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a b s t r a c t 

As with many other sectors, to improve the energy performance and energy neutrality requirements of 

individual buildings and groups of buildings, built environment is also making use of machine learning 

for improved energy demand predictions. The goal of achieving energy neutrality through maximized use 

of on-site produced renewable energy and attaining optimal level of energy performance at building- 

cluster level requires reliable short term (resolution shorter than one day) energy demand predictions. 

However, the prediction and analysis of the energy performance of buildings is still focused on the indi- 

vidual building level and not on small neighborhood scale or building clusters. 

In a smart grid context, to better understand electricity consumption at different spatial levels, predic- 

tion should be at both individual as well as at building-cluster levels, especially for neighborhoods with 

definite boundaries (such as universities, hospitals). 

Therefore, in this paper, using data from 47 commercial buildings, a number of machine learning algo- 

rithms were evaluated to predict the electricity demand at individual building level and aggregated level 

in hourly intervals. Predicting at hourly granularity is important to understand short-term dynamics, yet 

most of the neighborhood scale studies are limited to yearly, monthly, weekly, or daily data resolutions. 

Two years of data were used in training the model and the prediction was performed using another year 

of untrained data. Learning algorithms such as; boosted-tree, random forest, SVM-linear, quadratic, cubic, 

fine-Gaussian as well as ANN were all analysed and tested for predicting the electricity demand of indi- 

vidual and groups of buildings. The results showed that boosted-tree, random forest, and ANN provided 

the best outcomes for prediction at hourly granularity when metrics such as computational time and 

error accuracy are compared. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Growing concern about energy and environmental problems

ave driven interest in the buildings because buildings account

or around 40% of the final energy consumption [ 1 , 2 ]. Therefore,

nhancement of energy efficiency specifically in commercial build-

ngs has become a non-trivial requirement [3] . In addition, growing

enetration of building integrated sustainable energy sources and

nergy conversion technologies require flexibility of energy sys-

ems [4] . However, it is yet to be recognized whether the current
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ustainable developments actually lead to real savings of final

nergy consumption and enhancement of energy flexibility. There-

ore, associated regulations have presented targets for buildings

nd has led to the promotion of the concept of nearly/net-zero

nergy buildings (nZEB) [ 5 , 6 ]. 

A nZEB typically contains cohesive renewable energy sources.

sually by adding intelligent control strategies the energy flows of

ZEBs are optimally governed to achieve the required user comfort

 7 , 8 ], and load matching. Load matching is performed typically

etween on-site renewable generation, grid energy consumption,

nd energy demand [5] , with the aim of consuming the generated

n-site renewable energy maximally. Nevertheless, a considerable

mount of the generated renewable energy is sent back to the

rid without using locally during the spring/summer seasons.
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To minimize the associated grid stress with high penetration of

renewable energy sources, it is essential to utilize the on-site

produced energy locally. This cannot be optimally achieved by

existing control strategies, which merely focus on single-building

level performance [5] . Therefore, moving the boundaries from sin-

gle building level to building cluster level is considered important

to maximize the local utilization of on-site produced energy and to

increase the suppleness of non-dispatchable energy sources using

energy storage systems. Effective collaborative controls between

neighboring buildings can pave the way towards zero energy

neighborhoods with potential energy performance improvement

of all associated buildings whether nZEB or non-ZEBs [5] . Thus,

smarter use of technologies and available renewable resources is

marked essential in achieving maximum techno-economic and

environmental benefits [9] . 

To dispatch the available resources effectively and to identify

the overall energy saving potential, short-term and long-term esti-

mation of building energy demand is considered essential. Contin-

uous monitoring, management, and demand prediction also serve

the purpose of providing performance targets to building owners

and facility managers. Prediction of energy demand can either

be classical, using building simulation tools, or data-driven using

measurement data [ 2 , 4 ]. Engineering calculation and simulation

model-based benchmarking categorize under classical modeling

and develops utilizing the physics of buildings. Classical modeling

requires a certain amount of building parameters to acquire a

reliable demand prediction [6] . On the other hand, given sufficient

quantity of historical data [10] , statistical modeling and machine

learning (ML) algorithms which can be categorized as data-driven

modeling [6] could predict future demand reliably without an

enormous amount of simulations [ 6 , 11 ]. Therefore, recently, a

trend has been developed in research towards estimating building

energy consumption using data-driven and time-series analysis

techniques [12] . In data-driven analysis, energy demand prediction

is performed by employing historical energy consumption data of

buildings and other associated parameters such as climate data

through a learning process [11] . Regression methods, artificial

neural network models (ANNs), etc. [11] can be categorized under

data-driven modeling algorithms for such learning processes. 

In this study, for electricity demand prediction, ML techniques

are used with time-series data. A time-series is a sequence of

observations recorded over equal time intervals [13] . For building

energy demand forecast, the time-series data can be either yearly,

monthly, weekly, daily, hourly, or even smaller data resolutions

such as 15 min. Regression analysis for demand prediction can

be named as a common denominator for a reasonable number

of research papers [ 1 , 3 , 6 , 11 , 14 , 15 ]. Deb et al. [11] presented nine

widely used time-series prediction techniques for building energy

consumption including the most extensively used ML algorithms

namely ANN and support vector machine (SVM). Ahmad et al.

