindings among these repre-
sentations, allowed for accounting for individual differences 
in PM capacity in large sample of participants. In our 
sample, it varied from around one item up to almost five 
items. It could even reach almost six items, when the largest 
set size was considered. This result seems to pose a serious 
problem to those oscillatory models, which predict that the 
maximum WM capacity is only four items (e.g., Raffone & 
Wolters, 1998). Most probably, these models would not be 
able to mimic the full distribution of WM capacity in human 
population. On the contrary, due to ability to coactivate the 
elements oscillating together, the presented model was able 
to maintain a dozen separate items at maximum, though 
when its parameters were being set on neurobiologically 
plausible levels (e.g., there was non-zero lateral inhibition), 
the model’s capacity was naturally constrained to several 
items. In our view, the study suggests that the brain’s ability 
to control (decrease) the level of inhibition within PM 
underpins it mechanisms supporting active maintenance of 
as much separate representations as possible. 
 However, the story regarding the replication of individual 
differences in capacity is not that simple. A more precise 
analysis of the effects of memory load in a function of 
individual capacity showed that the strength of lateral 
inhibition is not the only factor influencing the model’s 
capacity. When the model attempted to maintain too much 
items in relation to its actual capacity, this increased the 
inhibition to such a high level that it led to a catastrophic 
decrease in capacity. In line with others (e.g., Edin et al., 
2009; Todd & Marois, 2004), we suppose that the main role 
of the prefrontal cortex in active maintenance of information 
is to prevent such situations by additionally activating PM 
in a top-down manner. In our model, this was done by 
adjusting the coactivation of elements oscillating together. 
The analysis of computational properties of the coactivation 
and search for # values enhancing the fits of the model 
should be the subject of our future investigations. 
 Summing up, we presented a preliminary but highly 
original study on the neurocognitive mechanisms underlying 
the individual variation in PM capacity. Its results suggest 
that the concepts of oscillations and bindings can have a 
great explanatory power in regard to working memory. 

Acknowledgments 
This work was sponsored by The National Science Centre 
(NCN) of Poland (grant N106 417140). 

 References 
Botvinick, M. M., & Plaut, D. C. (2006). Short-term mem-

ory for serial order. Psychological Review, 113, 201-233. 
Cowan, N. (2001). The magical number 4 in short-term 

memory: A reconsideration of mental storage capacity. 
Behavioral and Brain Sciences, 24, 87-114. 

Chuderski, A., & Stettner, Z. Access to working memory 
and its relation to reasoning. Manuscript in revision. 

Chuderski, A., Stettner, Z., & Orzechowski, J. (2007). 
Computational modeling of individual differences in short 
term memory search. Cognitive Systems Research, 8, 161-
173. 

Davelaar, E. J., Gosher-Gottstein, Y. Ashkenazi, A., 
Haarman, H. J., & Usher, M. (2005). The demise of short-
term memory revisited: Empirical and computational 
investigations of recency effects. Psychological Review, 
112, 3-42. 

Daily, L. Z., Lovett, M. C., & Reder, M. L. (2001). 
Modeling individual differences in working memory 
performance: a source activation account. Cognitive 
Science, 25, 315-353. 

Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegner, 
J., & Compte, A. (2009). Mechanism for top-down 
control of working memory capacity. PNAS, 106, 6802-7. 

Horn, D., & Usher, M. (1992). Oscillatory model of short 
term memory. In J. E. Moody, S. J., Hanson, & R. P. 
Lippmann (Eds.), Advances in Neural Processing and 
Information Systems Vol. 4 (pp. 125-132). Morgan and 
Kaufmann. 

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and 
generalization. Psychological Review, 110, 220-264. 

Jarrold, C., & Towse, J. N. (2006). Individual differences in 
working memory. Neuroscience, 139, 39–50. 

Jensen, O., & Lisman, J. E., (1998). An oscillatory short-
term memory buffer model can account for data on the 
Sternberg task. Journal of Neuroscience, 18, 10688-99. 

Kahana, M. J. (1996). Associative retrieval processes in free 
recall. Memory and Cognition, 24, 103-106. 

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual 
working memory for features and conjunctions. Nature, 
390, 279-281. 

Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. 
(2007). Individual differences in working memory 
capacity and reasoning ability. In A. R. A. Conway, C. 
Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), 
Variation in working memory (pp. 49-75). Oxford: 
Oxford University Press.  

O’Reilly, R. C., & Munakata, Y. (2000). Computational 
explorations in cognitive neuroscience. Cambridge, MA: 
MIT Press. 

Raffone, A., & Wolters, G. (2001). A cortical mechanism 
for binding in visual memory. Journal of Cognitive 
Neuroscience, 13, 766-785. 

Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. 
(2011). How to measure working memory capacity in the 
change detection paradigm. Psychonomic Bulletin & 
Review, 18, 324-330. 

Todd, J. J., & Marois, R. (2004). Capacity limit of visual 
short-term memory in human posterior parietal cortex. 
Nature, 428, 751-754.  

Usher, M., Cohen, J. D, Haarmann, H., & Horn D. (2001). 
Neural mechanism for the magical number 4: Competitive 
interactions and nonlinear oscillation. Behavioral and 
Brain Sciences, 24, 151-152. 

 

186



Modeling the Temporal Dynamics of Visual Working Memory

Johannes Lohmann (johannes.lohmann@uni-tuebingen.de)
Oliver Herbort (oliver.herbort@uni-tuebingen.de)

Martin V. Butz (butz@informatik.uni-tuebingen.de)
Cognitive Modeling, Sand 14
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Abstract

Visual working memory (VWM) is one of the most cru-
cial parts of the human cognitive system. Research fo-
cuses on the apparent limits in the capacity of this sys-
tem and the reasons for them. But so far only a few
formal models exist that can account for the temporal
dynamics of the amount of information stored in VWM.
We propose a combination of the well established the-
ory of visual attention (TVA) with a dynamic memory
model, resulting in an iterative, probabilistic framework
for VWM. The model includes a consolidation as well as
a decay mechanism and employs the strength concept to
quantify the availability of a certain memory trace. We
evaluate the model on available change detection data.

Keywords: VWM; TVA; Change Detection

Introduction
One of the main components of every cognitive task is
the storage and maintenance of information in memory.
Accordingly, research on working memory has a long
tradition in both psychology and neuroscience (for an
overview see Wixted, 2004b). Most models of working
memory assume distinct systems for the preservation of
verbal and visual information (Baddeley, 2003). Change
detection tasks are frequently used to study the proper-
ties of the visual working memory (VWM). We focus on
modeling VWM in this paper.

One way to investigate VWM is to ask participants
to detect changes in subsequently presented displays.
Early change detection studies (Phillips, 1974; Pashler,
1988) provided evidence that not only the amount but
also the strength of information stored in VWM dynami-
cally changes over time. For example, for short temporal
delays between two subsequent displays change detec-
tion performance is very accurate, but it deteriorates for
longer temporal delays. Pashler (1988) also found that
change detection performance increased with longer pre-
sentation durations of the initial display. Apparently this
is due to the fact that more information can be encoded
the longer the initial display lasts. On the other hand it
is possible that the encoded information becomes more
stable for longer display durations. Seeing that VWM
and visual perception additionally appear to be highly
intertwined (Alvarez & Cavanagh, 2004; Gao, Gao, Li,
Sun, & Shen, 2011), we approximate the dynamics of
VWM in conjunction with visual perception by model-
ing encoding and memory consolidation with the same
hypothetical process.

By now, only a few quantitative models are available
that describe the process of stimulus encoding and the

preservation of the obtained information at once (but
see Johnson, Spencer, & Schöner, 2009 for a neural
model). Here, we provide a parsimonious quantitative
model that can account for changes in the amount of
stored information over time. To test the idea that mem-
ory encoding and VWM maintenance processes interact,
we introduce a memory mechanism that also operates
during the display presentation.
In the next section we give an outline of the model

and sum up the underlying assumptions. Then we give
a short description of TVA. After this we describe the
features of our memory model in detail and give an ex-
ample for the predictions of the complete model. We use
the results of Phillips (1974) to evaluate our model. A
short discussion concludes the paper.

General Assumptions

We investigate processing of visual stimuli at the stage
of “perceptual units”(Bundesen, 1990). Perceptual units
can be considered as segmented parts of the current vi-
sual input. Each unit can be described by feature dimen-
sions like color or shape. The encoded categorizations of
the feature dimensions are assumed to be the informa-
tion that is stored in VWM. The theory of visual at-
tention (TVA, Bundesen, 1990) captures this encoding
stage in a formal framework.

We assume that every encoded categorization of a cer-
tain stimulus dimension can be described with a strength
that quantifies the availability of the respective catego-
rization. This strength is not constant but changes over
time. Two processes affect the strength. First a consol-
idation process increases the strength over time. When
the strength of a certain categorization increases during
the presentation of a display, we refer to this process as
on-line consolidation. Otherwise, we refer to consolida-
tion as off-line consolidation. Seeing that consolidation
generally takes place all the time, categorizations that
are encoded earlier typically reach higher strength val-
ues than comparable types of categorizations that are
encoded later on. Additionally, consolidation depends
on memory load. Second a degradation process reduces
the strength over time. We assume the degradation to
take place at a constant rate after the offset of a certain
stimulus display. Moreover, we assume this process to
be independent of memory load. If the strength of a cer-
tain categorization falls below a threshold the respective
categorization is removed from VWM. This is similar to
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the idea of some-or-none representations proposed by
Zhang and Luck (2009).

To sum up our model describes the following processes:

• Encoding of categorizations of stimulus dimensions
(e.g. color or shape) from a display.

• On-Line consolidation of the stored categorizations
during the presentation of the display.

• Off-Line consolidation of the stored categorizations af-
ter the offset of the display.

• Decay of stored categorizations after the offset of the
display.

To test the resulting model the estimated memory load
is transferred into a behavioral measure. We focus on
modeling change detection performance. In the next
sections we describe the different assumptions in more
detail and provide the necessary formalizations.

Encoding of Information

Before we can consider the properties of information
stored in VWM it is necessary to describe how infor-
mation is encoded in the first place. TVA, proposed
by Bundesen (1990), is a quantitative model of visual
attention that accounts for a broad range of phenom-
ena (Bundesen, Habekost, & Kyllingsbæk, 2005; Logan,
2002). TVA was successfully applied to model iconic
memory (Sperling, 1960), visual search (Treisman &
Gelade, 1980), switch costs (Logan, Schneider, & Bun-
desen, 2007), as well as attention deficits in clinical pop-
ulations (Duncan et al., 1999). TVA allows quantitative
predictions of the amount of information stored in VWM
at a certain time. To model visual attention TVA inte-
grates bottom-up processes (via the sensory properties
of the relevant information) and top-down processes (via
the intention to perform a task).

TVA models the encoding of visual stimuli in VWM
as the combination of a filtering and a pigeonholing pro-
cess. Filtering selects objects, whereas pigeonholing as-
signs categories to the selected objects. TVA proposes a
race model where different categorizations compete for
the incorporation in VWM. This race is formalized as
the conditional probability of a categorization to be en-
coded, given that is was not encoded earlier. The fol-
lowing rate equation describes the probability that the
categorization of item x belonging to category i enters
VWM:

ν(x, i) = η(x, i)βi
wx∑
z∈T wz

, (1)

where the categorization likelihood ν(x, i) depends on
the sensory evidence η(x, i) that object x belongs to cat-
egory i, on the perceptual decision bias βi for category i,

and on the attentional weight wx relative to all other at-
tentional weight values wz for all objects z in the visual
display T .
The attentional weights wz depend on the pertinence

of a given categorization that can be considered as the
subjective relevance of this categorization. For every ob-
ject x in the visual field, an attentional weight is obtained
by the following weight equation:

wx =
∑

j∈R

η(x, j)πj , (2)

where R denotes the set of all perceptual categories,
η(x, j) denotes the sensory evidence for element x be-
longing to category j, and πj is a pertinence value for
category j. The higher the pertinence of a certain cate-
gory, the higher the likelihood to attend to objects that
fall into the respective category.
TVA realizes filtering by attentional weights. If the

task is to select red objects the value of πred and the
resulting weights for red objects would be high. Pigeon-
holing is biased by parameter β. If a task requires the
categorization of letters rather than digits, the value of
β would be higher for letters. The consequence of com-
bined filtering and pigeonholing in this example would
be the faster encoding of red letters compared to other
stimuli.

Despite examples of successful applications, TVA can-
not account for decay in the content of VWM. Bundesen
(1990) assumed a fixed capacity VWM model that is
filled by a Bernoulli process. As the capacity is fixed, it
cannot account for any loss of stored information over
time. Therefore we propose a dynamic model for the
VWM, which also considers memory decay.

A dynamic Model of VWM
We assume a continuous mnemonic resource (Bays &
Hussain, 2008; Wilken & Ma, 2004; Verghese, 2001) that
is used to consolidate information in VWM1. Memory
limits emerge over time as it becomes more and more
difficult to maintain the stored information. To describe
the state of certain stored categorizations, we employ the
strength concept proposed by Wickelgren (Wickelgren,
1974). According to this theory the availability of a cer-
tain memory trace can be described by its strength. This
strength changes over time. Initially memory traces are
weak but their strength increases over time. Hence older
traces are more stable than younger ones (Jost’s second
law, see Wixted, 2004a). For short retention intervals
even the weak traces can be preserved. For longer inter-
vals only the strongest traces persist.2

1Please note that the idea of fixed slots (Zhang &
Luck, 2008) is a prominent alternative to this approach
(see Fukuda, Awh, & Vogel, 2010 for a comparison of both
approaches).

2Please note that Wickelgren assumed an ever decaying
strength, an increase of strength that is realized by the con-
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Initially the strength of an encoded categorization is
set to 1.0. We assume three different processes that af-
fect the strength of a certain stored categorization over
time. First, a decay process applies to each stored cat-
egorization after stimulus display offset. Second, an on-
line consolidation mechanism increases the strength of a
categorization after its encoding throughout the presen-
tation of a display. This assumption is based on Jost’s
second law to give older traces the proposed advantage
in durability. Third, off-line consolidation increases the
strength after display offset. We now describe these pro-
cesses in detail.

Decay

We assume the strength of every stored categorization to
degrade at a constant pace after the offset of the stimulus
display. The decrement is denoted as ξ, it is assumed to
be a random variable and to be unaffected by the load of
VWM. If a certain strength falls below 0, the according
categorization is lost.

On-Line Consolidation

We assume the conditional encoding probability ν(x, i)
to be proportional to the amount of mnemonic resources
that are used to consolidate a certain categorization af-
ter it enters VWM. This assumption is justified as ν(x, i)
reflects top-down influences, such as the relevance of a
certain categorization (see Equation 1). Accordingly, we
assume the strength s(x, i) to increase by ν(x, i), each
time consolidation applies. We furthermore assume that
only one categorization is consolidated at a time, essen-
tially assuming a serial consolidation process similar to
the one discussed in Schneider (1999). The categoriza-
tion that is consolidated next is chosen randomly (with
replacement). Each consolidation may require several
iterations.

Off-Line Consolidation

A similar mechanism like the proposed on-line consoli-
dation is assumed to operate after the offset of the dis-
play. The difference between on-line and off-line consoli-
dation is the value of the increment of a certain strength
s(x, i). We assume that the sum of all conditional en-
coding probabilities to be proportional to the amount of
mnemonic resources, referred to as κ, that can be used
for consolidation:

κ ∝
∑

x∈T

∑

i∈R

ν(x, i) (3)

For off-line consolidation, we assume that this amount
is distributed over the currently stored categorizations.
If all categorizations are of equal relevance, the amount

solidation components of our model was never proposed by
Wickelgren. Instead he assumed the decay to slow down over
time.

of κ used to consolidate a single categorization can be ob-
tained by dividing κ by the number of currently stored
categorizations. In effect, the consolidation of a single
categorization is more effective when less categorizations
are stored in VWM. As a consequence, the assumed de-
cay mechanism bears a stronger influence if VWM load
is high.

Example
As an example, lets assume a very simple stimulus
display containing three objects with different colors.
Lets further assume that the colors of these objects are
equally relevant for the current task, whereas other pos-
sible features are irrelevant. We now want to use our
model to predict the temporal changes in VWM con-
tent. An exemplary complete time-course is displayed in
Figure 1.
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Figure 1: Example of the predicted changes in VWM
over time.

Encoding. As only color information is relevant all
the respective β(x, color) and π(x, color) would be high,
whereas all other β and π values would be 0. At ev-
ery time step each of the color categorizations is en-
coded with a certain probability (ν(x, color)) and stored
in VWM. As this is a probabilistic process, the time of
successful encoding differs for the different categoriza-
tions (see Figure 1, the time of encoding is indicated by
a filled circle).

On-Line Consolidation. As shown in Figure 1, the
strength of the stored categorizations probabilistically
increases over time during the presentation of the dis-
play. If only one categorization is stored, it is consoli-
dated every time consolidation takes place. As only one
categorization is consolidated at a time, the growth of
an individual strength value declines as more and more
categorizations are encoded.

Decay. After the offset of the display, the strengths
of the stored categorizations decay. Here, we assume
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a uniformly-distributed, noisy amount of decay per it-
eration. As exemplary shown in Figure 1, two catego-
rizations are lost after about 300 ms due to the decay
process.

Off-Line Consolidation. After the offset of the dis-
play, the decay in strength is encountered by an consol-
idation mechanism. The higher the memory load, the
less effective is the consolidation mechanism. As more
and more categorizations are lost, consolidation becomes
more effective in protecting the remaining categoriza-
tions from further decay (see Figure 1, at around 1300
ms). In the current model, we do not consider an upper
bound for memory strength.

Results

In this section we apply our model to the data from the
first experiment reported by Phillips (1974). This study
investigated change detection performance for lighted
pixels in a square matrix. Each pixel in the matrix had
a chance of 50% to be lit. The matrix was presented for
one second. The matrix size varied between 4× 4, 6× 6
and 8× 8 pixels. After an inter stimulus interval (ISI)
of either 20, 1000, 3000 or 9000 ms, a probe display ap-
peared. In 50% of the trials, the probe display was equal
to the initial display, in the other trials it differed with
respect to one pixel. The participants had to indicate if
the probe display differed from the initial one. Phillips
(1974) collected the percentage of correct responses as
a dependent measure. The results suggested two differ-
ent types of storage systems. First, a high-capacity but
short lasting iconic storage system. Second, a more per-
sistent but capacity limited short term storage system.
The data basis for the evaluation is quite small compris-
ing only 12 mean detection probabilities. Nevertheless,
the data pattern is challenging because of the broad vari-
ation in the length of ISIs, covering sensory memory as
well as short term memory. This is the main reason for
which we decide to use this data set instead of more con-
temporary studies like the one reported by Vogel, Wood-
man, and Luck (2001).
To obtain predictions of the percentage of correct re-

sponses, we transfer the estimated VWM load after the
ISI into a probability. We set the predicted probability
of success equal to the number of available traces for the
relevant feature dimensions:

pdetect =
Epreserved

T
(4)

where T refers to the number of relevant categoriza-
tions and Epreserved denotes the number of stored cat-
egorizations in the relevant dimension. As the partic-
ipants had to perform a same / different judgment, a
correction for guessing is assumed. Usually the guess-
ing probability should be 0.5:

ppredicted = pdetect + (1− pdetect)
1

2
(5)

This is similar to the formula proposed by Pashler
(1988), except for the fact that we assume a constant
guessing probability for all participants.
We used four different versions of our model to inves-

tigate if the different mechanisms improved the predic-
tions. The first version modeled encoding with TVA and
assumed constant decay during the ISI. Neither on-line
consolidation nor off-line consolidation were used. The
second version included the off-line consolidation process
during the ISI. The third version included the on-line
consolidation mechanism. The fourth version applied
both off-line and on-line consolidation.
All η, β and π values were set to 1.0. Hence the ν

values only differed between matrix sizes. The equality
of the TVA parameters is plausible because the catego-
rization of every pixel as either lit or not lit was equally
relevant for the task. Due to our assumption of propor-
tionality between κ and ν, only the decay parameter ξ
was treated as a free parameter. We applied uniformly
distributed noise to ξ, so that the actual decay rate could
vary between 0 and ξ in each time step. Additionally,
all models that applied on-line or off-line consolidation
or both had an additional free parameter, referred to as
lag, which determined how much iterations have to pass
between two successive consolidation events. All free pa-
rameters were constant over matrix sizes. As encoding,
consolidation, and decay were modeled as probabilistic
processes, we averaged 50 independent runs for every
iteration of the parameter estimation.
The predictions of the different versions are displayed

in Figure 2. The results are the average of 50 indepen-
dent runs, obtained with the best parameter sets with
respect to RMSE.

Table 1: Parameter estimates, RMSEs and r2 values for
the different setups.

Setup ξ lag RMSE r2

Decay only 0.020 - 0.154 .54

Off-Line consolidation 0.031 5 0.048 .92

On-Line consolidation 0.021 0 0.151 .58

Full model 0.030 5 0.046 .93

Results with respect to RMSE and declared variance
(r2) are displayed in Table 1. Additionally, the param-
eter estimates are included. The best results were ob-
tained with models assuming decay and off-line consol-
idation. The addition of the on-line consolidation im-
proved the fit only marginally. At least for this data
pattern it seems not necessary to assume an on-line con-
solidation mechanism. This can also be concluded from
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Figure 2: Results obtained with the different versions
of our model. Different markers indicate the different
matrix sizes. The predicted probabilities are indicated
by dashed lines, the predictions for the measured ISIs
are indicated by empty markers.

the parameter estimates. There are nearly no differences
between the estimate of ξ between the model that only
applied off-line consolidation and the full model, apply-
ing both on-line and off-line consolidation.

Discussion

We proposed a model that accounts for the temporal
dynamics of the information stored in VWM. Therefore,
we combined TVA with a dynamic memory model that
assumes the concurrent operation of a consolidation and
a decay mechanism. Our model combines the encoding
mechanism proposed by TVA with the strength concept
developed by Wickelgren. The assumed on-line consol-
idation was included to account for the age of differ-
ent memory traces. It is in line with Josts second law
(cf. Wixted, 2004a). However, the obtained results when
modeling the data reported by Phillips (1974) indicate
that this mechanism is not necessary. Only off-line con-
solidation was mandatory to achieve a reasonable data
fit. Possibly it becomes more relevant for longer dis-
play durations. This would be plausible as Josts law
was based on observations concerning long-term mem-
ory recall. Nonetheless, the data fit achieved only with
the assumption that memory consolidation counteracts
memory decay during display offset did yield a good data
fit. Despite this success, certainly several aspects of the
model ask for enhancements and further verifications.

First, our model is neutral about the source of mem-
ory degradation. The original strength theory proposed
by Wickelgren assumed interference between successive
stimuli to be the main source of memory degradation.
The decay mechanism assumed in our model is more in
line with trace decay, due to prolonged retention inter-
vals. To account for interference, it would be necessary
to account for the effect of successive stimulus onset.
As it is displayed in Figure 1, currently the presenta-
tion of subsequent displays is not supposed to affect the
VWM content. In the future, we will attempt to also ac-
count for findings that highlight the role of interference
for VWM contents (Makovski, Sussman, & Jiang, 2008)
with our model.

Second, the proposed on-line consolidation mechanism
seems not to be necessary at least to account for the data
reported by Phillips (1974). Possibly the display dura-
tion of 1000 ms applied by Phillips (1974) is to short to
require the assumption of on-line consolidation. There-
fore the model should be applied to change detection
data that was obtained with longer display durations
to further investigate the validity of the proposed on-
line consolidation mechanism. Possible data for evalu-
ation could be obtained from the experiments reported
by Hollingworth and Henderson (2002).

Even with the mentioned shortcomings the results ob-
tained with the model are promising. As the number of
free parameters is very small, it is highly unlikely that
this is due to the flexibility of the model. But especially
the necessity of the assumed on-line consolidation mech-
anism remains unclear and has to investigated in more
detail in the future. Further extensions of the model
could include a more detailed account for early visual
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processing, for instance by a layered battery of gabor-
filters as it was proposed by Serre, Wolf, Bileschi, Riesen-
huber, and Poggio (2007). In this way, visual saliency
effects may be modeled as well. Furthermore, the mech-
anisms by which the top-down control variables (β and
π) are assignment could be modeled in more detail, pos-
sibly similar to the Bayesian feature- and location-based
approach described in Chikkerur, Serre, Tan, and Poggio
(2010). We expect that the further integration of such
neural models will provide another bridge between cog-
nitive psychology and neuroscience, combining the desir-
able features of both approaches: A detailed description
of the involved processes and an output format that al-
lows direct model evaluation based on observed data.
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A layered neural architecture for the consolidation,
maintenance, and updating of representations in vi-
sual working memory. Brain Research, 1299 , 17-32.

Logan, G. D. (2002). An instance theory of attention
and memory. Psychological Review , 109 , 376-400.

Logan, G. D., Schneider, D. W., & Bundesen, C. (2007).
Still clever after all these years: Searching for the ho-
munculus in explicitly cued task switching. Journal
of Experimental Psychology: Human Perception and
Performance, 33 , 978-994.

Makovski, T., Sussman, R., & Jiang, Y. V. (2008).
Orienting attention in visual working memory reduces
interference from memory probes. Journal of Exper-
imental Psychology: Learning, Memory, and Cogni-
tion, 34 , 369-380.

Pashler, H. (1988). Familiarity and visual change detec-
tion. Perception & Psychophysics , 44 , 369-378.

Phillips, W. A. (1974). On the distinction between sen-
sory storage and short-term visual memory. Perception
& Psychophysics, 16 , 283-290.

Schneider, W. X. (1999). Visual-spatial working mem-
ory, attention, and scene representation: A neuro-
cognitive theory. Psychological Research, 62 , 220-236.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Pog-
gio, T. (2007). Robust object recognition with cortex-
like mechanisms. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 29 , 411-426.

Sperling, G. (1960). The information available in brief
visual presentations. Psychological Monographs, 74(I
1, Whole No. 498), 1-29.

Treisman, A., & Gelade, G. (1980). A feature-integration
theory of attention. Cognitive Psychology , 12 , 91-136.

Verghese, P. (2001). Visual search and attention: A
signal detection theory approach. Neuron, 31 , 523-
535.

Vogel, E. K., Woodman, G. E., & Luck, S. J. (2001).
Storage of features, conjunctions, and objects in visual
working memory. Journal of Experimental Psychology:
Human Perception and Performance, 27 , 92-114.

Wickelgren, W. A. (1974). Single-trace fragility theory of
memory dynamics. Memory & Cognition, 2 , 775-780.

Wilken, P., & Ma, W. J. (2004). A detection theory
account of change detection. Journal of Vision, 4 ,
1120-1135.

Wixted, J. T. (2004a). On common ground: Jost’s
(1897) law of forgetting and Ribot’s (1881) law of ret-
rograde amnesia. Psychological Review , 111 , 864-879.

Wixted, J. T. (2004b). The psychology and neuroscience
of forgetting. Annual Review of Psychology , 55 , 235-
269.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-
resolution representations in visual working memory.
Nature, 453 , 233-235.

Zhang, W., & Luck, S. J. (2009). Sudden death and
gradual decay in visual working memory. Psychological
Science, 20 , 423-428.

192



A Reinforcement Learning Model of Bounded Optimal Strategy Learning 
 

X iuli Chen (xxc116@cs.bham.ac.uk) 
School of Computer Science, The University of Birmingham  

Edgbaston, Birmingham, B15 2TT, UK 
 

Andrew Howes (A .Howes@cs.bham.ac.uk) 
School of Computer Science, The University of Birmingham  

Edgbaston, Birmingham, B15 2TT, UK 
 
 

Abstract 

In this paper we report a reinforcement learning model of how 
individuals learn the value of strategies for remembering. The 
model learns from experience about the changing speed and 
accuracy of memory strategies. The reward function was 
sensitive to the internal information processing constraints 
(limited working memory capacity) of the participants. In 
addition, because the value of strategies for remembering 
changed with practice, experience was discounted according 
to a recency-weighted function. The model was used to 
generate predictions of the behavioural data of 40 participants 
who were asked to copy appointment information from an 
email message to a calendar. The experience discounting 
parameter for a model of each individual participant was set 
so as to maximize the expected rewards for that participant. 
The predictions of this bounded optimal control model were 
compared with the observed data. The result suggests that 
people may be able to choose remembering strategies on the 
basis of optimally discounted past experience.  

K eywords: bounded optimal; reinforcement learning; 
information processing bounds; memory constraints.  

Introduction  
Human beings are bounded optimal if they are able to 
maximize utility subject to the bounds imposed by their 
information processing capacities and their experience 
(Howes, Vera, Lewis and McCurdy 2004; Lewis, Vera and 
Howes, 2004; Howes, Lewis and Vera 2009). This paper 
reports progress towards a bounded optimal control theory 
of how people perform simple tasks that make use of 
memory. The model uses reinforcement learning to acquire 
optimal strategies given bounds imposed by short-term 
memory and experience. It therefore represents an example 
of a class of models that harness both the rigour of 
optimisation and theories of the bounds on human 
information processing (Anderson et al. 2004). The model 
also represents a departure from theories of unbounded 
optimisation (Griffiths & Tenenbaum 2006; Griffiths, Kemp 
and Tenenbaum 2008) and descriptive theories of bounds. 

The model reported in the current paper captures what 
people choose to do given experience of the behavioural 
consequences of tasks that required memory. For example, 
when reading and writing a telephone number a person may 
choose to read the whole number, store it in memory, and 
then write it out. Alternatively he/she may choose to read 
the number 3 digits at a time and write out each 3-digit 
block before reading the next. There are many strategies but 

each has potentially different performance characteristics: 
Some might be fast but generate many errors, others 
relatively slow but reliable. Tasks such as these have been 
investigated by Gray, Simms, Fu and Schoelles (2006). 
Gray et al. used the Blocks World task to study the choices 
that people make about what to remember. The participants 
were required to reproduce patterns of coloured blocks from 
a Target window to a Workspace window. For example, 
there might be 8 different coloured blocks which were 
positioned randomly in a 4x4 grid. The number of blocks 
encoded by a participant on each visit was regarded as 
corresponding to a strategy. Gray et al. demonstrated that 
participants were able to adapt their choices of strategy to 
the cost/benefit structure of the environment given 
experience. 

More recently, Howes et al. (submitted) employed a 
similar task, called the Email-Calendar Copy task, in which 
the participants were required to copy the appointment 
information from an email interface to a calendar. The 
results suggested not only that participants were able to 
adapt their choice of strategy, as demonstrated by Gray et al. 
(2006) but also that many would end up preferring the 
optimal strategy given their learned knowledge. The 
reinforcement learning model reported in the current paper 
is a model of the results of Howes et al. (submitted). Unlike 
with many previous reinforcement learning models, 
including those of Gray et al. (2006), the current model 
parameters were chosen so as to maximize utility, not so as 
to maximize fit. The predictions of the model were then 
/I!"#$%&( '(( ')%( "#$'*+*"#,'-.( /%)#0*(1$-2( The results 
suggest that when people learn which strategy to use 
through reinforcement learning, they may do so by using 
optimal discounting of past experience. 

The remaining paper is organized as follows. The task is 
introduced in the next section and is followed by a 
description of the model, called the bounded Optimal 
Discounting (O D) model. Subsequently, the model results 
are presented, followed by a comparison between the 
current model predictions and those predicted by an 
alternative model in which the individual models use the 
same discounting parameter, which is called Non-optimal 
Discounting (ND) model . 
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The Task 
The modeled data was acquired from the experiment 
reported by Howes et al. (submitted). The participants were 
required to copy appointment information from an email 
interface to a calendar. Appointments were presented in 
trials. On each trial, participants were asked to view various 
numbers of appointments on the email window one by one, 
ranging from 3 to 9. Since the first appointment was always 
at 09:00 AM and these appointments were always one hour 
apart and in sequence, only the names and the order they 
were presented need to be remembered. Once the last 
#""(*,'!%,'( 3#-( -)(3,4( ')%( 567.( /1''(,( (,( ')%( %!#*8(
window enabled the participants to go to the calendar 
window, with the email window disappearing, and copy 
these appointments across by typing these names in the time 
slots. Once they were satisfied with their copy and clicked 
the 5Finish. button, they would receive feedback about the 
number of appointments correctly copied and highlighted in 
red any slots incorrectly completed. 

An important difference between the studies of Howes et 
al. (submitted) and of Gray et al. (2006) is that the Howes et 
al. study was designed with two-phases, a no-choice phase 
followed by a choice phase. In the no-choice phase, the 
strategy that participants adopted on each trial was assigned 
by the system (the number of appointments that participants 
were required to view before copying across was regarded 
as a strategy, ranging from 3 to 9). During this phase, they 
were asked to copy 100 correct appointments (only correctly 
copied items were counted in the target total items), and the 
strategies (3, 4, 5, 6, 7, 8 and 9) appeared almost evenly. 
The reason to do so was to force the participants to explore 
across the strategy space so that it allows us to empirically 
measure their performance over the strategies. After this 
phase, entering in Choice-phase, the participants were 
required to copy 200 appointments correctly by selecting 
their own preferred strategies on each trial. In addition, 
participants were asked to minimize the total time taken for 
the task and as they had to copy a target number of correct 
items, they were effectively asked to optimize the 
speed/accuracy trade-off. Therefore, the utility of each 
strategy was defined in term of reward rate, which was 
defined as the rate of successful copies. 

The Bounded Optimal Discounting (O D) 
Model 

The purpose of the model is to explain strategy choice on 
simple remembering tasks. As we have said, rather than 
maximizing the fit of the model to the data, a key feature of 
the model is that remembering strategies, and the experience 
discounting parameter, are chosen so as to maximize utility. 
The remembering strategy space consists of strategies for 
remembering 1 to 9 items on each visit to the calendar. The 
choice of the discounting parameter, named StepSize, has 
consequences for the weight given to a reward when 
estimating the future utility of a remembering strategy. In 
our model, the discounted parameter that is used to update 

the trial-by-trial strategy value estimates is set so as to 
optimize the overall utility of the model for each individual.  

Detailed Description of Optimal Discounting (O D) 
model 
RL is concerned with learning to obtain rewards or avoid 
punishments by trial and error (Sutton & Barto 1998; Daw 
& Frank, 2009; Cohen, 2008). It has been used to 
understand how iterated rewards and punishments 
(experience) determine choice behavior in various situations. 
In particular, how the structure, amount, hierarchy etc. of 
the observed experience relate to the learning results has 
attracted increasing attention (Botvinick & Barto 2009). A 
reinforcement learning model with strategy-utility updating 
based on recency weighted experience is used in our 
analysis. 

The model is defined by three parameters, [S, R , E], and 
strategy-value estimation updating rules. S is the strategy 
space, S= {S1, S2, 4 Si<*4*Sn}. The strategy taken on trial t 
is denoted S(t). Once the strategy has been selected, the 
environment would give reward from the reward set R , R!  
[0, 1]. The reward following the strategy Si on trial t is 
denoted as r i(t). In this learning problem, each strategy has 
an expected or mean reward given that that strategy is 
selected, called the true (actual) value of this strategy. To 
measure the utility of the strategies trial-by-trial, the model 
uses estimated values acquired through experience. 
Specifically, on each trial t, t !56<647, the model updates 
an estimate vector, E(t)={ E1(t), E2D*G<*4*<*E iD*G<*4*< En(t)}, 
where E i(t) is the estimate of strategy value of Si on trial t. 
The initial estimated value of each strategy is 0, i.e. E i(0)=0, 
where i! 56<64* <* '7. In addition, because the values of 
remembering strategies are non-stationary, due to practice, a 
discounting technique is applied to the experience when 
estimating the strategy-value. Specifically, as people 
practice a strategy they improve. This process of 
improvement means that for any pair of strategies i and j, 
the relationship between their true values at trial t, e.g. 
Vi(t), > V j(t), will not necessarily hold after an increment in 
the practice of i, the practice of j, or both. Therefore, in 
order to track this non-stationary learning environment, 
more recent experience might deserve to be weighted more 
heavily than temporally distant experience. Here we adopt 
one of the most popular ways to achieve experience 
discounting, called the exponential, recency-weighted 
discounting. Specifically, if a strategy has been chosen k  
times before, yielding rewards r1, r24!k , then the value of 
this strategy  is estimated to be  
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Where c ( ],(c 10!! ) is the discounting parameter, called 
StepSize, which determines the weighting of previously 
received rewards.  The weight given to a reward ri depends 
on how many rewards previously, k-i, it was observed. As 
(1-c) is always less than 1, the weight given to ri decreases 
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as the number of intervening rewards increases. In fact, the 
weight decays exponentially according to the exponent on 
1-c. The higher the value of the StepSize, then the more 
recent rewards will contribute to the estimate relative to 
distant rewards. Figure 1 below gives the weight 
distributions of 
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with k=8, i=1, 2, 9 8, and five sets of c, [0.1, 0.3, 0.5, 0.7, 
and 0.9]. As you can see, the line of c=0.1(the red one) is 
much more flat than the line of c=0.9 (the green one), which 
means that the relative distant rewards, like r5 , r6, under the 
c=0.1 model contribute more to estimate the future utility 
than they do under the model with c=0.9 in which the 
estimation mostly relies on two latest rewards r7, r8. 
  In the O D model the value of the StepSize parameter was 
chosen so as to optimize utility for each individual. 
Specifically, given the means of the estimated strategy 
values above and a specific StepSize, then on each trial, the 
strategy with the highest estimate, i.e. the greedy action, is 
taken as the "$%&*+'*(,( (:( ')%( "#$'*+*"#,'.-( /%)#0*(ur. For 
these predicted strategies, the model also gives predictions 
of their rewards. On each trial, the mean of the rewards 
received by the predicted strategy is regarded as the 
predicted reward of this strategy. Therefore, for each set of 
the StepSize we get a set of predicted strategies and rewards 
for each participant. We find a StepSize that generates 
maximal overall reward for each participant. 

 
Figure 1: The weight distributions. 

Alternative Model 
In order to test the O D model we compared it with a model 
in which the StepSize is set to be 0.1 for all the participants. 
This value offers very little discounting (Figure 1). 
Specifically, on each trial, the values of the strategies which 
are selected for k times with rewards r1, r2"!k, are 
estimated according to the equation (1) with c=0.1. In other 
words, for this model, there are two key features. First, 
according to the weight distribution with c=0.1 in Figure 1 

you can see that the weights put on the experienced rewards 
differ only a little, which means that previous rewards 
almost equally contribute to the future utility estimation. 
Second, the same parameter value is used for all the 
participants. As with the OD model, the greedy action on 
each trial of the choice phase is predicted to be the 
"#$'*+*"#,'-. behavior, and on each trial, the mean of the 
rewards received by the predicted action is regarded as the 
predicted reward of this action. We call this model the Non-
optimal Discounting (ND) model, i.e. the model with a 
fixed low- discounting parameter for all participants.  

Predictions of the models 
Both models, O D and ND, predict trial-by-trial individual 
participant strategy selections on the basis of the strategy-
value estimates. In addition, they predict the rewards 
following the predicted actions, so that we could find a 
predicted action set that maintains the maximal expected 
reward. As we have said, for O D, the weights given to the 
rewards are adjusted by setting the discounting parameter c 
to a value that optimizes expected reward for each 
participant. For ND, the parameter is set to be 0.1 for all the 
participants. Comparison between O D and ND model 
allows us to test the assumption that people adapt the 
discounting parameter so that it is optimal given the 
constraints imposed by practice. If O D makes significantly 
better predictions than ND then we have evidence that 
participants discounted their previous experience given the 
expected effects of practice on strategy value.  

Consequentially, for both models we obtained the 
predicted actions and reward rates on each trial. Despite the 
fact that neither model is fitted to the data we expect O D to 
offer significantly better predictions than ND.  

Results 

Overall Performance over the Strategy Space 

 
 

Figure 2: the probability densities of the reward rate for 
each strategy over all the participants. 
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For each participant and each trial, the following 
experimental data was recorded: selected strategy (one of 3, 
4, 5, 6, 7, 8 or 9 items, including the strategies assigned by 
the system in the no-choice phase and the strategies chosen 
by the participants in the choice phase), the number of 
correctly copied items, and the trial duration.  The reward 
rate of the selected strategy is computed as the number of 
items correctly copied at a trial over the trial duration. 
Figure 2 (above) gives the overall measurement of each 
strategy.s performance over all the 40 participants during 
the experiment. As shown in the figure, strategies 3, 4, 5 are 
the three most effective strategies across participants 
(Mean=5.6773, SD=1.8505, Mode=5). It is also evident that 
some of the strategies have bimodal densities, reflecting the 
low reward rates associated with error trials. 

Descriptive Results 
First consider the predictions of the O D model. As 
mentioned above, an OD model with a discounting 

parameter StepSize that maximizes the sum of predicted 
rewards over the choice phase was found for each 
participant. In Figure 3 (below), each panel represents trial-
by-trial value estimates for a participant. X-axis represents 
trials; Y-axis is the strategies.(0#81%(%-'*!#'*(,- calculated 
by the O D model trial by trial. Each strategy is represented 
by a different colour, as shown in the legend on the right 
side of the figure. To the left side of the vertical black line is 
the no-choice phase; on the right side is the choice phase. 
The participant strategy on a trial is represented by a black 
circle (including the strategies assigned by the system in the 
No-Choice phase and the strategies chosen by the 
participants as their preferences in the Choice phase). The 
title of each panel includes information about the participant 
number and the StepSize found for the participant. 
Participants 15, 19, 7, 8 were selected to demonstrate the 
diversity of the individual performance. For comparison we 
divide the participants into three groups. 

 

 
 

Figure 3: O D model predictions. X-axis represents trials; y-axis is the value estimates for the strategies calculated with the 
O D model. Each strategy is represented by a different colour, as shown in the legend on the right. To the left side of the 

vertical black line is the no-choice phase, on the right side is the choice phase. The selected strategy on a trial is represented 
by a black circle (including the strategies assigned by the system in the No-choice phase and the strategies chosen by the 

participants in the Choice phase). The title of each panel includes the information of the participant number and the StepSize 
found for the participant. 
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G roup 1: The best strategy was selected on the majority of 
trials in the choice phase, such as participants 21 and 14. 
Specifically, for participant 15 (top left panel), the strategy 
S5 became the best one (with the highest value estimate) by 
the end of the no-choice phase, and the participant used it on 
most trials in the choice phase. While for participant 19 
(bottom left panel), the strategy S5 is not the best at the 
beginning of the choice phase, but its performance improved 
with practice, became best, and was chosen by the 
participant at the later stage of the choice phase.  For the 
O D model, 27 of the 40 participants exhibited a pattern that 
was either consistent with participant 40 or 20. (StepSize 
was found between 0.03 and 0.82). For the ND model, 22 
out of 40 participants behave in this way. 
G roup 2: There is no clear bounded optimal strategy in 
most trials of the choice phase, e.g. participant 7. 
For some participants such as participant 7 (top right panel), 
there are several best strategies (in this case, S4, S5 and S6) 
with, informally, close value estimates, or it is the case that 
the best strategy frequently changes during the choice phase. 
Therefore, many strategies appear to have the highest 
reward and it is rational to keep exploring through the 
choice phase. Overall, for the O D , 8 out of 40 participants 
were predicted to be in this group, while 9 out of 40 for the 
ND model. 
G roup 3: There was a clear best strategy predicted, but the 
participant did not end up choosing it, e.g. participant 8.  
From the beginning of the choice phase, S4 was a clear best 
strategy for participant 8 (bottom right), but the participant 
chose the strategy S6, which was unlikely to be the highest 
reward strategy. Overall 5 of the 40 participants behave in 
this pattern according to the O D model. For the ND model, 
9 out of 40 participants are in this group. 

Model Comparison 
We computed the Root Mean Square Error (RMSE) 
between the strategies predicted by the model and the 
observed participant behaviours. The Lower RMSE, the 
better the model prediction. For the ND model, RMSE 
between predicted and observed actions in the choice phase 
is 1.2845, while it is 1.1539 for the O D model. In addition, 
we calculated RMSE between the received rewards and the 
predicted rewards for these two models, 0.0782 and 0.0703 
for ND model and O D respectively.  
   We computed t-tests on the Mean Squared Errors (MSE) 
to determine which of these two models offered better 
predictions on the strategy during the choice phase. A paired 
right-tailed t-test between ND model and O D model 
indicated that the O D model, with the discounting parameter 
that maximises the expected reward rate is able to offer 
significantly better predictions of strategy choice 
(t(39)=1.80, p=0.0396). 

Discussion 
The results support the hypothesis that a model that makes 
bounded optimal use of internal resource (memory and 

experience of reward) so as to select strategies for 
remembering is able to predict the majority of participant 
choices.  In particular,  

(1) For the O D model, a discounting parameter, StepSize, 
was used to control the weights put on the rewards 
received by the strategies when estimating the values of 
the strategies for predictions of subsequent behaviour. 
The O D model with the StepSize that maximized the 
expected rewards for each individual participant offered 
a significantly better prediction of the observed data than 
the ND model, which weighted the received rewards 
with a fixed, minimal, parameter value of 0.1 to estimate 
the value of the strategies for all participants. 

(2) The StepSize that maximized the expected reward for the 
participants had a large range, ranging from 0.03 to 0.82. 
This may reflect the ability of participants to optimally 
adjust learning parameters to reflect meta-knowledge 
about the effects of their own practice on skill. 

General Discussion 
According to a number of studies and models, memory 
bounds human performance in many complex tasks, e.g. 
reasoning, comprehension, and learning (Cowan, 2005; 
Vaughan & Herrnstein, 1987). The reported study suggests 
that people can make bounded optimal use of memory in an 
everyday interactive task (copying information from email 
messages). In addition, people are able to strategically 
adjust learning parameters in response to estimates of 
expected reward that are non-stationary because of practice 
of a cognitive skill. It appears that people are able to do as 
well as they do on remembering tasks by selecting optimal 
strategies according to the cost/benefit structure of their own 
discounted experience of practice.  

Our finding in favour of optimal strategies was not 
supported by the data from every individual participant. For 
example, participant 11 was still highly exploratory in 
choice phase and was not predicted by the model. However, 
the findings do suggest that a model that uses an optimal 
discounting parameter StepSize (O D model) does make 
better predictions than a model in which a fixed discounting 
parameter is used to predict all participants and most 
rewards information from the experience are used almost 
equally (ND model with c=0.1).  

Further tests of the model are required to determine, for 
example, how well the OD model does relative to the best-
fitting model, where the best fitting model adjusts StepSize 
so as to fit the data. It is inevitable that the best-fitting 
model will be at least as good as OD but any gap between 
how well the two models correspond to the data will tell us 
something about how much variance is unexplained by OD. 

There was also evidence that some participants selected 
strategies that were not optimal in the early parts of the 
choice phase, but that with practice were improved and by 
the end they were generating the highest rewards. This fact 
is consistent with the observation that the learning 
environment was non-stationary because of the acquisition 
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of knowledge through practice. There are many studies that 
focus on the improvement of strategies with practice but in 
this paper our focus has instead been on how choices are 
made between strategies given that, through the effects of 
practice, strategies have non-stationary utility. Our starting 
point is the assumption that an estimate of the future utility 
of a strategy can be based on previous experience but that in 
the non-stationary environment construed by practice, it is 
valuable to discount the past so that more recent experience 
is weighted more heavily than temporally distant experience.  

Conclusion 
The paper provides quantitative evidence for the hypothesis 
that people are bounded optimal when learning to choose 
strategies that improve with practice. They appear to be able 
to manage their internal resource and learning strategies so 
as to maximize performance against an externally imposed 
payoff function.  
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Abstract 
Effective management of learned knowledge is a challenge 
when modeling human-level behavior within complex, 
temporally extended tasks. This paper evaluates one approach 
to this problem: forgetting knowledge that is not in active use 
(as determined by base-level activation) and can likely be 
reconstructed if it becomes relevant. We apply this model for 
selective retention of learned knowledge to the working and 
procedural memories of Soar. When evaluated in simulated, 
robotic exploration and a competitive, multi-player game, 
these policies improve model reactivity and scaling while 
maintaining reasoning competence. 

Keywords: large-scale cognitive modeling; working 
memory; procedural memory; cognitive architecture; Soar 

Introduction 
Typical cognitive models persist for short periods of time 
(seconds to a few minutes) and have modest learning 
requirements. For these models, current cognitive 
architectures, such as Soar (Laird, 2012) and ACT-R 
(Anderson et al., 2004), executing on commodity computer 
systems, are sufficient. However, prior work (Kennedy & 
Trafton, 2007) has shown that cognitive models of complex, 
protracted tasks can accumulate large amounts of 
knowledge, and that the computational performance of 
existing architectures degrades as a result. 

This issue, where more knowledge can harm problem-
solving performance, has been dubbed the utility problem, 
and has been studied in many contexts, such as explanation-
based learning (Minton, 1990; Tambe et al., 1990), case-
based reasoning (Smyth & Keane, 1995; Smyth & 
Cunningham, 1996), and language learning (Daelemans et 
al., 1999). Markovitch and Scott (1988) have characterized 
different strategies for dealing with the utility problem in 
terms of information filters applied at different stages in the 
problem-solving process. One common strategy that is 
relevant to cognitive modeling is selective retention, or 
forgetting, of learned knowledge. The benefit of this 
approach, as opposed to selective utilization, is that all 
available knowledge is brought to bear on problem solving, 
a property that is crucial for model competence in complex 
tasks. However, it can be challenging to devise forgetting 
policies that work well across a variety of problem domains, 
effectively balancing the task performance of cognitive 
models with reductions in retrieval time and storage 
requirements of learned knowledge. 

In context of this challenge, we present two tasks where 
effective behavior requires that the model accumulate large 

amounts of information from the environment, and where 
over time this learned knowledge overwhelms reasonable 
computational limits. In response, we present and evaluate 
novel policies for selective retention of learned knowledge 
in the working and procedural memories of Soar. These 
policies investigate a common hypothesis: it is rational for 
the architecture to forget a unit of knowledge when there is 
a high degree of certainty that it is not of use, as calculated 
by base-level activation (Anderson et al., 2004), and that it 
can be reconstructed in the future if it becomes relevant. We 
demonstrate that these task-independent policies improve 
model reactivity and scaling, while maintaining problem-
solving competence. 

Related Work 
Previous cognitive-modeling research has investigated 
forgetting in order to account for human behavior and 
experimental data. As a prominent example, memory decay 
has long been a core commitment of the ACT-R theory 
(Anderson et al., 2004), as it has been shown to account for 
a class of memory retrieval errors (Anderson et al., 1996). 
Similarly, research in Soar investigated task-performance 
effects of forgetting short-term (Chong, 2003) and 
procedural (Chong, 2004) knowledge. By contrast, the 
motivation for and outcome of this work is to investigate the 
degree to which selective retention can support long-term, 
real-time modeling in complex tasks. 

Prior work shows the potential for cognitive benefits of 
memory decay, such as in task-switching (Altmann & Gray, 
2002) and heuristic inference (Schooler & Hertwig, 2005). 
In this paper, we focus on improved reactivity and scaling. 

We extend prior investigations of long-term symbolic 
learning in Soar (Kennedy & Trafton, 2007), where the 
source of learning was primarily from internal problem 
solving. In this paper, the evaluation domains accumulate 
information from interaction with an external environment. 

The Soar Cognitive Architecture 
Soar is a cognitive architecture that has been used for 
developing intelligent agents and modeling human 
cognition. Historically, one of Soar’s main strengths has 
been its ability to efficiently represent and bring to bear 
large amounts of symbolic knowledge to solve diverse 
problems using a variety of methods (Laird, 2012). 

Figure 1 shows the structure of Soar. At the center is a 
symbolic working memory that represents the agent’s 
current state. It is here that perception, goals, retrievals from 
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long-term memory, external action directives, and structures 
from intermediate reasoning are jointly represented as a 
connected, directed graph. The primitive representational 
unit of knowledge in working memory is a symbolic triple 
(identifier, attribute, value), termed a working-memory 
element, or WME. The first symbol of a WME (identifier) 
must be an existing node in the graph, whereas the second 
(attribute) and third (value) symbols may be either terminal 
constants or non-terminal graph nodes. Multiple WMEs that 
share the same identifier are termed an “object,” and the set 
of individual WMEs sharing that identifier are termed 
“augmentations” of that object. 

Procedural memory stores the agent’s knowledge of when 
and how to perform actions, both internal, such as querying 
long-term declarative memories, and external, such as 
controlling robotic actuators. Knowledge in this memory is 
represented as if-then rules. The conditions of rules test 
patterns in working memory and the actions of rules add 
and/or remove working-memory elements. Soar makes use 
of the Rete algorithm for efficient rule matching (Forgy,
1982) and retrieval time scales to large stores of procedural 
knowledge (Doorenbos, 1995). However, the Rete algorithm 
is known to scale linearly with the number of elements in 
working memory, a computational issue that motivates 
maintaining a relatively small working memory. 

Soar learns procedural knowledge via chunking (Laird et 
al., 1986) and reinforcement learning (RL; Nason & Laird, 
2005) mechanisms. Chunking creates new productions: it 
converts deliberate subgoal processing into reactive rules by 
compiling over production-firing traces, a form of 
explanation-based learning (EBL). If subgoal processing 
does not interact with the environment, the chunked rule is 
redundant with existing knowledge and serves to improve
performance by reducing deliberate processing. However, 
memory usage in Soar scales linearly with the number of 
rules, typically at a rate of 1-5 KB/rule, which motivates 
forgetting of under-utilized productions. 

Reinforcement learning incrementally tunes existing
production actions: it updates the expectation of action 
utility, with respect to a subset of state (represented in rule 
conditions) and an environmental or intrinsic reward signal.
A production that can be updated by the RL mechanism 
(termed in RL rule) must satisfy a few simple criteria related 
to its actions, and is thus distinguishable from other rules. 

This distinction is relevant to forgetting productions. When 
an RL rule that was learned via chunking is updated, that 
rule is no longer redundant with the knowledge that led to 
its creation, as it now incorporates information from 
environmental interaction that was not captured in the 
original subgoal processing. 

Soar incorporates two long-term declarative memories, 
semantic and episodic (Derbinsky & Laird, 2010). Semantic 
memory stores working-memory objects, independent of 
overall working-memory connectivity (Derbinsky, Laird, & 
Smith, 2010), and episodic memory incrementally encodes 
and temporally indexes snapshots of working memory, 
resulting in an autobiographical history of agent experience 
(Derbinsky & Laird, 2009). Agents retrieve knowledge from 
one of these memory systems by constructing a symbolic 
cue in working memory; the intended memory system then 
interprets the cue, searches its store for the best matching 
memory, and if it finds a match, reconstructs the associated 
knowledge in working memory. For episodic memory, the 
time to reconstruct knowledge depends on the size of 
working memory at the time of encoding, another 
motivation for a concise agent state. 

Agent reasoning in Soar consists of a sequence of 
decisions, where the aim of each decision is to select and 
apply an operator in service of the agent’s goal(s). The 
primitive decision cycle consists of the following phases:  
encode perceptual input; fire rules to elaborate agent state, 
as well as propose and evaluate operators; select an 
operator; fire rules that apply the operator; and then process 
output directives and retrievals from long-term memory. 
Unlike ACT-R, multiple rules may fire in parallel during a 
single phase. The time to execute the decision cycle, which 
primarily depends on the speed with which the architecture 
can match rules and retrieve knowledge from episodic and 
semantic memories, determines agent reactivity. We have 
found that 50 msec. is an acceptable upper bound on this 
response time across numerous domains, including robotics, 
video games, and human-computer interaction (HCI) tasks. 

There are two types of persistence for working-memory 
elements added as the result of rule firing. Rules that fire to 
apply a selected operator create operator-supported 
structures. These WMEs will persist in working memory 
until deliberately removed. In contrast, rules that do not test
a selected operator create instantiation-supported structures, 
which persist only as long as the rules that created them 
match. This distinction is relevant to forgetting WMEs. 

As evident in Figure 1, Soar has additional memories and 
processing modules; however, they are not pertinent to this 
paper and are not discussed further. 

Selective Retention in Working Memory 
The core intuition of our working-memory retention policy 
is to remove the augmentations of objects that are not 
actively in use and that the model can later reconstruct from 
long-term semantic memory, if they become relevant. We 
characterize WME usage via the base-level activation model 
(BLA; Anderson et al., 2004), which estimates future 

Figure 1: The Soar cognitive architecture. 
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usefulness of memory based upon prior usage. The primary 
activation event for a working-memory element is the firing 
of a rule that tests or creates that WME. Also, when a rule 
first adds an element to working memory, the activation of 
the new WME is initialized to reflect the aggregate 
activation of the set of WMEs responsible for its creation. 
The base-level activation of a WME is computed as: N ? ?! U " !!!!!

