

Finding compact proofs for infinite-data parameterised
Boolean equation systems
Citation for published version (APA):
Neele, T., Willemse, T. A. C., & Groote, J. F. (2020). Finding compact proofs for infinite-data parameterised
Boolean equation systems. Science of Computer Programming, 188, Article 102389.
https://doi.org/10.1016/j.scico.2019.102389

Document license:
TAVERNE

DOI:
10.1016/j.scico.2019.102389

Document status and date:
Published: 01/03/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.scico.2019.102389
https://doi.org/10.1016/j.scico.2019.102389
https://research.tue.nl/en/publications/9dabd5dd-4409-4967-97d0-bc35377e1dac

Science of Computer Programming 188 (2020) 102389
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Finding compact proofs for infinite-data parameterised

Boolean equation systems

Thomas Neele ∗, Tim A.C. Willemse, Jan Friso Groote

Eindhoven University of Technology, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 March 2019
Received in revised form 18 December 2019
Accepted 27 December 2019
Available online 7 January 2020

Keywords:
Symbolic model checking
Modal mu-calculus
Parameterised Boolean equation system
Bisimulation
Infinite state system

Parameterised Boolean Equation Systems (PBESs) can be used to represent many different
kinds of decision problems. Most notably, model checking and equivalence problems can be
encoded in a PBES. Traditional techniques to solve PBESs, such as instantiation techniques,
cannot deal with PBESs with an infinite data domain. We propose an approach that can
solve PBESs with infinite data by computing the bisimulation quotient of the underlying
graph structure. Furthermore, we show how this technique can be improved by repeatedly
searching for finite proofs. We also apply knowledge of intermediate solutions in an
early termination heuristic. Unlike existing approaches, our technique is not restricted
to subfragments of PBESs. Compared to similar procedures that operate on behavioural
models, our technique is also more general: it is not restricted to model checking with
finite action sets. Experimental results show that our ideas work well in practice and
support a wider range of models and properties than state-of-the-art techniques.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A parameterised Boolean equation system (PBES) [1] is a sequence of fixpoint equations over first-order logic formulae.
Many different types of decision problems can be encoded in a PBES, for example model checking problems, as implemented
by the toolsets CADP [2] and mCRL2 [3], and equivalence queries [4]. Model checking problems using the modal mu-calculus
with data and time as well as CTL*/LTL formulas can be translated efficiently into PBESs. The answer to the encoded problem
can be found by (partially) solving the PBES. In this way, PBESs and techniques to solve them are useful in the analysis of
component systems.

Although finding the solution of a PBES is undecidable in general, in practice several efficient approaches to solve PBESs
exist. Most notably, some PBESs can be solved efficiently by first simplifying them—if needed—using static analysis tech-
niques [5,6], instantiating them to finite Boolean equation systems (BESs) and subsequently solving these BESs [7]. However,
for many types of problems, the corresponding PBES contains data taken from domains that are infinite. For example, a PBES
encoding the mutual exclusion property for Lamport’s bakery protocol requires data variables ranging over natural numbers.
Similarly, PBESs encoding model checking problems for timed or hybrid systems, typically modelled by timed automata or
hybrid automata, contain data variables that range over real numbers.

Several symbolic techniques have been proposed to deal with PBESs over infinite data domains [8–10], but their applica-
tion is unfortunately limited to specific subclasses of PBESs. Typically, these fragments exclude PBESs in which both logical
quantifiers occur; i.e. PBESs may only contain universal quantification or only existential quantification. Such constraints

* Corresponding author.
E-mail addresses: T.S.Neele@tue.nl (T. Neele), T.A.C.Willemse@tue.nl (T.A.C. Willemse), J.F.Groote@tue.nl (J.F. Groote).
https://doi.org/10.1016/j.scico.2019.102389
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2019.102389
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2019.102389&domain=pdf
mailto:T.S.Neele@tue.nl
mailto:T.A.C.Willemse@tue.nl
mailto:J.F.Groote@tue.nl
https://doi.org/10.1016/j.scico.2019.102389

2 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
effectively limit the class of properties that can be encoded, excluding, e.g. most behavioural equivalence decision problems,
but also many CTL* properties.

Contributions. The current paper extends our earlier work [11], where we presented an approach, called PBES quotienting,
that is more general than the symbolic techniques discussed above: PBES quotienting is applicable to the full class of PBESs.
Our approach is based on minimal model generation (MMG) [12], a similar procedure that operates on behavioural models,
such as extended finite state machines or timed automata. PBES quotienting relies on a normal form for PBESs called
clustered recursive form (CRF). This normal form facilitates reasoning about the dependencies between predicate variables
in a PBES and enables capturing these in a dependency graph. A procedure based on quotienting can be used to compute
a minimal reduced dependency graph from a symbolic representation of the dependency graph. PBES quotienting can be
further improved by extracting finite partial solutions from PBESs that have an infinite minimal reduced dependency graph.

To validate the above, we performed a number of experiments with an implementation of our procedures and compared
these to the solver of [9]. The results of this evaluation show that our technique is indeed capable of solving decision
problems that existing approaches fail to solve so far. In particular, the experiments show that our technique is a promising
generic approach for model checking of (timed) modal mu-calculus properties [13] on systems with infinite data domains
and also equivalence checking of systems with infinite data domains. The current paper extends [11] as follows:

• We discuss the basic ideas of minimal model generation: quotienting in the setting of behavioural models. Using Lam-
port’s bakery protocol as an example, we show the limitations of this technique.

• We propose a second optimisation for PBES quotienting that employs knowledge of an intermediate solution to identify
when this intermediate result correctly represents the dependency graph. In this way, more nodes in the dependency
graph are considered equivalent and the procedure can possibly terminate earlier.

• We provide full proofs for the correctness of our basic PBES quotienting procedure (Theorem 8) and each of the opti-
misations we propose (Theorems 10 and 11).

• We extend the experimental evaluation by including an implementation of our new optimisation. Furthermore, we
experimentally compare the applicability and performance of MMG and our PBES quotienting approach.

The rest of the paper is structured as follows: Section 2 introduces the basic theoretical concepts and the minimal model
generation procedure. Section 3 contains an example that shows how minimal model generation can be applied and what
its shortcomings are. Then, Section 4 introduces PBESs and dependency graphs and Sections 5 and 6 show how the minimal
model generation procedure can be adapted to the setting of PBESs. Two improvements to the procedure are presented
in Sections 7 and 8 respectively. In Section 9, we perform experiments to compare minimal model generation with the
new PBES procedure, and its optimisations. Finally, Section 10 gives an overview of related work and Section 11 presents a
conclusion and suggestions for future work.

2. Preliminaries

In this paper, we work with abstract data types and denote their non-empty data sorts with the letters D, E, . . . and their
corresponding semantic domains by D, E, . . . In addition, we use B to denote the Booleans and N to denote the natural
numbers {0, 1, 2, . . . }, which have the semantic counterparts B and N respectively. We also have a singleton sort D� = {�}
on which no operations are defined. Furthermore, we have a set of data variables V . Syntactic variables are typically denoted
with the letters d and e, while semantic values are denoted with v and w . To indicate that the type of variable d is D , we
write d:D . For expressions that contain variables, we have a data environment δ that maps each variable in V to an element
of the corresponding sort. The semantics of an expression f in the context of a data environment δ is denoted � f �δ. The
set of all data environments is �. Updates to an environment δ are denoted by δ[v/d], which is defined as δ[v/d](d) = v
and δ[v/d](d′) = δ(d′) for all variables d, d′ satisfying d′ �= d.

2.1. Processes and transition systems

In the following definition, we assume the existence of a fixed set of actions Act and a data domain Dpar (with semantic
domain Dpar) from which action parameters are taken. The basic representation of behaviour we consider is a labelled
transition system.

Definition 1. A labelled transition system (LTS) is a three-tuple L = (S, →, ̂s), where

• S is a set of states, which we refer to as the state space;
• →⊆ S × (Act ×Dpar) × S is the transition relation; and
• ŝ ∈ S is the initial state.

Below, we will use the terms LTS and transition system interchangeably. We write s
a(v)−−→ s′ whenever (s, (a, v), s′) ∈→.

An LTS can be represented compactly with a linear process. Without loss of generality, in this paper, we only consider

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 3
Fig. 1. Infinite LTS of the coffee machine of Example 1.

processes with a single parameter d of type D . In our examples, we use (multi-parameter) processes ranging over the
Booleans (B), the natural numbers (N), etc.

Definition 2. A linear process specification (LPS) is a tuple L = (P , ̂d), where d̂:D is the initial state, given by a closed expres-
sion of sort D , and P is a recursive process of the shape

P (d:D) =
∑
i∈I

∑
ei :Ei

(
ci(d, ei) → ai(f i(d, ei)) · P (gi(d, ei))

)
where I is a finite (possibly empty) index set, ei is a summation variable ranging over the non-empty domain Ei , ci is a
Boolean condition, ai ∈ Act is an action that has the parameter f i(d, ei):Dpar and gi is an update expression.

We adopt the following conventions for the examples: we unfold the first sum operator by using the choice operator
(notation +) and we omit the second sum operator when ei is not used. Intuitively, in every state represented by variable d,
a linear process offers a (non-deterministic) choice to perform an action ai(f i(d, ei)) that is enabled, i.e., for which ci(d, ei)

is true for some ei . After performing this action, the state is updated to gi(d, ei). The semantics of an LPS is defined in terms
of an LTS.

Definition 3. Let L = (P , ̂d) be an LPS and δ some data environment. Then the associated LTS is defined as LL =
(D, →, ̂v), where v̂ is the semantic value corresponding to d̂ and → is the set satisfying for all v ∈ D, i ∈ I , vi ∈ Ei :
(v, (ai, � f i(d, ei)�δ[v/d, vi/ei]), �gi(d, ei)�δ[v/d, vi/ei]) ∈→ if and only if �ci(d, ei)�δ[v/d, vi/ei] holds.

The most common and straightforward way of analysing the behaviour specified by an LPS is to construct the corre-
sponding transition system by means of state space exploration. Starting from the initial state, the exploration procedure
computes outgoing transitions and stores new states it encounters. However, this technique is not complete: for processes
with an infinite reachable state space, the procedure does not terminate. This is demonstrated in the following example.

Example 1. We consider a model of a primitive coffee machine that accepts coins of 5 cents and 10 cents and never gives
change. After ordering a coffee and inputting at least 15 cents, the machine can give coffee. A possible representation of
this machine is the LPS (Machine, (false, 0)), where Machine is the process defined as follows.

Machine(idle:B,balance:N) =
idle → order · Machine(false,balance)

+
∑

c:Coin

¬idle → insert(c) · Machine(false,balance + value(c))

+(¬idle ∧ balance ≥ 15) → coffee · Machine(true,0)

Here, idle expresses whether the machine is idle or a transaction is in process and balance stores the amount of money
inserted during the current transaction. Furthermore, Coin is a data sort containing the values nickel and dime and
value: Coin → N computes the corresponding value of a coin. Part of the reachable state space of the associated LTS is
depicted in Fig. 1 Since there is no upper bound on the amount of money that can be inserted, the state space is infi-
nite. �

To deal with instances like the coffee machine above, many symbolic approaches have been developed, one of which
is minimal model generation (MMG) [12,14], which we discuss below. Before we can introduce the MMG approach, we first
introduce two more concepts that make up the underlying theory. First, we introduce the concept of a reduced LTS, which
allows us to reason about certain infinite LTSs using a finite representation. Reduced LTSs rely on the notion of a partition:
a set A ⊆ 2B is a partition of a set B if and only if

⋃
A = B and for distinct a, a′ ∈ A, it holds that a ∩ a′ = ∅.

Definition 4. Let L = (S, →, ̂s) be an LTS. Then, Lr = (Sr, →r, b) is a reduced LTS iff:

4 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
• Sr ⊆ 2S is a partition of S;

• →r= {(b, (a, v), b′) | ∃s ∈ b, t ∈ b′. s a(v)−−→ t}.

We say L is the base LTS of Lr .

We commonly refer to an element b ∈ Sr as a block. Not all reduced LTSs are a meaningful representation of their
base LTS. After all, any LTS can be represented by a reduced LTS with only one block that contains all states. To preserve
interesting properties, every block should only contain states that are related by a certain equivalence relation. Here, we use
bisimulation [15], which preserves most logic properties, such as those formulated in the modal mu-calculus [13].