[15] compared ANN and SVM in their study and concluded it

is hard to decide which algorithm forecasts the best. Moving

towards more advanced algorithms, Mocanu et al. [16] used deep

learning auto-regressive estimation methods for the prediction of

building electricity consumption. The authors concluded that the

prediction could be improved by using extra model inputs, such as

outdoor temperature and time information (Month, Day). Several

other studies [16–21] also discussed the accuracy of different ML

algorithms in demand prediction at the building level for a certain

prediction horizon. Out of them, some studies [16–20] emphasized

that ML algorithms in their basic form are difficult to use for

demand prediction. Therefore, modifying the ML algorithms from

their basic structure [16–19] has also been tried in literature to

improve the energy demand prediction and control [21] capability

of the buildings. However, most of these existing literature has

focused only on single building level. 
In the future, when smart grids would be in operation, it is

nlikely that the prediction and management of energy demand

t single building level will be a true objective of the network

perators. Instead, the aggregated demand of building clusters will

e vital in order to improve the energy performance and to let

ll buildings collaborate with each other, while cleverly exploiting

ach other’s peaks and valleys of the demand profiles. Thereby,

chieving nearly constant demand behaviours and ultimately

nergy neutrality at neighborhood level. 

Within the context of predicting multi-building energy use pat-

erns, Xu et al. [20] used ANN to predict energy demand by using

rototype building models. Because of the difficulty of collecting

istorical data of all the buildings, the authors have predicted

onthly electricity consumption of reference buildings first and

ried to estimate the correlation of the reference and non-reference

uildings separately. Using the data collected by the US Depart-

ent of Energy’s building performance database (BDP), Robinson

t al. [3] attempted to predict the city scale annual energy con-

umption of commercial buildings using ML algorithms and a

imited set of building-level features. Their paper emphasized the

mportance of predicting in aggregated building scale to avoid the

rediction errors of individual buildings and to obtain useful in-

ights into cities/neighborhoods. Using a similar database, but for

oth commercial and residential buildings of New York City, Kon-

okosta et al. [22] predicted the annual energy consumption using

hree ML algorithms. The authors emphasized citywide energy

rediction is crucial in understanding carbon reduction measures.

owever, these research-work which attempted to estimate energy

onsumption at the neighborhood/city scale were mostly focused

n long-term energy prediction (monthly, yearly). For a future

mart grid operation, to optimize load scheduling [23] and to

chieve the maximum benefits and collaboration between build-

ngs, long-term demand prediction would not be advantageous as

f short-term demand prediction [24] . Using the New York Inde-

endent System Operator’s (NYISO) electrical load data set, Ahmed

t al. [24] conducted a study that used regression trees for demand

rediction at city level. In their study, the authors highlighted the

mportance of short-term day-ahead load prediction for all days of

he calendar year. Another study [25] tried to compare deep learn-

ng and machine learning algorithms at an aggregated level for the

utch electricity market using 15-minute demand resolutions. This

tudy argues that including influencing factors such as pricing does

ot necessarily improve the accuracy of prediction at aggregated

evel, because of the growing uncertainties in the electricity-grid

emand portfolio due to predominant role of solar energy. 

The aforementioned factors emphasized the necessity of re-

iable short term energy demand prediction of the buildings.

ealiable prediction is needed for achieving energy neutrality

hrough maximized use of on-site produced renewable energy and

ttaining an optimal level of energy performance. Prediction in a

ocalized context is essential to understand the energy consump-

ion and optimization of parameters to improve energy efficiency.

n the other hand, aggregated demand prediction is crucial for

ptimization of the market-flows and economic feasibility (Ex:

omputational cost). Therefore, demand prediction assessment of

uildings should be at different spacial levels, which are otherwise

issing in the existing literature. This type of analysis could cer-

ainly benefit neighborhoods with an already specified boundary

uch as hospitals or campuses. Therefore, to fill the void, in this pa-

er, prediction of the electrical energy consumption of commercial

uildings using different ML algorithms is performed locally and at

uilding-cluster level at hourly granularity. In addition, the perfor-

ance accuracy of these algorithms was compared using individual

cale predictions and aggregated scale predictions. It was deter-

ined in different spatial levels the type of information needed

o get an improved forecast. 
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Fig. 1. Demand prediction procedure. 

Fig. 2. Case study campus. 
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Table 1 

Overview of the characteristics of the buildings. 