!!! ! 
where n is the number of memory activations, tj is the time 
since the jth activation, and d is a free decay parameter. For 
computational efficiency, history size is bounded: each 
working-memory element maintains a history of at most the 
c most recent activations and the activation calculation is 
supplemented by an approximation of the more distant past 
(Petrov, 2006). This model of activation sources, events, 
and decay is task independent. 

At the end of each decision cycle, Soar removes from 
working memory each element that satisfies all of the 
following requirements, with respect to τ, a static, 
architectural threshold parameter: 
R1. The WME was not encoded directly from perception. 
R2. The WME is operator-supported. 
R3. The activation level of the WME is less than τ. 
R4. The WME augments an object, o, in semantic memory. 
R5. The activation of all augmentations of o are less than τ. 

We adopted requirements R1-R3 from Nuxoll, Laird, and 
James (2004), whereas R4 and R5 are novel. Requirement 
R1 distinguishes between the decay of representations of 
perception, and any dynamics that may occur with actual 
sensors, such as refresh rate, fatigue, noise, or damage. 
Requirement R2 is a conceptual optimization: as operator-
supported WMEs are persistent, while instantiation-
supported structures are direct entailments, if we properly 
manage the former, the latter are handled automatically. 
This means that if we properly remove operator-supported 
WMEs, any instantiation-supported structures that depend 
on them will also be removed, and thus our mechanism only 
manages operator-supported structures. The concept of a 
fixed lower bound on activation, as defined by R3, was 
adopted from activation limits in ACT-R (Anderson et al., 
1996), and dictates that working-memory elements will 
decay in a task-independent fashion as their use for 
reasoning becomes less recent/frequent. 

Requirement R4 dictates that our mechanism only 
removes elements from working memory that can be 
reconstructed from semantic memory. From the perspective 
of cognitive modeling, this constraint on decay resembles a 
working memory that is in part an activated subset of long-
term memory (Jonides et al., 2008). Functionally, 
requirement R4 serves to balance the degree of working-
memory decay with support for sound reasoning. 
Knowledge in Soar’s semantic memory is persistent, though 
may change over time. Depending on the task and the 
model’s knowledge-management strategies, it is possible 
that any removed knowledge may be recovered via 

deliberate reconstruction from semantic memory. 
Additionally, knowledge that is not in semantic memory can 
persist indefinitely to support model reasoning. 

Requirement R5 supplements R4 by providing partial 
support for the closed-world assumption. R5 dictates that 
either all object augmentations are removed, or none. This 
policy leads to an object-oriented representation whereby 
procedural knowledge can distinguish between objects that 
have been cleared, and thus have no augmentations, and 
those that simply are not augmented with a particular feature 
or relation. R5 makes an explicit tradeoff, weighting more 
heavily model competence at the expense of the speed of 
working-memory decay. This requirement resembles the 
declarative module of ACT-R, where activation is 
associated with each chunk and not individual slot values. 

Empirical Evaluation 
We extended an existing system where Soar controls a 
simulated mobile robot (Laird, Derbinsky, & Voigt, 2011). 
Our evaluation uses a simulation instead of a real robot 
because of the practical difficulties in running numerous, 
long experiments in large physical spaces. However, the 
simulation is quite accurate and the Soar rules (and 
architecture) used in the simulation are exactly the same as 
the rules used to control the real robot. 

The robot’s task is to visit every room on the third floor of 
the Computer Science and Engineering building at the 
University of Michigan. For this task, the robot visits over 
100 rooms and takes about 1 hour of real time. During 
exploration, it incrementally builds an internal topographic 
map, which, when completed, requires over 10,000 WMEs 
to represent and store. In addition to storing information, the 
model reasons about and plans using the map in order to 
find efficient paths for moving to distant rooms it has sensed 
but not visited. The model uses episodic memory to recall 
objects and other task-relevant features during exploration. 

In our experiments, we aggregate working-memory size 
and maximum decision time for each 10 seconds of elapsed 
time, all of which is performed on an Intel i7 2.8GHz CPU, 
running Soar v9.3.1. Because each experimental run takes 1 
hour, we did not duplicate our experiments sufficiently to 
establish statistical significance and the results we present 
are from individual experimental runs. However, we found 
qualitative consistency across our runs, such that the 
variance between runs is small as compared to the trends we 
focus on below. 

We make use of the same model for all experiments, but 
modify small amounts of procedural knowledge and change 
architectural parameters, as described here. The baseline 
model (A0) maintains all declarative map information both 
in Soar’s working and semantic memories. A slight 
modification to this baseline (A1) includes hand-coded rules 
to prune away rooms in working memory that are not 
required for immediate reasoning or planning. The 
experimental model (A2) makes use of our working-
memory retention policy and we explored different values 
of the base-level decay rate (c=10 and τ=-2 for all models). 
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Figure 2 compares working-memory size between 
conditions A0, A1, and A2 over the duration of the 
experiment. We note first the major difference in working-
memory size between A0 and A1 after one hour, when the 
working memory of A1 contains more than 11,000 fewer 
elements, more than 90% less than A0. We also find that the 
greater the decay-rate parameter for A2, the smaller the 
working-memory size, where a value of 0.5 qualitatively 
tracks A1. This finding suggests that our policy, with an 
appropriate decay, keeps working-memory size comparable 
to that maintained by hand-coded rules.

Figure 3 compares maximum decision-cycle time in 
msec., between conditions A0, A1, and A2 as the simulation 
progresses. The dominant cost reflected by this data is time 
to reconstruct prior episodes that are retrieved from episodic 
memory. We see a growing difference in time between A0 
and A2 as working memory is more aggressively managed 
(i.e. greater decay rate), demonstrating that episodic 
reconstruction, which scales with the size of working 
memory at the time of episodic encoding, benefits from 
selective retention. We also find that with a decay rate of 
0.5, our mechanism performs comparably to A1. We note 
that without sufficient working-memory management (A0; 
A2 with decay rate 0.3), episodic-memory retrievals are not 
tenable for a model that must reason with this amount of 
acquired information, as the maximum required processing 
time exceeds the reactivity threshold of 50 msec. 

Discussion 
It is possible to write rules that prune Soar’s working 
memory; however, this task-specific knowledge is difficult 
to encode and learn, and interrupts deliberate processing.  

In this work, we presented and evaluated a novel 
approach that utilizes a memory hierarchy to bound 
working-memory size while maintaining sound reasoning. 
This approach assumes that the amount of knowledge 
required for immediate reasoning is small relative to the 
overall amount of knowledge accumulated by the model. 
Under this assumption, as demonstrated in the robotic 
evaluation task, our policy scales even as learned knowledge 
grows large over long trials. We note that since Soar’s 
semantic memory can change over time and is independent 
of working memory, our selective-retention policy does 
admit a class of reasoning error wherein the contents of 
semantic memory are changed so as to be inconsistent with 
decayed WMEs. However, this corruption requires 
deliberate reasoning in a relatively small time window and 
has not arisen in our models. While the model completed 
this task for all conditions reported here, at larger decay 
rates (≥0.6) the model thrashed because map information 
was not held in working memory long enough to complete 
deep look-ahead planning. This suggests additional research 
is needed on either adaptive decay-rate settings or planning 
approaches that are robust in the face of memory decay. 

Selective Retention in Procedural Memory
The intuition of our procedural-memory retention policy is 
to remove productions that are not actively used and that the 
model can later reconstruct via deliberate subgoal reasoning, 
if they become relevant. We utilize the base-level activation 
model to summarize the history of rule firing. 

At the end of each decision cycle, Soar removes from 
procedural memory each rule that satisfies all of the 
following requirements, with respect to parameter τ: 
R1. The rule was learned via chunking. 
R2. The rule is not actively firing. 
R3. The activation level of the rule is less than τ. 
R4. The rule has not been updated by RL. 

We adopted R1-R3 from Chong (2004), whereas R4 is 
novel. Chong was modeling human skill decay, and did not 
delete productions, so as to not lose each rule’s activation 
history. Instead, decayed rules were prevented from firing, 
similar to below-utility-threshold rules in ACT-R. R1 is a 
practical consideration to distinguish learned knowledge 
from “innate” rules developed by the modeler, which, if 
modified, would likely break the model. R2 recognizes that 
matched rules are in active use and thus should not be 
forgotten. R3 dictates that rules will decay in a task-
independent fashion as their use for reasoning becomes less 
recent/frequent. We note that for fixed parameters (d and τ) 
and a single activation, the BLA model is equivalent to the 
use-gap heuristic of Kennedy and Trafton (2007). However, 
the time between sequential rule firings ignores firing 
frequency, which the BLA model incorporates. 

Figure 2: Model working-memory size comparison. 

Figure 3: Model maximum decision time comparison. 
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Requirement R4 attempts to retain only those rules that 
the model cannot regenerate via chunking, a process that 
compiles existing knowledge applied in subgoal reasoning. 
Chunked rules that have been updated by RL encode 
expected utility information, which is not captured by other 
learning mechanisms. Because this information is difficult,
if not impossible, to reconstruct, these rules are retained.

Empirical Evaluation 
We extended an existing system (Laird et al., 2011) where 
Soar plays Liar’s Dice, a multi-player game of chance. The 
rules of the game are numerous and complex, yielding a task 
that has rampant uncertainty and a large state space 
(millions-to-billions of relevant states for games of 2-4
players). Prior work has shown that RL allows Soar models 
to significantly improve performance after playing a few 
thousand games. However, this involves learning large 
numbers of RL rules to represent the state space. 

The model we use for all experiments learns two classes 
of rules: RL rules, which capture expected action utility, and 
symbolic game heuristics. Our experimental baseline (B0) 
does not include selective retention. The first experimental 
modification (B1) implements our selective-retention 
policy, but does not enforce requirement R4 and is thereby 
comparable to prior work (Kennedy & Trafton, 2007; 
Chong, 2004). The second modification (B2) fully 
implements our policy. We experiment with a range of 
representative decay rates, including 0.999, where rules not 
immediately updated by RL are deleted (c=10, τ=-2 for all). 

We alternated 1,000 2-player games of training then 
testing, each against a non-learning version of the model.
After each testing session, we recorded maximum memory 
usage (Mac OS v10.7.3; dominated, in this task, by 
procedural memory), task performance (% games won), and 
average decisions/task action. We do not report maximum 
decision time, as this was below 6 msec. for all conditions
(Intel i7 2.8GHz CPU, Soar v9.3.1). We collected data for 
all conditions in at least three independent trials of 40,000 
games. For conditions that used selective retention, we were 
able to gather more data in parallel, due to reduced memory 
consumption (six trials for d=0.35, seven for remaining). 

Figure 4 presents average memory growth, in megabytes,
as the model trains, where the error bars represent ±1 
standard deviation. For all models, the memory growth of 
games 1-10K follows a power law (r2≥0.96), whereas for 

11-40K, growth is linear (r2≥0.99). These plots indicate that 
memory usage for the baseline (B0) and the slowly decaying 
model (B2, d=0.3) is much greater, and faster growing, than 
models that more aggressively decay. It also shows that 
there is a diminishing benefit from faster decay (e.g. d=0.5 
and 0.999 for B2 are indistinguishable). 

Figure 5 presents average task performance after 1,000 
games of training, where the error bars represent ±1 
standard deviation. This data shows that given the inherent 
stochasticity of the task, there is little, if any, difference 
between the performance of the baseline (B0) and decay 
levels of B2. However, by comparing B0 and B2 to B1, it is 
clear that without R4, the model suffers a dramatic loss of 
task competence. For clarity, the model begins by playing a 
non-learning copy of itself and learns from experience with 
each training session. While the B0 and B2 models improve 
from winning 50% of games to 75-80%, the B1 model 
improves to below 55%. We conclude that a selective-
retention policy that only incorporates production-firing 
history (e.g. Chong, 2004; Kennedy & Trafton, 2007) will 
negatively impact performance in tasks that involve 
informative interaction with an external environment. Our 
policy incorporates both rule-firing history and rule 
reconstruction, and thus retains this source of feedback. 

Finally, Figure 6 presents average number of decisions for 
the model to take an action in the game after training for 
10,000 games. In prior work (e.g. Kennedy & Trafton, 
2007), this value was a major performance metric, as it 
reflected the primary reason for learning new rules. In this 
work, each decision takes very little time, and so the number 
of decisions to choose an action is not as crucial to task 
performance as the selected action. However, these data 
show that there exists a space of decay values (e.g. d=0.35) 
in which memory usage is relatively low and grows slowly 
(Figure 4), task performance is relatively high (Figure 5), 
and the model makes decisions relatively quickly (Figure 6). 

Figure 4. Avg. memory usage ±1 std. dev. vs. games played. 

Figure 5. Avg. task performance ±1 std. dev. 

Figure 6. Avg. decisions/task action ±1 std. dev. 
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Discussion 
This work contributes evidence that we can develop models 
that improve using RL in tasks with large state spaces. 
Currently, it is typical to explicitly represent the entire state 
space, which is not feasible in complex problems. Instead, 
Soar learns rules to represent only those portions of the 
space it experiences, and our policy retains only those rules 
that include feedback from environmental reward. Future 
work needs to validate this approach in other domains. 

Concluding Remarks 
This paper presents and evaluates two policies for effective 
retention of learned knowledge from complex environments. 
While forgetting mechanisms are common in cognitive 
modeling, this work pursues this line of research for 
functional reasons: improving computational-resource usage 
while maintaining reasoning competence. We have 
presented compelling results from applying these policies in 
two complex, temporally extended tasks, but there is 
additional work to evaluate these policies, and their 
parameters, across a wider variety of problem domains. 

This paper does not address the computational challenges 
associated with efficiently implementing these policies. 
Derbinsky and Laird (2012) present and evaluate algorithms 
for implementing forgetting via base-level activation. 
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Abstract 

This paper introduces a new vision module, called 
PAAV, developed for the cognitive architecture ACT-
R. Unlike ACT-%<=( =$5'><?( @7=7AB( 2A=><$( ?('?( C'=(
originally developed for top-down perception only, 
PAAV was designed to model a wide range of tasks, 
such as visual search and scene viewing, where pre-
attentive bottom-up processes are essential for the 
validity of a model. PAAV builds on attentive 
components of the default vision module and 
incorporates greater support for modeling pre-attentive 
components of human vision. The module design 
incorporates the best practices from existing models of 
vision. The validity of the module was tested on three 
different tasks. 
K eywords: vision; iconic memory; cognitive architecture; 
ACT-R. 

Introduction 
This paper introduces a general purpose vision module 
called PAAV, which stands for Pre-attentive And Attentive 
V ision. As the name suggests, the new module incorporates 
a greater support for bottom-up visual components that are 
considered pre-attentive in nature, such as multiple feature 
dimensions to describe visual objects, peripheral vision with 
differential acuity, iconic visual memory and a decision 
threshold. The module was developed as an integral part of 
ACT-R cognitive architecture (Anderson, 2007) that 
provides a necessary top-down, attentive layer. By being 
part of ACT-R, PAAV should be able to model wide range 
of tasks where both top-down and bottom-up visual 
guidances are important. ACT-R already has a default vision 
module and a few extensions for it. However they have 
drawbacks that PAAV is aimed to solve. 

ACT-%<=(default vision module can be described in terms 
of a visicon and two buffers: visual-location and visual. 
Visual-location and visual buffers essentially represent 
WHERE and WHAT components of a visual system. The 
visicon represents the visual scene containing visual objects 
with which an ACT-R model can interact. The visicon is 
considered to be a part of the environment (a monitor 
screen) rather than part of the model. A model can send a 
WHERE request to the visual-location buffer to find the 
location in the visicon of a potential visual object to encode. 
Within this request, the model can specify criteria for visual 
object such as its kind, color, coordinates or size. Given this 
request vision module randomly chooses one of the visual 
objects from the visicon that exactly matches the given 
criteria and puts its location information in the visual-
location buffer. This entire process is instantaneous with no 

time cost. Next, model can send a WHAT request to the 
visual buffer to encode the object at the chosen location of 
visicon. A WHAT request assumes fixed execution times for 
both saccade and encoding that in total require 85 ms. 

EMMA (Salvucci, 2001) is arguably the most used 
extension to ACT-R<= default vision module. EMMA 
explicitly models saccades including preparation and 
execution times, path generation and variable landing 
points. HAC$@$D4( IWWD<=( 2'VAD( #AB?D7*>?7AB( 7=( 7B( 7?=(
ability to model covert attention shifts through variable 
encoding time dependent on visual A*V$#?<=( 5D$E>$B#F( 'B=(
eccentricity. 

The disadvantage of the default vision module and 
EMMA is in their optimization toward tasks that involve 
reading or working with items of a user interface. Those are 
the tasks with relatively a simple visual environment where 
bottom-up perceptual processes can be ignored without 
='#D757#7B8(2A=$<<= plausibility and performance. However, 
ACT-R<= vision module is not suitable for tasks where 
visual stimuli are described with multiple feature 
dimensions. Such tasks often require theories of scene 
perception and visual search that are not part of current 
vision module. The issue is more pressing if one considers 
the importance of embodied cognition (e.g., Clark, 1997) in 
problem-solving tasks (Nyamsuren & Taatgen, 2011) and in 
everyday human activities in general (Land, Mennie & 
Rusted, 1999). Embodied cognition assumes that cognitive 
control is not purely goal based, but it is also driven 
perceptually. The simplest example of it is an interference 
of the salient feature during the task (Theeuwes, 1992). 
When subjects are asked to look at the scene they tend to 
look at the most salient parts first. Those salient parts of the 
scene can interfere with task even if subjects are explicitly 
asked to not to look at them. 

A rchitecture of PA A V Module 

F eature dimensions 
In PAAV every visual object can be characterized by five 
basic features: color, shape, shading, orientation and size. 
The features are chosen because of their pop-out nature and 
importance in guiding visual attention (Wolfe & Horowitz, 
2004). Each of those features can have a wide range of 
values, such as, red and green for color; oval and rectangle 
for shape and etc. Currently, PAAV does not support 
modeler specified custom features. However, it is included 
as a future implementation milestone. 

Per ipheral V ision 
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The current implementation of ACT-R<= vision assumes that 
everything in a visicon is visible to the vision module and 
consecutively available for information processing. 
However, human vision is limited in what it can see, 
especially in the extra-foveal region (Rayner, 1998). PAAV 
introduces limitations on visibility by assuming that a visual 
object is only visible if at least one of five features of that 
object is visible. Visibility of a feature is calculated with an 
acuity function. We have adopted a modified version of the 
psychophysical acuity function proposed by Kieras (2010). 
X7$D'=< original acuity function states that for an A*V$#?<=(
5$'?>D$( ?A(*$(@7=7*<$( ?($(A*V$#?<=( angular size , with some 
Gaussian noise added to it, must exceed a threshold 
calculated as a function of eccentricity : 

 
 

 
The free parameters , ,  and  are to be adjusted for 

each particular feature. The function works quite well for 
modeling differential acuity of features. However, the 
quadratic form in the function makes it less suitable when 
the object size is particularly small. For example, in their 
feature search experiment for color, Treisman and Gelade 
(1980) used visual stimuli of 0.8Gx0.6G in size scattered over 
area of 14Gx8G. This feature search experiment cannot be 
replicated with the above acuity function for color unless 
parameter  is assigned an extremely low value that is well 
below the 0.035 used by Kieras (2010). 

PAAV uses a modified version of the acuity function to 
mitigate issue above: 

 
 

The constant  has been removed since it has no 
significant influence when object size is reasonably large 
and too much influence when object size is quite small. 
Similarly, the Gaussian noise has been removed because of 
its tendency to introduce too much or too little acuity 
variation depending on the object size. Next, the coefficient 

 has an opposite sign. It results in less steeper increase in 
threshold when an eccentricity increases. It also removes the 
necessity of giving unreasonably small value to coefficient 

 when object size is small. The free parameter  has been 
refitted again to 0.035 and 0.1 for color and shape 
respectively. The parameter  has been fitted to 0.601 for 
both color and shape. We are still in process of refitting 
parameters for the rest of the features. 

Iconic V isual M emory 
Everything PAAV perceives from the visicon is stored in 
iconic memory. Visual features of every object visible via 
peripheral vision are stored in this memory. As such, the 
content of iconic memory is not necessarily a complete or 
even a consistent representation of the objects in the visicon. 

Information in iconic memory is not treated as 
consciously perceived visual properties. It is rather 
perceived as bottom-up visual stimuli on which bottom-up 
processes can operate. Iconic memory is trans-saccade 
persistent. Items in iconic memory are persistent for a short 

duration of time if they are not visible through peripheral 
vision anymore. This persistence time is currently set to 4 s 
determined by Kieras (2009) to be a lower bound for a 
visual memory. 

W#AB7#(2$2ADF( 7=( '(2A=$<<=( 7B?$DB'<( D$HD$=$B?'?7AB( A5( '(
visicon, otherwise visual scene. As such, all WHERE 
requests are handled with respect to the content of iconic 
memory via a newly defined abstract-location buffer. A 
request may include desired criteria including any of the 
five feature dimensions or location. 

Visual Activation 
Each visual object in iconic memory is assigned an 
activation value. The location of the visual object with the 
highest activation value is returned upon a WHERE request. 
The activation value is calculated as a sum of bottom-up and 
top-down activation values. It is adapted from the concept 
of an activation map used by Wolfe (2007) in his model of a 
visual search. 
 
Bottom-up activation The bottom-up activation for a visual 
object i is calculated based on its contrast to all other objects 
in iconic memory with respect to each feature dimension k: 

 

The dissim(vik, vjk) is the dissimilarity score of two feature 
values of the same dimension. It is a simplification of a 
bottom-up activation based on the difference in channel 
responses used in Guided Search 4.0 (Wolfe, 2007). If two 
values are the same then dissim(vik,vjk)=0, otherwise 
dissim(vik,vjk)=1. The dissimilarity is weighted by a square 
root of a linear distance dij between two objects. Thus the 
objects farther away contribute less to a contrast-based 
saliency of the visual object i than the objects closest to it. 
 
Top-down activation In a WHERE request a model can 
provide feature values as desired criteria for the next visual 
object to be located. Those feature criteria are used to 
calculate the top-down activation value for each visual 
object in iconic memory. Given k feature criteria the top-
down activation for visual object i is calculated as: 

 

 is a similarity score of the feature value  in 
WHERE request to a value  with the same feature 
dimension in visual object i. This similarity score is 1 for an 
exact match and 0 for a mismatch. If the value  is not 
accessible from iconic memory then the similarity score is 
considered to be 0.5. Thus uncertainty is preferred to certain 
dissimilarity. 
 
Total visual activation The total activation for visual object 
i is the sum of bottom-up and top-down activations: 

 
 and  are the weights for the bottom-up and top-

down activations respectively. In correspondence with 
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Wolfe (2007), those weights control the intentional and 
unintentional attentional captures. Those weights are set to 
1.1 and 0.45. The bottom-up activation is given a higher 
weight to compensate for the distance  adjustment, which 
results in the lower bottom-up activation value in 
comparison to the top-down activation value.  

Saccade and Encoding 
After a visual object has been located with a WHERE 
request, a model can send a WHAT request. This is 
essentially the same encoding processes of a visual object 
from the visicon as in ACT-%<= default vision module. 
However, PAAV assumes that the saccade that precedes the 
encoding has a variable execution time dependent on the 
saccade<= amplitude. Prior to a saccade execution, PAAV 
calculates its duration and landing point. Salvucci (2001) 
described a set of formulas to calculate those variables. For 
calculating the execution duration, we used 20 ms as a base 
execution time and additional 2 ms for an every degree of 
angular distance between gaze position and the center of the 
object to be fixated. This is exactly the same method used 
by Salvucci (2001). Differently from Salvucci (2001), we 
have used two Gaussian distributions around the center of 
?($( A*V$#?( ?A( #'<#><'?$( ='##'=$<s landing position. The 
standard deviation for distribution along X axis is calculated 
as 0.5 times of the A*V$#?<=( <7B$'D( C7=?(2( In a similar 
manner, the standard deviation for Y axis is calculated using 
A*V$#?<=(($78(?2 Such implementation is in accordance with 
theory that the saccade<s landing position depends on the 
size of a visual stimulus (Rayner, 1998). 

Upon completion of a saccade, PAAV starts encoding. 
The encoding time takes a fixed 50 ms. It is in line with 
findings that the sufficient information is encoded in the 
first 45-75 ms of a fixation for an object identification to 
occur (van Diepen, DeGraef, & d'Ydewalle, 1995). Except 
eccentricity, Salvucci (2001) used word frequency to 
calculate variable encoding time. However, we believe this 
approach is not applicable to PAAV where visual object is 
defined along multiple dimensions. Hence, further study is 
needed to investigate the object<= encoding process in more 
details sufficient for proper computational modeling. 

Visual Decision Threshold 
One of the challenging problems in a visual perception is 
how does the visual system recognize the absence of a 
desired visual object. For example, humans can spot the 
absence of a salient object as fast as its presence in a visual 
field (Figure 1). Similarly, given a WHERE request with 
specific criteria, how does PAAV know that the desired 
object is not in iconic memory. One obvious solution is to 
attend every object in visicon and stop when there are no 
more objects to attend. However, visual search paradigms, 
such as feature search, show that it is not the case. The 
visual system is much more efficient and does not require 
fixation on every item to detect an absence of a target 
(Treisman & Gelade, 1980; Wolfe, 2007). 

PAAV incorporates the concept of a visual decision 
threshold to decide whether any of the objects in iconic 
memory will match a given WHERE request. A partial 
solution is to ignore every object that has zero top-down 
activation due to complete mismatch. However, results from 
tasks, such as conjunction search, show that a visual search 
can be efficient even when distracters partially match the 
target. PAAV should also be able to filter out objects that 
match only partially. This is done via simulation of visual 
grouping based on top-down activation. Given a WHERE 
request, PAAV returns some object i. X$?<=('==>2$( ?('?, at 
the time of WHERE request, the distance between object i 
and the gaze position was dTh, and object i<= top-down 
activation was TATh. When object i is encoded these two 
values are stored and used as a threshold for the consecutive 
WHERE requests. In the following WHERE requests 
PAAV completely ignores every object j in iconic memory 
that has TAj I( TATh and djg I dTh where djg is a distance 
between object j and gaze position. Top-down activation 
serves as a natural threshold for object selection. Every time 
a model encodes an incorrect object, the acceptance 
threshold for the next WHERE request increases up to the 
activation value of that object. The distance dTh provides a 
measure that PAAV uses to judge whether it can reliably 
compare two top-down activation values. It is a simulation 
of a visual grouping where a cluster of similar objects is 
grouped together. The dTh can be viewed as an approximate 
radius of the cluster. 
 

 
 

Figure 1: Humans can spot an absence (a) of a red object in 
field of green objects as fast as its presence (b). 

Validation Models 
This section describes two models that do common visual 
tasks. The models are based on ACT-R where the default 
vision module was replaced with the PAAV module. The 
tasks are simple, yet demand complex cognitive and 
perceptual processes, and require most of the components of 
PAAV module described in this paper. Hence, those tasks 
serve as a good way to validate the PAAV module.  

The first model was created to do feature and conjunction 
searches. Both of these visual search tasks involve finding a 
target among a set of distracters. In a feature search task the 
target differs from distracters by a single feature such as 
color (Figure 2a). In a conjunction search the target can 
differ from distracters by either of two features (Figure 2b). 
A feature search is usually an efficient search with reaction 
time being independent of a number of distracters. On the 
other hand, reaction time in a conjunction search increases 
with a number of distracters. Those results are consistent 

(a) (b) 
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among different studies (e.g., Treisman & Gelade, 1980; 
Wolfe, Cave & Franzel, 1989; Wolfe, 2007). 

The second model does a comparative visual search, a 
paradigm proposed by Pomplun, Sichelschmidt, Wagner, 
Clermont, Rickheit and Ritter (2001). The task involves 
detecting a mismatch between two, otherwise equal, halves 
of a display referred to as hemifields (Figure 3). The task is 
a simplified version of the traditional picture matching task 
(Humphrey & Lupker, 1993) with a major difference that it 
does not require image processing. 
 

 
 

Figure 2: Examples of feature search (a) and conjunction 
search tasks (b). In both tasks the red rectangle is a target. 
 

 
 

Figure 3: An example comparative visual search task where 
targets are red triangle and red oval in left and right 

hemifields respectively. 

A Model of F eature and Conjunction Searches 
The goal in feature search was to find a red rectangle among 
green rectangles. In a conjunction search, the model had to 
find a red rectangle among green rectangles and red ovals. 
In each trial values for both shape and color were present in 
near equal amount. 

The following experimental conditions were set for the 
model. In both types of visual search tasks, the set size 
ranged from 1  to 30. For each set size, there were 500 trials 
where a target was present and another 500 trials where a 
target was replaced with a distracter. In total, there were 
6000 trials in each of feature and conjunction search tasks. 
The screen size was 11.3Gx11.3G, and the size of each object 
was 0.85G both in width and height. Within the screen, 
objects were positioned in a random pattern with the 
constraint that they should not overlap. The model had to 
HD$==( $7?($D( J4K( AD( JDK( 5AD( ?'D8$?( *$7B8( $7?($D( HD$=$B?( AD(
absent. The time of key press was considered as trial end 
time. The model was reset after each trial. 

Figure 4b =(AC=(?($(2A=$<<= mean reaction times in both 
feature and conjunction search tasks each averaged over 
trials of the same set size. The black solid line is for feature 
search task where target was present, and black dashed line 

is for feature search task where target was absent.  
In feature search task the model was asked to find any red 

object. The resulting RT is mostly independent of set size 
and averages to 439 ms when a target is present and 640 ms 
when a target is absent. It is consistent with experimental 
findings where RT for positive trials is also around 430 ms 
and for negative trials is 550 ms (Treisman & Gelade, 1980; 
Wolfe, 2007). The model RT remains the same in positive 
trials due to very high bottom-up activation the target 
receives due to its color contrast to homogeneous 
surrounding objects. Top-down activation from the 
matching color also contributes to the overall saliency of the 
target. However, bottom-up activation alone is enough to 
make the target salient enough to attract almost immediate 
attention. In negative feature search trials all objects in 
iconic memory have zero top-down activation. It takes the 
model few fixations to realize absence of a top-down 
activation after which the model stops searching. As a 
result, model also produces flat RT line independent of a set 
size, although slightly higher than in positive trials. 

In a conjunction search task the model was asked to find 
any red rectangle. Figure 4 compares the RT produced by 
the model to the RT obtained by Treisman and Gelade 
(1980) from their experiment with human subjects. As the 
blue lines in Figure 4 indicate the RT in both positive and 
negative trials rise as the set size increases. The slopes, 
however, are different with negative trials having a 
significantly higher slope. Linear regression of 2A=$<<= RT 
on set size gives intercept of 440 ms and 689 ms for positive 
and negative trials respectively. The slopes are around 19.6 
ms/item and 72.8 ms/item. The model results can be 
compared to those obtained in previous studies (Table 1). 
 

 
 

Figure 4: (a) Mean reaction times of human subjects in 
conjunction search as reported by Treisman and Gelade 

(1980); (b) Mean reaction times in feature and conjunction 
search tasks produced by our model. 

 
In this task the distracters are not homogenous. They vary 

by both color and shape. As a result, there is no guarantee in 
positive trials that a target will have a higher bottom-up 
activation than distracters. However, the target always 
receives higher top-down activation than any other object in 
iconic memory since it has both matching color and shape. 
6($B('(=$?(=7L$( 7=(=2'<<( ?($( ?'D8$?<=( ?AH-down activation is 
enough to compensate for smaller bottom-up activation, and 
the target almost immediately attracts attention as the most 
salient object. When the set size is big, there is a higher 

(a) (b) 

(a) (b) 
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chance that the target will get significantly lower bottom-up 
activation than a distracter, which then cannot be 
compensated by higher top-down activation. Consecutively, 
those distracters with a higher overall activation are 
attended first which results in RT increasing with set size. 

The main challenge for the model in negative conjunction 
trials is to know when to stop the search and report the 
absence of the target. Since most of the distracters either 
match color or shape with a target, there are few objects that 
have zero top-down activation. Hence, the model had to rely 
on visual decision threshold to filter out partially matching 
distracters. The model requires on average 72.8 ms/item in 
negative trials indicating that the model does not need to 
fixate on every object to realize the absence of a target. 
Hence, top-down activation serves quite well as a visual 
decision threshold. 

Considering the variations between different studies, the 
model gives a good fit to experimental findings from 
previous studies with a slightly higher intercept for negative 
trials than that found in experiments with human subjects. 
This is probably due to the fact that the corresponding RT 
line (Figure 4b) is not completely linear, and the elevation 
for trials with set size of 15 and 20 results in an elevated 
intercept for an entire linear function. We are still in process 
of investigating what causes the slightly increased RT for 
those trials. 
 

Table 1: Comparison of the results of the 2A=$<<=(<7B$'D(
regressions of RT on set size to results of linear regression 
from similar experiments by Treisman and Gelade (1980) 

and Wolfe, Cave and Franzel (1989). 
 

 Trial type Slope (ms/item) Intercept (ms) 

Model data Positive 19.6 440 
Negative 72.8 689 

Treisman and 
Gelade, 1980 

Positive 28.7 398 
Negative 67.1 397 

Wolfe, Cave and 
Franzel, 1989 

Positive 7.5 451 
Negative 12.6 531 

A Model of Comparative V isual Search 
For the model of comparative visual search, we set the 
screen size to 24Gx16G, and the size of each object was 0.6G 
both in width and height. Those are the same conditions 
used in the original experiment (Pomplun et al., 2001). The 
screen was divided vertically in two halves, hemifields. 
Each hemifield contained 30 objects varying in shape 
(rectangle, oval and triangle) and color (red, green and 
blue). Each color and shape value was represented in a trial 
in an equal quantity. Positions of the objects were generated 
randomly with minimum margin of 10 pixels from the 
boundaries of the screen. Two hemifields were identical 
except one object, the target, which mismatched in either 
color or shape. The target was chosen at random among 30 
objects as well as the type of mismatch. 

In total, the model had to do 10000 trials where half of the 
trials had targets that mismatched color and the other half 
that had targets with mismatched shape. The model was not 

aware of the type of mismatch it had to find in a trial. The 
model was reset after each trial.  

The model used a very simple algorithm to do visual 
search. The model starts from a top-left corner of a screen 
and does following steps: 
1. Fixate on any unattended object (further referred to as 

O1) in the current hemifield. 
2. Fixate on any object (referred as O2) in the opposite 

hemifield that has the same y coordinate as the O1. 
3. If O1 and O2 are the same then go to step 1. 
4. If O1 and O2 are different then: 

a. Fixate on an object NO2 nearest to O2 
b. Fixate on O1 
c. Fixate on an object NO1 nearest to O1 
d. If NO1 and NO2 are the same then end the trial. 
e. If NO1 and NO2 are not the same then go to step1. 
The steps 4.a to 4.e are necessary to ensure that the 

module is comparing a correct pair of objects. This 
uncertainty comes from the fact that when locating a target<=(
twin in the opposite hemifield the model knows only its y 
coordinate and not the x coordinate. Therefore, it is possible 
for the model to fixate on a wrong object that by chance had 
the same y coordinate. To detect such mistakes model also 
compares two objects from two hemifields that are closest to 
respective target objects.  

The model<=(2$'B(%9(A@$D('<<(?D7'<s was 9089 ms (Table 
2).  On average, the model needed 9007 ms and 9170 ms to 
finish trials where the difference was either in color or in 
shape respectively. This is a reasonable fit to reaction times 
reported by Pomplun et al. (2001). However, the current 
model was unable to show difference between trials where 
the mismatch was either in color or in shape. 
 

Table 2K(HA2H'D7=AB(A5(2A=$<<=(2$'B(%9=(?A(?(A=$(
reported by Pomplun et al. (2001). All RTs are in ms. 

 
 Color Shape Total 

Model 9007 9170 9089 
Pomplun et al. (2001) 9903 11997 10950 

 

 
 

Figure 5: (a) Histogram of reaction times in original 
comparative visual search experiment (Pomplun et al., 

2001); (b) Histogram of reactions times from 10000 model 
trials in comparative visual search. 

 
Figure 5a shows a histogram of reaction times from 

original experiment done by Pomplun et al. (2001).  This 
histogram can be compared to a histogram of reaction times 

(a) (b) 
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produced by our model depicted in Figure 5b. Both graphs 
show a plateau of short reaction times between three and ten 
seconds, indicating that the distribution of RT produced by 
the model closely fits the distribution from the original 
experiment. On average, the model made 37.3 fixations 
during a trial. This is a close match to 39.6 fixations 
reported by Pomplun et al. (2001). The model produces 
nicely structured scanpath (Figure 6) even though there is no 
explicit control of which object should be chosen as O1. 
 

 
 

Figure 6: Example scanpath produced by the model. Open 
circles indicate fixations while arrows indicate saccade 

directions. Numbers are positions of fixations in the fixation 
sequence. Targets are blue and green triangles at 36th and 

37th fixations. 

Conclusion 
There are many existing models of the human visual system. 
We have greatly leveraged from those models by adopting 
different concepts and integrating them into one module that 
became PAAV. Our main goal is not to reinvent the wheel, 
but to create a tool that allows modelers to create 
cognitively plausible models of tasks that require 
comprehensive visual system. This is the major difference 
between PAAV and existing models of a visual system. 
Models, such as a three-level model of comparative visual 
search (Pomplun & Ritter, 1999) or Guided Search 4.0 
(Wolfe, 2007), were created to perform very specific set of 
tasks.  On the other hand, PAAV was developed to be 
general enough to model a wide range of tasks. This is why 
we prefer to call PAAV a module rather than a model. 
Furthermore, PAAV is not a stand-alone tool, but rather a 
part of a cognitive architecture. For example, Guided Search 
4.0 excels at modeling feature and conjunction search tasks. 
However, an absence of a general cognitive theory makes it 
hard to investigate top-down influence in these tasks. On the 
other hand, ACT-R imposes limitations on what PAAV is 
allowed to do, but it also gives additional layer of 
plausibility. The source code for the PAAV module and the 
models of the visual search tasks described in this paper can 
be downloaded via http://ai178174.ai.rug.nl/iccm2012/. 
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ACTR-QN: Integrating Queueing Network and ACT-R Cognitive Architectures
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Abstract
Integrating the symbolic modeling capabilities of ACT-R and the mathematical and 
visualization capabilities of Queueing Network has both theoretical and applied 
values. Theoretically, the integrated ACTR-QN allows modelers to examine a wider 
range of fundamental cognitive issues from new perspectives. For cognitive 
engineering applications, a software program implementing ACTR-QN has been 
developed, including task templates, model setup assistants, and visualization 
functionalities. These tools and features support easy model building and intuitive 
model analysis of both task performance and mental workload.
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Abstract

While a clear relation has been established between ACT-R
and activity in fMRI, little is known about whether ACT-R
has also correlates in EEG activity. Because of its superior
temporal resolution compared to fMRI, EEG could potentially
be used to adjudicate between model versions that differ in
time courses of module activation, even while generating qual-
itatively similar patterns of behavioural data. On the other
hand, ACT-R could form a much-needed source for hypothe-
ses about interactions between brain areas (synchronization) in
EEG data. I discuss a method to find such a mapping between
ACT-R and EEG buffers, and apply it to data from an atten-
tional blink experiment (Martens et al., 2006). I show prelim-
inary EEG correlates of ACT-R modules and discuss broader
implications of this approach for both cognitive neuroscience
and cognitive modeling with ACT-R.
Keywords: EEG; ACT-R; attentional blink; oscillations

Introduction
There is a growing interest in using neural activity to help
in constraining cognitive models and for cognitive models to
help understand the brain. One of the models for which this
brain-to-model mapping has worked very well is the ACT-R
cognitive architecture (Anderson, Fincham, Qin, & Stocco,
2008). Multiple experiments have verified this mapping, and
conversely, the mapping of ACT-R to fMRI (functional mag-
netic resonance imaging) has given rise to interesting neural
predictions.

Despite the success of the mapping between ACT-R and
fMRI, there has not been a comparable mapping between
ACT-R and EEG (electroencephalography) data. EEG differs
from fMRI in that it has a much higher temporal resolution
(on the order of milliseconds) compared to the supra-second
resolution of fMRI. This increase in temporal resolution of
EEG compared to fMRI is countered by a decrease in spatial
resolution. While fMRI is very well-suited to answer ques-
tions about what parts of the brain are associated with the dif-
ferent ACT-R modules, EEG could answer questions about
differences in their time courses of activation. This is inter-
esting because candidate cognitive models could differ in the
time course of activation of various buffers, but this may not
yield to observable differences in behaviour. An example of
this concerns the question of how long the retrieval buffer
takes to turn off after activation. Varying the retrieval buffer’s
decay time does not lead to qualitatively different predictions
for behaviour in most experiments. Nevertheless, these mod-
els could potentially still be distinguished with a tool like
EEG, which has a very high temporal resolution.

While EEG is most conventionally analyzed in terms of
event-related potentials, i.e., the average electric field mea-
sured in an electrode in response to a certain event, another

way is to examine electrical activity in different frequency
bands that need to necessarily be time-locked to an event. It
has been proposed that such oscillatory activity can be used
to communicate and bind information across different parts
of the brain (e.g., Singer, 1993). To have a more comprehen-
sive grasp of EEG activity, we will consider both oscillatory
and non-oscillatory EEG in our work.

Although a no mapping has been made between EEG ac-
tivity and all ACT-R modules, some authors have proposed
electrophysiological correlates for the production system that
forms the core of ACT-R. For example, Zylberberg, Dehaene,
Roelfsema, and Sigman (2011) propose that the ACT-R pro-
duction system is similar to the Global Neural Workspace
hypothesis in that the cognitive system selects productions
serially from a set of sensory, memory, and motor options.
Selection is mediated by mutual inhibition between neurons
that increase in activation until a threshold is reached. No-
tably, “production selection resembles single decision mak-
ing” (Zylberberg et al., 2011). A lot is known about the neural
correlates of making a single decision between multiple alter-
natives which provides hypotheses for the neural correlates
of production selection (“deciding” between productions). I
have previously proposed that evidence accumulation is asso-
ciated with power of oscillatory activity in the 4–9 Hz theta
band in EEG (van Vugt, Simen, & Cohen, 2011) and cross-
ing a threshold with the Lateralized Readiness Potential (an
EEG potential consisting of the imbalance between the left
and right-hemisphere central electrodes C3 and C4 that is
thought to arise from motor cortex, see Figure 1; Simen, van
Vugt, Balci, Freestone, & Polk, 2010; van Vugt, Simen, Nys-
trom, Holmes, & Cohen, submitted). Simen et al. (2010) also
proposed that production selection would be associated with
the Lateralized Readiness Potential.

In this study, we look for the electrophysiological corre-
lates of a larger set of ACT-R modules in an attentional blink
task, for which a well-established ACT-R model exists (Taat-
gen, Juvina, Schipper, Borst, & Martens, 2009). In an atten-
tional blink task (Luck, Vogel, & Shapiro, 1996) participants
see a very rapid stream of visual stimuli, and have to detect
what letters were presented in this stream of digits. The main
finding of interest in this task is that while participants can
see two letters if they occur far apart or in direct succession,
they often fail to see the second letter if it is separated from
the first by one or two intervening digits. It is as if attention
blinks after seeing the first letter. ACT-R accounts for the
attentional blink phenomenon by assuming there is an over-
exertion of control. If, when a target is recognized in the
stream of stimuli, a control rule is triggered in the production
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Figure 1: Example module activation probabilities for the ACT-R model of the attentional blink (lag 3, correct trials). Blue:
imaginal module. Red: visual module. Green: retrieval module. Cyan: production module. These module activations were
used to create the ACT-R regressors that were correlated with the EEG data.

module that suspends target detection, then this can create an
attentional blink because the imaginal buffer is not open for
receiving another target to consolidate during the “suspend
target detection” time.

There have been two main findings in EEG studies of the
attentional blink: an increase in the P3 event-related compo-
nent (the P3 is a positive potential occurring approximately
500 ms after a stimulus onset at parietal electrode sites), and
a decrease in gamma oscillation synchronization. The in-
crease in the P3 has also been associated with an increase
in 4–9 Hz theta oscillation reset, and has been thought to re-
flect over-investment of attentional resources in the first tar-
get stimulus (Slagter et al., 2007), This phenomenon may be
similar to the over-exertion of control posited by the ACT-
R model, and may be associated with the imaginal module.
The decrease in gamma synchronization was predicted by the
Global Neural Workspace model by Dehaene, Sergent, and
Changeux (2003), which as discussed above, shares concep-
tual commonalities with ACT-R. Gamma oscillations are pe-
riodic activity observable in the EEG at a frequency of 28–
90 Hz. Gamma oscillations have been associated with many
things, including visual attention and consciousness (Varela,
Lachaux, Rodriguez, & Martinerie, 2001). According to
Dehaene’s model, when gamma synchronization decreases,
it makes the visual stimulus less accessible to conscious-
ness (Gaillard et al., 2009), and hence the participant will
frequently fail to report that s/he has seen the stimulus. In
terms of ACT-R, this may reflect an inability of the visual
stimuli to enter the imaginal buffer.

My goal is to examine whether we can find neural cor-
relates of ACT-R during the attentional blink in EEG data.
Guided by the above observations, I predict that activation of
the imaginal module, which is crucial for the attentional blink
effect, is correlated with 4–9 Hz theta oscillations and the P3
EEG component. I further predict that the gamma synchro-
nization decrease that is also associated with the attentional
blink reflects a disconnection between the visual module and

the retrieval module, such that items entering the visual mod-
ule cannot be compared to memory (chunk activation from
items in the visual buffer cannot spread to chunks in declar-
ative memory during a retrieval request). Nevertheless, in
testing these hypotheses, I will look at all frequency bands
because there exist other plausible hypotheses and the field is
relatively unexplored.

Methods
Task: I used existing data from an attentional blink
task (Martens, Munneke, Smid, & Johnson, 2006) to study
the electrophysiological correlates of ACT-R. In this task,
participants see a very rapid stream of visual stimuli, pre-
sented for 90 ms each. Their task is to report whether there
are letters present in the stream, and if so, which letters those
are. The data reported here are from the 14 blinkers in the
study by Martens et al. These EEG data were collected at
the University of Groningen with a 64-channel EEG system
(Twente Medical Systems, Enschede, The Netherlands) and a
sample rate of 250 Hz.

Analysis: EEG data were analyzed with the EEG toolbox,
a set of Matlab scripts developed in the laboratory of Michael
Kahana (e.g, van Vugt, Schulze-Bonhage, Litt, Brandt, & Ka-
hana, 2010) and custom-written scripts. I used this toolbox to
extract data for every channel in our EEG setup. I concate-
nated the time series for each trial lengthwise into one long
time series to be correlated with the ACT-R model time se-
ries. I then used Morlet wavelets (van Vugt, Sederberg, &
Kahana, 2007) to create representations of the EEG data in
six distinct frequency bands: 2–4 Hz delta, 4–9 Hz theta, 9–
14 Hz alpha, 14–28 Hz beta, 28–48 Hz low gamma and 48–90
Hz high gamma (van Vugt et al., 2010). For this frequency-
transformed data, I used the same concatenation procedure to
create time series of the trial EEG for each standard frequency
band.

To correlate ACT-R’s predicted module dynamics to EEG
data, I created regressors (van Vugt et al., 2011). Regressors
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Table 1: Predictions for the neural correlates of ACT-R modules based on the cognitive neuroscience literature. Note that the
speech module would create large artifacts in EEG activity, making it difficult to find correlates for this buffer. Reported fMRI
correlates are based on Anderson et al (2008) and Borst et al (2011).
1 Keeping track of subgoals and intentions. 2 ACC = Anterior Cingulate Cortex. 3 Storing and retrieving declarative informa-
tion. 4 Auditory perception.

Module fMRI region EEG component
Motor module Motor cortex Central beta oscillations
Vision module Fusiform gyrus Posterior gamma oscillations
Imaginal module1 Parietal cortex (Intraparietal Sulcus) Parietal theta oscillations
Goal module ACC2 Frontal theta/gamma oscillations
Retrieval module3 Lateral inferior prefrontal Hippocampal theta oscillations
Speech module Artifacts Artifacts
Aural module4 Secondary auditory cortex Central gamma oscillations
Production selection Head of caudate Lateralized Readiness Potential

are fMRI terminology for a time series of interest that is used
as the independent variable in a regression to find pieces of
neural data that correspond to these dynamics. In this case,
the data patterns of interest are ACT-R module activations (vi-
sual, production, retrieval, and imaginal). I ran the attentional
blink ACT-R model (Taatgen et al., 2009) 250-350 times (cor-
responding to the number of trials in the dataset) and com-
puted the average activation for different model conditions:
lag 3 and 8, and correct and incorrect responses. These av-
erage activations therefore reflect the probability of a module
being active. ’Lag’ refers to the number of stimuli between
the first and second target (letter) in the digit stream that the
participant has to remember. An attentional blink is likely
to occur for lag 3, but not lag 8 trials. Correct trials refer
to trials in which both targets were reported correctly. Trials
in which the first target was missed were removed from the
analysis because in that case it is not clear what the reason is
for missing the second target if that occurs.

For every trial that a participant did, I inserted the averaged
module activation for the condition corresponding to that
trial. This led to an activation time series during the whole
tasks for every ACT-R module that, after subsampling to the
EEG sample rate (250 Hz), had the same length as the EEG
data. These were the time series that I could use to regress the
EEG time series on, to obtain for every module an estimate
of how well it correlated with the different frequency bands,
and which channels were most strongly involved in this cor-
relation. Instead of using a simple multiple regression, I used
a canonical correlation analysis, which finds weights on the
regressors (electrode time series) that maximize the correla-
tion between the regressors and the ACT-R time series. Note
that only the EEG data were wavelet-transformed–the ACT-R
activation time courses were not.

Predictions: I correlated the regressors representing ACT-
R’s module dynamics not only with raw EEG, but also with
oscillatory EEG. Oscillatory activity has two advantages over
event-related raw EEG activity: the mechanisms that produce
field potential oscillations are well-understood, and because
many phenomena get lost in averaging, time-frequency de-

Table 2: Cross-correlations for the various ACT-R module
time courses, averaged across participants. The activation
time course of the imaginal module is most different from
the other modules, as would be predicted from the module
time courses in Figure 1.

Imaginal Production Retrieval Visual
Imaginal 1.0000 0.3922 0.3057 0.3880
Production 0.3922 1.0000 0.2138 0.5046
Retrieval 0.3057 0.2138 1.0000 0.5238
Visual 0.3880 0.5046 0.5238 1.0000

composition allows for a more comprehensive and in-depth
picture of the data (Cohen, Wilmes, & van de Vijver, 2011).
It is well possible that different modules are associated with
different oscillatory frequency bands. Table 1 shows my
hypotheses about correlations between ACT-R modules and
components of EEG activity based on the EEG literature.

Results
The basic behavioural and EEG data for this task are reported
in Martens et al. (2006), who showed a classic attentional
blink effect (dip in accuracy for the second target letter when
it followed the first target letter with only 1 or 2 items in-
between). This was accompanied by an increased P3 EEG
component for blinked compared to non-blinked trials.

Figure 1 shows an example of average ACT-R module ac-
tivation on a single trial for the lag 3/correct condition. These
activation time courses were used to make regressors that
could be used to extract corresponding patterns from our EEG
data. I correlated these regressors with both the raw EEG data
and oscillatory data in the different frequency bands. Fig-
ure 2 shows the resulting correlations between each module
and EEG activity for all participants who showed evidence of
an attentional blink in the task. Note that the activations of
the visual, retrieval and production modules are highly corre-
lated (Table 2; see also Borst, Taatgen, and Rijn (2011, for
a discussion)) and are therefore expected to have very similar
neural correlates. The highest correlations occur with activity
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Figure 2: Canonical correlation between ACT-R module time courses and EEG time courses for raw EEG (“EEG”), 2–4 Hz
delta (“D”), 4–9 Hz theta (“T”), 9–14 Hz alpha (“A”), 14–28 Hz beta (“B”), 28–48 Hz low gamma (“G1”) and 48–90 Hz
high gamma (“G2”) activity. Different lines reflect different participants. As expected from the correlations between module
activations, the imaginal module shows a different pattern (most prominent correlation with EEG activity in the delta band)
from the other modules (most prominent correlation with EEG activity in the theta band).

in the 4–9 Hz theta band for the visual, retrieval, and produc-
tion modules. For the imaginal module, we additionally see a
fairly high correlation with activity in the 2–4 Hz theta band
as well. Overall canonical correlations are lowest for the re-
trieval module. Interestingly, there are three participants for
whom raw EEG activity shows the highest canonical correla-
tion, while for all others oscillatory EEG shows the highest
canonical correlation. In contrast to our expectations, the dif-
ferent modules in this experiment do not exhibit correlations
with distinct frequency bands. Part of this may be due to the
relatively high correlations between module activation time
courses.

I then examined the topographies associated with the mag-
nitudes of ACT-R–EEG correlations in the different fre-
quency bands. While the correlations look quite similar
across modules and frequency bands, the topographies in Fig-
ure 3 show more variation. In this graph, I chose for each
module a frequency band based on either the magnitude of
the correlation of the EEG with the module activation in Fig-
ure 2 or based on the hypotheses in Table 1. I found that the
imaginal module correlate in the 4–9 Hz theta band was pri-
marily associated with right-lateral activation that could be

consistent with a parietal source as I expected. The produc-
tion module correlate in the 4–9 Hz theta band was found pre-
dominantly in superior channels that are in the same location
as where Lateralized Readiness Potentials are observed. The
retrieval module correlate in the 2–4 Hz delta band showed a
negative correlation in frontal channels, consistent with a cor-
relate of the retrieval module in frontal cortex (but unlike my
prediction of hippocampal theta oscillations, although those
are virtually impossible to observe on the scalp). It also
showed a positive correlation with right-lateral channels. Fi-
nally, the visual module correlate in the 28–48 Hz gamma
band had a central topography, which is quite different from
the occipital locus I expected for this module. The gamma
band correlate was also much weaker than the correlation in
the delta and theta bands, which may therefore be much more
likely correlates of this buffer.

Discussion
I have proposed a new method to find the electrophysiologi-
cal correlates of ACT-R module activations, and shown that
different buffers show different patterns of correlation with
EEG data. Not all the predictions in Table 1 have been ver-
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Imaginal Production Retrieval Visual
4–9 Hz 4–9 Hz 2–4 Hz 28–48 Hz

Figure 3: Topographical representation of electrode weights from the canonical correlation analysis for the different modules.
The choice of frequency band was guided by the canonical correlation observed in Figure 2. Plotted are the magnitudes of the
canonical correlation weights across the brain for the canonical correlation at the respective frequency and with the respective
module. Positive weights are red and negative weights are blue.

ified. The data reported here support the idea that the imag-
inal module is associated with parietal theta oscillations, but
do not support the mappings for visual and retrieval mod-
ules. The visual module seems to instead be correlated more
strongly with frontal gamma oscillations, just like the re-
trieval module. Interestingly, this mapping of the retrieval
module is fairly consistent with fMRI-based localization. The
association of the production module with central theta os-
cillations could be consistent with an association with Lat-
eralized Readiness Potentials, but this should be tested more
explicitly. What further remains to be done is applying the
same methods to different tasks and to optimize artifact de-
tection methods. In particular, it is important to look at tasks
in which the production, retrieval and visual module are not
as highly correlated as they are in the attentional blink task
discussed here, such that their neural correlates can be pulled
apart. Only this will allow us to make claims about the elec-
trophysiological correlates of ACT-R’s various resources.

Areas that warrant further investigation are modeling in-
dividual differences and examination of the neural correlates
of module interaction. Individual differences could solidify
our confidence in the mapping between modules and EEG ac-
tivity. If individual differences are modeled in ACT-R (e.g.,
Lovett, Daily, & Reder, 2000) and if those individual differ-
ences correlate with individual differences in those partici-
pants’ electrophysiology, then this makes the EEG–ACT-R-
module relation more specific (see van Vugt et al., 2011, for
an application of this approach to perceptual decision mak-
ing). In other words, if individual differences covary with
dynamics of the neural ACT-R modules, that could greatly
increase our confidence in the accuracy of our mapping of
ACT-R to electrophysiological brain activity.