Definition 5. Given an LTS L = (S, →, ̂s), a relation R ⊆ S × S on states is a bisimulation relation iff for all s, t such that
sRt , it holds that:

• For all transitions s
a(v)−−→ s′ , there is a transition t

a(v)−−→ t′ such that s′Rt′ .
• For all transitions t

a(v)−−→ t′ , there is a transition s
a(v)−−→ s′ such that s′Rt′ .

We say two states s and t are bisimilar, notation s � t , iff they are related by some bisimulation relation. Two LTSs are
bisimilar iff their initial states are bisimilar.

We call the reduced LTS that is minimal under bisimulation the bisimulation quotient, which we denote with L/�. The
state space of L/�, denoted S/�, consists of the equivalence classes induced by bisimulation, i.e., states s and t are in the
same block if and only if they are bisimilar. Observe that the bisimulation quotient is well-defined, since bisimilarity is an
equivalence relation.

2.2. Partition refinement

To compute the bisimulation quotient, we rely on partition refinement. In this procedure, a partition of the state space is
iteratively refined until it becomes stable (a formal definition follows). We say a partition π is finer than a partition π ′ iff
all blocks of π are contained in some block of π ′ . The coarsest stable partition coincides with the equivalence classes under
bisimulation.

Procedure 1: Minimal model generation for LPSs.

Input: LPS L = (P , ̂d), initial partition π0

1 i := 0;
2 while πi is not stable do
3 i := i + 1;
4 πi := (πi−1 \ {b}) ∪ {split(b, b′, a(v)), co-split(b, b′, a(v))} for some b, b′ ∈ πi−1, a ∈ Act, v ∈Dpar such that split(b, b′, a(v)) and

co-split(b,b′,a(v)) are non-empty;

5 →i := {(b, (a, v), b′) | ∃s ∈ b, t ∈ b′. s a(v)−−→ t};

6 πi := {b | b̂ →∗
i b} where �d̂� ∈ b̂;

7 return (πi , →i , ̂b) where �d̂� ∈ b̂;

Procedure 1 shows how to perform partition refinement on an LTS L = (D, →, ̂v) that underlies the LPS L. The initial
partition has one block containing all states, i.e., π0 = {D}. In every iteration, we find two blocks b, b′ ∈ πi and a combina-
tion of action and parameter a(v) and split b with respect to b′ in the following way:

split(b,b′,a(v)) = {s ∈ b | ∃t ∈ b′. s
a(v)−−→ t}

co-split(b,b′,a(v)) = b \ split(b,b′,a(v))

Then we update the partition and transition relation to reflect this split (lines 4 and 5). Next, we use a simple forward
exploration on blocks to compute which blocks are reachable from the initial block, and discard blocks that are not reachable
(line 6). Here, →∗

i is the reflexive transitive closure of the transition relation. Strictly speaking, after discarding one or more
blocks, πi is no longer a partition of the complete state space, but only of some over-approximation of the reachable state
space. Note that each partition πi+1 is finer than partition πi .

If a block b cannot be split with respect to a block b′ for all actions a(v), we say b is stable (under bisimulation) with
respect to b′ . Block b is stable with respect to a set of blocks K iff it is stable with respect to all the blocks in K . A partition
π is stable (with respect to itself) iff all of the blocks in π are stable with respect to π . The partition refinement procedure
terminates when π is stable (line 2). The reachable part of the bisimulation quotient can be constructed from the stable

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 5
Fig. 2. The bisimulation quotient of the coffee machine with an infinite state space (Example 1) as computed by Procedure 1.

partition using Definition 4. Remark that termination is not guaranteed as not every infinite LTS has a finite bisimulation
quotient. Consequently, Procedure 1, and also the other procedures we present below, is a semi-decision procedure.

Since our goal is to enable reasoning about LTSs with an infinite state space, we cannot store blocks by storing each of
their constituent states explicitly. Instead, we represent each block with a characteristic function.

Definition 6. Let L be an LPS and b be a set of states in the associated LTS. The corresponding characteristic function Kb :
D →B is defined as:

Kb(v) =
{

true if v ∈ b

false otherwise

Henceforth, we represent the semantic function Kb for block b with a syntactic Boolean expression kb . With this rep-
resentation, we can implement Procedure 1 symbolically. Firstly, the initial partition π0 is represented by {λw ∈ D. true}.
Secondly, split(kb, kb′ , a(v)) and co-split(kb, kb′ , a(v)) are the respective symbolic implementations of split(b, b′, a(v)) and
co-split(b, b′, a(v)). In the following definitions, δ is an arbitrary data environment and kb and kb′ are the characteristic
functions corresponding to blocks b and b′ , respectively.

split(kb,kb′ ,a(v)) =
λw ∈D. �kb(d) ∧

∨
i∈I

a = ai ∧ (∃ei :Ei . ci(d, ei) ∧ e = f i(d, ei) ∧ kb′(gi(d, ei))
)
�δ[w/d, v/e]

co-split(kb,kb′ ,a(v)) =
λw ∈D. �kb(d) ∧ ¬

∨
i∈I

a = ai ∧ (∃ei :Ei . ci(d, ei) ∧ e = f i(d, ei) ∧ kb′(gi(d, ei))
)
�δ[w/d, v/e]

A similar symbolic implementation is necessary to compute the transition relation on line 5 of Procedure 1, where we
replace ∃s ∈ b, t ∈ b′. s a(v)−−→ t by the following:

�∃d:D.kb(d) ∧
∨
i∈I

a = ai ∧ (∃ei :Ei . ci(d, ei) ∧ e = f i(d, ei) ∧ kb′(gi(d, ei))
)
�δ[v/e]

Example 2. We revisit the coffee machine with an infinite state space from Example 1. The bisimulation quotient generated
by Procedure 1 is depicted in Fig. 2. All states reached by inserting more than 15 cents are collapsed into one (the state
with the self loop), since they are all bisimilar. A characteristic function for this block can be λidle ∈B, balance ∈N. ¬idle ∧
balance ≥ 15. �

Although characteristic functions help to deal with an infinite state space, MMG still does not deal well with infinite
action sets or an infinite data domain for action parameters. The next section presents an example that shows how these
limitations impact the ability to perform model checking using MMG.

3. Motivating example

To show how MMG can be used for model checking and illustrate its limitations, we introduce a slightly larger example
in this section. This example will also serve as a running example throughout the rest of the paper. The model we consider
is a simplified version of Lamport’s bakery protocol [16]. In our setting, there are only two processes (customer 0 and
customer 1) and all writes and reads are atomic. When customer i enters the bakery, he/she does not have a number
(n = 0). At any point, the customer can pick a number, which is one larger than the number of the other customer. If
both customers are waiting, the customer with the smallest number can enter the critical section. When leaving the critical
section, the number is discarded (n is reset to 0). See Fig. 3.

The LPS L = (Bakery, (idle, 0, idle, 0)) represents the behaviour of the two customers, where Bakery is the following linear
process.

6 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
Fig. 3. Process i from the simplified bakery protocol.

Bakery(s0:State,n0:N, s1:S,n1:N) =
(s0 = idle) → pick0(n1 + 1) · Bakery(waiting,n1 + 1, s1,n1)

+ (s0 = waiting ∧ (n1 = 0 ∨ n0 < n1)) → enter0 · Bakery(cs,n0, s1,n1)

+ (s0 = cs) → leave0 · Bakery(idle,0, s1,n1)

+ (s1 = idle) → pick1(n0 + 1) · Bakery(s0,n0,waiting,n0 + 1)

+ (s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)) → enter1 · Bakery(s0,n0, cs,n1)

+ (s1 = cs) → leave1 · Bakery(s0,n0, idle,0)

In this encoding, si and ni represent the state and number of customer i, respectively. Furthermore, the states of a single
process are encoded in the sort State.

On this model, we would like to check the property “regardless of which number customer 0 picks, it can always
enter the critical section in a finite time”. This can be formalised with the modal mu-calculus formula ν X .([−]X ∧
∀m:N.[pick0(m)]μY .([enter0]Y ∧ 〈−〉true)). Here, the fixpoint variable X ranges over the whole state space and Y holds
if and only if for all paths, enter0 occurs within a finite number of steps. However, the state space of the LPS is infinite and
also the set of actions is infinite, due to the parameter of the picki actions, which is a natural number. Therefore, neither
classical state space exploration nor minimal model generation can compute an LTS on which the formula can be evaluated.
An alternative approach is to encode this model checking question in a parameterised Boolean equation system.

4. Parameterised Boolean equation systems

A parameterised Boolean equation system is a sequence of fixpoint equations over predicate formulae. We confine our-
selves to giving a cursory overview of the syntax and semantics of the relevant theory and refer the interested reader to [1]
for a more in-depth treatment and additional examples.

Definition 7. A predicate formula is defined by the following grammar:

φ ::= b | φ ∨ φ | φ ∧ φ | φ ⇒ φ | ∃e:E. φ | ∀e:E. φ | X(f)

where b is an expression of sort B , e is a variable of sort E , X is a predicate variable of sort D → B , which is taken from
some set X of sorted predicate variables and argument f is an expression of sort D . The interpretation of a predicate
formula φ in the context of a predicate environment η :X → 2D , providing an interpretation for predicate variables from X ,
and a data environment δ is denoted by �φ�ηδ and inductively defined as follows:

�b�ηδ ⇔ �b�δ �X(f)�ηδ ⇔ � f �δ ∈ η(X)

�ϕ ∧ ψ�ηδ ⇔ �ϕ�ηδ and �ψ�ηδ hold �ϕ ∨ ψ�ηδ ⇔ �ϕ�ηδ or �ψ�ηδ hold

�ϕ ⇒ ψ�ηδ ⇔ �ϕ�ηδ holds implies that �ψ�ηδ holds

�∀e:E. ϕ�ηδ ⇔ for all v ∈E, �ϕ�ηδ[v/e] holds

�∃e:E. ϕ�ηδ ⇔ for some v ∈E, �ϕ�ηδ[v/e] holds

A predicate formula is syntactically monotone iff all its subformulae of the form ϕ ⇒ ψ are such that ϕ contains no
predicate variables. As with LPSs, in this paper we only consider parameterised Boolean equation systems where each
equation carries the same single parameter of a given data sort D . This does not affect the generality of the theory we
develop. The examples may contain equations with multiple parameters.

Definition 8. A parameterised Boolean equation system (PBES) is a sequence of equations as defined by the following grammar:

E ::= ∅ | (ν X(d:D) = ϕ)E | (μX(d:D) = ϕ)E

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 7
where ∅ is the empty PBES, μ and ν denote the least and greatest fixpoint operator, respectively, and X ∈ X is a predicate
variable of sort D → B . The right-hand side ϕ is a syntactically monotone predicate formula. Lastly, d ∈ V is a parameter of
sort D .

We use bnd(E) to denote the predicate variables bound in E , i.e., those variables occurring at the left-hand side of an
equation. For an equation for X , dX denotes its parameter and ϕX denotes its right-hand side predicate formula. We omit
the trailing ∅. We say a PBES is closed when it does not contain free variables, i.e., all data variables that occur in a right-
hand side ϕX are either bound by a quantifier or as a data parameter of X , whereas all predicate variables belong to bnd(E).
A PBES E is called a Boolean equation system (BES) iff all predicate variables bound by E have type D� → B and every right-
hand side only contains the operators ∧ and ∨, constants true and false and X(�). We say that a PBES E is well-formed iff
for every X ∈ bnd(E) there is exactly one equation in E . In the remainder of the paper we only reason about well-formed,
closed PBESs.

Definition 9. The solution �E�ηδ of a PBES E in the context of a predicate environment η and a data environment δ, is a
predicate environment that is defined inductively:

�∅ �ηδ = η

�(μX(d:D) = ϕX)E�ηδ = �E�η[μT X/X]δ
�(ν X(d:D) = ϕX)E�ηδ = �E�η[νT X/X]δ

with T X (R) = {v ∈D | �ϕX�(�E�η[R/X]δ)δ[v/d]}.

