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Abstract

We introduce a new abstract graph game, Swap Planarity, where
the goal is to reach a state without edge intersections and a move consists
of swapping the locations of two vertices connected by an edge. We ana-
lyze this puzzle game using concepts from graph theory and graph draw-
ing, computational geometry, and complexity. Furthermore, we specify
quality criteria for puzzle instances, and describe a method to generate
high-quality instances. We also report on experiments that show how well
this generation process works.
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1 Introduction

Planarity [16] is a popular abstract puzzle game that is widely available. Be-
sides being a smartphone app and having a Wikipedia page, it is also available
as a “model” in Netlogo [17]. The idea is that a tangled graph is given with in-
tersecting edges, and the objective is to untangle the graph by dragging vertices
to other locations as to reach a plane drawing. If the graph is planar (meaning
that it can be embedded in the plane without intersections), then the objective
can always be realized, and we never need more vertex drags than there are
vertices.

Algorithmically, planarity of a graph can be tested in linear time [6, 8, 15],
and the algorithm returns an embedding of the graph in which it is drawn planar.
So for an algorithm, an instance of Planarity is easily solvable in linear time.
Minimizing the number of moves, however, is NP-hard [9, 19], see also [4].

In this paper we propose several variations on the game Planarity. These
variations essentially limit the freedom of the operations that can be done on
the drawn graph. We investigate one of the new variations closely: Swap Pla-
narity, where we can swap the locations of two vertices that are connected
by an edge. Examples are shown in Fig. 1. We show that quadratically many
swaps are sometimes necessary, even if the input has just one edge crossing. We
also prove that, if a planar state can be reached, quadratically many swaps are
always sufficient to reach it. We also show, however, that deciding whether such
a planar state exists is NP-complete for general graphs. Simple graphs like trees
can always be made planar by swaps, but we show that minimizing the number
of swaps needed is NP-complete.

We also investigate the automated generation of good puzzle instances. We
describe a five-step process which yields a puzzle instance. Some of the consider-

(a)

(b)

Figure 1: (a) Puzzle and solution after one swap (the left, nearly vertical edge).
(b) Puzzle and solution after two swaps.
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ations of a good instance are puzzle (complexity) based and some are geometry
based. Our process guarantees that the puzzle and geometry criteria are met.

We implemented the generator and ran a number of experiments that un-
cover some properties of point set generation and puzzle diversity. The imple-
mentation includes a puzzle mode where the user can solve generated instances
by hand.

2 Graph untangling puzzles

We will limit the operations that change the drawing of the graph to arrive
at different puzzles. Since the puzzle type is abstract, it is necessary that the
interaction and operations themselves are simple. The puzzle then becomes an
elegant abstract puzzle of which there are many already (Move, Lines/Flow,
Zengrams, Nintaii, Fling, and several more).

Besides interacting with a vertex like in Planarity, it is natural to interact
with an edge. Clicking or selecting is arguably the easiest interaction. We list a
number of ways in which the graph drawing can change when an edge is selected:

Swap: the two endpoints of the selected edge swap locations. Intuitively, the
edge turns around while the endpoints drag all incident edges with them.

Rotate: like swap, but now the selected edge rotates over 90 degrees around
its center. Since a single edge can be selected consecutively three times,
it does not matter whether we rotate clockwise or counter-clockwise.

Stretch: the selected edge is scaled by a factor 2 from its center, or by a factor
1/2.

Collapse: the endpoints of the selected edge are united. The united vertex is
placed in the middle of the edge and gets all edges incident to the original
vertices. The selected edge is removed.

Of these versions, the first one distinguishes itself from the others because
no new vertex positions appear. The graph will always be drawn on the original
positions. Furthermore, the last version distinguishes itself by the fact that the
number of vertices is reduced. Eventually, the whole graph could be reduced to
a single vertex, so the challenge must be to remove all intersections in a limited
number of steps. In the first three versions, steps are reversible.

We can also stay closer to the original Planarity puzzle and drag vertices
in more limited ways. For example, a set of points can be given along with the
graph, and the vertices must be dragged to the given points. This version is
related to a well-known problem in the graph drawing research area, namely
that of embedding a graph on a given set of points [5]. In essence, the initial
drawing of the graph is irrelevant.

In this paper we concentrate on the swap version, named Swap Planarity.
It is perhaps the most elegant version and the graphs appearing after operations
can be controlled in their appearance, unlike with the other versions (where
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Figure 2: Six steps to solve an 8-cycle with one intersection. The edge to be
swapped is indicated.

edges may get so short that they cannot be selected any more). All following
results concern this version.