Once the electrophysiological correlates of ACT-R have
been determined, a large area of new research is opened up.
An advantage of the fact that ACT-R consists of multiple
modules is that their interaction provides a principled way to
look for patterns of synchronization in EEG activity. If syn-
chronization reflects information transfer between the mod-
ules (Buzsáki, 2006; Singer, 1993), then increases of syn-
chronization should occur in specific frequency bands and
between specific sets of electrodes that correspond to the re-

predicted theta
phase reset for storing A

Figure 4: Predictions for neural correlates of interaction be-
tween modules in the Attentional Blink task (adapted from
Taatgen et al., 2009). At the time of storing the letter “A” in
the imaginal buffer, there should be phase reset (observable
in the phase histogram) and subsequent synchronization in
the theta/alpha band between the channels corresponding to
the production and imaginal modules. These sets of channels
were based on Figure 3.

spective modules. For the modules in Figure 4, for example,
I predict that after every stimulus presentation, there should
first be increased synchronization between the neural corre-
lates of the visual module and the production module, and
then between the production and declarative module (panel
a). When a target is stored successfully, but not when it is
not, there should be increased synchronization between the
production and the imaginal module (panel c).

I believe that relating ACT-R to EEG activity is a fruitful
endeavor that could eventually also have interesting impli-
cations for ACT-R modeling. For example, there might be
subtle differences in module activation that may not lead to
observable differences in behavior. If we could observe mod-
ule activation time courses in EEG, this could potentially al-
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low us to distinguish between these different ACT-R models.
While fMRI has had tremendous success in defining brain re-
gions associated with different ACT-R modules, it does not
have the temporal resolution on millisecond-scale to compare
different time courses of module activation. EEG could fill
this gap. Moreover, EEG is much better suited to capture
brief interactions between ACT-R modules, which would be
too short for fMRI to detect.

In conclusion, I have outlined methods to study the neu-
ral correlates of ACT-R in electrophysiological data. I have
also shown how they work in the case of an attentional blink
task, and how different ACT-R modules can be associated
with specific frequency bands and topographies observable
in EEG data. I argue that these methods can lead to a wealth
of understanding on how the time courses of ACT-R mod-
els develop over time. Moreover, they could provide neuro-
scientists with directly-testable hypotheses about interaction
between different neural populations.
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Abstract 
The change signal task is a variant of a two-alternative 
forced-choice (2AFC) task where the initial stimulus is 
superseded with the alternative stimulus (the change signal) at 
a delay on a proportion of trials. Taking advantage of the 
overlap in task requirements, we present a single model that 
can perform both tasks. We validate the model using the 
empirical data from participants who performed both tasks 
sequentially. The results confirmed the existence of a 
dynamic hedging strategy, and showed that cognitive fatigue 
had little, if any, role in slower response times with increased 
time on task.  When fitting the 2AFC task, the model required 
adjustment to one architectural parameter while the rest were 
left to defaults. That parameter is then constrained while 
fitting the remaining three task-specific parameters of the 
change signal task. This effectively reduces a degree of 
freedom in the larger task, and increases confidence in the 
model as it closely matches human performance in multiple 
tasks. 

Keywords: ACT-R; change signal; two-alternative forced-
choice; cognitive model. 

Introduction 
Roberts and Pashler (2000) point out that modelers should 
consider criteria other than fit when evaluating the 
credibility of a model. Specifically, they propose examining 
the data that the model is unable to fit: how much data 
disagree with the theory, and how strongly does it do so? 
And could the model fit any data?  

Within the computational cognitive modeling community, 
other approaches to bolster model confidence exist. For 
example, an established cognitive architecture (Anderson, 
2007; Rosenbloom, Laird & Newell, 1993; Meyer & Kieras, 
1997) provides the software framework to constrain a model 
to specific theories of cognitive processes that have been 
validated independently in the literature. With an active 
cognitive architecture user community, models can be tested 
against new empirical data and different experimental 
conditions (Gobet & Ritter, 2000; Gunzelmann, Byrne, 
Gluck & Moore, 2009; Gunzelmann, Moore, Salvucci & 
Gluck, 2011). Even when parameters are adjusted to 
account for individual and group differences, successful 

model reuse instills confidence in the theory behind the 
model. 

More complex models provide another validation 
opportunity through task decomposition. For example, 
Myers (2009) reports on a composite model that integrates 
two previously published models to perform a more 
complex task. Independent validation of each sub-task 
instills greater confidence in the composite model (cf., 
Halverson & Gunzelmann, 2011). 

In this paper, we present a single model that can perform 
two tasks with the same set of knowledge. Model 
performance on the simpler task relies entirely on a subset 
of knowledge from the more complex task. Because of this 
relationship, the simpler model can be fit to empirical data, 
and we would expect any relevant architectural parameters 
to be identical for the complex task when fitting 
performance of the same participants on both tasks. Even 
though the complex task introduces several task-specific 
parameters that require fitting, all architectural parameters 
are constrained by the simpler task fit. 

The proposed fitting strategy requires a suitably designed 
empirical study. Specifically, a repeated measures design 
where each participant performs both tasks in sequence is a 
necessity. Therefore, we also report on a study that allows 
for the independent task fitting approach described above.  

Change Signal Task 
The change signal task (Brown & Braver, 2005) and the 
two-alternative forced choice (2AFC) task provide the 
context for the empirical study as well as the model 
discussed in this paper. The 2AFC task is the simpler of the 
two, yet it provides all the necessary fundamentals to 
perform the more complex change signal task. (There is, 
however, a parameterized difference in strategy between the 
two tasks that is discussed in the model fitting section 
below.) 

The change signal task was originally devised by Brown 
and Braver (2005) as a variation of the classic Logan and 
Cowan (1984) stop signal task. Whereas the stop signal task 
focused on response inhibition, the Bown and Braver 
variant focused on changing responses. 
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At its core, the change signal task is a modified 2AFC 
task. In the basic 2AFC design, participants respond to 
arrows pointing right or left by pressing the associated 
arrow key on the keyboard. The modification for the change 
signal task is that on 1/3 of the trials, a larger arrow appears
after the initial stimulus, critically timed to interrupt their 
normal response. The larger arrow always points in the 
opposite direction of their initial response, and signals 
participants to inhibit their initial response and instead 
respond to the change signal. 

In Brown and Braver (2005), the timing of the change 
signal was dynamically adjusted to induce consistent error 
rates. In fact, the task implemented two change stimulus 
delays to produce different error rates: a 50% high error rate 
condition and a 4% low error rate condition. These two 
conditions were not explained to the participants prior to the 
experiment, but they were differentiated by stimulus colors 
(color cue conditions). 

The experimental tasks are described in more detail 
below, as well as the modeling insights gleaned. 

Empirical Work 
In Moore, Gunzelmann, and Brown (2010), we examined 
the Brown and Braver (2005) data and found that 
participants responded more slowly over time. We proposed 
that subjects were “hedging” their responses in anticipation 
of a possible change signal, and that participants hedged for 
longer periods of time with increased task experience. We 
also raised the possibility that some slowing may be the 
result of time on task effects, but the data from the change 
signal task alone did not allow us to assess that possibility in 
detail. One motivation for the study described in this paper 
was to evaluate the role of within task fatigue more 
thoroughly. 

Another important result in the Brown and Braver study 
was that participants responded to the high error rate 
condition more slowly (allowing more time for the change 
signal to appear) compared to the low error rate condition. 
One interpretation of these data is that participants were 
forming an implicit association of stimulus color to error 
condition, which was implemented in our earlier model 
(Moore et al., 2010). However, in this paper we will 
demonstrate that this is not necessarily the case, and present 
a model that embodies a more parsimonious explanation for 
the data. This will be discussed in the results section. 

Experiment 
The experiment included 33 participants between the ages 
of 18 and 50, with 18 females and 15 males. Participants 
were asked to perform two tasks during the hour-long 
experiment. One was the change signal task, and the second 
was a 2AFC task. The order of the two tasks was 
counterbalanced across the participants. All participants
completed 642 trials for each task, except one who 
mistakenly only completed the change signal task. Data 
from that subject is excluded from this paper. 

At the start of the experiment, participants were shown 
instructions and allowed to perform six sample trials for 
each task. Instructions for each task were redisplayed before 
the participants performed it, and there was an optional 
break between them. 

 The change signal task consisted of 6 blocks of 107 trials 
each. (The trial count was selected for consistency with the 
Brown and Braver (2005) experiment.) After each block, 
subjects were allowed to take a brief break. A diagram of 
the possible sequences of events during a trial and their 
probabilities is shown in Figure 1. At the start of each trial, 
a cue was presented in one of two colors, which was
associated with either a high error condition or a low error 
condition. The significance of the colors in the task was not 
explained to the participants, but they were made aware that 
there would be two colors, just as in Brown and Braver 
(2005). 

After 1 second, the cue was replaced with an arrow in the 
same color that pointed right or left. The participant was 
instructed to respond to this “go signal” with the appropriate 
arrow on the keyboard. On 1/3 of the trials, a larger arrow 
pointing in the opposite direction appeared after a brief 
delay (the “change signal delay,” or CSD). The participant 
was instructed that, in these circumstances, they should 
inhibit their initial response and instead respond to the larger 
arrow. The larger arrow, or “change signal,” always pointed 
in the opposite direction as the go signal. 

 

Figure 1: State diagram of a change signal trial. Error 
condition and arrow direction appear with equal probability. 

Change signals only appear on 33% of the trials. 

The change signal delay was dynamic, and varied 
according to the error rate condition. At the start of the task, 
the CSDs for both conditions were set to 250ms. For the 
high error rate condition, a correct response increased the 
CSD by 50ms, while an incorrect response decreased it by 
50ms. The low error rate CSD behaved similarly, except 
that it only increased by 2ms when a correct response was 
made. These manipulations replicate Brown and Braver 
(2005), and were designed to produce different error rates in 

1. Cue 2. Go Signal 3. Change Signal

50
%

 C
ha

nc
e

50
%

 C
ha

nc
e

50
%

 C
ha

nc
e

33
%

 C
ha

nc
e

33
%

 C
ha

nc
e

0s 1s
+ Long CSD

+ Short CSD

225



the two conditions. For both conditions, the CSD was 
constrained between 20 and 800ms. Each trial allowed 
responses up to a full second after the go signal was 
displayed. If no response was provided within that time, the 
trial was recorded as a non-response and another trial was 
automatically initiated. 

Halfway through the trials for the change signal task, the 
mapping between color cue and error condition was 
reversed, although the CSDs for each condition were not 
reset. After the participant completed the experiment, he/she 
was asked whether they noticed the role of the colors in the 
experiment. In doing so, the experimenter was testing 
whether the participant acquired any explicit knowledge. 
We considered it adequate evidence if the respondent 
indicated that one color was faster or more difficult than the 
other.  

The 2AFC task was identical to the change signal task in 
every respect, except that no change signals were presented. 

Results 
Generally speaking, the results from our study were 
consistent with the Brown and Braver (2005) study. The 
aggregate data for the change signal task shows the expected 
slowing in reaction time as the experiment progresses. 
Conversely, the 2AFC task shows slightly improved 
reaction times over the duration of the experiment when 
reaction time is regressed against trial index (b=-.032, 
R2=.00040, F(1,20342)=82.49, p<.001; see Figure 2). This 
result argues against time-on-task based declines in 
cognitive performance as the source of slowing in the 
change signal task, and supports the hypothesis that 
participants were strategically “hedging” their response 
times. Furthermore, an ANOVA with factors of block and 
error likelihood confirms that the response times between 
the two error conditions are significantly different, 
(F(5,17552)=62.48, p<.001), as found in our previous 
research (Moore et al., 2010). Overall, participants made 
errors on 34% of the trials in the high error rate condition, 
and on 5% of the trials in the low error rate condition.  

Figure 2: Regression lines for aggregate participant data, 
showing the strategic hedging over time, as well as the 

significant disparity across the two conditions.  
 

A more revealing perspective on these results can be 
observed in Figure 3, which breaks apart trials where a
change signal was presented (change condition) versus trials 
where no change signal was presented (go condition). The 
experimental condition permutations then become:  

1. go-low: go signal only (no change signal) 
presented in the low error condition color,  

2. go-high: go signal only (no change signal) 
presented in the high error condition color,  

3. change-low: change signal present in the low 
error condition  

4. change-high: change signal present in the high 
error condition.  

The figure also includes the relative reactions times in the 
2AFC task. All reaction times are measured from the onset 
of the go signal, and results are aggregated across blocks.  

Figure 3: Mean reaction times aggregated by block for 
correct responses in each of the four change signal task 
conditions as well as the 2AFC task. Reaction times are 

measured from the onset of the go signal. 

Notice that the 2AFC response times are substantially 
faster than the response times in the change signal task. As 
mentioned previously, our theory proposes that this is 
strategic; participants are hedging their responses to go 
signals in order to allow for the possibility of a change 
signal being presented. Under this account, the go 
conditions represent the situation where individuals exhaust 
their hedge time and produce a response. Therefore, the 
difference between the 2AFC and go condition reaction 
times would represent the mean participant hedge time, 
which is about 300ms.  

Also notice the disparity between the change-high and 
change-low conditions in Figure 3. In Moore and 
Gunzelmann (2010) we suggested that implicit association 
of stimulus color might explain the disparity. This was also 
supported by the original Brown and Braver (2005) work, 
which focused on learned responses to error conditions in 
the anterior cingulate cortex (ACC). However, if there is 
learning in the ACC, it is not reflected in the empirical data 
because the stimulus color only impacts response time on 
trials where a change signal is presented. There is no 
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difference in RT between the two “go” conditions 
(F(1,12607)=.12, p=.73). If participants were learning the 
association between error-likelihood and stimulus color, we 
would expect to see an identical disparity between the go-
low and go-high conditions.  

Rather than implicit learning, our finding suggests that the 
emergent difference in reaction times between the change-
high and change-low conditions can be explained as an 
artifact of the task itself. Recall that correct responses to 
change signals increase the change signal delay by 2ms in 
the low error condition and 10ms in the high error 
condition. The different step functions result in change 
signal delays that tend to be shorter in the low error 
condition than in the high error condition. Regardless of the 
error condition, however, participants respond immediately 
to change signals that appear within the hedge period. Thus, 
reaction times for the low error condition are faster than the 
high error condition because of the shorter change signal 
delay. 

 To demonstrate that change signal delays are driving the 
difference in reaction times across the two change 
conditions, Figure 4 removes the change signal delay from 
change condition reaction times. (i.e. Reaction times are 
now measured from the onset of the change signal for the 
trials with a change signal). The disparity between the high 
and low change conditions in Figure 3 is greatly reduced, 
which reinforces the position that it is an artifact of the task 
itself. In fact, in this analysis response times are slightly 
faster in the high error likelihood condition. 

A descriptive analysis of the response distributions, as 
well as quantitative evidence of a disparity in lapses across 
the two conditions (14% for the change-high condition 
versus 1% for the change-low condition), both suggest that 
the remaining discrepancy in reaction times may be 
accounted for by a truncation of the response distribution in 
the change-high condition. This truncation occurs because 
some of the response times are very close to the 1-second 
trial time limit. 

 
Figure 4: Mean reaction times aggregated by block for 

correct responses in each of the four change signal task 
conditions as well as the 2AFC task. Reaction times are 

measured from the onset of the go signal for go conditions, 
and the onset of the change signal for change conditions. 

 
Another item in Figure 4 that warrants attention is the fact 

that both change condition reaction times are higher than the 
2AFC reaction times. In all three of these conditions 
participants can respond immediately to the stimulus, which 
suggests that the change conditions impose an extra 
cognitive penalty. This is an important consideration for the 
model, which will be discussed in the following section. 

The Change Signal Model 
The change signal model was developed within the 
Adaptive Control and Thought – Rational (ACT-R) 
cognitive architecture (Anderson, 2007). ACT-R is a 
symbolic production system coupled with mathematically 
grounded mechanisms that reflect sub-symbolic influences. 
The change signal model is instantiated within the 
architecture by supplying knowledge in the form of 
production rules and declarative chunks. Our model is 
relatively simple, consisting of 14 productions and no initial 
declarative knowledge. We characterize it as a “procedural” 
model because it does not rely upon declarative retrievals to 
function.  

At a high level, the critical feature of the model is a 
strategic delay of its response to the stimulus to 
accommodate the possibility of a change signal. As 
described in the task section, we refer to this as the hedge 
time. If a change signal does occur during the hedge time, 
the model generates a response to the larger arrow as soon 
as it appears (change signal). If no change signal occurs 
during the hedge time, the model responds to the original 
arrow (go signal). Time estimates are noisy, and are derived 
using a mechanism proposed by Taatgen, van Rijn, and 
Anderson (2007). 

The model will also adjust its hedge time (which is 
maintained as a slot in the goal chunk) dynamically based 
on responses to change signals. When a change signal is 
detected after it has already responded to a go signal, the 
hedge time is increased in hopes that it will correctly catch 
the change signal in the future. When the model does 
correctly respond to a change signal, or when the model sees 
an unexpected cue because it failed to respond before the 
trial expired, the hedge time is decreased.  

The 2AFC task is identical to the change signal task 
except no change signals are ever presented. As a result the 
model can perform the 2AFC task unaltered using a subset 
of the full procedural knowledge; those productions 
involved with responding to change signals never fire.  

As discussed in the previous section, Figure 4 shows that 
change signal responses incur an extra penalty in response 
time. There are several plausible theories to account for the 
increased response time when a change signal is 
encountered. In our model, the delay is attributed to motor 
control. The model prepares its response to the “go” signal 
when it is presented. Thus, when a change signal is 
observed, the motor system is reset, which negates the 
preparation that was done. To respond, the model must first 

!
! ! ! ! !

1 2 3 4 5 6

0
20

0
40

0
60

0
80

0
10

00

block

rt 
(m

s)

!
! ! ! !

!

! ! ! ! ! !
! ! ! ! ! !

! ! ! ! ! !

go low
go high
change low
change high
2afc

227



plan the motor movements and then execute them. The extra 
planning adds time to the response process. 

Model Fitting 
The initial hedge time, hedge increase, and hedge decrease 
are tunable parameters in the model. We also chose to adjust 
the ACT-R default action time, which describes the speed of 
the average production cycle.  

Because the model shares knowledge between the 2AFC 
and change signal tasks, it was fit in two stages. The 2AFC 
task was fit first because it requires fewer degrees of 
freedom. The empirical data supports the conclusion that
participants did not engage in strategic hedging while 
performing the 2AFC, so initial hedge time, hedge increase, 
and hedge decrease parameters are all set to 0. 

The only remaining parameter to fit in the 2AFC task is 
default action time (DAT). It defaults to 50ms, but Stewart, 
Choo and Eliasmith (2010) have shown that tasks composed 
of simple productions (such as those implemented to 
perform the 2AFC and change signal tasks) will have 
shorter cycle times. This is also consistent with our work 
with the psychomotor vigilance task (PVT), where we 
typically find default action time values of approximately 
40ms (Gunzelmann, Moore, Gluck, Van Dongen & Dinges, 
2010). Rather than refitting the 2AFC task independently, 
we chose to constrain DAT to the value obtained from the 
PVT, resulting in the dashed black line in Figure 5. This 
40ms value was held constant while fitting the model with 
the change signal task, as well.  

The remaining parameters include the initial hedge time, 
the increase in hedge time when the model detects an error, 
and the decrease in hedge time when the model correctly
responds to a change signal. All three parameters are 
specific to the hedging strategy, and are not general 
parameters of cognition. (We also enabled a mechanism to 
provide some stochasticity to production cycle times, but 
left that parameter at its default value.) To resolve the three 
dimensional parameter space, we used large scale 
computational resources running our in-house search 
software (Moore, 2011). The model was then rerun using 
the predicted optimal values to produce the change signal 
model results in Figure 5. 

Results 
The overall RMSD for the block-aggregated data across all 
5 conditions in Figure 5 was 33.4ms. The simpler 2AFC 
task fit the best at 15.9ms RMSD, while the go-high 
condition fit the worst, at 50.1ms. 

The model was not very sensitive to the initial hedge time 
parameter.  Its behavior was primarily driven by the hedge-
up and hedge-down values, as they are critical to 
establishing and maintaining the equilibrium between the 
model and task. The optimal values (27% increase when 
hedging up, and 6.5% decrease when hedging down) 
suggest that participants were more liberal with hedging up 
(waiting longer when an error is detected) than they were 
hedging down (responding sooner when a change signal is 

correctly detected). Furthermore, there was clearly a 
relationship between the two variables: larger upward 
hedges could be compensated by larger downward hedges to 
maintain a reasonable fit.  A degree of freedom could 
potentially be reduced if one of the two parameters could be 
experimentally isolated. 

 
Figure 5: Model fits to empirical data for correct 

responses. 
 
In addition to the reaction time across blocks, there are 

several other statistics that can be examined to evaluate the 
model’s performance relative to human participants. The 
percent of correct responses, the standard deviation in 
reaction time, and the number of non-responses are three 
measures shown in Figure 6. The model’s performance was 
within the inter-quartile range on all three measures, and it 
performed particularly well with percent correct and 
proportion of non-responses. 

 
Figure 6: Secondary measures of fitness in the change 

signal task. The box and whiskers demonstrate the variation 
across subjects, while the red diamond indicates the mean 

for the model. 

Conclusion 
In Moore et al. (2010) a cognitive model of the Change 
Signal task raised some important questions that could not 
be fully addressed with the available data. The follow-up 
study reported in this paper provided an opportunity to 
further solidify our understanding of the cognitive 
mechanisms associated with the task. 

A primary benefit was having performance data from 
participants for both the 2AFC and change signal tasks, for 
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several reasons. First, participants performed the 2AFC 
consistently and much more quickly than they did in the 
change signal task. This supports our theory of a hedging 
strategy to manage change signal responses. The lack of 
performance degradation in the 2AFC task shows that 
within task fatigue plays a very small role, if any. 
Furthermore, participant hedging appears to be dynamic, as 
is evidenced by the slowing reaction time throughout the 
session. This informs the model, and justifies the model’s 
hedging parameters.  

The dual task / repeated measures design of the 
experiment also allowed us to isolate one of the parameters 
in the change signal model (default action time) and fit it 
independently within the context of the 2AFC. It was an 
unexpected additional benefit that we were able to use a 
value for that parameter derived from previous research 
using a different task. The remaining parameters, which 
were all related to hedging, could then be fit within the 
context of the change signal task.  

The change signal model has demonstrated that it can 
perform two tasks with overlapping knowledge using a 
single set of model parameters. In doing so, it inspires 
confidence in the theory that the model represents. We 
believe this is well within the spirit of looking beyond a 
simple model fit for validation (Salvucci, 2010). 
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Introduction 
Imagine buying a dollhouse for your niece at a garage sale, 
and what you get is a set of wooden pieces and a picture of 
the house, but no instruction manual. How do you solve the 
problem of assembling the pieces to build the house? What 
you are facing is a well-defined problem, since you know 
the goal state and all objects needed to reach the desired 
state; only the correct sequence of actions is missing.  

Newell and Simon (1972) postulate the following general 
structure when a problem is encountered: orientation phase, 
construction of the problem space, and exploration of the 
problem space by selecting and applying operators. During 
the orientation phase the problem is recognized and the 
situation is analyzed. This initial analysis is extended by the 
construction of a detailed representation of the problem 
(problem space) that includes information on the initial 
state, the operators that can be applied to change this state, 
and information on how the goal state is defined. The 
construction may be based on the analysis of the task 
environment or retrieved from long-term memory. The 
problem solving process itself is defined as a search process 
through the problem space. In the search process the 
problem solver applies different methods to create new 
states and checks repeatedly if those qualify to be the goal 
state. Palmer (1977:466) considers the following processes 
crucial to organizing problem parts: exploratory hypotheses, 
false leads, dead ends, backtracking, and fresh starts.  

Unaided object assembly: an explorative study 
In our study we aim to identify the cognitive processes 
involved in unaided object assembly by examining think-
aloud protocols, along with a better understanding of how 
these processes are expressed in language. Think-aloud 
protocols are traditionally used to gain insights on cognitive 
processes involved in problem solving (Ericsson & Simon, 
1993), typically focusing on content, i.e., what is verbalized. 
Further insights can be gained from analysis of the language 
used, i.e. how thoughts are verbalized. Roth (1985), for 
example, showed that unsuccessful problem solvers used 
more negations, adversative conjunctions, and modals than 
successful problem solvers. Caron-Pargue and Caron (1991) 
illustrate how linguistic markers (e.g. lexical choice, 
connectives) give insight on the problem solver’s represen-
tation with regard to organization, function, and change. 

Design 
56 university students (26 male, 30 female; aged 19-42 
years, mean age 24 years) participated in this study for 
course credit or monetary compensation. They were told 
that they would be given object parts that need to be 
assembled without a manual. Knowledge of the goal state 
varied between mention of "a dollhouse", being shown a 
picture of the assembled dollhouse, and no such 
information. Here we focus on phenomena common to all 
three conditions. After the instruction was given, 
participants entered a room and saw a cardboard box and a 
triangular piece of wood on a table. The box contained 13 
wooden parts. Participants were instructed and reminded to 
think aloud while solving the task.  

Analysis 
30 think-aloud protocols were analyzed for current 
purposes, namely the identification of general problem 
solving processes and their expression in language. 

First, the general structure of the problem solving process 
was identified by a detailed content analysis of 11 protocols. 
With regard to the search process, the process categories as 
proposed by Palmer (1977) were identified and extended. 
These categories were linguistically analyzed in 18 
protocols with regard to verb classes (cf. Halliday & 
Matthiessen, 1999), conjunctions, negations and 
affirmations, and the discourse markers so and okay. Next, 
all 30 protocols were annotated according to these 
categories in order to describe their distribution in more 
detail, and to identify recurrent sequences of processes.  

Results 
All protocols showed the general structure of an 
introductory sequence in which parts of the instruction were 
repeated or object parts were recognized, and first 
associations were verbalized. The main body of the 
protocols consisted of the actual problem solving process. In 
most protocols the task was concluded by a brief evaluation 
of the assembled object, or the personal skills in solving the 
task. Inspired by Palmer’s (1977) approach, hypotheses, 
false leads, dead ends, and fresh starts were identified. The 
content analysis revealed four additional categories, namely 
description of mental state, perception of object features, 
action (including plans for action), and positive evaluation. 
Since false leads can also be understood as evaluations, this 
category was renamed negative evaluation. 
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Altogether, 1,405 processes were identified and annotated 
in the 30 protocols. Of these, hypotheses were most frequent 
(42.5%), and 20.5% were instances of action. Evaluations 
were positive (9.7%) or negative (7.8%); these will be 
combined in the following.  

The chain hypothesis–evaluation was found in 42.5% of 
all possible process chains starting with hypothesis, and 
hypothesis–action in 41.5%. For the category action, the 
chain action–hypothesis was most frequent (56.1%). Those 
three sequences occurred in 26 out of 30 protocols. The 
sequence action–evaluation accounted for 35.0% of all 
possible chains starting with action. Positive evaluation–
hypothesis occurred in 46.3% of all chains starting with a 
positive evaluation. These two chains were identified in 23 
and 24 protocols, respectively. Negative evaluation led to a 
hypothesis in 61.3% of cases; however, this chain occurred 
in only 11 protocols. The combination of these sequences in 
the four-process-cycle hypothesis-action-evaluation-
hypothesis was identified in nine protocols.  

Based on a detailed analysis of 18 protocols the following 
linguistic markers were identified. The category hypothesis 
was characterized by frequent occurrences of verbs of 
‘being and having’ (62.2% of all such verbs belonged to the 
category hypothesis), as well as verbs denoting mental 
processes (44.1%), e.g. think or believe. Almost half 
(47.1%) of the utterances in this category were connected by 
conjunctions; mainly introducing reasons using because 
(41.1%). Further re-occurring markers of hypotheses were 
short phrases expressing the mental state (I think) or mental 
activities (I'm asking myself) of the problem solver. The 
category action was characterized by verbs of ‘doing and 
happening’, such as put or assemble (66.1%). Here, the 
connectives and and because occurred in 25.7% of cases. 
The discourse markers so and okay were identified in 52.0% 
of all utterances classified as positive evaluation, with so 
(79.6%) more frequent than okay. Furthermore, this 
category contained 75.0% of all affirmative words, such as 
right or super. Most expressions classified as affirmation or 
negations were found in the category negative evaluation, 
with 72.3% of all utterances containing such an expression. 
Almost all of those occurrences were negations, such as nee 
(98,5%). On the other hand, 31.9% of all negations occurred 
in the category hypothesis. 

Discussion 
The following picture emerges when comparing the 

problem solving processes identified in our protocols to 
those proposed in the literature. Content analysis of the 
introductory sequence of the protocols revealed that it 
contains the orientation phase and the construction of the 
problem space as described by Newell and Simon (1972) 
because participants were found to recall instruction details 
and start exploring the task environment. Schoenfeld (1985) 
also identified read and explore as the episodes in which a 
problem solver engages first. The main body of the 
protocols included the categories hypothesize and action that 
correspond to the processes of selection and application of 

operators respectively. Hypotheses represent verbalizations 
of possible states, such as concepts and object 
configurations. The reasoning process about these possible 
states is illustrated by the frequent occurrence of because in 
this category. The continuous evaluation of newly derived 
states is expressed in the categories positive and negative 
evaluation. As so conveys a meaning of result (Schiffrin, 
1988) positive evaluations can be interpreted as signals for 
reaching sub-goals. This stands in contrast to negations, so- 
called markers of denial, which signal the rejection of an 
idea and may result in a complete reorganization of the 
representation (Caron & Caron-Pargue, 1991:32). The 
finding that evaluations are frequently followed by a new 
hypothesis supports these interpretations. Both findings 
illustrate the importance of the control process. 

Empirical research revealed the difficulty of identifying 
longer process sequences since, unlike in theoretical models, 
the processes tend to occur in various sequential orders (e.g. 
Wedman et al., 1996). In our study, we found that actions 
frequently occurred with hypotheses and evaluations. A 
combination of these processes, namely hypothesis-action-
evaluation-hypothesis, was identified in one-third of all 
protocols. This sequence represents the theoretically 
assumed progression of problem solving processes that is 
repeated until the goal state is reached.  
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1-8*-60=!12!.K-**!1L<*H.5"!21-!*Q,/+J*"!,!DD:!5.,085!21-!
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R,0.1-1!(!^M!R+6-,F65! #\85M$"!@(+,2(,+*A!B1/.+C4(0.1!41D!
7.CC,1024(0.1!7.CE-*%0(&F!G+D!7.--.3,0,CA!@B8H77H!
IJKF!;+.2**D01<5!#++MDC9%DBX$M!V,-J*.10!]06I*-56.G!^-*55M!!

f081"!nM! #9:D9$M!7!a4J.6%7=*0.! R6/4J,.610! 12! ^-*2*-*0H*!
;1-/,.610!LG!i1H,J!a,<1-6.G!P1.*"!/6/*1M!!

c1J2-,/"!RM!#9::9$M!L!M*>!$01D!./!@20*12*M!VK,/+,6=0"!fiU!
c1J2-,/!a*86,M!!

233



!

Conditioning for Least Action 
 

Eduardo Alonso (E.Alonso@city.ac.uk) 
Department of Computing, Northampton Square 

London, EC1V 0HB United Kingdom 
 

Michael Fairbank (abdy934@soi.city.ac.uk) 
Department of Computing, Northampton Square 

London, EC1V 0HB United Kingdom 
 

Esther Mondragón (e.mondragon@cal-r.org) 
Centre for Computational and Animal Learning Research 

St Albans AL1 1RQ, United Kingdom 
 
 
 

Abstract 
 
It is well known that, in one form or another, the variational 
Principle of Least Action (PLA) governs Nature. Although 
traditionally referred to explain physical phenomena, PLA 
has also been used to account for biological phenomena and 
even natural selection. However, its value in studying 
psychological processes has not been fully explored. In this 
paper we present a computational model, value-gradient 
learning, based on Pontryagin’s Minimum Principle (a 
version of PLA used in optimal theory), that applies to both 
classical and operant conditioning.  

 
Keywords: Value-gradient learning; conditioning; behavior 
systems; bliss point; optimality; principle of least action. 

 
The Principle of Least Action  

Of all the possible trajectories a ball thrown into the air 
can follow why does it follow one in particular, a 
parabola? Why doesn't it go up, stay a while at its highest 
point and then fall down? On the one hand, the ball wants 
to spend a lot much time near the top of its trajectory since 
this is where the kinetic energy is least and the potential 
energy is greater. On the other hand, if it spends too much 
time near the top, it will really need to rush to get up there 
and get back down and this will take a lot of action. The 
perfect compromise is a parabolic path. In physical 
parlance, the true dynamical trajectory of the ball is the 
one that makes the action “least” (actually stationary).  

Formally, the action to be minimized is the integral of a 
function, the Lagrangian, over time. The Lagrangian itself 
describes completely the dynamics of the system under 
consideration as the difference between its kinetic energy 
(the energy due to the motion, how much is “happening”) 
and its potential energy (the energy due to its position or 
configuration, how much “could happen”). In short, 
Nature is as lazy as possible: the ball follows a particular 
trajectory not because of the effect of gravitation per se, 
but because it “minimizes” action. In fact, this condition is 
equivalent to the Euler-Lagrange equation of motion that 
encapsulates the Principle of Least Action and that, when 
transformed into its Hamiltonian form, reflects the 
symmetries of Nature. These are fundamental concepts 
upon which modern Physics is based. 

 The question is, can we export this variational analysis 
to the study of learning and behaviour? 

Optimization in Classical Conditioning  
Let’s consider acquisition of an eye-blink conditioned 
response when a light is paired with a mild shock: at first 
the likelihood of a response to the light is low because of 
the absence of prior light-shock pairings. There is then a 
rapid increase in magnitude of the response, which 
diminishes gradually as training progresses until there are 
no further increases in the measure of the conditioned 
response. The shape of the learning curve is typical of that 
found in many studies of conditioning. How is this pattern 
of behaviour explained? Why don’t animals learn “all” in 
a single trial? Or learn rapidly at the beginning, then stop 
and then learn again? In a way, we are facing the same 
questions as we did when considering ball trajectories. 
And it is paramount that we answer them since 
conditioning is at the basis of most learning phenomena 
and thus of animal cognition.  

More generally, classical conditioning refers to the type 
of learning that occurs when pairing two stimuli, typically 
an originally neutral stimulus (say a tone or a light) and an 
unconditioned stimulus (US), that is, a stimulus that is 
biologically relevant to the animal (for instance, food) that 
elicits an automatic or unconditioned response (UR, for 
example, salivation). If this pairing is repeated over time, 
the animal will learn to anticipate the US and start 
responding to the signal, the neutral stimulus. The neutral 
stimulus will become a conditioned stimulus (CS) and 
trigger a response (CR, typically the UR itself). 

In order to explain this type of phenomena, Rescorla 
and Wagner’s model of classical conditioning (Rescorla & 
Wagner 1972) assumes that learning occurs on a 
conditioning trial only if the US is surprising. “Surprise” 
is defined in terms of growth of “associative strength”, the 
strength of the CS’s association with the US over trials 
(V, traditionally measured in terms of number of URs). 
With each trial there is an increase or jump in associative 
strength. On early conditioning trials the jumps are large; 
that is, each trial causes a relatively large increase in 
associative strength. But the jumps decrease in size as 
learning progresses until the learning curve approaches its 
upper limit or asymptote. Once the CS predicts the US, 
the US is not surprising, and no further learning occurs. 

Formally, for a CS ! the change in learning on trial ! is 
defined as 
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!!! ! ? !" ! ! !!!! "#"!"  (1) 

where ! U and ! represent the salience of the CS and of 
the US respectively (! ! ! ! ! and ! ! ! ! !), ! is the 
maximum amount of learning that can occur in that 
situation at that given trial, and !!!! "#"!$  the 
cumulative amount of learning up to the previous trial, 
that is, the sum of associative strengths of all CSs that are 
present at trial !; in turn, the associative strength of each 
of the CSs that are present is determined on the last trial 
on which each CS occurred, ordinarily trial ! ! !. This 
delta rule is also known as the error correction rule: it 
calculates the prediction error, that is, the difference 
between the prediction and the actual reward. The result is 
then used to calculate the new associative strength of the 
CS as !! ? !!!! ! !!!, the update rule. Obviously, as the 
prediction improves the difference in delta is reduced until 
there is nothing left to be learned.  

This deceptively simple theory is nevertheless 
considered as the most influential model of conditioning. 
Interestingly, Rescorla and Wagner’s rule works pretty 
much as the Lagrangians in mechanics: during learning 
we balance what we have learned against what is to be 
learned so that the total associative strength is at each trial ! (i.e., it is conserved) and the differences between trials, !. In terms of optimization, Rescorla and Wagner’s model 
uses equation (1) as a way of minimizing the prediction 
error between the expected reward and the actual reward –
in other words, we apply an optimization principle that 
maximizes the reward.  

Nonetheless, like most models of conditioning (see 
(Alonso & Schmajuk 2012) for a recent review) Rescorla 
and Wagner’s is limited to classical conditioning: 
responses are only considered as a way of measuring how 
animals learn to associate two stimuli but do not form part 
of conditioning per se.  

What happens when we study operant (aka 
instrumental) conditioning and goal-directed behaviour? 
In other words, what happens when the occurrence of a 
reinforcer depends on the choices the animal makes? 
Classical conditioning focuses on how “mental” 
representations of stimuli are linked whereas operant 
conditioning deals (mainly) with response-outcome 
associations. It is agreed though that, at the most general 
level, their associative structures are the same: in both 
procedures, changes in behavior are considered the result 
of an association between two concurrent events and 
explained in terms of operations of a (conceptual) system 
that consists of nodes among which links can be formed. 
Notwithstanding the correctness of such analysis, we are 
showing in the next section that a mere translation of 
classical conditioning into instrumental terms (for 
instance, by assuming that instrumental responses take the 
place of CSs) would impose a series of conditions on 
optimization that are impossible to meet. To see this point 
and understand our proposal to “recover” variational 
principles in the study of learning and behaviour we need 
to briefly introduce temporal difference, a model that 
comprises both classical and operant conditioning.  

 
 

Temporal Difference  
Temporal difference (TD) was originally presented as an 
extension of the Rescorla and Wagner’s model in real 
time (Sutton & Barto 1987). It was argued that time scale 
invariance over trials should not prevent a model of 
conditioning from investigating temporal phenomena. 
Indeed, Rescorla and Wagner's model refers to learning 
through trials, and thus a number of interesting 
phenomena are left unexplained (such as second order 
conditioning). TD adopts Rescorla and Wagner's main 
psychological premises, namely, cue competition and 
error correction, but instead of comparing the rewards 
predicted on consecutive trials, we calculate the change in 
reward prediction error on every time step !. TD makes 
predictions over predictions and uses the error to update 
the old reward prediction and bring it more in line with 
the animal’s moment-to-moment experiences –what is 
called bootstrapping. 

Formally, in the general case the value of a CS at a 
particular time ! U is defined as 

 !! !! ? !!!! ! ! U !!!! ! !!!!!! ! !!!!!! ! U … (2) 

 
where the γ parameter takes values between " and # and 

acts as a discount factor that causes distant CSs to matter 
less than immediate ones and ! U represents the US. If we 
compare the values at successive steps an interesting 
relationship emerges, namely, 

 !! !! ? !!!! ! ! U !! !!!!  (3) 

 
This makes sense because ! U !! !!!!  takes the place of 

the remaining terms ! U !!!! ! !!!!!! ! U ! U! U !!!!!!!!, 
where ! refers to the terminal state, i.e., to the end of the 
trial. This relation describes the simplest TD case, when 
predictions are carried out one-step ahead. We can 
generalize it to any number of steps and calculate the delta 
rule as  

 !!! !! ? ! !!"!! ! U !! !!  (4) 

 
where  
 !!"!! ? !!!! ! ! U !!!! ! !!!!!! !! U! U !!!!!!!! !!! U !! !!!!   

(5) 

 
If we take a number of steps into the calculation we 

would need to know how much each step contributes 
towards the return. TD proposes to average the !-steps 
with a trace ! (not to be mistaken for the US asymptotic 
value) so that the return is defined by 
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!!! ? ! ! ! !!!!!!!!!
!!! !!"!! ! !!!!!!!! (6) 

 
And the new delta rule is  
 !!! !! ? ! !!! ! U !! !!  (7) 

 
It is easy to see that if ! is set to !, TD(!), we only use 

the one-step backup; on the other hand, if ! is set to !, 
TD(!), we only learn from the final return like in Rescorla 
and Wagner’s model. 

Temporal difference has gained notoriety because there 
is a strong correlation between its error term and the 
behaviour of dopamine cells in the brain (Montague, 
Dayan & Sejnowski 1996, Schultz 2002). Besides, TD 
focuses unashamedly on optimization and it is unique in 
that it aims at explaining both classical and instrumental 
conditioning. In fact TD has become the most successful 
Reinforcement Learning algorithm, bringing gaps between 
psychology, neuroscience, machine learning and control, 
and the new area of neuroeconomics (Glimcher, Camerer, 
Fehr & Poldrack 2009). 

 
Temporal Difference and Operant Conditioning  
Unlike Rescorla and Wagner’s model, TD does provide a 
way (indirect as it might be) of learning how to select 
actions. The most common idea is to learn a separate 
value for each action leading out of a state, that is, 
executed in the presence of a stimulus, rather than for the 
state (stimulus) itself. An animal is assumed to exist in an 
environment described by some set of possible states !, 
where it can perform any actions N. Each time it performs 
an action !! in some state !!, the world enters into a new 
state !!!! ? ! !! ! !!  and the animal receives a real-
valued reward !! ? ! !! ! !! . With this information, the 
animal calculates the TD error, typically using the so-
called Q-learning rule (Watkins 1989), !!! !! ! !! ?!!!! ! ! U"!#!!!!!! !!!!! !!!! ! !! !! ! !! , and updates 
the value of the state-action pair as !!!! !! ! !! ?!! !! ! !! ! ! U !!! !! ! !! . The animal’s task is to learn a 
control policy !, which maximizes the expected sum of 
rewards.  

Under certain conditions Q-learning can be proved to 
converge to the value function that will yield the optimal 
policy. Tragically, Q-learning diverges when the state 
space is too large as it is the case in most biologically 
relevant problems.  

A standard approach to tackle this problem is to 
introduce a scalar function approximator, ! !!!  (e.g., a 
neural network with single output and weight vector). 
This is called the approximate value function, or the critic. 
The objective of learning is to make this function 
accurately estimate !! for all !. We can then define a 
greedy policy on ! as a policy that always considers all 
possible actions available to it and chooses the one that 
leads to the state with the highest ! value, whilst also 
taking into account the immediate short terms reward in 

getting there. The idea is to maximize the cumulative 
reward by minimizing the error as given by 

 !! ? ! !!! !! ! !!!! !! ! !! !! ! !!  
(8) 

 
TD(!) and Q-learning can then be used to update ! by 

sampling one trajectory at a time. Variants of these 
methods have produced some successes in control 
problems (Tesauro 1994), yet TD algorithms have not 
been proved to converge in the general case. Why is that? 

TD is based on Bellman’s Optimality Condition 
(Bellman 1957): if ! ! !! for all ! in the state space !, 
where the policy is greedy on !, then that greedy policy is 
globally optimal. The problem is that for the Bellman’s 
condition to be met we need to explore the entire estate 
space. Even if Bellman’s condition is perfectly satisfied 
along a single trajectory, performance can be extremely 
far from optimal if Bellman’s condition is not satisfied 
over the neighbouring trajectories too. That is, if the 
animal tries to avoid Bellman’s condition by only 
exploring a sub-space of the state space there is no 
guarantee the resulting policy will be locally optimal. This 
is the curse of dimensionality that applies to some degree 
to all value-based learning algorithms. 

Translated into behavioural terms Bellman’s condition 
means that for an animal to find an optimal policy it 
would need to explore all possible actions at every 
possible state. Clearly, this is not the way things happen in 
the natural world. To picture this, imagine Thorndike’s cat 
trying to escape from the puzzle box. Bellman’s condition 
would require that at every single step the cat would have 
to execute all the actions in its behavioural repertoire 
(including, for instance, banging its head against the wall). 
Hence, it is not just that Bellman’s condition is 
computationally intractable. It is psychologically 
implausible too. Notice that in classical conditioning this 
problem does not arise since behaviours are reduced to 
reflexes. It is assumed that animals use a model (their 
evolutionary history) to “select” actions. In instrumental 
conditioning, however, any action can occur –at least in 
principle.  

 
Value-Gradient Learning  

In what follows we present a modification of TD, Value-
Gradient Learning (VGL), that under certain conditions 
guarantees optimality. Importantly, VGL is equivalent to a 
variational principle, Pontryagin’s Mimimum Principle 
(PMP) (Pontryagin, Boltyanskii, Gamkrelidze & 
Mishchenko 1962) which, in turn, is a version of 
Hamilton’s Principle of Least Action. The main difference 
between TD and VGL lies on what is learned: VGL learns 
gradients of values as opposed to TD algorithms that learn 
values. Besides, with regards to how learning occurs, 
VGL follows the gradient ascent on the total reward rather 
than the gradient descent on the expected reward.  

We define the value gradient as 
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! ! ? "! !! !!!  
(9) 

 
and the approximate value gradient as  
 ! !!! ? !! !! !!!  

(10) 

 
Our algorithm is defined by a weight update of the form 
 !! ? ! U !!!! !! !!! ! !!  

(11) 

 
where !!! is the target value gradient defined recursively 

by 
 !!! ? !"!" ! ! ! !"!" ! !!!!!! ! ! ! ! !!!!  (12) 

 
with !!! ? ! at any terminal state and where !!"  is 

shorthand for 
 !!" ? !"! ! !!"! !!! 

(13) 

 
It has been proved that any greedy trajectory satisfying !! ? !!! for all ! must be locally extremal, and often 

optimal (Fairbank, Prokhorov & Alonso 2012). This local 
optimality condition needs satisfying only over a single 
trajectory, whereas for TD the corresponding optimal 
condition (Bellman’s) needs satisfying over the whole 
state space. It is easy to see that our demonstration is 
based on PMP. Unlike Bellman’s condition, PMP states 
the necessary conditions for a trajectory to be (locally) 
optimal and thus it can be considered as a version of 
Bellman's Optimality Principle, if localized down to 
considering the current trajectory only.  As a consequence, 
VGL can lead to increased efficiency. Moreover, it must 
be noticed that if we apply PMP to all the trajectories we 
“recover” global optimality. 

 
Value-Gradient Learning and Temporal 
Difference  
If we compare equation (11) against its TD equivalent (8), 
we see that they are analogous except for the introduction 
of the model in equation (12). More specifically, the 
definition of the target gradient !! is the full derivative 
with respect to ! of the “!-Return” which is the target 
used in the TD(!) weight update. This may give the wrong 
impression that VGL(!) is just a differentiated form of 
TD(!). Contrarily, they differ in a fundamental way: in 
VGL, if the weight update is at a fixed point at every time 
step along a  trajectory generated by a greedy policy, for 
any lambda, (i.e., if the  learning objective !! ? !!! is met 

for all ! along the trajectory), then  that trajectory is 
locally extremal, and often locally optimal (Fairbank et al. 
2012). This contrasts to TD methods in that it is  possible 
for the TD weight update to be at a fixed point at every 
 time step along a trajectory generated by a greedy policy, 
without the  trajectory being optimal.  This is because for 
Bellman's condition to  apply, the TD weight updates' 
objective needs satisfying over all of  weight space, and 
hence lots of stochastic exploration is needed. Contrarily, 
VGL methods have a much lesser requirement for  
exploration.  What we mean by this is  that provided the 
VGL learning algorithm makes progress towards  
achieving !! ? !!! all along a greedy trajectory, then  
provided the trajectory remains greedy, it will make 
progress in bending  itself towards a locally optimal 
shape, and this will happen without the  need for any 
stochastic exploration.  In comparison to VGL, the failure 
of TD without any  exploration in a deterministic 
environment is dramatic and common, even  when the 
value function is perfectly learned along a single 
 trajectory.  

The main insight is that it is not enough to use the 
derivatives of the values. This is what the Jacobi-
Hamiltonian-Bellman equations do in extending the 
Bellman condition to continuous state spaces. 
Unfortunately, such derivation does not exploit fully the 
information contained in gradient values. We can't just 
consider the change in ! over the particular step ! along 
the trajectory.  This is like “dotting” "!"!  with !!, which is 
approximately equal to the TD error in equation (4), once 
you add in ! and include a discount factor. 

In VGL, it is the sideways components of "!"!  that are 
important, those that are not parallel to !!. Such 
components are used in the calculation of !!, in the terms !"!" and !"!" in particular. That is, you have to know these 
terms, that constitute the model function, in order to 
calculate a target value gradient, and you need a target in 
order to do a weight update. 

In addition, the model function is relevant to the greedy 
policy. Using a first order expansion of the greedy policy 
gives 

 ! !!! ? !"#"!#! ! !! ! ! ! ! !! ! !!  (14) 

 ! !"#"!#! ! !! ! ! ! !!! ! !! !!!"! ! ! !! ! ! !  

 ! !"#"!#! ! !! ! ! !! !!!"! ! ! !! ! ! !  

  
 

Hence the greedy policy depends on the value gradient 
but not on the values themselves. This is critical since 
changing !!"!  will immediately affect the greedy policy; by 
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moving it towards its correct target we will steer the 
trajectory in the correct (locally optimal) direction: TD’s 
paradigm “exploration vs. exploitation” becomes 
“exploration and exploitation” or, in other words, 
exploration comes for free when we combine “greedy” 
and “gradient” in VGL. 

VGL is an extension of well-known methods in adaptive 
dynamic programming, Dual Heuristic Programming and 
Generalized Dual Heuristic Programming in particular, 
that have been proved to be successful in solving complex 
tasks such as autopilot landing, power system control, 
simple control benchmark problems such as “pole 
balancing”, and many others (Wang, Zhang & Liu 2009). 
From a psychological point of view, VGL(!) is equivalent 
to Rescorla and Wagner’s model. However, where as 
Rescorla and Wagner’s model only considers classical 
conditioning VGL works for instrumental tasks –VGL, so 
to speak, is Rescorla and Wagner’s model applied to 
operant conditioning. 

 
Value-Gradient Learning and Pontryagin’s 
Minimum Principle  
In the next section we state how Hamilton’s principle (aka 
the Principle of Least Action) and VGL apply to learning 
and behaviour. But first we need to be more precise about 
the relationship between VGL and Pontryagin’s Minimum 
Principle.  

As defined by Pontryagin, the Hamiltonian of a control 
system is a function of four variables: ! !! !! !! ! ?! !! !! ! ! !!!! !! !! !  where !! ? ! !!"!  is a costate 
interpreted as a Lagrange multiplier: If the state given by 
the function represents constraints in the minimization 
problem, the costate represents the cost of violating those 
constraints. In other words, ! is the rate of change of the 
Hamiltonian as a function of the constraint. For example, 
in Lagrangian mechanics, the force on a particle ! ? !!! 
can be interpreted as ! determining the change in action 
(transfer of potential to kinetic) following a variation in 
the particle’s constrained trajectory. In economics, the 
optimal profit is calculated according to a constrained 
space of actions, where ! is the increase in the value of 
the objective function due to the relaxation of a given 
constraint –the marginal cost of a constraint, called the 
shadow price. 

Intuitively, the constraint ! can be thought of as 
competing with the desired function to pull the system to 
its minimum or maximum (or to a steady state). And the 
Lagrange multiplier ! can be thought of as measure of 
how hard ! has to pull in order to make those forces 
balance out in the constraint surface.  

Pontryagin’s Minimum Principle (PMP) states that ! !!!! !!!! !!!! ! ! U! !!!! !! ! !!!! !  with the associated 
conditions for a maximum, namely, !! ? ! !!"! , !! ? !!"! , 

and !!"! ? !. How is this related to VGL? Taking ! ? ! ! "!, we can make it correspond to VGL as 
follows: ! is the quantity to be maximized (or minimized), 
that is, the cummulative reward; the constraints are 
defined following the model of the world, ! and ! 
(henceforth, ! for short); and ! is !! (obviously ! if the 

trajectory is optimal, that, is if !! ? U !). Hence we can 
express VGL in Hamiltonian form as ! ? ! ! !!!. In 
fact, our re-formulation of PMP is somehow simpler, 
since PMP’s conditions are reduced to two, namely, the 
costate and the max function that defines the greedy 
policy. At the end of the day, PMP can be described as !! !! ! ? !#""!"!! !! !! ! , which is a form of the 
greedy policy, and the adjoint equation !! ! "!"! !! ! ! ! !!!, our gradient.  

Let’s recapitulate and see what happens with traditional 
value-based approaches: if there is no model, the 
Hamiltonian will not be constrained, thus it will be left to 
try all possible actions, not just those which “follow” the 
constraints. Indeed: without !, ! ? ! ! !!! reduces to ! ? ! ! !! –the old ! formula.  

 
Value-Gradient Learning and Behaviour 

Systems  
To summarize, we have restored optimality. If we learn 
the gradient of the value function by choosing greedy 
actions that follow the full model of the system, 
Pontryagin’s Minimum Principle applies and the 
trajectory so built is guaranteed to be locally optimal, that 
is, to minimize the error and to maximize the reward. This 
analysis begs the question: How does VGL apply to the 
study of behaviour? 

At the end of the day, animals are behaviour systems –
sets of behaviours that are organized around biological 
functions and goals like feeding (Timberlake 1983), 
defence (Fanselow 1994) or sex (Domjan 1994). When 
such systems are free to act as they please, their preferred 
or optimal distribution of activities defines a behavioural 
bliss point (BBP) or baseline level of activity. In dynamic 
terms the BBP is a natural, steady and stable, attractor.  

This view encapsulates the behavioural regulation 
theory and generalizes the concept of homeostasis and 
negative feedback from physiology to psychology. 
Physiological homeostasis keeps parameters such as body 
temperature close to an optimal or ideal level. This level is 
“defended” in that deviations from the target temperature 
trigger compensatory physiological mechanisms that 
return the system to its homeostatic levels. In behavioural 
systems, what is defended is the organism’s BBP against 
instrumental contingencies that create disturbances to 
which the system adapts. Other metaphors are possible: At 
the end of the day, the bliss point represents an 
equilibrium in a population of behaviours –pretty much as 
the equilibrium observed in the number of different types 
of ants in a colony or between competing (prey-predator) 
species in an environment.  

More specifically, Staddon’s model (Staddon 1979) 
explains operant behaviour in terms of time constraints 
and feedback constraints, the reinforcement schedule to 
which the animal is subjected. Starting from a BBP, the 
animal finds the optimal equilibrium between instrumental 
and contingent responses –the one that minimizes the cost 
involved. Instrumental conditioning procedures are seen 
as response constraints that disrupt the free choice of 
behaviour and prevent the organism from returning to the 
BBP. The organisms achieve a contingent optimization by 
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approaching its bliss point under the constraints of the 
instrumental conditioning procedure. Put it this way, the 
analysis of operant behaviour is an optimal control 
problem and thus we should be able to express it in terms 
of VGL: !, the Lagrangian, is defined as the cost to be 
minimized, ! are the time and feedback constraints and !, 
the multiplier or conjugate momentum, is now explicitly 
represented as !!. Not surprisingly, this formulation 
matches Staddon’s term by term (see Appendix A, 
Staddon 1979). 

Let’s recapitulate, VGL’s ! value would be the gradient 
of the cost associated with a departure from a given 
distribution of actions. If the cost of a given distribution is 
represented as !, then ! ! ? "! !!!"!  represents the 
change in cost as we change the distribution –where ! 
represents the distribution and ! represents a given set of 
responses (both instrumental and contingent). !! re-acts 
against the constraints to minimize the cost.  

What are the advantages of using VGL? Firstly, VGL 
tells us exactly which form the multiplier must have. In 
particular, !! must be defined according to !"!" and !#!": the 
former tells us how the rate of contingent responses (!) 
changes as the distribution of responses changes and the 
latter how the constraints themselves change. These two 
quantities define the change of cost that we minimize and 
give us the optimal distribution. 

Perhaps more importantly, VGL does not only give a 
solution to an optimization problem –in this case, the 
optimal distribution of responses under certain constraints. 
Of course, it does if we assume that such functions are 
perfectly known; yet, VGL is also a learning algorithm 
and as such serves a mechanistic agenda as well as an 
equilibrium agenda. VGL allows us to calculate how the 
animal is adapting to the optimal distribution when the 
constraints are a moving target, solving the so-called 
“teleological conundrum”: of course, animals do not know 
what the reinforcement schedule would be or the 
corresponding optimal response ratio –and yet they adapt 
to the optimal solution and they do so in an optimal way. 
Perhaps an analogy may clarify this point: Physicists 
found it puzzling that particles behaved as if they knew 
what the future would be. Traditionally, the movement of 
particles was interpreted in terms of global symmetries 
and thus it was difficult to explain how particles abided by 
the Principle of Least Action locally, when constraints 
appeared and disappeared as the system interacted with 
“unexpected” forces. Surely, the symmetries were broken 
in such cases; and yet, Nature seemed to account for them 
so as to comply with global symmetries –“as if nothing 
had happened”, symmetry was restored. We know that the 
answer lies in gauge symmetries: Indeed, at each step, 
deviations are counter-balanced so as to bring the system 
back (or as close as possible) to the original symmetry. In 
terms of cognition, this is precisely what VGL does. 