Intuitively, the solution of a PBES gives priority to fixpoints that occur early in the PBES, while satisfying the equalities
that are specified by each equation. The monotonicity of the transformer T X : 2D → 2D , which follows from syntactic
monotonicity of ϕX , guarantees the existence of the least fixpoint μT X and greatest fixpoint νT X in the complete lattice
(2D, ⊆). Also, note that the solution of a bound variable in a closed PBES does not depend on the environments η and δ.
For this reason, we often omit η and δ and simply write �E� instead of �E�ηδ. Finally, for a PBES E and some X ∈ bnd(E)

we sometimes say that (the solution to) X(v) is true iff v ∈ �E�(X).

Example 3. Consider the following PBES E consisting of an equation for X and an equation for Y , both carrying a single
parameter. Furthermore, the equation for X has a least fixpoint, and the equation for Y has a greatest fixpoint.

μX(n:N) = (∃m:N.m ≥ n ∧ X(m)) ∧ Y (false)

νY (b:B) = Y (¬b)

By applying the semantics of predicate formulae, we can derive the predicate transformer for Y as follows:

T Y (R) = {v ∈ B | �Y (¬b)�(�∅�η[R/Y]δ)δ[v/b]}
= {v ∈ B | �Y (¬b)�η[R/Y]δ[v/b]}
= {v ∈ B | ¬v ∈ R}

The largest set that satisfies T Y (R) = R is B, hence νT Y =B. We can apply a similar reasoning to X to obtain its predicate
transformer.

T X (R) = {v ∈N | �(∃m:N.m ≥ n ∧ X(m)) ∧ Y (false)�(�νY (b:B) = Y (¬b)�η[R/X]δ)δ[v/n]}
= {v ∈N | ∃v ′ ∈N. v ′ ≥ v ∧ v ′ ∈ R}

We derive that μT X = ∅. The application of Definition 9 yields �E�ηδ = η[μT X/X][νTY /Y]. The solution of E thus satisfies
�E�(X) = ∅ and �E�(Y) = B. Note that since this particular example is not mutually recursive, the order of the equations
does not influence the solution. �
4.1. Dependency graphs and proof graphs

The theory of this paper is built on the notion of dependency graphs and proof graphs explored in [17]. Intuitively, a proof
graph is a witness providing an operational explanation for a (partial) solution of a PBES. Before we introduce these graphs
formally, we need some additional concepts.

First, sig(E) is the signature of E , defined as sig(E) = {(X, v) | X ∈ bnd(E), v ∈ D}. For a given set S ⊆ sig(E), the
predicate environment env(S, true) that follows from it is defined as env(S, true)(X) = {v ∈ D | (X, v) ∈ S}. Dually, we
define env(S, false)(X) = D \ env(S, true)(X). Furthermore, every predicate variable bound in E is assigned a rank, where

8 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
Fig. 4. Dependency graphs for the PBES from Example 3.

Fig. 5. Proof graphs for the PBES from Example 3.

rankE (X) ≤ rankE (Y) if X occurs before Y in E , and rankE (X) is even if and only if X is labelled with a greatest fixed point.
We assume every PBES has a fixed rank function.

Definition 10. Let E be a PBES and G = (V , E) be a directed graph, where V ⊆ sig(E). We say G is a dependency graph for
r ∈B iff for every (X, v) ∈ V and for all δ, �ϕX �η(δ[v/dX]) = r with η = env((X, v)E, r), where sE denotes the successor set
of a node, defined as sE = {t | s E t}.

We distinguish positive dependency graphs, where r is true, from negative dependency graphs, where r is false. Intuitively,
in a positive dependency graph, η = env((X, v)E, true) is a predicate environment that maps all successors of (X, v) to true
and all other nodes to false. Then, the requirement is that ϕX (and thus X(v)) is true under η and a data environment that
maps dX to v . In other words, the successors of a node (X, v) being true must imply that (X, v) is true as well. Dually, a
negative dependency graph indicates a node (X, v) is false, when its successors are all false.

Example 4. Recall the PBES from Example 3. Fig. 4 depicts a positive and a negative dependency graph for this PBES. We
focus on node (X, 0) in the positive dependency graph of Fig. 4(a). Its successors are (X, 5) and (Y , false). The environment η
induced by these successors is given by env((X, 0)E, true), which sets these successors to true; i.e., η is such that η(X) = {5}
and η(Y) = {false}. When we evaluate the right-hand side of the equation for X in the context of η and parameter n set
to 0, we obtain �(∃m:N. m ≥ n ∧ X(m)) ∧ Y (false)�η(δ[0/n]) = true. Therefore, the positive dependency graph condition is
satisfied for node (X, 0). A similar reasoning applies to the other nodes, showing that the dependency graph condition is
satisfied by each of them.

Note that nodes (Y , false) and (Y , true) are dependent on each other in both dependency graphs. Furthermore, in the
negative case, (X, 0) needs no dependency on (Y , false) as long as it depends on all (X, i) with i ∈ N , which is the case
in the negative dependency graph of Fig. 4(b). Hence, this particular dependency graph is infinite. An alternative, finite
negative dependency graph for (X, 0) is (X, 0) (Y , false) (Y , true). �

A dependency graph captures the logical structure of a PBES; it does not include the fixpoint semantics. If we want to
reason about the actual solution of a PBES, we need an additional restriction on the infinite paths in a dependency graph.
Dependency graphs that meet these restrictions are called proof graphs.

Definition 11. Let G = (V , E) be a positive (respectively negative) dependency graph for a PBES E . Then G is a positive proof
graph (respectively negative proof graph) iff for all infinite paths π in G , the number min{rankE (X) | X ∈ V ∞(π)} is even
(respectively odd), where V ∞(π) is the set of predicate variables that occur infinitely often along π .

Observe that predicate variables with a lower rank dominate those with a higher rank. This reflects the fact that fixpoint
symbols that occur early in an equation system take priority over later ones (cf. Definition 9).

Example 5. Recall again the PBES from Example 3. In this PBES, the rank of X is 1, and the rank of Y is 2. Fig. 5 depicts a
positive and a negative proof graph for this PBES. Note that Fig. 5(a) depicts the smallest positive proof graph proving that
Y (false) is true. Larger proof graphs can be obtained by adding a self loop to (Y , false) or (Y , true). Similarly, the proof graph
in Fig. 5(b) is the smallest negative proof graph explaining that X(0) is false. However, there is a smaller negative proof
graph showing that X(1) = false, viz. the graph that does not include (X, 0). Note that for every i ∈N , the proof graph for
(X, i) is infinite, since (X, i) depends on all (X, j) with j ≥ i. �

The next theorem formally states the relationship between proof graphs and the solution of a PBES.

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 9
Fig. 6. Part of the infinite proof graph of the bakery example.

Theorem 1 ([17]). Let E be a PBES with X ∈ bnd(E). Then v ∈ �E�(X) iff there is a positive proof graph (V , E) such that (X, v) ∈ V .
Dually, v /∈ �E�(X) iff there is a negative proof graph containing (X, v).

In [17], proof graphs were introduced mainly to formalise the concept of witnesses and counterexamples, as implemented
in [18]. Instead, we rely on the above theorem to (partially) solve PBESs by searching for concise representations of proof
graphs. Before we explain this idea in detail, we revisit the bakery example to illustrate how to apply PBESs in model
checking.

4.2. Bakery example

Recall from Section 3 that we want to check the formula ν X .([−]X ∧ ∀m:N.[pick0(m)]μY .([enter0]Y ∧ 〈−〉true)) on the
LPS that represents two customers in a bakery. From the LPS and the formula, the following PBES can be constructed
automatically [19]:

ν X(s0:S,n0:N, s1:S,n1:N) = (1)

s0 = idle ⇒ Y (n1 + 1, s1,n1)∧ (2)

s0 = idle ⇒ X(waiting,n1 + 1, s1,n1)∧ (3)

s0 = waiting ∧ (n1 = 0 ∨ n0 < n1) ⇒ X(cs,n0, s1,n1)∧ (4)

s0 = cs ⇒ X(idle,0, s1,n1)∧ (5)

s1 = idle ⇒ X(s0,n0,waiting,n0 + 1)∧ (6)

s1 = waiting ∧ (n0 = 0 ∨ n1 < n0) ⇒ X(s0,n0, cs,n1)∧ (7)

s1 = cs ⇒ X(s0,n0, idle,0) (8)

μY (n0:N, s1:S,n1:N) = (9)

((n1 = 0 ∨ n0 < n1)∨ (10)

s1 = idle ∨ (s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)) ∨ s1 = cs)∧ (11)

s1 = idle ⇒ Y (n0,waiting,n0 + 1)∧ (12)

s1 = waiting ∧ (n1 = 0 ∨ n1 < n0) ⇒ Y (n0, cs,n1)∧ (13)

s1 = cs ⇒ Y (n0, idle,0) (14)

Predicate variable X represents the fact that the property has to hold at any point in time. Therefore, it is labelled with the
greatest fixpoint and it encodes the full behaviour of the system in a way very similar to the Bakery LPS (lines 3 to 8). When
customer 0 picks a number, we check the second half of the property using Y (line 2). For predicate variable Y , we assume
that customer 0 is in the state waiting. Then, Y is true if customer 0 can enter the critical section (line 10) or customer 1
does something else after which Y holds (line 11 and lines 12 to 14). However, customer 1 is only allowed to do something
finitely often, so the equation for Y is labelled with the least fixpoint. The property holds, since the solution for the initial
state is true, i.e., (idle, 0, idle, 0) ∈ �E�(X).

There are a few interesting observations that we can make based on this PBES. Firstly, the quantifier that occurs in the
mu-calculus formula does not occur in the PBES above; it has been eliminated with automated techniques [5]. This implies
that the number m picked by customer 0 is not relevant, which only becomes apparent after constructing the PBES. It is
not obvious how one can draw similar conclusions solely based on the LPS and the formula. Secondly, it is not possible to
solve this PBES with traditional instantiation-based techniques, since the dependency graph is infinite. Moreover, there is
no finite proof graph that contains (X, (idle, 0, idle, 0)), so even the application of smart heuristics to guide the instantiation
does not improve the situation. See Fig. 6 for a part of the infinite proof graph. Lastly, the actual value of n0 and n1 is not
essential to the problem. What matters is which of the two is larger. This inspired us to investigate symbolic techniques for
solving PBESs.

10 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
5. Standard and clustered recursive form

To reason symbolically about the underlying dependency graph of a PBES E , we need to rely on the information con-
tained in E . However, for PBESs with an arbitrary structure, that is not trivial [6]. Therefore, we introduce a normal form
that simplifies the reasoning about transitions in the underlying proof graph.

A common normal form for Boolean equation systems is standard recursive form (SRF) [20]. This normal form is commonly
used to translate a BES into a parity game, for which efficient solving techniques exist. We generalise the definition to PBESs.

Definition 12. Let E be a PBES. Then E is in standard recursive form (SRF) iff for all (σi Xi(d:D) = φ) ∈ E , where σi ∈ {μ, ν},
φ is either disjunctive or conjunctive, i.e., the equation for Xi has the shape

σi Xi(d:D) =
∨
j∈ J i

∃e j:E j. f j(d, e j) ∧ X j(g j(d, e j))

or

σi Xi(d:D) =
∧
j∈ J i

∀e j:E j. f j(d, e j) ⇒ X j(g j(d, e j))

Furthermore, we add the semantic restriction that for every (X, v) ∈ sig(E), at least one condition f j should evaluate to
true, i.e., there is a j ∈ J , a data environment δ and a v j ∈E j such that � f j(d, e j)�δ[v j/e j, v/d] holds.

Standard recursive form is similar to the parameterised parity game form of [21]. We call each of the disjuncts or conjuncts
of a right-hand side a clause. For a PBES E in SRF, we define a function opE : bnd(E) → {∧, ∨} that indicates for each
predicate variable whether its equation is conjunctive or disjunctive. The next proposition states that SRF is a proper normal
form, i.e., every PBES can be transformed into SRF while preserving the solution of bound variables.

Proposition 2. For every PBES E , there is an E ′ in SRF such that �E�(X) = �E ′�(X) for every X ∈ bnd(E).