Before we go into the algorithmic complexity of solving such puzzles and
the process of generating good puzzle instances, we give a few examples to
understand the puzzle better. First, consider the puzzle instance in Fig. 2 with
eight vertices and eight edges. The graph is a single cycle and it has only
one intersection. To solve this puzzle, note that any swap will increase the
number of intersections. The minimum number of swaps needed is six; the set
of intermediate drawings is shown in the figure and the selected edge is shown.
When we extend this example to a set of n vertices and edges, we need Ω(n2)
swaps to solve the instance.

Lemma 1 There exist graphs with n vertices that require Ω(n2) swaps to obtain
a plane drawing.

Proof: Consider the drawing of Fig. 2 generalized to n vertices, with n even.
Name the vertices of the graph v1, . . . , vn so that v1, . . . , vn/2 are clockwise and
vn/2+1, . . . , vn are counter-clockwise. This implies that the edges (v1, vn) and
(vn/2, vn/2+1) intersect. Let us name the positions for the vertices p1, . . . , pn,
where initially v1 is at p1 and the positions are numbered clockwise, see Fig. 3.

p1

p2

pn

v1

v2
vn/2

pn/2

pn/2+1

vn/2+1

vn

Figure 3: Positions and vertices for the lower bound construction.
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In total there are 2n ways to place v1, . . . , vn on p1, . . . , pn without inter-
sections: in cyclic order clockwise or counter-clockwise, and starting anywhere.
This means that either v1, . . . , vn/2 or vn/2+1, . . . , vn must be reversed on the
positions p1, . . . , pn.

Listing the points in the order of the cycle v1, . . . , vn, we initially get the
cyclic sequence p1, . . . , pn/2, pn, . . . , pn/2+1. A swap exchanges precisely two
adjacent elements (where the first and last are also adjacent). Thus, to sort this

sequence in one of the 2n ways, at least
(
n/2
2

)
= Ω(n2) swaps are needed. �

The next lemma shows that quadratically many swaps are sufficient; the
result has been proved before as node swapping [20].

Lemma 2 Every embedded graph with n vertices that can reach a plane drawing
using swaps has a sequence of O(n2) swaps to obtain this drawing.

Proof: Assume first that the graph has a single connected component. Name
the positions p1, . . . , pn, and name the vertices of the graph v1, . . . , vn in such a
way that the graph is drawn plane if vi is at position pi. We prove by induction
that any connected graph with n vertices can place its vertices at v1, . . . , vn at
positions p1, . . . , pn, respectively.

w3
w1 = vk

w2

w3

w2

w1

pj pj
w3 w2

w1

pj

= vj

Figure 4: Bringing vj to pj using the bold path w1, w2, w3 (note that all plane
embeddings must have vj at pj). Left: initial situation. Middle: after swap
(w1, w3). Right: after swap (w2, w3).

Choose any vertex vj such that its removal will leave the graph connected.
Suppose a vertex vk is currently at position pj . Use the path between vj and vk
in G to get vj onto pj as follows. Suppose this path is vk = w1, w2, . . . , wh = vj ,
see Fig. 4 for an example. We swap (w1, w2), then (w2, w3), and so on until
(wh−1, wh). This brings vj onto pj in h− 1 = O(n) swaps. We remove vj from
the graph and pj from the locations and continue inductively. It is clear that
at most O(n2) swaps are needed in total. If the graph has multiple connected
components, we follow this procedure for each connected component. �

Another puzzle variant of swapping to planarity is possible, namely where
we swap any two vertices (so they need not be connected by an edge). The
interaction with the puzzle consists of clicking on two different vertices consecu-
tively. In this variation, any solvable puzzle instance with n vertices is solvable
in at most n− 1 swaps, because we can directly bring any vertex to the correct
position. The challenge of this variant reduces to recognizing where vertices
need to be to get a planar embedding, and no longer how to get it there.
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3 Complexity of Swap Planarity

Theorem 1 Given an embedded graph G, it is NP-complete to decide if the
graph can be made planar using swaps.

Proof: A solution of the problem can be presented by the sequence in which ver-
tices are swapped. This solution can be represented in O(n2) space by Lemma 2.
Swapping these vertices and checking if the resulting graph is plane can be done
in polynomial time, hence the problem is in NP.

Cabello [5] showed that it is NP-complete to decide if a given point set P
admits a planar drawing of a given graph G where the vertices must be placed
at the points. This is also true for connected graphs. Given an instance of this
problem with a connected graph, we assign the vertices of G to the points in P
arbitrarily.

We now solve the graph planarization using swaps on this embedding of the
graph. If it has a solution, we can just output the final point-vertex relation,
leading to a planar embedding of the given graph. If no solution exists, we also
know that no planar embedding exists, since by the proof of Lemma 2, we can
realize any assignment of vertices to points in a connected graph. �

It is known that if G is a tree, the embedding problem of G onto P is no
longer NP-complete because every tree can be embedded without intersections
onto a planar point set [3, 14]. This does not imply that our puzzle game is
easy to solve when the graph is a tree when we bound the number of swaps. In
particular, we can show that deciding whether the vertices of an embedded tree
can be swapped to become plane in at most k swaps is NP-complete.