 
Conclusion  

This paper does not present quantitative predictions or 
new results. It presents a formal model that integrates 
current theories of conditioning with fundamental 
principles of Nature. Our main assumption is that learning 

and behaviour, conditioning more in particular, follow the 
same variational principles as any other natural 
phenomena: they must make a functional of some sort of 
extremal. In that we follow Peter Killeen’s program 
(Killeen 1992). We have shown that Temporal Difference 
is an inadequate model of optimal behaviour and proposed 
a new model, Value-Gradient Learning, equivalent to 
Pontryagin’s Minimum Principle –in turn, a version of 
Hamilton’s Principle of Least Action, that may serve as a 
model of both classical and operant conditioning. 
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Opportunity 
Although the cognitive and behavioral modeling 
communities now have a rather lengthy history and there is 
ongoing research and development in these areas across 
dozens of academic, industrial, and government research 
laboratories, very little of the work has been explicitly 
competitive in orientation. That said, there are precedents 
for modeling competitions in this area. Two examples 
include the PokerBot Competition (Lebiere & Bothell, 
2004) and the Dynamic Stocks and Flows Model 
Comparison Challenge (Lebiere, Gonzalez, & Warwick, 
2010). Both of these were successful and interesting events. 
However, they were also both single shot modeling 
competitions that did not evolve into annual events in the 
spirit of the Robocup (2012) robotic soccer competitions.  

 
I propose it is time to establish a recurring annual cognitive 
modeling competition. This poster is an opportunity for 
community discussion of the pros, cons, infrastructure 
requirements, and design parameters that should be 
considered in developing such an event within the cognitive 
and behavioral sciences. 
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Introduction 

Multitasking 
With the ever-increasing stream of information we are 
expected to deal with on a moment-to-moment basis, human 
multitasking behavior has become an important part of 
modern society. 

Multitasking can occur on many different timescales. Our 
interest is in concurrent multitasking: attempting to fulfill 
multiple goals in parallel. There have been many 
investigations to determine whether concurrent multitasking 
is good or bad. However, there is no definite answer to this 
question. Instead, it seems to depend very much on the tasks 
that are performed concurrently, as well as the amount of 
experience one has with the tasks. For instance, studies into 
driving behavior have shown that purely cognitive tasks can 
have a negative impact on driving performance (Horrey & 
Wickens, 2006). On the other hand, some studies have 
shown that perfect multitasking is possible (Schumacher et 
al., 2001). 

Early attempts to explain the results of multitasking 
studies revolved around multiple resource theories. These 
postulate that the cognitive system can be divided up into 
several resources. Once the capacity of a resource is 
exceeded, it can create interference during multitasking. 
While able to offer explanations for multitasking 
observations, these theories cannot produce detailed models 
that can be used to predict behavior in new situations. 
However, with the development of cognitive architectures, 
our ability to predict multitasking behavior has greatly 
increased. 

Threaded Cognition 
In efforts to explain concurrent multitasking behavior, 
threaded cognition has shown to be a very effective theory. 
Threaded cognition was developed by Salvucci and Taatgen 
(2008), and is implemented in the ACT-R cognitive 
architecture (Anderson, 2007). As such, it follows the 

constraints imposed by ACT-R: the cognitive system can be 
divided into different resources (such as vision, working 
memory, and manual control) that can operate in parallel. 
Each resource can only be used by one task at any given 
time, however.  

In threaded cognition, multiple goals can be active at the 
same time. As such, explicit goal switching is no longer 
required. Furthermore, allocation of the resources is based 
on two principles: politeness and greediness. Greediness 
means that a task can use a resource if that resource is not in 
use by another task. Politeness states that a task will 
immediately release a resource when it is done using that 
resource. 

Threaded cognition has been successful in explaining a 
wide range of multitasking behavior, such as multitasking in 
driving, track and choice experiments (Salvucci & Taatgen, 
2008), and perfect time-sharing experiments (Schumacher et 
al., 2001).  

Task Selection 
While threaded cognition has helped us in our 
understanding of multitasking, it has not yet explained how 
people determine which task to perform. Motivation is 
considered to play a large role in selecting and executing 
goals (Vancouver et al., 2010). However, we believe that 
cognitive factors also play an important role: interference 
that arises between two tasks that require the same resource 
at the same time leads to reduced performance and increased 
execution times. Intuitively, this is something that people 
will try to avoid. As such, cognitive factors can affect which 
tasks people will prefer to perform concurrently. 

Our hypothesis is that when people have to choose 
between combinations of tasks, they will choose the 
combination that has the smallest resource conflict. 

Study 
To examine the effect of cognitive interference on task 
selection, we performed a study involving concurrent 
multitasking. 
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Methodology 
20 participants (13 female, mean age 22.2) performed a dual 
task experiment consisting of a math task combined with 
either an aural/declarative task or a visual/manual task. 

The math task was a 10-column subtraction sum that had 
to be solved in a right to left order. The task had an easy and 
a hard version. In the hard version participants had to 
remember if they borrowed at the previous column. In the 
easy version, no borrowing was required. 

The visual/manual task was a tracking task (Martin-
Emmerson & Wickens, 1992). Using a trackball, 
participants had to push a moving dot back into a circle. 
Each time the dot went outside the circle, an error buzzer 
would sound.  

The aural/declarative task was a tone counting task. 
During a trial, tones would be presented to participants 
through a pair of headphones. After completing the last digit 
of the subtraction task, participants were prompted to type 
in the number of tones they heard. 

The study consisted of a practice block and two main 
blocks A and B. Block A consisted of trials where the 
subtraction difficulty and task combination was fixed. 
Participants performed 4 trials of each combination. In 
block B only the subtraction difficulty was fixed. Before 
each trial the participants could choose whether they wanted 
to perform tone counting or tracking. 

In block B, when subtraction is easy, we expect to that 
subjects will choose tone counting most often, because there 
is no resource overlap between those to tasks, while the 
tracking tasks shares both visual and manual resources. 
However, when the subtraction task is hard, there is 
interference in the problem state (working memory) 
resource, making it more likely that subjects will choose 
tracking. 

Results 
An analysis of the block B data shows that participants 
almost exclusively choose tone counting when the 
subtraction task is easy. When faced with a difficult 
subtraction problem, there is a shift towards choosing 
tracking instead of tone counting: when subtraction is easy 
counting tones is chosen in 93% of the trials. When 
subtraction is hard, tone counting is chosen in only 73% of 
the trials (p<0.05, df=38, F=5.0). 

Further examination of the performance on the tone 
counting and tracking tasks shows that while tracking 
performance does not change depending on the subtraction 
difficulty, participants are substantially worse in tone 
counting when the subtraction task is hard: 78% vs. 46% 
correct (p<0.01, df=38, F=9.23). 

Conclusion 
Our main interest lies in the selection of the secondary task 
in block B. Given threaded cognition and the constraints 
imposed by ACT-R, our hypothesis is that when presented 
with an easy subtraction, participants will choose the tone 

counting task as there is minimal overlap in the resources 
used by both tasks. In the hard subtraction condition, 
however, we expect participants to choose for the tracking 
task. Even though tracking requires participants to look 
away from the subtraction task, it does not result in 
interference that might arise from remembering both the 
tone count and a possible borrow performed in the previous 
subtraction column. 

The results support our hypothesis: participants almost 
exclusively pick tone counting in the easy subtraction 
condition, but are more likely to choose for tracking in the 
hard subtraction condition, despite the more distracting 
nature of the tracking task. 

Interestingly, participants still pick tone counting in 
combination with hard subtraction, despite making more 
errors in counting. This suggests that feedback might play 
an important role in task selection: the tracking task 
provides continuous feedback during the trial, while the tone 
counting task only has one feedback moment at the end of 
the trial. Furthermore, this feedback has no real 
consequence for the participant when an incorrect answer 
was given. In contrast, the tracking task produces an error 
buzzer when the dot is no longer in the circle. This lack of 
negative feedback seems to make participants less sensitive 
to poor performance in the counting task, which could 
explain the preference for this task in the hard subtraction 
condition. This hypothesis will be tested in a follow-up 
study. 
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#9&". &1" -"(&%),A 3"-&)% )* P / A/ $(A &1" k (",<1B)%. )* P
$. $ 3"-&)% %"#%"."(&$&,)( )* P (A)C `)%'$664/ &1" #%"A,-$&,)(
$6<)%,&1' -)'#9&". $ -)'#).,&,)( 3"-&)% v B4

v = p + a +
∑

qi ∈Q

qi, W?X

D1"%" Q A"()&". $ ."& )* &1" k (",<1B)%. )* P &1$& $%" $6.)
%"6$&"A &) AC

2&.9', W?I::X #%)#).". $ A,**"%"(& $6<)%,&1' *)% 3"-&)%
-)'#).,&,)(/ ($'"64/ %GDA"JFCGB/ &) -)'#9&" &1" '"$(,(<.
)* '"&$#1)%.C 01,. $6<)%,&1' 9.". $ ."& )* -)'')( (",<17
B)%. )* &D) -)(.&,&9"(& D)%A. &) -$#&9%" &1" %"6"3$(-" B"7
&D""( &1"'C +& ,. ')&,3$&"A B4 &1" *$-& &1$& &1" ,(&"%$-&,)(
B"&D""( -)(.&,&9"(& D)%A. "'B)A,"A ,( &1" #%"A,-$&,)( $6<)7
%,&1' ,. %$&1"% #%"A,-$&"7A,%"-&"AC `)%'$664/ &1" -)'#$%,.)(
$6<)%,&1' -)'#9&". $ -)'#)9(A 3"-&)% p 9.,(< &1"

v = a +
∑

ci ∈C

ci, WdX

D1"%" C A"()&". $ ."& )* k -)'')( (",<1B)%. )* A $(A P C
01" ."& C )* -)'')( (",<1B)%. -$( B" )B&$,("A B4 O(A7
,(< &1" .'$66".& i &1$& .$&,.O". |Ni(A) ∩ Ni(P )| ≥ k/ D1"%"
Ni(wj) A"()&". $ ."& )* &1" &)# i (",<1B)%. )* &1" D)%A w j C

09%(,(< ()D &) &1" '96&,#6,-$&,3" ')A"6/ &1" .,'#6".&
'"&1)A ,. &) 9." $ *9(-&,)( )* %GDAGB*B@5MFC*DHE@FAEF%"@FGB
*)% 3"-&)% -)'#).,&,)(E

v = p , a WeX
vi = pi · ai W;X

D1"%" &1" .4'B)6, "F#%"..". &1$& &D) 3"-&)%. $%" '96&,#6,"A
-)'#)("(&7D,."C
!FJ"HE#J "GBOGEH@FGB ,. $6.) $ '"'B"% )* &1" '96&,#6,-$&,3"

-6$../ $(A A"O("A $.

v = p ! a WXX

vi =
n−1∑

j=0

pj mod n · a(i−j) mod n. WTX

H31/17(&) &%D 015/17($(1& *,)13($F57
;#$%&7(1& 12 015/1&%&$ID(7% 5-,$(/,(0*$(1& 01,. $#7
#%)$-1 "F&"(A. &1" -)'#)("(&7D,." '96&,#6,-$&,)( $6<)%,&1'
,( 5c9$&,)( e ,( &D) D$4.E $3"%$<,(< $(A D",<1&,(<C

vi =
√

pi · ai W>X
vi = pα

i · ai WWX
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+( &1" $3"%$<,(< $##%)$-1 "F#%".."A ,( 5c9$&,)(>/ "$-1 -)'7
#)("(& )* $ -)'#)."A 3"-&)% ,. -$6-96$&"A $. $ <")'"&%,-
'"$(/ %$&1"% &1$( $ .,'#6" '96&,#6,-$&,)(C 01,. "F&"(A"A
$6<)%,&1' -$( B" %"<$%A"A $. -)%%".#)(A,(< &) &1" -"(&%),A
$6<)%,&1' ,( &1" $AA,&,3" -6$..C ^( &1" )&1"% 1$(A/ ,( &1"
D",<1&,(< $##%)$-1 ,( 5c9$&,)( W/ &1" #%"A,-$&" 3"-&)% ,.
D",<1&"A B4 &1" *$-&)% αC _1"( 0 < α < 1/ &1" $%<9'"(&
3"-&)% 1$. $ .&%)(<"% ,(f9"(-" )( &1" %".96&,(< -)'#).,&,)(
3"-&)%/ D1,6" &1" #%"A,-$&" 3"-&)% 1$. D1"( α > 1C 01,.
')A,O-$&,)( -$( B" %"<$%A"A $. $ '96&,#6,-$&,3" 3"%.,)( )*
&1" A,6$&,)( $6<)%,&1'C
.1'(70*$(1& 12 01&$%#$I7%&7($(+% *''($(+% 51'%,7 -7(&) *
5-,$(/,(0*$(+% 51'%, 01,. $##%)$-1 ')A,O". &1" -)(&"F&7
."(.,&,3" $AA,&,3" ')A"6./ ($'"64 &1" #%"A,-$&,)( $(A -)'7
#$%,.)( $6<)%,&1'./ &) B"("O& *%)' &1" '96&,#6,-$&,3" ')A"6C

^(" D$4 )* ')A,*4,(< &1"." $AA,&,3" ')A"6. ,. &) %"#6$-"
&1" 3"-&)% $AA,&,)( W+X D,&1 &1" 3"-&)% '96&,#6,-$&,)( W,XC
`)% "F$'#6"/ &1" #%"A,-$&,)( $6<)%,&1' -$( B" ')A,O"A $.

v = p , a ,
∏

qi ∈Q

qi W:IX

v =
(k+2)

√
p , a ,

∏

qi ∈Q

qi. W::X

5c9$&,)( :I .1)D. $ .,'#6" '96&,#6,-$&,3" 3"%.,)( )* &1"
#%"A,-$&,)( $6<)%,&1'/ ,( D1,-1 $66 &1" $%<9'"(&/ #%"A,-$&"/
$(A (",<1B)% 3"-&)%. $%" -)'B,("A B4 -)'#)("(&7D,." '967
&,#6,-$&,)(C ^( &1" )&1"% 1$(A/ 5c9$&,)(:: ,. $( $3"%$<"A 3"%7
.,)( )* &1" '96&,#6,-$&,3" #%"A,-$&,)( $6<)%,&1'/ ,( D1,-1 &1"
$%<9'"(&/ #%"A,-$&"/ $(A (",<1B)% 3"-&)%. $%" <")'"&%,-$664
$3"%$<"AC WS)&" &1$& ,( &1"." "c9$&,)(. &1" #%)A9-& .4'B)6
A"()&". &1" #%)A9-& B4 -)'#)("(&7D,." '96&,#6,-$&,)(/ $(A
&1" %$A,-$6 .4'B)6 A"()&". &1" -)'#)("(&7D,." %))&CX

L()&1"% D$4 )* ')A,*4,(< &1" $AA,&,3" ')A"6. ,. &) =""#
&1" .9' )* (",<1B)% 3"-&)%. 9(-1$(<"A/ $(A '96&,#64 &1" $%7
<9'"(&/ #%"A,-$&"/ $(A &1" .9' )* (",<1B)% 3"-&)%.C

v = p , a ,
∑

qi ∈Q

qi W:?X

v =
3
√

p , a ,
∑

qi ∈Q

qi W:dX

01,. ')A,O-$&,)( ,. ')&,3$&"A B4 &1" $..9'#&,)( &1$& &1"
-)(&"F&9$664 A"#"(A"(& '"$(,(< )* $ #%"A,-$&" .1)96A B"
-)'#9&"A B4 &1" A,.V9(-&,)( )* (",<1B)%. %$&1"% &1$( B4 &1"
-)(V9(-&,)( )* (",<1B)%.C `)% "F$'#6"/ $--)%A,(< &) &1,. $.7
.9'#&,)(/ &1" '"$(,(< )* &1" #%"A,-$&" JHB ,( aL 1)%." %9(.b
.1)96A B" %"#%"."(&"A $. a')3"/ f""/ 13 D$6=/b %$&1"% &1$(
a')3"/ f""/ *&' D$6=b

01" -)'#$%,.)( $6<)%,&1' -$( B" ')A,O"A B4 &1" .$'"
$##%)$-1". "'B)A,"A ,( 5c9$&,)(. :Ig:dC W01"." ')A,O-$7
&,)(. $%" 6,.&"A ,( 0$B6" :CX

.%$F1'
.*$%3(*,7
615/1-&'ID13' /*(37 S)9( -)'#)9(A. D" 9."A ,( &1"
"F#"%,'"(& -)'#%,."A &D) ()9(. W,C"C/ 1"$A $(A ')A,O"%X

.9-1 $. a$##6" #,"b )% a%96,(< -6$..Cb 01"." -)'#)9(A.
,(-69A"A &D) &4#".E $#DFEF#J BGHB "GDAGHB%C &1$& )--9%
,( &1" -)%#9. *%)' D1,-1 ."'$(&,- .#$-". D"%" -)(.&%9-&"A
$(A BGO&E BGHB "GDAGHB%C &1$& A) ()& )--9% ,( &1" -)%#9.C
01" ."6"-&,)( -%,&"%,)( *)% -)'#)9(A. D$. &1$& *$',6,$% -)'7
#)9(A. .1)96A )--9% $& 6"$.& ?I &,'". ,( &1" -)%#9./ $(A
B)&1 &4#". )* -)'#)9(A. .1)96A B" ,(-69A"A ,( &1" &1".$9%9.C
`%)' &1" -)'#)9(A. &1$& .$&,.O"A &1,. -%,&"%,)(/ D" %$(7
A)'64 ."6"-&"A ;I *$',6,$% $(A ;I ()3"6 -)'#)9(A. ,( B)&1
6$(<9$<". *)% "3$69$&,)(C `)% "$-1 )* &1"." ()9( -)'#)9(A./
$ ."'$(&,-$664 %"6$&"A D)%A D$. ."6"-&"A %$(A)'64 *%)' .4(7
)(4'./ 14#"%(4'. $(A -))%A,($&" D)%A. )* &1$& -)'#)9(AC

+( &1,. "F#"%,'"(&/ &1" D%,&&"( $(A ()(7O-&,)( #$%&. )* &1"
[%,&,.1 S$&,)($6 8)%#9. )* &1" .,]" )* ;eCT ',66,)( D)%A.
$(A @$#$("." ("D.#$#"% -)%#)%$ W,C"C/ *)9% 4"$%.H D)%&1 )*
N$,(,-1, ("D.#$#"% $%&,-6". $(A &D) 4"$%H. D)%&1 )* S,==",
("D.#$#"% $%&,-6".X )* &1" .,]" )* ?XC? ',66,)( D)%A. D"%"
9."A $. $ -)%#9.C 01"4 -)(&$,("A Td/e?? 5(<6,.1 $(A Xd/>T;
@$#$("." A,**"%"(& D)%A.C 01" &1".$9%, 9."A ,( &1,. "F#"%7
,'"(& D"%" 5(<6,.1 _)%AS"& dCI $(A $ @$#$("." &1".$9%9.
aS,1)(<) !$,701".$9%9.Cb
4%5*&$(0 7/*0% +( )%A"% &) &".& )9% D)%=,(< 14#)&1".,.
&1$& -)'#)("(&7D,." '96&,#6,-$&,)( D)%=. "**"-&,3"64 ,( &1"
."'$(&,- .#$-" D1)." A,'"(.,)(. %"#%"."(& A,.&,(-&,3" *"$7
&9%"./ D" 9."A &D) A,**"%"(& ."'$(&,- .#$-".C

^(" ."'$(&,- .#$-" ,. B$."A )( &1" D)%A7D)%A '$&%,F
D1)." "6"'"(&. $%" D)%A -))--9%%"(-" *%"c9"(-,". D,&1,( $
-)(&"F& D,(A)D .#$((,(< .)'" (9'B"% )* D)%A.C 01,. ')A"6
,. $ #)#96$% ."'$(&,- .#$-" W"C<C/ [966,($%,$ E J"34/ ?IITP
R"--1,$ E @)("./ ?IIWX $(A ,& D$. $6.) 9."A B4 N,&-1"66 $(A
J$#$&$H. W?II>/ ?I:IX .&9A4 A"')(.&%$&,(< &1" .9#"%,)%,&4 )*
&1" -)'#)("(&7D,." '96&,#6,-$&,)(C `)%'$664/ &1" "6"'"(&
aij )* &1" D)%A7D)%A '$&%,F ,. ,(,&,$664 &1" (9'B"% )* &,'".
&1" D)%A wj )--9%. D,&1,( n D)%A. $%)9(A &1" D)%A w i/ $(A
D",<1&"A B4 #).,&,3" #),(&D,." '9&9$6 ,(*)%'$&,)( WMMN+P
[966,($%,$ E J"34/ ?IITP 09%("4 E M$(&"6/ ?I:IXC +( &1,.
.&9A4/ D" 9."A $ -)(&"F& D,(A)D )* O3" D)%A./ ,C"C/ n = 5C

L()&1"% ."'$(&,- .#$-" D$. -)(.&%9-&"A 9.,(< 6$&"(& ."7
'$(&,- $($64.,. WJKLP J$(A$9"% E !9'$,./ :WWTP J$(A$9"%
"& $6C/ ?IITXC JKL ,. B$."A )( &1" D)%A7A)-9'"(& '$&%,F
D1)." "6"'"(& aij ,. &1" (9'B"% )* &,'". &1" D)%A wi )--9%.
,( &1" j7&1 A)-9'"(&C 01" "6"'"(&. )* &1,. ,(,&,$6 '$&%,F $%"
D",<1&"A/ $(A &1" '$&%,F ,. .'))&1"A B4 .,(<96$% 3$69" A"7
-)'#).,&,)( WKQ!XC L')(< $ (9'B"% )* D",<1&,(< .-1"'".
&1$& 1$3" B""( #%)#)."A .) *$%/ D" 9."A h9".$A$H. W?IITX
.-1"'" ,( D1,-1 &1" ,(,&,$6 D)%A *%"c9"(-4 ,. D",<1&"A B4
&1" #%)A9-& )* ,&. 6)<$%,&1' $(A &1" "(&%)#4C 01" (9'B"% )*
&1" %"A9-"A A,'"(.,)(. D$. A"&"%',("A &) B" dIIC

^(" ".."(&,$6 A,**"%"(-" B"&D""( &1"." &D) ."'$(&,-
.#$-". 6,". ,( &1" '"$(,(<*96(".. )* 3"-&)% A,'"(.,)(.C +(
&1" MMN+7B$."A ."'$(&,- .#$-"/ "$-1 3"-&)% -)'#)("(& %"#7
%"."(&. $ A,.&,(-&,3" *"$&9%"/ ($'"64/ $ -)(&"F& D)%A/ D1,6"
&1" A,'"(.,)(. )* &1" JKL7B$."A ."'$(&,- .#$-" A) ()& 1$3"
.9-1 &1" -6"$% '"$(,(<C Y"(-"/ B4 -)'#$%,(< &1"." &D)
.#$-". ,( &"%'. )* &1" #"%*)%'$(-" )* &1" '96&,#6,-$&,3" ')A7
"6./ D" &".&"A &1" D)%=,(< 14#)&1".,. &1$& -)'#)("(&7D,."
'96&,#6,-$&,)( D)%=. D"66 ,( $ ."'$(&,- .#$-" D,&1 ."'$(&,7
-$664 '"$(,(<*96 A,'"(.,)(.C +( $AA,&,)(/ &) &".& D1"&1"% &1"
.'))&1,(< B4 KQ! ,. $ '$,( -$9." )* &1" 6).. )* A,'"(.,)(
."'$(&,-./ D" $6.) "F$',("A &1" #"%*)%'$(-" )* &1" MMN+7
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0$B6" :E 8)'#).,&,)( $6<)%,&1'. -)'#$%"A ,( &1" "F#"%,'"(&

L6<)%,&1' W$BB%CX `9(-&,)(
8"(&%),A W85S0X vi = pi + ai

!,6$&,)( W!+JLX vi = (λ − 1)pi
P

j pjaj + ai
P

j pjpj

M%"A,-$&,)( WMR5!X vi = pi + ai +
P

j qji

N96&,#6,-$&,3" WiN2JX vi = pi · ai ·
Q

j qji

Z")'"&%,-$664 $3"%$<"A WiLQ5X vi =
(k+2)

q
pi · ai ·

Q
j qji

M$%&,$664 '96&,#6,-$&,3" WiMLR0N2JX vi = pi · ai ·
P

j qji

M$%&,$664 $3"%$<"A WiMLR0LQ5X vi =
3
q

pi · ai ·
P

j qji

8)'#$%,.)( W8^NMX vi = ai +
P

j cji

N96&,#6,-$&,3" WiN2JX vi = ai ·
Q

j cji

Z")'"&%,-$664 $3"%$<"A WiLQ5X vi =
(k+1)

q
ai ·

Q
j cji

M$%&,$664 '96&,#6,-$&,3" WiMLR0N2JX vi = ai ·
P

j cji

M$%&,$664 $3"%$<"A WiMLR0LQ5X vi =
q

ai ·
P

j cji

N96&,#6,-$&,)( WN2J0X vi = pi · ai

L3"%$<"A WiLQ5X vi =
√

pi · ai

_",<1&"A Wi_5+X vi = pα
i · ai

8)(3)69&,)( W8^SQX vi =
Pn−1

j=0 pj mod n · a(i−j) mod n

Y"$A )(64 WY5L!X vi = ai

Q"-&)% WQ580X v ,. -)'#9&"A A,%"-&64 *%)' &1" -)%#9.
B4 &%"$&,(< -)'#)9(A. $. .,(<6" D)%A.

B$."A ."'$(&,- .#$-" .'))&1"A B4 KQ!C

J-5*& 7(5(,*3($C @-')5%&$
+( )%A"% &) -)66"-& &1" A$&$ )( 19'$( .,',6$%,&4 V9A<'"(&/
D" -)(A9-&"A $( "F#"%,'"(& 9.,(< @$#$("." -)'#)9(A7D)%A
#$,%.C W5(<6,.1 -)'#)9(A7D)%A #$,%. D"%" ()& 9."A *)% &1"
"F#"%,'"(&/ B"-$9." $ .9*O-,"(& (9'B"% )* ($&,3" 5(<6,.1
.#"$="%. -)96A ()& B" %"-%9,&"ACX `)9%&""( #$%&,-,#$(&./ D1)
D"%" $66 ($&,3" .#"$="%. )* @$#$("."/ D"%" $..,<("A $66 &1"
:II @$#$("." -)'#)9(A7D)%A #$,%. $(A $.="A &) %$&" &1" ."7
'$(&,- %"6$&"A(".. B"&D""( &1" -)'#)9(A $(A &1" D)%A )*
"$-1 #$,%C 01"." #$,%. D"%" %$&"A )( $ T7#),(& .-$6" %$(<,(<
*%)' : WHBJ&E#@&%X &) T WJ&E#@&%XC 01" #%"."(&$&,)( )%A"% )*
&1)." #$,%. D$. %$(A)',]"A *)% "$-1 #$%&,-,#$(&C

H310%'-3%
Z,3"( $ ."'$(&,- .#$-" $(A $ ."& P )* -)'#)9(A7D)%A #$,%./
&1" -)'#)9(A 3"-&)% )* "$-1 -)'#)9(AD$. -)'#9&"A B4 &1"
-)'#).,&,)( $6<)%,&1'.C L*&"%D$%A/ &1" .,',6$%,&4 B"&D""(
&1" -)'#)9(A $(A &1" #$,%"A D)%A D$. -$6-96$&"A $. &1" -)7
.,(" B"&D""( &1" -)'#9&"A -)'#)9(A 3"-&)% $(A &1" 3"-&)%
*)% &1" #$,%"A D)%AC 2.,(< &1"." -).,(" 3$69". *)% &1" ."&
)* -)'#)9(A7D)%A #$,%./ D" "3$69$&"A &1" -)'#).,&,)( $6<)7
%,&1'. ,( &1" *)66)D,(< &D) D$4.C
6133%,*$(1& *&*,C7(7 K#"$%'$(H. -)%%"6$&,)( -)"*O-,"(&
D$. -$6-96$&"A B"&D""( &1" -)'#9&"A -).,(" 3$69". $(A &1"
'"$( 19'$( %$&,(<. *)% -)'#)9(A7D)%A #$,%.C
K13' 3*&;(&) `)% "$-1 -)'#)9(A7D)%A #$,% (c i, wi)/ &1"
%$(= ri )* &1" #$,%"A D)%A wi D$. $..".."A B4 -)'#9&,(< &1"
-).,(" .,',6$%,&4 B"&D""( ci $(A $66 D)%A. W,(-69A,(< wiX ,(
&1" .#$-"/ $(A .)%&,(< $66 D)%A. ,( A".-"(A,(< )%A"% )* &1" -)7
.,("C L 1,<1"% %$(= ,'#6,". &1$& &1" D)%A wi ,. ."'$(&,-$664
')%" %"6$&"A &) &1" -)'#)9(A ciC S"F&/ $66 -)'#)9(A7D)%A

0$B6" ?E 8)%%"6$&,)( -)"*O-,"(&. B"&D""( 19'$( .,',6$%,&4
%$&,(<. $(A &1" -).,(" .,',6$%,&4 -)'#9&"A B4 &1" -)'#).,7
&,)( $6<)%,&1'.

MMN+ JKL MMN+iKQ!
L6<)%,&1' `$' S)3 `$' S)3 `$' S)3
85S0 CdTX Cd>: CdXT Cd:W CeeX CeXX
!+JL Cd;W Cde> Ceed CeI; Cee; Ce??
MR5! Ce:I Cded CdT> C?Xe Cedd Ce??
iN2J Cd>> CeeX CeeX Cd:I Cd?? CIWe
iLQ5 Cdd: Ce:? CeTe C?:d CeI> Cd?:
iMLR0N2J CdeI Ced? CeeX CdI> CdeX C:I>
iMLR0LQ5 CddX CeIT Cee: C?:> CeId Cde;

8^NM CdXI Cdd: CdeX CeId Ced? Ce:I
iN2J C?:W CdWT C?WX Ce:d Cee? C:?T
iLQ5 C?eT Cddd Cd?; C?dW CeX: Cde>
iMLR0N2J C?e; Cd;; 7C?d> 7CITW CI;T CI;I
iMLR0LQ5 C?X? Cd:e 7C?eW 7C?:> CI;: C:??

N2J0 CdWd Ce:e 7C:eW CII; CIdT CII?
iLQ5 CdXW Ce:d 7C:We 7CI>X CIII CI;X
i_5+ CdW? CeIW C?>: CedT Ce>d Cd:I

8^SQ C?We C:?d C?:X CdeT Ce:> Cd>X
Y5L! C?>T C?XI CdX: Ce:: Cd>d CdX;
Q580 Cdd: j Ce:X j CeIe j

p < .05/ p < .01/ p < .001

`$'k`$',6,$% -)'#)9(A./ S)3kS)3"6 -)'#)9(A.C

#$,%. ,( &1" ."& P D"%" .)%&"A ,( $.-"(A,(< )%A"% )* &1" %$(=
riC 01" .)%&"A 6,.& )* &1" %$(= ri ,. A"()&"A $. r′1, · · · , r′|P |C
`,($664/ &1" )3"%$66 #"%*)%'$(-" )* "$-1 $6<)%,&1' D$. '"$7
.9%"A B4 &1" '"A,$( %$(=. r ′

0.5|P | $(A O%.& c9$%&,6" %$(= W,C"C/
?;&1 #"%-"(&,6"X. r′0.25|P | )* &1" .)%&"A 6,.&C

G%7-,$
+( )%A"% &) -)'#9&" &1" #"%*)%'$(-" )* &1" -)'#).,&,)( $6<)7
%,&1'. D,&1 *%"" #$%$'"&"%./ D" ".&,'$&"A &1" )#&,'$6 #$%$'7
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Introduction 
The aim of this study is to provide a precise mapping of five 
ACT-R modules on the brain. While there exists a 
predefined mapping between ACT-R modules and brain 
regions (e.g., Anderson et al., 2007), these regions are 
relatively crude (cubes of ~12×12×12mm) and serve in 
principle only as indicators of module activity. Previously, 
we have shown that an analysis method called model-based 
fMRI can provide more detailed whole-brain mappings 
(Borst, Taatgen, & Van Rijn, 2011). In the current study, we 
applied this method to a second dataset and combined the 
results of both datasets to create an overall mapping. 

Method 
In a typical fMRI analysis, the condition structure of the 
experiment is regressed against the fMRI measurements. 
This results in brain areas that are active in response to the 
experimental conditions. In model-based fMRI, predictions 
of a model are used as a regressor instead, showing brain 
areas that correlate with activity of model components (e.g., 
Gläscher & O'Doherty, 2010). 

Recently, we used this method to locate brain areas that 
correspond to the ACT-R modules in a relatively complex 

multitask experiment (Borst et al., 2011). We now applied 
the same method to analyze a dataset that was published by 
Anderson et al. (2007), who used a more traditional 
laboratory experiment to show differential brain activity of 
eight ACT-R modules. 

Naturally, the results of both datasets are partly dependent 
on idiosyncrasies of the respective models and experiments. 
We therefore subsequently combined the results of the two 
datasets with a conservative conjunction analysis (Nichols et 
al., 2005) to create a more stable mapping. 

Results 
Figure 1 illustrates the process for the manual module. The 
left panel shows the results of the model-based analysis of 
the Anderson et al. (2007) dataset: a region specific to the 
motor cortex, overlapping with ACT-R’s predefined region. 
The middle panel shows the results of the Borst et al. (2011) 
dataset: the manual activity of the model correlated most 
significantly with a region in the visual cortex. In addition, 
an area in the motor cortex also correlated with the model 
predictions. The right panel shows the conjunction of both 
datasets: an area that is constrained to the motor cortex. 

Figure 2 shows the results of the conjunction analyses of 
the other four modules. The aural module correlated with a 
region in the auditory cortex. The visual module correlated 
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Figure 1. Results for the manual module of the Anderson et al. dataset (left), the Borst et al. dataset (center), and the 
conjunction (right). All results thresholded at p < .001. White squares indicate ACT-R’s predefined manual module. 
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most with an area in the visual cortex, but also with other 
areas. As expected, the retrieval module correlated with a 
prefrontal area, but most strongly with the parietal region 
that is normally attributed to the imaginal module. Finally, 
the imaginal module correlated most with the expected area 
in the parietal cortex, but also with other areas. 

Discussion 
Figure 1 highlights the strength of the methodology: while 
the Borst et al. analysis (2011) resulted in the visual cortex, 
the combination of the two datasets led to the correct motor 
region. On the other hand, for the retrieval module we did 
not find the expected prefrontal region as the best matching 
area, and for most modules we found activity throughout the 
brain. While these results might turn out to be the right 
representations of the modules, it seems to suggest that we 
should add more datasets to the analysis to create more 
constrained mappings. In general, combining model-based 

fMRI results of multiple experiments seems to be a very 
promising method to locate the neural correlates of ACT-R. 
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Figure 2. Conjunction results for the aural, visual, retrieval, and imaginal modules, thresholded at p < .001. Crosshairs in the 
‘3D’ images indicate the most significant voxel. White squares indicate the respective predefined ACT-R modules. 
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Introduction
When asked to indicate which items from a set of candi-
dates belong to a particular category, inter-individual differ-
ences appear: Individuals disagree on the items that should
be considered category members (e.g., Black, 1937; Hamp-
ton, Dubois, & Yeh, 2006; McCloskey & Glucksberg, 1978).
Individuals might disagree about whether hiking and/or darts
are sports, for instance. We will argue that inter-individual
differences in semantic categorization come in two kinds. (i)
Qualitative differences reflect a different organization of the
candidate items with respect to the target category. (ii) Quan-
titative differences reflect a different propensity to endorse
items as category members.

Qualitative differences represent different views on what
are considered representative category members. Individu-
als who consider hiking a better example of sports than darts
presumably find that the former meets the requirements of
category membership better than the latter does. They, for
instance, recognize that hiking is physically more demanding
than darts is. Individuals who consider darts to be the better
example must then employ different requirements for cate-
gory membership. When judging category membership they
place more emphasis on elements such as rules or competi-
tion, for instance. These requirements are better met by darts
than by hiking.

Among individuals who agree on the organization of items
with respect to the target category, categorization differences
of a quantitative nature can arise. These are differences that
pertain to the propensity to endorse items as category mem-
bers. The item organization reflects the varying extents to
which the items fulfill the requirements for category mem-
bership (e.g., hiking is physically more demanding than darts
is). Certain individuals might want to see more evidence of
these requirements than others. They might only deem hiking
physical enough to be considered a sport, while others find
both darts and hiking demanding enough.

Model
Our goal is to elucidate these two kinds of inter-individual
categorization differences by means of the mixture item re-
sponse theory model (Mislevy & Verhelst, 1990; Rost, 1990)
that is expanded in Equation (1). Models like these are tradi-
tionally employed to assess individuals’ aptitudes and dispo-

sitions in response to a number of test items. However, they
have also been shown to be flexible tools to analyze semantic
categorization data (e.g., Verguts, De Boeck, & Storms, 1998;
Verheyen, Hampton, & Storms, 2010).

Here the model will be used to partition a large sample of
categorizers in a number of groups that are maximally differ-
ent in terms of their organization of the items with respect to
the target category. These item organizations take the shape
of scales along which all candidate items are positioned ac-
cording to their likelihood of being endorsed. Different or-
ganizations capture qualitative categorization differences be-
tween participants from different groups: They reveal how
a particular item might be a likely category member in one
group, but an unlikely category member in another group.
Participants that end up together in a group are understood
to adopt the same item organization. These categorizers do
not differ qualitatively, but can display varying degrees of
propensity to endorse items as category members. These are
inter-individual categorization differences of a quantitative
nature. In the formal framework they take the shape of crite-
ria that are imposed on the scales that organize the candidate
items: They reveal how some individuals in a group might
use very liberal criteria, while others employ very stringent
criteria.

Binary categorization decisions Yci constitute the input for
the model. Here the categorization data are comprised of
member/non-member decisions Y by 250 categorizers c to-
wards 24 items i in each of 8 natural language categories (fish,
fruits, furniture, insects, sciences, sports, tools, vegetables).

Every one of these categorization decisions is considered
the outcome of a Bernoulli trial with the probability of a mem-
ber response:

Pr(Yci = 1) =
eαg(βg,i −θgc)

1+ eαg(βg,i −θgc)
(1)

In Equation (1) the betas capture the organization of the items
with respect to the target category. g groups of categorizers
are extracted, with separate item organizations that are max-
imally different. For each group the organization takes the
shape of a scale along which all candidate items are posi-
tioned. βg,i indicates the position of item i along the scale
for group g. Higher values for βg,i indicate likelier category
members.
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The thetas in Equation (1) capture the degree of liberal-
ness/conservatism categorizers display. A separate indication
of the propensity to endorse items as category members is
extracted for each categorizer c. It takes the shape of a crite-
rion that is positioned along the same scale that organizes the
items for the group the participant belongs to. θgc indicates
the position of the criterion for categorizer c along the scale
for group g. Higher values for θgc indicate more conservative
categorizers.

Unlike the betas and thetas, the alphas in Equation (1) can
only take on positive values. A separate αg for each group
determines the shape of the response function that relates the
unbounded difference βg,i −θgc to the probability of a mem-
ber response (bounded between 0 and 1). Indeed, the relative
position of item and criterion along a scale determines the
probability of a member response. If βg,i equals θgc the nu-
merator of Equation (1) takes on the value of 1, while the
denominator takes on the value of 2. The resulting probabil-
ity is .50, indicating that the categorization decision can go
either way. The odds change when item and criterion have
a different position along the scale. If the item surpasses the
criterion, the odds are that the categorizer will endorse it. The
greater the distance between item and criterion, the greater
the odds of a member decision. If the item does not surpass
the criterion, the odds are that c will not endorse i. Under this
circumstance, the odds of a non-member decision increase
with the distance between item and criterion.

The one-group variant of the model in Equation (1) has
been applied to semantic categorization by Verheyen et al.
(2010). That particular model only allows for quantitative
inter-individual categorization differences. Participants can
differ in terms of the categorization criterion they employ, but
not in terms of the scale along which the criteria are placed.
They all adopt the same category organization. The model in
Equation (1) is more general. It allows for qualitative differ-
ences in addition to quantitative ones. It relaxes the assump-
tion that all participants adhere to the same category organiza-
tion. Instead, it assumes that the participants divide in groups
with a different item organization each. (One set of beta esti-
mates is extracted for each group.) Within each group, indi-
viduals are still thought to differ in terms of the employed cat-
egorization criterion. (A theta estimate is extracted for every
categorizer.) The model in Equation (1), then, is a mixture of
differently parameterized quantitative differences-only mod-
els of the kind employed by Verheyen et al. (2010).

Findings
The analysis of the categorization data with the mixture
model in Equation (1) yields evidence for both qualitative
and quantitative inter-individual differences. For the cate-
gories of fish, insects, sciences, sports, and tools the sam-
ple of categorizers divides in distinct groups, who regard dif-
ferent items likely category members (i.e., qualitative differ-
ences). Within each of these groups categorizers differ in
their propensity to provide membership responses (i.e., quan-

titative differences). The existence of multiple item organiza-
tions for a single category suggests that it might be improper
to assume a default category representation that is the same
for all language users. Rather, it would appear that there
exist a number of these default representations, which em-
phasize different sets of category features. Indeed, a clear
pattern emerged when we (i) determined to what extent fea-
tures that participants consider important for category mem-
bership are true of the different candidate items, (ii) obtained
a small number of principal components that convey the in-
formation that is contained in these feature applicability judg-
ments, and (iii) regressed the item organizations of different
groups upon these principal components. For each of the cat-
egories with multiple item organizations, there was at least
one component that had a similar effect on every item orga-
nization. Common components indicate agreement among
groups on what it means to be a category member. This is
required for members of different groups to succesfully com-
municate with one another using the studied natural language
terms. The item organizations could also be distinguished on
the basis of other components that were of importance to sin-
gle subgroups only. These distinct components indicate dis-
agreement among groups on what it means to be a category
member but do not appear to hamper communication between
members of different groups.
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Introduction 
In multimodal human computer interaction users can often 
select between specific input modalities. Modality choice is 
influenced by various factors including user attributes, 
system attributes, the task and the environment (e.g. 
Lemmelä et al., 2008). Here, we describe on-going research 
into cognitive models of input modality selection. 

The efficiency to solve a task with a multimodal user 
interface can vary widely due to modality-specific shortcuts. 
For instance, comparing touch-screen and speech input, 
items in lists such as names in a directory can be more 
efficiently found via speech. The number of list items in a 
GUI is limited due to screen size and legibility. Using a 
touch-screen, users have to browse the list for the searched 
item. With speech, each item can be directly accessed, as the 
limitations of the GUI do not necessarily affect the voice 
interface.  Thus, subjects find a list item in fewer steps by 
asking for it verbally. The benefit of speech, BS, is defined 
as the difference in interaction steps between touch-screen 
(IST) and speech inputs (ISS): BS = IST – ISS. 

Our aim is to develop models of modality selection to 
support existing tools for model-based usability evaluation 
such as MeMo (Möller et al., 2006) or CogTool (John et al., 
2004). In a classical usability experiment, a participant is 
instructed to solve a task with different user interface 
variants. Taatgen et al. (2006) presented a model where 
unimodal task knowledge was coded into instructional 
chunks of the declarative memory of ACT-R (Anderson et 
al., 2004). We extended Taatgen’s concept for multimodal 
interaction and investigate to which extent our model is able 
to reproduce the modality selection behavior of real test 
participants. 

Experiment 
The Restaurant Booking System (RBS) 
A smart phone-based RBS with touch and speech as input 
modalities was tested (for details, see Schaffer, 2011a). 
Automatic speech recognition (ASR) was simulated via a 
Wizard-of-Oz design: an unseen human operator changed 
the system state. This way, issues related to ASR errors 
could be avoided. 

In the RBS database, requests consisting of a name of a 
city, a culinary category, a desired time and the number of 
people are made. All user entries are entered via different 
lists. Each list contains 6 layers each with 4 items. The 

transition between layers is performed with touch or speech 
input. An item is selected by touch or by saying the written 
text label. However, all list items can also be accessed 
directly by using speech input. The items are ordered 
alphabetically or numerically. The benefit of speech input 
calculates to 0 steps (BS = 1 – 1) for items located at the first 
layer of a list and increases to 5 steps (BS = 6 – 1) at the last 
layer of a list. 

Task 
The participants' task was to perform database requests with 
the RBS. The benefit of the speech modality was 
systematically varied between 0 and 5 interaction steps. 

Participants 
Sixteen German-speaking participants (8 female, 8 male) 
between the age of 22 and 31 (M=26, SD=2.95) took part in 
the study. A single experiment took approximately one 
hour. Participants received a remuneration of €10. 

Procedure 
The system was explained and the usage of touch and 
speech demonstrated. Then, participants performed three 
training trials: touch usage only, speech usage only and 
multimodal with mixed modality usage. In the target phase, 
12 trials with mixed, participant-chosen modality usage 
followed. The tasks were presented in written form (e.g., 
“Please find a Chinese restaurant in Berlin at 8 pm for 12 
people”). 

Cognitive Model 
Instructional steps are represented in declarative memory as 
chunks containing pre-condition, post-condition, action and 
modality. Pre- and post-conditions are used to chain the 
instructions. A key aspect of the model is that for each 
modality, instructional chunks with the same precondition 
occur in declarative memory. An earlier study revealed that 
for the RBS, speech is perceived to be more demanding than 
touch input (Schaffer 2011b). Therefore we use an action 
slot within each instruction to describe the interaction more 
precisely. One GUI interaction consists of two instructions 
distinguished by the statement in the action slot (search and 

 

Figure 1: Procedural knowledge of the model. 
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Figure 2: Percentage of speech usage PS for each level of 
benefit BS for human and model data. 

 
press). Speech input consists of three instructions (action 
slots: search, think and speak). 

The general operation of the model is summarized in 
Figure 1. Instructions are being retrieved from declarative 
memory. Chunks with the same precondition (but differing 
modality) are chosen randomly. Retrievals are processed by 
modality specific production rules. By way of the 
production compilation mechanism, new production rules 
with integrated chunks are learned. After each finalization 
of the task a reward is propagated to the involved 
productions.  Thus, the model adapts to modality success 
via a reinforcement-learning mechanism. 

Results 
Figure 2 shows the percentage of speech usage PS in the 
human data (black) and the model data (grey). An analysis 
of variance with repeated measures showed an highly 
significant effect of BS on PS in human data 
(F(2.27,33.97)=27.503; p1-tailed<.001; part.eta2=.647). 

Modality usage of the model is comparable to human 
behaviour. The model performs fairly well at BS=0. For 
BS=1, 2 and 3 the model fit worsens, whereas for BS=3 and 
4 model performance improves again.  

Each participant (16) of the experiment executed eight 
subtasks for each level of BS. Thus the model data was 
calculated from the average of 128 particular model 
iterations. Each iteration included 150 runs. Figure 3 shows 
the learning behavior for each level of BS (colored lines). 

Conclusion 
Taken in context with our aim to design tools for model-
based usability evaluation, the model provides a useful basis 
for a modality selection mechanism. Future work will 
extend the model to enable interaction with system 
prototypes and produce actual speech output.  As is seen 
sometimes in reinforcement learning, adaptation seems 
slower than what is seen empirically. Once a better-fitting 
model is defined, further evaluation may demonstrate the 
learning behavior over repeated presentations and time, 
giving essential cues to the nature of the learning effect as a 
form of routinization or declarative memorization. One 
 

Figure 3: Development of speech usage PS during 150 
model runs for different levels of speech benefit BS. 

 
common effect of routinization is that early choices and 
experiences determine fixed, long-term strategy choices as 
routinized knowledge is less adaptive (an effect of primacy: 
first impressions matter). Showing such effects would 
critically examine the use of adaptive speech recognition 
technology in end-user applications, specifically if these 
systems start out with high error rates. 
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Introduction 
A long lasting debate in research on the fundamental 

human capacity to categorize, regards the degree of 

abstraction in the mental category representations of a 

cognitive agent. In its extremes, this debate translates into 

the decades-old discussion between advocates of the 

exemplar view (Nosofsky, 1984) and the prototype view 

(Minda & Smith, 2001). Recently, a number of models have 

been developed that go beyond these extremes (Griffiths, 

Canini, Sanborn, & Navarro 2007; Love Medin & Gureckis, 

2004; Rosseel, 2002; Vanpaemel & Storms, 2008). One of 

them is the Varying Abstraction Model (VAM) proposed by 

Vanpaemel and Storms (2008) in which a whole range of 

category representations (including the prototype and 

exemplar representation) can be tested and compared with 

one another. In this way, the VAM can be used to quantify 

the degree of abstraction in artificial categories.  

Surprisingly, these and other formal models that have 

been extensively used to investigate the category 

representations of artificial categories are rarely used to 

study the category representations of natural language 

categories such as fruits and birds. This is odd, since 

ultimately the goal of investigating artificial categories is to 

better understand how people learn and use everyday 

concepts, that is, natural language categories. Given that 

natural language categories can be expected to be different 

from artificial categories in a number of respects (Malt & 

Smith, 1984), the results from artificial categorization 

experiments may not easily generalize to natural language 

categories  

In the present study we test whether we can find evidence 

for partial abstraction in natural language categories. We 

adapt the VAM to make it applicable to the domain of 

natural language categories and test it in two categories: 

fruits and birds. 
 

The Varying Abstraction Model 
The VAM starts from the assumption that the prototype 

and exemplar representation are two extremes on a 

continuum ranging from maximal abstraction (prototype) to 

minimal abstraction (exemplar) and furthermore states that 

besides these two extremes also intermediate representations 

on this continuum should be considered as valuable 

category representations. These intermediate category 

representations correspond to representations in which some 

exemplars are merged to form a set of prototypes and where 

other exemplars can be represented individually.  

The category representations of the VAM are formed by 

subprototypes. To define subprototypes, VAM uses a 

multidimensional space to represent the exemplars of a 

category. Subprototypes are formed by dividing the points, 

that make up a category in the MDS space, in clusters and 

by averaging the coordinates of the points that were 

clustered together.  

The more subprototypes that make up a representation  

the less abstract the representation is. The least abstract 

representation of the VAM, is the exemplar representation 

for which no exemplars are merged together. If all the 

exemplars are merged in one cluster the obtained 

representation is the most abstract representation of the 

VAM namely, the prototype representation and a 

representation with two subprototypes is, for example, 

slightly less abstract than a prototype representation but still 

more abstract than an exemplar representation.  

Given a category representation, the VAM uses the 

processes of the well-known Generalized Context Model 

(GCM) of Nosofsky (1984) to determine the category 

decisions a subject makes for a particular stimulus. The 

VAM derives, in the same way as the GCM, similarities 

from the MDS space and uses, like the GCM, the Luce 

choice rule to derive category decisions from these 

similarities. The only difference is that the VAM contains 

not only the exemplar representation but also the prototype 
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and all the possible intermediate representations lying 

between the prototype and exemplar representation. 

Vanpaemel and Storms (2008,2010) fitted the VAM to 

category decisions made for artificial categories and showed 

that an intermediate representation provided a better fit to 

the data in some of the artificial categories they studied, 

suggesting that these intermediate category representations 

are valuable category representations for artificial 

categories.  

 

Varying abstraction in natural language 
categories 

When applying the VAM to the domain of natural language 

concepts, two considerations are in place. First, whereas in 

category learning experiments with artificial stimuli the 

dependent variable typically is a categorization decision, 

this variable seems rather awkward for semantic concept 

research since people are generally in good agreement of the 

exemplars that belong to a particular category and those that 

do not. Category decisions are, therefore, not the primary 

variable studied in natural language categories. Researchers 

investigating natural language categories usually use 

typicality as a dependent variable in their studies. Typicality 

is a measure of how good an exemplar is an example of a 

category. Typicality has been used extensively in the studies 

about the category representations of natural language 

categories and is known to predict performance in a variety 

of cognitive tasks (for a review see Hampton, 1993).  

In order to obtain typicality predictions for each exemplar 

from the representations of the VAM model we calculate the 

similarity of the exemplars to the category, which in case of 

the VAM corresponds to summing the similarity of the 

exemplar to all the subprototypes that make up the category. 

Second, everyday concepts have an extension that greatly 

outnumbers the largest artificial categories generally 

studied. This greatly increases the complexity of studying 

varying abstraction in these categories. There is no a priori 

restriction in the VAM in the way that exemplars of a 

category are merged into subprototypes. This means that in 

a category with a extensive number of exemplars the 

number of possible category representations quickly 

becomes untenable. A category with 30 exemplars for 

example yields 8.4675 10
23

 different category 

representations. One way to solve this issue is to assume 

that some category representations are more plausible than 

others. It is for example much more likely that similar 

members of a category will be clustered together in a 

category representation while dissimilar members will be 

kept separate. This idea is elegantly captured by applying k-

means clustering, in which similar members are assigned to 

the same cluster and dissimilar members are kept separate 

from each other. By using k-means clustering we were able 

to select a single category representation for every number 

of subprototypes.    

Data 
In our study we investigated the natural language categories 

fruits and birds with respectively 44 and 41 exemplars. To 

construct an MDS space for each category we gathered 

pairwise similarity ratings for each category by asking four 

subjects to rate the similarity between each pair of 

exemplars on a scale from 1 (not at all similar) to 9 (very 

similar). Typicality ratings for each exemplar were obtained 

by asking subjects to rate the typicality of the exemplars on 

a scale from 1 (not at all typical for the category) to 20 (very 

typical for the category). 

 

Results 

For each of the categories, we optimized the correlation 

between observed and model-based typicality scores for 

each representation at each level of abstraction separately. 

This results in 44 model fits for the category fruits and 41 

model fits for the category birds.  

The results of the model analyses will be discussed in the 

light of earlier findings.  

 

References 
Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro,  

D. J. (2007). Unifying rational models of 

categorization via the hierarchical Dirichlet 

process. In D. S. McNamara & J.  G. Traffon 

(Eds.), Proceedings of the 29th Annual Conference 
of the Cognitive Science Society (pp. 323-328). 

MahWah, NJ: Erlbaum.  

Hampton, J. A. (1993). Prototype models of concept 

  representation. In I. Van Mechelen, J. A. Hampton,  

 R. S. Michalski, & P. Theuns (Eds.), Categories  

 and concepts: Theoretical views and inductive data  

 analysis (pp. 67-95). London: Academic Press. 

Love, B. C., Medin, D.L., & Gureckis, T. M. (2004). 

SUSTAIN:A network model of category learning. 

Psychological Review, 111, 309-332.  

Malt, B.C., & Smith, E.E. (1984). Correlated properties in 

 natural categories. Journal of Verbal Learning and 
 Verbal Behaviour, 23, 250-269. 

Minda, J.P., & Smith, J.D. (2001). Prototypes in category 

 learning: The effects of category size, category  

structure, and stimulus complexity. Journal of  
Experimental Psychology: Learning, Memory, &  
Cognition, 27, 775-799. 

Nosofsky, R.M. (1984). Choice, similarity, and the context  

theory of classification. Journal of Experimental 
 Psychology: Learning, Memory, & Cognition, 

 10,104-114. 
Rosseel, Y. (2002). Mixture models of categorization. 

 Journal of Mathematical Psychology, 46, 178-210. 

Vanpaemel, W. & Storms, G. (2008). In search of 

abstraction: the varying abstraction model of 

categorization. Psychonomic Bulletin and Review, 

15, 732-749. 

Vanpaemel, W. & Storms, G. (2010). Abstraction and  

 model evaluation in category learning. Behavior  
 Research Methods, 42 , 421-437. 

