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Abstract 

Finding the fit-for-purpose modeling complexity for 

Building Integrated Photovoltaic (BIPV) systems in the 

early stages of building design is challenging, because 

typically at this stage the BIPV system is not yet designed 

in detail, which limits the applicability of detailed 

simulation models. This work targets to aid determining 

in which cases simple (linearly responsive to partial 

shading) PV system models are applicable for early-stage 

building design support. To achieve this, a pre-screening 

method is being developed using new metrics calculated 

from high-resolution irradiance simulations. The method 

was tested on different geometries and was proven to be 

able to predict, under what conditions the linear model 

would overestimate the PV performance. 

Introduction 

The increasing application of BIPV in urban 

environments goes together with the installation of PV on 

surfaces where shading caused by vegetation, other 

buildings or building parts, such as dormers or balconies 

regularly occurs (Freitas et al., 2015; Moraitis, 2018; 

Zomer and Rüther, 2017a, 2017b). Considering the trend 

toward performance-based building design and operation, 

such new applications lead to a growing need to evaluate 

the influence of partial shading on PV system 

performance (Zomer et al., 2016). Depending on the 

architecture of the power system of a BIPV installation 

(e.g. stringing scheme and inverter types), the reduction 

in output due to (partial) shading may not be linearly 

related to the sunlit fraction or the average irradiance on 

the PV surface (Bognár et al., 2018; Killinger et al., 2018). 

BIPV systems consist of electrically interconnected set of 

components: the smallest components are the PV cells, 

which convert light to electric current at a specific 

voltage. Cells are interconnected in series (and sometimes 

in parallel) to form a PV module. Modules are series-

connected to form PV strings, and strings are often 

connected in parallel to form a PV array. Then the array 

is connected to power electronics, such as Maximum 

Power Point (MPP) trackers, inverters and transformers to 

convert the direct current generated by the PV array to 

alternating current in a usable voltage range. In this paper 

we regard the power electronics as ideal systems, that is, 

we do not consider inverter and MPP tracking losses, as 

we want to investigate the modeling uncertainties due to 

non-uniform irradiance on the PV array in their purest 

form. 

Table 1 shows the result of simulations conducted with 

the tool PVMismatch (Mikofski et al., 2018) to illustrate 

the non-linear relationship between average irradiance 

and generated power. In this example, the irradiance is 

1000 W/m2 on the sunlit modules, and 200 W/m2 on the 

shaded ones. While the sunlit fraction and the average 

irradiance on the two identical solar arrays (Figure 1a and 

1b) are the same, the arrangement of the shadows is 

different, causing a different power loss. 

Simulation tools, such as PVMismatch (Meyers and 

Mikofski, 2017) and PySpice (Salvaire, 2019) are 

available to accurately conduct detailed, cell-level 

electrical simulations for partially shaded PV systems. 

The biggest obstacles to conduct such detailed 

simulations – especially in the early stages of the building 

design – are simulation time, and input information 

availability about the PV system layout and geometry of 

the occurring shadow patterns. Moreover, often the 

building and the PV system model is simulated in separate 

Table 1: Power generation, simulated with 

PVMismatch, for an unshaded solar array (ø) and the 

shading cases (a, b) shown in Figure 1. 

Shading 

case 

Sunlit 

fraction [%] 

GAVG 

[W/m2] 

PDC 

[W] 

PDC 

[%] 

Ø 100 1000 5354 100 

A 50 600 2581 48 

B 50 600 3149 59 

 

Figure 1: Example of a BIPV façade consisting of 

four vertical strings (ten modules connected in series, 

marked with the same color) connected in parallel 

with different shadow arrangements (a) and (b). 
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tools, with separate CAD models, complicating the 

simulation workflow.  

Studies have addressed the issue of simulation time by 

parametrizing the shade loss model (Dallapiccola et al., 

2018; Meyers et al., 2016) aiding PV system designers to 

evaluate and optimize the stringing design of a PV system 

by enabling iterative testing of a large number of possible 

configurations. This approach requires detailed irradiance 

input, stringing design of the system and the parameters 

of the used modules, and provides predicted DC power as 

output. Others have addressed the issue of optimizing the 

PV system layout on the building surface and battery 

storage, taking economic considerations into account 

(Lovati et al., 2018). The input in that research project 

consisted of solar irradiance, electric demand profiles and 

costs, and the output was the optimized battery capacity, 

size and position of PV modules on the building surface. 