Building Type Year built Floor area (m 

2 ) Total (m 

2 ) 

Office buildings 1968 126,454 249,800 

1991 18,612 

1998 1361 

2005 39,202 

2006 19,015 

2007 18,665 

2009 20,144 

2013 1309 

2014 110 

2015 1928 

Industry buildings 1968 35,674 66,186 

(ICT/Process/Storage/ 1998 11,272 

Cafeteria) 2005 11,188 

2014 4894 

2015 3158 

Other buildings 1968 190 1570 

2008 273 

2009 1107 

n  

t  

n  

r  

b

 

t  

c  

W  

K  

w  
. Method 

In this study, the energy demand prediction procedure using

everal prediction methods was established following the five steps

hown in Fig. 1 ; 

• Step 1: Pre-processing of raw data 
• Step 2: Feature selection 

• Step 3: Model development 
• Step 4: Model validation and error calculation 

• Step 5: Prediction 

.1. Description of the raw dataset 

This analysis is perfomed using actual hourly electricity con-

umption data of a campus together with the attributes on

uilding-level. The case study campus is located in the Netherlands

nd mainly addresses technology companies. The campus consists

f 47 buildings with multiple buildings originating since the foun-

ation in 1968. The campus as a whole (not building by building)

s planning to become energy neutral before the year 2030. With

his vision of becoming an energy neutral neighbourhood on its

wn, energy demand prediction is a crucial matter to this campus

o identify the possible renewable energy initiatives. The geograph-

cal configuration of the campus buildings is presented in Fig. 2 ,

nd the overview of the existing buildings is shown in Table 1 . 

In Table 1 , the total number of 47 buildings are categorized ac-

ording to their functionality; namely, office buildings, industrial

uildings, and other functions. Under each of these categories, the

uildings are further divided according to their year of construc-

ion. The representation is given using the total floor area of the

uildings. During the raw data collected period from 2016 to 2018,
o new buildings have been added to the campus. It was observed

hat about five buildings were completely renovated or had a sig-

ificant change in function. However, exact information about the

enovation or changes in the functionality of the buildings couldn’t

e collected from the building management. 

A data acquisition and control system monitors the operation of

he case study campus. Hourly operational data for electricity was

ollected from this system from January 2016 to December 2018.

eather data corresponding to this period were acquired from the

NMI (Dutch Royal Meteorological Institute) weather station 328,

hich is the nearest to the campus. Having full data for more
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Fig. 3. Hourly aggregated level electricity consumption for 2016–2018. 
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years provide a better prediction model, which is described under

Section 2.4 . Fig. 3 illustrates the aggregated electricity consump-

tion of the entire neighbourhood in hourly intervals for the years

2016 to 2018. 

2.2. Step 1: pre-processing of raw data 

Prior to the development of the model, the collected data were

preprocessed to identify whether it is needed to be cleaned. The

cleaning of data was based on two conditions, which are namely

erroneous and missing data points. However, no missing data

points were identified in the data set. For this study, Lagrange

polynomial interpolation is used to eliminate the erroneous data

points [20] . Errors can be occurred due to instrument malfunction

and equipment faults [1] . If the time series can be presented as ( x 1 ,

y 1 ), ( x 2 , y 2 ), …, ( x n , y n ), the Lagrange interpolation is formulated as

presented in Eq. (1) . 

L (x ) = 

n ∑ 

i =0 

y i 

n ∏ 

j =0 , j � = i 

(x − x j ) 

( x i − x j ) 
(1)

In the equation, L(x) is the Lagrange polynomial, y represent the

interpolation value, and n is the size of the data used for interpo-

lation. By visual observation, only a few number of erroneous out-

liers were identified. Then, by using the Lagrange interpolation, the

erroneous values are censored using 150 data points before and af-

ter the erroneous outliers. In the outcome after the interpolation,

only the identified few erroneous data points were altered. 

2.3. Step 2: feature selection 

After the data set is pre-processed, the next step is to identify

the most important inputs or features that will affect the forecast.

A feature is a variable that contains relevant information in pre-

dicting the output [ 1 , 20 ]. 

Based on common knowledge and understanding of building

operation, weather-related variables are considered significant as
eatures. As weather features, outdoor temperature, dry bulb tem-

erature, and relative humidity (RH) were chosen. Prediction of

nergy use of commercial buildings is difficult and complicated,

herefore, other than the weather parameters, day of the week,

our of the day, month of the year, and seasons have been used

s categorical features. One intervention event which is “working

ay”, taking only the values 1 and 0 is also considered as a feature

13] . Other than that, in order to improve the prediction accuracy,

nergy consumption related autoregressive parameters have been

sed; namely the energy consumption of the previous day and en-

rgy consumption of the previous week. The aim is to obtain a

ay-ahead prediction; therefore, energy consumption of previous

ours is not of interest. Feature selection has a non-trivial effect

n the accuracy of the model [22] . Consequently, it is essential to

hoose adequate yet, less number of features. By choosing a less

umber of features, the model becomes more general and straight-

orward [3] , which helps in applying it to similar case studies. 

.4. Step 3: model development 

The model development aims to estimate the energy consump-

ion of the case-study cluster of buildings in hourly intervals.

his objective is expressed in a machine learning algorithm as

ollows. Given the X features and past energy consumption data

 Eqs. (2) and (3) , the target energy consumption is predicted

hrough a trained model f(X), as illustrated in Fig. 4 . 

 = 

[ 

x 11 x 21 ... x n 1 
... 

x 1 t x 2 t ... x nt 

] 

(2)

 = 

[ 

y 1 
... 

y t 

] 

(3)

In the matrix X , ‘1 to n’ columns represent the predictors and

1 to t’ rows represent the time-steps in the training data set. The

ector of responses Y presents the same number of observations as
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Fig. 4. Model development. 