 

258



Semantic Cognition: A Re-examination of the Recurrent Network “Hub” Model
Olivia Guest (O.Guest@bbk.ac.uk) and Richard P. Cooper (R.Cooper@bbk.ac.uk)

Department of Psychological Sciences, Birkbeck, University of London
Malet Street, London WC1E 7HX, UK

Abstract
This paper explores a model of “semantic cognition” first de-
scribed in Rogers et al. (2004). This model was shown to re-
produce the behaviour of neurological patients who perform
poorly on a variety of tests of semantic knowledge; thus pur-
porting to provide a comprehensive explanation for semantic
deficits as found in patients with semantic dementia and, as ex-
tended in Lambon Ralph, Lowe, and Rogers (2007), individu-
als with herpes simplex virus encephalitis. Therefore, not only
does the model emulate these semantic impairments, it also
underpins a theoretical account of such memory disturbances.
We report preliminary results arising from an attempted reim-
plementation of the Rogers et al. model. Specifically, while we
were able to successfully reimplement the fully-functioning
model and recreate “normal” behaviour, our attempts to repli-
cate the behaviour of semantically impaired patients by lesion-
ing the model were mixed. Our results suggest that while se-
mantic impairments reminiscent of patients may arise when
the Rogers et al. model is lesioned, such impairments are not a
necessary consequence of the model. We discuss the implica-
tions of these apparently negative results for the Rogers et al.
account of semantic cognition.
Keywords: semantic memory model; semantic dementia;
backpropagation through time.

Introduction
Several connectionist models of “semantic cognition” have
been developed. The goal of such models is to reproduce
results obtained from testing both healthy and semantically
compromised individuals on tests held to tap semantic knowl-
edge. This is accomplished by first teaching the model to
function like a healthy semantic system and then by “damag-
ing” the model in a way that parallels the lesions seen in pa-
tients. Typically, models implement a theoretical framework
that aims to explain the semantic system in both a normal
and degenerate state, and evidence in support of the frame-
work is adduced by appealing to the behaviour of the fully-
functioning and lesioned model.

A complete understanding of semantic deficits, and of se-
mantic memory in general, has not yet been reached. How-
ever sophisticated attempts to account for the deficits of some
of the patient populations have been made, such as the Rogers
et al. (2004) model. This model proposes that a central
amodal semantic “hub” is reciprocally linked to modality-
specific “spokes”, which themselves extend into so-called
modal pathways. This connectivity allows fully grounded
perceptual input to give rise to amodal abstract concepts. In
other words, the hub itself creates semantic representations
via its recurrent connections to sensory regions of the brain.

The hub model developed by Rogers et al. (2004), and then
extended in Lambon Ralph et al. (2007), is one of the most
complete models of human semantic deficits, boasting both
an account of semantic dementia, a global semantic mem-
ory disorder, and herpes simplex virus encephalitis, a cause

of intra-semantic deficits. This paper reports results derived
from an attempted reimplementation of the hub model, per-
formed initially as a step towards extending the model and
underlying theoretical framework to provide an account for
additional semantic disorders. During the process of explor-
ing this model, it became apparent that some of the results re-
ported in Rogers et al., obtained from modelling clinical tests
of semantic knowledge, were not robust. That is, the Rogers
et al. results are not a necessary consequence of the model
as described. This suggests that the computational-level de-
scription of the human semantic system offered by Rogers et
al. is under-specified.

Semantic Cognition
The semantic memory system refers to a part of human long
term memory consisting of a collection of abstract facts about
the world. Semantic knowledge underpins linguistic mean-
ing, providing a substrate for reasoning and inference, for cat-
egorisation, and for the creation of prototypes or exemplars.
It intuitively appears that semantic memory is an abstraction
or generalisation over a set of experiences collected gradu-
ally over time and organised hierarchically, as first proposed
by Collins and Quillian (1969).

Semantic cognition pertains to the process by which a non-
or pre-semantic percept (e.g., a drawing of a dog, or the word
“dog”) gives rise to a collection of related semantic memories
(e.g., dogs are fury, and have four legs) that endow the percept
with meaning. The reflex-like recollection of this knowledge
produces a response related to the specific concept (e.g., iden-
tifying a line-drawing by saying: “dog”). Such a reaction is
only possible if the relationship between the purely percep-
tual stimulus and its meaning has already been instantiated
in the mind (e.g., an image of a dog is linked to the pho-
netics of the word “dog”). This definition implies semantic
cognition can be explored using tasks that require a correct
interpretation, and thus response, when probed with an ap-
propriate stimulus. Four such tasks are used by Rogers et al.
(2004) to assess both their participants’ and their model’s ap-
titude; these are: confrontation naming, where an appropriate
verbal name must be provided for a picture; word-to-picture
matching, where a linguistic label must be paired with its cor-
responding picture from a selection that includes distractors;
sorting, where a selection of words or pictures must be classi-
fied under hierarchical categories; and drawing, copying and
delayed copying, where three sketches must be created, the
first recreated purely from memory in response to a word, the
second by direct copy from a line-drawing, and the third from
memory a short time after the direct copying subtask.

Patients with dramatically low scores on such tests were
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first described by Warrington (1975). Her patients, who were
in their early sixties, were tested on many aspects of their
cognitive functioning in order to isolate their deficit as one
of pure semantics and not one of an intellectual, perceptual,
or linguistic nature. The set of behavioural symptoms found,
coupled with progressive bilateral neurodegeneration of the
anterior temporal lobes, are characteristic of a disorder that
has come to be known as semantic dementia (SD), a variant of
frontotemporal dementia. As seen in Warrington’s study and
in the many more that followed, SD causes a severe impair-
ment of semantic knowledge, with patients performing better
when tested on familiar or typical items as opposed to novel
or exceptional ones.

The degenerative nature of SD appears to cause patients’
semantic skills to disappear in a process of akin to the reverse
of learning. This, along with the characteristics of other se-
mantic disorders, hints at some form of functionally distinct
hierarchical system in which structural damage is intrinsically
linked with, and gives rise to, functional deficiencies.

The Hub Model
Overview
A central claim of the hub model of Rogers et al. (2004) is that
the interactions of attractors, which develop through learning
to represent amodal concepts within semantic space, can ac-
count for both healthy and deficient semantic cognition. At-
tractors are stable network states that emerge following train-
ing if recurrent connectivity exists within a connectionist net-
work. When activation is allowed to propagate throughout
the trained network in a cyclic fashion, the network’s state
(as represented by the set of hidden and visible unit states)
will converge to one such stable configuration. These stable
network states exercise attractive power over a set of neigh-
bouring network states, collectively known as their basin of
attractor, such that if the network is in any of these “nearby”
states it will ultimately settle to the attractor itself. These
properties, according to Rogers et al., are also found in se-
mantic memory.

To evaluate their framework Rogers et al. (2004) develop
a recurrent connectionist network model. A set of stimuli is
created based on statistically analysed features of common
percepts (McRae & Cree, 2002), which the model is taught
to auto-associate. Post-training, the model scores on tests of
semantic cognition in accordance with healthy participants.
After lesioning, the impaired model exhibits deficits compa-
rable to those of SD and HSVE patients. Thus, Rogers et al.
conclude that their architecture captures some level of the in-
ternal mechanisms and sophistication of the human semantic
system.

Structure and Processing in the Hub Model
The recurrent connectionist network of Rogers et al. (2004)
consists of one layer of 215 visible units and one layer of 64
hidden units. The latter are fully connected both to them-
selves and to the visible units, which are divided into three

in/output pools each consisting of: 40 name units, 64 visual
feature units, and 111 verbal (61 perceptual, 32 functional,
and 18 encyclopaedic) descriptor units. All units have real-
valued time-varying activations with a range of [0,1] and a
bias set to −2. The hidden units, through learning, come to
represent a kind of amodal semantics associated with feature
patterns represented at the visible units.

As discussed above, the stimuli on which the network is
trained and tested are binary patterns with co-variance that
reflects statistical properties of real-world concepts. These
are directly applied to the name, verbal, and visual units.
Name sub-patterns are a set of binary digits, of which only
one unit may be active per pattern, i.e., they are defined or-
thogonally. Rogers et al. (2004) argue that this labelling strat-
egy parallels natural language in as much as, for example, the
word “robin” does not in itself carry any information about
the bird to which it refers. In contrast, the visual and ver-
bal sub-patterns represent perceptual and linguistic informa-
tion, and therefore must conform to predefined prototypes.
Visual properties and verbal descriptors represent statements
like “has a red breast”, “can fly”, and facts such as “is a bird”
and “is living”.

To produce a response given a sub-pattern the network ef-
fectively performs pattern completion. It propagates activa-
tions until it reaches a stable state in which hidden unit states
do not change on successive cycles. Once the trained network
has settled, its semantic state conforms to the real-valued pat-
tern of an implicitly learned attractor, an internal configura-
tion that is reachable due to the recurrent connectivity of the
hidden units. This in turn activates the output units, thus com-
pleting the input pattern.

Training Strategy
Pattern Set The set of patterns used by Rogers et al. (2004)
to train the hub model has some very particular properties.
Specifically, it contains some patterns in which visual and
verbal sub-patterns are mapped onto the same name. The
sharing of name sub-patterns is held to be analogous to the
way a chicken, a robin, and a sparrow can all be called
birds, both individually and collectively. What this amounts
to here is, for example, 3 nondescript birds sharing the su-
perordinate level name “BIRD”; forming a unidirectional 3-
to-1 mapping from the three pairs of visual and verbal sub-
patterns to a single name label. Conversely, if given “BIRD”
their network “learned to generate visual and verbal proper-
ties common to most [birds]” (Rogers et al., 2004, p. 214).
Based on the statistical properties of visual and verbal co-
occurrences within various categories reported by McRae and
Cree (2002), Rogers et al. constructed a set of 48 patterns,
with 8 patterns for each of 6 categories (mammals, birds,
tools, vehicles, household objects and fruits, although only
the first four have associated category-level exemplars), and
40 unique names.

In order to replicate the hub model, we constructed a sta-
tistically equivalent set of patterns, based on the probabilistic
prototype for pattern creation given in fig. 3 of Rogers et al.
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(2004). A comparison of the resulting dendrogram showing
pattern similarity with that of fig. 2 of Rogers et al. confirms
the two pattern sets are equivalent in structure.

Learning Algorithm The learning algorithm used by the
original network is described only as “a variant of the back-
propagation learning algorithm suited to learning in a recur-
rent network” (Rogers et al., 2004, p. 208). J. L. McClel-
land (personal communication, 2011) confirmed that this was
a variant of backpropagation through time (BPTT), with the
network “unrolled” (allowed to run) for 28 time-steps (Rogers
et al., 2004, p. 215).

In the work reported here we adopt classic epochwise
BPTT (Williams & Zipser, 1995, p. 447, eq. 18-19), with
a learning rate of 0.001 and with time-averaging applied to
post-synaptic unit states (McClelland, 2011). Time-averaging
is a statistical method of noise reduction that may be applied
over any time-varying property of a dynamic system. It has
the ability to increase the signal-to-noise ratio and, in this
case, results in a decrease in training epochs and for more
complex mappings to be internalised, given the training de-
tails in Rogers et al. (2004)

Healthy Behaviour of Hub Model
After training for 15,000 cycles, our replication of the Rogers
et al. (2004) network robustly maps names to visual and ver-
bal sub-patterns. Thus, given a name such as “chicken”, the
visual and verbal units of the network take on patterns (once
the network has settled) that correspond to the visual and ver-
bal features associated with “chicken”. Similarly, when given
the visual features of that pattern, the other visible units take
on values associated with the name and verbal features of the
pattern. More critically, when given a superordinate name the
sets of units corresponding to visual and verbal sub-patterns
take on states that amount to the weighted average of the three
nondescript patterns that share that same name. Conversely,
when provided with the visual or verbal descriptors the net-
work activates the general-level name. This demonstrates that
the network has created stereotypes or archetypes for each
category.

Semantic Tasks
Overview
We tested our network on each of the four tasks described
in the introduction. In each case the method used to probe
the network consists of: keeping the relevant input constant
while running the network for 12 time-steps; then allowing
the network to settle without any externally applied input un-
til equilibrium is reached; and finally comparing the states of
the units in the pool currently of interest to those in the rel-
evant pattern. This is as described in Rogers et al. (2004).
Following training, our network functions in its healthy state
at the same general levels as Rogers et al., both in terms of
training error and on all four tasks. It is therefore appropriate
to consider the network’s behaviour following lesioning.
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Figure 1: Results of the confrontation naming task: each data
point represents the proportion of error for each type at a per-
centage of connections lesioned: from 0% to 90% in incre-
ments of 10%. (Compare with Rogers et al., 2004, fig. 6.)

Lesioning the Model
Rogers et al. (2004) lesioned the original hub model by in-
discriminately globally severing connections between units.
This zeroing of the weights is claimed to be a sufficient ana-
logue to the damage seen in the temporal lobes of SD pa-
tients. By removing randomly selected connections in in-
creasing percentages Rogers et al. maintain that the network
displays neurodegeneration-like behaviour reflecting the de-
cay in SD. This approach is mirrored in our replication, with
semantic testing performed on three of the four standard tests
described previously. Each lesion begins from a random se-
lection of weights and is then increased, as would occur over
time to an SD sufferer. For each task this is done 50 times at
10 levels of damage (i.e., from 0% to 90% of connections re-
moved); paralleling 50 SD patients tested at 10 stages of pro-
gressive degeneration. Once the network is lesioned, settling
becomes increasingly difficult and may result in dramatically
different responses given the same input; thus the all results
are based on sampling the current implementation 10 times
for each of the sub-patterns it is tested on.

Confrontation Naming
Recall that confrontation naming requires subjects to gener-
ate verbal labels (names) from visual input (pictures). Rogers
et al. (2004) report data on this task from 15 SD patients. At
the earlier stages of degeneration, omissions, when the partic-
ipant gives no answer, are relatively few but they increase dra-
matically as time goes by, until the only errors are omissions,
i.e., the individual is completely anomic. Superordinate er-
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rors, so called because the response is not the expected name
(e.g., “owl”), but something more general (e.g., “bird”), seem
to follow a similar trend to omission errors. However, at the
most severe stages of the disease, superordinate errors drop
off due to anomia. Semantic errors occur when the response
is from the same category as the line-drawing presented (e.g.,
“dog”, when the correct answer is “horse”); these errors are
low initially, then rise, and finally return to a low level (again
due to anomia). Cross-domain errors, where a response is
given from the opposing domain to that which the stimulus
belongs to (e.g., calling a “horse” a “car”), are almost never
documented in the SD sample.

The results of our replication of the confrontation naming
task are shown in fig. 1; however, the trends shown in the be-
haviour of the SD patients described above and the modelling
results of Rogers et al. (2004) are not shown here. In regards
to our model, the largest proportion of errors from 10% to
70% of weights lesioned are cross-domain errors. This means
that name units corresponding, for example, to artifacts are
activated when an animal is visually presented to the network
and vice versa. Omission errors are defined by Rogers et al.
to occur when the network fails to activate any name unit be-
yond a threshold of 0.5. Changing this threshold affects the
relations between the error types, but does not result in a bet-
ter fit to patient data. The greater the threshold the more er-
rors are classified as omissions, and thus the remaining three
kinds of naming error (semantic, cross-domain, and superor-
dinate) are fewer; the inverse also holds. In conclusion, the
reimplementation of the hub model on the naming task does
not recreate the error pattern seen in the patients.

Sorting Words and Pictures
This task requires the network to classify name and visual
sub-patterns into their respective categories and domains. In
fig. 2, a graph of the network’s performance at sorting at in-
creasing levels of lesioning is shown. The scores for the two
general levels of sorting (represented as solid lines), for words
and for pictures, follow a descent from correct to chance lev-
els. This is expected due to the architecture of the patterns:
there are two encyclopaedic units that represent the mutually
exclusive facts “is an animal” and “is an artifact”. In much
the same way, the network’s scores on the two specific sort-
ing tasks also appear to deteriorate to chance level, this time
as there are 5 categories to choose from chance is at 0.2 (as in
Rogers et al., 2004, fruit is excluded in the testing phase).

These results are relatively similar to those produced by
the 12 patients tested by Rogers et al. (2004), however, there
appears to be an important difference: the SD patients retain
the ability to classify pictures into their respective domains
well into their illness. Thus, while sorting into lower level
categories is a skill that is largely lost, the two main semantic
domains remain intact in SD; this also can be seen in fig. 8 of
Rogers et al. While the original hub model appears to capture
this dissociation, the current implementation does not. Ar-
guably, the sorting of pictures is slightly more preserved than
that of words, in fig. 2, but the SD patients are all at ceiling.
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Figure 2: Results of the sorting task on words and on pictures.
Error bars indicate one standard error (SE) about the mean.
(Compare with Rogers et al., 2004, fig. 8.)

Again, the model is unable to fully capture this pattern of SD
patient performance.

Drawing and Delayed Copying
This semantic test involves creating drawings given a name
and copies based on visual sub-patterns. The results obtained
from running the drawing and delayed copying semantic test
on the reimplementation (see fig. 3) appear to qualitatively
match those in fig. 11 of Rogers et al. (2004). Both SD
patients and the model show an increase in the errors they
make when drawing and copying. Also the difference be-
tween drawing and delayed copying, that the former is more
difficult than the latter per patient, is reflected in both the orig-
inal model and our reimplementation.

However, when the results are further analysed, as in figs.
4 and 5, a different picture emerges. Rogers et al. (2004) ar-
gue that there is an underlying distinction between the scores
in each domain for two kinds of error: an omission, a salient
feature that should have been drawn but is left out by the par-
ticipant (e.g., forgetting to depict a swan with wings); and an
intrusion, a property that perhaps holds for most exemplars
but is incorrectly included in the drawing (e.g., adding four
legs to a swan). In the patients’ drawings there are signifi-
cantly more intrusions for animals than for artifacts (Rogers
et al., 2004, p. 227), but no such effect for omissions. In
fact, the original hub model only partially reproduces these
effects, correctly showing more intrusions for animals but in-
correctly showing more omissions for artifacts (see figs. 12-
13 in Rogers et al., 2004). In our reimplementation of the
hub model, we found that omission errors (both when copy-
ing and drawing) are higher in artifacts over animals (see
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Figure 3: Mean overall feature errors per drawing for the
drawing and delayed copying task for each lesioning level.
Error bars not included because SE < 0.002. (Compare with
Rogers et al., 2004, fig. 11.)
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Figure 4: Proportion of errors of omission per drawing for
each domain for the drawing and delayed copying task. SE <
0.003. (Compare with Rogers et al., 2004, fig. 12.)
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Figure 5: Proportion of intrusion errors per drawing for each
domain in the drawing and delayed copying task. SE < 0.105.
(Compare with Rogers et al., 2004, fig. 13.)

fig. 4), though with increased lesioning severity omission er-
rors seem to occur equally in both domains (in contrast to
patients, who show no effect; while the original hub model
shows the same effect as our model). The rate of intrusion er-
rors by domain reflects neither the patient data nor that of the
original hub implementation, with more intrusion errors for
artifacts than animals over most of the range of lesion sever-
ity (see fig. 5).

Discussion
Rogers et al. (2004) presented a model of the semantic system
which they argued could account, when lesioned, for many of
the deficits associated with semantic dementia. In support of
this argument they report a number of simulations. We have
attempted to replicate these simulations, but with mixed suc-
cess. Thus, while we were able to recreate the basic learning
performance of the model, we were unable to fully reproduce
the patterns seen in the lesion studies.

Rogers et al. (2004) parallel the emergence of attractors
with the learning of concepts, and propose that such knowl-
edge is amodal: the somato-sensory input from the vari-
ous modality-specific pathways is encapsulated by the hid-
den units, which thus form semantic representations. This
basic theoretical notion is successfully captured by the hub
model. For the case of the deficits seen in their SD patients,
Rogers et al. appeal to the attractor basins’ properties post-
lesioning (zeroing of connection weights). They claim that
animals are a tight cluster of similar concepts, thus consist-
ing of many neighbouring attractors, while attractors for arti-
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facts are distal (to the average central point of their domain),
which means they form distinct conceptual loci in semantic
space, and therefore their attractors are further apart. When
connections are zeroed the attractor basins for living creatures
are held to decay to form a larger super-attractor, which has
a combined attractive power; meaning categorisation of in-
put as an animal is possible, but access to individual features
might be lost. Conversely, the attractor basins of non-living
things do not merge; instead they maintain their individual at-
tractors, albeit with distorted basins, allowing slightly better
performance in this domain. The evidence put forward for the
this phenomenon is the series of graphs generated from test-
ing the Rogers et al. model. Yet the behaviour reported in the
original hub model is not found in the network trained here.
Why might this be so?

One possibility is that there is an error in our replication.
We do not believe this to be the case, particularly given that
we have simulated the basic learning performance of the net-
work. A second is that the difference in results relates to
some difference between, for example, the learning algorithm
as implemented here and as implemented by Rogers et al.
(2004). This is certainly possible, given that the algorithm is
not fully described in the original publication. A third is that
the attractors formed by the model are dependent upon the
initial random weights of connections prior to learning or the
order of exemplars in the training set. However, if either of
these latter two situations is the case then it calls into question
the theoretical explanation offered by Rogers et al. for their
results.

An important aspect of this modelling strategy, that is re-
lated to the formation of attractors, is the claimed distribution
of pre-semantic (perceptual and functional) features: animals
and plants are closely perceptually related to each other (due
to the fact they have evolved from a common ancestor and
thus are composed of generally similar body parts); whereas
tools, vehicles, and other inanimate objects are not similar to
each other (as they have been created by humans to solve dif-
ferent problems, so by definition artifacts are distinct from
both living things and from each other). Without training
sets that encode patterns in this specific way, no connection-
ist model would be capable of producing a good fit to pa-
tient data. On this argument, the features, whose extraction
from the environment itself is not modelled, play a pivotal
role in giving rise to the semantic system’s structure, and this
is the case regardless of the network topology (be it recur-
rent or feedforward) or the learning algorithm. This is to say
that, to a large extent, input to the semantic system should
drive its organisation and dictate the way semantic knowl-
edge will decay. Despite this fact, the patterns used here are
unable to affect the internal structure of the reimplemented
hub model in the way needed when the network is damaged.
This means that the qualitative and consistent effects required
post-lesioning are in fact not guaranteed merely by the struc-
ture of the training set. It appears that lesioning the recurrent
network model by severing connections does not necessarily

result in the kind of well-behaved breakdown and generalisa-
tion of attractors as supposed by Rogers et al.

To summarise, the differences between the models appear
to be due to the results obtained in Rogers et al. (2004) de-
pending on some unarticulated implementation detail. If this
is so, then the required behaviour is not a necessary conse-
quence of the model − the original model is underspecified
(perhaps our implementation of the BPTT algorithm yields
attractors with different properties to the implementation of
Rogers et al.). Alternatively, it may be that the behaviour
of the network when damaged depends upon, for example,
some apparently irrelevant factor such as the random initial-
isation of the connection weights. Whatever the underlying
cause of the discrepancy, further investigation is needed to
discover exactly why the results obtained here differ from
most of those detailed in Rogers et al. If their results are in
fact reproducible, but require a very specific set-up, this sug-
gests that the model as previously reported is insufficiently
specified. Conversely, if the success of the original model is
due to an artefact or randomly occurring noise then this indi-
cates that in models of this type it is critical to present results
from multiple trained models, rather than from just one, to
establish whether behaviours are a necessary consequence of
the model or merely one of several possible outcomes.
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Abstract 
Declarative memory is a central resource for reasoning 
processes. In line with the ACT-R theory, we assume that 
declarative memory is the basis for causal learning. Based on 
this assumption we conducted an experiment, showing that 
subjects’ confidence in causal predictions decreased if their 
causal knowledge is discredited. Moreover, confidence 
decreased not only for the causal knowledge that was 
discredited, but also for knowledge that was not at all 
manipulated. Additional to the experimental results, we 
present an ACT-R model that perfectly fits the data and 
provides an explanation for the empirical findings. 
Contextual change turns out to sufficiently explain the 
empirical data and the principle of our ACT-R model. 

Keywords: Contextual change, activation, causal 
knowledge, inference. 

Introduction 
The central role of memory has been investigated in a 
widespread range of tasks. There is much evidence 
showing that especially declarative memory accounts for 
human performance usually seen as smart or intelligent 
behavior (e.g. Anderson, 2007). We assume that causal 
learning and causal reasoning is largely based on 
declarative memory as well. This assumption is in line with 
recent research on reasoning  (Mehlhorn, Taatgen, Lebiere 
& Krems, 2011) and the application of heuristics (e.g. 
Schooler & Hertwig, 2005). This research was and still is 
based on the ACT-R theory (Anderson,Bothell, Byrne, 
Douglass, Lebiere & Qin, 2004). In ACT-R human 
declarative memory is responsible for the storage of factual 
information. This information is stored in chunks. These 
chunks become available for retrieval, based on their 
activation. The higher the activation, the higher is the 
probability of retrieval and the faster is the retrieval of a 
chunk. This is the central functional principle of 
declarative memory in ACT-R. The activation of a chunk 
reflects both, the history of its usage as well as its 
relevance for the current context. Both aspects of activation 
are relevant for the explanation of human performance.  
Decision-making under uncertainty is an example where 
human performance relies on declarative memory (Tversky 
& Kahnemann, 1974; Hertwig, Herzog, Schooler & 
Reimer, 2008, Gigerenzer & Gaismeier, 2011). Human 
behavior in such situations can be explained by retrieving 
instances of memory. However, peoples’ performance 
cannot be explained by the mere retrieval. Instead in 
literature principles are proposed, which are related to the 
retrieval. First, in the availability heuristic (Tversky & 

Kahnemann, 1973) subjects evaluate how available or how 
accessible (Kahnemann, 2003) a memory chunk is. Second, 
Schooler and Hertwig (2005) propose that people evaluate 
the difference in retrieval times for alternatives. This 
research assumes those peoples’ confidences ratings in 
decision-making under uncertainty dates back on these by-
products of the retrieval process. Also for causal learning, 
Drewitz and Thüring (2009) showed that peoples empirical 
data can be explained based on the interpretation of 
retrieval times. As ACT-R frames retrieval times as 
dependent on activation it can be concluded that 
confidence of ratings are directly related to the activation 
of memory elements. But this claim holds only for 
performances and experiences solely based on memory 
retrieval. To conclude, from the ACT-R point of view these 
performance and confidence ratings are explained by 
activation.  The model results presented in this paper give 
evidence to this position. 

Sufficiency and Necessity in Causality 
It has been proposed, that human causal learning relies on 
cues to causality (Einhorn & Hogard, 1986). One of these 
cues is the co-variation between events, which people can 
obtain from contingency data. Theoretical approaches that 
emphasize the role of covariation assume that in causal 
learning and reasoning persons rely on frequencies of (co-) 
occurrence and (co-)absence of event. Figure 1 shows how 
this contingency information can be depicted for two 
events. The four cells represent the four possible pairings 
of two events (C and E). With respect to these two events, 
every observation can be assigned to one pairing and as 
such, to one cell of the contingency table. Moreover, every 
observation gives either positive or negative evidence to 
one of two aspects of causality: sufficiency and necessity. 
People are willing to attribute a causal relation between 
two events if both aspects are met. John Stuart Mill (1869) 
first made this claim.  
According to him, people don't acquire causal knowledge 
from the repeated observation that one event follows the 
other. Instead they take into consideration what happens if 
a putative cause does not occur. From this perspective, 
causes can be characterized in terms of sufficiency and 
necessity and both of these aspects have to be satisfied. 
And they are satisfied to the full extent, if a number of 
observations fall into cell a and d as well, but not in cells c 
or b. In other words, every observation that belongs to the 
event pairing of cell a gives positive evidence to the 
sufficiency of the putative cause C for E, the effect of 
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interest. Just as all observations that belong to the pairing 
of cell d give evidence to the necessity of C for E.  

 
Figure 1. 2x2 contingency table ('+' indicates presence,     

'-' indicates absence). 

Moreover, sufficiency and necessity are statistically 
independent of each other. Whereas the sufficiency of C for 
E depends on the frequencies in cells a and b, the necessity 
is determined by the frequencies in cells c and d (see 
Fig.1). Two different conditional probabilities capture 
these facts (see Fig. 1): the probability of the presence of E 
given the presence of C, P(E+/C+), and the probability of 
the presence of E given the absence of C, P(E+/C-). 
Positive evidence for one aspect (observations that fall 
either into cell a or d) can be understood as strengthening 
an aspect. Comparably, negative evidence (observations 
that fall either into cell b or c) weakens one of both aspects.  
Theories that emphasize the role of co-variation as cue to 
causality (for review see Perales and Shanks, 2007), 
describe how people integrate their knowledge about both 
aspects. That seems to be important especially when 
participants in a causal learning / reasoning task are 
requested to rate the strength of a causal relation. Of 
course, people do integrative judgments like that also in 
real-world tasks. But very often they for example make 
predictions based on data. In turn, as soon as people can 
rely on e.g. C+, their prediction should be related only to 
sufficiency of  C for E (cells a and b). In such a case, there 
is no need to integrate the information about the opposite 
i.e. C-, which is captured by the frequencies in cells c and 
d. This is also true the other way around. To sum up, for 
the predictions based on given data, there is no need to 
integrate information that would hold for the absence of 
that data. Consequently, given the independence of both 
aspects, neither positive nor negative evidence related to 
one of the aspects should affect inferences related to the 
complementary aspect. Standard theories (see Perales and 
Shanks, 2007) do not propose such an effect.  In contrast, 
we claim that such an effect is there. The underlying 
assumption is, that people do not render sufficiency and 
necessity as independent as they are from a mathematical 
point of view. Moreover, we assume, that they treat them 
as belonging together. And in fact, as complementary parts 
they belong together in terms of the concept of causality. 
With respect to observations people make in the world, 
both parts are summing up to a bigger whole – our 
knowledge of causal relations. But if people treat them as 

parts, which shape together as a whole, it can be assumed 
that if one part fails, people do not longer trust in the other 
part.  In turn our hypothesis states that the impact of 
negative evidence for one aspect of causality is twofold. 
First of all it weakens the aspect that was discredited by 
negative evidence. As a result peoples confidence for 
predictions related to that aspect would drop down. 
Thüring, Drewitz & Urbas (2006) showed this effect. 
Second, the complementary aspect, i.e. the aspect that is 
not discredited will be devaluated. That means peoples 
confidence for predictions to that aspect will decrease as 
well. This would be in contrast to the fact that sufficiency 
and necessity are independent of each other. We tested this 
hypothesis in our Experiment. 

Basic Causal Models 
With respect to the concept of causality building upon 
sufficiency and necessity Thüring & Jungermann (1992) 
proposed that people's representation of causal knowledge 
could be described in terms of causal models. There are 
different basic causal models, which can be used to 
represent basic or if combined, more complex causal 
relations.   
The building blocks of all these models are conditional 
rules. For every causal relation the aspect of sufficiency as 
well as the aspect of necessity is captured by one or more 
of these rules. In Table 1 the sets of rules for two basic 
causal models are shown. These are the models that are 
addressed in our experiment: the model of unique causation 
and the model of compound causation.  
 

Table 1. Basic causal models. 
 

model of unique causation model of compound causation 

R1: C+ ! E+ R3:   C+ and X+ ! E+ 
R2: C-  ! E- R2:                 C- ! E- 

 R4:                 X- ! E- 

Experiment 
In our study, participants had to acquire causal knowledge 
about a simulated technical system based on inductive 
learning. Over the course of the experiment, positive as 
well as negative evidence was presented to investigate the 
consequences of discrediting and devaluation. 

Method 
Participants. Fifteen graduate and undergraduate students 
at the Berlin Institute of Technology were recruited for the 
experiment. All of them were paid for their participation. 
Material. Figure 2 shows the schematic screen layout of 
the simulated system that was presented to the participants. 
It was introduced as an electrical system of a power plant. 
The system was built up from four subsystems that were 
responsible for two output systems. Information about the 
state of these subsystems was displayed on four dials (for 
top boxes in Fig.2). Each dial represented the state of one 

266



subsystem, which was either DOWN (C+) or UP (C-) or 
UNKNOWN because its dial was switched off. In the first 
of two blocks only one subsystem was causally relevant 
and its state served as cause (C) for the outcome (either E+ 
or E-) of the relevant output system (E). In the second 
block the same subsystems (C) together with another 
subsystem (X) was causally relevant. During the first block 
X was always set to UNKNOWN.  The other two 
subsystems were irrelevant for the task. In both blocks they 
were used in some trials as distracters to give the system a 
more diversified appearance. 
In the lower half of the screen, the displays for the output 
systems were shown. In some of the trials participants had 
to predict the outcome of only one of them and in the 
remaining trials they had to predict the outcome of both. If 
only the outcome of one system had to be predicted the 
display of the other output system wasn't shown. Whereas 
one output system (E) was relevant for the experiment the 
other was used to make the task more realistic. Below the 
display of each output system two buttons were shown for 
the prediction of the outcome (depicted as '+' and '-' in Fig. 
2.) One button served the prediction of MALFUNCTION 
(E+) and the other one the prediction of OK (E-). Clicking 
on one of them was necessary to make the prediction. 
Finally, below these buttons a slider was presented (see 
Fig. 2) that could be adjusted to rate the confidence of the 
predictions. The lowest confidence (0%) was set in the 
middle of the slider, between the two maxima (100%), 
each related to one of the two possible outcomes. 

 
 

Figure 2. Screen layout (schematic) as used in the 
experiment for prediction and presentation of feedback. 

 
Procedure. The participants’ task was to predict the 
outcomes (E+ or E-) of the output system(s). To solve this 
task, they had to understand the underlying causal relation 
between the subsystems and the output systems.  

In each trial, they were shown the layout of the device as 
presented in Figure 2. First, subjects had to check the 
operation of the subsystems. Based on this information, 
they were requested to predict the state of the output 
system(s) by clicking on the respective buttons (OK or 
MALFUNCTION ). Finally, they rated their confidence for 

each prediction by adjusting the respective slider(s). After 
participants finished their prediction and confidence rating, 
they had to click on a 'send' button and subsequently 
received feedback that showed the actual outcome(s). 

The experiment consisted of two blocks, each of them 
with a learning phase and a test phase as shown in Figure 
3. The blocks differed in the complexity of the underlying 
causal relations and the number of trials in the learning 
phase. During the learning phase positive evidence for one 
type of causal relation was provided. In the learning phase 
of the first block participants received information that 
enabled them to acquire a model of unique causation with 
the two rules R1 and R2 (see Tab. 1). In the learning phase 
of the second block subjects received information, which 
supported the acquisition of the two new rules R3 and R4 
(see Tab.1). Thus subjects could learn a new model, the 
model of compound causation (see Tab.1).  

Additionally, we presented distracter trials with 
information about the irrelevant subsystems and trials were 
participants had to predict the outcome of the second 
output system that was irrelevant for the test of the 
hypothesis. Relevant for the test of the hypothesis were the 
pre-measure and the post measure in each block. For both 
blocks, the last trial of the learning phase served as pre-
measure (see Fig. 3). In the respective trial in block one, 
people had to make a prediction based on C- and received 
as feedback E-. In the respective trial for block two we 
presented C+ and X+ and gave people after they made their 
prediction the feedback E+. These pre-measure trials 
served ass positive evidence too. That's why for both 
blocks in Figure 3, the number of one cell increases from 
the learning to the test phase. 

Subsequently to the learning phase, the test phase started. 
In four of these trials, we presented negative evidence (see 
Fig. 3) for one aspect of causality. The negative evidence 
was given with respect to the causal relations that were 
supported before. You can see the number of presentations 
of negative evidence in the black boxes in Figure 3.  In 
block one, we showed four times C+, E- and in block two 
we presented two times C-, E+ and two times X-, E+ 
(together four times negative evidence).   Again, distracter 
trials and trials focusing on the irrelevant output system 
were presented. In the last trial of the test phase, the post-
measure was recorded (see Fig.3). To accomplish this, the 
same data were given as in the pre-measure trial. For block 
one that was C- and for block two C+ and X+. 
 
Independent and dependent variables. To investigate the 
strengthening of rules, the amount of positive evidence 
ranged from one to sixteen trials (see Fig. 3, positive 
evidence) for the respective rules (R1, R2, R3 and R4). To 
test the impact of discrediting, the amount of negative 
evidence ranged from one trial to four trials (see Fig.3, 
negative evidence) for the respective rules (R1, R2 & R4).  

The factor measurement with the factor levels pre and 
post served the investigation of devaluation as described in 
the procedure (see Fig.3). Throughout the experiment, 
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confidence ratings of inferences predicting the states of the 
relevant output system were used as dependent variable. 

 

Figure 3. Experimental procedure (schematic). 
Contingency tables for both blocks display frequencies of 

positive evidence (grey) for the learning phase and 
negative evidence (black) for the discrediting phase. The 

last presentation of positive evidence served as pre-
measure. The contingency tables on the right display 

summed frequencies for positive and negative evidence. 

Results 
For statistical analysis, we computed three ANOVAs with 
repeated measures, one for each effect. Additional to the 
significance of effects we report the effect size f after 
Cohen (1988). However, strengthening greatly affected 
subjects confidence ratings over the course of the learning 
phases, F(7,98)=11.47, p<0.01, f=0.91. Therefore, 
subjects’ confidence in their prediction of the state of the 
output system strongly increased over time. Additionally, 
we obtained an effect for rule, F(3,42)=7.46, p<0.01, 
f=0.73. Hence, it was easier for subjects to acquire basic 
rules (R1 & R2) compared to the more complex rules (R3 
& R4). 

For discrediting, we found a significant large main effect 
of negative evidence over time, F(1,14)=4.21, p=0.05, 
f=0.54. Hence, subjects showed lower confidence in their 
ratings about rules that were discredited. 

To investigate the effect of devaluating a rule, it seems 
necessary to highlight how we achieved the data for this 
computation. For all subjects R1 and R2 (in the first block) 
and R3 and R4 (in the second block) were strengthened. 
The last trial of R2 in the learning phase of block 1 and R3 
in the learnigg phase of block 2 served as pre-measure for 
the devaluation. However, only R1 was discredited in the 
first block and R2/R4 were discredited in the second block. 

If subjects’ confidence for the prediction of R2 in the first 
block (post-measure) and R3 in the second block (post-
measure) was lower after discrediting the other rules, 
devaluation took place. The ANOVA revealed a medium 
main effect of rule (F(1,28)=5.42, p=0.03, f=0.43) and a 
large main effect of measurement, F(1,28)=19.40, p<0.01, 
f=0.83). Therefore subjects’ confidence was lower for R2 
compared to R3. Additionally, devaluation lead to 
significantly lower confidence for participants’ confidence 
for both rules (R1 & R3) after R1, R2 and R4 were 
discredited. 

Model Description 
In order to examine, whether the empirical observed effect 
of devaluation could be explained based on declarative 
memory and the concept of activation, we set up a simple 
ACT-R model. Two central assumptions were made to 
specify the model. At fist, we assumed that the task could 
be processed solely based on instance retrieval.  
The second assumption we made was in contrast to the 
theoretical considerations, which guided the formation of 
the hypothesis of the devaluation effect. To model the 
effect found in the empirical data, we assumed that 
negative evidence, which per definition contradicts 
observations made beforehand, would be considered as a 
contextual change (see Block and Reed, 1978). 
Accordingly, people are aware of changes in the context 
internally (cognitive context) as well as externally (external 
context). Assuming that observations, which people make, 
and certain knowledge that they acquire accordingly, is 
related to a certain context would result in a change of 
availability of that knowledge if the context changes.  
Consequently, the behavior of the model can be explained 
based on contextual changes and instance retrieval, i.e. the 
standard ACT-R 6 activation equations:
 

                        (activation equation) 

Accordingly, the Activation (Ai) of a chunk i is defined by 
its base-level activation (Bi), the amount of activation that 
spreads out from a source (representation of the stimuli and 
the current context) and the partial matching component. 
Wj reflects the attentional weigthing allocated to every 
element j on the source of activation. Sji is the strength of 
the associative connections between these elements and the 
chunk i. P is the mismatch penalty and Mli is the similarity 
between the elements l specified for a request of retrieval 
from declarative memory and the respective elements of 
chunk i. The base-level Bi itself is defined as 

                           (base-level learning equation) 
 
where n is the number of presentations, t is the time that 
passed sine the jth presentation and d is the rate of decay. 
Last but not least the associative strength is defined as 

(associative strength equation) S ji = S − ln( fan j )
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where S is the maximum associative strength  and fanj the 
number of chunks in memory, the chunk j as an element on 
the source of activation is associated with, plus one for 
association with itself.  
Model Settings. Based on these equations the activation of 
that chunks was calculated, which would match the 
retrieval request in the trials of the relevant measures. 
Therefore we calculated the number of presentations (see 
base-level learning equation), assuming that there was one 
encoding of screen information as well as one declarative 
retrieval per trial. For simplicity reasons, the respective 
times (tj) were calculated based on the assumptions that all 
trials were processed in the same time. To determine the 
associative strength between the current context and the 
different memory chunks (representing different trials) we 
counted the number of distinct stimuli used in the 
experiment. The respective number of associative 
connections was assigned to each context and so the fan for 
each context was set.  
Since there is no default, one a single parameter, the 
mismatch penalty, was set to 0.5. Except this, all other 
parameters used (see equations), were set to their defaults 
prescribed by the ACT-R theory (cf. http://act-
r.psy.cmu.edu/).  
Subsequently, we transformed the resulting activation 
values (Ai) into values representing confidence 
(confidencei) using the following equation:  

  confidencei = ln(Ai) x SF     (transformation equation) 

The parameter SF is a scaling factor and was set to 100. 
The results produced by the model are shown together with 
the empirical data in Figure 4. Without adjusting any 
parameter the model produces an excellent fit to the 
empirical data (R2=1). The qualitative match between the 
model results and the human data is perfect. Quantitatively 
there is a clear deviation. But this deviation is of  same  for 
all conditions. 
 

 
 

Figure 4. Empirical data and model results. Error bars 
represent standard error. 

Discussion 
The present paper investigated two effects that influence 

causal learning, memory and contextual change. In 
particular, we looked at persons’ confidence ratings with 
respect to their predictions of certain outcomes after their 
causal knowledge was (a) strengthened and (b) discredited.  

In line with previous research (Thüring et al., 2006), we 
found that the presentation of positive evidence leads to 
higher confidence in subjects’ predictions of the state of 
the output system. Additionally, we replicated the effect of 
discrediting. Hence participants’ confidence in their 
prediction of the state of the output system decreased, 
when the rules they had learned were discredited. In 
contrast to these well-established effects, we demonstrated 
the effect of devaluation. Therefore, participants’ over-all 
confidence in their predictions of the system state 
decreased also when the rules they could use for prediction 
on given date were not discredited. This effect opposes the 
assumption that people treat sufficiency and necessity as 
independent as they are from a mathematical perspective. 
At least for the case of negative evidence the data support 
this position.  

Excluding the striking effect of devaluation, memory 
effects (strengthening and discrediting) on confidence in 
causal learning were proposed and modeled in ACT-R 
before (e.g. Drewitz & Thüring, 2009). Extending this 
research, the present ACT-R model accounts for the effect 
of devaluation as well. For both causal relations (unique 
and compound causation), model data perfectly fitted to 
subjects’ behavior in the experiment. It is important to note 
that this simple ACT-R model mimics empirical data about 
subjective confidences without any additional parameters. 
Hence the present data (and model) strongly support the 
theoretical claim we made at the beginning of this paper. 
There, we proposed that peoples’ confidences of ratings 
under uncertainty are directly related to the activation of 
memory elements. The results presented in this research 
undermine this claim at least for performances and 
experiences, which are solely based on memory retrieval. 

However, the presented ACT-R model does not only 
mimic the empirical data. Its working principle also 
provides an elegant theoretical way to explain the data. We 
used the concept of contextual change (Block, 1978) as 
basis for the ACT-R model. Contextual change means that 
with respect to their model or rule like causal knowledge 
people consider certain contexts. In our experiment (and 
model), subjects learned causal relations in each block. 
After a couple of trials, their rule-based knowledge about 
the functioning of the technical operating system was 
almost perfect. This phase of strengthening contained only 
positive evidence. Therefore subjects’ causal knowledge 
about the inner workings of the technical system was 
enhanced. In the ACT-R model we encoded this 
strengthening phase as the context in which subjects 
acquired and used their causal knowledge. However, each 
time this initial strengthening phase was followed by a 
short phase with negative evidence (discrediting phase). In 
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this phase participants questioned their causal knowledge 
and the confidence in their predictions decreased. Thus, in 
the experiment we changed the experimental stimuli from 
strengthening causal relations to discrediting the very 
same. Psychologically, this change might have appeared as 
a contextual change. Suddenly the working principle of the 
technical system changed. This change was not visible to 
the participants, except that their learned causal relations 
did not lead to successful prediction of the state of the 
output system. Again, psychologically participants might 
have represented this change as a step from one working 
principle to another and so considered a new context. 

For theories of causal learning the presented model raises 
some questions. From their perspectives peoples judgments 
and confidence ratings are seen as the result of reasoning or 
data integration processes. Since our simple memory model 
modeled the decrease in participants’ confidence ratings 
perfectly, these more complex standard views of seem 
questionable. As introduced in the beginning, standard 
theories assume much more than memory retrieval. There 
are much less approaches that assume, as we do that lower 
ratings in causal reasoning might reflect a reduced 
availability i.e. accessibility of memory information due to 
less activation. In our model this goes back to less 
relevance of memory information as soon as new contexts 
are considered. Thus 'deliberate' causal behavior can be 
explained simply based on memory activation. 

Of course, further experiments should replicate the 
present work. Additionally, it should first be tested whether 
our contextual change (ACT-R) model holds in other 
situations of causal learning as well. Second, it has to be 
proven for more cases that confidence ratings can be drawn 
from activation. The non-linear transformation function 
that was used has to be tested. It assumes that the higher 
the activation the less are changes of that activation 
reflected in confidence ratings drawn from it, even if the 
base-level learning that generates these activations already 
shows this kind of non-linearity. 

 Our next step is to elaborate more on the devaluation 
effect and the role of memory in causal learning and 
reasoning. For example if this effect occurs also for more 
complex causal knowledge or if similar effects can be 
found in reaction time data too. The presented ACT-R 
model will have to prove his validity for those data as well.  
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Motivation in the Cognitive Architecture 
MicroPsi 

The cognitive modeling of personality traits—as 
exemplified by the well-known Five Factor Model  
(Digman, 1990; Goldberg, 1993)—requires the 
identification and suitable functional abstraction of 
underlying mechanisms within a cognitive architecture. We 
propose that these mechanisms are predominantly 
motivational, and are using the cognitive architecture 
MicroPsi (Bach 2003, 2009) for analysis and modeling.  
 
MicroPsi’s motivational system can be characterized by a 
(pre-defined) set of demands of the agent, which are 
represented as urge signals. Changes in these signals 
determine valences: a change of a demand towards its target 
value creates a positive reinforcement (pleasure signal), 
while a negative change away from the target results in a 
negative reinforcement (displeasure signal). These signals 
can be used to create associations between the urges and 
situations that satisfy them (goals) or frustrate them 
(aversive situations). In accordance with the Psi theory 
(Dörner 1999), MicroPsi uses three groups of demands: 
physiological, social and cognitive.  

The physiological demands (food, water, physical 
integrity/pain avoidance etc.) become active whenever the 
autonomous regulation of physiological parameters fails and 
provide for the basic survival. Here, survival itself is seen as 
an abstract concept and not a demand itself. 

Social demands consist in a need for affiliation with 
others, and are mediated by social signals (‘legitimacy 
signals’), such as displays of affection, acceptance, rejection 
or reproach. The affiliation mechanism allows to structure 
social interaction beyond rational utility: purely social 
rewards are often sufficient to motivate an agent for 
cooperative behavior, without incurring the need to supply a 
material gratification and thereby affect the fitness of the 
group, or to discourage anti-social behavior without 
decreasing the agent’s material fitness by doling out 
punishment. A second social demand is called ‘internal 
legitimacy’: it corresponds to internal social signals that are 
related to the conformance to internalized social norms 
(‘honor’). Obviously, the list of social demands addressed in 
MicroPsi is incomplete; for instance, it lacks sexual needs 
(libido).  

The group of cognitive demands spans needs for 
competence, a need for uncertainty reduction, and needs for 
aesthetics. 

Competence is either epistemic (related to skills): it 
provides an estimate on the agent’s ability to cope with any 
specific task, by delivering a reward on its successful 
completion, and a penalty on failures. Thus, skill-acquisition 
can become a goal on its own. Furthermore, competence 
may be general, i.e. related to the overall ability of the agent 
to cope with the environment. General competence delivers 
a heuristics on the amount of risk an agent should take, and 
is measured as a floating average over successes and failures 
of the agent’s past actions. 

Uncertainty reduction is aimed at discovering the 
outcomes of actions, and exploring the structure of objects 
and situations. Uncertainty reduction is satisfied by 
‘certainty events’: the complete identification of an object, 
scene or frame, by fulfilled expectations (even negative 
ones), and by a long and non-branching expectation horizon. 
Conversely, uncertainty reduction is frustrated whenever the 
agent encounters unknown objects or events, discovers 
elements without a known connection to behavior, etc.  

Uncertainty signals are weighted with the motivational 
relevance of their object. Generally, a high uncertainty will 
give rise to explorative behaviors, unless the agent has a low 
epistemic competence for exploration. 

Aesthetics is a demand that directs the agent at seeking 
order, i.e. better representations (abstract aesthetics), or 
seeking out particular stimuli, based on evolutionary 
preferences, such as certain body schemas or landscapes 
(stimulus oriented aesthetics). 

Each demand is characterized by several parameters: 
- The target value vd of the demand d 
- The deviation | vd – cd | from that value, represented 

by an urge indicator urged, 
- The weight of the demand (its relative importance, 

compared to other demands with the same urgency) 
wd, 

- The gain (the satisfaction derived from a positive 
stimulus or consumption) gd, 

- The loss (the penalty incurred from a negative 
stimulus or a frustration) ld, 

- The decay (the autonomous increase of the deviation 
from the target value over time) fd. 

Even if no gain or loss is incurred, the decay ensures that the 
motivational parameters change relentlessly, and the agent 
is requiring to constantly replenish the demands. (For a 
detailed description, see Bach 2011). 

Application for Modeling Personality Traits 
The motivational traits of agents can be defined as a set of 
physiological, social and cognitive demands D, each of 
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them annotated by a tuple (wd, gd, ld, fd), describing the 
weight, gain, loss and decay of the respective demand. 
Using these parameters, it is possible to create agent models 
that conform to the Five Factor Model (FFM, or “Big 
Five”) established in personality psychology. The FFM 
suggests five dimensions of personality traits, which 
together can be used to characterize emotional/motivational 
dispositions of an individual: 

- Openness: This describes the interest a subject takes 
in new situations, ideas and stimuli. Openness is 
associated with intellectual curiosity, appreciation of 
art, and non-conservatism 

- Conscientousness: This characterizes how 
organized/rigid a subject tends to be. Conscientous 
individuals tend to spend more time planning, attend 
carefully to details and attempt to follow plans and 
rules rigorously. 

- Extraversion: This relates to the interest individuals 
take in interpersonal interaction, their surgency and 
expressiveness. 

- Agreeableness: Individuals that are highly agreeable 
tend to avoid conflicts, are friendly and seek positive 
social interaction. 

- Neuroticism: This amounts to emotional instability. 
Subjects with a high degree of neuroticism tend to 
experience negative emotions more strongly, are 
prone to anxiety and mood switches. 

Modeling configurations of personality traits by choosing 
appropriate settings for the tuples (wd, gd, ld, fd) is 
straightforward. Since all of them are related to social and 
cognitive pre-dispositions, it is sufficient to look at the 
demands for affiliation, competence, certainty (= 
uncertainty reduction) and aesthetics.  

For instance, a high degree of neuroticism can be 
expressed by choosing particularly high values for the loss 
and decay of competence and certainty (and possibly the 
other demands, too). In other words, the agent needs to 
replenish its competence and certainty very often, and it will 
react disproportionally to failures of doing so, and to 
frustrations of these demands. The continuous decay of 
certainty makes the agent prone to episodes of anxiety. 

Conversely, an agent with the opposite settings, i.e., very 
low decays and losses on competence and certainty will not 
take a big hit on failure, and won’t need to seek out new 
competence and certainty rewards as often. Thus, it will 
display a greater degree of emotional stability and 
complacency (= low neuroticism).  

A highly open agent can be modeled by a high decay on 
competence and certainty, too, so the agent is forced to seek 
out competence and exploration rewards. On the other hand, 
it should receive a high gain on satisfying its cognitive (and 
possibly social) demands. Thus, it will receive positive 
frequent and strong positive reinforcements of its 
explorative and competence building behaviors, resulting in 
a high tendency to seek out new situations and stimuli. 

Our model determines conscientiousness with a strong 
loss factor of competence and certainty, combined with a 

weak gain of competence/certainty. This means that the 
reward for exploration and skill acquisition is low, 
compared from the loss incurred by risking them. A high 
decay on competence, but low decay on the other drives can 
additionally result in a low interest in seeking out new 
social, aesthetic or exploratory challenges, while focusing 
on a high accuracy in the execution of plans and skills. 

Extraversion is produced by a high decay of the affiliation 
demand, which therefore requires constant social interaction 
to be replenished. Strong gains on affiliation and 
competence, as opposed to weak losses on these drives 
result in a strong reinforcements due to social and com-
petence successes, but only little aversion due to failures.  

Agreeable agents are somewhat similar to extroverts due 
to a high decay on affiliation (and possibly competence), so 
they need to seek out social situations often. Unlike 
extroverts, they receive strong affiliation losses due to 
negative social signals, and gain little competence. Thus, 
they are likely to avoid arguments: they have little positive 
rewards to gain from them, but incur strong negative 
reinforcements if they do not succeed socially. 

Currently, our model is restricted to simple multi-agent 
simulations. At the moment, we are using our model to 
design a series of problem solving scenarios that correlate 
personality properties with the performance of subjects 
(Greiff & Funke, 2009). As a result, we hope to provide a 
direct application of the model for psychometric purposes. 
Furthermore, well-defined problem solving scenarios 
present an opportunity to compare the performance of 
human subjects directly with that of computational agents 
and will thereby allow us to improve the motivational and 
emotional framework of our cognitive model. 
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The Role of the Pre-SMA in Decision Making 
Recent models of decision making under time constraints 

assume that the pre-supplementary motor area (pre-SMA) 
modulates the excitability of an action selection mechanism 
implemented by the basal ganglia (e.g. Forstmann et al., 
2008). The basal ganglia exert a tonic inhibition on the 
cortex. By decreasing this inhibition the pre-SMA can 
decrease response caution, thus facilitating speeded but 
possibly faulty responses. This claim is supported by a 
series of neuroimaging studies on random dot 
kinematograms where participants were instructed either to 
be as quick or as accurate as possible (Van Maanen et al., 
2011; Forstmann et al., 2008). The data were analysed by 
fitting a linear ballistic accumulation model (LBA, Brown 
& Heathcote, 2008) to the decision time data and correlating 
the model’s response caution parameter with hemodynamic 
response in the pre-SMA.  

Forstmann et al. (2008) showed that differences in 
response caution between conditions with speed instructions 
and conditions with accuracy instructions estimated with the 
LBA model correlated with individual differences in BOLD 
response change between conditions. Van Maanen et al. 
(2011) applied the LBA model to single trial data. They 
found that trial-by-trial fluctuations in response caution 
under speed stress but not under accuracy instructions 
correlated with the single-trial BOLD response in the pre-
SMA. 

The Pre-SMA in EEG Data 
A number of EEG studies have linked the contingent 

negative variation (CNV), an often-studied slow negative 
potential, to brain regions in close proximity to the pre-
SMA and to measures that express the ease with which 
participants can trigger a response. Leuthold and Jentzsch 
(2001), applying dipole source localisation to a response 
precueing task, found that the CNV preceding a response 
originates from sources close to the SMA. Moreover, a 
number of studies have reported a negative correlation 
between CNV amplitude and reaction time (e.g. Hillyard, 

1968). Elbert (1990) suggested that the CNV might reflect 
adjustments of cortical excitability. He supports this claim 
with data from a signal detection experiment in which high 
CNV amplitudes correlated with an increase in false alarms 
and low CNV amplitudes increased the number of misses. 

These results suggest that the CNV might reflect the same 
processes involved in the adjustment of response caution as 
the activity of the pre-SMA in fMRI studies. If this is the 
case, lower response caution should be observed for higher 
CNV amplitudes under speed but not under accuracy 
instructions. To further investigate this possibility we ran an 
EEG experiment using a random dot kinematogram and 
correlated the CNV amplitude with single-trial estimates of 
response caution from an LBA model. 

EEG Experiment and LBA Modelling 

Experiment 
A group of 14 undergraduate students (10 female) 

participated in the experiment for partial course credit. They 
performed 200 trials of a random dot kinematogram task. 
EEG data were recorded from 32 scalp sites. Trials with an 
amplitude exceeding ±250µV and trials with artefacts were 
excluded. Eye blink artefacts were corrected using 
independent component analysis. Data were low-pass 
filtered at 35 Hz and baseline-corrected to a baseline-
window from 300ms to 100ms before the onset of the 
fixation cross (see below). All further analyses were based 
on the FCz electrode. 