Proof. For each equation in E that is not yet of the required form, we can stepwise transform it into one that is. This
is done by eliminating nested conjunctions, disjunctions and quantifiers by introducing new predicate variables and extra
equations for these variables, see [1]. For instance, an equation that is of the form (σ X(d:D) = ∀e:E. φ) can be replaced
by two equations (σ X(d:D) = ∀e:E. Y (d, e)) (σ Y (d:D, e:E) = φ) for some fresh variable Y . Note that this results in at most
a linear blow-up of the size of E , since the number of new equations introduced is at most equal to the number of
disjunctive/conjunctive alternations in all right-hand sides of E . Furthermore, the number of new parameters introduced is
bounded by the number of variables that occur in quantifiers.

The semantic restriction that at least one clause should be satisfiable can be met by adding the equations (ν Xtrue(d:D�) =
Xtrue(�)) and (μXfalse(d:D�) = Xfalse(�)) to E , and adding a clause Xtrue(�) to every conjunctive right-hand side and a clause
Xfalse(�) to every disjunctive right-hand side. �

We say a formula is in clustered recursive form (CRF) iff the predicate variable in each of the clauses is unique, i.e., X j �= Xk
for all distinct j, k ∈ J . A PBES is in CRF iff all its right-hand sides are CRF formulae. We observe that every PBES can be
transformed to CRF by applying Proposition 2 and subsequently combining clauses that have the same predicate variable,
relying on suitable projection operators for the data arguments. This is formalised in the next proposition and corollary.

Proposition 3. For every PBES E in SRF, there is a PBES E ′ in CRF such that �E�(X) = �E ′�(X) for every X ∈ bnd(E).

Proof. Let E be a PBES in SRF. Furthermore, let (σi Xi(d:D) = ϕXi) ∈ E be some equation and Y ∈ bnd(E) a predicate variable
that occurs multiple times in ϕXi . We consider the case that ϕXi is disjunctive, i.e., it is of the shape

∨
j∈ J i

∃e j :E j . f j(d, e j) ∧
X j(g j(d, e j)). The proof for the conjunctive case is analogous. We consider the set of clauses that contain Y ; their indices
are { j1, . . . , jn} ⊆ J i . More formally, Y = X jk for all 1 ≤ k ≤ n and Y �= X j for all j ∈ J i \ { j1, . . . , jn}. Let En = {1, . . . , n} be a
sort with n elements and prn a polymorphic projection function that has signature En × T n → T for any type T ; it is defined
as prn(k, t1, . . . , tk, . . . , tn) = tk for all k ∈ En . Then, the n clauses for Y can be grouped in one clause as follows:

∃en:En, e j1 :E j1 , . . . , e jn :E jn .prn(en, f j1(d, e j1), . . . , f jn (d, e jn)) ∧ Y (prn(en, g j1(d, e j1), . . . , g jn (d, e jn)))

Unfolding the existential quantifier over En , applying the definition of prn and eliminating unused quantified variables,
results in exactly the original set of clauses, so this transformation preserves the solution of E . By applying the same
construction to all predicate variables that occur in multiple clauses of the same equation, E can be rewritten to CRF. �
Corollary 4. For every PBES E , there is an E ′ in CRF such that �E�(X) = �E ′�(X) for every X ∈ bnd(E).

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 11
Proof. Follows from Propositions 2 and 3. �
Henceforward we only consider PBESs in CRF.1 The structure offered by CRF enables us to reason about the edges that

exist in proof graphs. Intuitively, an outgoing edge from a node (Xi, v) must be based on some clause j ∈ J i whose guard
f j(v, e j) is true for some e j of sort E j . The target node of that edge is associated to predicate variable instance X j(g j(v, e j)).
The following definition formalises this.

Definition 13. Let E be a PBES in CRF, where each equation has the same structure as in Definition 12. Then, the dependency
space of E is a graph G = (sig(E), E), where E is the set satisfying (Xi, v)E(X j, w) for given Xi , X j for j ∈ J i , v and w iff
for some δ and v j ∈E j , both � f j(d, e j)�δ[v j/e j, v/d] and w = �g j(d, e j)�δ[v j/e j, v/d] hold.

Definition 13 generalises the definition of a dependency space from [9], since it is applicable to all PBESs (after translation
to CRF), not only to disjunctive or conjunctive PBESs. Note that every node in a dependency space has an outgoing edge,
since CRF imposes this semantic requirement. This is necessary for the validity of the next lemma.

Lemma 5. The dependency space G = (sig(E), E) of E is both a positive and a negative dependency graph.

Proof. Let (Xi, v) be a node of G . There are four cases that we must consider. Case 1: suppose the equation for Xi is
conjunctive and we want to prove that G is a positive dependency graph, i.e., r (from Definition 10) is true. From the
definition of env(S, true) and Definition 13 we know the following:

env((Xi, v)E, true)(X j)

= {�g j(d, e j)�δ[v j/e j, v/d] | δ ∈ �, v j ∈E j. � f j(d, e j)�δ[v j/e j, v/d]} (†)

Using the definition of the semantics and (†), we can follow the reasoning below to deduce that �ϕXi �ηδ[v/d] = r, where
η = env((Xi, v)E, true).

�ϕXi �ηδ[v/d] = �
∧
j∈ J i

∀e j :E j . f j(d, e j) ⇒ X j(g j(d, e j))�ηδ[v/d]

=
∧
j∈ J i

∀v j ∈E j. � f j(d, e j)�ηδ[v j/e j, v/d] ⇒ �X j(g j(d, e j))�ηδ[v j/e j, v/d]

=
∧
j∈ J i

∀v j ∈E j. � f j(d, e j)�δ[v j/e j, v/d] ⇒ �g j(d, e j)�δ[v j/e j, v/d] ∈ η(X j)

(†)=
∧
j∈ J i

∀v j ∈E j . � f j(d, e j)�δ[v j/e j, v/d] ⇒ �g j(d, e j)�δ[v j/e j, v/d] ∈

{�g j(d, e j)�δ
′[v ′

j/e j, v/d] | δ′ ∈ �, v ′
j ∈E j . � f j(d, e j)�δ

′[v ′
j/e j, v/d]}

=
∧
j∈ J i

∀v j ∈E j. � f j(d, e j)�δ[v j/e j, v/d] ⇒ ∃δ′ ∈ �, v ′
j ∈E j. v ′

j = v j ∧ δ′ = δ ∧ � f j(d, e j)�δ
′[v ′

j/e j, v/d]

=
∧
j∈ J i

∀v j ∈E j. � f j(d, e j)�δ[v j/e j, v/d] ⇒ � f j(d, e j)�δ[v j/e j, v/d]

=
∧
j∈ J i

∀v j ∈E j. true

= r

With this, the condition on transitions in a positive dependency graph is satisfied. The proofs for the other three combina-
tions are analogous. �
Theorem 6. The dependency space of a PBES E is the unique smallest dependency graph with V = sig(E) that is both positive and
negative.

Proof. By contradiction. Let G = (sig(E), E) be the dependency space for some PBES E and let G ′ = (sig(E), E ′) be a de-
pendency graph that is both positive and negative such that E � E ′ , i.e., G is not strictly smaller than or equal to G ′ . That
means that there is at least one edge in E that is missing from E ′ . Let (X, v)E(Y , w) be such an edge. From the definition

1 We remark that the theory in this paper can also be applied to PBESs in SRF, but the use of CRF simplifies the presentation.

12 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
of a dependency space, we can deduce that there is some j such that Y = X j . Furthermore, for some value of e j , if d has
value v , the condition f j(d, e j) holds and g j(d, e j) has value w . Therefore, (X, v) depends on (Y , w) in one of two ways:

• In case the equation for X is conjunctive, Y (w) necessarily has to hold in order for X(v) to hold. This is not reflected
by G ′ . Therefore G ′ is not a positive dependency graph, contrary to our assumption.

• In case the equation for X is disjunctive, Y (w) necessarily has to be false in order for X(v) to be false. This is not
reflected by G ′ . Therefore G ′ is not a negative dependency graph, again contrary to our assumption.

We conclude that G ′ is either not a positive or not a negative dependency graph, which contradicts our initial assump-
tion. �
6. Reduced dependency space

In the literature, different approaches to solving PBESs have been proposed. Many of those rely on instantiation of the
PBES to a finite Boolean equation system. The BES can then be solved with Gaussian elimination [22] or with a parity game
solver [7]. However, for PBESs with an underlying infinite BES, instantiation is not possible. Several symbolic approaches
have been proposed to reason about the solution of such a PBES. Most notably, Koolen et al. [9] use SMT solvers to find
proof graphs and Nagae et al. [23,8] compute reduced proof graphs that finitely represent an infinite proof graph. We
extend that latter work to arbitrary PBESs and show how a reduced proof graph can be computed, if it is finite, with PBES
quotienting.

Definition 14. Let G = (V , E) be a dependency graph for a PBES E . Then G ′ = (V ′, E ′) is a reduced dependency graph, iff:

• V ′ ⊆ 2V is a partition of V ,
• E ′ = {(b, b′) ∈ V ′ × V ′ | ∃s ∈ b, t ∈ b′. s E t}.

We say G is the base graph of G ′ .

The intuition behind reduced dependency graphs is that nodes that are in some way equivalent, are grouped. In this way,
some infinite dependency graphs can be represented finitely. We again use bisimulation as equivalence relation on nodes.
We remark that bisimulation for dependency graphs relies on the labels that are associated with nodes, and not on action
labels (cf. Definition 5).

Definition 15. Let G = (V , E) be a dependency graph for E . A relation R ⊆ V × V is a bisimulation relation iff for all
(X, v)R(Y , w):

• rankE (X) = rankE (Y) and opE (X) = opE (Y).
• If (X, v)E(X ′, v ′), then there is a (Y ′, w ′) such that (Y , w)E(Y ′, w ′) and (X ′, v ′)R(Y ′, w ′).
• If (Y , w)E(Y ′, w ′), then there is a (X ′, v ′) such that (X, v)E(X ′, v ′) and (X ′, v ′)R(Y ′, w ′).

Nodes (X, v) and (Y , w) are bisimilar, denoted (X, v) � (Y , w), iff they are related by some bisimulation relation. Two
graphs G and H are bisimilar iff for every node in G there is a bisimilar node in H and vice versa.

Remark that two nodes (X, v) and (Y , w) may be bisimilar even though they originate from different equations in the
PBES, as long as they have the same rank and operand. Since bisimilarity is an equivalence relation it induces a partition of
the node set V into equivalence classes. We call the reduced dependency graph Gr = (V/�, Er), that has G as its base graph
(cf. Definition 14), the bisimulation quotient of G , notation G/�.

Procedure 2: PBES quotienting.

Input: PBES E , initial partition π0, node of interest (X̂, ̂v)

1 i := 0;
2 while πi is not stable do
3 i := i + 1;
4 πi := (πi−1 \ {k}) ∪ {split(k, k′), co-split(k, k′)} for some k, k′ ∈ πi−1 such that split(k, k′) and co-split(k, k′) are non-empty;
5 →i := {(k, k′) | ∃(Xi , v) ∈X ×D. �k(Xi, d) ∧ ∨

j∈ J i

(∃e j :E j . f j(d, e j) ∧ k′(X j , g j(d, e j))
)
�δ[v/d]};

6 πi := {k | k̂ →∗
i k} where (X̂, ̂v) ∈ k̂;

7 return (πi , →i , ̂k) where (X̂, ̂v) ∈ k̂;

Using the CRF normal form and the notions of a (reduced) dependency space and bisimulation, we now have a setting
similar to Section 2.1. Procedure 1 can thus be applied with only minor changes, see Procedure 2. First, in case we are

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 13
Fig. 7. Equivalence classes and transitions in the reduced dependency space of the bakery protocol example.

interested in the solution of a particular node (X̂, ̂v), called the node of interest, we should provide it as input. The node of
interest plays the same role as the initial state d̂ does for an LPS. Alternatively, if we want to solve the complete PBES, we
should skip the reachability check (line 6) in every iteration. Second, we need an adapted definition of the initial partition
and the splitting operations. In the PBES setting, the initial partition needs to distinguish nodes that have a different rank
or operand (first bullet of Definition 15), so π0 is set to {{(X, v) ∈ V | v ∈ D ∧ rankE (X) = rankE (Y) ∧ opE (X) = opE (Y)} |
Y ∈ bnd(E)}. The split and co-split functions no longer have an argument that defines the action on which the split is
based. Below, we use the index i of the predicate variable Xi bound in the lambda to construct an expression based on the
right-hand side of Xi .

split(k,k′) = λXi ∈ X , v ∈D. �k(Xi,d) ∧
∨
j∈ J i

∃e j:E j. f j(d, e j) ∧ k′(X j, g j(d, e j))�δ[v/d]

co-split(k,k′) = λXi ∈ X , v ∈D. �k(Xi,d) ∧ ¬
∨
j∈ J i

∃e j:E j. f j(d, e j) ∧ k′(X j, g j(d, e j))�δ[v/d]

Example 6. We revisit the bakery protocol example from Section 3. Running Procedure 2 on that PBES yields a finite reduced
dependency space (depicted in Fig. 7) which contains 14 reachable equivalence classes. Here, we abbreviated state names.
For example, in state wi, process 0 is waiting and process 1 is idle. Furthermore, in state ww0, both processes are waiting,
but process 0 has preference to enter the critical section first. States belonging to predicate variable Y are prefixed with Y-.
We omitted the state containing Xtrue for simplicity (cf. proof of Proposition 2). Note the symmetry between process 0 and
process 1 in those states belonging to variable X and also the parallels between X and Y . �

Procedure 2 can be used to solve a PBES as follows. Upon its termination, a Boolean equation system or a parity game
can be generated from the stable partition; either of them then finitely represents the dependency graph of the original
PBES. For both possible types of outputs, there are existing solvers that can compute their solution. From this solution we
can then derive the solution to the original PBES.