Researchers have demonstrated the potential in linking 

ray-tracing simulations with detailed electrical and 

thermal simulation of PV cells in order to conduct 

accurate simulations of complex BIPV systems 

(Sprenger, 2013). Others have developed an irradiance-

electrical-thermal co-simulation design tool with a 

planned inclusion of a database of pre-defined BIPV 

products to bridge the gap between BIPV system 

manufacturers and building designers (Alamy and 

Nguyen, 2018). 

The scope of the challenge that is being addressed in this 

paper is slightly different, as it intends to support building 

energy modelers instead of PV system designers in the 

early stages of the building design, when only the 

geometry of the available built surfaces, location and 

shading environment of the current building design 

iteration tends to be known. In these situations, the lack 

of information on the architecture of the BIPV system 

with the diverse distribution of shadows on it can induce 

a high degree of uncertainty in the simulated effect of 

partial shading on the performance of the BIPV system. 

Most of the currently available building energy software, 

such as IDA ICE, IES VE, Trnsys and EnergyPlus, have 

the capability to model PV yield, however, the power 

output of the PV models tend to be modeled in a lumped 

way in these tools, not considering that the elements of 

the system affect each-other’s performance during 

operation. Most PV modules include built-in bypass 

diodes that prevent damage of shaded cells caused by 

hotspots. When a PV module is partially shaded, the 

shaded cells act as a resistance, and dissipate energy by 

heating up. To protect the cells from overheating, the 

bypass diodes activate and bypass the shaded cells 

(Silvestre et al., 2009). As a result, module-level 

mismatch losses occur in the PV system, and the 

irradiance incident on the shaded cells is not utilized, 

which leads to power output that is not linearly 

proportional to the mean incident irradiance on the PV 

system. Similar losses can occur on the system level, 

where the interconnected modules affect each other’s 

performance in case of a non-uniform irradiance 

distribution. Such system and module level electrical 

interconnections cannot be modeled in building 

performance simulation tools such as EnergyPlus, and as 

a result, the effect of partial shading is taken into account 

in a simplified, linear way. When simple models are used 

in a complex case of partial shading, significant 

overprediction of PV performance is likely to occur (U.S. 

Department of Energy, 2018), possibly leading to wrong 

building design decisions or too optimistic return-on-

investment estimates. On the other hand, simple models 

should be used when applicable, to avoid unnecessary 

modeling work and errors introduced due to assumed 

model input (Gaetani et al., 2016; Trčka and Hensen, 

2010). 

Deciding on the complexity of the applied (irradiance, 

electrical, thermal) model needs to be done “a priori” and 

is therefore a challenging task. The decision is highly 

case-dependent and should be made on the basis of (i) the 

available input, (ii) the aim of the investigation, and (iii) 

the complexity of the investigated problem. There is 

currently no guidance available to assist building 

modelers during this process.  

The current work aims to quantify the complexity of the 

investigated problem for the case of performance 

predictions of BIPV systems. Figure 2 shows the possible 

cases of matching the complexity of the modeled 

problem, and the complexity of the simulation model. 

Once the complexity of the shading situation is 

determined, the modeler can make an informed decision 

to simplify the model – move from L-H to L-L at no cost 

– or make it more detailed – move from H-L to H-H, 

which often requires additional input and time. The model 

pre-screening method that is proposed in this paper aims 

to support such modeling decisions, leading to models 

that are fit-for-purpose and can effectively support 

building design decisions in the early stages of building 

design.  

The structure of the paper is as follows: The used 

simulation tools are described in the Approach section. 

Calculation of the model complexity indicators is defined 

in the following Shade complexity metrics section. The 

Case study section demonstrates the use of the pre-

 

Figure 2: Simplified complexity matrix of BIPV 

system simulations.  
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screening method, then conclusions are drawn and plans 

for future work are described in the last section. 