Table 2 

ML algorithms used in literature. 

Algorithm Reference 

Boosted-tree/Random Forest [ 27 , 28 , 14 , 3 , 22 , 29 ] 

SVM [ 30 , 28 , 15 , 14 , 3 , 22 , 12 ] 

ANN [ 27 , 30 , 31 , 32 , 33 , 15 , 12 ] 
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he rows in X . Models were developed using the machine learning

oolbox of MATLAB 2017b [26] . 

Since the selected case study buildings are commercial build-

ngs, it is a possibility that the functionality of the buildings dif-

ers throughout the years. Thereby, the scales of the dataset can

ary. In that case, it is important to pay attention and standard-

ze the collected past energy consumption data. Standardization is

he process of rescaling the data set when there are differences

n scales of magnitude such that the statistical properties remain

pproximately constant over time. From observation, it was distin-

uished, data collected from 12 buildings needed to be standard-

zed. The standardization process rescales the distribution such

hat the mean of the observed values is set to 0 and the standard

eviation is set to 1. In MATLAB black-box modeling the standard-

zation process can be performed. 

To develop the ML models f(X) and to compare the perfor-

ance, following algorithms have been used. In general, these

odels attempt to adjust the internal parameters according to the

iven features and past energy consumption data, and minimize a

oss function between the target values and values predicted [3] .

he following ML algorithms have been chosen mainly because of

he extensive usage and performance superiority according to the

iterature; see Table 2 . 

.4.1. Regression decision trees 

A decision tree is a non-parametric approach that identifies dif-

erent ways of splitting a data set based on conditions until the

nformation gain is zero. Construction of a tree usually inherits a

op-down approach where a variable is chosen at each step, which

best’ splits the set of data [34] . The ‘best’ split is distinctive for

he algorithm used. In order to predict responses, decisions are fol-
owed from the root node to the leaf nodes [34] . Generally, there

re two steps to building a regression tree. 

1 The set of possible values of the predictors, also known as pre-

dictor space ( X ) is divided into J distinct non-overlapping re-

gions R 1 , R 2 , …, R J . The regions are constructed in a way that it

minimizes the residual sum of squares given by Eq. (4) ; ∑ 

j 
j=1 

∑ 

i ∈ R j ( y t − ȳ R j ) 
2 

(4) 

The mean response of the training observations within the j th 

egion is given by y R j . 

2 Then, for every new observation that falls in region R j , the pre-

diction gives the mean of the response values for the training

observations in R j . 

The conventional regression tree algorithms suffer from overfit-

ing and large variance [34] . Therefore, some techniques combine

ore than one decision tree in order to avoid these major draw-

acks of conventional decision trees. These algorithms are called

nsemble methods , where a group of weak learners is combined

o form a strong ensemble which then produces better predictive

erformance [ 34 , 35 ]. In this study, two ensemble regression trees

amely, the boosted tree and random forest are used for the de-

and prediction. Random forest is an improvement of the original

agged tree with a small tweak. 

Generally, bag constructs deep grown trees while boost algo-

ithms create shallow trees. Thereby, bagged trees lead to relatively

low predictions than boost trees. In bagging, the training data

et is bootstrapped by taking repeated samples. Thus, B number

f different bootstrapped samples are generated. The prediction is

erformed as discussed in conventional decision trees for all these

amples, and finally, they are averaged to obtain a single predic-

ion as given in Eq. (5) . ˆ f i (x ) represents the prediction of the i th 

ootstrap sample. The effectiveness of the prediction is said to be

igher in bagged trees [35] . 

f (x ) ← 

1 

B 

B ∑ 

i =1 

ˆ f i (x ) (5) 
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Fig. 5. Illustration of bootstrap as per reference [34] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

l  

S  

c  

p  

r  

i  

S

Y  

 

w  

c  

f  

t  

f  

p  

t  

s  

a

2

 

c  

f  

i  

c  

d  

d  

t  

w  

e  

t  

d  

f  

o  

r  

n  

t  

t  

i

Graphical illustration of bootstrap on a small sample containing

n = 3 observations is presented in Fig. 5 . In the figure, α represent

the estimate of each bootstrap data set. 

In random forest, when the training samples are bootstrapped

and a number of decision trees are made, a random sample of m

predictors are used out of the full set of X predictors, and each

split in a tree is allowed to use only a subset of the m predictors.

This process makes the prediction more reliable. Unlike bagging or

random forest, which involves creating multiple copies of the orig-

inal training data set and fitting a separate decision tree to each

copy, boosting works with sequentially grown trees [34] . Here,

each tree is grown with the information obtained from previously

grown trees. Thereby, each tree is fit on a modified version of the

original data set, as shown by Eq. (6) . Parameter λ is a small pos-

itive number that controls the rate at which the boosting learns

and B represents the number of trees [34] . 

f (x ) ← 

B ∑ 

b=1 

λ ˆ f b (x ) (6)
Fig. 6. Simple Artificial
.4.2. Support vector machine (SVM) 

SVM is a robust learning algorithm for solving non-linear prob-

ems and can be used for both regression and classification [8] .