Example 7. Consider again the reduced dependency space of Example 6. This reduced dependency space contains only
one positive reduced proof graph, viz. the graph containing all nodes, and no negative reduced proof graph. This implies
that the original dependency space also contains only a positive proof graph. We conclude that the solution for the node
(X, (idle, 0, idle, 0)) is true, and that the formula holds, i.e., the bakery protocol does not cause starvation of customers. �

We next formalise these steps. Since we are reasoning in the context of partition refinement, we know that all partitions
that are finer than π0 are (by definition of π0 given above) such that all nodes in a block have the same rank and operand.
We call a partition with this property consistent. We say that a reduced dependency graph is consistent iff its set of vertices
is a consistent partition. For a consistent reduced dependency graph G with associated PBES E , we overload the op and rank
functions by defining them on blocks, such that op(b) = opE (X) and rank(b) = rankE (X) for some (X, v) ∈ b. The following
definition shows how to construct a BES (in CRF) for a consistent reduced dependency graph.

Definition 16. Let G = (V , E) be a consistent reduced dependency graph of a PBES E . The induced Boolean equation system,
denoted EG , is the BES containing, per block b ∈ V , exactly one equation (σb Xb(d:D�) = φb) such that:

• rankEG (Xb) = rank(b),
• If op(b) = ∧ then φb = ∧

(b,b′)∈E (true ⇒ Xb′ (�)),
• If op(b) = ∨ then φb = ∨

(b,b′)∈E (true ∧ Xb′(�)).

Before we state several interesting properties of an induced BES, we introduce one additional notion. Given two (reduced)
dependency graphs G and G ′ , we say G and G ′ are rank-operand-isomorph when there is an isomorphism between them
that preserves the rank and op functions.

The following lemma formalises that the BES induced by a consistent reduced dependency graph is a correct represen-
tation of the reduced dependency graph.

14 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
Lemma 7. Let G be a consistent reduced dependency graph of a PBES E and EG be the induced BES. Then, the dependency space of EG
is rank-operand-isomorph to G.

Proof. Let G = (V , E) be a consistent reduced dependency graph of a PBES E and EG be the induced BES. Furthermore, let
G ′ = (V ′, E ′) be the dependency space of EG . Let R : V → V ′ be defined as R(b) = (Xb, �) for all b ∈ V . We will show that
R is an isomorphism. Clearly, R is injective, since R(b) = R(b′) ⇒ (Xb, �) = (Xb′ , �) ⇒ b = b′ . Surjectivity of R follows from
the definition of V ′ , which is V ′ = sig(EG) = {Xb | b ∈ V } × D� (Definition 16). So for every element (Xb, �) ∈ V ′ we have
R(b) = (Xb, �). We conclude that R is bijective.

Let b ∈ V be some block. The equation for Xb has the same rank and operand as b (Definition 16) and thus (Xb, �) also
has the same rank and operand. Therefore, R preserves the rank and operand.

What remains is to show that R preserves the edge relation, i.e., for all nodes b, b′ ∈ V , b E b′ if and only if R(b)E ′ R(b′).

⇐ Let b, b′ ∈ V be two blocks satisfying R(b)E ′R(b′), i.e., (Xb, �)E ′(Xb′ , �). According to Definition 13, this implies that
there is a j ∈ Jb such that X j = Xb′ (the other conditions of Definitions 13 are trivially true in the context of EG). From
the definition of the equations of EG (Definition 16), we deduce that this can only be the case if b E b′ .

⇒ Let b, b′ ∈ V be two blocks satisfying b E b′ . Then, the equation for Xb in EG contains a clause that has Xb′(�) as
predicate variable (Definition 16). From Definition 13, it follows that (Xb, �)E ′(Xb′ , �) and thus we conclude that
R(b)E ′R(b′). �

The following theorem states that the solution to the BES that is induced by the bisimulation quotient of the dependency
space of a PBES E , preserves and reflects the solution to that PBES.

Theorem 8. Let E be a PBES, G = (V , E) be the dependency space of E and E ′ the BES induced by G/�. Then, v ∈ �E�(X) iff �E ′�(Xb) =
{�}, where (X, v) ∈ b.

Proof. This result follows directly from Theorem 1, Lemma 7, the reasoning that bisimulation reduction preserves bisimi-
larity and that bisimilarity is a consistent correlation [24], i.e., bisimilarity preserves and reflects the solution of a PBES.

We also sketch an alternative proof that does not rely on the notion of consistent correlation. We restrict ourselves to
a proof of the positive case, the negative case is analogous. Let E , G and E ′ be as above. Without loss of generality, let G ′
be a positive proof graph of E ′ such that G ′ is a subgraph of the dependency space of E ′ . From Lemma 7, it follows that
there is a subgraph G+

r ⊆ G/� that is rank-operand-isomorph to G ′ . Such a subgraph also exists in G , since G and G/� are
bisimilar. Let us call this subgraph G+ . Furthermore, these subgraphs can represent exactly the same nodes: some (Xb, �) is
in G ′ implies b is in G+

r implies (X, v) is in G+ , where (X, v) ∈ b. Since G ′ and G+ have exactly the same paths, G+ is a
proof graph of E , and thus v ∈ �E�(X). �

We remark that the procedure presented in this section generalises the procedures presented by Nagae et al. in [23]
and [8], which only apply to PBESs consisting of predicate formulae that contain no predicate variables within the scope of
universal quantifiers.

7. Stable kernel

The approach presented in the previous section terminates when the reachable part of the bisimulation quotient is finite
and all the operations on data are decidable. However, we are also interested in solving PBESs for which the bisimulation
quotient is not finite. Therefore, we propose an improvement that allows for reasoning about the solution of a single node
(X, v), even when some part of the dependency space is not finitely representable. This is illustrated by the following
example.

Example 8. Consider the following PBES:

ν X(n:N) = X(n + 1) ∨ (n = 0 ∧ Y (0))

μY (n:N) = Y (n + 1) ∧ (n = 0 ⇒ X(0)) ∧ (n > 1 ⇒ Y (n − 1))

The (stable) bisimulation quotient of the dependency space of this PBES is infinite and looks as follows:

While this reduced dependency graph is infinite, there is a finite reduced proof graph for X(0), namely the subgraph
that only contains the blocks {(X, 0)} and {(X, n) | n ≥ 1}. Therefore, to draw conclusions about the solution for X(0), it is
not necessary to refine the part of the partition that concerns Y . �

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 15
The example suggests that we may in general search for a proof graph in a—not yet stable—reduced dependency graph
and use that to partially solve a PBES. However, not every proof graph obtained that way necessarily induces a proper proof
graph for the original PBES: stability of the subgraph representing the proof graph is required. This is formalised by the
concept of a stable kernel.

Definition 17. Let G = (V , E) be a dependency graph of a PBES E and Gr = (Vr, Er) a consistent reduced dependency graph
of G . Furthermore, let G ′

r = (V ′
r, E ′

r) be a subgraph of Gr . Then, G ′
r is a stable kernel of Gr if and only if V ′

r is stable with
respect to itself.

The following lemma and theorem show how stable kernels can help to identify a proof graph in a partially stable
reduced dependency graph.

Lemma 9. Let G = (V , E) be a dependency graph of a PBES E and Gr = (Vr, Er) a consistent reduced dependency graph of G. Fur-
thermore, let G ′

r = (V ′
r, E ′

r) be a stable kernel of Gr . Then G ′
r is bisimilar to its base graph G ′ = (V ′, E ′).

Proof. The situation from Lemma 9 is depicted in the figure below.

For bisimilarity of G ′
r and G ′ we reason as follows. First, note that V ′ = ⋃

V ′
r (see Definition 14). Let R ⊆ V ′ × V ′

r be a
relation defined as R = {((X, v), b) | (X, v) ∈ b}. We will show that R is a bisimulation relation.

Pick an arbitrary (X, v)Rb. By definition, we have (X, v) ∈ b. Note that G ′
r is consistent due to consistency of Gr ; and

we find that both the rank and operand of the equation for X match the rank and operand of the equation for Xb in the
BES induced by G ′

r . For the transfer conditions we observe the following:

• From the definition of a reduced graph it follows directly that if (X, v)E ′(Y , w), then b E ′
r b′ , where (Y , w) ∈ b′ , i.e.,

(Y , w)Rb′ .
• Suppose we have b E ′

r b′ . Since V ′
r is stable, in particular b ∈ V ′

r is stable with respect to b′ ∈ V ′
r . Since all nodes in a

stable block have the same transitions, b E ′
r b′ implies that there must be a node (Y , w) ∈ b′ such that (X, v)E ′(Y , w).

Moreover, (Y , w) ∈ b′ implies the required (Y , w)Rb′ .

It follows that G ′ is bisimilar to G ′
r . �

Although Lemma 9 gives a strong indication that a stable kernel accurately represents its base graph G ′ , we cannot
conclude immediately that G ′ is a valid dependency graph or even proof graph. Sufficient conditions for G ′ to be a proof
graph are stated in the theorem below. This theorem is the basis for the correctness of Procedure 3, which we will present
below.

Theorem 10. Let G = (V , E) be a dependency graph for a PBES E and Gr = (Vr, Er) a consistent reduced dependency graph of G.
Furthermore, let G ′

r = (V ′
r, E ′

r) be a stable kernel of Gr and G ′ = (V ′, E ′) the base graph of G ′
r . If G ′

r is rank-operand-isomorph with a
proof graph of the BES induced by Gr, then G ′ is a proof graph for E .

Proof. The situation is depicted in the figure below. Here, H is the dependency space of E ′ , the BES induced by Gr , and H ′
is a proof graph for E ′ .

We observe that G ′ trivially satisfies the path conditions of a proof graph, since it has exactly the same infinite paths as
H ′ . In the following, we reason that G ′ also satisfies the conditions of a dependency graph.

We assume that G ′ is not a dependency graph. Then there must be a ‘missing’ edge that violates the conditions of a
dependency graph. Let ((X, v), (Y , w)) /∈ E ′ be such an edge, i.e., (X, v) ∈ V ′ and �φX�η′(δ[v/dX]) �= r = �φX�η(δ[v/dX]) for
some r ∈ B, where η′ = env((X, v)E ′, r) and η = env((X, v)E ′ ∪ {(Y , w)}, r). From bisimilarity with G ′

r (see Lemma 9), it
follows that (b, b′) /∈ E ′

r , where (X, v) ∈ b and (Y , w) ∈ b′ . Furthermore, the corresponding edge is also missing from H ′ .

16 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
Since the presence of the edge ((X, v), (Y , w)) is necessary to satisfy the condition on dependency graphs, it must
be present in G . As per the definition of a reduced graph, it is also present in Gr , i.e., (b, b′) ∈ Er , where (X, v) ∈ b and
(Y , w) ∈ b′ . Thus, the corresponding edge is also present in H : ((Xb, �), (Xb′ , �)) ∈ E H .