Approach 

The work in this paper uses as assumption that the 

complexity of the irradiance distribution on a PV surface 

is affecting the linearity of the losses due to partial 

shading. There is a strong linear correlation between the 

power output of a PV system and the mean incident 

irradiance, if the irradiance on the active surface is 

uniform. On the other hand, the linear correlation is 

weaker, in the case of a more complex, uneven irradiance 

distribution. Surface irradiance distributions, which are 

relatively easy to obtain with state-of-the-art irradiance 

simulation tools, are the only input necessary to determine 

the shading complexity of a BIPV system. The discrete, 

numerically specified solar irradiance function on a 

building surface can be formalized as: 

 G = ƒ(x, y, t) , (1) 

where the solar irradiance at a given point on the surface 

(G) is a function of the position (x and y coordinates on 

the surface) and time (as the solar position and irradiance 

conditions change at every timestep). The irradiance 

function is discrete in the spatial domain, because the 

number of sensor points is finite, and discrete in time, 

because the simulations are conducted at distinct 

timesteps. To generate the irradiance function the ray-

tracing method of DAYSIM/Radiance (DS/Rad) is used 

(Reinhart and Walkenhorst, 2001). The necessary inputs 

are: 

 Geometry of the surface in question 

 Geometry and reflectance properties of the potentially 

shadow-casting surfaces of the surroundings 

 Weather data for the given location 

 Desired density (pts/m2) of the irradiance sensor 

points 

 Irradiance simulation parameters required by DS/Rad 

To preprocess and execute the irradiance simulations, 

Daypym (Bognár and Loonen, 2018) was used, which is 

a Python module developed to: 

 Translate EnergyPlus geometry to DS/Rad readable 

.rad files 

 Generate irradiance sensor points based on the desired 

sensor point density and write the .pts file 

 Write the .hea file, that contains DS/Rad simulation 

parameters 

 Manage the file structure and execute the DS/Rad 

simulations 

 Postprocess and visualize the results 

Daypym builds on Eppy (Philip et al., 2019) and 

GeomEppy (Bull, 2019), and was designed to smoothen 

the linking of building energy simulations (EnergyPlus) 

with high resolution irradiance simualtions (DS/Rad) and 

electrical simulations of PV systems (PVMismatch). In 

this paper DS/Rad-PVMismatch simulations are used to 

emulate reality, and the performance of EnergyPlus’ 

irradiance and linear PhotovoltaicPerformance:Simple 

PV system model is compared to this to quantify the 

complexity of different shading conditions. The aim is to 

develop a model pre-screening method, that is capable of 

determining the applicability of linear PV models for 

early-phase design support by only analysing the 

irradiance distribution on the PV system. Three types of 

geometries were investigated. Two of them are shown in 

Figure 3, and a third is discussed in more detail in the Case 

study section. 

Shade complexity metrics 

In this section, metrics are proposed that attempt to 

capture the non-uniformity of the irradiance over the 

investigated façade on a timestep level. The long-term 

aim is to find a connection between the irradiance 

distribution and the simulation error of linear PV system 

models. The first two metrics (SF and GAVG) are 

commonly used, and can be calculated with EnergyPlus. 

Calculating the rest of the metrics requires irradiance 

simulation with a higher spatial resolution, e.g. irradiance 

simulated with DS/Rad over a sensor point grid, as can be 

seen in Figure 3. 

Sunlit fraction 

Sunlit fraction is the ratio of the sunlit surface area (𝐴𝑠𝑙), 

and the whole surface area (𝐴): 

 
SF =  

𝐴𝑠𝑙

𝐴
 . 

(2) 

 

Figure 3: Irradiance simulations with DS/Rad of a BIPV facade for an (a) external obstruction, (b) fins on the façade. 
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This metric can be calculated with EnergyPlus. Its value 

is 1 in case of a fully sunlit surface and 0 in case of a fully 

shadowed one. A value of 0 or 1 indicates, that no shadow 

edges are present on the surface, therefore the irradiance 

distribution is very close to uniform, however, in reality, 

some non-uniformity of irradiance might be caused by 

diffuse shading or reflection from other surfaces, which 

can only be captured by high-resolution irradiance 

simulations. 