Participants were asked to decide whether a cloud of 120 
pseudo-randomly moving dots was moving to the left or to 
the right. At the beginning of each trial they were instructed 
to either react as quickly (SP for speed) or as accurately (AC 
for accurate) as possible. 

Each trial started with a blank screen, followed by the 
speed instruction and another blank screen. A fixation cross 
was presented for before the onset of the dot kinematogram. 
This was followed by a blank screen and feedback on either 
the response speed in the SP condition or the accuracy in the 
AC condition. 

The CNV was measured during the presentation of the 
fixation cross before the onset of the dot kinematogram. 
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CNV amplitude was defined as the mean amplitude between 
200ms and 100ms before the cloud of dots was presented. 

LBA model 
The LBA model describes decisions as an evidence 

accumulation process with two accumulators, one for 
correct and one for incorrect responses. Starting from an 
initial amount of evidence, evidence is accumulated until 
one of the accumulators reaches a threshold at which point a 
decision is made. The model includes 5 parameters. The 
drift rate d for the evidence accumulation is sampled from a 
normal distribution with mean v and standard deviation s. 
The initial amount of evidence, reflecting response caution, 
is sampled from a uniform distribution from 0 to A. The 
more evidence is initially available, the less evidence needs 
to be accumulated and the quicker a response can be made. 
The response threshold b describes the amount of evidence 
that is needed to make a decision. Finally, the non-decision 
time t0 reflects all processes not related to the decision 
process, such as the execution of a motor response. 

The best fitting model was selected based on formal 
model comparisons using Bayesian Information Criterion. 
The selected model was one in which the mean drift rate, 
the standard deviation of the drift rate and the response 
threshold were free to vary between speed instructions. The 
model was fit to participants’ reaction time distributions as 
described in Donkin, Brown, and Heathcote (2011). 
Subsequently maximum likelihood estimates of the single 
trial drift rate d and initial evidence a were obtained as in 
Van Maanen et al. (2011). 

Results and Discussion 
Linear mixed effects models were used to assess the 

relationship between CNV amplitude and single-trial 
response caution and drift rate. The first model included 
fixed effects for speed instruction (2 levels: AC and SP), 
single-trial response caution and the interaction of the two 
as well as a random intercept per subject. While response 
caution did not predict CNV amplitude in the AC condition 
(β = -0.01, p = .25), the significant interaction term showed 
it to be a significant predictor in the SP condition (β = 0.04, 
p < .01). To test whether drift rate explains additional 
variance in the CNV amplitude, we constructed a second 
model that included single-trial drift rate and its interaction 
with speed instruction as additional predictors. Comparing 
this model to our first model showed that drift rate did not 
improve prediction (χ2(2) = 1.95, p = .38). 

These results imply that while participants decrease their 
response caution when prompted to react as quickly as 
possible, no such adjustment is made if accurate responding 
is stressed. It aligns well with the findings of Van Maanen et 
al. (2011) as well as suggestions that the CNV might reflect 
response preparation processes (Elbert, 1990). Moreover, 
the finding that drift rates are not related to CNV amplitude 
shows that the LBA model recovers the differential 
contribution of drift rates and initial evidence to the 
accumulation process. 

These findings bear interesting implications for two fields 
of research. On the one hand, the CNV might offer a more 
direct measure of response caution. Instead of having to rely 
on parameter estimates from a model that was fit to noisy 
reaction time data, the CNV might provide an easy-to-obtain 
measure of the neuronal activity underlying response 
caution. On the other hand, these findings might also help 
resolve a long-standing debate about the role of the CNV in 
time estimation. Macar, Vidal, and Casini (1999) suggested 
that the CNV reflects the accumulation of pulses from an 
internal clock. However, Van Rijn, Kononowicz, Meck, Ng, 
and Penney (2011) argue that the CNV reflects the response 
preparation or decision processes. The current findings 
support the latter interpretation. While participants are 
waiting for a time interval to pass their pre-SMA might 
become active to prepare the selection and execution of a 
response, which is reflected by a higher CNV amplitude. 

References 
Brown, S. D. & Heathcote, A. (2008). The simplest 

complete model of choice response time: Linear ballistic 
accumulation. Cognitive Psychology, 57, 153-178. 

Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing 
conclusions from choice response time models: A 
tutorial using the linear ballistic accumulator. Journal of 
Mathematical Psychology, 55, 140-151. 

Elbert, T. (1990). Slow cortical potentials reflect the 
regulation of cortical excitability. In W.C. McCallum 
(Ed.), Proceedings of a NATO Advanced Research 
Workshop on Slow Potential Change in the Human 
Brain (pp. 235-251). Il Ciocco, Italy. 

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., Von 
Cramon, D. Y., Ridderinkhof, K. R., & Wagenmakers, 
E.-J. (2008). Striatum and pre-SMA facilitate decision-
making under time pressure. Proceedings of the 
National Academy of Sciences, 105(45), 17538-17542. 

Hillyard, S. A. (1968). Relationships between the contingent 
negative variation (CNV) and reaction time. Physiology 
and Behavior, 4, 351-357. 

Leuthold, H. & Jentzsch, I. (2001). Neural correlates of 
advance movement preparation: A dipole source 
analysis approach. Cognitive Brain Research, 12, 207-
224. 

Macar, F., Vidal, F., & Casini, L. (1999). The 
supplementary motor area in motor and sensory timing: 
evidence from slow brain potential changes. 
Experimental Brain Research, 125, 271-280. 

Van Maanen, L., Brown, S., Eichele, T., Wagenmakers, E.-
J., Ho, T., & Forstmann, B. U. (2011). Neural correlates 
of trial-to-trial fluctuations in response caution. The 
Journal of Neuroscience, 31(48), 17488-17495. 

Van Rijn, H., Kononowicz, T. W., Meck, W. H., Ng, K. K., 
& Penney, T. B. (2011). Slow potentials in time 
estimation: The role of temporal accumulation and 
habituation. Frontiers in Integrative Neuroscience, 
5(91). doi: 10.3389/fnint.2011.00091 

274



A Cognitive Model of Drivers Attention 
 

Kerstin Sophie Haring (ksharing@fennel.rcast.u-tokyo.ac.jp) 
Research Center for Advanced Science and Technology, The University of Tokyo  

4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan 
 

Marco Ragni (ragni@cognition.uni-freiburg.de) 
Lars Konieczny (lars@cognition.uni-freiburg.de) 

Center for Cognitive Science, University of Freiburg 
Friedrichstr. 50, 79098 Freiburg, Germany 

 
 

Abstract 
Cognitive architectures can account for highly complex tasks. 
One of the greatest challenges is understanding and modeling 
human driving behavior. This paper describes an integrated 
cognitive model of human attention during the performance 
of car driving.  In this task, the attention process can be 
divided into at least three basic components: the control 
process, the monitoring process, and finally, the decision 
making process. Of these basic tasks, the first has the highest 
priority. All three phases are implemented in a cognitive 
model in the cognitive Architecture ACT-R 6.0. The model is 
able to keep a traffic lane, overtake another vehicle by lane 
change, identifies traffic signs and different situations 
emerging at crossroads. 

Keywords: Driver ehavior model; cognitive architecture; 
ACT-R; Attention 

Introduction 
Even for long-time practitioners driving a car is a highly 
complex task. This becomes evident by the still high 
number of accidents. E.g., in 2010 in Germany nearly 
375.000 persons were injured in approximately 290.000 
automobile accidents (Statistisches Bundesamt, 2011). In 
about 84% of all cases the cause of an accident could be 
traced back to driver errors (cp. Fig. 1). Nowadays passive 
safety systems like the airbag are reaching their 
technological limits and the focus shifts more towards active 
safety systems. Active systems, however, require exact 
knowledge about the driver, the vehicle, and the 
environment. To increase the acceptance of active 
intervention through the safety systems in cars, these 
systems should act in accordance to the driver. The driver 
and the human driving behavior must be considered for the 
future development of safety systems. Consequently, one 
focus of research is to analyze human behavior and predict 
possible errors. 
We present the implementation of a cognitive driver model, 
simulating human attention and driving behavior. A driver 
model can be a powerful instrument with several possible 
fields of application, such as the development of intelligent 
driver assistant systems. The model is an adaption of 
Salvuccis`s (2006) driver model developed in the Cognitive 
Architecture ACT-R 5. Our model is implemented the 
newer version ACT-R 6 (Anderson, 2007) and using the 
standard ACT-R development environment running on an 

open source LISP, which not only guarantees support and 
accountability, but also enables the research community to 
use the developed model for further research. It is able to 
keep a traffic lane, initiate and decide about a change of the 
lane in case of upfront traffic, identify prevalent situations at 
crossroads and react to traffic signs.  

 
Fig. 1: Driver errors in automobile accidents with person 

injury (Statistisches Bundesamt, 2011). 

Previous work 
Most developed approaches can be distinguished into two 
classes: task specific and generic approaches. Task specific 
approaches such as Cosmodrive (Bellet et al., 2007) and 
Pelops (Benmimoun, 2004) reproduce the cognitive 
functions of a car driver. In contrast to task specific 
approaches, generic approaches can model various aspects 
of human behavior. Therefore, it is necessary for these 
architectures to include a theory of human information 
processing. Examples for such architectures in which driver 
models have been implemented are ACT-R (Anderson, 
1993; Salvucci, 2006), SOAR (Aasman,1995) and QN-
MHP (Liu et al., 2006). 

Previous models can be divided into three categories: 
First, early models concentrated mainly on steering and lane 
keeping. These models focus on the control process and are 
able to detect some cognitive aspects, but according to Boer 
(1999) they are highly dependent on difficult perceivable 
inputs from the environments. Second category comprises 
perception-action models which are through the perceptual 
constraints oriented closer on human behavior (e.g. Rushton 
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et al., 1998; Salvucci & Gray, 2004; Wilkie & Wann, 2003). 
Yet, these models do not allow for movement dynamics.  

Finally, the third category includes models that are trying 
to unify the various aspects of a driving task and are 
therefore the most closely associated to the here presented 
work. These models not only explore and unify the various 
aspects of driving behavior, they also explore the generality 
of the cognitive architectures used for their development. 
Driver models were described by Aasman (1995) in the 
cognitive architecture SOAR and by Liu (1996) in Queuing 
Network-Model Human Processor (QN-MHP). Although 
these models already exist in other cognitive architectures 
and the central ideas remain the same in any architecture, 
the ACT-R model of a driver shows a broader spectrum of 
application (Salvucci 2001; 2006). 

Salvucci (2006) developed a first integrated cognitive 
model of human driving behavior in ACT-R. He showed in 
his work the generality and the applicability using the 
cognitive architecture ACT-R for the specific task of 
driving. His model is designed to keep a standard vehicle on 
a multi-lane highway with moderate traffic. The model is 
also able to recognize the distance to a vehicle ahead and to 
make the decision for overtaking. As driving is a highly 
complex task and not readily implementable, this model has 
some limitations. The model solely was meant to interact 
with a highway environment without recognition of traffic 
signs, crossings or slip roads. An implementation limitation 
was the use of the previous version ACT-R 5.0 and its 
incompatibility to newer versions. It was also not possible to 
make the ACT-R model interact directly with a driving 
simulator.  

The cognitive architecture 
A cognitive architecture compromises theories about the 
operation mode of human information processing and aims 
at using procedures similar to humans. In other words, it 
describes a comprehensive computer model of human 
cognition. ACT-R (Anderson, 1993; Anderson 2007) is such 
a comprehensive theory of human cognitive capacities. It is 
also a modeling environment, used to describe human 
cognitive processes.  Most of its basic assumptions are 
inspired by the progress of cognitive neuroscience. ACT-R 
is a framework in which the researcher can create models 
(programs) for different tasks. Running this model produces 
a simulation of human behavior. The main assumption of 
ACT-R is the representation of knowledge as either 
declarative or procedural knowledge. Declarative 
knowledge, consisting of facts, is represented in form of 
chunks, or small logical units which encode simple facts 
(e.g. the fact: “Berlin is in Germany”). Procedural 
knowledge, representing knowledge about how we do 
things, is represented in form of production rules, condition-
action rules that generate a specific action (e.g. manipulate 
declarative knowledge) if the conditions of this rule are 
fulfilled. 

In other words, ACT-R’s knowledge representation is 
split in two kind of memory modules. Modules can be 

accessed through their buffers. The state of ACT-R at a 
given time is the content of the buffers at that time. Buffers 
are connected to the modules and are changed by production 
rules. Every buffer and (nearly) every module can be 
allocated to a cortex region. This enables an interesting 
mapping between buffers and neural processes (Anderson 
2007). 

Fig. 2: The organization of information the cognitive 
architecture ACT-R (Anderson, 1993). The buffers contain 
information and are connected to modules associated with 

brain regions.  

Cognitive model 
We introduce now a computational model of human 
attention in a car driving task implemented in the ACT-R 
architecture. It models human attention and behavior for 
driving a car on a straight road, overtaking another vehicle 
by lane-change, identifying a traffic sign and crossroads. 

Driver Modeling 
The goal of this research was to develop an integrated driver 
model in the context of embodied cognition, task and 
artifact (ETA) framework. Byrne (2001) describes the ETA 
framework as understanding of interactive behavior based 
on the Cognition-Task-Artifact triad introduced by Gray 
(Gray & Altman, 2001). Interactive behavior is a function of 
the performed Task, the Artifact (instrument) by which the 
task is performed, and the Embodied Cognition, the 
cognitive, perceptual and motor capabilities by which a 
person acts through the artifact. 

Cognitive modeling of human driving behavior should 
address all three components. An integrated model 
considers the driving related tasks (Task), the interface 
between the human and the vehicle (Artifact) and the 
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processes that execute the driving task on the vehicle 
(Embodied Cognition). The system must be specified 
regarding a detailed description of the artifact being used 
and the task to perform. Some successfully implemented 
and applied models only emphasize one or two of these 
components like the perception-action models of control of 
Fajen  (Fajen & Warren, 2003), which provides a compact 
description of the behavioral dynamics of steering and 
obstacle avoidance, control-theoretic models like Donges 
(1978), dividing the steering task into a guidance and a 
stabilization level or machine-learning models, supporting 
automobile drivers steering by sampling an image, assessing 
the road curvature, and determining the lateral offset of the 
vehicle (Pomerleau & Jochem, 1996). 

Driving is a continuously changing task of basic subtasks. 
These must be integrated and interleaved. This model uses 
three basic components, control, monitoring, and decision 
making (see Fig. 3), derived from the hierarchical control 
structure of Michon (1985). Michon identified three levels 
of skills and control for the driving task: operational 
(control), tactical (maneuvering), and strategic al (planning). 
He claims that a comprehensive model should take into 
account the various levels and also provide an information 
flow control that allows to switch from one level to the 
other. 

The independent subtasks of a simple driving task (see 
Fig. 3) were implemented as control, the operational process 
controlling the input, monitoring, the tactical process 
interacting with the environment, and decision making, also 
analogous to the tactical level of Michon (1985), managing 
maneuvers like overtaking. These subtasks are processed 
serially. Every production of the top level goal drive has 
sub-goals, which incorporate the three components. 

 
Fig. 3: Schematic representation of the production rules of 

the driver model in a simple crossroad scenario. The title of 
a box indicates the current goal and the corresponding 

production rules.  The arrows show the flow of control and 
the asteriks the return to the parent-goal. 

Development Environment The theory of ACT-R is 
embedded in the ACT-R software in form of Common Lisp 
functions. This model is implemented in Clozure 
CommonLisp 1.3 and the current version of ACT-R 6.0 
under the operating system Ubuntu 9.04. In order to make 
the simulation environment interact with the ACT- R 
system, it was directly implemented in LISP with simple 
graphics and the extension with the LTK Lisp Toolkit. As it 
was not possible to make ACT-R directly interact with a 
driving simulator, we decided to use a Lisp-implementation 
of a driving environment. 

Model Specification 
As mentioned, the cognitive model of human attention 
integrated the three components control, monitoring and 
decision making. They are implemented as a loop of 
cognitive operations in the ACT-R serial processor. 

The UML-Diagram in Fig. 4 shows the behavior of the 
cognitive model. To execute the task drive, the model runs 
through several states. 

Fig. 4: UML-Diagram of the driver model 
 
From the initial state, the model finds the road marks and 

sets the near point for stable navigation on the road. The 
model then fires a production rule screening for a traffic 
sign, changes the state according to the result and sets the 
far point. In our model, the near and far point are used as 
control components and explained in detail in the next 
paragraph. If the model reaches the state find far it can reach 
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the state overtake or will repeat the control loop. If there is 
special state like an intersection, the model tests for other 
given constraints and according to the result of this test, is 
will either go to another special state or repeat the control 
loop updating the near and far points. 

A crucial advantage of the ACT-R architecture is that the 
three components control, monitoring and decision-making 
can be implemented directly. This takes into account human 
constraints and results in a cognitive adequate model of 
human attention. 

Control 
The control component of attention while performing a 
driving task manages the perception of lower level visual 
cues and the control over the vehicle (e.g., stopping). The 
model uses the simple concept of two salient visual 
attributes. This concept is based on earlier findings on 
locomotion (Llewellyn, 1971) and steering. Further research 
(Donges, 1987; Land & Horwood, 1995) describes steering 
as divided in two levels, guidance and stabilization, by 
using a „far“ and a „near“ region. Models of steering 
developed under this assumption have been proven to be 
consistent with empirical evidence. 

The perception of this model is based on the perception of 
two salient visual points (Salvucci & Gray, 2004), a near 
and a far point. These two points are used for guidance, 
stabilization and also, to observe other salient attributes. For 
the here created artificial road environment, these two points 
account to recognize relevant aspects in any situation which 
may arouse during driving a car. 

The near point determines the position on the road, which 
is in the middle of the center line and the border line. To 
identify the direction of driving, the far point is used and 
usually set on the vanishing point on the horizon or on the 
lead vehicle. The far point is also used to identify other 
situations and can be set on non-control points like traffic 
signs or approaching cars. Fig. 5 illustrates the near and far 
points. 

 
Fig. 5: Near and far points for a straight road with a 

vanishing point and a road segment with a lead car. 
 
The ACT-R architecture limits the employment of the 
control component by using a serial cognitive processor. 
The serial processing of the subtasks is typical for the 
human bottleneck of information processing. The resulting 
model is not an optimal model in a mathematical sense, but 
approximates human behavior. 

In a driving environment, the majority of lower level 
visual control is keeping the vehicle in the middle of the 
road lane, for which the near point is used. Although the far 

point is used to identify traffic signs, it mainly indicates the 
driving direction. 

If the far point is not set on the vanishing point on the 
horizon, the model uses the combination of near and far 
point for determining the current scenario (see also Fig. 8 
for an overview of implemented scenarios). If there is a lead 
vehicle, the distance between the two points is determined, 
and in case it falls below a certain safety distance, the model 
can react according to that (e.g. through slowing down or 
overtaking). In a crossroad scenario without an approaching 
car from the right hand side, the model will set the far point 
on the vanishing point of the horizon and continue driving. 
After that, this model will not look again for another car at 
the crossroad, which is surely an issue for future 
implementations. In case there is a vehicle or a stop sign, the 
stopping of the car is implemented here by setting the far 
point onto the near point. The model will continue a loop 
until the other vehicle is not on the crossroad anymore and 
out of the safety distance. 

Monitoring 
After the control component, the monitoring is one of the 
most important. Here, the environment is continuously 
captured (e.g. the model looks for a traffic signs) and 
updated in the declarative memory. In the here implemented 
driving environment, the situation awareness mainly focuses 
on other vehicles around, change of the scenario (from 
straight road to crossroad), or traffic signs. The model shifts 
the focus of visual attention towards a certain object which 
is then encoded as visual attribute. The shift could be based 
on a random-sampling model, checking the different 
environment areas with a probability p, which has been 
successfully done by Salvucci (2006). Here, the model 
monitors particular directions and visual attributes (e.g. 
other vehicles, center line) by an attention shift. The 
encoded attribute is noted in the declarative memory. As 
ACT-R has a build-in memory decay mechanism, it might 
be possible to predict driver errors because the chunks 
encoding the current environment decay and can be 
forgotten if not updated continuously. Another source of 
possible driver errors could be the potential failure in 
encoding relevant information (e.g. to overlook a traffic sign 
or a vehicle). 

Decision Making 
The information provided by the control and monitoring 

component is used to determine if and what decisions must 
be made on the tactical level concerning the maneuvering 
(e.g. stopping or overtaking). The most common decision 
making might be whether to stop or to continue driving. 
This decision depends on the traffic sign or on other 
vehicles. As described earlier, the execution of stopping 
corresponds simply to the use of the near and far points 
encoding current position and relevant aspects of the 
environment. In order for the model to produce a decision 
making process similar to humans, encoding a visual 
attribute and shifting visual attention cannot occur at the 
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same time. For this model, the focus of attention is for 
example either on the near or far point or encoding a traffic 
sign. This restriction through serial processing seems to be a 
drawback in the sense of mathematical optimal behavior, 
but it describes the bottleneck typical for the human 
information processing (Anderson et al, 2004). Through the 
implementation of this restriction, it is possible to mimic 
human cognitive capacities, simulate the dynamic nature of 
human driving behavior, and therefore a cognitive adequate 
model of human driving behavior is produced. 
The knowledge representation comprehends declarative 
knowledge in chunks and procedural knowledge in 
production rules. For example, the scenario at a crossroad 
was implemented in 73 explicit production rules, which are 
highly detailed and is therefore open to future extensions of 
the model. The control of attention in the ACT-R 
architecture is achieved through three different methods of 
shifting attention: First by specific locations or directions, 
second by specific characteristics, and third by objects, that 
have not been in in the focus of attention yet. 

The combination of these methods of attention shift 
enables the model to create complex search strategies 
through the production rules. 

Results and Discussion 
We present a simulation environment and a cognitive model 
of driver attention during car driving that is able to interact 
during run-time. In this work, two driver models were 
developed. The first model is able to reliably keep the traffic 
lane on a two-lane road and initiate a lane change followed 
by overtaking another vehicle. It identifies another vehicle 
and decides to overtake it if the safety distance falls below a 
certain distance (Fig. 6, scenario 1 and 2). The second 
model builds up on the first model and extends its 
functionality by identifying crossroad (Fig. 6, scenario 3), 
traffic signs and vehicle on the right hand side which have 
right of way (scenario 4, 5 and 6). 

To obtain an integrated driver model of human driving 
behavior, it is essential to develop models in an architecture 
which is not task specific and can also model human 
behavior also in a different context, like ACT-R. This model 
is a first attempt to recognize, still simplified, traffic signs 
and crossroads. The development of an integrated driver 
model makes a first step towards the vision of accident-free 
driving. A majority (over 80%) of the automobile accidents 
are caused by the driver themselves. Fig. 1 shows the human 
errors while driving. Nearly 16% of the accidents happen 
while turning and during exit, followed by disregarding the 
right of way (15%) and not-adapted speed (15%). 
Theoretically, the cognitive driver model could give a 
deeper insight for around 30% of the human errors while 
driving. However, it has to be taken into account that the 
model is still interacting with a simplified environment and 
not yet taking into account driver´s prior experience, which 
could be implemented by an increased attention in 
potentially high accident risk situations. Our driver model is 
one approach to integrate operational (lower-level) and 

tactical (higher-level) aspects in the framework of the ACT-
R architecture. The model and the environment do not 
present a complete picture of driver behavior yet, but they 
form a base to extend the ETA framework in any direction.  
 

 
 

Fig. 6: Standard situations while driving a car which can 
be handled by the cognitive drive model. 

 
The aspect of limited cognitive resources is one of the 

main factors for the adequacy of the model. Based on the 
implemented bottleneck, the three components control, 
monitoring, and decision making, have to share cognition. If 
the model is occupied with attention shift, it cannot 
simultaneously update the near point. Also, the model can 
only fire on production rule at a time and only one visual 
operation can be executed at a time. These processes take a 
certain time. For example, in the standard implementation in 
ACT-R, one firing of a production rule requires 50ms. This 
enables the researcher to compare the produced data with 
human data, because the ACT-R architecture produces an 
output file. This file contains the time, the active buffer and 
the according event. This study did not validate the model 
data so far. Future research could compare the output file 
data with human data, specially compare the attention shift 
of the model to human drivers over eye-tracking and the 
reaction times. However, for this validation, it must be 
possible from the technical side to either connect the ACT-R 
model directly to the simulation environment or to produce 
the same output file for the human data as the model does. 
Also, only most critical parts of key scenarios can be 
validated as no single method is sufficient enough to 
understand the complex task of human driving behavior yet. 

Conclusion and Outlook 
The progress to date in the development of cognitive 
architectures has been impressive, yet scientific gaps, 
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technical challenges and practical issues remain. On one 
hand, cognitive models help to develop an understanding of 
driver behavior and aim to provide a theoretical account for 
human attention while driving. On the other hand, they are 
powerful and practical tools when implementing human-
centered design and real-world applications. First steps 
towards the examination of the source of human mistakes 
through distraction from the primary driving task through 
secondary tasks like dialing a phone haven been taken 
(Salvucci, 2001) showing the feasibility of the architecture 
for these task and possible extensions. 

The ACT-R architecture enables to elucidate interesting 
aspects and provides a theory of human attention while 
driving. At the same time, human attention during driving is 
a challenging task for the ACT-R cognitive architecture. It 
shows the still existing limitations beyond basic laboratory 
tasks and pushes the research community to expand the 
architecture towards more complex and finally real-world 
tasks. 

Acknowledgments 
We are grateful for the kind advice and assistance of Prof. 
Bernhard Nebel, the support of Prof. Wolfram Burgard 
(University of Freiburg), and for intensive discussions with 
Dario Salvucci (University of Philadelphia). This work has 
been partially supported by a grant from the DFG to MR 
(Project R8-CSPACE in the SFB/TR8 “Spatial Cognition”).  

References 
Aasman, J. (1995). Modeling driver behavior in Soar. In: 

Leidschendam, The Netherlands: KPN Research  
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., 

Lebiere, C. & Qin, Y. (2004). An Integrated Theory of the 
Mind.  Psychological Review, 111, 1036 

Anderson, J. R.  & Lebiere, C. (1998). The atomic 
components of thought. Mahwah, NJ: Lawrence Erlbaum. 

Bellet, T., Bailly, B, Mayenobe, P., & Georgeon, O. (2007). 
Modelling Driver Behavior in Automotive Environments. 
Critical Issues in Driver Interactions with Intelligent 
Transportation Systems. Cognitive Modelling and 
Computational Simulation of Driver Mental Activities. 
Benmimoun, A. (2004). Der Fahrer als Vorbild für 
Fahrerassistenzsysteme? Ein fahrermodellbasierter Ansatz 
zur Entwicklung von situationsadaptiven FAS. 13. 
Aachener Kolloquium Fahrzeug- and Motorentechnik 

Boer, E. R. (1996). Tangent point oriented curve 
negotiation. IEEE Proceedings of the Intelligent Vehicles 
96  Symposium 

Boer, E. R. (1999). Car following from the driver`s 
perspective. Transportation Research – Part F, 2, 201-206 

Byrne, M. D. (2001). ACT-R/PM and menu selection: 
Applying a cognitive architecture to HCI. International 
Journal of Human-Computer Studies, 55, 41-84 

Donges, E. (1987). A two-level model of driver steering 
behavior. Human Factors, 20, 691-707 

Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics 
of steering, obstacle avoidance, and route selection. 

Journal of Experimental Psychology: Human Perception 
and Performance, 29, 343-362 

Gray, W. D., & Altmann, E. M. (2001). Cognitive modeling 
and human-computer interaction. International 
encyclopedia of ergonomics and human factors, 1, 387-
391, Taylor & Francis, Ltd.  

Land, M., & Horwood, J.(1995). Which part of the road 
guide steering? Nature, 3, 77, 339-340 
Liu, Y. (1996). Queuing network modeling of elementary 

mental processes. Psychological Review, 103, 116-136 
Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queuing 

Network-Model Human Processor (QN-MHP): A 
computational Architecture for Multitasking Performance 
in Human-Machine Systems. ACM Transactions on 
Computer-Human Interaction 13, 37§70 

Llewellyn, L. (1971). Visual guidance of locomotion.  
Journal of Experimental Psychology , 91, 245-254 

Michon, J. A. (1985). A critical view of driver behavior 
models: What do we know, what should we do? Human 
behavior and traffic safety, 485–52, Plenum Press 

Pomerlau, D., & Jochem T. (1996). Rapidly adapting 
machine vision for automated vehicle steering. IEEE 
Expert, 112, 19-27 

Reid, L. D., Solowka, E. N.,& Billing, A. M. (1981). A 
systematic study of driver behavior steering control 
models. Ergonomics, 24 , 447-462 

Rushton, S. K., Harris, J. M.,  Lloyd, M.R., & Wann J.P. 
(1998). Guidance of locomotion on foot uses perceived 
target location rather than optic flow. Current Biology, 8, 
1191-1194 

Salvucci, D. D. (2001). Predicting the Effects of In-Car 
Interface Use on Driver Performance: An Integrated 
Model Approach. International Journal of Human-
Computer Studies, 55, 85-107 

Salvucci, D. D. (2006). Modeling Driver Behavior in a 
Cognitive Architecture. Human Factors, 48, 362-380 

Salvucci, D. D., Liu, A. , & Boer, E. R. (2001). Control and 
monitoring during lane changes. Vision in Vehicles, 9  

Salvucci, D. D., & Gray, R. (2004). A Two-Point Visual  
Control Model of Steering. Perception, 33, 1233 

Statistisches Bundesamt (online 20.12.2011) 
www.destatis.de 

Wilkie, R. M., & Wann, J. P. (2003). Controlling steering  
and judging heading: retinal flow, visual direction and 
extra-retinal information. Journal of Experimental 
Psychology: Human Perception and Performance, 29, 
363-378 

280



Cognitive modeling of different processing modes in task switching: toward an 
explanation of the effect of aging on switching cost 

 
Stéphane Deline (stephane.deline@gmail.com) 

LPE-CRPCC, Université Rennes 2. 
Place du Recteur Henri Le Moal, 35043 Rennes, France 

 
Jacques Juhel (jacques. juhel@univ-rennes2.fr) 

LPE-CRPCC, Université Rennes 2. 
Place du Recteur Henri Le Moal, 35043 Rennes, France 

 
 
 

K eywords: Cognitive aging; task-switching; cognitive control. 

Introduction 
Cognitive aging is associated with a decrease of executive 

control ability that results in impaired performance in 
inhibition tasks (Hasher & Zacks, 1988) or task-switching 
(Mayr, Spieler, & Kliegl, 2001). Regarding task-switching, 
mixing costs are generally greater for elderly than for young 
people (Wasylyshyn, Verhaeghen & Sliwinski, 2011). One 
explanation of this phenomenon is that individuals fail to 
maintain task representations in a sufficient active state, 
(Engle & Kane, 2004). However, this hypothesis can't 
explain the observation of an equivalent switching cost 
between young and elderly (Wasylyshyn et al., 2011). 
Braver and West (2008) made an additional assumption of 
the effect of aging which presumes a declining ability to 
maintain goals representations. More specifically, this 
hypothesis supposes a decrease of the efficacy of proactive 
control mechanisms (controlled orientation or preparation of 
activities), resulting in a greater tendency to initiate reactive 
control processes (on-line processing). 

The aim of this study is to test with computational 
modeling to what extent the Braver and West (2008) 
hypothesis can account for age and individual differences in 
task-switching tasks. 

Method 
The task used in this study runs as follows: cue 

presentation ("+" or "-") for 1 sec. ; 750 ms later target 
presentation ("black" or "white" disk); manual response 
(pressing one of two buttons on a case-response) and 
disappearance of the target for 1 sec. ; Onset of the next cue. 
The experimental condition depends on the cue appeared. In 
condition A, called "congruent" (cue "+"), the participant 
must press the button which matches the target color (ie 
"white" to "white" "black" to "black"). In condition B, 
called "incongruent" (cue "-"), he must press the opposite 
color (ie "white" for "black" "black" to "white"). The 
experience includes a first familiarization phase 
(homogeneous block of 17 trials A; homogeneous block of 
17 trials B; mixed block of 17 trials ABAB...) followed by 
the experimental phase (mixed block of 209 trials ABAB...). 

Cognitive model 
The cognitive functioning underlying task resolution is 

modeled using the ACT-R architecture (Anderson, 2007). 
First, the model incorporates visual, memory and decision 
processes (Altmann & Gray, 2008), as well as more specific 
processes of interference (Oberauer, 2002) and top-down 
cognitive control processes (Meiran, Kessler & Adi-Japha, 
2008). Secondly, it incorporates two different modes of task 
processing, based on two main theories of task-switching 
discussed in the literature. The first one, called "on-line", is 
based on the compound-cue theory (Logan & Bundesen, 
2003) which supposes that the combination of the stimulus 
and a simple representation of the cue is sufficient to select 
effectively the correct answer. The second, called 
"preparatory", is inspired by the task-switching 
reconfiguration theory (Rogers & Monsell, 1995) which 
assumes that individuals use more complex task 
representations to guide the selection of the response 
(Dreisbach & Haider, 2009). In this model, the use of each 
processing mode depends on the type of cue representation 
(simple or complex) extracts from declarative buffer. 

 
 

 
Figure 1: Main steps, control processes and task 

processing modes implemented in the cognitive model. 
(Black arrows indicate control processes) 
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Aging hypotheses testing 
Several parameters can be manipulated to test cognitive 

aging hypotheses: 1) the latency factor lf which influences 
the time to extract knowledge, 2) the goal activation 
parameter ga that modifies the amount of activation spread 
to knowledge in declarative memory, 3) the noise parameter 
ans which introduces noise in the activation level of 
knowledge, or 4) the probability of execution of the two 
processing modes implemented. Different hypotheses are 
tested according to parameter(s) manipulated: slower 
processing speed (1), the reduced capacity of working 
memory (2), increased noise cognitive (3) or the initiation of 
control processes preferred reagent (4). 

Results 
The results presented in this work are discussed under the 

Braver and West (2008) assumption. The parameters of the 
model manipulated are the activation levels of cue 
representations that determine the probability of initiation of 
each processing mode implemented. It consists of a large 
decrease (resp. increase) of the probability of initiation of 
the preparatory mode, which increases (resp. decrease) the 
switching cost simulated (latency difference between 
incrongruent and congruent trials, in mixed condition). This 
effect is further accentuated if the parameter value lf is high 
(ie slowing). The analysis of convergence between 
simulated and empirical data obtained from a sample of 13 
women and 10 men aged 20 to 83 years (M = 46.9 years, 
SD = 20.2; MMS> 26 for people over 65 years old) 
indicates that the Braver and West (2008) hypothesis for a 
decrease with aging of the probability of initiation of 
proactive control processes -associated with slowing- can 
account for the increase of sensitivity to constraint changes 
observed empirically in older individuals. 
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Abstract 
The attentional blink (AB) refers to the impairment in 
consciously perceiving the second of two targets presented in 
close temporal proximity (200 – 500ms) in a rapid serial 
visual presentation paradigm. The present paper is a 
preliminary report describing a conceptual and partially 
computational model of the AB based on the LIDA (Learning 
Intelligent Distribution Agent) cognitive architecture. The 
model aims to provide a biologically plausible explanation of 
the AB, explaining a wide range of AB-related phenomena, 
among other mental phenomena accounted for by LIDA. 
Computational results in a basic visual AB paradigm are 
presented and compared to human data. 

The Attentional Blink 
When subjects are asked to identify two targets separated 

by a short time (200-500ms) in a stream of distractors, an 
Attentional Blink (AB) occurs - subjects often fail to report 
the second target (see Fig 1). In this paper we will focus on 
the AB in rapid serial visual presentations (RSVP) of 
pictures (however, the AB has been shown to occur across a 
wide range of stimuli types and modalities – see (Martens & 
Wyble 2010)).  

Fig 1. The visual attentional blink paradigm (from Potter et 
al. 2010). Subjects who have to identify targets in a stream 
of images often fail to report the second target (T2) if it is 
presented shortly after the first target (T1). 

Brain  related  evidence  has  shown  that  during  an  AB  
task,  both  targets  are  processed  at  least  perceptually, 
regardless  of  conscious  reportability - at  least  the  first 
150ms of neural activity exhibits a normal pattern (Martens 
& Wyble 2010). An fMRI  study  conducted  by  (Marois et 

al. 2004) showed parahippocampal place area activations 
(associated with high-level scene representations) even in 
non-conscious T2 targets.  However, EEG studies have 
revealed the electrophysiological activity that correlates 
with the AB – the N2pc ERP1 component, occurring  about  
200ms  poststimulus  and  associated with  the  allocation  
of  attention  to targets -  is  suppressed  at short temporal 
distances between T2 and T1. Also, in trials where T2 
cannot be perceived because it is presented shortly after T1, 
the P3 component - associated with working memory 
consolidation - is not elicited (Martens & Wyble 2010), 
(Dux & Marois 2009).  The  above  evidence  implies  that  
the  AB  has  to  occur  at  a  later  stage  of  processing  
(later  than perceptual recognition, and after 150ms). 

Apart from this finding, a number of attentional blink 
related phenomena have been found, some of which have 
proven hard to explain – no complete, formal account for all 
of these has been found yet (Dux & Marois 2009). 
Elaborating on all the AB-related effects that have been 
identified would exceed the scope of this paper (See 
Martens & Wyble 2010 and Dux & Marois 2009 for more 
phenomena). The following phenomena have been chosen 
to highlight the ABs main properties, and to show that while 
only a simulation of the basic AB paradigm is presented in 
this preliminary paper, our LIDA-based model can provide 
much wider explanations. Future work will be required to 
computationally simulate and verify them.  
1) Lag-1 sparing. Paradoxically, T2 can be reported with 
high accuracy if presented shortly after T1 (about 100ms 
after T1; “lag n” describes the temporal distance between 
the targets) (Martens & Wyble 2010). 
2) Spread lag-1 sparing. Multiple targets can be reported 
as long as they are presented in immediate succession – it 
has been observed that target reports were accurate even for 
four successive targets (Olivers et al. 2007).  
3) Posttarget intrusion. Varying the experimental 
conditions revealed that the AB only occurs if T2 is 
backward masked (Giesbrecht & Di Lollo 1998). Often, this 
mask or distractor succeeding T2 can be reported even if T2 
cannot, implying that the distractor somehow interferes with 
the reporting of the target (Chun 1997).  
4) Whole report attenuates the AB. The accuracy of 
reporting stimuli is high when subjects are asked to report 
all stimuli (whole report). However, a significant accuracy 

                                                           
1 Event-Related Potential, brain activity directly resulting from 

and time locked to a stimulus 
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1) Perception. Sensory stimuli are received and stored in a 
sensory buffer in the Sensory Memory. Percepts, emotions, 
and concepts are represented by nodes in the Perceptual 
Associative Memory (PAM). These are based on perceptual 
symbols (Barsalou 1999); their activations reflect 
recognition confidence as well as bottom-up salience. 
2) Percept to preconscious buffer. Recognized percepts are 
stored in the preconscious buffers of LIDA's long-term 
working memory (Workspace). 
3) Local associations. Local associations are automatically 
retrieved from the Transient Episodic and Declarative 
Memory using the Workspace contents. 
4) Competition for consciousness. Attention codelets2 (AC) 
in the Attention Codelet Module (ACM) view long-term 
working memory, and compete to bring novel, relevant, 
important, urgent, or insistent events to consciousness. 
5) Conscious broadcast. A coalition of codelets, typically an 
AC and its content of PAM nodes, gains access to the 
Global Workspace (GW) and has its content broadcast 
consciously. 
6) Recruitment of resources. Relevant behavioral schemes 
in Procedural Memory respond to the conscious broadcast.  
7) Activation of schemes in the Procedural Memory. 
Schemes are instantiated in the Action Selection module, 
and receive activation, based on the conscious contents.  
8) Action chosen. The Action Selection module chooses a 
single scheme from the newly instantiated schemes and 
remaining previously active schemes.  
9) Action taken. The execution of the action of a scheme 
results in external or internal consequences, or both.  

The major components implementing top-down attention 
in the LIDA model are the GW module and the ACM. 
Feature detectors (corresponding to feature-sensitive 
neurons in the visual cortices) pass activation to their 
corresponding PAM nodes, which represent objects (or 
categories, concepts, …) and could correspond to neuronal 
ensembles in the inferior temporal cortex, which contain 
object category information (Liu et al. 2009). The resulting 
activation of PAM nodes will depend on the number of 
relevant features, as well as the salience of those features. 

The ACM contains ACs, which create coalitions from 
important or relevant percepts in the Workspace. The 
coalition with the highest activation will be broadcast 
consciously. Coalition activation depends on four factors: a) 
the activations of the percepts it contains, b) the base level 
activation of the AC, c) the modulatory activation of the 
ACM and d) a matching factor on how well the percept 
matches the pattern that the Codelet is looking out for. The 
computational implementation of the LIDA AB Agent also 
contains a fifth factor, e) stochastic noise, which is added to 
account for extraneous, uncorrelated afferent activity 
(Knudsen 2007), (Nieuwenhuis et al. 2005). 

                                                           
2 The term codelet refers generally to any small, special purpose 

processor or running piece of  computer code. The concept is 
essentially the same as Baars' (1988) processors or Minsky's 
(1988) agents. The term was borrowed from (Hofstadter & 
Mitchell 1994). 

The first factor a) corresponds to bottom-up salience in 
the brain, as described above. The second, b), the base level 
activation, depends on how useful the AC has been in the 
past and facilitates attentional learning.  

The third factor, c), is the modulatory activation of the 
ACM. It has been proposed many times in attention 
literature that human attentional processing is limited for 
targets presented in short succession - observable, among 
others, in an AB paradigm -, presumably because of a 
suppression of attentional enhancement of subsequent 
stimuli during the processing of a target (Nieuwenhuis et al. 
2005), (Wyble et al. 2009), (Olivers & Meeter 2008). The 
modulatory activation reflects this mechanism, and regulates 
attentional enhancement of stimuli by increasing or 
decreasing the activation of coalitions in the Global 
Workspace. The most probable neural counterpart of this 
regulatory activity is the LC, which can enhance target 
processing through the release of NE in the forebrain (LC 
activity was proposed to play a role in the attentional blink 
by (Nieuwenhuis et al. 2005)). Similarly to LC neuron 
activity, the ACM activation at first increases upon 
processing a relevant or important target, followed by a 
period of low activation which is similar to the posttarget 
refractory-like autoinhibition exhibited by the LC (Fig 3 
bottom). The ACM activation is governed by a function 
derived from interpolating LC PETH data (Aston-Jones & 
Cohen 2005). 

The fourth parameter d) influencing coalition activation is 
a matching factor that is based on how well the percept in a 
coalition matches the pattern sought by the AC that creates 
the coalition. This accounts for the finding that in some 
cases, nontargets are attended to and reported instead of the 
targets if they are similar or share a common salient feature 
(Martens & Wyble 2010), (Lavie & Cox 1997), (Bichot & 
Schall 1999) although with less probability and less 
selective neuronal activation (Duncan et al. 1997). 

LIDA’s attentional mechanism can provide a 
computational explanation for the attentional blink and 
related findings. Two major reasons are proposed to account 
for the performance drop at intervals of 200ms – 500ms 
between the two targets (see Fig 3A bottom): a) the 
posttarget refractory-like period of the ACM activation, 
which leads to reduced target activations after ~200ms, and 
b) the discrete, competitive conscious broadcast mechanism 
(Baars & Franklin 2009).  

For the current description, an RSVP attentional blink 
paradigm with images is assumed (see Fig 1).  Stimuli are 
presented to the LIDA agent at a rate of one image every 
107ms. The agent’s task is to report target images pertaining 
to a specific target (in this case, vehicles), which means that 
there are at least two ACs, looking out for targets (vehicles) 
and distractors, respectively. This is also the paradigm used 
for the implementation of the LIDA Attentional Blink agent.    
If only a single target is presented, that target is added to a 
coalition by the Target Attention Codelet (TAC), will win 
the competition for consciousness since there is nothing that 
could compete with it, and can be consciously reported. 

285



 
Fig 3. A) The attentional blink at lag 2. Tn and Dn refer to 
targets and distractors, respectively. The vertical black lines 
intersecting with the timeline on top represent the 
approximate borders of LIDA cognitive cycles. AC1 is 
looking out for targets, and AC2 for distractors, adding 
them to Coalitions in the Global Workspace. The coalitions 
have to compete for consciousness, and the one with the 
highest activation is broadcast consciously. The reason the 
agent fails to report T2 is that in the second cognitive cycle, 
Coalition 2 (containing the distractors) wins the 
competition for consciousness. B) LC activity - PETH of a 
monkey LC neuron during target processing.  

If two targets are presented in an RSVP of images at lag-1, 
without a distractor, both targets are perceived in the first 
200ms – before the refractory-like period of the ACM – and 
they are both added to a target coalition by an AC looking 
out for targets. This TAC has higher base level activation 
than the Distractor Attention Codelet (DAC). Thus the 
targets will win the conscious broadcast and can be reported 
consciously. Possible subsequent targets are also added to 
the target coalition by the same AC, which adjusts the 
coalition activation based on the factors described above 
and on the previous coalition activation – this accounts for 
the spread lag-1 sparing effect.  

At lags 2 and 3, the second target sometimes cannot be 
reported consciously because a coalition containing 

distractors wins the competition for consciousness instead 
of T2 (see Fig 3 and 4). The reason for the low activation of 
the target coalition is the low ACM activation at this point 
in time (due to the refractory-like period, see Fig 3 bottom). 
D2 is added to the distractor coalition by the DAC, and the 
coalition activation is updated. The distractor coalition is 
also modulated with a lower ACM activation, but will come 
out with a higher activation because a) depending on the 
timing of the presentation, the ACM activation might be 
higher at the point the distractor is perceived than at the 
point when the target is perceived, and b) since the 
distractor coalition was created upon perceiving D1, at 
which point the coalition activation was higher (0.4 in Fig 3, 
due to the high ACM activation at that point). 

At lag 4, the ACM activation has regenerated to its initial 
level of activation, and T2 can be reported with a high level 
of accuracy again (the T2 accuracy at lag 4 approximately 
equals T2 accuracy at lag 1 in this paradigm, see Potter et al. 
2010). 

Results 
LIDA’s attentional mechanism conceptually accounts for 

all of the AB-related phenomena described above: 
1-2) Lag-1 and spread lag-1 sparing. See above. 
3) Posttarget intrusion. During the blink, the distractor 
succeeding T2 often can be consciously reported even if T2 
itself cannot (see Fig 3). 
4) Whole report attenuates the AB. In case of an 
instruction to report the entire RSVP sequence, a different 
Attentional Codelet would be required, which would move 
every presented image into the Global Workspace and into 
the same coalition – every image would be a target. Thus, 
for short RSVP sequences, every image could be reported 
and no AB could be observed (if the sequence is too long, 
activation decay could lead to “forgetting” of the first 
images. There is also a limit on how much information the 
Workspace and the Global Workspace can hold, although 
this limit has not been quantitatively determined yet). 
5) Increasing T2 salience/arousal attenuates the AB. 
Increased T2 bottom-up salience leads to a higher activation 
of the PAM node representing T2 and thus to a target 
coalition with a higher activation, which increases the 
probability that T2 wins the competition for consciousness. 
In the case of emotional content with high arousal 
(Anderson 2005), a PAM node representing this emotion 
(with an activation value corresponding to the arousal) 
would be included in the coalition along with the target 
representation (Franklin et al., in press), increasing its 
activation and the probability of its conscious broadcast. 
6) Task-irrelevant cognitive load attenuates the AB. 
Subject less focused on a task exhibit higher levels of tonic 
LC activity (see lowest panel of Fig 2), which can explain 
this phenomenon. In experimental conditions in which 
moving dots are presented around the target, and in 
conditions where the subject is instructed to think about 
something else, subjects are less focused on the AB task – 
therefore their AttentionCodelet Module Activation 
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(modeling LC activity) is higher before 
a much smaller post-target activation d
possible to almost always report T
accordance with behavioral AB experim
subjects (Olivers & Nieuwenhuis 2005),
(Nieuwenhuis et al. 2005). 
7) Target Confusion. Targets pre
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The Structure of the Model  
A computational model has been proposed which is capable 
of simulating early phases of speech acquisition, speech 
production, and speech perception. The model comprises 
two main modules, i.e. mental lexicon and action repository 
(Fig. 1). The mental lexicon activates semantic and 
phonological representations of words (cognitive level, Li et 
al. 2004) while the action repository activates sensory and 
motor representations of syllables (cf. Levelt & Wheeldon 
1994, Guenther et al. 2006, Kröger et al. 2009, Kröger et al. 
2011a).  

Figure 1: Structure of our cognitive-sensorimotor model 
of speech processing. Light blue boxes indicate processing 

modules; dark blue boxes indicate self-organizing maps (i.e. 
semantic map S-MAP and phonetic map P-MAP) or neural 
state maps, i.e. the semantic, phonemic, auditory, somato-

sensory, and motor plan state map (for a detailed description 
of this model see Kröger et al. 2011a). 

 
The sensorimotor part of our model has been implemented 
and tested by simulating early phases of speech acquisition 
(i.e. babbling phase and imitation phase) and performing 
production and perception tests after learning (Kröger et al. 
2009 and 2011b). The detailed structure of the sensorimotor 
part of our model is given in Fig. 2 (top). Cortical regions 
associated with specific neural maps within our approach, 
are displayed in Fig. 2 (bottom).    

A characteristic feature of our approach is that we assume 
two self-organizing maps ! i.e. a semantic map (S-MAP, 
Fig. 1) and a phonetic map (P-MAP, Fig. 1) ! which on the 
one hand are associated with each other and which on the 
other hand are associated with state maps, representing 
current semantic, motor plan or sensory activation patterns 
of speech items (cf. Li et al. 2004, Zhao et al. 2011).    

Acquisition of Skills and Knowledge  
Acquisition is simulated in our approach by applying a huge 
amount of training items to the model. These training items 
represent stimuli, which are exposed to a newborn and later 
on to a toddler (i.e. to the model) during the first two years 
of lifetime.    

Acquisition starts "#$%( &'('')#*+,C( #)-)( (( $.(#*#*+( /%(0-(
which is mainly language independent. Here the model 
generates random motor patterns (motor plan states) and 
produces appropriate auditory and somatosensory patterns 
(auditory and somatosensory states). Motor plan and sen-
sory states are exposed to the model nearly simultaneously 
and thus allow associative learning, i.e. an association of 
specific motor plan states with corresponding sensory states 
(Kröger et al. 2009). This learning leads to an adjustment of 
neural connections between state maps and the self-
organizing phonetic map (P-MAP). Neurons within the 
phonetic map represent specific sensorimotor states and 
these states are ordered with respect to phonetic features 
within this map (i.e. self-organization). Thus, after learning 
co-activation of a motor plan state is possible, if a specific 
sensory (e.g. auditory) state is activated. In this way, initial 
sensorimotor knowledge is (123#.-4(56.(&/.6$6-76"-)0,((*4(
&/.6$6-CV-08))(')-0,(W$%-($-.9(&/.6$6,(.-5-.0($6($%-(5(1$($%($(
these phonetic states are not necessarily language specific; 
cf. Kröger et al. 2009).   

This initial sensorimotor knowledge )($-.(6*(())6"0(&imi-
tation training, since after initial babbling the model is able 
to imitate external auditory stimuli. Imitation training leads 
to a further adjustment of neural connections between P-
MAP and state maps and leads to a further ordering of states 
within the P-MAP, which now leads to language-specific 
speaking skills (Kröger et al. 2011b). Beside further deve-
lopment of the action repository, imitation training is also 
the starting point for building up the mental lexicon (ibid.). 
Training items for imitation training comprise sensorimotor 
states, which result from imitation trials performed by the 
model itself, but in addition comprise a semantic represent-
tation of the word which is currently imitated. This allows a 
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parallel self-organization of the S-MAP and adjusts the 
neural connections between both self-organizing maps (P-
MAP and S-Map) as well as the neural connections to all 
state maps. Thus, imitation training in addition leads to the 
formation of first language specific knowledge (i.e. phono-
logical representation of words, see Kröger et al. 2011a).      

 
 
 
 
 
 
 
 
 

 
 

Figure 2: Structure of the sensorimotor part of the model 
(top) and cortical regions related to specific neural maps 

occurring within the model (bottom). Top: The model com-
prises a feedforward pathway (motor) and three feedback 

pathways (lower and higher level somatosensory and audi-
tory).  Outlined boxes indicate neural maps; other boxes in-
dicate neural processing modules, which are not specified in 

detail. Single arrows indicate neural pathways for forwar-
ding information; double arrows indicate neural mappings 
which are involved in information processing. The light 

green area indicates higher processing levels which activate 
syllables as entire units; lower levels (primary cortical maps 

and subcortical sturcutres) are capable of processsing 
smaller temporal units of production and perception. TS: 

map for trained sensory states (already acquired); ES: map 
56.(-:$-.*()(0-*06.8(0$($-0(W13..-*$)8(/.6431-4X;(<(3=(
(34#$6.8(-..6.(0#+*();(<00=(069($60-*06.8(-..6.(0#+*())(

Bottom: Cortical locations of implementations of the prima-
ry neural maps (pink: primary motor map, primary somato-
sensory map, and primary auditory map), of the neural state 
maps (orange: phonemic map, motor plan map, somatosen-
sory and auditory state maps within the somatosensory-pho-
netic and auditory-phonetic processing modules), and of two 

mirrored representations of the phonetic map (red). Neural 
mappings between state maps and phonetic map are indi-

cated by dark red arrows; The neural pathway between the 
two mirrored representations of the phonetic map is indi-

cated by a red arrow; AF: arcuate fascilicus. 

Future Work 
The phonetic as well as the semantic map are the central 
maps for self-organization and enable associative learning in 
our approach. While the gross structure of our model is in 
accordance with the well-known models introduced by 
Guenther et al. (2006) and by Li et al. (2004), the reality of 
the phonetic map (e.g. in its mirrored location, joined via the 
AF, as postulated in Fig. 2) needs to be proved by brain 
imaging experiments.  
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Abstract
To develop a unified theory of human decision-making in daily
behavior selections, the authors propose an architecture model
called Model Human Processor with Real Time constraints
(MHP/RT) (Kitajima & Toyota, 2012). This model inte-
grates the established theory of decision-making by Kahneman
(2003), Two Minds, and the idea that human behavior is orga-
nized in the ever-changing environment (Newell, 1990) into
a construct that is capable of simulating such daily behavior
as driving a car or watching a baseball game at a stadium.
Kitajima and Toyota (2012) proposed that MHP/RT operates
in one of four modes that are defined by the active components
of MHP/RT at a specific time. Kitajima and Toyota (2011a)
demonstrated that at a specific moment MHP/RT is processing
one of four aspects of a certain event. This paper demonstrates
how memory is used in the four operation modes and the four
processing modes of MHP/RT.
Keywords: decision making; behavior selection; Two Minds;
time scale of action; MHP/RT; autonomous memory;

Introduction
Traditionally, human behavior is considered as the outcome
of conscious and unconscious processes, which involve con-
scious and unconscious operations using necessary pieces of
information from long-term memory in which experiences
are stored in representations accessible to these processes.
From this perspective, the role of memory is similar to a
database system. It stores a huge amount of data to be used
on request by other systems that work to accomplish some
goals.

However, an increasing voice suggests that the memory
system is better viewed as an autonomous system, rather
than a passive database system. For example, Marcus (2008)
wrote:

Nobody knows for sure how this [memory] works, but
my best guess is that each of our brain’s memories acts
autonomously, on its own, in response to whatever re-
quests it might match, thereby eliminating the need for
a central agent to keep a map of memory storage loca-
tions. Of course, when you rely on matches rather than
specific locations that are known in advance, there’s no
guarantee that the right memory will respond; the fewer
the cues you provide, the more “hits” your memory will
serve up, and as a consequence the memory that you ac-
tually want may get buried among those that you don’t
want. – adapted from pp.22–23 of Marcus (2008)

The authors (Kitajima & Toyota, 2012) developed an archi-
tecture model capable of simulating human behavior selec-

tions in real-world situations. The basic idea is that observed
human behavior is the result of synchronized integration of
the output of conscious and unconscious processes, with the
support of the memory system which works autonomously
and information in long-term memory becomes available by
means of resonance processes, not by retrieval processes ini-
tiated by either the conscious or unconscious process.