We now analyse whether H ′ is indeed a valid proof graph for E ′ . There are two possible cases:

• opE (X) = ∧ and r = true or opE (X) = ∨ and r = false. In this case, any proof graph that contains the node (Xb, �) must
also contain the edge ((Xb, �), (Xb′ , �)). This contradicts the earlier claim that this edge is missing from H ′ .

• opE (X) = ∧ and r = false or opE (X) = ∨ and r = true. If Xb′ is the only predicate variable in the right-hand side of Xb ,
then it is indeed necessary to include ((Xb, �), (Xb′ , �)) in E ′

H whenever V ′
H contains (Xb, �). The earlier claim that this

edge is missing is again contradicted.
If there are more predicate variables in the right-hand side of Xb , then there are also multiple successors of (X, v) in
G . This can be derived from the stability of b with respect to b′ . Therefore, the edge ((X, v), (Y , w)) was not required
to be in E , which contradicts our initial assumption.

We derive that G ′ satisfies the conditions of a dependency graph. �
The following example illustrates that the assumption “G ′

r is a stable kernel” from Theorem 10 is a necessary condition.

Example 9. Consider the PBES (ν X(n:N) = ((n �= 0) ∧ X(n)) ∨ Y)(μY = Y). The figures below depict the initial partition of
the dependency space of this PBES (on the left-hand side) and the stable partition (on the right-hand side).

In the initial partition, there is a positive reduced proof graph that contains (X, 0), viz. the graph containing only {(X, n) |
n ∈ N}. Note that this block is not stable with respect to itself. In contrast, in the stable partition, there is only a negative
proof graph for (X, 0). This shows that a reduced proof graph that is not stable with respect to itself can in general not be
used to draw conclusions about the solution of the PBES under consideration. �

Procedure 3: PBES quotienting with stable kernels.

Input: PBES E , initial partition π0, node of interest (X̂, ̂v)

1 ρ0 := ∅;
2 i := 0;
3 while πi is not a stable kernel do
4 q := (πi \ {k}) ∪ {split(k, k′), co-split(k, k′)} for some k, k′ ∈ πi such that split(k, k′) and co-split(k, k′) are non-empty;
5 q := q ∪ ρi ;
6 Ei+1 := {(k, k′) | ∃(Xi , v) ∈X ×D. �k(Xi, d) ∧ ∨

j∈ J i

(∃e j :E j . f j(d, e j) ∧ k′(X j , g j(d, e j))
)
�δ[v/d]};

7 q := {k | k̂E∗
i+1k} where (X̂, ̂v) ∈ k̂;

8 (πi+1, ρi+1) := findProofGraph(q, Ei+1 , ̂k) where (X̂, ̂v) ∈ k̂;
9 i := i + 1;

10 return (πi , Ei);

Based on the theory of stable kernels, we propose the following changes to our approach: after every iteration, we
search for a proof graph in the current partition. In the next iteration, only the blocks that are contained in the proof
graph will be refined. When the blocks in the proof graph are stable with respect to each other, we have found a stable
kernel and the procedure can terminate (by Theorem 10). See Procedure 3. We maintain two sets of blocks: πi contains the
blocks in the proof graph that we are currently considering and ρi contains the other blocks. At line 4, we split a block
in πi and temporarily store the resulting partition in q. Then, the set of blocks of the whole partition, reachable under the
new transition relation from the block containing the node of interest (X, v) is computed (lines 5 to 7). Thereby, blocks
that are not reachable from the node of interest are effectively “thrown away”, i.e., they are not considered during the
next iterations. Since unreachable blocks cannot be part of a minimal proof graph for the node of interest, this does not
affect the correctness of the procedure. From the reachable blocks, we extract a proof graph for the node of interest (X, v)

(line 8). Searching for a proof graph (function findProofGraph) can be done with existing algorithms, such as a solver
for Boolean equations systems or for parity games, e.g., Zielonka’s recursive algorithm [25]. The blocks contained in the
proof graph are again stored in πi , the remaining blocks are stored in ρi . After every iteration, we check whether πi is a
stable kernel (line 3). If so, the procedure terminates.

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 17
8. Stability under solution

The procedures presented so far rely purely on bisimulation as the notion of equivalence. However, we are only interested
in the solution of the PBES. Bisimulation is much stronger than solution equivalence, resulting in a reduced dependence
space that is larger than necessary to determine the solution. Besides bisimulation, several other equivalences have been
defined in the literature, such as consistent correlation [24] and the corresponding preorder consistent consequence [26]. This
inspired us to investigate how our techniques can benefit from a weaker equivalence relation.

Example 10. Consider the following PBES E with node of interest (X, true):

μX(b:B) = (b ∧ Y) ∨ (¬b ∧ Z)

νY = X(true)

μZ = Z

The initial and stable partition of the dependency space for E are respectively:

In the initial partition, there is one (negative) proof graph which contains the initial block, viz., the graph that contains all
blocks. Since the transition relation of a reduced dependency graph is an over-approximation (cf. Definition 14, existential
quantifier in the second bullet), after splitting the block {(X, true), (X, false)}, each of the resulting blocks will either have
the same or fewer outgoing transitions. More formally, �(b ∧ Y) ∨ (¬b ∧ Z)�ηδ ⇒ �(b ∧ Y) ∨ (¬b ∧ Z)�ηδ′ for all δ and δ′ ,
where η = �E�. In other words, since all possible successors of a node (X, b), viz. Y and Z , have the solution false, the actual
value of b is of no influence on the value of the right-hand side of X . In general, in the setting of a negative reduced proof
graph, removing outgoing edges of disjunctive blocks preserves the validity of that proof graph (as long as each node has at
least one outgoing edge).

We formalise this observation in the following definition.

Definition 18. Let E be a PBES and Gr = (Vr, Er) be a consistent reduced dependency space and EGr its associated BES. A
block b ∈ Vr is stable under solution iff at least one of the following conditions holds:

• b is stable under bisimulation.
• If op(b) = ∧, then �EGr �(Xb) = {�} and if op(b) = ∨, then �EGr �(Xb) = ∅.

A reduced dependency space is stable under solution iff all its blocks are stable under solution.

The intuition behind this is that conjunctive blocks for which the solution is true do not have to be split according to
bisimulation, since that will not change their solution. Dually, disjunctive blocks do not have to be split in negative reduced
proof graphs. We now proceed by proving that stability under solution is a sufficient condition to preserve the solution. In
the proof below, recall that v E denotes the successor set of v under the transition relation E (cf. Definition 10).

Theorem 11. Let E be a PBES, Gr = (Vr, Er) a reduced dependency space that is stable under solution and EGr the associated BES of
Gr . Then, v ∈ �E�(X) iff �EGr �(Xb) = {�}, where (X, v) ∈ b.

Proof. Let E be a PBES, Gr = (Vr, Er) a reduced dependency space that is stable under solution and EGr the associated BES
of Gr . Here we provide the proof for the positive case, i.e., we show that �EGr �(Xb) = {�} implies v ∈ �E�(X). The proof for
the negative case, viz. �EGr �(Xb) = ∅ implies v /∈ �E�(X), is completely analogous.

Let R be a rank-operand-isomorphism between Gr and the dependency space of EGr (its existence is stated in Lemma 7).
Furthermore, let G ′ be a positive proof graph of EGr such that G ′ is a subgraph of the dependency space of EGr . The subgraph
of Gr that is rank-operand-isomorphic to G ′ under R is called G+

r . Since �EGr �(Xb) = {�} for all blocks b in G+
r , it has to

hold that b is either conjunctive, i.e., op(b) = ∧, or b is stable under bisimulation. Let G+ be the base graph of G+
r (cf.

Definition 14). We deduce that G+ is a positive proof graph of E . Let (X, v) be an arbitrary node in G+ and b a block in
G+

r such that (X, v) ∈ b.

• op(b) = ∨. Since b must be stable under bisimulation, (X, v) has similar outgoing edges as b, i.e., for all b′ such that
bE+

r b′ , there exists a node (X ′, v ′) ∈ b′ such that (X, v)E+(X ′, v ′). There must be at least one block b′ ∈ bE+
r , because

18 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
Fig. 8. Workflow for model checking based on minimal model generation (in blue) and PBES quotienting (in red). (For interpretation of the colours in the
figure, the reader is referred to the web version of this article.)

EGr is in SRF. Therefore, there is also at least one node (X ′, v ′) ∈ (X, v)E+ . Using disjunctivity of ϕX , we conclude that
�ϕX�(env((X, v)E+, true))δ[v/dX] = true.

• op(b) = ∧. Since Xb is conjunctive, G ′ must contain all predicate variables occurring on the right-hand side of Xb .
Therefore, bEr = bE+

r , and thus (X, v)Er = (X, v)E+
r . Based on the definition of a dependency space and the fact that

ϕX is conjunctive, we can conclude that �ϕX �(env((X, v)E+, true))δ[v/dX] = true.

We conclude that G+ is a positive dependency graph. Since the set of infinite paths in G+ is a subset of the infinite paths
in G ′ , we know that G+ also satisfies the path condition on proof graphs. Therefore, G+ is a valid proof graph containing
(X, v) and thus it holds that v ∈ �E�(X) (Theorem 1). �

The idea of stability under solution can be applied as an early termination heuristic. In Procedure 3, the stability check
on line 3 can be implemented with solution stability.

9. Implementation and experiments

We implemented the ideas presented in the previous sections in two tools that are part of the mCRL2 toolset [3]. The
first tool, lpssymbolicbisim, performs minimal model generation on LPSs according to Procedure 1. Upon termination,
it produces an LTS. The second tool, called pbessymbolicbisim, implements PBES quotienting (cf. Section 6) and also
the optimisations identified in Sections 7 and 8.

Fig. 8 shows an overview of the workflow for both tools in the setting of the mCRL2 toolset. In case we want to perform
model checking of mu-calculus formulae, the mCRL2 specification is first transformed to an LPS. Then, one can choose to
use lpssymbolicbisim to obtain an LTS, and subsequently use the property to construct a BES which can be solved.
Alternatively, one first constructs a PBES and then applies pbessymbolicbisim to obtain the BES.

Both lpssymbolicbisim and pbessymbolicbisim call the Z3 SMT-solver to determine whether one of the sets
computed with the functions split and co-split is empty, i.e., whether its characteristic function is unsatisfiable. When choos-
ing which block to split in each iteration (line 4 of Procedure 1 and line 4 of Procedure 3), preference is given to blocks that
are the least far away from the block containing the node of interest.

A critical component of the implementation is the handling of characteristic functions. To manipulate these expressions,
we first of all rely on the mCRL2 term rewrite system. Furthermore, the tools also contain several specialised algorithms that
simplify the characteristic functions after splitting a block. Our experience is that it is worthwhile spending some runtime
on these simplifications. If the characteristic functions are never minimised, they contain a lot of redundancy and quickly
grow prohibitively large. This slows down any subsequent computation by the procedure.

We compare the performance of several approaches: our implementations of minimal model generation and PBES quo-
tienting and the pbes-cvc4 tool from [9]. We originally also aimed to compare with the tool PBESSolver from [8].
However, their implementation has several practical limitations, making a fair comparison impossible. We therefore decided
to exclude PBESSolver from our experiments. The experiments were performed on a machine with an Intel Core i5 3350P
processor and 8 GB of memory running Ubuntu 18.04 and mCRL2 commit hash 066ba9f36b2 compiled with GCC7.3.