VM is used to find an optimal hyperplane that separates the

lasses with a maximum margin [34] . If the SVM is exercised to

redict a time series or real numbers, it is called support vector

egression (SVR). SVR uses the same principles as SVM. For every

nput parameter vector ( X ) and its corresponding output vector ( Y ),

VR relates the inputs and outputs using Eq. (7) [6] . 

 = W. ϕ(X ) + b (7)

W represents the weight vector, and b represents the bias,

hich are dependent on the selected kernel function; in this

ontext, linear, quadratic, cubic, and fine-Gaussian. The kernel

unction quantifies the similarity of two observations [34] . Even

hough SVM has its advantages such as the ability to train with a

ewer number of samples and contains a fewer number of hyper-

arameters than Artificial Neural Network (ANN) [6] , the computa-

ion time acts as a significant drawback of this algorithm. In this

tudy, SVM has been used along with regression trees and ANN,

nd the performances of prediction are compared. 

.4.3. Artificial neural network (ANN) 

ANN is a widely used model for the prediction of non-linear,

omplex problems [12] and is one of the main techniques used

or Deep learning. ANN models are used for deriving meaningful

nformation from imprecise and complicated data [11] . An ANN is

onsidered an expert when it is trained in a specific category of

ata patterns. When using ANN, the neural network is trained on a

ataset that consists of mapped pairs of inputs and outputs. During

raining, each neuron is assigned a numeric weight (W). Together

ith an activation function, these weights define the output of

ach neuron. ANN starts learning by adjusting its weights itera-

ively, so that it can map inputs across outputs and learn from the

ataset. Once the network is trained, and the weights are specified

or the connection between the neurons, it is used for validation

n a new dataset. Every input layer neuron is connected to neu-

ons in a hidden layer, which is connected to the output layer

eurons. A complete connection is formed from the input layer to

he output layer, as shown in Fig. 6 . Each weight is just a factor

hat changes throughout the whole process until the loss function

s minimized [36] . 
 Neural Network. 



S. Walker, W. Khan and K. Katic et al. / Energy & Buildings 209 (2020) 109705 7 

 

s  

f  

S  

l  

g  

w  

s  

E

b  

m  

f

2

 

a  

f  

c  

o  

s  

c  

t  

g  

i  

c  

i  

b  

d  

a  

e  

2  

p

 

p  

l  

(  

t  

s  

l  

p  

4

2

 

t  

t  

1  

a  

o  

c

M

2

(

 

p  

f  

M  

R  

H  

o  

f  

a  

t  

fi  

t  

[  

e

C

R

M

2

 

i  

p  

s  

a  

[  

y  

s

R

2

 

i  

(  

p  

t  

a  

c  

S  

n  

s  

t

U

3

 

a  

i  

p  

t  

p  

M  

f  

f  

u  

p  

o  

v

In this paper, a feed-forward neural network was used with a

igmoid activation function [37] for the hidden layers and a linear

unction at the output layer because it is a regression problem.

igmoid function was used at the hidden layers to introduce non-

inearity to the network, for learning and allowing the algorithm to

enerate complex mappings between the features and the outputs,

hich are necessary for forecasting complex data [38] . Out of the

everal methods available for training a neural network, such as

rror backpropagation, Gauss-Newton, and Levenberg Marquardt 

ackpropagation (LVBP), the latter was chosen [39] as the training

ethod of the neural network of this paper. This is because of its

aster computation capability [40] . 

.5. Step 4: model validation and error calculation 

For the validation process, data collected from years 2016

nd 2017 (training dataset) were used. As the validation method

or regression decision-trees and SVM trained models, k- fold

ross-validation was executed [34] . In k- fold validation, the set

f training data is divided into k- groups of approximately equal

ize. In this study, the k value is equal to 10; thereby, 10-fold

ross-validation is performed. In each iteration, one group out of

he k- groups is treated as a validation set, and the rest of the k-1

roups are used to create the model. The held-out validation group

s then predicted using the created model. Likewise, the same pro-

edure is repeated k-times, and in each iteration, a different group

s picked as a validation set. For ANN, the validation is performed

y dividing the training dataset into two parts. From the training

ata set, randomly chosen 30% of data is held without using to cre-

te the model. Then, this set of data is used to validate and test the

stablished model. After model creation and validation based on

016–2017 data, the year 2018 new dataset was used for demand

rediction. 

The accuracy of the trained model (with 2016–2017 data) and

rediction (test-error) using the unseen year 2018 data were calcu-

ated separately. The below-mentioned error performance matrices

2.5.1 - 2.5.4) were used to assess the reliability of all predic-

ion models. In general, for multi-step ahead forecasting as in this

tudy, the relative forecasting errors (MAPE) seen at the aggregated

evel has been quite low (up to 5%) [ 41 , 42 ] while the forecasting

erformance at individual level is seen to be much higher (up to

0%) [43,44] . 