The architecture model is an integration of two established
principles of human behavior: 1) Two Minds, which refers to
conscious and unconscious processes that work in decision-
making, proposed by Kahneman (2003); J. S. B. Evans (2003)
and 2) the time scale of human action suggested by Newell
(1990), which regards conscious processes as very slow feed-
back processes and unconscious processes as very fast feed-
forward processes (see the next section for brief descriptions
of these principles). Kitajima and Toyota (2012) describes
the architecture model, Model Human Processor with Real-
Time constraints (MHP/RT), as integrating Two Minds and
Newell’s time scale of action with special consideration of
how to synchronize these two totally different systems in
terms of their characteristic times. We also demonstrated
that this model can plausibly simulate passengers’ behav-
iors at train stations (e.g., transferring to another line, us-
ing the toilet, and purchasing train tickets). Kitajima and
Toyota (2011a) demonstrated that for a certain behavioral
event Event(T ) that happens at a certain time T , MHP/RT
addresses this event in four different ways, or modes, that oc-
cur serially. In other words, human behavior is considered to
be a series of these four different modes: conscious or un-
conscious processes concerning Event(T ) before it happens
(t < T ) or after it happens (t > T ).

MHP/RT defines memory as an autonomous system. How-
ever, previous publications (Kitajima & Toyota, 2011a, 2012)
have not described in detail how memory is used. The pur-
pose of this paper is to fill this gap by demonstrating the
operation of the four processing modes of MHP/RT from
the viewpoint of the role of memory. This paper starts by
briefly describing MHP/RT (see Kitajima and Toyota (2012)
for more detail), then discussing the four operation modes of
MHP/RT (see Kitajima and Toyota (2011a) for more detail),
and finally describing the role of memory in the four process-
ing modes of MHP/RT.
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Figure 1: Two Minds (Kahneman, 2003).

The Principles for Understanding Human
Behavioral Selections

In this section, we will review briefly Kahneman’s Two
Minds (Kahneman, 2003) and Newell’s time scale of human
action (Newell, 1990).

Two Minds: The Theory of Decision-Making
Human decision-making has been a central topic in eco-
nomics. Herbert A. Simon, winner of the Nobel Prize
in economics in 1978, proposed principles of human be-
ings’ decision-making processes. He described the decision-
making process as a “bounded rationality principle” as well as
a “satisficing principle” (Simon, 1956, 1996). Simon claimed
that agents, or human beings, face uncertainty about the fu-
ture and costs when acquiring information in the present.
These factors limit the extent to which human beings can
make a fully rational decision. Thus, they possess only
“bounded rationality” and must make decisions by “satis-
ficing,” or choosing the path that might not be optimal, but
which will make them happy enough.

Recently, Kahneman, winner of the Nobel Prize in eco-
nomics in 2002, introduced behavioral economics, which
stems from the claim that decision-making is governed by the
so-called “Two Minds” (Kahneman, 2003; J. S. B. T. Evans
& Frankish, 2009). In other words, a human being’s behavior
is the outcome of two different systems including an “experi-
ential processing system (System 1)” and a “rational process-
ing system (System 2).” Figure 1, adapted from (Kahneman,
2003), illustrates the workings of the two systems. In short,
System 1 is a fast feed-forward control process driven by the
cerebellum and oriented toward immediate action. In con-
trast, System 2 is a slow feedback control process driven by
the cerebrum and oriented toward future action.

Newell’s Time Scale of Human Action
The two systems, System 1 and System 2, work jointly and
in synchronous with the ever-changing external world to ex-
hibit moment by moment coherent human behavior. How-
ever, there is a large difference in processing speed between
the two systems. Rational processing typically takes minutes
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Figure 2: Newell’s time scale of human action (Newell,
1990).

to hours whereas experiential processing typically extends
from hundreds of milliseconds to tens of seconds. Figure 2
illustrates the time scale of human action consisting of the
following four bands, 1) Biological Band, 2) Cognitive Band,
3) Rational Band, and 4) Social Band, each has its character-
istic processing time (Newell, 1990). A large part of human
beings’ daily activities are immediate actions and are there-
fore under control of the experiential processing system (Sys-
tem 1). The rational processing system (System 2) intervenes
with the experiential processing system to better organize the
overall outcome of the processing through consciously envi-
sioning possible futures.

MHP/RT: Integration of MHP and Two Minds
Brief Description of MHP/RT
Toyota and Kitajima (2010a) and Kitajima and Toyota (2012)
proposed MHP/RT as a simulation model of human behav-
ior selection1. It stems from the successful simulation model
of human information processing, Model Human Proces-
sor (MHP) (Card, Moran, & Newell, 1983), and extends
it by incorporating three theories we have published in the
cognitive sciences community. The Maximum Satisfaction
Architecture (MSA) deals with coordination of behavioral
goals (Kitajima, Shimada, & Toyota, 2007), the Structured
Meme Theory (SMT) involves utilization of long-term mem-
ory, which works as an autonomous system (Toyota, Kita-
jima, & Shimada, 2008), and Brain Information Hydrody-
namics (BIH) involves a mechanism for synchronizing the in-
dividual with the environment (Kitajima, Toyota, & Shimada,
2008).

1Unfortunately, the detailed description of the model is available
only in Japanese in Kitajima and Naito (2010) and Kitajima and
Toyota (2011b).
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Figure 3: Schematic diagram of MHP/RT (Kitajima & Toyota, 2012).

MHP/RT includes a mechanism for synchronizing au-
tonomous systems (rectangles with rounded corners in Fig-
ure 3), working in the “Synchronous Band.” MHP/RT was
created by combining MHP and Two Minds by applying our
conceptual framework of Organic Self-Consistent Field The-
ory (Toyota & Kitajima, 2010b). See Kitajima (2011) for
more information.)

MHP/RT works as follows:

1. Inputting information from the environment and the indi-
vidual,

2. Building a cognitive frame in working memory, which is
not depicted in the figure but it resides between the con-
scious process and the unconscious process to interface
them,

3. Resonating the cognitive frame with autonomous long-
term memory to make available the relevant information
stored in long-term memory; cognitive frames are updated
at a certain rate and the contents in the cognitive frames are
continuously input to long-term memory to make pieces of
information in long-term memory accessible to System 1
and System 2,

4. Mapping the results of resonance on consciousness to form
a reduced representation of the input information, and

5. Predicting future cognitive frames to coordinate input and
working memory.

As depicted in Fig. 3, human beings operate in two bands,
the asynchronous band and the synchronous band. The Bod-
ily Coordination Monitoring System and the Memory Pro-
cessing System operate in the asynchronous band. The Per-

ceptual Information Processing System, Conscious Informa-
tion Processing System, Autonomous Automatic Behavior
Control Processing System, and Behavioral Action Process-
ing System operate in the synchronous band. These systems
work autonomously. System 1 of the Two Minds corresponds
to the Autonomous Automatic Behavior Control Processing
System, and System 2 corresponds to the Conscious Infor-
mation Processing System.

The density of information in working memory is the prod-
uct of the updating rate of the cognitive frame and the degree
of fineness of the information represented in the cognitive
frame. When the system is under the control of automatic
behavior (System 1), the updating rate of the cognitive frame
tends to be high; however, the degree of fineness of the infor-
mation represented in the cognitive frame is coarse. When the
system is under the control of consciousness (System 2), the
updating rate of the cognitive frame and the degree of fineness
of the information are flexibly determined by the context.

Hierarchical structure of behavior. Observed behavior
should be regarded as a compound of activities that occur
on different time scales. The time scales may be millisec-
onds, hundreds of milliseconds, a few minutes, or even a few
weeks. It is not true that activities that occur on a certain time
scale evolve continuously to the next time scale. Rather, it is
more appropriate to assume that a set of activities that occur
on a certain time scale are discontinuously connected with
higher-level activities, and therefore the relationship between
a pair of related activities at two different levels is non-linear.
Newell (1990) explained the time scale of human action, and
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identified four bands and their characteristic times: the bio-
logical band (1msec ∼ 10msec), the cognitive band (100msec
∼ 10sec), the rational band (a few minutes ∼ a few hours),
and the social band (a few hours ∼ a few hours).

Interaction between System1 and System 2. MHP/RT
transforms the input information from the environment to the
output behavior to the environment. The actual operation is
determined by the relative balance between the following two
factors, which is determined by the degree of participation of
consciousness in the manifestation of behavior at each mo-
ment:

1. The effect of feedback from the conscious layer (System 2)
on shaping behavior, and

2. The effect of feedforward control from the autonomous au-
tomatic behavior control layer (System 1) on shaping be-
havior.

How System 1 and System 2 interact appears in the rela-
tionship between the updating rate of the cognitive frame and
the density of information represented in the cognitive frame.
In the following, this will be explained in more detail.

• System 1 control mode: When System 1 governs behav-
ior, the updating rate of the cognitive frame is the fastest,
and the system behaves unconsciously. The system refers
to the memory that is activated via the resonance reaction,
and the outcome of behavior is consciously monitored. As
long as the output of behavior is consistent with the rep-
resentation of the contents of activated memory, no feed-
back control is applied. An example of this behavior mode
is riding a bicycle on a familiar road. It is not necessary
to monitor the behavior with high frequency. As a result,
System 2 may initiate tasks that are not directly relevant to
unconscious behavior. In such a situation, consciousness
is free from behavior that is tightly embedded in the en-
vironment. Therefore, for example, the system may use a
mobile phone to talk with a friend while riding a bicycle.

• System 2 control mode: When System 2 governs behav-
ior, the systems try to behave according to the image Sys-
tem 2 created or meditate with no bodily movement. The
least resources are allocated for initiating behavior accord-
ing to input from the environment. This corresponds to
a situation in which the amount of flow of information in
System 1 is small. Working memory is occupied by activi-
ties related to System 2. However, the sensory-information
filter functions so that the system can react to a sudden in-
terruption from the environment (e.g., a phone call).

How MHP/RT Works
At a given time, T , MHP/RT’s state is viewed in two ways;
1) which part of MHP/RT is working and 2) what con-
tent MHP/RT is processing. In the following subsections,
we describe the “which part” question in the “Four Opera-
tion Modes” subsection (Kitajima & Toyota, 2012), and the
“for what” question in the “Four Processing Modes” subsec-
tion (Kitajima & Toyota, 2011a).

Four Operation Modes of MHP/RT
In MHP/RT, behavior is the outcome of activities in System 1
and System 2, both of which use working memory to prepare
for the next action. Depending on the situation, behavior is
driven mainly by either System 1 (MHP/RT Mode 1) or Sys-
tem 2 (MHP/RT Mode 2). Both systems work synchronously
by sharing working memory. However, in some situations,
both work asynchronously (MHP/RT Mode 3) or indepen-
dently (MHP/RT Mode 4); working memory may be shared
weakly or used solely for one of these layers.

Four Processing Modes of MHP/RT
Human behavior is considered a series of moment-by-
moment decision-making processes in the ever-changing en-
vironment. Each decision-making process is carried out by
System 1 and System 2 of Two Minds under real-time con-
straints, which basically requires synchronizing the workings
of System 1 and System 2 in the real world by taking into ac-
count each system’s characteristic times defined by Newell’s
time scale of action (Fig. 2). The result of decision-making is
an event that includes the direct output of decision-making or
behavior, and the resultant state of the external world.

The four processing modes in human decision-making are:
(1) conscious (System 2) behavior before the event, (2) con-
scious (System 2) behavior after the event, (3) unconscious
(System 1) behavior before the event, and (4) unconscious
(System 1) behavior after the event.

Figure 4 illustrates these four processing modes along the
time dimension expanding before and after the event, which
is denoted as the “boundary event” in the figure.

The Role of Memory in MHP/RT
Organization
As Figure 3 illustrates, the memory system operates asyn-
chronously with the systems working synchronously with the
environment. Memory processes include the storage of infor-
mation and the use of stored information, which play a very
important role in the real-time simulation of human decision-
making in daily life.

Memory storage. We assume that memory is organized by
a “Multi-Dimensional Frame” (MD frame) for storing infor-
mation. The MD frame is a conceptual extension of Minsky’s
frame (Minsky, 1988). It is a primitive cognitive unit that
conveys information that the brain can manipulate under var-
ious constraints, similar to the concept of the Idealized Cog-
nitive Model (ICM) theory by Lakoff (1987) and the schema
theory by Rumelhart (1980). Our theory involves two kinds
of MD frame. The Behavior Multidimensional frame (BMD
frame) is created and used by Autonomous Automatic Be-
havior Control Processing. The Relational Multidimensional
frame (RMD frame) is created and used by Conscious Pro-
cessing. The BMD frame and RMD frame are connected by
a sharing Object originating from Perceptual Processing.

Due to the limitation of the brain’s processing capabil-
ity, the range of integration is limited; therefore, System 1
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Figure 4: How the Four Processing Modes work (Kitajima & Toyota, 2011a).

memory and System 2 memory may differ. However, they
may share objects originating from perceptual sensors. Thus,
when objects that are the result of the just-finished integration
and segmentation process are processed in the next cycle, rep-
resentation of the objects may serve as common elements to
combine System 1 memory and System 2 memory to form an
intersystem memory. We call this memory the Multidimen-
sional (MD) Frame.

Memory usage. Object cognition involves collecting infor-
mation from the environment via perceptual sensors; inte-
grating and segmenting the collected information, centering
on visually collected objects; and continuing these processes
until the objects necessary to live in the environment are ob-
tained. These objects are then used independently in System
1 and System 2 of Two Minds, and memorized after integrat-
ing related entities associated with each system.

Function: Resonance
At a given moment, MHP/RT is working in one of the four
operation modes described above. However, the memory sys-
tem works autonomously to make part of long-term memory
active so that it can be used in System 1 and/or System 2 pro-
cessing through resonance processes. However, as depicted in
Figure 5, how the memory system reacts to the environment
may depend on the degree of time constraints that the human-
environment system imposes on itself. When real-time con-
straints are strong, slow memory processes that use long-term
memory do not participate in the processing. In other words,
only the unconscious side of the Two Minds system, System
1, works and has a chance to use memory through resonance.
In contrast, with few real-time constraints, the conscious and
unconscious systems work collaboratively in some cases and
independently in other cases. Both systems have a chance to
use as many resonated contents as possible.
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Figure 5: Memory reaction under real time constraints.

Operation: Pipelining
At a given moment, MHP/RT is processing one of four
content types: a future event consciously or unconsciously,
or a past event consciously or unconsciously. For fu-
ture/conscious processing, MHP/RT uses memory that con-
veys a sequence of actions with symbolic representations for
accomplishing a currently held goal. For future/unconscious
processing, it uses memory that is associated with an auto-
matic sequence of actions that should lead to the goal. For
past/conscious processing, it reflects on and elaborates a cer-
tain symbolic event by using activated pieces of knowledge
through resonance processes. For past/unconscious process-
ing, existing memory is modified by using activated non-
symbolic pieces of knowledge that is currently activated in
working memory.
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It is important to note that memory activation is a to-
tally parallel process; therefore, there is no way of knowing
which part of activated memory is used. It depends com-
pletely on which object MHP/RT is processing. MHP/RT’s
resonance process makes available the relevant part of ac-
tivated knowledge through resonance. Along the time di-
mension, MHP/RT, working in one of four operation modes,
switches among the four processing modes and uses activated
knowledge through resonance. MHP/RT’s processing is a
pipeline process of four primitive processes. The nature of
this pipelining may change depending on the nature of the
task. When learning a new task, it is impossible to foresee the
future; therefore, past/conscious processing may dominate.
In contrast, for example, when an experienced piano player is
playing a well-practiced tune, future/unconscious processing
may dominate.

Conclusion
This paper demonstrated the role of memory in MHP/RT,
the architecture model of human behavior selection. The
purpose of MHP/RT is to simulate human behavior; there-
fore, the organization, function, and operation of memory
were specified accordingly. According to the specification
of MHP/RT in Fig. 3, the organization of memory is defined
as the MD frame. The content in long-term memory is made
available through resonance processes in MHP/RT. Given that
MHP/RT works in one of four different operation modes and
that it processes contents associated with an event in one of
four different ways, the portion of activated memory that is
used may differ. We believe MHP/RT with an autonomous
memory system is capable of simulating human behavior in
real-world settings.
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Abstract

Cognitive performance in memory tasks, as measured by the
N-back task, shows large differences between attention defi-
ciency disorder (ADD) patients and controls. Recent findings
indicate fewer anatomical differences, which, in turn, makes a
cognitive modeling of the inherent information processes pos-
sible. In this article, we investigate these aspects for 0-back
and 1-back problems and introduce a new cognitive model
explaining differences between patients and controls. The
ACT-R model explains the results by differences in the util-
ity and reward function. The presented methodology – using
cognitive modeling for controls and patient groups – works to-
ward two goals: (1) A potential explanation of a source of dif-
ferences for a medically relevant group and (2) to present and
evaluate a new approach using cognitive modeling in psychi-
atric research areas to identify more detailed descriptions of
mental differences.
Keywords: N-Back, ACT-R, Attention Deficiency Disorder,
Working Memory, Modeling of Disorders

Introduction
The so-called N-back task is used as a psychological tool
to determine individuals’ cognitive performance on (spatial)
working memory problems. The participant is presented with
a sequence a1, . . . ,am of letters one at a time. In a 1-back
task, the participant is required to press a button if the let-
ter being presented (ai) is identical to its direct predecessor
(i.e., if ai = ai−1 for the 1-back task). An N-back problem
requires a comparison of the current letter (ai) with the letter
presented N-steps back (ai−N). To keep the predecessor and
successor in memory can require some sort of spatial repre-
sentation. From a psychological perspective, a successful so-
lution requires concentration and the ability to keep track of
a number of items in working memory. A central finding is
that response latency increases and accuracy decreases with
increasing memory load (Braver et al., 1997; Cohen et al.,
1994; Lovett, Daily, & Reder, 2000). Performance errors can
be classified as errors of omission and errors of commission.
An error of omission is committed if the participant does not
press the button although the letters are identical and an error
of commission if the participant presses the button although
the letters to be compared are different. Errors of omission
rarely appear for smaller N-back tasks (Braver et al., 1997),
but are generally more likely than errors of commission.

Attention Deficiency Disorder (ADD) patients may per-
form more errors of commission as they are primarily char-
acterized as having a much higher level of inattention, dis-
tractibility, and impulsiveness (Pary et al., 2002; Barkley,
1998). Although the exact biological or cognitive mecha-
nisms are still unknown, a number of involved pathways have

been discussed (Pary et al., 2002). ADD can negatively af-
fect the educational and social performance of those suffering
from its symptoms (Pary et al., 2002) and it is one of the most
common mental disorders, according to data from the NIH
(NHS, 2008). Although there are differences in brain devel-
opment, there are no known anatomical differences. An inter-
esting insight we can draw from these findings is that atten-
tional problems may depend on internal information process-
ing rather than on physiological aspects of the brain. With
this in mind, it seems possible to model this effect with a
symbolic cognitive model. In order to test this hypothesis we
decided to model the results of a study conducted by Klein,
Wendling, Huettner, Ruder, and Peper (2006). The method-
ological approach of comparing clinical abnormalities with
controls on a level of abstraction to identify cognitive distinc-
tions within a cognitive model is, as described in this paper,
a fairly new approach. For this reason, the general proce-
dure in this study can serve as an example for other fields of
clinical diagnostics especially for cognitive disorders. Simi-
lar approaches with different starting point question could be
found in Hussain and Wood (2009).

State-of-the-Art
The Experiment by Klein et al. (2006)
We briefly report the empirical findings from Klein et
al. (2006). They investigated different cognitive parame-
ters of intra-individual variability to identify subgroups of
ADD–patients in comparison with controls. All members
of the patient-group (57 subjects) were patients from “Car-
itashaus Feldberg” a clinic specializing in the treatment of
ADD diagnosis and met the criteria according to ICD-10 at
the time of the study. They were diagnosed by experienced
clinical psychologists and psychiatrists on the basis of Con-
ners’ parent and teacher rating scales (Steinhausen, 2000).
The patient group included 49 boys (85.9 %) and 8 girls
(14.1 %) with a mean age of 126.4 ± 21.2 months (range:
84-169 months) and a mean IQ of 96.6 ± 13. The control
group was matched to the patient-group. For this reason the
controls do not differ in the mean age (126.9 months ±21.7)
or gender distribution (8 girls, 45 boys). Only the mean IQ
(110.2 ± 12.82) was significantly (t 108 = 5.42, p = .001)
higher than in the patient-group. Further group descriptions
are given in Klein and colleagues (2006).

Design, Method & Procedure. Both groups were tested
with 0-back, 1-back, and 2-back problems. In each condition
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(0-back, 1-back, and 2-back tasks) the participants were pre-
sented with exactly 100 trials. Each stimulus was presented
for 0.5 seconds and the next stimulus was presented 2.0 sec-
onds later. The “event” condition in the 0-back condition
was the presentation of the letter “E” while all other letters
were characterized as “nonevents.” In the 1-back condition,
an event occurred if the letter being presented (ai) was identi-
cal to the letter presented one step earlier (ai−1), as character-
ized above. An event occurred randomly in about 20% of the
trials. Ten practice trials preceded the 0-/1-back tasks; 20 the
2-back tasks. Subjects had to press the right-hand response
button as quickly as possible for events, and the left-hand re-
sponse button for nonevents.

Results. The authors decided to eliminate the 2-back condi-
tion as 17 patients and 5 controls had difficulties understand-
ing the task. Therefore, they only report the results for 0-
back and 1-back tasks. Three of the cases showed significant
group differences, where the differences stand out in the 1-
back condition. All results can be found in Figure 1. For
further information please refer to Klein et al. (2006).

Figure 1: The empirical results for both ADD-patients and
controls from the study of Klein and colleagues (2006).

ACT-R. The cognitive architecture ACT-R 6.0 (J. R. An-
derson et al., 2004; J. Anderson, 2007) provides a number of
working memory specific modules which are in turn associ-
ated with specific cortical regions. The smallest information
unit is called a chunk. Chunks are modified by mental oper-
ations. These mental operations are associated with so-called
production rules, which consist of a condition and an action
part. The procedural module controls ACT-R’s strictly se-
rial behavior; only one production at a time can fire. The
likelihood that a production rule can fire depends on several

factors: First of all, the condition of the rule must be satis-
fied. If several production rules compete then noise and the
production rules’ utility performs the selection process.
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Figure 2: Overview of the different buffers and modules in the
cognitive architecture ACT-R 6.0. The symbolic structure is
represented by productions while subsymbolic parts control
the execution of productions (based on utility) and the veloc-
ity of information retrieval from declarative memory and are
therefore especially responsible for learning.

There have been several attempts to model the N-back task
in ACT-R. One of the first cognitive models for the N-back
was presented by Lovett et al. (2000). They identified two
qualitatively different strategies used by participants: The so-
called activation strategy, where participants respond ’match’
if a letter seems familiar. A second strategy – the update strat-
egy – involves actively maintaining a list of prior letters and
updating that list after each letter is presented. They con-
cluded that, working memory resources are not involved in
the first strategy as no maintenance is involved, but are in-
volved in the second. The ACT-R task model for the N-back
task includes all the declarative and procedural knowledge
necessary for performing this task according to the update
strategy. In this model, each stored letter was represented as
a declarative chunk indexed according to how many letters
back it was from the current letter. They used mostly default
values (see Anderson and Lebiere (1998)) and set activation
noise to 0.04 and the retrieval threshold to 1.80 to optimize
the fit to the data. Individual differences between participants
could be captured by the previously attained source activa-
tion, parameter W, a type of attentional activation that is di-
vided equally among the items in the current focus of atten-
tion. It spreads from these items to related chunks.

Juvina and Taatgen (2007) empirically investigated N-back
tasks where subjects received feedback for each action. They
successfully modeled the influence of feedback on learning
rates. They found a significant change in the relation between
omissions and commission error rates – as in Klein and col-
leagues (2006).
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Aim of this research approach
The aim of this research approach was to identify relevant
parameters with an influence on the deficit in cognitive per-
formance and to provide a framework for further research ap-
proaches. Relevant symbolic processes should be identified
with different kinds of modeling. The database from Klein et
al. (2006), that examined ADD-patients and controls, served
for the validation of the different models of the N-back task.

In addition, we briefly review the existing cognitive models
for the N-back task. We discuss our findings in comparison to
the experiment by Klein et al. (2006) and draw conclusions
for further medical methods.

Methodology
In the following our research and methodological approach
are introduced (see Figure 3). Note that the following elabo-
rations of the cognitive modeling are all based on the empiri-
cal findings by Klein (2006) described in the “state of the art”
part in this paper.

The Cognitive Model
One of the main conclusions we draw from the previous ex-
periment and the literature is that ADD-patients may have a
higher inquiety (see above and Pary et al., 2006). This in-
quiety shows itself in the behavior of the participants: in a
heightened probability of pressing a button (to commit an er-
ror of commission) and a slightly greater level of difficulty
in retrieving information from declarative memory. This is
due to a greater amount of noise and results in errors of
omission. The noise levels in our two patients models vary
only slightly (.35 vs .362) in comparison to the control group
model. Higher inquiety has not yet been modeled (e.g., Gun-
zelmann, Moore, Gluck, Van Dongen, & Dinges, 2009). We
decided to represent the increasing inquiety by a higher neg-
ative utility or differences in the reward parameter. Our mod-
els do not assume other differences. As shown in Figure 6,
the two patient-models (reward/utility) both lead to the re-
sults found by Klein (2006). Therefore these two are different
forms of the original model (control group) with differences
in only one specific parameter. These parameter differences
are shown in Figure 4 and Figure 5.

Stimulus presentation times were set – as in Klein (2006)
– to 0.5 seconds with 2 second breaks between the stimuli.
The probability for N-back occurrence was set to 20%. Each
participant evaluated a trial of 100 stimuli.

The 0-back task
In the 0-back task participants were required to find a specific
letter in the given series of letters.

The variability of results is caused by specific parameter
settings (as indicated in Table 1). Overall, two settings were
considered as a plausible explanation for the error structure of
the patients group: a “reward-model” and a “utility-model.”
In these two models, either the reward parameter or the pa-
rameter of utility was varied (see Figure 4). Both models
can explain differences in performance between patients and

Figure 3: Research approach in this study. Empirical data
for control group and patients were taken from Klein et al.
(2006). Our modeling is orientated on these results. In the
“modeling part” we introduce two different models for the
patients group to predict the ADD group results.

controls (see Figure 3). From a psychological perspective ar-
guments for both models are possible. On the one hand, the
“utility-model” justifies the higher number of errors of com-
mission by patients through a more intense use of the “N-
back-found” production than in the control group model. On
the other hand, the “reward-model” explains this particular
error pattern with different reward setting. On a psychologi-
cal basis this would mean the use of the “N-back-not-found”
production has a more negative reward. Each “no-event-
sequences” will decrease the use of the “N-back-not-found”
production and this results in a higher amount of commission
errors.

In this sense patients and controls differ in the following
sub-symbolic parameters (see Table 1 and Table 2). As al-
ready mentioned in the “Cognitive Model” section you can
see the different parameter settings in the differences between
the two patient-models in Figure 4. For example a ∆0 in the
parameter reward (∆ R: 0) means that the fitting in this pa-
rameter for that model is not different from the two patient
models or the control group model. A ∆ U: 1.95 in the “N-
back-found” production means that the patient utility model
has an 1.95 higher utility parameter than the control group
model and also than the reward model, because their utility
was not modeled.

Table 1: Parameters used to model patients and controls for
the 0- & 1-back task.

egs :esc :rt :lf :ans :bll
Controls 1 t -.5 0.25 0.35 0.5
Patients 1 t -.5 0.25 0.362 0.5
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Figure 4: Diagram of the 0-back model “Something-new”
and “press-key” productions and the encode-, compare- and
decision-layer with its productions in the center. ∆ R de-
scribes the difference between the patient and control group
models in the parameter “reward” (R(patients)–R(control
group) = ∆R) for each specific production. This situation also
applies to the alternatively designed utility model (∆U) of the
0-back task.

Figure 5: Diagram of the 1-back model. “Something-new”
and “press-key” productions and the encode-, compare- and
decision-layer with its productions in the center. ∆ R de-
scribes the difference between the patient and control group
models in the parameter “reward” (R(patients)–R(control
group) = ∆R) for each specific production. This situation also
applies to the alternatively designed utility model (∆U) of the
1-back task.

The 1-back task
In the 1-back task participants have to press a button, if the
letter being presented is identical to the previous letter. This

Table 2: The base level activations for each stimulus in the
0-back task. Target stimulus for the remaining letters.

target stimulus remaining letters
Baselevel activation 50 0.5

task differs to the previous one so we included more produc-
tion rules – because it cannot be reduced to a simple “retrieve-
model” like the 0-back-task.

For this reason we introduced a more complex represen-
tation. Thus, the encoding layer is now separated from the
comparing and decision layer and is also a possible source of
errors.

As described in the explanation of the 0-back-task, we cre-
ated two models that explain the differences between patients
and controls. One model only uses the differences in utility
and one uses the reward parameter (see Figure 5).

Results and Discussion
The present modeling replicates data from Klein (2006) sat-
isfactorily (see Figure 6). Although both models match the
original data in a sufficient way, the “reward-model” provides
the better data. On the one hand, the scatter of the data in
the “reward-model” is less around the mean of the behavioral
data, and also comes closer to this. Also working memory
components in the ”compare and decision” layer in the 0- and
1-back-models like the ”nback-found” production do not dif-
fer in the two groups looking at the ”reward-model”(see Fig-
ure 6). This showed that there are no parameter differences in
this ”execution parts” of the ”reward-model”, but therefor in
the reward of inhibitory parts like the ”no-nback-found” pro-
duction, which results in this specific arrangement of errors.
This so created inquiety or impatience is the main cause of the
specific error pattern. Impatience is also mentioned in rela-
tion with a phenomenon called “delay aversion.” Delay aver-
sion is a behavior that was investigated in connection with
ADD and ADHD (Sonuga-Barke, Taylor, Sembi, & Smith,
1992). Our results indicate that the specific error pattern that
ADD patients produce in an N-back task could be traced back
to variations in the reward parameter of production rules. This
could mean that even at this subconscious level ”reward sim-
ilar actions” are responsible for the underlying pathological
behavior. The fact that this small variations in the reward
parameters, could affect working memory capacity in a cog-
nitive task was shown by the ”reward model”. A selective
control of the occurrence time concerning the N-back targets
could clarify this question more. Longer ”no-event phases”
in the N-back task should lead to larger number of errors in
the patient-groups than in control groups.

General Discussion and Outlook
There are only a few approaches to modeling different pa-
tient groups in ACT-R. Thus far, there are – to the best of
our knowledge – no (symbolic) cognitive models of working
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Figure 6: The identified errors of omission- and commission
both for ADD-Patients and the predicted ACT-R data for the
0-back and 1-back task.

memory differences in ADD-Patients. One reason might be
the difficulty of assessing differences in the attention span.
Most cognitive models have assessed this purely by differ-
ences in parameter settings. ADD-patients represent an in-
teresting and increasingly important population. By analyz-
ing empirical data we decided to model increasing inquiety
(resulting in a heightened probability of pressing a button
(to commit an error of commission) and a slightly greater
level of difficulty in retrieving information from declarative
memory) by increasing negative utility. In the modeling pro-
cess, it became apparent that there is at least an additional ex-
planation pattern, namely, in differences with reward (keep-
ing utility constant). A second “reward”-model was able to
capture the empirical differences. Both models make a sat-
isfactory prediction of the results and not only in paramet-
ric distances. This goes along with analysis from (Roberts
& Pashler, 2000). He argued that parameters might give a
good hint about a cognitive model if they constrain the out-
comes. In this way, we have differentiated between two likely
model. But, both models differ regarding an important aspect,
namely the length of the presented sequence. The higher the
length of the total sequence of presented letters, the higher
the errors the reward-model would predict but not the util-
ity model. A further prediction would be: Most psycholog-
ical studies have presented participants with a random func-
tion based on the probabilities with which an event occurs.
But, based on the cognitive modeling, we would predict that
higher pauses between events might trigger more commission
errors in the patient groups than in the controls. These ques-
tions have not yet been investigated empirically or reported
in the literature. This shows the power of the cognitive model
approach’s ability to make clear predictions based on an al-
gorithmic implementation, which can, in turn, be empirically
investigated in human experiments and suffice to discern dif-
ferent theories.

Our modeling approach is purely information-theoretic,
i.e., it does not require anatomical differences nor does it ex-
plain the effects solely by parameter settings. Recently, Gun-
zelmann and colleagues (2009) modeled the decline of cog-
nitive ability by sleep-deprived soldiers in an attention task.
They applied a Psychomotor Vigilance Test (Dinges & Pow-
ell, 1985; Dorrian, Rogers, & Dinges, 2005). The task of the
participants was to monitor a known location on a computer
screen and to press a response button each time a stimulus
appeared at random intervals between 2 seconds and 10 sec-
onds. Sleep deprivation had a severe effect on performance
due to decreased alertness. Differences between groups were
explained by differences in parameters. Certainly the pa-
rameter fitting process provides no explicit information about
prevalent biological differences, but several findings can still
be derived in this sort of modeling.

Unsurprisingly, results showed that a higher level of com-
plexity in the N-back task leads to a change in the relationship
between omission- and commission errors. Our hypothesis
in this context argues that at whenever a complexity-related
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omission error is committed, a commission error is counted.
This only applies to 2-Back and higher N-backs because of
a probable miscounting. This has not been reported so far,
but might indicate that this aspect has led to a distortion of
reported empirical findings in the literature. These findings
indicate that there is a great importance to develop a trust-
worthy method to identify the reasons for an error to oc-
cur. Effects of training of working memory by a dual-version
N-back tasks on intelligence has been investigated (Jaeggi,
Buschkuehl, Jonides, & Perrig, 2008). Nab et al. (2009)
reported changes on a neuronal level using the N-back task
also for cognitive training. These two findings reveal further
investigations on the N-back task to develop new therapeu-
tic methods for ADD. Future work will investigate the dif-
ferences regarding neurological predictions (fMRI-Analysis)
and the modeling of subgroups of ADD-Patients. Cognitive
disorders might be – at least in a non-negligible part – traced
back to differences in mental model operations, which are
linked to the production buffer that has been associated with
basal ganglia. Further psychological and medical research (to
explain the underlying medical condition) is necessary.
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Abstract 
Achieving a 50 msec cognitive cycle in any sufficiently 
sophisticated cognitive architecture can be a significant 
challenge.  Here an investigation is begun into how to do this 
within a recently developed graphical architecture that is 
based on factor graphs (with the summary product algorithm) 
and piecewise continuous functions.  Results are presented 
from three optimizations that leverage the structure of factor 
graphs to reduce the number of message cycles required per 
cognitive cycle. 

Keywords: Cognitive architecture, cognitive cycle time, 
graphical models, optimization. 
 

A common assumption underlying many cognitive 
architectures is that there is a core cognitive cycle that runs 
at ~50 msec/cycle, the time scale of the quickest human 
responses (once peripheral processing, such as physical 
movement, is subtracted out).  This value is close to the 70 
msec mean originally given for the Model Human Processor 
(Card, Moran & Newell, 1983), and matches the value used 
in ACT-R (Anderson, 2007), EPIC (Kieras & Meyer, 1997) 
and Soar (Laird, 2012).  Hitting such a rate in reality is 
critical for architectures that are to model cognition in real 
time as well as for architectures that are to support 
construction of intelligent systems that operate on human 
time scales.  It is less critical when the focus is purely on the 
non-real-time modeling of human cognition; but even there 
it matters in principle whether the approach can reach this 
time scale within neurobiological implementation 
constraints, as well as in practice whether the model can run 
fast enough for serious experimentation on complex tasks. 

Driven by this constraint, there has been considerable 
recent work on improving the efficiency and scaling of 
architectural capabilities such as declarative (semantic) 
memory (Derbinsky, Laird & Smith, 2010; Douglass & 
Myers, 2010), as well as a longer history of such efforts that 
go back at least to work on the efficiency and scaling of 
procedural (rule) memory (Forgy, 1982; Doorenbos, 1993).  
The focus in this article is on improving the efficiency and 
scaling of a form of graphical model (Koller & Friedman, 
2009) that is being explored as an implementation level for 
a broad spectrum, tightly integrated and functionally elegant 
graphical cognitive architecture (Rosenbloom, 2011a&b). 

Graphical models were chosen as the basis for this 
architecture because of their potential for yielding a uniform 
approach to implementing and integrating together state-of-
the-art algorithms across symbol, probability and signal 
processing.  At their core, graphical models provide 
efficient computation over complex multivariate functions 

by decomposing them into the product of simpler 
subfunctions and then mapping the results onto networks of 
nodes and links.  In a factor graph – the most general form 
of graphical model and the one used in the architecture – 
variable nodes represent function variables, factor nodes 
represent subfunctions, and links connect subfunctions with 
their variables (Kschischang, Frey & Loeliger, 2001).  
Multiple inference algorithms exist for such graphs, both 
exact and approximate.  The graphical architecture uses a 
variant of the summary product algorithm (Kschischang et 
al., 2001), a message-passing scheme that is exact for non-
loopy graphs and approximate for loopy ones. 

Given this algorithm, a single cognitive cycle maps onto 
the architecture as a graph cycle (GC); a solution to the 
graph, given evidence concerning the values of some 
variables, generated by passing messages until quiescence 
and then updating working memory (Rosenbloom, 2011c).  
The graph roughly corresponds to long-term memory and 
the evidence to working memory.  A single graph cycle can 
include parallel waves of rule firings, access to declarative 
knowledge, perception, and simple forms of reasoning 
(including fixed chains of probabilistic reasoning, as are 
found for example in POMDPs).  Each graph cycle is itself 
composed of a sequence of message cycles (MCs), during 
each of which a single message is passed along one link. 

Given this core capability, the graphical architecture has 
already been shown to support procedural and declarative 
memories (Rosenbloom, 2010), plus forms of perception 
(Chen et al., 2011), imagery (Rosenbloom, 2011d) and 
problem solving (Chen et al., 2011; Rosenbloom, 2011c).  
However, it still operates at a time scale that is too often far 
above the critical 50 msec/GC threshold.  Prior to the work 
described in this article, the average time per GC – in 
LispWorks 6.0.1 on a 3.4 GHz Intel Core i7 iMac with 8GB 
of 1333 MHz DDR3 RAM – was close to the desired value 
for simple tasks, such as 55 msec for the one GC involved 
in accessing a small semantic memory.  However, the Eight 
Puzzle averaged 872 msec/GC when run to completion on a 
problem that needed 9 GCs; and a more complex virtual 
navigation task (Chen et al., 2011) – which combined 
perception (via a three-stage CRF), localization (via part of 
SLAM), and decision-theoretic choice (via a three-stage 
POMDP) – was even more problematic.  Although this last 
task wasn’t implemented until after some of the new 
optimizations described in this article were already in place, 
it still required 2288 msec/GC when run for 20 GCs, a 
factor of 46 too slow. 

The obvious strategy for reducing these numbers is to 
decompose the problem into (1) reducing the number of 
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message cycles per graph cycle (MC/GC), and (2) reducing 
the time per message cycle (msec/MC); and then to tackle 
both of these subproblems individually.  Across the three 
tasks just mentioned, the range of 55-2288 msec/GC 
decomposes into 564-3635 MC/GC and .1-.6 msec/MC.  
This article focuses on the first subproblem, exploring how 
to leverage the structure of the architecture’s factor graphs – 
and the dependencies that these implicitly define – to 
dramatically reduce MC/GC. Work on the second 
subproblem – which is exploring new representations for the 
functions and messages at the heart of the architecture (as 
proposed in Rosenbloom, 2011b) – is not as far along, and 
is thus left as future work.  We begin here with additional 
relevant background on the architecture’s use of factor 
graphs and summary product, and on a set of early 
optimizations that were implemented prior to this work, 
before examining three new MC/GC optimizations. 

Factor Graphs and Summary Product 
In its simplest form, a factor graph embodies a variable node 
for each variable in the function of interest, a factor node for 
each subfunction in the product decomposition, and 
bidirectional links that connect each factor node with the 
variables it uses.  Figure 1, for example, shows a factor 
graph for a polynomial function of three variables, with 
three variable nodes and two factor nodes.  In more complex 
graphs, variable nodes may represent combinations of 
function variables, as in Figure 2, to exploit composite 
variables in the graph that are cross products of the function 
variables involved.  Maintaining such cross products is 
crucial, for example, to solving the binding confusion 
problem (Tambe & Rosenbloom, 1994) by tracking which 
values of one variable are consistent with which values of 
another variable (Rosenbloom, 2011a). 

By definition, factor graphs are bidirectional, so wherever 
there is a link between two nodes, messages pass in both 
directions along the link.  However, in creating the graphical 
architecture it became clear that introducing a form of 
unidirectional link would enable subgraphs corresponding to 
the kinds of conditions and actions that occur in standard 
rule-based procedural memories (as in Figure 2).  
Conditions match to information in working memory, 
combining their results so that actions can then propose 
changes to working memory.  Declarative knowledge is 
encoded in terms of condacts – which combine the effects 

of conditions and actions to pass messages both to and from 
working memory – plus functions, such as those associated 
with the two factor nodes in Figure 1.  Condacts yield 
standard bidirectional subgraphs, while conditions and 
actions yield subgraphs with a single active direction for 
message passing.  This notion of link directionality is not 
the same as that found in Bayesian networks; the former 
concerns the direction of message passing, while the latter 
concerns how variables functionally depend on each other in 
factor nodes (such as in defining conditional probabilities). 

Conditions, actions and condacts define variablized 
patterns that are combined, along with functions, into 
conditionals, a generalized form of rule that forms the basic 
long-term-memory element in the graphical architecture.  
Figure 2, for example, shows a rule-like conditional for 
transitivity that is composed of two conditions and one 
action, and for which the links only pass messages towards 
the right.  A bit of declarative memory might instead use 
two condacts and a function to specify the conditional 
probability of the first given the second, such as 
Concept(x), Color(y): [(Table: Brown=.95, 
Silver=.05) (Dog: Brown=.7, White=.25, 
Silver=.05) ...] for the classification of an object 
given its color.  Table 1 lists basic statistics on the 
conditionals and their patterns for the three tasks that have 
been introduced.  It can be seen that the Eight Puzzle is 
largely procedural, navigation is largely declarative, and 
semantic memory is more of a blend.  This not surprisingly 
leads to a skewed distribution of link directions for the latter 
two, and a more balanced distribution for the first (Table 2). 

Figure 2: Factor graph for rule  
After(x,y) ∧ After(y,z) ⇒ After(x,z). 

Figure 1: Factor graph for f(x,y,z) = y2+yz+2yx+2xz = 
(2x+y)(y+z) = fi(x,y)f2(y,z) 

 Nodes Links 
 Factor Variable Uni- Bi- 

S 83 82 114 55 
E 341 402 824 1 
N 161 132 75 214 

Table 2: Graph statistics for the Semantic Memory, 
Eight Puzzle and Navigation tasks. 

 Conditionals Conditions Condacts Actions 
S 9 12 11 3 
E 19 62 0 32 
N 25 4 47 1 

Table 1: Conditional and pattern statistics for the Semantic 
Memory, Eight Puzzle and Navigation tasks. 
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Each message along a link specifies a function over the 
variables in the link’s variable node that constrains the 
variables’ values.  These functions are represented in the 
graphical architecture as piecewise continuous; in particular 
as doubly linked arrays of nD rectilinear (i.e., orthotopic) 
regions, where each variable maps onto a dimension, and 
the value function for each region is linear over its variables, 
as in Figure 3 (Rosenbloom, 2011b).  If the function is 
Boolean, regions with a value of 1 are valid while regions 
with a value of 0 are not.  If it is probabilistic, the function 
specifies the density over that region of variable values.  
However, functions can also mix these two, as in Figure 3, 
as well as approximate arbitrary continuous functions. 

Given a new 
input message at 
a variable node, 
new output 
messages are 
computed for 
each of its links 
via a pointwise 
product of the 
new message 
with the 
incoming 
messages along 
all of the other links (except for the one along the output 
link). A pointwise product is like an inner product, where 
the value at corresponding points is multiplied; but there is 
no final summation over the result, so the output and input 
have the same rank.  At a factor node, the input messages 
are likewise multiplied in this manner, but the factor 
function is also included in the product, and then all 
variables not in the output message are summarized out, by 
either integrating over them to yield marginals or 
maximizing over them to yield the MAP estimate. Figure 4 
shows for example how evidence values of 3 for variable x 
and 2 for variable z propagate through the factor and 
variable nodes in the factor graph from Figure 1, to 
ultimately yield the marginal on variable y. 

Both product and summarization are computed in the 
architecture by systematically stepping through the nD 
function(s) – following the links between adjacent regions – 
and at each step either multiplying the corresponding 
regions from two functions or summarizing out a dimension 
of a region within one function.  Summarization involves 
either adding the integral of the region along the dimension 
to the current total or computing the maximum of the 
current region’s max and the cumulative max so far. 

At the beginning of each cognitive cycle, all messages are 
initialized before message passing begins.  If a factor node 
has no inputs – as is true for working memory nodes 
(because changes to working memory occur at decision time 
rather than directly via message passing) and nodes that 
represent functions in conditionals (which actually appear in 
the architectural graph in a different manner than is shown 
in Figures 1 and 4) – the factor node’s function (once 
unneeded variables are summarized out), becomes the initial 
outgoing message.  Messages from all other nodes are 
initialized with a value of 1, yielding no initial constraint 
since such messages are identities for pointwise product. 

All initial messages are placed into a global message 
queue, which is then continuously updated as existing 
messages are sequentially popped and processed, and new 
messages are generated. The cognitive/graph cycle reaches 
quiescence when there are no more messages in the queue. 

Preexisting Optimizations 
Several optimizations that reduce MC/GC were 
implemented early in the development of the graphical 
architecture.  A form of dynamic programming was 
incorporated that caches and reuses the last message 
generated along each active direction of each link.  In 
addition, to facilitate reaching quiescence with real 
functions, the cached message along each link direction was 
updated, and a new message added to the queue, only when 
the difference between the old and new messages exceeded 
ε = 10-7.  To further reduce the number of messages to be 
processed, not all messages were inserted at the back of the 
queue.  More constraining messages – ones that are 0 
everywhere and thus halt all processing downstream from 
them, or ones that at least provide some information via 
values that vary over the variable’s domain – were placed at 
the front of the queue, leaving only constant non-zero 
messages, which provide little discrimination, to be inserted 
at the back (see Figure 7a).  The hope was for uninformative 
messages to be updated by new values along their link 
before being popped off the queue for processing.  

Given these early optimizations, MC/GC ranged from 564 
for semantic memory to 1459 for the Eight Puzzle.  With a 
slightly enhanced queuing scheme that will be described 
later, the navigation task required 3635 MC/GC.  For 
comparison purposes, this enhanced form of queuing 
reduced the number of messages for semantic memory by 
34% (to 371) and for the Eight Puzzle by 27% (to 1062).  
Without these early optimizations a usable system would 
have been infeasible from the start, and approaching 50 

Figure 3: Piecewise continuous 
function as array of linear regions. 

Figure 4: Computation via the summary product 
algorithm of the marginal on y from evidence on x and z. 
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msec/GC would have been impracticable.  But, even with 
them, reaching this threshold still requires either: (1) 
reducing the worst-case MC/GC by 98% (from 3635 to 83), 
(2) reducing the worst-case msec/MC by 98% (from .6 to 
.014), or (3) some lesser combination of these reductions.  
The remainder of this article focuses on the first option. 

Message Reuse Across Graphical Cycles 
The early optimizations included caching of messages to 
enable their reuse across message cycles, but reinitialization 
of all messages was still required across graph cycles 
because there was otherwise no guarantee that modifying 
one message would result in all of the other messages in the 
graph being updated appropriately.  Consider, for example, 
the loopy graph in Figure 5.  If A is set to 0, D is set to 1, 
and there is no evidence concerning B and C, the graph 
converges to where all of the messages except the one from 
D are 0.  If, on the next graph cycle, A becomes 1, all of the 
messages should settle to 1. However, without 
reinitialization the loop remains locked at 0.  The new 
message to B, computed as the product of the new message 
from A (1) with the existing message from C (0), remains at 
0, as does the new message to C.  This contrasts sharply 
with, for example, the Rete algorithm for rule match, where 
messages (tokens) corresponding to unmodified regions of 
working memory can all be maintained and reused across 
cycles (Forgy, 1982).   

It does turn out, however, to be possible to identify 
segments within the overall factor graph where such 
reinitialization can be avoided, and where messages from 
the previous graph cycle can thus be reused.  To do this 
requires preanalyzing the graph to determine which 
messages can possibly depend on factor node functions that 
may be modified between graph cycles; in particular, 
functions in working-memory factor nodes that are 
modifiable by decisions, and factor node functions specified 
in conditionals that are modifiable by learning.  For each of 
these factor nodes a list of its descendants is first 
precomputed, where each descendant comprises: (1) a 
descendant node whose outgoing messages may be affected 
by messages originating at the modifiable node; and (2) a 
list of the descendant node’s neighbors via which this 
influence may reach the descendant node. A message out of 
a node in the graph is then only reinitialized when: (1) the 
node is a descendent of a modifiable node that has actually 
been changed, and (2) the listed neighbors may pass this 
influence to the node so as to affect the output message. 

Figure 6 shows a variant of the graph from Figure 5, but 
with some of the links now unidirectional, and both A and D 
modifiable (although shown as variable nodes, there would 
be a working-memory factor node feeding each).  The 
descendants of A here are (AF; AV), (B; AF, B^C^D), (C; 
AF), (B^C^D; B, C), (D; B^C^D).  The descendants of D are 
(B^C^D; D) and (B; B^C^D).  If the value of A (i.e., AV) 
changes, all of the messages in the graph, except for the one 
from D, would need to be reinitialized; but if D changes, 
only two messages – from D to B^C^D and from B^C^D to 
B – would need reinitialization. All messages not 
reinitialized in this fashion are retained, allowing reuse of 
messages that are guaranteed to remain unchanged.  This 
optimization cannot lower the number of message cycles 
during the first graph cycle, but it can in all later cycles. 

The semantic memory test case is normally only run for a 
single graph cycle, but if a second GC is run without the 
evidence being changed, this optimization reduces the 
number of message cycles during the second graph cycle 
from 564 to 0 (saving 100%), yielding a total drop over the 
two graph cycles from 564 to 282 MC/GC (saving 50%). 
For the Eight Puzzle the number of message cycles during 
the second graph cycle drops from 1553 to 595 (saving 
62%).  Over the 9 GCs required to solve this particular 
problem, the average MC/GC dropped from 1459 to 1050 
(saving 28%).  With the navigation graph, the MC/GC drop 
(over 20 GCs) was from 3594 to 1359 (saving 62%). 

Improved Message Ordering 
The early optimizations included a heuristic for message 
insertion in the queue.  The new approach to queuing retains 
the notion of constraint used there, while providing a more 
direct way of ensuring that messages that should be held 
until they contain appropriate content remain in the queue.  
Here we again preanalyze the graph structure, but this time 
to determine the depth of each link (in each direction).  
Links from nodes with no inputs – which again turn out to 
be working memory factor nodes plus factor nodes derived 
from functions in conditionals – have a depth of 0.  For all 
other nodes not involved in loops – for which there is no 
unique depth – their depth is calculated as one plus the 
maximum of the depths of all neighbors from which they 
receive messages.  The depth of a link in a particular 
direction is then simply the depth of its source node. 

Message depth can then be used as a queuing heuristic 
that delays the processing of a message when there are 

Figure 5: Loopy factor graph. 

Figure 6: Variant of the loopy factor graph with a mix of 
bidirectional and unidirectional links. 

308



 

shallower ones – which thus could conceivably influence its 
content – also available in the queue.  To implement this, 
the single original queue is split into a sequence of smaller 
queues. The first one is for empty messages (constant at 0) 
and the last one is for full messages (constant at 1).  The 
former block all processing downstream from them, and 
can’t be constrained any further.  The latter are completely 
unconstrained, and thus not particularly useful.  In between 
these two, a single queue was initially used for all other 
messages (Figure 7b), yielding the baseline results already 
presented for the navigation task.  However, this has since 
been extended further, stratifying these other messages into 
a sequence of intermediate queues based on their depth. 

As shown in Figure 7c, one intermediate queue is created 
for each possible node depth – ordered from smallest to 
largest – for a total number equal to one plus the depth of 
the graph; i.e., the maximum of the depths of all of the 
nodes in the graph (D): 29 for semantic memory, 45 for the 
Eight Puzzle, and 76 for navigation.  The last intermediate 
queue also handles links affected by loops.  By stratifying 
messages in this manner, messages deeper in the graph that 
can be affected by shallower processing are delayed until all 
shallower messages are processed. 

When all of the queues are included, empty messages are 
always sent before any other messages are considered.  If 
there are no empty messages, then the intermediate queues 
are tried according to increasing depth.  If there are no 
messages in any of these queues, the full-message queue is 
drained.  When there are no messages in any of the queues, 
quiescence has been reached. 

This optimization can help even during the first graph 
cycle, and can handle links along which messages are 
passed bidirectionally, as long as there are no loops.  For 
messages affected by loops, ordering is essentially reduced 
to the previous baseline, with just one intermediate queue.  
This optimization, when enabled by itself, reduces MC/GC 
from the original single queue version by 60% (to 224) in 
semantic memory and by 43% (to 826) in the Eight Puzzle.  
In comparison to the three-queue baseline this is a savings 
of 40% for semantic memory and 22% for the Eight Puzzle.  
Improvement from this baseline in the navigation task 
lowers MC/GC by 86% (to 503). 

When both this optimization and the previous one are 
combined, MC/GC drops by 61% (to 224) over one GC of 
semantic memory and by 90% (to 112) over two GCs.  For 

the Eight Puzzle, MC/GC drops by 59% (to 602) over the 9 
GCs.  The gains from the three-queue baseline are 40% over 
one GC of semantic memory and 70% over two GCs, 43% 
for the Eight Puzzle, and 89% for navigation (reducing it to 
391 MC/GC).  Total speedup factors are thus seen that range 
from 2.5 to 10 across these three tasks.  Concurrently, 
msec/MC has stayed roughly the same for semantic 
memory, at .1, while for the other two tasks it has dropped 
from .6 to .5, providing an additional speedup factor of 1.2 
for these harder problems.  With a new maximum of 602 
MC/GC over these three tasks (for the Eight Puzzle), 
msec/GC would now need to be .08 – a factor of 6.25, rather 
than the original 46, from the current maximum of .5 – to 
enable all three tasks to proceed within 50 msec/GC. 

(Simulated) Parallelism 
Instead of reducing the number of message cycles by 
reducing the number of messages that need to be sent, 
parallelism enables multiple messages to be sent within each 
message cycle.  One simple form of this is to send messages 
out in parallel along each active direction of each link of the 
graph, as long as there is a new message there to be sent.  
With such an approach, msec/GC becomes the product of 
msec/MC and the number of parallel message cycles (MC).  
In the absence of loops, MC should be bounded by the depth 
of the graph, again implying that the structure of the graph – 
in particular, how messages on deeper links depend on those 
on shallower links – is critical.  With loops, there is no 
obvious a priori bound. 

Although the architecture has not yet been ported to 
parallel hardware, a message-passing discipline has been 
implemented that is based on a sequence of (simulated) 
parallel message cycles.  The first optimization introduced 
above, of reusing messages across graph cycles, may still be 
relevant with parallel message cycles; however, the second 
is not, given that all queued messages are effectively sent 
during each parallel message cycle.  Although this form of 
parallelization implies that more total messages may be sent, 
sending them in parallel may radically reduce MC/GC while 
keeping msec/MC nearly the same.   

With parallel message passing turned on and no message 
reuse across graph cycles, the average number of messages 
per cycle rises to 658 for semantic memory, 2758 for the 
Eight Puzzle, and 3747 for navigation; yet, the average 
MC/GC is only 26, 33, and 76 for the three tasks. MC/GC 
turns out to be relatively stable within each of these tasks, 
with navigation running a constant 76 and the Eight Puzzle 
ranging from a low of 29 to a high of 36.  Given a 
maximum of 76 MC/GC across these three tasks, 50 
msec/GC becomes feasible with an msec/MC of .7.  If the 
communication overhead on parallel hardware is a small 
fraction of this, the existing maximum of .5 msec/MC 
should be sufficient to yield a real-time graph cycle.  Such 
an approach also has the advantage of removing the need for 
a global queue, enabling message passing to be truly local. 

When (simulated) parallelism is combined with message 
reuse across graph cycles, the average number of messages 

Figure 7: Three queue disciplines explored. 
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per GC remains at 658 for semantic memory, but drops to 
1962 for the Eight Puzzle and 3637 for navigation, yielding 
reductions of 29% and 3% for these latter two. The average 
MC/GC becomes 26, 28, and 76 for the three tasks, a 15% 
gain for the Eight Puzzle but no change for the other two. 