Our set of benchmarks3 consists of various PBESs that encode different types of decision problems, covering typical
linear-time, branching-time and real-time model checking problems, a scheduling problem, recursive functions and be-
havioural equivalence checking problems. The PBESs encoding model checking problems mostly originate from the set of
examples included in mCRL2, which in some cases have been modified to generate infinite state spaces. Classical approaches
that generate the state space explicitly fail for all of these models. We remark that most of the models contain multiple
concurrent processes. Each model is combined with one or more formal properties in the form of a modal mu-calculus
formula to obtain a PBES. More specifically, we verified the following properties:

• two reachability properties (the real-time ball game: winning impossible; and the real-time train gate system: action
go(1) can be executed at time 20);

• two invariants (Fischer’s real-time mutual exclusion protocol and Lamport’s bakery protocol: no deadlock);

2 The sources of mCRL2 are available via https://github .com /mCRL2org /mCRL2.
3 The experiments are available online via https://doi .org /10 .5281 /zenodo .3528141.

https://github.com/mCRL2org/mCRL2
https://doi.org/10.5281/zenodo.3528141

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 19
Table 1
Runtime comparison between several variants of PBES quotienting and pbes-cvc4. All runtimes are in seconds. ‘t.o.’ indicates a time-out and a cross
indicates that a PBES cannot be handled.

model node of interest/property result PQ PQ+sk PQ+sk+ss pbes-cvc4

|V | iter. time |P | iter. time |P | iter. time time

ball game winning impossible false 12 65 1.59 11 65 1.73 11 11 0.19 0.27
infinitely often put_ball true 2 4 0.01 1 2 <0.01 1 2 <0.01 t.o.

train gate go(1) at time 20 true 7 10 1.37 6 8 0.58 6 6 0.46 0.39
fairness false 15 57 19.58 4 31 9.28 4 31 11.59 ✗

Fischer (N = 3) no deadlock true 5 5 0.24 3 4 0.22 3 4 0.24 ✗

Fischer (N = 4) request must serve false 18 50 431.43 3 16 9.04 3 3 0.91 ✗

bakery no deadlock true 1 1 <0.01 1 1 <0.01 1 1 <0.01 t.o.
request must serve false 64 153 6.79 5 17 0.36 5 17 0.37 0.44

Hesselink cache consistency false t.o. 20 754 345.89 20 753 348.43 ✗

all writes finish false t.o. 24 219 11.07 24 259 11.41 ✗

CABP receive infinitely often true 79 313 14.12 16 114 2.69 17 111 3.13 ✗

trading infinite run possible true 10 16 0.1 6 9 0.03 6 9 0.04 t.o.
McCarthy M(0,10) true t.o. 14 726 45.38 14 725 55.67 ✗

M(0,9) false t.o. 299 1025 85.67 299 1025 90.04 ✗

Takeuchi T (3,2,1,3) true t.o. 12 54 6.48 12 54 6.62 ✗

T (3,2,1,2) false t.o. 186 79 16.32 185 79 17.92 ✗

ABP + buffer branching bisimilar true 30 55 0.21 29 49 0.24 23 42 0.24 ✗

• six linear and branching-time properties (the ball game: infinitely often put ball; the train gate: fairness; Fischer’s
protocol and Lamport’s bakery protocol: request must be served; the Concurrent Alternating Bit Protocol (CABP): a
message can be received infinitely often; Hesselink’s handshake register [27]: cache consistency, and all writes finish).

The scheduling problem we consider is due to [23]; it encodes a fair trading problem encoded as a PBES. Furthermore,
two recursive functions we consider are based on classical benchmarks for verification tools [28]. A modified version of the
McCarthy 91 function, as per [8], is represented with the following PBES:

μM(x, y:N) = (x > 10 ∧ x = y + 1) ∨ ∃e:N. x ≤ 10 ∧ M(x + 2, e) ∧ M(e, y)

Here, M(x, y) is true if and only if (x, y) is a solution for the function we represent. In a similar fashion, we have a PBES
for Takeuchi’s function [28]:

μT (x, y, z, w:N) = (x ≤ y ∧ y = w) ∨ (∃t1, t2, t3:N. x > y∧
T (x − 1, y, z, t1) ∧ T (y − 1, z, x, t2) ∧ T (z − 1, x, y, t3) ∧ T (t1, t2, t3, w))

Finally, we consider the decision problem whether the Alternating Bit Protocol (ABP) is branching bisimilar to a one-
place buffer, both with infinite data. We have two variants of this problem: one where these models are indeed equal, and
one where we intentionally introduced an error in the implementation of the buffer. These PBESs are encoded using the
techniques in [4], as implemented in the mCRL2 tool lpsbisim2pbes.

9.1. Comparison of PBES solvers

We ran pbessymbolicbisim and pbes-cvc4 for each of the PBESs. The results are listed in Table 1. Here, ‘PQ’
denotes the standard PBES quotienting procedure and ‘+sk’ and ‘+ss’ denote the additional use of the stable kernel and
stability under solution, respectively. For each PBES, we report the solution for the node of interest and the runtime in
seconds for each approach. The runtimes reported here do not include the time required to compile the rewriter, which
is roughly constant for each PBES. For each PBES quotienting experiment, we also report the size of the resulting reduced
dependency space or proof graph, denoted with |V | and |P | respectively, and the number of iterations required to compute
it, denoted with ‘iter.’. A timeout, set to half an hour, is represented with ‘t.o.’ and we write a cross for the PBESs that
cannot be handled.

We observe that the use of stable kernels improves the performance over the basic PBES quotienting procedure for
nearly every PBES in our set of benchmarks. Furthermore, several timeouts occur for ‘PQ’, while ‘PQ+sk’ and ‘PQ+sk+ss’
manage to solve these PBESs. The added value of stability under solution over the stable kernels procedure is not clear. The
only instances where it performs significantly better are the ball game with the ‘winning impossible’ property and Fischer’s
protocol with the ‘request must serve’ property. For most other models, stability under solution causes some overhead,
leading to a longer runtime.

The runtime of pbes-cvc4 is very small for the three cases it can solve. However, it fails to provide a solution in most
cases. The three cases where a timeout occurs for pbes-cvc4 (trading, ball game and bakery) are similar: the models
contain one or more variables that strictly increase. Since pbes-cvc4 can only find lasso-shaped proof graphs, it does not
terminate for PBESs with infinite proof graphs that are not lasso-shaped.

20 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
Table 2
Runtime comparison between minimal model generation and PBES quotienting. All runtimes are in seconds. ‘t.o.’ indicates a time-out and a cross indicates
that a property cannot be handled.

model property MMG PQ+sk+ss

|P | iter. time |P | iter. time

ball game winning impossible 11 64 0.50 11 11 0.19
infinitely often put_ball 1 2 <0.01

train gate go(1) at time 20 ✗ 6 6 0.46
fairness 15 72 15.64 4 31 11.59

Fischer (N = 3) no deadlock 62 180 22.36 3 4 0.24
Fischer (N = 4) request must serve t.o. 3 3 0.91

bakery no deadlock 22 52 1.31 1 1 <0.01
request must serve 5 17 0.37

ABP branching bisimilar 28 111 5.12 23 42 0.42
buffer 3 2 <0.01

For Fischer and bakery with the no deadlock property and the equivalence problem on ABP and buffer, the reduced proof
graph covers almost the entire reduced dependency space. Only the block containing Xfalse (cf. proof of Proposition 2) is not
present in the proof graph. In those cases, PBES quotienting does not benefit from the optimisation of using stable kernels
(Procedure 3).

In order to obtain a result for Takeuchi with the node of interest T (3, 2, 1, 2), we modified our implementation slightly:
after every iteration, we randomly shuffle the order in which blocks are stored. This can affect the splitting strategy: the
choice of blocks b and b′ to be used for splitting. This is discussed in more detail in Section 9.3.

9.2. Comparison of PBES quotienting and MMG

We also conducted several experiments with our implementation of minimal model generation in the tool lpssymbol-
icbisim. To obtain meaningful results, we made the following changes to our models:

• For the timed models (ball game, train gate and Fischer), we removed the time tags from actions and encoded the
timed semantics of mCRL2 using a new process parameter. As a consequence, we cannot verify properties that refer to
absolute time. This transformation is implemented in the tool lpsuntime.

• We removed the infinite data domain from the Hesselink, CABP, ABP and buffer models.

Without these modifications, MMG cannot compute a bisimulation quotient.
The results are listed in Table 2. For MMG, |P | indicates the size of the resulting reduced LTS. For ball game and bakery,

we only have to run lpssymbolicbisim once (cf. Fig. 8). On the other hand, to check branching bisimilarity of ABP
and the buffer, MMG has to generate the bisimulation quotient for both models before we can compare them with the
tool ltscompare. Minimal model generation cannot be used to model check two of our instances. First, for the train gate
model, MMG can compute a bisimulation quotient, but it is not possible to subsequently construct a PBES that accurately
encodes the property “go(1) at time 20”, since the quotient does not contain references to absolute time. Second, MMG
times out for the Fischer model with four processes.

For the train gate model with the fairness property, our PBES quotienting performs similarly to MMG. This is partially
due to the fact that the state space is partly encoded twice in the PBES, once for each fixpoint in the formula, similar to the
bakery PBES of Section 4. For most of the other benchmarks, PBES quotienting outperforms MMG.

9.3. Splitting strategy

While performing these experiments, we noticed quite some variability in the results for certain models, especially
McCarthy and Takeuchi. Slight alterations in the formulation of the PBES can have a significant effect on the runtime. Closer
inspection revealed that the cause is the choice of blocks used to split. In our current implementation, we apply the simple
heuristic of giving preference to blocks close to the block containing the node of interest. The following example shows the
importance of the splitting strategy.

Example 11. We consider the node of interest (X, (true, 0)) in the PBES below.

ν X(b:B,n:Z) = ((b ∨ n > 0) ∧ X(b,n − 1)) ∨ (b ∧ Y)

μY = Y

T. Neele et al. / Science of Computer Programming 188 (2020) 102389 21
Here, Z represents the integers. Since splits happen closest to the block containing the node of interest, the block containing
(X, (true, 0)) is continuously split with respect to itself, and we obtain the following partition after i iterations (while not
performing reachability analysis):

{{(X, (b,n)) | b ∨ n ≥ i}, {(X, (false,n)) | n ≤ 0}, {Y }} ∪
⋃

0<n<i

{{(X, (false,n))}}

Splitting {(X, (b, n)) | b ∨ n ≥ i} with respect to {Y } results in {(X, (true, n)} and {(X, (false, n)) | n ≥ i}. This leads to imme-
diate termination, since the former block – which contains the node of interest – is a stable kernel. In this example, the
choice of splitting strategy determines whether PBES quotienting terminates. �

To find a good algorithm or heuristic for this block selection, one can draw inspiration from works on minimal model
generation, e.g., [29]. Performing static analysis to obtain invariants (e.g. b is invariably true for the node of interest) can be
another way to identify which blocks to split. Furthermore, the splitting strategy can be made more robust by introducing
some randomness: this is to prevent certain blocks from being ignored indefinitely.

10. Related work

The first works on generating minimal representations from behavioural specifications were written by Bouajjani et
al. [12]. Later, these ideas were applied to timed automata [30,31]. Similar to our approach, they rely on bisimulation
to compute the minimal quotient directly from a specification. Fisler and Vardi [14] extended this work to include early
termination when performing reachability analysis. Our work is similar in spirit to these methods, but it generalises these
by allowing to verify properties expressed in the full modal mu-calculus and by supporting infinite-state systems, not limited
to real-time systems.

The techniques and theory we present also generalise several other closely related works, such as [23,8,9,20]. Nagae et
al. [23] transfer the ideas of Bouajjani et al. to disjunctive, quantifier-free PBESs and generate finite parity games that can be
solved. They later expanded the work to existential PBESs [8]. These fragments of the PBES logic limit the type of properties
one can verify. A small set of experimental results shows that their approach is feasible in practice for small academic
examples.

Koolen et al. [9] use an SMT solver to search for linear proof graphs in disjunctive or conjunctive PBESs. Their technique
manages to find solutions for model checking problems where traditional tools time out. They conclude that even for
problems where enumeration of the state space is possible, an instantiation-based approach is not always faster. We remark
that the number of unrollings performed by their tool gives a rough indication of the optimal size of the proof graph
constructed with our techniques when applied to disjunctive or conjunctive PBESs.

In [20], Keiren et al. define two equivalence relations based on bisimulation for BESs. These relations are then used
to minimise BESs that represent model checking problems. Experiments show that applying minimisation speeds up the
solving procedure, i.e., the time required for minimising and then solving the minimal BES is lower than the time required
to solve the original BES. Whereas [20] applies explicit-state techniques by working directly on a BES, our work is based on
a symbolic representation. The disadvantage of the explicit approach of [20] is that it requires one to instantiate a PBES to
BES first, which can be time consuming. Furthermore, the instantiation does not terminate for infinite-state systems.