Theorem 2 Given an integer k and a embedded tree with n vertices, it is NP-
complete to decide if k swaps suffice to obtain a plane drawing.

Proof: A solution of the problem can be presented by the sequence of edges to
be swapped. Swapping these edges and checking if the resulting tree is plane
can be done in polynomial time, hence the problem is in NP.

For ease of explanation, the given reduction contains a number of collinear
vertices. By perturbing the vertices slightly, however, the same construction
works for points in general position. We reduce from positive planar 1-in-3-
SAT. This problem was shown to be NP-complete by Mulzer and Rote [12].

Positive planar 1-in-3-SAT. In the positive planar 1-in-3-SAT problem
we are given a collection of clauses, each consisting of exactly three variables.
Each of these variables occurs positively in the clause. In addition, we are given
a planar embedding of the clauses and variables such that a variable is connected
to a clause if and only if the variable occurs in the clause. The positive planar
1-in-3-SAT problem asks to decide if there exists a truth assignment to the
variables such that for each clause exactly one variable is true.

For the reduction, we introduce gadgets for the variables, clauses and con-
nections between these in the given embedding. We describe the construction
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and functioning of each gadget below, noting that an overview of the final con-
struction is given at the end in Fig. 9.

Variable gadget. We construct a variable gadget as follows; see Fig. 5 for
an illustration. The basic construction is a path of 7 vertices, such that the
first two and the last two form the corners of a square (in convex position), such
that the path order matches the vertex order around the square’s boundary. The
remaining three vertices are placed inside the square such that their connecting
edges do not intersect, but the edges (v2, v3) and (v5, v6) do intersect. In order
to remove the created crossings using the minimum number of swaps, we need
to swap the first or last edge of this path.

v1

v2

v5 v4 v3

v7

v6

v1

v2

v5 v4 v3

v6

v7

v2

v1

v5 v4 v3

v7

v6

(a) (b) (c)

v1

v2

v5 v4 v3

v7

v6

v10 v9 v8

v11

v12

v15 v14 v13

v17

v16

v1

v2

v5 v4 v3

v6

v7

v10 v9 v8

v11

v12

v15 v14 v13

v16

v17

(d) (e)

Figure 5: The variable gadget. (a) Basic construction of input path of 7 ver-
tices. (b–c) Two ways of doing a single swap (thick edge) to untangle the basic
construction. (d) Chaining the basic construction into a longer path. (e) The
minimal-swap solution for a false assignment, swapping half of the vertical
edges.

We now create a variable gadget, by repeating this basic construction into
a longer path. The first two vertices are the last two vertices of the previous
construction in the same order; effectively, we vertically mirror the basic path of
every second repetition. We always use an odd number (at least 3) of repetitions.
This ensures that we can remove all crossings by swapping the endpoints of all
even or all odd vertical edges and this requires the same number of swaps.
We designate swapping all the even vertical edges ((v6, v7),(v16, v17), etc.) to
indicate false; all odd vertical edges as true. Note that this same construction
can be used to propagate the truth value over longer distances as well, and that
there is flexibility in this construction to make bends.

Split gadget. In order to connect the variable to clauses, we construct a
split gadget to be attached to a variable gadget; see Fig. 6a for illustration. We
take another basic construction path (indicated using the w-vertices) and rotate
it clockwise by 90 degrees and place it below one of the even vertical edges in
the variable (e.g. (v6, v7)). We shorten (w1, w2) and lengthen (w6, w7) such that
we can place a helper vertex h between v2 and v6 such that h is inside triangle
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v1

v2

v5 v4 v3

v7

v6

w2
w1

(a) (b) (c)

w3

w4

w5

w6 w7

h

Figure 6: (a) The split gadget and its two minimal planarizations: (b) the false
assignment and (c) the true assignment. Thick edges in (b) and (c) are those
that have been swapped with respect to (a).

w1w2v7 but outside triangle w1w2v6 in the input. We then add edges (v6, w1)
and (w7, h).

There are two minimal ways of removing the crossings, each costing one swap
in the split gadget, plus two in the variable construction shown in the figure.
In a false assignment, (v6, v7) is swapped; swapping (w1, w2) then resolves all
intersections. In the true assignment, (v6, v7) is not swapped and swapping
(w6, w7) untangles the gadget. Observe that swapping (w1, w2) does not resolve
the intersection between (w1, v6) and (w7, h) in the true assignment.