Conclusion 
With serial message passing, the first two optimizations 
introduced here reduce MC/GC across semantic memory, 
the Eight Puzzle and a navigation task by a factor of 2.5-10.  
Given that the optimizations also reduced the time per 
message cycle for the harder problems by a factor of 1.2, the 
total gain in time per cognitive cycle is a factor of 3-12.  
When considering the worst case over these three tasks, an 
additional factor of 6.25 is now needed to achieve 50 msec 
per cognitive cycle, a significant improvement over the 
factor of 46 that was needed at the start. 

Parallelization provides a somewhat different approach to 
reducing MC/GC, by sending messages in parallel within 
message cycles.  If close to the full amount of potential 
parallelism can be achieved on parallel hardware, it provides 
a path, albeit a more costly one in terms of hardware, for 
immediately reaching the 50 msec threshold.  Even on a 
workstation with 2-8 cores, it may be able to help 
significantly in reaching this threshold, particularly if some 
form of the message ordering optimization were able to 
eliminate messages that don’t really need to be sent within 
early message cycles (which tend to be the most 
computationally intensive). 

For the future, it will be important to explore whether 
message reuse across graph cycles can be extended to a 
larger fraction of the graph, whether there is an analogue of 
the node-depth optimization that works for loopy graphs, 
and what would happen with a deployment on true parallel 
hardware.  It is also important to investigate what additional 
gains may be had in terms of msec/MC, where a sparse 
function representation is currently being explored, but 
where other possibilities also exist.  It may also ultimately 
prove worthwhile to consider switching from summary 
product to algorithms that are more approximate, based on 
sampling, particle filters, or variational methods.  This may 
become particularly critical as the task complexity continues 
to scale up in various ways. 
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Schema-based Analogy Mapping
In the last 20 years, analogy derivation has come to be at
the forefront of cognitive science (Gentner, 2010). Under
Structure Mapping Theory (Gentner, 1983), an analogy
“T is (like) a B”, where B and T are predicate-structures, is
a mapping from a portion of B to a portion of T that satisfies
various conditions (see Figure 1). This yields the following
computational problem:

ANALOGY MAPPING
Input: Two predicate-structures B and T .
Output: The most systematic analogy mapping M
between B and T .

One popular heuristic for making this problem simpler is to
use schemas. While there is no formal definition, a schema is
described in Gentner et al. (2009) as “. . . the relational struc-
ture engendered by an analogical comparison . . . [which] will
be a fairly concentrated relational representation, with many
of the initial item-specific features stripped away” (p. 1345).
It has been claimed that schema-based analogy derivation is
efficient in practice, i.e.

. . . aligning a target with [a schema] should be compu-
tationally less costly than aligning a target with the cor-
responding literal base concept [because schemas] will
contain fewer predicates than the literal concepts they
were derived from, and a higher proportion of these
predicates can be mapped to relevant target concepts.
(Bowdle & Gentner, 2005, p. 199)

The common thread in such claims is that schemas make
analogy derivation easier because schemas are small and will
generally be fully or almost-fully mapped to a comparison
predicate-structure. However, these claims have never been
formally proven. In this poster, we give preliminary results
of a complexity-theoretic investigation of these claims.

Methodology
First, we establish the complexity of ANALOGY MAPPING.
Then, we analyze a simplified version of this problem deal-
ing specifically with schemas in order to find efficient algo-
rithms. Following convention in Computer (Garey & John-
son, 1979) and Cognitive (van Rooij, 2008) Science, an algo-
rithm is considered efficient if it runs in polynomial time, i.e,
in time upper-bounded by nc where n is the input size and c
is a constant. It is widely held that no such algorithm exists

Cause
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Mass Mass

sun planet
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nucleus electron

ChargeCharge

Greater Attracts Revolve
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ChargeCharge
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Figure 1: Analogy Derivation in Structure-Mapping Theory.
(a) Two graph representations of predicate structures encod-
ing descriptions of the solar system (left) and the Rutherford
model of the atom (right). (b) An analogy between the struc-
tures in (a), where dotted arrows indicate the mappings be-
tween corresponding pairs of predicates and objects.

for a problem if that problem is NP-hard. In such cases, we
consider two ways of restricting the problem input to allow
for a practical solution:

• Restricting the values of a set K of one or more problem-
aspects (parameters) such that there are algorithms that
are fp-tractable for those parameters, i.e., algorithms that
run in time f (K)nc for some function f , and hence are ef-
fectively polynomial-time when those parameters are re-
stricted (Downey & Fellows, 1999).

• Limiting the inputs to certain classes of graphs. The
classes considered here are directed trees (DT), polytrees
(PT) (directed acyclic graphs which remain acyclic even
if the direction of their arcs is removed), polyforests (PF),
and directed acyclic graphs (DAG).

Complexity Results
For reasons of space, all proofs are omitted; they can be
found in Hamilton (2012). It is known that ANALOGY MAP-
PING is NP-hard (van Rooij et al., 2008) and hence, modulo
the widely-believed conjecture that P != NP (Fortnow, 2009),
cannot be solved efficiently in general. Let |T | be the size of
the target graph T and d be the difference in size between T
and the optimal analogy mapping.
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Lemma 1 ANALOGY MAPPING is fp-intractable
for {d, |T |}.

This shows that the properties of size and closeness that
schemas possess are not sufficient on their own to guarantee
efficiency. For this reason, we examine inclusion, a special
case where d must be zero.

(i, j)C-ANALOGY INCLUSION [(i, j)C-AI]
Input: Two ordered predicate-structures B and T of class
C with i and j roots, respectively.
Output: An analogy mapping M between B and T such
that T is completely mapped onto B, or ⊥ if no such
mapping exists.

Note that we also restrict predicate-structures to consist of
predicates who arguments are ordered, e.g., GREATER(X,Y).
The number of roots is of special interest, as the only optimal-
solution algorithm known for ANALOGY MAPPING (Falken-
hainer et al., 1989) exhibits improved performance when the
number of roots is restricted.

Relative to the various classes of predicate-structure graphs
mentioned previously, we have the following results:

Lemma 2 (1, 1)DT-AI can be solved in O(|T |) time.

Lemma 3 (i, j)PT-AI can be solved in O(|T |1.5|B|2) time.

Lemma 4 (i, j)PF-AI is NP-Hard.

The frontier of general practicality for ANALOGY INCLU-
SION is thus polyforests. At this point, we must examine pos-
sible parameters to make this case solvable efficiently. Recall
that j is the number of roots in T and let f be the maximum
number of occurrence of any root predicate-type in B or T .

Lemma 5 (i, j)PF-AI is fp-tractable for { f , j}.

As polyforests are special cases of DAGs, this result also
holds for (i, j)DAG-AI. Moreover, as ANALOGY INCLUSION
is a special case of ANALOGY MAPPING, all fp-tractability
results and most of the fp-intractability results for ANALOGY
MAPPING given in van Rooij et al. (2008) and Wareham et
al. (2011) hold for (i, j)DAG-AI as well.

Discussion
In this poster, we have shown that the frontier of polynomial-
time tractability for schema-based analogy mapping is in fact
lower than general DAGs and given a rough assessment of
the fp-tractability options for such mapping relative to poly-
forests and DAGs. Much work remains to be done, both to es-
tablish the complexity of ANALOGY INCLUSION relative to
all combinations of the considered parameters and to extend
these results back to general schema-based analogy mapping.

There are also closely-related problems of interest. For ex-
ample, it has been conjectured that ANALOGY MAPPING is
easier when both B and T (rather than only T to B) are close
(Gentner, 2010). The limiting case analogous to ANALOGY
INCLUSION is determining the mapping between analogi-
cally identical predicate-structures. While we do not know

the complexity of this problem, we do have results for a re-
lated problem, namely IDENTICAL ANALOGY, which returns
“yes” if predicate-structures B and T are isomorphic, i.e. is
there an analogy mapping between all of B and all of T ?

Lemma 6 IDENTICAL ANALOGY is polynomial-time equiv-
alent to GRAPH ISOMORPHISM.

As GRAPH ISOMORPHISM is widely believed to be
polynomial-time intractable, this result provides circumstan-
tial evidence that mutual predicate-structure closeness is not
a sufficient restriction to make ANALOGY MAPPING effi-
ciently solvable, and hence motivates the application of the
methodology described here to this problem.
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Literary and cinematic depictions of events frequently evoke 
emotions in readers or viewers even when they are fully 
aware that the portrayed events are fictitious. Likewise, the 
deliberate imagination of counterfactual events can evoke 
emotions. These “fantasy emotions”, as the Austrian 
philosopher-psychologist Meinong (1910) called them, pose 
an explanatory problem for cognitive emotion theories. The 
reason is that these theories assume—at least in their 
standard form—that emotions presuppose beliefs in the 
existence of the emotion-elicing events; but such beliefs 
seem to be lacking in the case of the fantasy emotions  (e.g., 
Green, 1992). In philosophy of art, these considerations 
have given rise to the much-discussed “paradox of 
emotional response to ficton” (Radford, 1975; Schneider, 
2011). To solve the problem, Meinong (1910) proposed that 
the fantasy emotions are not based on beliefs but on a 
different kind of cognitive propositional attitude, called 
assumptions (Annahmen). My aim is to explicate Meinong’s 
theory of fantasy emotions in the context of CBDTE, a 
(sketch of a) computational  (C) model of the belief-desire 
theory of emotion (BDTE) (see Reisenzein, 2009a; 2009b).  

The Belief-Desire Theory of Emotion 
BDTE is a version of cognitive emotion theory (see e. g., 
Marsella, Gratch, & Petta, 2010). Its basic assumption is 
that the core set of the mental states presystematically called 
“emotions” presuppose, for their existence, both beliefs 
(cognitive or informational states) and desires (motivational 
states) about the emotion-eliciting states of affairs. Thus, the 
conceptual framework of BDTE is the same as that of the 
belief-desire theory of action that inspired the BDI (belief-
desire-intention) approach to artificial agents (e.g., Bratman, 
Israel, & Pollack, 1988; Hindriks, 2009). More precisely, 
emotions are reactions to the cognized actual or potential 
fulfilment or frustration of desires; plus, in some cases (e.g., 
relief, disappointment), the confirmation or disconfirmation 
of beliefs (Reisenzein, 2009a; 2009b). To illustrate, Mary is 
happy that p (e.g., that Mr. Schroiber was elected chancel-
lor) if she desires p and now comes to believe firmly (i.e., is 
certain) that p is the case; whereas Mary is unhappy that p if 
she is averse to p, and now comes to believe firmly that p is 
the case.  

CBDTE: A Computational Explication of BDTE 
Following Fodor (1987), CBDTE (Reisenzein, 2009a; 
2009b) assumes that beliefs and desires (the causes of emo-
tion according to BDTE)  are special modes of processing 
propositional representations, i.e. sentences in a “language 
of thought”. It is assumed that the central part of this pro-
positional representation system is innate and that its innate 
components comprise a set of hardwired maintenance and 
updating mechanisms. At the core of these mechanisms are 
two comparator devices, the belief-belief comparator (BBC) 
and the belief-desire comparator (BDC). The BBC com-
pares newly acquired beliefs to pre-existing beliefs, whereas 
the BDC compares them to existing desires. Computation-
ally speaking, the BBC and BDC compare the “mentalese” 
sentence tokens snew representing the contents of newly ac-
quired beliefs, with the sentences sold representing the con-
tents of pre-existing beliefs and desires. If either a match 
(snew is identical to sold) or a mismatch (snew is identical to 
not-sold) is detected, the comparators generate an output that 
communicates the detection and degree of the match or 
mismatch to the rest of the cognitive system. CBDTE as-
sumes that the comparator mechanisms operate automati-
cally (without intention, and preconsciously) and that their 
outputs are nonpropositional: They consist of signals that 
vary in kind and intensity, but have no internal structure, 
and hence are analogous to sensations (e.g., of tone or tem-
perature). Output signals that exceed a certain threshold of 
intensity give rise, directly or indirectly, to unique conscious 
feeling qualities: the feelings of surprise and expectancy 
confirmation (BBC), and the feelings of pleasure and dis-
pleasure (BDC). According to CBDTE, the BDC and BBC 
are the basic emotion mechanisms of humans. 

Fantasy Emotions in CBDTE 
Meinong (1910) proposes that assuming is a special mode of 
cognitively representing states of affairs: the person posits, 
or hypothetically supposes, that p is the case. Furthermore, 
he suggests that whereas serious emotions are based on 
beliefs, fantasy emotions are based on assumptions. In the 
framework of BDTE, this suggestion can be interpreted as 
follows: One experiences serious joy about p if one desires 
p and believes (or more precisely, comes to believe) that p is 
the case; whereas one experiences fantasy joy about p if one 
desires p and assumes that p is the case (Reisenzein, 2012).  

To incorporate fantasy feelings into CBDTE, I begin by 
assuming that, like believing p and desiring p, assuming p is 
a special mode of processing propositional representations. 

313



An elaboration of this idea has been proposed by Nichols 
and Stich (2003) in their theory of  mental simulation. How-
ever, to explain fantasy emotions, important extensions of 
this model are needed. These extensions are directly sug-
gested by CBDTE’s assumptions about serious emotions. 
Specifically, I assume that the updating mechanisms for 
assumptions include hardwired comparator mechanism 
analogous to the BBC and BDC: An assumption-assumption 
comparator (AAC), and an assumption-desire comparator 
(ADC). The AAC compares newly made assumptions with 
existing assumptions, whereas the ADC compares newly 
made assumptions with existing desires. Fantasy emotions 
arise when the AAC or the ADC detect an agreement or a 
conflict between (a) a newly made assumption and (b) an 
existing assumption or desire, respectively. 

To illustrate, Mary experiences fantasy joy about 
Schroiber’s election victory (= p) if she desires p and as-
sumes p to be the case. On the computational level, this cor-
responds to: Mary’s ADC discovers that the mental sentence 
representing the content of an existing desire is identical to 
that of a newly made assumption; as a consequence, it gen-
erates a nonpropositional signal that communicates the de-
tection of this agreement to the rest of the cognitive system, 
and that is subjectively experienced as a feeling of fantasy 
pleasure. Analogously, Mary experiences fantasy displeas-
ure about p if she is averse against p and assumes p to be the 
case. On the computational level, this corresponds to: 
Mary’s ADC discovers that there is a contradiction between 
the content of an existing desire and the newly made as-
sumption p; it then generates a signal which communicates 
the detection of this incongruence to the rest of the cognitive 
system, and which is subjectively experienced as fantasy 
displeasure. Mary can also experience fantasy surprise—
namely, if she first assumed that Schroiber did not win the 
election (not-p) and then makes the new assumption that 
Schroiber did, after all, win the election (p). In this case, 
Mary’s AAC detects a contradiction between an assumption 
that is part of a current simulation and a newly made as-
sumption, and as a consequence generates a signal that is 
experienced as fantasy surprise.  

Explanatory Capacity of the Theory 
CBDTE can explain the thorough-going parallelism be-

tween fantasy feelings and serious feelings. Each serious 
emotion (joy, sorrow, fear, hopeetc.) can also occur in a 
fantasy form (as fantasy joy, fantasy sorrow, and so on). 
Likewise, both serious and fantasy emotions can be experi-
enced in different intensities and both can be directed at the 
same state of affairs. According to CBDTE, this parallelism 
between serious and fantasy emotions is the consequence of 
the parallel construction of their generating mechanisms. 
CBDTE can also account for the different  motivational ef-
fects of serious and fantasy emotions (see Schneider, 2011): 
Whereas serious emotions often motivate coping actions, 
the corresponding fantasy emotions usually do not have 
such effects. CBDTE can explain this difference, at least in 
part, by the assumption that an immediate update of beliefs 
and desires takes place only in the case of serious emotions, 
but not in the case of the fantasy emotions. Fantasy emo-

tions can influence actions only indirectly; in particular, by 
generating beliefs about fantasy emotions. Finally, the 
CBDTE theory of fantasy emotions throws new light on the 
question of whether or not fantasy emotions qualify as 
“genuine” emotions (Reisenzein, 2012). 
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Introduction 
 

We created a dual-route connectionist model of Greek 
spelling. The model maps sequences of phonemes to 
corresponding sequences of graphemes, using a sublexical 
and a lexical route, i.e., phonographemic information and 
word knowledge, respectively. It is based on the model of 
Houghton and Zorzi (2003), but handles words up to 5 
syllables long, with full connectivity between the syllables. 
Greek has 37 phonemes and 84 graphemes related via 118 
mappings with 80,3% consistency (spelling) (Protopapas 
& Vlahou, 2009).  Model architecture is as follows: 

 
Figure 1: Dual-route model of spelling 

 
Input-Output Representation 

 

The representation is syllabic and nucleus-centered. There 
are 4 consonant slots on each side of the vowel. The 
orthographic slots are occupied by graphemes, not letters.  
 

 
Figure 2: Input and output representation 

T raining and parameters 
 

To simulate spelling development using -6,.)$!'7+( )#%#8(
we trained the model to a corpus of 30,391 words from 
elementary school books. The model was trained for 30 
epochs, with learning rate 0.02 and no weight pruning. 
During spelling, feedback was set to a value of 0.2. 
 
Results 
 

Using both routes, the entire training set is spelled 
correctly. Using only the phonological route, 65.2% of the 
training set is spelled correctly and almost all errors are 
phonologically plausible. By adding a small contribution 
from the lexical route we were able to simulate Grade 3-4 
-6,.)$!'7+()#%# of 48 words. In the simulation, 13 out of 
14 mistakes were the same as those made by the children, 
and 11 of these were the most typical. 
 
Problems 
 

The model made two kinds of phonologically implausible 
mistakes: it spelled /s/ inside 19 words with 9:;(<=6,-6(,+(
only used word-finally) and it also omitted a grapheme in 
a few words. In addition, the model has two problems: (a) 
the number of cycles needed to compute the output )('7%(
always correspond to the difficulty of the word and (b) 
certain palatal consonants were consistently misspelled 
<!>/>(?-#?(#+(9@A; ,'+%!#)((B(9@CA;D. 
 

Empirical validation 
 

Greek has a number of ambiguous phonemes, the 
alternative spellings of which appear with different 
frequency (Protopapas & Vlahou, 2009). For example, in 
our training corpus, the phoneme /o/ is spelled with the 
letter 9(;( EFG( (B( %6!( %,&!( #')( =,%6( 9H;( UIG>( Due to 
frequency-sensitive training the model usually spells the 
ambiguous phonemes with the highest-frequency 
grapheme. However, due to asymmetries in the 
distribution of consonant-vowel co-occurrences, this is not 
always the case. That is, the model will use the less 
frequent graphemic variant of a phoneme when more 
likely in the particular phonographemic context. If the 
model corresponds to human spelling performance, 
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children should also be more likely to choose the less 
frequent graphemes in the same contexts. 

To test this prediction, we created two groups of 39 
nonwords each, with ambiguous phonemes (o, e, i and g). 
G roup A  included nonwords spelled by the model with a 
low-frequency grapheme (9H;, 9AC;, 9JC;, 9K; and 9LL;). 
This was accomplished by inspection of %6!( &()!.7+(
weights, choosing consonants with strong weight 
connections to target graphemes. G roup B  included 
similar nonwords (same number of phonemes and 
consonant-vowel structure) that were spelled by the model 
with the high-frequency graphemic alternative (9J;, 9M;, 
9C; and 9L@;). For example, nonwords /xoNOafo/ and 
/moNP#&(?(=!$!( +"!..!)( Q4( %6!(&()!.( #+( 9RHOSTJ;( #')(
9UJVSUJ;8( $!+"!-%,2!.4( <'(%!( %6!( H/o difference in the 
second position). 
 
Participants  
 

177 students of the elementary Grades 5-6 participated in 
the experiment. Each child spelled 39 nonwords dictated 
by the experimenter. 
 
Results  
 

The relative proportion of frequent vs. infrequent 
grapheme used by the children in each nonword group 
was examined for each phoneme using generalized linear 
mixed-effects models in R (function lmer of package 
lme4). The interaction of item group (A vs. B) by 
grapheme frequency (high vs. low) was significant in 
every case (i.e., for every phoneme tested), indicating that 
participants wrote more Group A items with a low-
frequency grapheme than Group B items.   

! For /o/ (J-H): 9 = W2.87 z = W4.7, p < .0005 
! For /e/ (M-AC): 9 = 2.22  z = 4.77, p < .0005 
! For /i/ (C-JC): 9 = W2.04 z =  W2.82, p = .005 
! For /i/ (C-K): 9 = W2.12 z = W4.62, p < .0005 
! For /g/ (L@-LL): 9 = .76 z = 2.92, p = .004 

 
Discussion 

 

The model spells known words perfectly, based on the 
lexical route. When only the phonological route is used, 
almost all errors are phonologically plausible. The model 
also simulates -6,.)$!'7+( )#%#( +3--!++B3..4>( X!( -$!#%!)(
'('=($)+(3+,'/( %6!(&()!.7+(=!,/6%+(,'(($)!$( %(("$(&(%!(
the use of low-frequency graphemes for ambiguous 
phonemes. Children were influenced by the context of 
ambiguous phonemes, which indicates that the frequency 
of phoneme-grapheme co-occurrence affects spelling. In 
conclusion, our model is a useful tool for exploring the 
development and difficulties of Greek spelling  
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Abstract
Many approaches have been introduced to enable Latent
Dirichlet Allocation (LDA) models to be updated in an on-
line manner. This includes inferring new documents into the
model, passing parameter priors to the inference algorithm or
a mixture of both, leading to more complicated and compu-
tationally expensive models. We present a method to match
and compare the resulting LDA topics of different models with
light weight easy to use similarity measures. We address the
on-line problem by keeping the model inference simple and
matching topics solely by their high probability word lists.
Keywords: Latent Dirichlet Allocation, topic distance mea-
sures, on-line topic tracking

Introduction
As massive amounts of information become available on-
line, text mining applications have become an integral part
of both industry and academia. One field of text mining is
the identification and extraction of semantic concepts in text
documents. Over the last decade, Latent Dirichlet Allocation
(D. M. Blei, Ng, & Jordan, 2003) (LDA) has become one
of the most popular methods to approach this task. LDA is
a Bayesian model that makes use of latent variables1, which
represent the semantic concepts (associated with LDA and
models building on LDA, these concepts are known as top-
ics), to compute the posterior probability over the latent vari-
ables and model parameters to allow the extraction of latent
semantic structures in texts (i.e. the topics). Examination of
the posterior allows an approximation of probability distribu-
tions for both documents and topics2.

Having a technique at hand to identify different topics, the
wish to study their evolution over time evolves naturally. This
includes both the analysis of static corpora as well as data that
comes in constantly via a stream, the latter of which mostly
relies on the segmentation of the data into different time slices
of predefined size (e.g. one hour, one day, one year etc.),
treating newly arrived data as a new time slice after its size
is reached. Another way of handling the data and tracking
topic trends without segmentation into time slices is that in-
troduced by (Wang & McCallum, 2006), where the authors
use the time stamps of documents as an additional (contin-
uous) observed variable in the model. However, in our ap-
proach we resort to the notion of time slice separated data.

1For an introduction to latent variable models see (Bishop, 1999)
2For documents, a probability distribution over the set of latent

topics and analogous to that, for topics, a probability distribution
over a fixed vocabulary is inferred

The main problem of tracking topics’ evolutions over time,
either statically or in an on-line manner is the identification of
identical topics in consecutive time slices or data windows3.
To overcome this, previous approaches such as (D. Blei &
Lafferty, 2006; AlSumait, Barbará, & Domeniconi, 2008) use
the model outcome of time t − 1 as a prior for the model at
time t or analogously the outcome of a data window as a prior
for another sub-set of documents. As this is rather an elegant
way to align topics between time slices (from a mathemat-
ical point of view), these methods suffer from two serious
drawbacks concerning the analysis of diachronic document
collections. First, those models are restricted to use the same
number and effectively the same topics in each time slice and
are bound to measure the amount of change a specific topic
undergoes from time t − 1 to t instead of just aligning possi-
bly identical topics. This prevents from finding newly arising
and also from releasing ”died”, i.e. now unused topics or
could even lead to the connection of unrelated topics. Sec-
ond, the approach of using the outcome of the model at time
t−1 (or a data window) as an input for the model at time t (or
another set of documents) forces the analysis to be processed
in a one-after-another fashion, preventing parallel processing
of the data.

For the sake of completeness, it shall be stated that another
approach to this field is known as Topic Detection and Track-
ing, for which (Allan, 2002) gives a detailed introduction.

In this paper we propose the matching of topics from sub-
sequently trained LDA models via lightweight statistical sim-
ilarity measures. Our approach is motivated by the finding
that a major probability mass in topics’ distributions over a
vocabulary is represented only by a small number of highly
probable words in the distribution. We therefore restrict our-
selves to using only a subset of words, together with their
probabilities to match different topics. This enables us to
independently train the LDA models on each time slice, in-
cluding both parameter and number of topics optimization
per time slice. Further enhancements, such as using hierar-
chical Bayesian models (e.g. the hierarchical Dirichlet pro-
cess model introduced by (Teh, Jordan, Beal, & Blei, 2006))
instead of optimizing the number of topics per time slice, are
possible without altering the approach.

3A sub-set of documents from a bigger corpus.
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The paper is organized as follows. In section 2, we review
the underlying LDA model and describe our approach for
matching topics of different time slices in section 3. Section
4 relates our approach to previous ones and subsumes them.
We give an overview over the different similarity measures
we took into consideration for solving the task in section 5
and present experiments and results in sections 6 and 7 using
hand selected topics generated from a document corpus from
the UK-based newspaper The Guardian, collected through an
API on consecutive days from March, 10th through March,
15th 2011. Finally, we conclude giving an outlook to possi-
ble applications and future work.

LDA Model
Before defining our approach for matching topics, we first
give a review of the statistical model of LDA and a Gibbs
sampling algorithm introduced by (Griffiths & Steyvers,
2004), as a method for inference in the model. LDA is a hi-
erarchical Bayesian model that encodes the relation between
words and documents via the latent topics in a document cor-
pus. Herein, documents are not directly linked to words but
through latent variables z that govern the responsibility of a
certain topic for the words in a document. As words are the
observable variables in this model, conditional independence
holds true for the document and topic distributions θ and φ.
Placing prior distributions with hyperparameters α and β over
θ and φ respectively completes the probabilistic model. A
generative process for document generation is given by

1. draw K multinomials φk ∝ Dir(βk), one for each topic k

2. for each document d, d = 1, . . . ,D

(a) draw multinomial θd ∝ Dir(αd)

(b) for each word wdn in document d, n = 1, . . . ,Nd

i. draw a topic zdn ∝ Multinomial(θd)
ii. draw a word wdn from p(wdn|φzdn), the multinomial

probability conditioned on topic zdn

Exact inference is not tractable in this model, thus we utilize
Gibbs sampling as described by (Griffiths & Steyvers, 2004).
This includes computing the posterior distribution over all
variables and model parameters instead of inferring θ and φ
directly. Examination of the posterior then yields both distri-
butions. The posterior distribution over topic assignments to
words, conditioned on the words and all other topic assign-
ments is given by

p(zi = j|z\i,w) ∝
CV K

w\i, j
+βwi

∑V
v=1(C

V K
v\i, j

+βw)

CDK
d\i, j

+α j

∑K
k=1(CDK

d\i,k
+αk)

(1)

where CV K and CDK are count matrices with dimensions
V ×K and D×K, representing the number of times, a word
has been assigned to a topic and the number of times, a topic
has been assigned to a document, respectively. Subscript \i
excludes the current assignment. Both matrices can be stored

Figure 1: CDF plot for sorted p(w|zk) probability distribution
example

efficiently, using a sparse matrix representation, allowing a
large vocabulary and thus large document corpora to be pro-
cessed. Examination of the posterior leads to approximations
of both φ and θ, which are given as the first and second frac-
tion of equation (1). Consequently, φ can be interpreted as
a matrix of size V ×K, containing the conditional probabil-
ity p(wi|zk) at position φi,k. Hence, every column vector of
φ, φ·,k can be construed as a probability distribution over the
whole vocabulary of size V for topic k. The row vectors θk,·
of matrix θ with θk,m = p(zk|dm) can then be seen as proba-
bility distributions over all latent topics for every document m
accordingly. A representation of the individual topics is usu-
ally given by a list of n words having highest probability in a
topic. This is done by sorting the individual φ·,k in descending
order and retrieving the first n entries afterwards as shown in
Table 1.

Matching LDA model posterior distributions
The target is to define a function sim(p(w|zk), p(w|z∗k)) that
allows a satisfying separation of topics, so that we are able to
define a threshold of similarity that adequately matches iden-
tical topics across different models. The outcome of the sim-
ilarity function sim(·, ·) should span a wide range of values,
i.e. the function’s outcome for similar topics and dissimilar
topics has to differ significantly. Otherwise, setting a gen-
eral optimal threshold obviously becomes practically impos-
sible. The posterior distributions over words given the top-
ics φ·,k = p(w|zk),(k = 1, . . . ,K) can be interpreted as the se-
mantic context or latent structure of the analyzed text corpus.
These distributions are used to summarize the corpus contents
as short lists of words, giving the intuition that there is only a
small number of terms that form the main context of a topic
within an LDA model. In Figure 1 we show that indeed only
a minor count of terms represent a major probability portion
within a topic p(w|zk). To demonstrate this property, we built
the cumulative distribution function (CDF) for an example
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topic after sorting the distribution’s probability values in de-
scending order. Although the distribution over words for a
topic depends on the β prior of the model, we observed this
behavior in models where the inferred topics allow an intu-
itive interpretation (Chang, Boyd-Graber, Gerrish, Wang, &
Blei, 2009; Newman, Lau, Grieser, & Baldwin, 2010). An-
other reading of this finding is the fact that only high probabil-
ity words are of importance for the topic since all words (be-
longing to a long tail) of low probability in a topic have about
the same mass within all other topics. Thus, the probability
mass of the words with highest probability is also constant
across topics and independent of the actual words. Consid-
ering this and the topic representations in Table 1, the intu-
ition arises, that a similarity function based on simple word
matching in sublists of high probability terms from the pos-
terior distributions p(w|zk) and p

(
w|z∗k

)
of different models

can help considerably to track topics across different models.

Related Work
To distinguish our work we will briefly discuss related ap-
proaches in more detail. The ability of topic models to ana-
lyze changes in semantic contexts of continuous document
streams was introduced by (D. Blei & Lafferty, 2006; Al-
Sumait et al., 2008). As already described in section 1,
these approaches use the outcome of a model from a previ-
ous chunk of data, e.g. a time slice t −1, and utilize it as the
prior for a new succeeding time slice t. In both setups the
authors use a fixed number of topics to be inferred from the
data4. In detail, they use the posterior distribution p(w|zk) of
topic k to formulate a prior βk for model inference in succeed-
ing data chunks. In a setup dealing with continuous streams
or consecutive corpora, the main idea is, that contents in a
data stream are stable over a ceratin time frame. Although,
the method of generating priors from posteriors differs in both
approaches, the idea of keeping the context of the corpus over
time is the same. To incorporate knowledge about changes or
stability of topics, measures like the KL divergence are used
(see (AlSumait et al., 2008)). Finally, the change of a topic’s
context is anticipated when the topic’s distribution in previous
models differs from the current one.

Based on these ideas, analysis of the topics’ evolution in a
corpus is feasible by fixing the number of topics and divid-
ing the data into chunks or time slices. Unfortunately, this
approach is limited to using the same number of topics in
each chunk, which is not optimal when the number of con-
cepts in a text stream e.g. in news streams changes. In that
case, having a fixed number of topics is inapt. Consequently,
optimization of the topic models for each time slice/chunk
of data separately seemed desirable to us, especially in the
setting of highly dynamic news data streams. Thus indepen-
dent topic models for each time slice have been used in our
approach. Optimization includes inference of hyperparam-

4Both approaches rely on LDA as the topic-generating statistical
model, and thus are bound to define the LDA model parameter K,
i.e. the number of topics the model produces

eters5 and determining an optimal number of topics for the
data (as in (Griffiths & Steyvers, 2004)). We produce the
relationship between models afterwards via the proposed ap-
proach. The benefit of this idea is that we can detect newly
arising as well as vanishing topics with exact quantities and
can distributively process the models on different CPU’s or
machines.

Similarity measures
Different measures exist for comparing probability distri-
butions (or real valued vectors in RV as a generalization
thereof). Since we are working with different corpora or text
chunks of unequal size we cannot use absolute word counts
to deduce the probability distributions p(w|z) for each model
as has been done by (AlSumait et al., 2008). Instead, we
use normalized probability distributions over the vocabulary
as a representation of topics that are given by φ·,k for each
topic k. Naturally, elements of φ·,k are probabilities in the
range ]0,1[. Thus using metrics based on point distances in
euclidean space will result in very low values in general that
tend to be useless to correctly distinguish between a match or
a mismatch.

In our experiments we will create similarity matrices,
hence we defined the proposed measures as similarities. The
following measures have been evaluated in our experiments:
Jensen-Shannon divergence (JSD): Since we are dealing with
probability distributions we chose this measure as a smoothed
and symmetric alternative to the Kullback-Leibler (KL) diver-
gence, which is a standard measure for comparing distribu-
tions. Note that the outcomes of JSD need to be normalized.
The normalized values can than be transformed into a simi-
larity measure by subtracting them from 1. In the following
equation we set the distributions p(w|zk) and p(w|z∗k) to be
compared as P and Q and use:

JSD(P||Q) =
1
2

D(P||M)+
1
2

D(Q||M) (2)

where
M =

1
2
(P+Q). (3)

Cosine similarity: Interpreting the posterior distributions
p(w|z) for a topic model as weighted word vectors, the cosine
similarity is an unorthodox but nevertheless valid measure.
Since it describes the angle between two vectors, the similar-
ity is independent of the norm of the vectors and gives equal
results as for unnormalized word counts. Note that the cosine
similarity almost identical to the normalized correlation co-
efficient (Manning & Schütze, 1999) in our case: Since, due
to the low probability of most words, the word distribution’s
mean is close to 0, the calculation of the correlation between

5Hyperparameters strongly influence the model outcome and
thus must be optimized according to the intended task. One might
analyze newspapers based on editorial departments, whereas others
might search for very atomic topics. The latter, however, will not be
possible using the mentioned prior based approaches due to a high
variance in the topic counts.
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two probability vectors will result in a value very close to the
normalized correlation coefficient and won’t take any nega-
tive values. For that reason computation of the correlation
between two vectors has been skipped for its redundancy. We
set the distributions p(w|zk) and p(w|z∗k) to be compared as A
and B and use:

s(A,B) =
A ·B

‖A‖‖B‖ =

n
∑

i=1
Ai ×Bi

√
n
∑

i=1
(Ai)2 ×

√
n
∑

i=1
(Bi)2

(4)

Dice’s coefficient: Consider the summary of topics by a list
of the top n words per topic as in Table 1. Looking at the
lists, e.g. the japan topics, we can identify the similarity or
the overlapping of the contents by just inspecting the words
without using their actual probability. Following this idea,
we also consider another similarity measure based on word
sets, Dice’s coefficient, that might seem unusual to compare
different probability distributions. We set the words from the
sorted distributions p(w|zk) and p(w|z∗k) to be compared as X
and Y .

s =
2|X ∩Y |
|X |+ |Y | (5)

Experiments
Our dataset consists of 2,133 news articles from five consecu-
tive days (March 10th through 15th 2011) containing 64,674
unique word types, obtained through the API of the British
newspaper The Guardian. Within this period there are two
dominating news topics that we use as a basis for our exper-
iments. Those are the riots in Libya and the consequences
of the earthquake and tsunami catastrophe in Japan. Further-
more we will use one topic consisting of only stop words as
a negative example with respect to the Japan and Libya top-
ics, to test the performance of the similarity measures. In or-
der to evaluate the different similarity measures we fit differ-
ent topic models (one for each day) with comparable results.
Since we also created a single corpus for each of the con-
secutive days we handpicked topics from the models. These
topics are illustrated in Table 1 where we sorted the words
by their probability and chose the 20 most probable words to
summarize the contexts.

Based on these hand selected topics we built similarity
matrices comparing the similarities of all topics using the
similarity measures described in section 5. Additionally
we tested the similarity measures on different word sub-
sets of the topics. This means that we set all the proba-
bilities within a topic distribution p(w|zk) to 0 except those
for the most probable n words. In our setup we chose
n ∈ {2,5,10,20,40,80,160,320}. From the intuition that the
most probable words sufficiently define a topic’s context, we
expect a more unambiguous and robust similarity matrix for
comparisons based on small n. To decide how robust the sim-
ilarities are, we measure the absolute deviation between the
true and the desired similarity for each entry in a similarity

matrix for a specific word sub-set. We average this value over
all similarities for each topic. The mean absolute deviation
for this setting is defined as

MD =
1

N2
topics

Ntopics

∑
i=1

Ntopics

∑
j=1

‖si j − s∗i j‖ (6)

where Ntopics is the number of topics included in the similar-
ity matrix, si j is the measured similarity and s∗i j is the desired
similarity. If two topics match, the desired similarity s∗i j is
equal to 1 whereas in contrast to that, the desired similarity
for non-matching topics will be set to 0. If the intuition that
the n most probable words sufficiently define the topic con-
text/meaning is correct, incorporating only semantically rel-
evant words into the comparison results in a decrease of the
mean absolute deviation. To measure this behavior we calcu-
late the mean absolute deviation of all elements within a sim-
ilarity matrix for all defined values of n. To select the optimal
similarity measure in combination with the optimal sub-set
of words, we will determine the combination for which the
mean absolute deviation has a minimum.

Note that the selection of the optimal sub-set of words
needs to be rechecked for new tasks in new text sources since
the probability distributions, and thus the number of meaning-
ful words of the topics, strongly depend on those preferences.

Results
Performing the experiments with the procedure described
above gives 27 similarity matrices.6 For each matrix we cal-
culated the mean absolute deviation of its entries. Figure 2
shows the performance of the different similarity measures.
The x-axis represents the number of the most probable words
used whereas the y-axis corresponds to the mean absolute de-
viation. Cosine similarity quite surprisingly yields the best re-
sults, i.e. the lowest mean absolute deviation for a sub-set of
10-40 words. A minimum of the mean absolute deviation of
similarity values means that we have a higher tolerance to set
a threshold. Similarities are close to their desired values and
similarity values of positive and negative matches are spread
over a wider range. Also, the intuition is verified that the
spreading between the similarity values, and hence the distin-
guishability, rises when we exclude words from the compari-
son that scatter their probability mass over a large number of
other topics: Incorporating all words of a topic’s word distri-
bution into the comparison always results in a certain amount
of similarity among topics in a corpus. This is caused by
the fact, that many words (belonging to the long tail of low
probability words in a topic’s word distribution) spread their
probability mass across all topics in the corpus, i.e. they be-
long to the long tail of all other topics as well. Obviously, this
provokes similarity to some degree, even if topics are not re-
lated at all. Thus, taking away low probability words results
in higher similarity of topics that effectively mean the same.

6We compare three similarity measures. For each measure we
built nine different similarity matrices based on the comparison of
the topics with only the top n words left.
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Table 1: Selected Topics from consecutive days 10th -15th March 2011.

Date Shortname Top 20 Words
12-03-2011 japan1 Japan nuclear plant tsunami earthquake reactor power Japanese disaster

radiation water damage quake plants country Tokyo explosion reactors
Fukushima reports

13-03-2011 japan2 nuclear Japan tsunami power earthquake reactor Japanese water disaster
plant radiation crisis plants magnitude fuel reactors aftershocks rescue
Friday prefecture explosion

14-03-2011 japan3 nuclear Japan reactor power plant Japanese earthquake tsunami explo-
sion disaster Tokyo rescue reactors energy plants crisis radiation JST
safety water

15-03-2011 japan4 nuclear Japan plant power radiation Japanese reactor reactors fuel earth-
quake levels Tokyo water disaster tsunami fire level crisis agency safety

10-03-2011 libya1 Libya Gaddafi forces military zone no-fly Nato Libyan Libyan oil for-
eign rebels rebel council Ras Lanuf France fighting regime defence
country

12-03-2011 libya2 Gaddafi Benghazi MP country regime revolution revolutionary Libya
forces GG international council countries intervention foreign eurozone
Libyan no-fly city army

13-03-2011 libya3 Gaddafi Libya oil foreign Arab Europe intervention no-fly Iraq zone
support military forces regime rebels security western uprising Egypt
Tunisia

14-03-2011 libya4 Cameron Labour Libya zone Gaddafi no-fly Miliband Balls Britain vote
tax campaign action plan party Clegg ministers Labour rebels referen-
dum

15-03-2011 libya5 no-fly zone Bahrain forces Gaddafi military Libya troops security rebels
foreign torture regime Benghazi told Saudi Arabia Britain France G8
town

15-03-2011 stopwords1 years public make work pay world made good UK back part long ve
don day Germany week big report

As we stated before, these properties can vary for different
text sources and tasks. Since other models need to fulfill dif-
ferent requirements for other content analysis tasks, they are
often run with different sets of parameters or other precon-
ditions. Hence, the proposed procedure needs to be repro-
duced for other text sources and/or models in order to select
the optimal size of word sub-sets. However, cosine similarity
definitely yields best results in the context of our matching
process.

Applications and Future Work
In this paper, we presented a method to match the outcome of
different topic models on the basis of the word distributions
p(w|z). With this setting it is possible to train topic models
on little chunks of text data and match the outcomes after-
wards. An application for this is the generation of a topic
models per hour, day, month or year where we can match
the outcomes easily. With this on hand we can track and de-
tect topics within diachronic news, patent or social media text
sources. Furthermore we can handle very large datasets by di-
viding the text sources into document sub-sets and distribut-
ing the model training to many machines. Afterwards we can

Figure 2: Mean absolute deviation for sub-sets of words
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match the outcomes and give an accumulated view onto the
whole corpus.

Future work will be focused on the selection of a threshold
for different text sources and the definition of word sub-sets to
use. Because of the diverse properties of certain text sources,
specifying a general threshold for matching the topics proved
to be inappropriate. For every text source, precision and recall
of topic matching have to be optimized separately. To address
this we will establish a procedure to test specific text sources
for an optimal threshold. In (Silva, Stasiu, Orengo, & Heuser,
2007) a promising approach is shown, which can be adopted
to this problem. Using this work it is possible to address the
topic tracking problem with a mixture of lightweight similar-
ity measures and simple fast processable topic models. With
the connection of similar topics, time series data of consec-
utive chunks of text data e.g. consecutive days can be built,
which can then be further analyzed to detect trends, unusual
behavior or seasonal effects.
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Appendix: Example similarity matrices
Figures 3 and 4 show the difference between an unassertive
and a confident similarity matrix. A similarity of one corre-
sponds to white, zero similarity is drawn in black. Note that
we have a small amount of similarity between all topic pair-
ings if we include all words for a match.

Figure 3: Similarity matrix with all words based on Jenson-
Shannon divergence. Not only matching topics exhibit simi-
larity.

Figure 4: Similarity matrix with matching of 20 most proba-
ble words based on cosine similarity. High similarity is given
to matching topics only.
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Abstract
In order to develop a complex targeted behavior, an au-
tonomous agent must be able to relate and compare the in-
formation received from the environment and internally gen-
erated (Billing, 2010). For example it is often necessary to
decide whether the visual image currently being perceived is
a similar image encoded in some form in memory.

Neural learning architectures hence need a unit, a compara-
tor, able to compare several inputs encoding either internal or
external information, like predictions and sensory readings.
Without the possibility of comparing the values of predic-
tion to actual sensory inputs reward evaluation and supervised
learning would not be possible.

Comparators are usually not implemented explicitly, nec-
essary comparisons are commonly performed by directly
comparing one-to-one the respective activities, see for in-
stance (Bovet & Pfeiffer, 2005a, 2005b). This implies that
the characteristics of the two input streams (like size and en-
coding) must be provided at the time of designing the system.

It is however plausible that biological comparators emerge
from self-organizing, genetically encoded principles, which
allow the system to adapt to the changes in the input and in
the organism.

We propose an unsupervised neural circuitry, where the
function of input comparison emerge via self-organization
only from the interaction of the system with the respective
inputs, without external influence or supervision.

The proposed neural comparator neural circuit adapts ac-
cording to the correlations in the information streams re-
ceived as inputs. The system consists of a multilayer feed-
forward neural network which follows a local output mini-
mization (anti-Hebbian) rule for adaptation of the synaptic
weights.

The local output minimization allows the circuit to au-
tonomously acquire the capability of comparing the neural
activities received from different neural populations, which
may differ in the size of the population and in the neural en-
coding used.
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to calculate an euclidean distance.
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Introduction

The Human Performance Modeling Technical Group
(HPM-TG) of the Human Factors and Ergonomics Society
(HFES) is proud to sponsor its first Symposium at ICCM.
Although much of the work presented at ICCM focuses on
basic research, it is clear that ICCM recognizes the value
of applied cognitive modeling. Indeed, a long tradition at
ICCM is the Siegel-Wolf Award for Best Applied Paper. Not
only does this reward reflect the value of applied modeling,
but it is named after two men who were HFES members in
the early days of human performance modeling.

The spirit of Siegel and Wolf lives on in the HFES and
ICCM communities even though both largely go their sepa-
rate ways. This symposium is intended as the first in a long
term exchange that we hope will enrich ICCM and the HPM-
TG. Those desiring a snapshot of the recent history and cur-
rent status of cognitive modeling in human factors should
see Gray (2008a, 2008b). Those interested in details from
the early days of human performance modeling should see
two excellent papers by Pew (2008, 2007).

Technical Talks

An Accessible Cognitive Modeling Tool for Evaluation of
Pilot-Automation Interaction - Kaber, Gil, & Kim

One of the main limitations of existing approaches to com-
plex human-in-the-loop system design is the requirement for
empirical data as a basis for alternative design selection. Ex-
perimental studies can be time consuming and costly. In ad-
dition, design decisions are often based on collections of de-

sign guidelines with limited theoretical explanations for why
such guidelines may be effective from a human information
processing (HIP) perspective. The lack of a cognitive ex-
planation limits understanding of when and how guidelines
can be applied. In order to better support conceptual design,
various cognitive modeling techniques and tools have been
developed based on HIP architectures. However, these tech-
niques and tools also have several limitations from a design
perspective. Existing tools are not easy to use and design-
ers or developers may need extensive training and practice
in use. Furthermore, there is currently no fundamental set of
tool capabilities, such as providing a task workload analysis
or identifying patterns of HIP (e.g., memory use), simulating
visual object use (e.g., eye movements), providing interface
design support, etc. This research integrated various capabil-
ities of existing modeling tools into a new enhanced cogni-
tive modeling language based on GOMS (Goals, Operators,
Methods, and Selection Rules).

While GOMS modeling methods and the GOMS language
are considered easy to learn and use, the modeling approach
has several limitations. The language is limited to represent-
ing expert behavior in tasks. In addition, GOMS models do
not support modeling of lower-level behaviors, such as spe-
cific forms of visual processing (e.g., foveal vs. peripheral)
as well as parallel processing of visual and motor operations.
Another major limitation of GOMS modeling is that the op-
erator time estimates are deterministic. Therefore, model
output may not accurately represent individual differences
in performance or the stochastic nature of human behavior
in complex tasks. On the basis of these limitations, this re-
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search developed a new computational cognitive modeling
tool using an enhanced-GOMS language to aid complex sys-
tem designers in assessing human performance and errors in
using complex automated systems.

A human information processing model described by
Wickens (1992) was used in this research as a cognitive ar-
chitecture to support and constrain E-GOMSL model coding.
New operators as part of the E-GOMS language were defined
with four properties based on Wickens HIP model, including:
(1) the cognitive processing channel used, (2) control objects,
(3) operator syntax and (4) operator times. Each channel
has control objects (e.g., flow of control, parallel processing,
etc.). E-GOMSL operator syntax is similar to GOSML and
NGOMSL operator syntax. The new operator set was pri-
marily based on NGOMSL operators, as originally defined
by Kieras (1997); however, the control structure of EGOMSL
models follows GOMSL models, in order to support compi-
lation and model execution with a simulation engine. As the
second step in E-GOMSL development, stochastic variables
were defined to represent operator times in behavior models.
Because computational cognitive modeling is conceptually
similar to discrete event simulation of human task perfor-
mance, methods used in systems simulation for representing
or quantifying event processing times have been extended to
cognitive modeling. An overall stochastic time estimate can
be calculated as the summation of all operator time estimates
in an E-GOMSL model. The time estimates can be consid-
ered to represent the range of human performance, including
normal (average), super skill and slacker behavior (Niebel &
Freivalds, 2003).

The cognitive modeling tool development included: a pro-
totyping module; a user activity flow diagram (AFD) devel-
opment module; an AFD to E-GOMS language translator; an
E-GOMSL editor; a model parser and compiler; and a model
simulation tool and report generator. A designer is able to use
images to define a prototype including visual and non-visual
objects (e.g., auditory interfaces). The designer can also de-
velop an AFD based on the results of a cognitive task anal-
ysis (CTA) involving expert operators. The AFD is directly
translated to E-GOMS by the translator module. After cod-
ing the model, the parser and compiler can be used to obtain
a quantitative analysis including task execution times based
on stochastic estimates of individual operation times and a
workload analysis. With these results and the GOMSL mod-
els, the simulator can be used to visualize the flow of HIP,
represent patterns in HIP, and present a graphical workload
analysis. Last, the report generator can be used to produce a
summary of the quantitative analysis and simulation.

In order to validate the results of the modeling tool, a flight
simulator experiment was conducted with a futuristic form of
cockpit automation (a Continuous Descent Approach (CDA)
tool for flight route replanning). A CTA was conducted to
identify pilot behaviors and to generate a data set for vali-

dation of the cognitive model output. An E-GOMSL model
of pilot behavior with the CDA tool was compared against
the experiment data. There was a marginal positive corre-
lation between the model and pilot experiment task times
(p = 0.3489, n = 27, p = 0.0745). Comparison of E-
GOMSL model outputs at various points in task performance
with actual pilot heart rate responses (correlation analysis:
p = 0.2055, p = 0.0181) indicated working memory (WM)
item counts from a model could serve as a basis for predict-
ing automation and task-induced cognitive load. In general,
when the model predicted WM count was at a minimum,
the HR response for pilots revealed low arousal. When the
model-predicted count was at a maximum, the HR response
for pilots revealed high arousal. These findings indicate that
the E-GOMSL model may explain differences in automation
or task-induced cognitive load in terms of WM use.

In line with expectations, results demonstrated the mod-
eling approach to support accurate explanation and predic-
tion of human behaviors and performance in using com-
plex systems. The findings of this research support the new
EGOMSL tool use during the conceptual design of complex
human-in-the-loop systems and/or interfaces.

Modeling Users’ Risk-related Behaviors when Interact-
ing with Computer Systems - Ben-Asher & Meyer

Computer security is gaining importance because of the
ubiquitous introduction of computers into all domains of life,
the use of computers to store and access sensitive informa-
tion of various kinds (e.g., bank accounts, medical records),
and the increasing use of mobile devices to access these sys-
tems. In recent years, it has become clear that the human
user is often the weakest link in computer security. Even if
the system requires long and complex passwords, it becomes
unsecured if users paste them on their computer monitors.
Also, even if one has sophisticated algorithms for detecting
malicious software, for instance on websites, the user may
override the system recommendation and become exposed to
these threats. The design of adequate computer security re-
quires us therefore to predict the user’s risk-related behaviors
with computer systems. An adequate understanding of user
behavior and the prediction of user actions will allow us to
design systems and security measures, so that users will tend
to act securely.

Two main issues need to be considered when modeling
users’ risk-related behavior with computer systems. First,
very little behavioral data are available on how users cope
with security risks. The main reason is that publishing in-
formation on how users, for instance, respond to indica-
tions of security threats and what affects their responses to
these threats can possibly be exploited by those who gener-
ate threats and increase the severity of threats. Second, the
user’s risk-related behavior may actually be a combination
of several different, interrelated behaviors. We suggest the
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notion of a ”triad of risk-related behavior” (Ben-Asher &
Meyer, submitted for publication), where the user’s coping
with security issues in computer systems is affected by the
user’s exposure to risk, the installation and setting of security
features, and the response to risk-related communications.

We developed an experimental system, based on the Tetris
game, to allow us to collect empirical data on all three behav-
iors. In our version of the game users try to accumulate as
many points as possible but, different from the usual Tetris,
completed rows remain on the screen until the user decides to
”save them” (an action that stops the game and is therefore
costly users are paid according to their performance, and
the game is limited in time). Occasionally ”attacks” occur
in which a malicious virus deletes part of the cells the user
has accumulated and hasn’t saved, yet. The user sees alerts
from a security system (with imperfect validity) about the
possibility of an attack.

To apply the insights gained from the experiments for
the generation of design recommendations, it is important
to model the different behaviors and their interactions. One
model, based on the Memo-workbench, focuses on the anal-
ysis of the user-system interaction (Möller, Ben-Asher, En-
glert, & Meyer, 2011) We have begun to develop models,
adopting three additional modeling approaches:

1. A cost-benefit model to predict the optimal user ac-
tions, given the properties of the system.

2. A reinforcement-based learning model in which we at-
tempt to predict the changes in the security system settings
and in the users’ tendency to expose themselves to risk and
to respond to alerts.

3. A system dynamics model that analyzes the feedback
loops in the process.

All models start with the parameters of the experiment for
a given condition and then generate predictions of user be-
havior, which we compare to empirical results. We discuss
the challenges that exist when trying to model a complex be-
havior in an experimental microworld in which users’ actions
result from the combination of different, interrelated behav-
iors. We also discuss the advantages and problems with each
of the different modeling methodologies we employed and
point towards the requirements for a comprehensive model-
ing of users’ risk-related behaviors with computer systems.

ACTR-QN: Integrating Queueing Network and ACT-R
Cognitive Architectures - Cao & Liu

ACTR-QN is a cognitive architecture that integrates
Adaptive Control of Thought-Rational (ACT-R) and Queue-
ing Network (QN) architectures. ACT-R (Anderson et
al., 2004) has sophisticated declarative memory mechanism
based on chunk activation and procedural memory mecha-
nism based on production rule utility. It is particularly pow-
erful in modeling cognitive tasks such as learning and prob-
lem solving. QN (Liu, Feyen, & Tsimhoni, 2006), on the

other hand, has its mathematical basis of queueing theory,
which supports the modeling of complex mental structures
and scheduling mechanisms. As a result, the QN architecture
has its strength in modeling multitask performance and men-
tal workload. The integrated ACTR-QN represents ACT-
R as a QN, whose servers are ACT-R modules and buffers
with information paths in between and entities correspond
to ACT-Rs information units such as chunks and production
rules. Theoretically, ACTR-QN allows modelers to combine
the power of ACT-R and QN and examine a wider range of
fundamental cognitive issues from new perspectives, for ex-
ample, modeling multitask performance involving complex
cognitive tasks.

For cognitive engineering applications, a software pro-
gram implementing ACTR-QN has been developed using
Micro Saint Sharp (www.maad.com), which was chosen be-
cause it provides natural supports for QN modeling and visu-
alization. Further, it is the same platform on which IMPRINT
is implemented. Full integration of ACTR-QN was achieved
by porting ACT-R (v 6.0) from Lisp into Micro Saint Sharp
(C#). In addition, ACTR-QN also integrated the PG-C ver-
sion of utility computation and the recent work on threaded
cognition. Workload modeling capability was inherited from
QN using server utilization.

Each model in ACTR-QN has two parts: the mind and the
task. To build the mind part, including chunks, production
rules, and parameters, ACTR-QN reads and uses the same
ACT-R codes. For the task part (displays and controls), easy-
to-use templates have been developed to model both static
tasks, in which display stimuli are predetermined and not af-
fected by responses, and dynamic tasks, in which responses
affect display stimuli dynamically, such as driving. Modelers
simply need to follow instructions and specify the parameters
of a task, such as the frequency of a tone or the geometry of
a road.

Figure 1. Task visualization in ACTR-QN

ACTR-QN provides visualization of the mind, the task,
and mental workload. Figure 1 illustrates the visualization
of model performing a dual task of auditory-vocal arithmetic
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addition (left) and driving (right). Model testing shows that
ACTR-QN produces the same results as ACT-R for typical
cognitive tasks. Future research will examine the benefits of
further integration between ACT-R and QN cognitive archi-
tectures, especially in modeling performance and workload
in multitask scenarios involving complex cognition.

Panel

During the Conference, part of the Symposium presenta-
tion included a discussion among the three panelists, three
presenters, and the audience regarding the differences and
similarities of cognitive modeling for human factors applica-
tions versus other types of cognitive modeling. It is unfor-
tunate that a transcript of this exchange cannot be provided
here.
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