Fontana et al. [10] construct symbolic proof trees to check alternation-free mu-calculus formulae on timed automata.
To recursively prove (sub)formulas, they unfold the transition relation according to a set of proof rules they propose. This
approach allows a larger class of properties than UPPAAL [32], which only supports a subset of TCTL. Contrary to our
approach, the proof they produce is not necessarily minimal with respect to bisimulation.

The authors of [31] also identified the problem that the characteristic functions should be as compact as possible in
order to improve the scalability (cf. Section 9). They develop a specialised partition-refinement technique for the setting
of timed automata such that the characteristic functions are always conjunctive, i.e., they represent a convex set of nodes.
Preserving convexity comes at a cost, however: the resulting stable partition can be finer that the bisimulation quotient.

Although our work was not inspired by counterexample-guided abstraction refinement (CEGAR) [33], we see many simi-
larities. In this approach, an abstraction of the model under consideration is continuously refined based on spurious traces
that are found by a model checker. Our procedure that finds stable kernels essentially refines with respect to ‘spurious proof
graphs’. Compared to our approach, CEGAR typically supports a less expressive class of properties, such as ACTL or LTL.

11. Conclusion

We presented an approach to solving arbitrarily-structured PBESs with infinite data, which enables solving of a larger set
of PBESs than possible with existing tools. This improves the state-of-the-art for model checking and equivalence checking
on (concurrent) systems with infinite data.

A drawback of performing quotienting on the level of PBESs is that this process has to be repeated for each property
that needs to be checked (cf. Fig. 8). On the other hand, for minimal model generation, the LTS needs to be generated only
once, after which multiple properties can be checked by constructing multiple BESs, which is a relatively cheap operation.

22 T. Neele et al. / Science of Computer Programming 188 (2020) 102389
However, as we have shown, PBES quotienting also has several fundamental advantages, which improve its applicability in
a practical setting.

Further study is required to fully understand the effects of splitting strategy (cf. Section 9.3). We believe that a good
strategy, perhaps based on heuristics, can significantly improve the scalability of our approach.

When checking fairness properties, the state space is typically encoded twice in the corresponding PBES. The PBES from
Section 4.2 is a perfect example. In the current implementation, the same work is sometimes done twice for different
predicate variables. The procedures can be further optimised by exploiting this symmetry.

Another possible direction is to further weaken the equivalence relation on dependency graph nodes. Here, one can draw
inspiration from equivalence relations defined on parity games, for instance as defined in [34].

References

[1] J.F. Groote, T.A.C. Willemse, Parameterised Boolean equation systems, Theor. Comput. Sci. 343 (2005) 332–369.
[2] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: a toolbox for the construction and analysis of distributed processes, STTT 15 (2013) 89–107.
[3] O. Bunte, J.F. Groote, J.J.A. Keiren, M. Laveaux, T. Neele, E.P. de Vink, J.W. Wesselink, A.W. Wijs, T.A.C. Willemse, The mCRL2 toolset for analysing

concurrent systems: improvements in expressivity and usability, in: TACAS 2019, in: LNCS, vol. 11428, 2019, pp. 21–39.
[4] T. Chen, B. Ploeger, J. van de Pol, T.A.C. Willemse, Equivalence checking for infinite systems using parameterized Boolean equation systems, in: CONCUR

2007, in: LNCS, vol. 4703, 2007, pp. 120–135.
[5] S. Orzan, W. Wesselink, T.A.C. Willemse, Static analysis techniques for parameterised Boolean equation systems, in: TACAS, in: Lecture Notes in Com-

puter Science, vol. 5505, Springer, 2009, pp. 230–245.
[6] J.J.A. Keiren, J.W. Wesselink, T.A.C. Willemse, Liveness analysis for parameterised Boolean equation systems, in: ATVA 2014, in: LNCS, vol. 8837, 2014,

pp. 219–234.
[7] B. Ploeger, J.W. Wesselink, T.A.C. Willemse, Verification of reactive systems via instantiation of parameterised Boolean equation systems, Inf. Comput.

209 (2011) 637–663.
[8] Y. Nagae, M. Sakai, Reduced dependency spaces for existential parameterised Boolean equation systems, in: WPTE 2017, in: EPTCS, vol. 265, 2017,

pp. 67–81.
[9] R.P.J. Koolen, T.A.C. Willemse, H. Zantema, Using SMT for solving fragments of parameterised Boolean equation systems, in: ATVA 2015, in: LNCS,

vol. 9364, 2015, pp. 14–30.
[10] P. Fontana, R. Cleaveland, The power of proofs: new algorithms for timed automata model checking, in: FORMATS 2014, in: LNCS, vol. 8711, 2014,

pp. 115–129.
[11] T. Neele, T.A.C. Willemse, J.F. Groote, Solving parameterised Boolean equation systems with infinite data through quotienting, in: FACS 2018, in: LNCS,

vol. 11222, 2018, pp. 216–236.
[12] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, C. Ratel, Minimal state graph generation, Sci. Comput. Program. 18 (1992) 247–269.
[13] D. Kozen, Results on the propositional μ-calculus, Theor. Comput. Sci. 27 (1982) 333–354.
[14] K. Fisler, M.Y. Vardi, Bisimulation and model checking, in: CHARME 1999, in: LNCS, vol. 1703, 1999, pp. 338–342.
[15] D. Park, Concurrency and automata on infinite sequences, in: Theoretical Computer Science, in: LNCS, vol. 104, 1981, pp. 167–183.
[16] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Commun. ACM 17 (1974) 453–455.
[17] S. Cranen, B. Luttik, T.A.C. Willemse, Proof graphs for parameterised Boolean equation systems, in: CONCUR 2013, in: LNCS, vol. 8052, 2013,

pp. 470–484.
[18] J.W. Wesselink, T.A.C. Willemse, Evidence extraction from parameterised Boolean equation systems, in: ARQNL 2018, in: CEUR Workshop Proceedings,

vol. 2095, 2018, pp. 86–100.
[19] J.F. Groote, T.A.C. Willemse, Model-checking processes with data, Sci. Comput. Program. 56 (2005) 251–273.
[20] J.J.A. Keiren, T.A.C. Willemse, Bisimulation minimisations for Boolean equation systems, in: HVC 2009, in: LNCS, vol. 6405, 2009, pp. 102–116.
[21] G. Kant, J. van de Pol, Efficient instantiation of parameterised Boolean equation systems to parity games, in: GRAPHITE 2012, in: EPTCS, vol. 99, 2012,

pp. 50–65.
[22] A. Mader, Modal μ-calculus, model checking and Gauß elimination, in: TACAS 1995, in: LNCS, vol. 1019, 1995, pp. 72–88.
[23] Y. Nagae, M. Sakai, H. Seki, An extension of proof graphs for disjunctive parameterised Boolean equation systems, in: WPTE 2016, in: EPTCS, vol. 235,

2016, pp. 46–61.
[24] T.A.C. Willemse, Consistent correlations for parameterised Boolean equation systems with applications in correctness proofs for manipulations, in:

CONCUR 2010, in: LNCS, vol. 6269, 2010, pp. 584–598.
[25] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on infinite trees, Theor. Comput. Sci. 200 (1998) 135–183.
[26] S. Cranen, M. Gazda, J.W. Wesselink, T.A.C. Willemse, Abstraction in fixpoint logic, TOCL 16 (2015) 29.
[27] W.H. Hesselink, Invariants for the construction of a handshake register, Inf. Process. Lett. 68 (1998) 173–177.
[28] D.E. Knuth, Textbook examples of recursion, Artif. Math. Theory Comput. 91 (1991) 207–229.
[29] D. Lee, M. Yannakakis, Online minimization of transition systems (extended abstract), in: STOC ’92, 1992, pp. 264–274.
[30] R. Alur, C. Courcoubetis, N. Halbwachs, D.L. Dill, H. Wong-Toi, Minimization of timed transition systems, in: CONCUR 1992, in: LNCS, vol. 630, 1992,

pp. 340–354.
[31] S. Tripakis, S. Yovine, Analysis of timed systems using time-abstracting bisimulations, FMSD 18 (2001) 25–68.
[32] G. Behrmann, A. David, K.G. Larsen, A tutorial on UPPAAL, in: SFM-RT 2004, in: LNCS, vol. 3185, 2004, pp. 200–236.
[33] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: CAV 2000, in: LNCS, vol. 1855, 2000, pp. 154–169.
[34] S. Cranen, J.J.A. Keiren, T.A.C. Willemse, A cure for stuttering parity games, in: ICTAC 2012, in: LNCS, vol. 7521, 2012, pp. 198–212.

http://refhub.elsevier.com/S0167-6423(19)30180-7/bibE3C6211E8F75DC85E5EB36297555B1E7s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibBBF7BE7B22BE920F00A4B489BA958C03s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibE4476BFF9A5EB2326CA612A8D85B52CDs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibE4476BFF9A5EB2326CA612A8D85B52CDs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib663A7E1CB88AD9D4EFF6CAB3F5B97B0Ds1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib663A7E1CB88AD9D4EFF6CAB3F5B97B0Ds1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7B255643E289A7C271BC399FDD343ABEs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7B255643E289A7C271BC399FDD343ABEs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib2874672902BF87B44AC44455D025873Cs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib2874672902BF87B44AC44455D025873Cs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibF97B7EAC03B89A6493BA294B556CC760s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibF97B7EAC03B89A6493BA294B556CC760s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib8C8EE93FEB51A617CF87398B376C4D32s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib8C8EE93FEB51A617CF87398B376C4D32s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibE693E658298808B1BCE72E594AEDC70Fs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibE693E658298808B1BCE72E594AEDC70Fs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibB45CCF845D64BE7F29DFFE7302E7B01Es1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibB45CCF845D64BE7F29DFFE7302E7B01Es1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibB5E64820ECB851CC71B75CC82BF99DAFs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibB5E64820ECB851CC71B75CC82BF99DAFs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib572311C29838BF6C216640E625CDF633s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib921518D47FDBFE8BD24B633F8B6516F7s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7940F3917B826D64949158941FE6BC1As1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7F2622092DB592F55043ED48549A13E0s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7925B75DA492F88896D04287C5C0B216s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibF913FC3010BF41ED702F3CC02AFCFF66s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibF913FC3010BF41ED702F3CC02AFCFF66s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib95BFE103772CE2E00C9DE5F2B18D486As1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib95BFE103772CE2E00C9DE5F2B18D486As1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib1FDADCC6922B0005A304EA7387A6EBD8s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib3F3D146D3CEB8B7DF3815F93FCBAA108s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7BC99BDAD7F49F3821659E56F533C85Es1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib7BC99BDAD7F49F3821659E56F533C85Es1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib0547B95EF625853C37809BA193540358s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibA4BF82AFAA1505C2F138A2BCA2C8646Cs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibA4BF82AFAA1505C2F138A2BCA2C8646Cs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibB0579F2E25D8EC0148AFAA74C48B391Es1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibB0579F2E25D8EC0148AFAA74C48B391Es1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib61C5E5D82C5455A8210B1AC12AA95B35s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib3C3D1B6A9AEDCE9CE7495E4DAC06616Cs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib21858B040A599475F4B66A8B09D2F025s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib746786E542241761ABF7BB5370E966EEs1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib0C4EF287745F6D2243D767DE4E549D99s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibA7FBB0569E4CFC359312CBA904E7C082s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibA7FBB0569E4CFC359312CBA904E7C082s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib3E68082DCE37A8D2A14E6D62A6F9FA08s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibF99EDD7186D164ADE78B74C25780BE86s1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bibAEF34D62872B571B044D74585500A88Ds1
http://refhub.elsevier.com/S0167-6423(19)30180-7/bib4E2D3CF75F875500A4B7306FA5468701s1

	Finding compact proofs for infinite-data parameterised Boolean equation systems
	1 Introduction
	2 Preliminaries
	2.1 Processes and transition systems
	2.2 Partition refinement

	3 Motivating example
	4 Parameterised Boolean equation systems
	4.1 Dependency graphs and proof graphs
	4.2 Bakery example

	5 Standard and clustered recursive form
	6 Reduced dependency space
	7 Stable kernel
	8 Stability under solution
	9 Implementation and experiments
	9.1 Comparison of PBES solvers
	9.2 Comparison of PBES quotienting and MMG
	9.3 Splitting strategy

	10 Related work
	11 Conclusion
	References