Clause gadget. The construction of a clause gadget is shown in Fig. 7. We
place a central vertex c1 and we place three vertices c2, c3, and c4 equidistant
from it, connecting them to c1. Next, we place three layers of three vertices
each equidistant from c1 such that each layer forms a triangle containing the
central vertex. We place these such that all its vertices are placed well within
the triangle c2c3c4. We note that the only way to untangle this structure is to
swap locations of the central vertex with one of c2, c3, and c4 and orient the
three layers in such a way that the edges missing in each layer line up towards
the new location of c1. This takes three swaps in total.

We connect a variable to a clause by using the split gadget at the variable,
and then building a connection of an odd number of repetitions of the basic
construction path, including one inherent in the split gadget to the clause, using
one of (c1, c2), (c1, c3) or (c1, c4) for the last repetition of the basic construction.
When placing this last repetition, we ensure that regardless of which of the three
clause vertices c2, c3, and c4 swaps with c1, the edges connecting the variables
to c1 do not cross any of the other edges of the clause gadget. Furthermore, we
ensure that the last crossing of the basic construction is untangled for free when
c1 is swapped with the vertex next to the clause (see Fig. 7).

In Fig. 7 we illustrated two of these repetitions for each variable. This may
either directly connect to the split gadget as shown in Fig. 6, or use another
even number of repetitions in between; we assume the former in our exposition
here. But either case guarantees that the number of swaps required to untangle
it is the same, regardless of whether the variable is true or false.
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c1

c3

c4

c2

Figure 7: The clause gadget with enlargement of the central construction. Thick
edges must be swapped to arrive at the drawing for Fig. 8.

When exactly one of the three variables has the value true, we can untangle
the clause gadget using five swaps. Note that we do not count the outermost
swap of the true variable, as this is shared with the split gadget. In Fig. 7,
assume that the lower left variable is true and the other two are false. We
untangle the clause gadget by swapping the edge connected to the center vertex
that belongs to the true variable (the horizontal edge in Fig. 7). We also
swap two of the edges of the middle triangles to make that part plane. Finally,
we swap the endpoints of the middle edge of the connecting gadget of the two
false variables. The result is shown in Fig. 8. We note that the connection
of the true variable is untangled because the split gadget passes on its truth
assignment.

Now consider the case where the clause is not satisfied. This can be because
either no variable is true or because at least two variables are true. In the
first case, the number of swaps needed to untangle the gadget is at least six,
since we have to perform the same swaps as in the case where the clause is
satisfied and in addition we need to swap the first edge of the connection of the
third variable. This last edge swap corresponds to swapping the endpoints of
the last edge in Fig. 6c.

Next, consider the case where the clause is not satisfied because at least
two variables are true. We first note that to untangle the clause, we need
to swap one of the edges connected to the center as well as two edges of the
triangles surrounding the center. One of the true variables does not require
any additional swaps, so let us consider the other two connections. For each
of these connections that represents a true variable, we note that we cannot
swap the first edge of the connection, since it is fixed by the split gadget (see
Fig. 6b). Hence, to untangle an additional true variable, we need to reverse its
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Figure 8: A clause satisfied by the bottom-left variable. Thick edges are those
that have been swapped from Fig. 7.

sequence of two horizontal middle edges; this reversal requires three swaps. If
there are two true variables, this implies that we need six swaps for the clause
gadget. If there are three true variables, seven swaps are needed.

It remains to argue that there is no globally different set of swaps that makes
the graph plane with fewer operations. Intuitively, for any pair of crossing edges,
at least one of the neighboring edges needs to be swapped in order to remove
the crossing. This argument implies that for edges that cross only a single other
edge, we perform the minimum number of swaps to remove the crossings. Hence,
we need to consider only those edges that cross multiple edges. Such edges occur
only in the clause gadgets. We observe that the central vertex is surrounded by
red triangles, hence to remove the crossings of the central vertex and these red
edges, we need to either align the triangles (as our method does in the minimum
number of operations) or swap at least one vertex of each triangle layer with a
vertex outside the triangles. In order to perform the latter swaps, we would need
to swap the endpoints of at least two edges per layer, since we first need to swap
the central vertex with some edge outside the triangles followed by one or more
operations to swap the desired triangle vertex with the central vertex. Hence,
this approach requires at least six swaps in order to remove these crossings from
a single clause gadget, which is more than the five swaps our approach needs.

Hence, when a clause is not satisfied, untangling it takes more than five
swaps. Finally, since the number of swaps required for the variable gadgets and
split gadgets is the same regardless of whether the instance is satisfiable or not,
an instance is satisfiable if and only if we need five swaps per clause to untangle
all clauses.