Mean irradiance 

Mean irradiance is the most commonly used metric to 

describe irradiance on a surface. EnergyPlus calculates it 

from the sunlit fraction and the direct, sky- and ground-

diffuse irradiance for a given surface. In the case of 

DS/Rad simulations, it is the mean of the calculated 

irradiance values over the sensor point grid. Mean 

irradiance does not provide information about the 

distribution of the irradiance, but it is useful for 

weighting, when calculating aggregated yearly values of 

other metrics. 

Contrast 

Contrast is calculated as: 

 
C =  

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

𝐺𝑚𝑎𝑥
 , 

(3) 

where 𝐺𝑚𝑎𝑥 is the highest and 𝐺𝑚𝑖𝑛 is the lowest 

irradiance on the surface. The contrast metric is useful to 

investigate whether bypass diodes are being activated in 

the PV system, which might lead to module- or system-

level mismatch losses that can only be captured with more 

detailed PV system models. 

Normalized mean gradient 

For this metric, the simulated irradiance values for a grid 

of sensor points over the PV system is required, (see 

Figure 3 and 4) to capture the variability of the irradiance 

on the surface.  

As a first step, for each sensor point, the central 

differences of the simulated irradiance are calculated for 

the x direction: 

 
𝑑𝑥𝑖,𝑗 =

|𝐺𝑖,𝑗+1 − 𝐺𝑖,𝑗−1|

2
 , 

(4) 

and for the y direction: 

 
𝑑𝑦𝑖,𝑗 =

|𝐺𝑖+1,𝑗 − 𝐺𝑖−1,𝑗|

2
 . 

(5) 

See figure 4 for interpretation of 𝐺𝑖,𝑗 in the sensor point 

grid. 

 

Figure 4: Irradiance sensor points in a grid. 

The resultant irradiance gradient for each point can then 

be calculated as: 

 

𝑑𝑥𝑦𝑖,𝑗 =   √(
𝑑𝑥𝑖,𝑗

𝑑𝑥𝑚𝑎𝑥
)2 + (

𝑑𝑦𝑖,𝑗

𝑑𝑦𝑚𝑎𝑥
)2. 

(6) 

For an m*n grid of sensor points, the result is an n*m 

matrix of gradients. Note, that we normalized the gradient 

components with the maximum possible gradient for a 

given timestep: 

Gi, j Gi, j+1Gi, j-1

Gi-1, j Gi-1, j+1Gi-1, j-1

Gi+1, j Gi+1, j+1Gi+1, j-1

dxi, j

d
y i, 

j

(a) (b) 

Figure 5: DS/Rad simulation of  irradiance marked with color, and the calculated gradients marked with arrows for 

a surface with (a) no hard shadows on it, and (b) with the shadow of a pole. 
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𝑑𝑥𝑚𝑎𝑥 =   𝑑𝑦𝑚𝑎𝑥 =  

𝐺𝑚𝑎𝑥

2
  , 

(7) 

to make it independent of the value of irradiance. The 

normalized mean gradient for a given timestep is 

calculated as: 

 
𝑑𝑁𝑀 = ∑ ∑

𝑑𝑥𝑦𝑖,𝑗

𝑚 ∗ 𝑛

𝑛

𝑗=1

𝑚

𝑖=1

 . 
(8) 

Figure 5 shows the calculated 𝑑𝑥𝑦 for each sensor point 

represented with an arrow, and the irradiance values with 

color (note, that the scale of the arrows is different for 

Figure 5a and 5b). Figure 5a shows the gradient for a 

surface that is relatively uniform. There are no hard 

shadows on it. Some non-uniformity is caused by diffuse 

shading and reflection from the ground causing small 

gradients between the sensor points. Figure 5b shows a 

case, when a pole casts a hard shadow on the surface, 

causing a large gradient at the shadow edges. The 

hypothesis is that if the normalized mean gradient for all 

sensor points in the matrix for a given timestep is small, 

then the irradiance distribution is uniform, leading to 

small simulation errors with linear PV system models. 

Directionality 

If we examine Figure 5a and 5b, we can notice that the 

gradients generally have a horizontal direction in both 

cases. This means, that the change in irradiance in the 

horizontal direction is generally larger, than in the vertical 

one. According to the example shown in the Introduction 

section, this can provide useful information for PV system 

design, to determine the direction of module wiring in a 

way, that the irradiance of a substring is more uniform. 