.5.1. Mean absolute percentage error (MAPE) 

This indicator shows ( Eq. (8) ) the mean percentage error be-

ween the predicted ( y-hat ) and the actual ( y ) energy demand of

he buildings on the sample size N . If the MAPE value is less than

0%, it is considered as highly accurate, while 11–20% is regarded

s a reasonable forecast [45] . MAPE has been used as a mean

f comparison between several algorithms [46] for electricity

onsumption predictions. 

APE = 100 ∗ 1 

N 

N ∑ 

i =1 

| ̂  y i − y i | 
| y i | (8) 

.5.2. Coefficient of variance of the root mean square error 

CV-RMSE) 

‘ASHRAE Guideline for measurement of energy demand’

resents CV-RMSE as a suitable performance calculation matrix

or engineering applications. CV-RMSE represents the ratio of Root

ean Square Error (RMSE) and mean of the observations ( Eq. (9) ).

MSE; Eq. (10) presents the magnitude of the estimation error.

owever, RMSE is dependent on the sample size (N) and the scale

f observations [14] . This means that the RMSE by itself is not in-

ormative about the precision of the estimator without information

bout scale and sample size. Therefore, it is divided by the mean of
he data; Eq. (11) [47] . Then it becomes a scale-independent coef-

cient. It is specified in ASHRAE guideline, for hourly data resolu-

ion predictions, a result with a CV-RMSE value below 0.3 ( = 30%)

 14 , 48 ] is sufficiently close to physical reality and adequate [49] for

ngineering purposes. 

V − RMSE = 

RMSE 

Mean (observ ations ) 
(9) 

MSE = 

√ √ √ √ 

N ∑ 

i =1 

( ̂  y i − y i ) 
2 

N 

(10) 

ean = 

N ∑ 

i =1 

y i 

N 

(11) 

.5.3. Coefficient of determination (R 2 ) 

R-squared represents the predictable proportion of the variance

n the dependent variable that can be expounded by the inde-

endent variable(s), which is presented by Eq. (12) . Closer the R-

quared value to one, better the model performance. It is taken as

 measure of validity for the models because it is a widely used

 1 , 3 , 48 ] indicator in statistical analysis. In the equation, y-hat and

 present the predicted, and the actual energy demands and y-bar

hows the mean of the real observation set. 

 

2 = 1 −

N ∑ 

i =1 

( y i − ˆ y i ) 
2 

N ∑ 

i =1 

( y i − ȳ ) 
2 

(12) 

.5.4. Theil U-Statistics 

This indicator is used for forecast accuracy and forecast qual-

ty estimation [50] . i + + x in Eq. (13) represents the prediction

 y-hat ) or actual ( y ) energy demand of time i + + x . The indicator

roduces values greater than zero. If U < 1, the forecast is better

han the naïve method (Naïve forecasting is using the last period’s

ctual value as the next period’s forecast. Since this study is fo-

used on day-ahead prediction , next period represents 24 h ahead).

maller the U-value, better the prediction. If it is = 1 or > 1, there’s

o added value of using the proposed forecasting model. In this

tudy, Theil U indicator is used to provide the evidence of predic-

ive capability of the ML algorithms using unseen data. 

 = 

√ √ √ √ √ √ √ 

N−24 ∑ 

i =1 

(
ˆ y i +24 − y i +24 

)2 

N−24 ∑ 

i =1 

(
ˆ y i +24 − y i 

)2 
(13) 

. Results and assessment 

The results are discussed in two separate sections; individual

nd collective. In the individual building assessment, each building

s analyzed separately, and the performance of the training and

rediction models for each building is discussed. In the collec-

ive case, all buildings have been used as one group and the

erformance is discussed accordingly. For the analyzed different

L algorithms, the training and prediction results are presented

ollowing the steps introduced in Section 2 . During training,

or hyper-parameters the general-values shown in Table 3 were

sed. These general-values were chosen by changing the hyper-

arameters manually. In general, the best performing combination

f hyper-parameters for all the buildings is presented by these

alues. 
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Fig. 7. Deviations of the errors for the 47 buildings. 

Table 3 

General parameters for all buildings and tuned hyper-parameters for Building-19. 

Algorithm Parameter 

General 

values 

Tuned 

values 

Boosted-tree Minimum leaf size 8 14 

Learning rate 0.1 0.13 

Number of learning cycles 30 133 

Random Forest Minimum leaf size 8 3 

Number of learning cycles 30 500 

SVM-Linear Box constraint 26.68 917.19 

(SVM-L) Epsilon 2.67 0.33 

Kernel scale 36 887.99 

SVM-Quadratic Box constraint 26.68 998.93 

(SVM-Q) Epsilon 2.67 0.23 

Kernel scale 36 20.96 

SVM-Cubic Box constraint 26.68 0.31 

(SVM-C) Epsilon 2.67 0.16 

Kernel scale 36 13.85 

SVM-Fine Gaussian Box constraint 26.68 739.86 

(SVM-FG) Epsilon 2.67 0.26 

Kernel scale 0.83 10.29 

ANN HiddenLayerSize 10 15 
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For underperforming buildings, the hyper-parameters were

tuned by performing grid searches so that the performance of the

individual models are improved. Grid search is used to find the op-

timal parameter combination of a model that gives the most ac-

curate results [51] . The tuned parameters of Building-19 for each
model are also shown in Table 3 . H  

Table 4 

Individual assessment summary for trained models. 