Constructing a tree. Each of the gadgets above can be translated, scaled
and rotated. We place the gadgets to adhere to the given embedding of the posi-
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a

b

c

d

a ∨ c ∨ d

a ∨ b ∨ c

Figure 9: Schematic representation of a complete construction for (a ∨ b ∨ c) ∧
(a∨ c∨ d). Each gadget is represented using a dark gray shape: a rectangle is a
variable, a triangle is a split, and a spiral is a clause. Light gray areas represent
a sequence of basic constructions to connect splits at variables to clauses.

Figure 10: Removing edges from the basic construction to turn the graph into
a tree.

tive planar 1-in-3-SAT instance, using basic constructions to connect clause gad-
gets with their split gadgets at each relevant variable gadget. This is schemat-
ically shown in Fig. 9. However, this construction is generally not a tree, as it
can contain cycles. To construct a tree, we remove the middle edges from some
basic constructions (see Fig. 10). Since the endpoints of these edges are never
swapped in any satisfiable assignment, this does not influence the satisfiability
of the instance.

This last step shows that we can solve an instance of positive planar 1-in-
3-SAT by constructing a tree and determining whether the clause gadgets can
be untangled using five swaps per clause. Retrieving the variable assignment
for positive planar 1-in-3-SAT can be done by checking how the corresponding
variable gadgets are untangled. Hence, the problem is NP-complete. �
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4 Generating levels

In this section we describe how puzzle instances or levels can be generated
for Swap Planarity. First we outline a five-step procedure, and then we
explain these steps in more detail. We pay attention to three properties: (i) the
puzzle instance should look good, also in states to be reached later, (ii) every
possible good puzzle instance should be a possible output, for diversity, and (iii)
solutions should not have a particular structure that might be identified by a
puzzler, which may upset the intended puzzle instance difficulty.

4.1 Process of level generation

We describe a five-step procedure to generate a puzzle instance. We assume
that a desired number n of vertices is specified, and also a desired number m of
edges, and a desired minimal number s of swaps to the solution.

1. Generate a set V of n points in a playing area, such that for no two points,
an edge between them would visually conflict with any other point from
V (property (i)).

2. Generate a Delaunay triangulation on V , leading to an edge set E′′.

3. Perform a number of Lawson flips to make sure that the solution of the
puzzle instance need not only have Delaunay edges (done for properties
(ii) and (iii)). This makes E′ out of E′′.

4. Remove a number of edges at random from E′ until m edges remain. Make
sure that no isolated vertices remain. This gives the edge set E.

5. Perform s swap operations at random, by picking edges at random from
E. Test if the resulting instance requires s swaps to a planar state (and if
not, swap more edges).

The whole process ensures property (ii): any puzzle instance that satisfies prop-
erty (i) can be generated, provided that sufficiently many flips are performed in
step 3.

4.2 Generating points

Given the shape of screens, it is natural to generate a point set in a square or
rectangular region. There are two important issues to consider when generating
point sets. First, collinearity or near-collinearity of points means that poten-
tially, an edge will partly overlap a vertex in the drawing. This is undesirable.
Second, point sets are “combinatorially different”, which relates to the variation
to be obtained in puzzle instances. We discuss these two issues next.

Let us assume that each vertex is drawn as a disc with radius ρ. Then any
two vertices (centers) should be separated more than 2ρ in order for their discs
to be disjoint. Every edge is drawn as a rectangle with its length matching the
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distance between its endpoints (> 2ρ) and width λ < 2ρ. The center of each
vertex should be further away than ρ+λ/2 from the center line of any edge that
it is not incident to [18]. To have a little more room around each vertex and
edge we introduce a parameter δ that specifies for each point how far it must be
from each other point and edge, when points are viewed as 0-dimensional and
edges as 1-dimensional. We always choose δ > 2ρ.

Definition 1 Given δ > 0, a set P of points in the plane is in δ-general position
if and only if for any three distinct points p, q, r ∈ P , the distance from r to the
line through p and q is at least δ.

To generate a point set in δ-general position, we incrementally add points,
uniformly distributed in a square. For each addition, we check if the δ-general
position condition is violated, and if so, we discard the last added point. To
test this condition, we consider every pair of accepted points with the newly
added point. Using a bit of geometry we can identify a region bounded by six
lines where the new point may not lie, see Fig. 11. Two of these lines are the
outer tangents to two discs of radius δ centered on the two accepted points. The
other four are tangents to one of these discs, passing through the other accepted
point. Hence, this test can be done in quadratic time per new point.

Note that a set of two points is always in δ-general position, but any third
point enforces all points in the set to be at least distance δ > 2ρ apart; hence,
we do not need to check vertex-vertex distances after adding the second point.

When we generate puzzles with a considerable number of points we may get
many failures. It is possible to compute the whole region where new points
can be placed by generating the quadratically many regions for the accepted
points and computing their union. The complement of this union is where a
new point can still lie. In particular, we can compute this union and sample the
complement explicitly, which means we do not get failures. If the union covers
the whole square, we cannot add points anymore. For a accepted points so far,
this union has complexity O(a4) and can be computed in O(a4) time [11].