For example, in Figure 1a the directionality is negative 

(horizontal shadows), and in 1b the directionality is 

positive (vertical shadows). Directionality is calculated 

as: 

 
D =

𝑑𝑥𝑖,𝑗 − 𝑑𝑦𝑖,𝑗

𝑑𝑥𝑖,𝑗 + 𝑑𝑦𝑖,𝑗
 . 

(9) 

Case study 

 A case study of a BIPV façade made out of 40 40-cell 

modules with 134 Wp nominal power each is investigated 

(see Figure 6). The system with 5354 total DC Wp is 

shadowed by a pole, to demonstrate if the proposed 

metrics can predict the usability of linear PV models for 

performance prediction.  

Figure 7a shows the results of DC power output 

simulations with EnergyPlus and with PVMismatch on 

the 6th of March. In the case of EnergyPlus, the irradiance 

and PV models are built-in EnergyPlus models, while for 

the detailed simulations the irradiance is calculated with 

DS/Rad over a 40*40 sensor point grid (one irradiance 

sensor point for each PV cell) and the PV power output is 

calculated with PVMismatch. Moreover, for the detailed 

case, stringing information is also provided for a 

horizontally and a vertically strung PV system case. For 

the EnergyPlus model, stringing is invariant; it cannot be 

modeled. The weather input is an hourly IWEC weather 

file for Amsterdam, the Netherlands. 

Results – unshaded period 

 

Figure 6: Shadow of the pole on 6th of Mar. at 11:57 

 

Figure 7: (a) Simulated power with the EnergyPlus PV 

model and PVMismatch, (b) Simulated irradiance with 

EnergyPlus and DS/Rad, (c) Normalized mean 

gradient, (d) Contrast, and (e) Directionality on the 6th 

of March.  
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We can observe in Figure 7a, that when no shadows are 

present, like at 09:00, (i) there is no difference between 

the horizontal and vertical stringing case for 

PVMismatch, and (ii) the difference between the linear 

EnergyPlus, and the more complex DS/Rad-PVMismatch 

simulations is small. Most of this small difference comes 

from the different irradiance model of EnergyPlus and 

DS/Rad. The simulation was ran with a 5-minute timestep 

in both cases. While EnergyPlus linearly interpolates the 

hourly weather file solar data for sub-hourly irradiance 

calculations, DS/Rad uses a stochastic model to introduce 

variation in the upsampled data (see Figure 7b). 

Results – shaded period 

In the period, when a shadow is present on the surface, 

like at 11:57, (i) stringing arrangement causes a difference 

in the power output of the detailed PVMismatch models, 

and (ii) there is a significant difference between the 

EnergyPlus and the PVMismatch models. The 

performance drop of the EnergyPlus model is linearly 

proportional to the irradiance loss due to shading (i.e. 

mean irradiance), while in reality and in the case of the 

detailed model, the performance drop is dependent on the 

size, shape and position of the shadow, and the PV system 

layout. It can be observed in Figure 7c, that when 𝑑𝑁𝑀 is 

close to zero (low shading complexity), the linear PV 

model performs similarly to the more complex one, while 

at high 𝑑𝑁𝑀 (high shading complexity), the results 

deviate. The same can be observed in Figure 8, where it is 

demonstrated, how 𝑑𝑁𝑀 can be used for predicting the 

applicability of linear models. Figure 8a shows the result 

of the linear EnergyPlus simulation. Each dot on the 

scatter plot represents the simulated power as a function 

of surface average irradiance for each timestep on the 6th 

of March. As a result of the analysis of the irradiance 

distribution, each point was marked with the 𝑑𝑁𝑀 value. 

High 𝑑𝑁𝑀 values indicate that, at the given timestep, the 

linear model will overpredict the performance. In Figure 

8b, results of the simulation with PVMismatch show, that 

indeed, the points with high 𝑑𝑁𝑀 fell off the linear 

irradiance-power curve. 