Number of buildings 

Training models 

Error Margin used Boosted-tree Random Forest 

MAPE Less than 20% 41 44 

CV-RMSE Less than 0.3 44 44 

R 2 Higher than 75% 41 44 
.1. Individual building assessment 

The results associated with the training and validation of ML

odels using 2016 and 2017 electricity consumption data of each

uilding are discussed in Section 3.1.1 . 

.1.1. Error calculations for the trained models – individual buildings 

Fig. 7 shows the deviation of errors for each trained model

hen the buildings were assessed individually. Table 4 represents,

n summary, the number of buildings that are satisfying the ap-

ropriate error margins for these trained models. From these error

alculations, it can be detected that the boosted-tree and random

orest perform best along with SVM-cubic model. 

In Fig. 7 , it can also be observed, few numbers of buildings (see

he red + signs) do not perform well according to the chosen error

atrices. This indicates that the past data patterns of some build-

ngs do not perform in favor of creating a model for prediction

egardless of the standardization process. 

A zoomed overview of a poorly performing building (Building-

9) is presented in Fig. 8 . The horizontal dashed-lines in the figure

ndicate the desired margins. 

Knowing the performance, the next step is to choose suitable

rained-models for demand prediction using new data. When

electing best-performing algorithms, computational power and

ime are also considered important. One can argue, computational

ime can be improved with better machines and this factor is

ess important and shouldn’t be weighted equally with accuracy.

owever, better and powerful machines always come with an
SVM-L SVM-Q SVM-C SVM-FG ANN 

35 40 41 38 36 

40 43 44 45 40 

34 40 42 41 30 
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Fig. 8. Error matrices for poorly performing trained models of a building. 
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dditional cost. Selecting ML algorithms giving priority to compu-

ational time or accuracy completely depends on the application it

ill be used. For some applications such as medical requirements,

ccuracy of the prediction is paramount regardless of the compu-

ational time. In this research work, time, and costs are considered

mportant. These factors shape the speed with which the technol-

gy will develop within the built environment, and therefore, it

elps to define the economic impact. These economic impacts are

ore than merely the amount of processing power available, but

lso the details of computational architecture, the actors involved,

nd the co-evolution of the machine learning field itself [7] . There-

ore, computational time needed for training the models has also

een calculated. 

When comparing the simulation times needed in creating these

odels, SVM-cubic took more than 17 h to complete the training

odels of all 47 buildings. In comparison, boosted-tree and ran-

om forest completed the task in less than 12 min and ANN in

 min. According to the performance of the utilized computer, the

omputational time needed for the creation of training models of

ll 47 buildings is presented in Table 5 . 

omputational time ( CT ) total = 

47 ∑ 

i =1 

CT _ Buildin g i 

Considering all these facts, for demand prediction using unseen

ata, boosted-tree and random forest has been chosen to represent

he regression models together with ANN. 
Table 5 

Computational time needed for each algorithm. 

Algorithm Boosted-Tree Random Forest S

CT (minutes) 5 11 1
.1.2. Error calculations for the predictions with unseen data –

ndividual buildings 

After creating the ML models, the next step is to perform the

rediction. For the prediction, new data of the year 2018 is used.

ig. 9 , Fig. 10 , and Fig. 11 illustrate the MAPE, CV-RMSE, and R 

2 

alue variation of the predictions using the trained models of the

7 buildings. In the three figures, the desired error margin is indi-

ated with a dashed horizontal line. For MAPE, CV-RMSE, and R 

2 ,

he error matrices below 20%, below 0.3 and above 0.75 respec-

ively, are chosen as the desired values as described in Section 2.5 .

In the MAPE assessment, with random forest models, 36 build-

ngs stayed under the desired margin, and for boosted-tree and

NN, 35 and 36 buildings fulfilled the margin requirement. Simi-

arly, the CV-RMSE margin was met by 40, 40, and 42 buildings for

he boosted-tree, random forest, and ANN, respectively. With R 

2 ,

t can be observed, in all three cases, less than 40 buildings out

f the 47 fulfilled the satisfactory margin. In Fig. 11 , “undesirable

esult” indicates a minus value obtained for R 

2 . 

When comparing the figures, it is possible to see that for some

uildings (Ex: Building-30), MAPE and CV-RMSE provide desirable

esults but, R 

2 does not perform well. One possible reason for this

ould be the non-linear behavior when applying the models to un-

rained data. R 

2 is not considered as a good indicator for such cases

52] . CV-RMSE and MAPE provide better indication of the model’s

sefulness in such occasions. More insights on the models’ overall

recision can be obtained with the Theil-U indicator. Fig. 12 shows

he calculated Theil-U values. From this indicator, it is possible to

ay that almost all the prediction models perform better than the
VM-L SVM-Q SVM-C SVM-FG ANN 

07 258 1020 173 5 
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Fig. 9. MAPE calculation for the prediction data set. 

Fig. 10. CV-RMSE estimate for the prediction data set. 