We next discuss the issue of combinatorially different point sets. To under-
stand what this means, imagine a set of n points in convex position: they all
lie on the convex hull. Whether points lie as the vertices of a regular n-gon,
or spread on an ellipse, or more randomly placed (but still in convex position),
these point sets are essentially the same from the perspective of intersecting
edges between these points. Any graph on these points has the same intersect-
ing edges, regardless of where the points lie precisely. Moreover, any point set

δ

Figure 11: Region where a third point may not be placed if δ-general position
should be preserved.
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with n points and k on its convex hull (3 ≤ k ≤ n) has at most 3n−k− 3 edges
that do not intersect (the fewer vertices on the convex hull, the more edges can
be in a plane graph). Point sets with the same number of points but different
numbers of points on the convex hull are combinatorially different. But there
are still differences between point sets with the same numbers of points and the
same number of points on the convex hull. In Section 6 we look more closely
at the concept of puzzle equivalence. In our experiments we use the number
of points inside the convex hull (n − k) as a simple indicator of how varied in-
stances may be. If there are no points inside, then the point sets are effectively
the same; more points inside allow for more combinatorial differences.

4.3 Generating a plane graph

Once we have generated a set V of n points without collinearity or closeness, we
can generate edges. We generate a plane graph (a solution) to a puzzle instance
in three steps (steps 2–4).

First, we compute the Delaunay triangulation of V [7]. This is a specific
triangulation of a point set that maximizes the smallest angle that is used in
the triangulation. This triangulation is also characterized by the empty-circle
property: for any two points vi and vj for which a circle exists that touches only
vi and vj and which has no points of V inside, there is an edge connecting vi
and vj . This characterization (in general) completely specifies the triangulation.
There are several known algorithms to compute the Delaunay triangulation of
n points in O(n log n) time. This gives the edge set E′′.

Second, we perform a few Lawson flips (beware that flips and swaps are
very different operations). A Lawson flip can be applied to a pair of edge-
adjacent triangles in a triangulation if those triangles together form a convex
quadrilateral. A Lawson flip removes the shared edge and re-triangulates the
resulting quadrilateral in the (only) other way. These flips make it harder for
a puzzler to solve instances. Delaunay triangulations favor shorter edges, and
Lawson flips can generate longer edges again. If a puzzler would know—or
realize—that the solution to each puzzle instance uses only Delaunay edges,
then (s)he can quickly see which edges must be avoided in the drawing by
imagining the empty-circle test (let’s face it: these puzzles are going to be done
by geometers). Edges to be flipped are selected randomly, and the flip is done
only if the four involved vertices are in convex position (otherwise the resulting
drawing would be non-planar). The resulting edge set is denoted E′.

Third, we remove some edges from E′ so that a puzzle instance solution is
not always a triangulation. We ensure that no isolated vertices are created, by
not removing edges with an endpoint of degree 1. These would not influence the
puzzle or its solution in any way. Notice that an isolated edge does influence
the puzzle. While a swap applied to such an edge does not change the drawing,
swapping other edges may resolve edge intersections with the isolated edge.

By removing edges we can realize a desired number of edges in the solution.
Removing many edges may cause the puzzle instance to have multiple solutions
and become easy.
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4.4 Generating an instance

We have now generated a graph with a specified number of vertices and edges,
and in particular, a solution to this puzzle instance. To generate the puzzle
instance itself we make some swaps such that undoing these (swapping the
same edges in reverse order) solves the instance.

It appears that puzzle instances with just two or three swaps from a solution
are already not so easy (Fig. 1). Once a player gets more experienced, instances
with four swaps may become suitable. This means that testing the difficulty
of a solution can be done by brute-force. For example, a graph with 20 edges
that should be four swaps away from a solution can be tested by trying all
20 · 193 = 137, 180 possibilities (we exclude swapping the same edge twice in a
row). This may lead to an instance with fewer necessary swaps to solve than we
have used to generate it; in this case we perform extra swaps until the desired
minimal number of swaps is obtained. We will also recognize if there are more
ways to a solved state, making the instance a bit easier too. Finally, swaps
that are independent and possibly even well-separated also give rise to easier
instances. Two swaps are independent if the four endpoints of the edges are
disjoint and there is no other edge than the two that are swapped between
these four vertices.

We have now realized the three properties we aimed for. The visual quality
(i) of the instance and every intermediate state that can be reached is captured
by the vertex-vertex distance and vertex-edge distance conditions. The puzzle
diversity (ii) is realized by allowing any number of vertices, edges, and steps
to the solution, every possible plane drawing as a solution, and every possible
non-plane drawing as a puzzle instance. There is no puzzle instance that cannot
be generated. Absence of unintended structure (iii) is accomplished by ensuring
that for a point set, any edge between two points could be part of the solution.