Results – directionality 

The shadow of the pole in this example is very 

prominently vertical, causing two sudden transitions in 

the horizontal direction. This can be observed in Figure 

5b, 6 and 7e. When the shadow of the pole is present, D is 

close to 1, indicating that almost all change in the 

irradiance is in the horizontal direction. Using the surface 

average irradiance (𝐺𝑚𝑒𝑎𝑛) for weighting, the yearly 

irradiance weighted 𝐷 for the BIPV façade is 0.44, 

indicating that using vertical stringing (similar to the 

stringing shown in Figure 1) instead of a horizontal 

scheme, leads to smaller mismatch losses on a yearly level 

due to partial shading. 

Conclusions 

With the goal of assisting building energy modelers to 

select the appropriate complexity level of BIPV 

performance prediction models, this paper has shown the 

development and testing of indicators that can estimate 

the occurrence of PV mismatch losses on the basis of 

irradiance simulations, without the need of conducting 

high-resolution electrical simulations. The results of the 

presented case study simulations have demonstrated that 

the normalized mean irradiance gradient (𝑑𝑁𝑀) can be a 

good predictor of the applicability of linear PV system 

models. Moreover, it was concluded that the proposed 

indicator for quantifying directionality of change in the 

simulated irradiance on the surface can provide relevant 

input for the purpose of detailed BIPV system design. 

Conducting high spatial resolution irradiance simulations 

only requires model input that is typically available in an 

early stage of the building design (e.g. PV stringing 

schemes or inverter types are not needed as input). As 

such, the approach has potential to be used as a pre-

screening method, to verify the validity of the 

assumptions of preliminary linear models, namely that 

linear PV models predict the performance well, when the 

incident irradiance is uniform over the whole surface of 

the PV system. High values of 𝑑𝑁𝑀 signal the occurrence 

of non-uniform irradiance distributions, warning the 

 

Figure 8: (a) EnergyPlus and (b) PVMismatch PV power simulation results as a function of average surface irradiance on 

the 6th of March, with 𝑑𝑁𝑀 marked for each timestep. High 𝑑𝑁𝑀 indicates that the linear model will overpredict. 
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modeler that the linear PV model is likely to overpredict 

the performance of the system. Often, design decisions 

can still be made with such a model. For example if 

reaching a certain yearly PV yield is required for 

including BIPV to the design, and this limit is not reached 

even with the “optimistic” model, the modeler can be 

certain, that increasing the model complexity will just 

reduce the predicted yield, therefore the decision can 

already be made to exclude the BIPV system from the 

design. On the other hand, if a linear early-stage model 

predicts that the system just reaches the required yield 

limit, and the 𝑑𝑁𝑀 over the year is low, the decision can 

be made to include BIPV to the building design, as the 

risk of overprediction with the linear model is low. 

Limitations and future work 

Current paper is the presentation of an ongoing effort to 

quantify the complexity of the irradiance distribution on 

PV surfaces, thus aiding modeling decisions in the early 

stage of building design. Future work will address the 

following issues: 

 What threshold should be used for 𝑑𝑁𝑀 to accept a 

linear model as applicable with low risk of 

overprediction? Based on the presented case study, a 

𝑑𝑁𝑀 = 0.02 seems to be a reasonable threshold, 

nevertheless, this value can be specific for this 

geometry and PV system architecture. Therefore, in 

future work investigation of other case studies, with 

various geometries will be conducted in order to 

generalize these findings. 

 Is 𝑑𝑁𝑀 the best metric to evaluate the complexity of 

irradiance distribution on a surface? According to 

Figure 7, 𝐶 and to some extent 𝐷 and 𝑆𝐹 can also be 

a suitable indicator. The correlation between the 

various indicators, and their potential divergence, will 

be investigated further by exploring other case studies 

with various shading scenarios. 

 PV system performance is usually evaluated on a 

yearly level. Therefore, the applicability of linear 

models should also be evaluated based on yearly 

performance. While at each timestep the 𝑑𝑁𝑀 metric 

can be calculated, it is normalized with the maximum 

irradiance on the surface. Timesteps with lower 

irradiance have smaller impact on the annual yield, 

which should be addressed with a robust irradiance-

weighting method for calculating the yearly 𝑑𝑁𝑀. 
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