Fig. 11. R 2 calculation for the prediction data set. 
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Fig. 12. Theil-U calculation for the prediction data set. 

Fig. 13. Error calculation for aggregated-level trained models (2016–2017 data) and prediction (unseen 2018 data). 
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aïve forecast. For Building-3 and 42, even though the prediction

odels perform acceptably with MAPE, CV-RMSE, and R 

2 calcula-

ions, Theil-U indicator conveys naïve estimate is better than the

reated ML models. On the contrary, regardless of the poor accu-

acy calculations, the ML model performs better than naïve fore-

ast, for models such as Building-19. 

Overall, for the individual building assessment, it is clear from

he results for about five buildings the day-ahead electricity con-

umption cannot be predicted with enough accuracy. One appar-

nt reason for this is the precision of the trained models. Given

he fact that the trained models of some buildings did not provide

atisfactory outcomes, predicting with new data with enough ac-

uracy was not a possibility. Other than that, given the irregular

ehavior of electricity demand of a few buildings standardization

oes not guarantee better predictions. Therefore, it cannot be con-

idered as a smart choice in attempting to make precise predic-

ions for these buildings on an individual scale. 

.2. Accuracy determination of the applied methods on building 

luster level 

In this section, the trained model accuracy and prediction ca-

ability were assessed when these 47 buildings are considered as
 cluster. Even though some buildings presented unpredictable be-

avior when seeing individually, the effect of these unpredictable

atterns can be alleviated to a considerable extent when consid-

ring them as groups. Fig. 13 shows the error calculations for the

luster level trained models and predictions. The results show very

igh accuracy in the training and prediction models. It is also note-

orthy to see that the ANN trained model performance is interest-

ngly improved when compared with individual buildings’ trained

NN models. The clustered training and prediction significantly re-

uced the needed time for all models and offered a more reliable

oad profile for the system. The models were able to train in less

han a minute. 

The errors of the sum of individual predictions ( ̂  Y ) as shown in

q. (14) also have been calculated, in order to observe the accuracy

hen compared with the individual predictions ( ̂  y ). Fig. 14 below

llustrates the resulted error matrices. Even in this case, it is possi-

le to see that the effect of unpredictable data sets has been died

ut by grouping them as one prediction. 

ˆ 
 = 

47 ∑ 

i =1 

ˆ y (14) 
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Fig. 14. Error calculation for the sum of individual predictions. 
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4. Conclusion 

This study has focused on presenting the added value of pre-

diction that takes into account the buildings at the group level

compared to prediction at the individual level. Firstly, different

ML prediction algorithms were evaluated and tested on a cam-

pus neighbourhood. From the results of the trained models, it

was observed boosted-tree, and random forest outperformed the

other considered regression algorithms. Considering computational

power and time as well as error accuracy, boosted-tree, random

forest, and ANN models were chosen for electricity demand pre-

diction. Even though ANN did not produce exact performance in

the training model when compared with the regression trees algo-

rithms, in the prediction stage, all these three models performed

similarly. 

From the results of the predictions of individual buildings, it

was observed that for some buildings the potential of creating a

prediction model was not satisfactory. This was because of the

inconsistency of the collected data during the considered period.

For cases with unsatisfactory results, adequate amount of data

collection for a certain period or advanced data preprocessing

methods should be used. Nevertheless, most of the time building

associated professionals or building owners do not acquire the

required knowledge to perform such time-series analysis meth-

ods. In that case, the prediction of energy profiles in the cluster

scale can help in alleviating the associated problems and lead

to very high accuracy predictions. For neighborhoods such as

university campuses that already acquire specific boundaries, it is

beneficial to analyze its buildings at cluster level than individual

scale. If the single building prediction is a prerequisite, then the

unpredictable buildings can still be grouped to obtain a better

forecast. 

Furthermore, with the shift from the traditional grid and analog

meter towards the smart grid and smart meters, the amount of

data generated from buildings will increase significantly. The main

question is deciding the levels at which the data should be used,

the required computational speed and the required architecture

for this conversion and which actors should be involved to make

use of these data sets in an economical manner. In that context,

the use of the prediction models on a neighborhood level to

decrease the amount of time required for the computation and

use of the existing computer technologies without upgrading into
dvanced technologies will be beneficial for the building owners.

lustering the buildings will help in reducing the accumulation of

ata in significant amounts. Each building generates a lot of data,

hich is difficult to process without time-consuming measures.

lustering will decrease the amount of collected data, but the

esult for the grid side which is the predicted load will still be

he same. 

Another important aspect of this study is the illustration of pre-

iction results using hourly data resolutions, instead of predicting

aily or weekly. The proposed algorithms can be integrated into

he building management systems for day-ahead demand and on-

ite renewable energy production forecasts. According to the pre-

ictions if the buildings are coordinated in advance, informed and

ore efficient decisions would be made in real-time to optimally

tilize the on-site produced renewable electricity, and to allow the

peration of the energy systems with some flexibility. Since energy

eutrality is a significant concern of buildings nowadays, moving

he boundaries towards neighborhood scale and making the neigh-

orhood energy neutral will be essential and also economical for

ll the involved decision-maker parties. 
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