5 Implementation and experiments

The Swap Planarity game is implemented using Unity. Besides trying the
game to see how difficult and fun puzzle instances are, we are interested in
the efficient generation of non-collinear point sets, the number of points on the
convex hull, the non-collinearity parameter δ, and relations these.

Fig. 12 shows the interface. From the settings on the right we can see that
the instance has 11 points generated with δ = 0.03 to ensure non-collinearity,
the initial triangulation is 3 flips away from being Delaunay, then 4 edges were
removed and two swaps were performed to shuffle the planar graph. The solution
is shown on the right.

When we try to generate a large point set with a large value of δ, we may fail
because there may not be enough space on the screen (play area) to realize the
separation. This also depends on the random generation itself. It can happen
that a point set of 14 points cannot be extended to 15 points without violating
collinearity, but sets of 15 non-collinear points may still exist. This means that
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Figure 12: Left figure, screenshot with the steps of the generation listed in
sequence (Generate does all steps in order) and the settings used. Right figure,
the solution of this puzzle instance.

the point generation procedure may have to abort and restart. If aborting
is done too early, generation may be inefficient because we start from scratch
without having to. If aborting is done too late, generation may have spent a lot
of time on a configuration that cannot be extended anymore. Fig. 13 illustrates
this for a fixed value of δ; data points we generated with intervals of 50 between
0 and 500 and with intervals of 500 after that. Note that the vertical axis has
exponential scale. For the larger point set sizes we observe that we should make
enough attempts to add a point, but not too many, to get the best efficiency.

We also determined the number of points inside the convex hull for different
point set sizes and different values of δ. We noticed a surprising phenomenon:
the larger δ, the fewer points are in the convex hull. This can be seen in Fig. 14,

Figure 13: Performance (total number of attempts to add a point to generate
a complete point set) as a function of threshold choice, for different point set
sizes. The threshold value represents the total number of attempts to add a
random point before the generation of a point set is aborted and restarted.
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Figure 14: Number of points inside the convex hull as a function of the point
set size, for different thresholds. Data points are averaged over 100 point set
instances that were generated. To the right, detail of the same figure.

Figure 15: Standard deviation of the number of points inside the convex hull as
a function of the point set size, for different thresholds.

right: for increasing δ, fewer points tend to lie inside the convex hull. This
happens especially when it gets difficult to generate larger point sets for a given
δ, and hence we cannot observe the behavior for larger point set values in Fig. 14,
left. It may be the case that a placement of points on the convex hull is a good
placement if one wants to realize a large δ. This suggestion is supported by
theory on bold graph drawings [13]. Fig. 15 shows the standard deviations over
the 100 point set instances. It also shows that if δ is chosen relatively large,
fewer points will be inside the convex hull.

The experiments show the following trade-off: puzzle instances with a good
visual appearance (clear non-collinearity, large δ) are harder to generate ef-
ficiently and show less diversity, indicated by the relatively large number of
points on the convex hull.
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6 Equivalence of instances

We now return our attention to puzzle diversity. To generate diverse sets of
puzzle instances, we ideally need a good measure of puzzle instance similarity
(or its converse, distance). We study this aspect in its weakest form, namely
puzzle instance equivalence. The following definition essentially states that two
puzzle instances should be considered swap-equivalent if and only if any sequence
of corresponding swaps in both drawings gives the same sets of intersecting edges
in the drawings. With slight abuse of notation we use the same symbol for a
vertex in a graph and the point in the plane where it is drawn.

To define swap-equivalence we use a one-to-one matching µ between the
vertices of the two graphs and their drawings. We use the subscripts 1 and 2 to
refer to the two graphs, their drawings and their vertices. Furthermore, we use
the same letter for graph vertices or points that are matched. So, vertex u1 in
graph G1 is matched with vertex u2 in G2. We use µ as an invertible function
µ : V1 → V2. Thus, generally, we use µ(u1) = u2 and µ−1(u2) = u1.

Definition 2 Drawings D1 and D2 of graphs G1 and G2 are swap-equivalent
if and only if there is a one-to-one matching µ between their vertices such that:

(i) (u1, v1) is an edge in G1 if and only if (u2, v2) is an edge in G2, where
µ(u1) = u2 and µ(v1) = v2;

(ii) after any sequence of zero or more swaps of matched edges in both graphs,
(u1, v1) and (w1, x1) intersect if and only if matched edges (µ(u1), µ(v1))
and (µ(w1), µ(x1)) intersect.

It is clear that the drawings D1 and D2 need to have the same number of
vertices and edges, otherwise one-to-one matchings cannot exist.

Lemma 3 If two drawings D1 and D2 of graphs G1 and G2 are swap-equivalent,
then their graphs are isomorphic.

Proof: This follows directly from Definition 2(i). �

Beyond the topological equivalence of the graph indicated by the lemma
above, we also need a form of geometric equivalence for the point set of the
two puzzle instances. As it turns out, this corresponds to the order type, as
formalized in the lemma below. Consider two point sets P1 and P2 of n points
each. These point sets are combinatorially equivalent if a one-to-one mapping
µ : P1 → P2 exists such that for any three points u1, v1, w1 ∈ P1, the sequence
u1v1w1 is a left turn if and only if the sequence µ(u1)µ(v1)µ(w1) of points from
P2 is a left turn. The equivalence class thus obtained is called an order type [1, 2].

Lemma 4 If two drawings D1 and D2 of connected, non-star graphs G1 and
G2 are swap-equivalent, then their point sets have the same order type.
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Proof: Let P1 and P2 denote the point sets of the two graphs. Suppose
these point sets have a different order type. Then there is a quadruple of
points u1, v1, w1, x1 in P1 with matching points u2 = µ(u1), v2 = µ(v1), w2 =
µ(w1), x2 = µ(x1) in P2 such that u1, v1, w1, x1 are in convex position and
u2, v2, w2, x2 are not. Assume without loss of generality that (u1, v1) intersects
(w1, x1). Since G1 is connected, we can realize any mapping of graph vertices
to points by Lemma 2. Since G1 is connected and not a star graph, it has two
edges with four distinct vertices. Consider a sequence of swaps that places these
two edges on (u1, v1) and (w1, x1). Then these edges intersect. However, since
u2, v2, w2, x2 are not in convex position in D2, the corresponding edges in D2

do not intersect. This contradicts Definition 2(ii). �

Theorem 3 Two drawings D1 and D2 of connected, non-star graphs G1 and
G2 using point sets P1 and P2 are swap-equivalent if and only if there is a
one-to-one matching between P1 and P2 such that:

• point sets P1 and P2 have the same order type which respects the one-to-
one matching;

• the graphs G1 and G2 are isomorphic with the given one-to-one matching
of the points in P1 and P2 applied to the corresponding vertices in G1 and
G2.

Proof: Assume two drawings D1 and D2 are swap-equivalent. Then Lemma 3
shows that their graphs are isomorphic. Furthermore, Lemma 4 shows that
their point sets must have the same order type. Now assume that the order
types are the same and the graphs are isomorphic, but there is no one-to-
one matching that simultaneously witnesses the same order type and graph
isomorphy. Consider any one-to-one matching for graph isomorphy. Then there
is a quadruple of points that are in convex position in G1 whose matched points
are not in convex position in G2, or vice versa. The same argument as the one
used to prove Lemma 4 shows that the intersections of edges are not the same in
the two drawings after some sequence of swaps, contradicting swap-equivalence.

Next, assume that two drawings satisfy the two conditions of the theorem.
Then there is a one-to-one matching between the vertices that respects the order
types and that is a witness for graph isomorphism at the same time. Graph
isomorphism implies (i) of Definition 2, and having the same order type implies
that the same pairs of edges intersect in the complete graph. Hence this is also
true in any subgraph. �

The theorem above implies an efficient way to test whether two puzzle in-
stances are equivalent. We first identify the at most n one-to-one matchings for
the order type, and then check whether this matching also realizes graph iso-
morphism. Generating and testing the up to n matchings takes O(n3) time [10],
and testing isomorphism for a given matching takes time linear in the size of the
graph. Hence, swap-equivalence of two drawings with n vertices can be tested
in O(n3) time.
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7 Conclusions

We introduced a new graph planarity puzzle game called Swap Planarity
and analyzed various properties, including the algorithmic complexity of solving
instances. Any instance that can be solved, is solved in O(n2) swaps. However,
deciding if an instance can be solved is NP-complete. When the graph is a
tree, the instance can always be solved, but deciding if k swaps are sufficient
is again NP-complete. We presented a method to generate instances effectively
while paying attention to visual clarity, diversity, and absence of accidental
structure. Our implementation shows that generation works well, but has a
trade-off between a good visual clarity on the one hand and diversity and efficient
generation on the other.

Visual clarity was defined using a new, simple condition on point sets called
δ-general position. The experiments showed an interesting phenomenon, namely
that if δ is fairly large for the available space and the number of points, the
solution tends to be a set of points in convex position (and no points in the
interior of the convex hull). It would be interesting to explore this relationship
further.

We think that the new, swap-based graph planarity puzzle game is a nice,
elegant addition to the collection of abstract puzzle games. The puzzle is NP-
hard, the number of crossings may need to be increased to reach a solution, and
even small instances are not so easy to solve. User studies are needed to analyze
the fun and difficulty of the game for players.
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